
Chapter 5

Architecture selection

Architecture selection is critical to NN modeling where the objective is to find the

smallest network that accurately maps the true function described by the training

data. Architecture selection has to reduce network complexity while maintaining good

generalization. A network that is too large may lead to overfitting of the training data

resulting in poor generalization when presented with similar but slightly different data.

If the network is too smail, underfitting may occur that results in poor approximation

of the function [Baum et al1989, Le Cun 1989].

The objectives of pruning are usually motivated by two aims: to obtain networks of

a small size and with a good generalization performance. The objective is to find a

minimal network topology. It is usually not obvious what the smallest network with

the best generalization is for a particular task. Different approaches have been devised

to solve this problem.

Architecture selection approaches can be grouped in four categories, i.e. brute-force ap­

proaches, regularization, network growing (network construction) and pruning. While

these topics have been introduced in section 2.17, this chapter focuses on pruning.

140

141 CHAPTER 5. ARCHITECTURE SELECTION

Pruning starts training with a neural network which is expected to be big enough to

ensure successful training. At convergence of the oversized network, weights and/or

units that are irrelevant or redundant are removed, upon which the pruned network is

retrained [Thimm et al1995]. If the retraining converges then the removal-retraining

cycle is resumed. If the retraining fails, the smallest network that satisfied the conver­

gence criterion is assumed to have the most suitable topology for the given data set.

The decision to prune a network is based on some measure of parameter (i.e. a unit or

weight) relevance. A relevance is computed for each parameter and a pruning heuristic

is applied to determine whether a parameter is irrelevant or not. Numerous pruning

algorithms have been proposed, including the following,

• 	 The Smallest Variance, (min(O')), method of Sietsma and Dow that removed

connections with smallest contribution variance on the training set, where the

contribution of a connection is the value available to the connection from the

lower layer, multiplied by its weight. The mean output of the removed connection

is then added to the corresponding bias [Sietsma et al1991] .

• 	 Skeletonization, which is a weight removal method, defines a measure of the rel­

evance of a unit as the error when the unit is removed from the network, minus

the error when the unit is left in the network [Mozer et al1989]. This is accom­

plished by multiplying the output of a unit j by a coefficient, O:j, that represents

the attentional strength of the unit [Mozer et al1989]. In the case of hidden units,

.1+1

Ok = fCL WkjO:jYj) 	 (5.1)
j

where f(-) is the activation function, Ok is the activation of output unit Ok, Wkj

is the weight between hidden unit Yi and output unit Ok and Yj is the activation

of hidden unit Yj. If O:j = 0, unit Yj has no influence on the rest of the network.

If O:j = 1, unit 1j is a conventional unit. The units are then removed for which

142 CHAPTER 5. ARCHITECTURE SELECTION

the derivative of the error function to these attentional strengths, 0:j ' S, are small

[Thimm et al1995J. Skeletonization can also be applied to prune input units.

• 	 Karnin's method that estimates the sensitivity s of a weight by :

N 2 w(n)
(5.2)s =];(6w(n) . rJ' (w(n) - w(O)))

where w(n) is the weight in the current training epoch n, w(O) the initial weight,

and 6w(n) the weight change in the nth epoch [Karnin 1990J. The denominator in

this formula can become zero, and experiments have indeed shown this to happen.

This problem is not dealt with in Karnin's publication. It can, however, easily be

solved by setting the whole fraction to zero. The calculation for s then becomes,

s = { =;;=1 (6w(n)2 . '7.(w(:~~)w(O))) if w(n) i= w(O)
(5.3)

o 	 if w(n) = w(O))

• 	 Autoprune developed by Finnof et al, where a test statistic is defined based on the

probability that a weight becomes zero [Finnoff 1993bJ. A weight is then removed

if the probability that it will become zero is high. Prechelt extended Autoprune

to A - prune to calculate the number of units to be pruned at each pruning step

[Prechelt 1994].

