
Chapter 5 

Architecture selection 

Architecture selection is critical to NN modeling where the objective is to find the 

smallest network that accurately maps the true function described by the training 

data. Architecture selection has to reduce network complexity while maintaining good 

generalization. A network that is too large may lead to overfitting of the training data 

resulting in poor generalization when presented with similar but slightly different data. 

If the network is too smail, underfitting may occur that results in poor approximation 

of the function [Baum et al1989, Le Cun 1989]. 

The objectives of pruning are usually motivated by two aims: to obtain networks of 

a small size and with a good generalization performance. The objective is to find a 

minimal network topology. It is usually not obvious what the smallest network with 

the best generalization is for a particular task. Different approaches have been devised 

to solve this problem. 

Architecture selection approaches can be grouped in four categories, i.e. brute-force ap­

proaches, regularization, network growing (network construction) and pruning. While 

these topics have been introduced in section 2.17, this chapter focuses on pruning. 
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141 CHAPTER 5. ARCHITECTURE SELECTION 

Pruning starts training with a neural network which is expected to be big enough to 

ensure successful training. At convergence of the oversized network, weights and/or 

units that are irrelevant or redundant are removed, upon which the pruned network is 

retrained [Thimm et al1995]. If the retraining converges then the removal-retraining 

cycle is resumed. If the retraining fails, the smallest network that satisfied the conver­

gence criterion is assumed to have the most suitable topology for the given data set. 

The decision to prune a network is based on some measure of parameter (i.e. a unit or 

weight) relevance. A relevance is computed for each parameter and a pruning heuristic 

is applied to determine whether a parameter is irrelevant or not. Numerous pruning 

algorithms have been proposed, including the following, 

• 	 The Smallest Variance, (min(O')), method of Sietsma and Dow that removed 

connections with smallest contribution variance on the training set, where the 

contribution of a connection is the value available to the connection from the 

lower layer, multiplied by its weight. The mean output of the removed connection 

is then added to the corresponding bias [Sietsma et al1991] . 

• 	 Skeletonization, which is a weight removal method, defines a measure of the rel­

evance of a unit as the error when the unit is removed from the network, minus 

the error when the unit is left in the network [Mozer et al1989]. This is accom­

plished by multiplying the output of a unit j by a coefficient, O:j, that represents 

the attentional strength of the unit [Mozer et al1989]. In the case of hidden units, 

.1+1 

Ok = fCL WkjO:jYj) 	 (5.1 ) 
j 

where f(-) is the activation function, Ok is the activation of output unit Ok, Wkj 

is the weight between hidden unit Yi and output unit Ok and Yj is the activation 

of hidden unit Yj. If O:j = 0, unit Yj has no influence on the rest of the network. 

If O:j = 1, unit 1j is a conventional unit. The units are then removed for which 
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the derivative of the error function to these attentional strengths, 0:j ' S, are small 

[Thimm et al1995J. Skeletonization can also be applied to prune input units. 

• 	 Karnin's method that estimates the sensitivity s of a weight by : 

N 2 w(n) 
(5.2)s = ];(6w(n) . rJ' (w(n) - w(O))) 

where w(n) is the weight in the current training epoch n, w(O) the initial weight, 

and 6w(n) the weight change in the nth epoch [Karnin 1990J. The denominator in 

this formula can become zero, and experiments have indeed shown this to happen. 

This problem is not dealt with in Karnin's publication. It can, however, easily be 

solved by setting the whole fraction to zero. The calculation for s then becomes, 

s = { =;;=1 (6w(n)2 . '7.(w(:~~)w(O))) if w(n) i= w(O) 
(5.3) 

o 	 if w(n) = w(O)) 

• 	 Autoprune developed by Finnof et al, where a test statistic is defined based on the 

probability that a weight becomes zero [Finnoff 1993bJ. A weight is then removed 

if the probability that it will become zero is high. Prechelt extended Autoprune 

to A - prune to calculate the number of units to be pruned at each pruning step 

[Prechelt 1994]. 

• 	 Genetic algorithms (GAs) also provide a biological plausible approach to pruning 

of NNs [Whitley et al1990J. The GA is populated with several pruned versions 

of the original network Each of these networks must be trained separately. In 

this type of pruning genetic operators such as mutation, reproduction and cross­

over are applied to create differently pruned networks. These pruned networks 

'compete' for survival, being awarded for using fewer parameters and for improving 

generalization. A drawback of the GA approach to pruning of neural networks is 

that it is time consuming. 
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• 	 The Variance Nullity method developed by Engelbrecht is a computationally 

efficient pruning heuristic based on variance analysis of sensitivity information 

[Engelbrecht et al1999c, Engelbrecht 2001]. This algorithm utilizes first-order 

derivatives of the NN output with respect to parameter perturbations, which are 

already calculated when gradient descent is used for neural network training . 

• 	 Optimal Brain Damage (OBD), Optimal Brain Surgeon (OBS) and Optimal Cell 

Damage (OeD) are all based on second-order derivatives of the 'objective func­

tion' with respect to parameter perturbations. In OBD and OCD complexity is 

reduced by assuming that (a) the function is well approximated by a second-order 

expansion around its minimum, (b) the off-diagonal elements of the Hessian ma­

trix are zero and (c) all errors between the target and output values are zero. 

In OBS assumption (b) mentioned above is removed and also is retraining after 

pruning avoided by automatically adjusting the remaining weights. OBD, OBS 

and OCD all require differentiable activation functions. Criticism concerning as­

sumption (c) is that outliers in the data nullify the assumption. The calculation 

of the Hessian in OBD, OBS and OCD increases the complexity of these pruning 

methods. In OBS the complexity is further increased since the inverse of the 

Hessian must also be calculated. 

The only assumptions for variance nullity pruning method are, 

1. 	that the network must be well trained and 

2. 	 that the activation functions must at least be once differentiable. 

Also, this algorithm is not as computational intensive as other pruning algorithms. 

For this reason the 'Variance Nullity pruning Method' is the algorithm of choice to be 

implemented in this thesis. The next section provides an overview of sensitivity analysis. 
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5.1 Overview of Sensitivity Analysis 

Research has shown that any continuous function can be approximated by a 

multilayer NN using a monotonically increasing differentiable activation function 

[Funahashi 1989, Hornik et al1989aj. Gallant et al further showed that when a NN 

converges towards the underlying (target) function, then all the NN derivatives also 

converge towards the derivatives of the underlying function [Gallant 1992]. This 

property of NNs derivatives allows efficient use of the NN derivatives to compute 

sensitivity information. Sensitivity analysis of a system is the study of how the deriva­

tives of a performance function can be used to quantify the response of the system 

to parameter perturbations [Holtzman 1992j. Thus, sensitivity analysis techniques 

quantify the relevance of a network parameter (Le. an input unit, hidden unit or 

weight) as the influence that small parameter perturbations have on a performance 

function [Engelbrecht 2001j. Sensitivity analysis also provides a neural network tool to 

automatically identify all relevant parameters using the significance measures obtained 

from a sensitivity analysis tool. 

There are two main approaches to sensitivity analysis for feed-forward neural networks 

(FFNNs). These approaches differ in the performance function used. In the one 

approach the objective function to be minimized serves as the performance func­

tion, in the second approach it is the neural network output function. Objective 

function sensitivity analysis has been used widely in pruning of NN parameters 

[Hassibi et al1994, Le Cun et al1990j, to develop more sophisticated optimiza­

tion techniques [Battiti 1992]' and to study the robustness and stability of NNs 

[Oh et al1995]. NN output sensitivity analysis on the other hand has been used to 

study the generalization abilities of FFNNs [Fu et al1993], to assess the significance 

of input parameters [Engelbrecht et al1995b], for selective learning and incremental 
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learning [Engelbrecht et al1999d] and for prunmg irrelevant network parameters 

[Engelbrecht 2001, Zurada et al1997]. In OBD, OBS and OeD sensitivity analysis is 

performed with regards to the training error. Assuming gradient descent optimization 

and the sum-squared objective function, Engelbrecht has shown that output sensi­

tivity analysis and OBD are conceptually the same under the assumptions of OBD 

[Engelbrecht 2001]. Output sensitivity analysis has the advantages that it is not based 

on assumptions to simplify complexity, as is the case with OBD, OBS and OeD. Also, 

output sensitivity analysis is less complex than objective function sensitivity analysis. 

Furthermore, objective function sersitivity analysis is dependent on the objective 

function and the optimization algo[;ithm used to update the weights. while output 

sensitivity does not depend on the o · jective function or the optimization algorithm. 

The next section describes the variance nullity pruning algorithm of Engelbrecht. The 

pruning algorithm is subsequently apblied to prune oversized PUNNs used to learn the 

test functions of section 4.4.1 on pagk99. 

5.2 The Variance Nu~lity Pruning Approach 

The variance nullity pruning algoritlum of Engelbrecht is based on NN output sensi­

tivity where the relevance of paramerrs is based on parameter sensitivity information 

[Engelbrecht 2001]. In this algorit 1m a variance nullity measure is computed for 

each parameter. The statistical nullity in parameter sensitivity variance is defined 

in equation (5.4). Thus, the varian e nullity measure provides a statistically sound 

mechanism to decide whether or not la unit or weight is pruned. The objective of the 

variance nullity measure is to test Jhether the variance in parameter sensitivity for 

the different patterns is significant1)different from zero [Engelbrecht et al1999c]. If 

the latter is not the case, then it indipates that the corresponding parameter has little 

I 
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or no effect on the output of the NN over the entire set of patterns presented to the 

network. A hypothesis testing step developed by Engelbrecht et al uses these variance 

nullity measures to statistically test if a parameter should be pruned, using the X2 

distribution [Engelbrecht et at 1999c, Engelbrecht 2001]. 

Engelbrecht et al defines statistical nullity in parameter sensitivity variance, Yo" of a 

NN parameter Bi over patterns p = 1, ... , P as follows: 

(5.4) 

e

where O"~i is the variance of the sensitivity of the network to perturbations in parameter 

i , 0"5 is a value close to zero and P the number of patterns in the pruning set. 

The variance in parameter sensitivity, d
i

, is computed as 

(5.5) 

where 

",K S(p) 
~~(p) _ ~k= l OO.ki (5.6)

Oi K 

and ~o, is the average parameter sensitivity over all patterns p = I, ... , P, i.e. 

(5.7) 

Sao refers to the sensitivity matrix of the output vector (} with respect to the param­

eter vector {f, and individual elements SOO,ki refers to the sensitivity of output Ok to 

perturbations in parameter Bi over all patterns; S~~,ki refers to the sensitivity of output 

Ok to changes in parameter ei for a single pattern p, defined as (assuming differentiable 

activation functions) 

(5.8) 
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where e}p) is the activation value of unit ei for pattern p. Section 5.3 derives the 

sensitivity equations with respect to input and hidden units. In equation (5.6), ~~) is , 

the average sensitivity of the NN output to perturbations in parameter e for patterni 

p over the K output units. 

In 'autoprune', developed by Finnoff et al, the final weight test variables are based on 

significance tests for deviations from zero in the weight update process [Finnoff 1993bj. 

Weights are updated using, 

(5.9) 

where the above denotes the local gradient of the error with respect to pattern p and 

weight Who The results of further training were estimated using an average over the 

variables ~~, where 

(5.10) 

for (zp, tp) E V t . For the null hypothesis that the expected value of variable ~~ is equal 

to zero; the significance of the deviation from zero was tested using the test variable, 

Th = lL:p,( Zp, tp)E(Dh ~~I (5.11) 
jL:p,(Zp,tp)EDt (~~ - ~h)2 

where ~h denotes the average over the set ~~ and (zp , tp) E V t . A large value for Th 

indicates high importance of the connection with weight hp . Connections with small 

weights can be pruned. In the analysis of means, as is done by Finnoff et al a problem 

may arise where large negative and positive values may cancel each other or produce 

a sum close to zero, thus incorrectly indicating that the parameter is insignificant. In 

variance analysis pruning, Engelbrecht et al adopted an analysis of variance instead of 

an analysis of means, as is done by Finnof et al, to address this problem. 

Basically the statistical pruning heuristic of Engelbrecht is based on proving or disprov­

ing the null hypothesis that the variance in parameter sensitivity is approximately zero. 
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The null hypothesis is then defined as 

'lJ 2 2 
I LO : IJOi = IJO (5.12) 

This hypothesis can however not be used, since equation (5.4) does not allow IJ5 = 0, 

and therefore it cannot be hypothesized that the variance in parameter sensitivity over 

all patterns is exactly zero. To alleviate this problem a small value close to zero is 

chosen for IJ5, and the alternative hypothesis, 

(5.13) 

is tested. The variance nullity measure defined in equation (5.14) has a X2 (P - 1) 

distribution in the case of P patterns. The critical value, Y e , can therefor be obtained 

from X2 distribution tables, i.e. 

(5.14) 

where v = P - 1 is the number of degrees of freedom and ex is the level of significance. 