• 	 Genetic algorithms (GAs) also provide a biological plausible approach to pruning

of NNs [Whitley et al1990J. The GA is populated with several pruned versions

of the original network Each of these networks must be trained separately. In

this type of pruning genetic operators such as mutation, reproduction and cross­

over are applied to create differently pruned networks. These pruned networks

'compete' for survival, being awarded for using fewer parameters and for improving

generalization. A drawback of the GA approach to pruning of neural networks is

that it is time consuming.

143 CHAPTEH 5. AHCHITECTUHE SELECTION

• 	 The Variance Nullity method developed by Engelbrecht is a computationally

efficient pruning heuristic based on variance analysis of sensitivity information

[Engelbrecht et al1999c, Engelbrecht 2001]. This algorithm utilizes first-order

derivatives of the NN output with respect to parameter perturbations, which are

already calculated when gradient descent is used for neural network training .

• 	 Optimal Brain Damage (OBD), Optimal Brain Surgeon (OBS) and Optimal Cell

Damage (OeD) are all based on second-order derivatives of the 'objective func­

tion' with respect to parameter perturbations. In OBD and OCD complexity is

reduced by assuming that (a) the function is well approximated by a second-order

expansion around its minimum, (b) the off-diagonal elements of the Hessian ma­

trix are zero and (c) all errors between the target and output values are zero.

In OBS assumption (b) mentioned above is removed and also is retraining after

pruning avoided by automatically adjusting the remaining weights. OBD, OBS

and OCD all require differentiable activation functions. Criticism concerning as­

sumption (c) is that outliers in the data nullify the assumption. The calculation

of the Hessian in OBD, OBS and OCD increases the complexity of these pruning

methods. In OBS the complexity is further increased since the inverse of the

Hessian must also be calculated.

The only assumptions for variance nullity pruning method are,

1. 	that the network must be well trained and

2. 	 that the activation functions must at least be once differentiable.

Also, this algorithm is not as computational intensive as other pruning algorithms.

For this reason the 'Variance Nullity pruning Method' is the algorithm of choice to be

implemented in this thesis. The next section provides an overview of sensitivity analysis.

144 CHAPTER 5. ARCHITECTURE SELECTION

5.1 Overview of Sensitivity Analysis

Research has shown that any continuous function can be approximated by a

multilayer NN using a monotonically increasing differentiable activation function

[Funahashi 1989, Hornik et al1989aj. Gallant et al further showed that when a NN

converges towards the underlying (target) function, then all the NN derivatives also

converge towards the derivatives of the underlying function [Gallant 1992]. This

property of NNs derivatives allows efficient use of the NN derivatives to compute

sensitivity information. Sensitivity analysis of a system is the study of how the deriva­

tives of a performance function can be used to quantify the response of the system

to parameter perturbations [Holtzman 1992j. Thus, sensitivity analysis techniques

quantify the relevance of a network parameter (Le. an input unit, hidden unit or

weight) as the influence that small parameter perturbations have on a performance

function [Engelbrecht 2001j. Sensitivity analysis also provides a neural network tool to

automatically identify all relevant parameters using the significance measures obtained

from a sensitivity analysis tool.

There are two main approaches to sensitivity analysis for feed-forward neural networks

(FFNNs). These approaches differ in the performance function used. In the one

approach the objective function to be minimized serves as the performance func­

tion, in the second approach it is the neural network output function. Objective

function sensitivity analysis has been used widely in pruning of NN parameters

[Hassibi et al1994, Le Cun et al1990j, to develop more sophisticated optimiza­

tion techniques [Battiti 1992]' and to study the robustness and stability of NNs

[Oh et al1995]. NN output sensitivity analysis on the other hand has been used to

study the generalization abilities of FFNNs [Fu et al1993], to assess the significance

of input parameters [Engelbrecht et al1995b], for selective learning and incremental

145 CHAPTER 5. ARCHITECTURE SELECTION

learning [Engelbrecht et al1999d] and for prunmg irrelevant network parameters

[Engelbrecht 2001, Zurada et al1997]. In OBD, OBS and OeD sensitivity analysis is

performed with regards to the training error. Assuming gradient descent optimization

and the sum-squared objective function, Engelbrecht has shown that output sensi­

tivity analysis and OBD are conceptually the same under the assumptions of OBD

[Engelbrecht 2001]. Output sensitivity analysis has the advantages that it is not based

on assumptions to simplify complexity, as is the case with OBD, OBS and OeD. Also,

output sensitivity analysis is less complex than objective function sensitivity analysis.