A significance level ex = 0.01, for example, means that we are satisfied with incorrectly 

rejecting the hypothesis once out of 100 times. Using the critical value defined in 

equation (5.14), if Y Oi ::; Y e , the alternative hypothesis H is accepted and parameter 

ei is pruned. Engelbrecht et al pointed out that the success of this pruning heuristic 

depended on the value of IJ5. A too small value for IJ5 will result in no parameters 

to be pruned. If IJ6 is too large, then important parameters may be pruned. It was 

recommended that the algorithm should start off with a small value for IJ6 that is 

gradually increased if no parameter is pruned. The performance of the network is first 

tested after each step of pruning. If the performance of the network has not degraded 

too much, the pruned network is accepted, otherwise the original network is restored 

and pruning is stopped. Engelbrecht pointed out that the testing of the performance 

of the pruned network makes the validity of the algorithm insensitive to the value with 
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which (7'6 is increased: if relevant parameters are pruned due to the repetitive increase 

in (7'6 , the performance of the network will degrade unacceptably, and the previous 

architecture will thus be restored. 

Computational time during the hypothesis testing phase can be reduced by arranging 

the variance nullity measures 1 ()i in increasing order. Hypothesis tests start on the 

smallest 1 ()i and continue until no more parameters can be identified for pruning. 

The statistical pruning heuristic based on variance nullity is summarized below: 

l. Initialize the NN architecture and learning parameters 

2. Repeat 

(a) train the NN until overfitting is observed 

(b) let (7'6 = 0.0001 

(c) for each ei 

1. for each p = 1, ... , P, calculate 'K~p) using equation (5.6) , 

ii. calculate the average ~()i using equation (5.7) 

lll. calculate the variance in parameter sensitivity using (7'~i from equation 

(5.5) 

IV. calculate test variable l()i using equation (5.4) 

(cl) apply the pruning heuristic 

1. arrange 1 ()i in increasing order 

11. find lc using equation (5.14) 

until no ei is pruned, or the reduced network is not accepted due to an unaccept­

able deterioration in generalization performance 
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3. Train the final pruned NN architecture 

The variance nullity algorithm starts pruning the hidden layer first, followed by the 

input layer. Weights can also be pruned once the irrelevant units have been removed. 

The calculation of the nullity measures can be done on anyone of the training, test 

or validation sets. In this thesis a separate set consisting of 100 randomly generated 

values was used to calculate variance nullity measures. Pruning is initiated when 

overfitting is detected on the validation set, i.e. when ~v > ~v + OEv where ~v is the 

current error on the validation set, ~v is the average error on the validation set over 

the previous iterations and OEv is the standard deviation in test error. After each 

pruning step, retraining starts on the reduced network on new initial random weights. 

The pruning process stops when no more parameters can be identified for pruning, or 

if the reduced network's performance has degraded too much. 

The next section derives the sensitivity equations that are used to calculate the 

variance nullity measures. 

5.3 Sensitivity equations 

This section defines equations for the sensitivity analysis of output units with re­

spect to hidden units and input units. It is assumed that the network consists of 

an input layer, a single hidden layer of product units and an output layer of sum­

mation units. Linear activation functions are assumed in both hidden and output layers. 
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5.3.1 Output-Hidden Layer Analysis 

For the sake of notational convenience the superscript p, that refers to a specific pattern, 

is removed. Let SOY,kj = t be the sensitivity of output unit Ok to small perturbations 

in hidden hidden unit Yj for a single pattern (The first part of the subscript indicates the 

layer involved and the second part indicates the respective unit of each layer). Then, 

OOk 
SOY,kj = 

8Yj 
OOk onetok 

onetok oYj 

f' (netok ) . Wkj 

(5.15) 

where f' (netok ) = 1 for linear activation. 

5.3.2 Output-Input Layer Analysis 

The sensitivity of output unit Ok with respect to input unit Zi is calculated as, 

OOk 
SOZ,ki 

OZi 
OOk onetok (5.16) 

onetok 0Zi 

where, for linear activation, 

(5.17) 

Then 
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onetOk1 . ---::-----'.:. 
OZi t anetok . aYj 

j=1 oYj aZi 

J ay
LWkj. _ J (5.18)
j=1 OZi 

For a PUNN with a distortion unit, using equation (A.45) on page 200, we have 

Yj = eP . cos(Jr¢) (5.19) 

where 

1+1 

P L Vji In IZil 
i=1 

1+1 

¢ L VjiTi 
i = 1 

Thus, 

ay·.J 

aZi 

(5.20) 

Substitution of (5.20) in (5.18) gives 

OOk t Wkj Vji . (eP • cos(7r<p)) (5.21)
aZi j=1 IZi l 

This concludes the derivation of the sensitivity equations for a PUNN with a distortion 

unit. 

The next section applies the variance nullity pruning algorithm to PUNNs for selected 

function approximation problems. 
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5.4 	 Application of the Variance Nullity Pruning Al­

gorithm to PUNNs 

The variance nullity pruning algorithm was applied to the eight test functions described 

on page 99. The training and test sets of section 4.4.1 were used in training the 

network. The PUNNs were trained using particle swarm optimization. The optimal 

parameters for each of the eight test functions, as determined in chapter 4, were used 

for oversized initial networks. In these oversized networks, the number of hidden units 

were deliberately increased from the optimal architectures as determined in chapter 4. 

After each pruning step the weights were randomly re-initialized, as stipulated by the 

variance nullity pruning algorithm. In the case of PSO this implies re-initializing the 

positions and velocities for the particles before the next pruning step commenced. This 

random re-initialization of weights sometimes resulted in poorer performance of the 

re-initialized network by often producing larger MSEs on the training set and poorer 

generalization on the test set. 

In this section a network's performance was measured by its MSE on the test set, in 

other words, its generalization. Tables 5.1 to 5.8 contain for both the oversized and 

pruned network the number of hidden units, MSE on training and test sets for 30 

simulations, the average MSE on training and tests sets and the average number of 

hidden units. Unacceptable performance was defined as a reduction of 20% or more in 

the MSE on the test set on the subsequent pruning step, in which case the pruning 

process was stopped. This explains the entries in tables 5.1 to 5.8 where pruning 

ended with the same number of hidden weights as the initial oversized network. In 

these instances no parameters were identified for pruning and the pruning process was 

repeated with a smaller value for e5, with re-initialized particles that often resulted 

in larger MSE values. For each function, 30 pruning simulations were conducted as 
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reflected in tables 5.1 to 5.11. Tables 5.1 to 5.8 contain the results for the pruning of 

the hidden layer for all eight functions. Further, to show that the variance nullity can 

also be applied to prune the input units of PUNNs, pruning was applied to three of the 

eight test functions. In these cases extra input units were added to the architecture, 

with inputs for these units randomly generated. Tables 5.9 to 5.11 contain the results 

for pruning of the input layer for PUNNs. The tables also contain the averages for 

the number of hidden and input units calculated over the 30 simulations and the 

average MSEs calculated on the training and test sets together with a 95% confidence 

interval. Tables 5.1 to 5.8 show that the average number of hidden units for the various 

functions are close to the optimal number of hidden units as determined in chapter 4, 

bearing in mind that the average also includes the number of simulations where the 

initial oversized networks showed a degradation in performance due to re-initialization 

of weights. 

Each training session started with random weights. Due to the stochastic search 

employed by PSO, the particle swarm optimizer is not always guaranteed to converge 

to a global optimum. PSO did therefor not always succeed in pruning all the irrelevant 

hidden units [Van den Bergh et al2001c]. This explains why the average number of 

hidden units is slightly higher than the values obtained in chapter 4. Table 5.2 on page 

157 shows that an initial network comprising 8 hidden units, for the cubic function, were 

pruned to 1 unit in 27 out of 30 simulations. The average number of hidden units for the 

pruned network as reflected in table 5.2 over 30 simulations is 2 (i.e. l.5 rounded). This 

x3shows that the function f(x) = - 0.04x can be represented by a PUNN containing 

two hidden units compared to an optimal SUNN that requires 3 hidden units. The ta­

bles also reflect a performance similar to the results contained in table 4.25 on page 12l. 

The variance nullity method can only remove irrelevant units; it cannot remove red un­
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dant units from a network. This may explain why certain simulations ended in a higher 

number of units than the optimal number of units for the specific function. Similarly, 

the average number of input units are comparable to the optimal number of input units 

as determined in chapter 4. The performance of the oversized network, in all cases, 

is much poorer than the performance of the pruned network. Thus, a larger PUNN 

architecture does not necessarily translate to an increase in network performance, since 

the larger NNs overfitted the data. 

5.5 Conclusion 

In this chapter the variance nullity pruning algorithm developed by Engelbrecht was 

discussed and applied to oversized PUNN architectures of the eight test functions (as 

defined in chapter 4). The variance nullity pruning approach successfully pruned ir­

relevant hidden and input units of PUNNs. The variance nullity pruning algorithm 

produced averages for the number of hidden and input units that were comparable to 

the optimal number of units as determined by brute force in chapter 4. The results 

also indicate that the initial oversized PUNNs did not produce smaller MSEs than the 

pruned networks. This implies that in the case of PUNNs, a larger network does not nec­

essarily translate into better performance. Re-initialization of oversized networks when 

no parameters were identified for pruning often resulted in a poorer performance that 

may lead to early termination of the pruning process. This could have been avoided, if 

all the unpruned weights were retained for the next pruning step, where a smaller value 

for e6 will subsequently be used by the pruning algorithm. Thus, an improvement for 

the variance nullity algorithm applied to PUNNs is to avoid re-initialization of weights 

in cases where no parameters were pruned by retaining the unpruned weights and to 

continue the pruning process by re-training only the bias. 
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fix) = x 2 

Oversized network Pruned Network 

Simulation No of hidden MSE on MSE on No of hidden MSE on MSE on 

No units Training set Test set units Tr'ai ning set Test set 

1 8 0.0031 0.0039 1 0.000377 0.000619 

2 8 0 .0134 0.0240 1 0.001376 0.001675 

3 8 0.0062 0.Ql08 1 0.000059 0.000065 

4 8 0.0292 0.0210 1 0.000219 0.000324 

5 8 0.0290 0.0844 1 0 .000448 0.000290 

6 8 0.0041 0 .0045 8 0.004073 0.004544 

7 8 0.0102 0.Ql78 2 0.000643 0.003382 

8 8 0.0157 0.0130 1 0.000205 0.000156 

9 8 0.0077 0.0088 1 0 .000172 0.000186 

10 8 0.0018 0.0014 1 0.000051 0.000054 

11 8 0.0244 0.0271 1 0.000100 0.000082 

12 8 0 .0193 0.0392 2 0 .000563 0.000652 

13 8 0.Ql71 0.0131 1 0.000238 0.000269 

14 8 0.0032 0.0034 1 0.000061 0.000048 

15 8 0.0265 0.0187 2 0.000777 0.000297 

16 8 0.0042 0.0895 2 0.000434 0.000530 

17 8 0.0246 0.0206 2 0.000195 0.000098 

18 8 0.0252 0.5363 2 0.000906 0.000553 

19 8 0.0203 0.0342 1 0 .000270 0.000180 

20 8 0.0083 0.0090 3 0.001427 0.001020 

21 8 0.0056 0.0052 1 0.000126 0.000153 

22 8 0.0369 0.0259 1 0.000101 0.000087 

23 8 0.0177 0.0245 2 0.001014 0.000892 

24 8 0.Ql72 0.0127 2 0.000189 0.000230 

25 8 0.0121 0.0610 1 0.000140 0.000383 

26 8 0.0124 0.0171 2 0.000359 0.000793 

27 8 0.0051 0.0063 1 0.000131 0.000111 

28 8 0 .0046 0.0032 1 0 .000648 0.000635 

29 8 0.0224 0.0896 1 0.000632 0.000501 

30 8 0.0075 0.0185 1 0.000253 0.000475 

Average no of Average no of 

hidden units 8 hidden units 1.6 

Average 0.01450 0.04149 Average 0 .00054 0.00064 

Confidence 0.00340 0.03512 Confidence 0.00028 0 .00036 

Table 5.1: Pruning of hidden units - function F1 
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j(x) = X 3 - 0.04x 