Furthermore, objective function sersitivity analysis is dependent on the objective

function and the optimization algo[;ithm used to update the weights. while output

sensitivity does not depend on the o · jective function or the optimization algorithm.

The next section describes the variance nullity pruning algorithm of Engelbrecht. The

pruning algorithm is subsequently apblied to prune oversized PUNNs used to learn the

test functions of section 4.4.1 on pagk99.

5.2 The Variance Nu~lity Pruning Approach

The variance nullity pruning algoritlum of Engelbrecht is based on NN output sensi­

tivity where the relevance of paramerrs is based on parameter sensitivity information

[Engelbrecht 2001]. In this algorit 1m a variance nullity measure is computed for

each parameter. The statistical nullity in parameter sensitivity variance is defined

in equation (5.4). Thus, the varian e nullity measure provides a statistically sound

mechanism to decide whether or not la unit or weight is pruned. The objective of the

variance nullity measure is to test Jhether the variance in parameter sensitivity for

the different patterns is significant1)different from zero [Engelbrecht et al1999c]. If

the latter is not the case, then it indipates that the corresponding parameter has little

I

146 CHAPTER 5. ARCHITECTURE SELECTION

or no effect on the output of the NN over the entire set of patterns presented to the

network. A hypothesis testing step developed by Engelbrecht et al uses these variance

nullity measures to statistically test if a parameter should be pruned, using the X2

distribution [Engelbrecht et at 1999c, Engelbrecht 2001].

Engelbrecht et al defines statistical nullity in parameter sensitivity variance, Yo" of a

NN parameter Bi over patterns p = 1, ... , P as follows:

(5.4)

e

where O"~i is the variance of the sensitivity of the network to perturbations in parameter

i , 0"5 is a value close to zero and P the number of patterns in the pruning set.

The variance in parameter sensitivity, d
i

, is computed as

(5.5)

where

",K S(p)
~~(p) _ ~k= l OO.ki (5.6)

Oi K

and ~o, is the average parameter sensitivity over all patterns p = I, ... , P, i.e.

(5.7)

Sao refers to the sensitivity matrix of the output vector (} with respect to the param­

eter vector {f, and individual elements SOO,ki refers to the sensitivity of output Ok to

perturbations in parameter Bi over all patterns; S~~,ki refers to the sensitivity of output

Ok to changes in parameter ei for a single pattern p, defined as (assuming differentiable

activation functions)

(5.8)

147 CHAPTER 5. ARCHITECTURE SELECTION

where e}p) is the activation value of unit ei for pattern p. Section 5.3 derives the

sensitivity equations with respect to input and hidden units. In equation (5.6), ~~) is ,

the average sensitivity of the NN output to perturbations in parameter e for patterni

p over the K output units.

In 'autoprune', developed by Finnoff et al, the final weight test variables are based on

significance tests for deviations from zero in the weight update process [Finnoff 1993bj.