Oversized network Pruned Network 

Simulation No of hidden MSE on MSE on No of hidden MSE on MSE on 

No units Training set Test set units n'aining set T est set 

1 8 0.0025 0.0075 1 0.000009 0.000009 

2 8 0.0044 0.0106 1 0.000042 0.000035 

3 8 0.0016 0 .0008 8 0.001625 0.000844 

4 8 0.0050 0.0043 1 0.000008 0.000006 

5 8 0.0055 0.0037 2 0.000229 0.000132 

6 8 0.0074 0.0142 1 0.000024 0.000026 

7 8 0.0061 0.0072 1 0 .000009 0.000008 

8 8 0.0033 0.0034 1 0.000008 0.000007 

9 8 0.0060 0.0065 1 0.000008 0.000009 

lD 8 0.0121 0.0165 1 0.000012 0.000007 

11 8 0.0048 0.0042 1 0.000013 0.000013 

12 8 0.0024 0.0039 1 0.000007 0.000008 

13 8 0.0009 0.0013 1 0.000013 0.000010 

14 8 0.0024 0.0027 1 0 .000035 0.000035 

15 8 0 .0035 0.0022 1 0.000014 0.000010 

16 8 0.0017 0.0016 1 O.OOOOlD 0.000008 

17 8 0.0063 0 .0052 1 O.OOOOll 0.000009 

18 8 0.0098 0.0063 1 0.000019 0 .000016 

19 8 0 .0003 0.0003 1 0.000009 0.000007 

20 8 0.0037 0.0051 1 O.OOOOlD 0.000009 

21 8 0.0033 0.0038 1 0 .000034 0.000035 

22 8 0.0058 0.0076 1 0.000009 0.000010 

23 8 0.0030 0.0034 1 0.000009 0.000008 

24 8 0.0009 0.0008 1 0.000007 0.000006 

25 8 0.0075 0.Oll4 1 0.000007 0.000016 

26 8 0.0023 0.0040 8 0.002251 0 .004021 

27 8 0.0028 0.0039 1 0.000013 0.000008 

28 8 0.0059 0.0049 1 0.000011 0.000008 

29 8 0.0053 0.0061 1 0.000015 0.000011 

30 8 0.0081 0.0092 1 0.000008 0 .000008 

Average no of Average no of 

hidden units 8 hidden units 1.5 

Average 0.00449 0.00542 Average 0.00015 0.00018 

Confidence 0.00099 0.00140 Confidence 0.00018 0.00027 

Table 5.2: Pruning of hidden units - function F2 

 
 
 



158 CHAPTER 5. ARCHITECTURE SELECTION 

Zt = 1 +0.3Zt _2 - 1.4zt-l 

Oversized network Pruned Network 

Simulation No of hidden MSE on MSEon No of hidden MSE on MSE on 

No units Training set Test set units Training set Test set 

1 10 0.0004 0.0010 4 0.000102 0.006468 

2 10 0.0022 0.0409 5 0.000039 0.000083 

3 10 0.0003 0.0038 7 0.000220 0.0003 15 

4 10 0.0010 0.0061 9 0.000036 0.000050 

5 10 0.0002 0.0003 10 0 .000175 0,000293 

6 10 0.0007 0,0009 10 0.000658 0.000871 

7 10 0,0117 0.0450 9 0.000069 0.000249 

8 10 0.0008 0.Gl71 6 0.000017 0.000022 

9 10 0,0003 0.0031 9 0.000015 0.000034 

10 10 0,0006 0.0010 8 0.000109 0 .000286 

11 10 0.0025 0,0078 4 0,000011 0.000018 

12 10 0.0092 0.0684 7 0.000189 0,000220 

13 10 0.0002 0.0009 10 0.000233 0.000908 

14 10 0.0003 0.0002 7 0 .000062 0,000065 

15 10 0.0011 0.1009 4 0.000041 0 .000055 

16 10 0.0001 0.0010 4 0.000088 0,000112 

17 10 0.0623 0.0637 6 0.000007 0,000009 

18 10 0.0009 0.0035 6 0.000082 0.000098 

19 10 0.0001 0.0007 10 0.000092 0.000660 

20 10 0,0002 0.0002 5 0,000011 0,000014 

21 10 0.0032 0,0495 6 0,000081 0.000446 

22 10 0.0094 0.0395 4 0.000129 0,001090 

23 10 0.0010 0 .0273 5 0.000027 0.000028 

24 10 0.0004 0 .0012 10 0.000432 0.001203 

25 10 0.0010 0.0016 5 0.000064 0.000070 

26 10 0,0002 0 .0041 4 0.000001 0.000001 

27 10 0.0032 0,0067 6 0.000005 0.000009 

28 10 0.0010 0.0037 10 0.000196 0,000431 

29 10 0.0008 0.0027 10 0.000829 0.002712 

30 10 0,0020 0,0462 5 0,000090 0.000126 

Average no of Average no of 

hidden units 10 hidden units 6.8 

Average 0.00391 0.03882 Average 0.00014 0,00056 

Confidence 0,00415 0.04519 Confidence 0.00007 0.00020 

Table 5.3: Pruning of hidden units - function F3 

 
 
 



159 CHAPTER 5. ARCHITECTURE SELECTION 

f(x,y) = y7x 3 - 0.5x6 

Oversized network Pruned Network 

Simulation No of hidden MSE on MSEon No of hidden MSEon MSE on 

No units Training set Test set units Training set Test set 

1 10 0.0015 0.0045 2 2.15E ­ 06 1.20E ­ 03 

2 10 0.0037 0.0027 2 1.02E ­ 04 4.09E ­ 05 

3 10 0 .0007 0.0009 3 1.22E ­ 04 1.03E ­ 04 

4 10 0.0009 0 .0020 2 1.52E ­ 06 2.15E ­ 03 

5 10 0.0013 0 .0024 4 7 .04E ­ 05 2.27E ­ 04 

6 10 0.0017 0.0035 2 4.50E ­ 08 6.77E ­ 03 

7 10 0.0002 0.0012 6 1.17E ­ 04 6.84E ­ 04 

8 10 0.0008 0.0027 3 4 .57E ­ 05 9. 08E ­ 05 

9 10 0.0023 0 .0028 2 1.32E ­ 04 1.98E ­ 03 

10 10 0 .0011 0 .0018 2 1.76E ­ 06 2.10E ­ 04 

11 10 0.0028 0.0035 2 3.43E ­ 05 4.85E ­ 04 

12 10 0.0009 0 .0012 3 3.49E ­ 04 5.79E ­ 04 

13 10 0.0007 0.0009 2 7. 24E ­ 04 1.30E ­ 04 

14 10 0.0002 0.0003 10 2.22E ­ 04 1.20E ­ 04 

15 10 0.0025 0 .0032 2 7.34E ­ 05 5.48E ­ 05 

16 10 0.0011 0.0019 2 4 .00E ­ 04 3 .36E ­ 03 

17 10 0 .0002 0.0003 8 1.85E - 04 2.28E ­ 03 

18 10 0 .0003 0.0003 10 2.80E ­ 04 7.76E ­ 04 

19 10 0.001 3 0.0014 2 1.94E - 03 1.21E ­ 03 

20 10 0.0064 0.0068 3 1.24E ­ 04 2.58E ­ 04 

21 10 0.0028 0.0042 2 2.07E ­ 04 3.11E ­ 05 

22 10 0 .0027 0 .0030 3 1.77E ­ 04 6.22E ­ 05 

23 10 0.001 4 0.0021 2 6. 76E - 04 2.76E ­ 03 

24 10 0.0001 0.0001 10 8.91E ­ 05 1.54E ­ 04 

25 10 0.0003 0.0004 3 3 .21E ­ 04 9.21E ­ 04 

26 10 0.0005 0 .0005 10 5. 17E-04 1.85E ­ 04 

27 10 0.0045 0 .0059 4 4.13E - 05 5.70E ­ 03 

28 10 0.0045 0.0057 3 7.12E ­ 04 2.46E ­ 04 

29 10 0 .0012 0 .0014 2 4 .32E ­ 04 6.67E ­ 03 

30 10 0.001 2 0 .0020 2 1.57E - 04 2.40E ­ 04 

Average no of Average no of 

hidden units 10 hidden un its 3.8 

Average 0.001 66 0 .00232 Average 0.00028 0.001 32 

Confidence 0.00055 0.00062 Confidence 0.00014 0 .00071 

Table 5.4: Pruning of hidden units - function F4 

 
 
 



160 CHAPTER 5. ARCHITECTURE SELECTION 

f(x,y) = X2 + y2 

Oversized network Pruned Network 

Simulation No of hidden MSE on MSE on No of hidden MSE on MSE on 

No units TI:aining set Test set units Ttaining set Test set 

1 10 0.0470 0.0491 2 0.00727 0.00777 

2 10 0.0301 0.0357 2 0.01654 0.018 64 

3 10 0.0228 0.0262 2 0.00781 0.00875 

4 10 0.Gl71 0.0174 2 0.01693 0.01674 

5 10 0.0407 0.0774 4 0.02883 0.03137 

6 10 0.Gl75 0.0186 10 0.01750 0.01859 

7 10 0.0490 0.0433 2 0.00598 0.00596 

8 10 0.1183 0.1338 2 0.00214 0.00212 

9 10 0.0158 0.0152 10 0.01 576 0.01517 

10 10 0.0354 0.0512 3 0.00688 0.00699 

11 10 0.0309 0.0341 3 0.00714 0.00785 

12 10 0.0215 0.0248 2 0.00402 0.00393 

13 10 0 .0304 0.0345 2 0.01887 0.02020 

14 10 0.0679 0.0774 2 0.00567 0.00508 

15 10 0.0325 0 .0434 4 0.00037 0 .00043 

16 10 0.0096 0.0113 10 0.00959 0.01129 

17 10 0.0320 0.0328 3 0.02237 0.02253 

18 10 0.0300 0.0297 3 0.00002 0.00002 

19 10 0.0260 0.0359 2 0.01418 0.01467 

20 10 0.0358 0.0368 2 0.01639 0.01590 

21 10 0.0303 0.0457 6 0.01378 0.01374 

22 10 0.0273 0.0328 3 0.00067 0.00069 

23 10 0.0110 0.0162 3 0.00605 0.00633 

24 10 0.0185 0.0233 2 0.00588 0.00591 

25 10 0.0220 0.0291 3 0.01463 0.01780 

26 10 0.0346 0.0309 2 0.01591 0.01385 

27 10 0.0129 0.0169 2 0.00112 0 .00133 

28 10 0.0512 0.0586 2 0.02316 0.02118 

29 10 0 .0265 0.0359 2 0.01582 0.01483 

30 10 0.0362 0.0537 3 0.00693 0.00687 

Average no of Average no of 

hidden units 10 hidden units 3.3 

Average 0.03269 0 .03501 Average 0.01024 0.01122 

Confidence 0.00744 0.00653 Confidence 0.00299 0.00281 

Table 5.5: Pruning of hidden units - function F5 

 
 
 



161 CHAPTER 5. ARCHITECTURE SELECTION 

lex, y) = sin(x2) + sin(y2) 

Oversized network Pruned Network 

Simulation No of hidden MSE on MSE on No o f hidden MSE on MSE on 

No units Ttaining set Test set units TI:aining set Test set 

1 10 0 .0068 0.0210 6 0.00019 0.00021 

2 10 0.0015 0.0020 8 0.00020 0.00048 

3 10 0.0016 0.0025 4 0 .00020 0.00021 

4 10 0.0163 0.0440 2 0.00224 0.00343 

5 10 0.0017 0.0142 2 0.00007 0.00007 

6 10 0.0071 0.0112 2 0.00007 0.00008 

7 10 0.0013 0.0035 7 0 .00029 0.00043 

8 10 0.0014 0.0038 10 0.00136 0.00377 

9 10 0.0002 0.0017 6 0.00020 0.00038 

10 10 0.0018 0 .0021 7 0.00042 0.00069 

11 10 0.0063 0.0091 4 0.00012 0.00021 

12 10 0.0084 0.0141 6 0.00073 0.00134 

13 10 0 .0009 0.0010 10 0.00092 0.00105 

14 10 0.0039 0.0043 3 0.00019 0.00023 

15 10 0.0046 0.0069 4 0.00017 0.00025 

16 10 0.0061 0.0111 7 0.00013 0.00017 

17 10 0 .0039 0.0047 5 0 .00064 0.00119 

18 10 0.0006 0.0007 10 0.00061 0 .00071 

19 10 0.0007 0.0026 4 0.00018 0.00020 

20 10 0.0036 0.0046 5 0.00030 0 .00045 

21 10 0.0082 0.0437 2 0.00010 0.00013 

22 10 0 .0025 0.0102 3 0.00008 0.00011 

23 10 0.0037 0.0079 5 0 .00009 0.00013 

24 10 0.0011 0.0014 4 0.00027 0.00035 

25 10 0.0023 0.0037 2 0.00006 0.00008 

26 10 0.0008 0.0015 6 0.00041 0.00106 

27 10 0.0053 0.1544 5 0.00020 0.00028 

28 10 0.0019 0.0121 6 0.00007 0.00036 

29 10 0 .0097 0.01 63 7 0.00108 0.00182 

30 10 0.0046 0.0130 2 0.00250 0.00280 

Average no of Average no of 

hidden units 10 hidden units 5.1 

Average 0.00396 0.01431 Average 0.00047 0.00076 

Confidence 0.00127 0.01039 Confidence 0.00022 0 .00036 

Table 5.6: Pruning of hidden units - function F6 

 
 
 