Weights are updated using,

(5.9)

where the above denotes the local gradient of the error with respect to pattern p and

weight Who The results of further training were estimated using an average over the

variables ~~, where

(5.10)

for (zp, tp) E V t . For the null hypothesis that the expected value of variable ~~ is equal

to zero; the significance of the deviation from zero was tested using the test variable,

Th = lL:p,(Zp, tp)E(Dh ~~I (5.11)
jL:p,(Zp,tp)EDt (~~ - ~h)2

where ~h denotes the average over the set ~~ and (zp , tp) E V t . A large value for Th

indicates high importance of the connection with weight hp . Connections with small

weights can be pruned. In the analysis of means, as is done by Finnoff et al a problem

may arise where large negative and positive values may cancel each other or produce

a sum close to zero, thus incorrectly indicating that the parameter is insignificant. In

variance analysis pruning, Engelbrecht et al adopted an analysis of variance instead of

an analysis of means, as is done by Finnof et al, to address this problem.

Basically the statistical pruning heuristic of Engelbrecht is based on proving or disprov­

ing the null hypothesis that the variance in parameter sensitivity is approximately zero.

CHAPTER 5. ARCHITECTURE SELECTION 148

The null hypothesis is then defined as

'lJ 2 2
I LO : IJOi = IJO (5.12)

This hypothesis can however not be used, since equation (5.4) does not allow IJ5 = 0,

and therefore it cannot be hypothesized that the variance in parameter sensitivity over

all patterns is exactly zero. To alleviate this problem a small value close to zero is

chosen for IJ5, and the alternative hypothesis,

(5.13)

is tested. The variance nullity measure defined in equation (5.14) has a X2 (P - 1)

distribution in the case of P patterns. The critical value, Y e , can therefor be obtained

from X2 distribution tables, i.e.

(5.14)

where v = P - 1 is the number of degrees of freedom and ex is the level of significance.

A significance level ex = 0.01, for example, means that we are satisfied with incorrectly

rejecting the hypothesis once out of 100 times. Using the critical value defined in

equation (5.14), if Y Oi ::; Y e , the alternative hypothesis H is accepted and parameter

ei is pruned. Engelbrecht et al pointed out that the success of this pruning heuristic

depended on the value of IJ5. A too small value for IJ5 will result in no parameters

to be pruned. If IJ6 is too large, then important parameters may be pruned. It was

recommended that the algorithm should start off with a small value for IJ6 that is

gradually increased if no parameter is pruned. The performance of the network is first

tested after each step of pruning. If the performance of the network has not degraded

too much, the pruned network is accepted, otherwise the original network is restored

and pruning is stopped. Engelbrecht pointed out that the testing of the performance

of the pruned network makes the validity of the algorithm insensitive to the value with

149 CHAPTER 5. ARCHITECTURE SELECTION

which (7'6 is increased: if relevant parameters are pruned due to the repetitive increase

in (7'6 , the performance of the network will degrade unacceptably, and the previous

architecture will thus be restored.

Computational time during the hypothesis testing phase can be reduced by arranging

the variance nullity measures 1 ()i in increasing order. Hypothesis tests start on the

smallest 1 ()i and continue until no more parameters can be identified for pruning.

The statistical pruning heuristic based on variance nullity is summarized below:

l. Initialize the NN architecture and learning parameters

2. Repeat

(a) train the NN until overfitting is observed

(b) let (7'6 = 0.0001

(c) for each ei

1. for each p = 1, ... , P, calculate 'K~p) using equation (5.6) ,

ii. calculate the average ~()i using equation (5.7)

lll. calculate the variance in parameter sensitivity using (7'~i from equation

(5.5)

IV. calculate test variable l()i using equation (5.4)

(cl) apply the pruning heuristic

1. arrange 1 ()i in increasing order

11. find lc using equation (5.14)

until no ei is pruned, or the reduced network is not accepted due to an unaccept­

able deterioration in generalization performance

CHAPTER 5. ARCHITECTURE SELECTION 150

3. Train the final pruned NN architecture

The variance nullity algorithm starts pruning the hidden layer first, followed by the

input layer. Weights can also be pruned once the irrelevant units have been removed.