162 CHAPTER 5. ARCHITECTURE SELECTION 

f(x,y) = (4 - 2.1x 2 + (X; ))X 2 + xy + (4y2 _ 4)y2 

Oversized network Pruned Network 

Simulation No of hidden MSE on MSEon No of hidden MSE on MSE on 

No units Training set Test set units 1\'aining set Test set 

1 15 0.0381 0.0459 12 0.03840 0.04219 

2 15 0.0311 0.0471 5 0.02066 0.02591 

3 15 0.0244 0.0317 10 0.03526 0.04204 

4 15 0.0329 0.0421 2 0.06240 0.06875 

5 15 0.0343 0.0436 15 0.03427 0.04364 

6 15 0.0328 0.0362 6 0.03735 0 .03649 

7 15 0.0240 0.0322 4 0.02728 0.03045 

8 15 0.0356 0.0570 4 0.03397 0.04387 

9 15 0.0327 0.0407 3 0.02985 0.03440 

10 15 0.0253 0.0411 5 0.02566 0.03724 

11 15 0.0290 0.0512 3 0.04249 0.05062 

12 15 0.0273 0.0399 5 0.01284 0.01518 

13 15 0.0293 0.0351 4 0.02905 0 .03501 

14 15 0.0462 0.0145 7 0.02749 0.03669 

15 15 0 .0268 0.0772 4 0.02502 0.03588 

16 15 0.0245 0.0394 4 0.02544 0.03403 

17 15 0.0250 0.0302 15 0.02503 0.03022 

18 15 0.0333 0.0383 5 0.02383 0.02318 

19 15 0.0292 0.0351 3 0.03048 0.03614 

20 15 0.0308 0.0394 14 0.02389 0.02961 

21 15 0.0210 0.0276 4 0.02909 0.02626 

22 15 0 .0324 0.0783 4 0.02561 0.02977 

23 15 0.0284 0.0403 4 0.03356 0.03624 

24 15 0.0292 0.0388 4 0.03355 0.03580 

25 15 0.0226 0.0384 3 0.07735 0.08508 

26 15 0.0298 0 .0546 3 0.04043 0.04510 

27 15 0.0271 0.0301 14 0.02730 0.02504 

28 15 0.0372 0.0611 3 0.02646 0.05175 

29 15 0 .0451 o.ono 5 0.05121 0.06213 

30 15 0.0319 0.0459 3 0,02680 0.03542 

Average no of Average no of 

hidden units 15 hidden units 5.9 

Average 0,03058 0,04252 Average 0.03273 0.03880 

Confidence 0 ,00208 0.00498 Confidence 0,00457 0.00512 

Table 5.7: Pruning of hidden units - function F7 

 
 
 



163 CHAPTER 5. ARCHITECTURE SELECTION 

f(x ,y) = .sin(x)· sin(y). v'XY 
Oversized network Pruned Network 

Simulation No of hidden MSE on MSE on No of hidden MSE on MSE on 

No units Ttaining set Test set units 'I\'aining set Test set 

1 12 0.0001 0.0001 8 0.000048 0.000056 

2 12 0.0006 0 .0010 7 0.000010 0.000011 

3 12 0 .0021 0.0038 8 0.000116 0 .001136 

4 12 0.0001 0.0002 6 0.000107 0.000102 

5 12 0.0001 0 .0001 12 0.000129 0.000131 

6 12 0.0013 0 .0064 4 0 .00000 5 0.00000 5 

7 12 0.0001 0.0001 7 0 .000060 0.000065 

8 12 0 .0003 0 .0005 5 0 .000016 0. 000013 

9 12 0.0002 0.0006 6 0 .000084 0.0001 37 

10 12 0.0001 0.0017 12 0 .000096 0 .001705 

11 12 0.0007 0 .0159 8 0 .000168 0.000421 

12 12 0 .001l 0.0021 6 0.000041 0.000055 

13 12 0.0038 0.0198 8 0 .000089 0.000071 

14 12 0.0005 0.0009 6 0.000025 0.000069 

15 12 0.0001 0 .0003 12 0.000108 0.000348 

16 12 0 .0002 0 .0331 4 0 .000060 0 .000065 

17 12 0 .0003 0.01 68 4 0 .000043 0.000167 

18 12 0.0002 0 .0002 5 0.0000 14 0.000019 

19 12 0.0003 0 .000 6 5 0.000010 0.000012 

20 12 0.0007 0 .0009 6 0.000016 0.000017 

21 12 0.0001 0 .0001 7 0.000050 0.000061 

22 12 0.0002 0 .0003 12 0 .000178 0 .000298 

23 12 0.0001 0.0002 12 0 .000102 0 .000192 

24 12 0.0004 0 .0005 4 0 .000010 0 .000008 

25 12 0.0004 0 .0008 5 0 .000039 0. 000039 

26 12 0.0003 0 .0007 4 0.000076 0 .000220 

27 12 0 .0001 0.0014 8 0.000333 0 .001303 

28 12 0.0002 0.0286 12 0 .000608 0.003324 

29 12 0.0006 0 .0138 4 0.000047 0000062 

30 12 0.0003 0.0003 5 0.000042 0.000035 

A verage no of Average no of 

hidden units 12 hidden units 7. 1 

Average 0.00052 0 .00506 Average 0.00009 0 .00068 

Confidence 0 .00027 0.00325 Confidence 0 .00004 0.00077 

Table 5.S: Pruning of hidden units - function FS 

 
 
 



164 CHAPTER 5. ARCHITECTURE SELECTION 

J(x) = x 2 

Oversized network Pruned Network 

Simulation No of input MSE on MSEon No of input MSE on MSE on 

No units Training set Test set units Training set Test set 

1 4 0.0239 0.0365 1 0.00063 0.00054 

2 4 0.0231 0.0224 1 0.00019 0.00016 

3 4 0 .0354 0 .0313 4 0.04229 0.03902 

4 4 0.0118 0.0229 1 0.00020 0.00028 

5 4 0.0431 0 .0711 1 0.00060 0.00087 

6 4 0.0103 0.0100 1 0.00019 0.00020 

7 4 0.0167 0 .0166 2 0.00157 0.00246 

8 4 0 .0177 0 .0318 2 0.00135 0.00129 

9 4 0.0225 0.0284 1 0 .00046 0.00055 

10 4 0.0093 0.0359 1 0.00029 0.00031 

11 4 0.0227 0.0242 1 0.00028 0 .00017 

12 4 0.0151 0.0122 1 0.00026 0.00021 

13 4 0.Gl76 0.Gl76 2 0.00021 0.00019 

14 4 0.0219 0 .0142 1 0 .00054 0.00023 

15 4 0.0161 0.Gl70 2 0.00135 0.00139 

16 4 0.0187 0.0214 1 0.00021 0.00016 

17 4 0.0191 0 .0078 1 0.00053 0.00050 

18 4 0.0333 0.0275 1 0.00045 0.00061 

19 4 0.0185 0.0160 1 0.00030 0.00033 

20 4 0.0132 0.0113 2 0.00107 0.00095 

21 4 0.0164 0.0179 1 0.00025 0.00022 

22 4 0.0404 0.0363 1 0.00053 0.00039 

23 4 0.0219 0.0257 1 0.00009 0.00009 

24 4 0.0243 0 .0385 1 0.00049 0.00045 

25 4 0.0082 0.0101 1 0.00007 0.00009 

26 4 0.0275 0.0248 1 0 .00011 0.00009 

27 4 0 .0209 0.0096 2 0.00034 0.00025 

28 4 0.0139 0.0091 1 0 .00051 0.00032 

29 4 0.0036 0.0026 1 0.00002 0.00007 

30 4 0.0189 0.0161 1 0.00048 0.00031 

Average no of Average no of 

hidden units 4 hidden units l.3 

Average 0.01970 0.02223 Average 0.00186 0.00171 

Confidence 0.00327 0.00477 Confidence 0.00278 0.00257 

Table 5.9 : Pruning of input units - function F1 

 
 
 



165 CHAPTER 5. ARCHITECTURE SELECTION 

f(x) = x3 - 0.04x 

Oversized network Pruned Network 

Simulation No of input MSE on MSEon No of input MSEon MSE on 

No units Training set Test set units Training set Test set 

1 4 0.00201 0.00370 1 0.000011 0.000038 

2 4 0.00624 0.00605 1 0.000012 0.000010 

3 4 0.00011 0.00009 1 0.000040 0.000036 

4 4 0.00038 0.00065 1 0.000008 0.000007 

5 4 0.00033 0.00054 1 0.000011 0.000009 

6 4 0.00002 0.00001 4 0.000015 0.000014 

7 4 0.00228 0.00522 1 0 .000008 0.000007 

8 4 0.00024 0.00085 1 0.000009 0.000007 

9 4 0.00003 0.00003 4 0.000026 0.000026 

10 4 0.00004 0.00003 1 0.000007 0.000007 

11 4 0.01621 0.02198 1 0.000007 0.000006 

12 4 0.00015 0.00008 1 0.000041 0.000048 

13 4 0.00007 0.00004 4 0.000072 0.000044 

14 4 0.00010 0.00015 4 0 .000059 0.000047 

15 4 0.00622 0.00465 1 0.000008 0.000006 

16 4 0.00041 0.00020 1 0.000016 0.000025 

17 4 0.00034 0.00047 1 0.000036 0.000068 

18 4 0.00007 0.00005 4 0.000155 0.000152 

19 4 0.00238 0.00376 1 0.000007 0 .000006 

20 4 0.00572 0.00484 1 0.000009 0.000008 

21 4 0.01302 0.01765 1 0.000011 0.000015 

22 4 0.00243 0.00337 1 0.000007 0.000006 

23 4 0.00022 0.00045 4 0.000216 0 .000450 

24 4 0.00001 0.00001 1 0.000013 0.000009 

25 4 0.00025 0.00021 1 0.000038 0.000040 

26 4 0.00011 0.00006 1 0.000007 0.000007 

27 4 0.00041 0.00052 1 0.000008 0.000006 

28 4 0.00005 0.00003 1 0.000008 0.000006 

29 4 0.00013 0.00013 4 0.000130 0.000132 

30 4 0.00074 O.OOlOS 1 0.000009 0.000007 

Average no of Average no of 

hidden units 4 hidden units 1.7 

Average 0.00199 0.00256 Average 0.00003 0.00004 

Confidence 0 .00142 0.00185 Confidence 0.00002 0.00003 

Table 5.10: Pruning of input units - function F2 

 
 
 



166 CHAPTER 5. ARCHITECTURE SELECTION 

f( x,y) = y7 x 3 ­ x6 

Oversized network Pruned Network 

Simulation No of hidden MSE on MSE on No of hidden MSE on MSE on 

No uni ts Ttaining set Test set units n'aining set Test set 

1 4 0 .0046 0.0067 2 0.00038 0.00063 

2 4 0.0087 0.0109 2 0.00003 0.00006 

3 4 0.0031 0 .0066 2 0.00033 0 .00058 

4 4 0 .0059 0.0072 2 0.00056 0.00071 

5 4 0.0040 0.0077 2 0.00041 0. 00073 

6 4 0.0089 0.0160 4 0 .00887 0.01596 

7 4 0.0077 0.0094 2 0.00038 0.00063 

8 4 0 .0100 0.0125 2 0.00055 0.00095 

9 4 0.0071 0.0083 2 0.00005 0.00006 

10 4 0.0057 0.0096 2 0.00032 0.00062 

11 4 0 .0045 0.0074 2 0.00046 0.00067 

12 4 0.0030 0 .0060 2 0.00030 0 .0005 9 

13 4 0.0092 0.0119 2 0.00036 0.00060 

14 4 0.0046 0.0062 2 0.00042 0.00060 

15 4 0 .0092 0.0187 4 0.00921 0.01865 

16 4 0.0100 0.011 8 2 0.00041 0 .00065 

17 4 0.0093 0.0109 3 0.00108 0.00158 

18 4 0 .0033 0.0060 2 0.00036 0.00062 

19 4 0.0083 0.0113 2 0.00036 0.00062 

20 4 0.0077 0.0086 2 0.00049 0.00064 

21 4 0.0078 0.0116 2 0.00370 0.00600 

22 4 0.0067 0.0093 4 0.00665 0.00932 

23 4 0.0059 0.00 62 2 0.00064 0.00071 

24 4 0.0087 0.Ql05 2 0.00053 0.00059 

25 4 0.0096 0.0119 3 0.00044 0.00058 

26 4 0.0067 0.0079 2 0.00477 0.0062 2 

27 4 0.0050 0.0074 2 0.00042 0 .00062 

28 4 0.0100 0.0107 2 0.00005 0.00006 

29 4 0.0029 0 .0061 2 0.00030 0.00060 

30 4 0.0060 0.0097 4 0.00599 0.00973 

Average no of Average no of 

h idden units 4 hidden units 2.3 

Average 0.00680 0.00950 Average 0.00163 0.00269 

Confidence 0.00084 0.00108 Confidence 0.00097 0.00172 

Table 5.ll: Pruning of input units - function F 4 
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