The calculation of the nullity measures can be done on anyone of the training, test

or validation sets. In this thesis a separate set consisting of 100 randomly generated

values was used to calculate variance nullity measures. Pruning is initiated when

overfitting is detected on the validation set, i.e. when ~v > ~v + OEv where ~v is the

current error on the validation set, ~v is the average error on the validation set over

the previous iterations and OEv is the standard deviation in test error. After each

pruning step, retraining starts on the reduced network on new initial random weights.

The pruning process stops when no more parameters can be identified for pruning, or

if the reduced network's performance has degraded too much.

The next section derives the sensitivity equations that are used to calculate the

variance nullity measures.

5.3 Sensitivity equations

This section defines equations for the sensitivity analysis of output units with re­

spect to hidden units and input units. It is assumed that the network consists of

an input layer, a single hidden layer of product units and an output layer of sum­

mation units. Linear activation functions are assumed in both hidden and output layers.

151 CHAPTER 5. ARCHITECTURE SELECTION

5.3.1 Output-Hidden Layer Analysis

For the sake of notational convenience the superscript p, that refers to a specific pattern,

is removed. Let SOY,kj = t be the sensitivity of output unit Ok to small perturbations

in hidden hidden unit Yj for a single pattern (The first part of the subscript indicates the

layer involved and the second part indicates the respective unit of each layer). Then,

OOk
SOY,kj =

8Yj
OOk onetok

onetok oYj

f' (netok) . Wkj

(5.15)

where f' (netok) = 1 for linear activation.

5.3.2 Output-Input Layer Analysis

The sensitivity of output unit Ok with respect to input unit Zi is calculated as,

OOk
SOZ,ki

OZi
OOk onetok (5.16)

onetok 0Zi

where, for linear activation,

(5.17)

Then

152 CHAPTER 5. ARCHITECTURE SELECTION

onetOk1 . ---::-----'.:.
OZi t anetok . aYj

j=1 oYj aZi

J ay
LWkj. _ J (5.18)
j=1 OZi

For a PUNN with a distortion unit, using equation (A.45) on page 200, we have

Yj = eP . cos(Jr¢) (5.19)

where

1+1

P L Vji In IZil
i=1

1+1

¢ L VjiTi
i = 1

Thus,

ay·.J

aZi

(5.20)

Substitution of (5.20) in (5.18) gives

OOk t Wkj Vji . (eP • cos(7r<p)) (5.21)
aZi j=1 IZi l

This concludes the derivation of the sensitivity equations for a PUNN with a distortion

unit.

The next section applies the variance nullity pruning algorithm to PUNNs for selected

function approximation problems.

CHAPTER 5. ARCHITECTURE SELECTION 	 153

5.4 	 Application of the Variance Nullity Pruning Al­

gorithm to PUNNs

The variance nullity pruning algorithm was applied to the eight test functions described

on page 99. The training and test sets of section 4.4.1 were used in training the

network. The PUNNs were trained using particle swarm optimization. The optimal

parameters for each of the eight test functions, as determined in chapter 4, were used

for oversized initial networks. In these oversized networks, the number of hidden units

were deliberately increased from the optimal architectures as determined in chapter 4.

After each pruning step the weights were randomly re-initialized, as stipulated by the

variance nullity pruning algorithm. In the case of PSO this implies re-initializing the

positions and velocities for the particles before the next pruning step commenced. This

random re-initialization of weights sometimes resulted in poorer performance of the

re-initialized network by often producing larger MSEs on the training set and poorer

generalization on the test set.

In this section a network's performance was measured by its MSE on the test set, in

other words, its generalization. Tables 5.1 to 5.8 contain for both the oversized and

pruned network the number of hidden units, MSE on training and test sets for 30

simulations, the average MSE on training and tests sets and the average number of

hidden units. Unacceptable performance was defined as a reduction of 20% or more in

the MSE on the test set on the subsequent pruning step, in which case the pruning

process was stopped. This explains the entries in tables 5.1 to 5.8 where pruning

ended with the same number of hidden weights as the initial oversized network. In

these instances no parameters were identified for pruning and the pruning process was

repeated with a smaller value for e5, with re-initialized particles that often resulted

in larger MSE values. For each function, 30 pruning simulations were conducted as

154 CHAPTER 5. ARCHITECTURE SELECTION

reflected in tables 5.1 to 5.11. Tables 5.1 to 5.8 contain the results for the pruning of

the hidden layer for all eight functions. Further, to show that the variance nullity can

also be applied to prune the input units of PUNNs, pruning was applied to three of the

eight test functions. In these cases extra input units were added to the architecture,

with inputs for these units randomly generated. Tables 5.9 to 5.11 contain the results

for pruning of the input layer for PUNNs. The tables also contain the averages for

the number of hidden and input units calculated over the 30 simulations and the

average MSEs calculated on the training and test sets together with a 95% confidence

interval. Tables 5.1 to 5.8 show that the average number of hidden units for the various

functions are close to the optimal number of hidden units as determined in chapter 4,

bearing in mind that the average also includes the number of simulations where the

initial oversized networks showed a degradation in performance due to re-initialization

of weights.

Each training session started with random weights. Due to the stochastic search

employed by PSO, the particle swarm optimizer is not always guaranteed to converge

to a global optimum. PSO did therefor not always succeed in pruning all the irrelevant

hidden units [Van den Bergh et al2001c]. This explains why the average number of

hidden units is slightly higher than the values obtained in chapter 4. Table 5.2 on page

157 shows that an initial network comprising 8 hidden units, for the cubic function, were

pruned to 1 unit in 27 out of 30 simulations. The average number of hidden units for the

pruned network as reflected in table 5.2 over 30 simulations is 2 (i.e. l.5 rounded). This

x3shows that the function f(x) = - 0.04x can be represented by a PUNN containing

two hidden units compared to an optimal SUNN that requires 3 hidden units. The ta­

bles also reflect a performance similar to the results contained in table 4.25 on page 12l.

The variance nullity method can only remove irrelevant units; it cannot remove red un­

155 CHAPTER 5. ARCHITECTURE SELECTION

dant units from a network. This may explain why certain simulations ended in a higher

number of units than the optimal number of units for the specific function. Similarly,

the average number of input units are comparable to the optimal number of input units

as determined in chapter 4. The performance of the oversized network, in all cases,

is much poorer than the performance of the pruned network. Thus, a larger PUNN

architecture does not necessarily translate to an increase in network performance, since

the larger NNs overfitted the data.

5.5 Conclusion

In this chapter the variance nullity pruning algorithm developed by Engelbrecht was

discussed and applied to oversized PUNN architectures of the eight test functions (as

defined in chapter 4). The variance nullity pruning approach successfully pruned ir­

relevant hidden and input units of PUNNs. The variance nullity pruning algorithm

produced averages for the number of hidden and input units that were comparable to

the optimal number of units as determined by brute force in chapter 4. The results

also indicate that the initial oversized PUNNs did not produce smaller MSEs than the

pruned networks. This implies that in the case of PUNNs, a larger network does not nec­

essarily translate into better performance. Re-initialization of oversized networks when

no parameters were identified for pruning often resulted in a poorer performance that

may lead to early termination of the pruning process. This could have been avoided, if

all the unpruned weights were retained for the next pruning step, where a smaller value

for e6 will subsequently be used by the pruning algorithm. Thus, an improvement for

the variance nullity algorithm applied to PUNNs is to avoid re-initialization of weights

in cases where no parameters were pruned by retaining the unpruned weights and to

continue the pruning process by re-training only the bias.

156 CHAPTER 5. ARCHITECTURE SELECTION

fix) = x 2

Oversized network Pruned Network

Simulation No of hidden MSE on MSE on No of hidden MSE on MSE on

No units Training set Test set units Tr'ai ning set Test set

1 8 0.0031 0.0039 1 0.000377 0.000619

2 8 0 .0134 0.0240 1 0.001376 0.001675

3 8 0.0062 0.Ql08 1 0.000059 0.000065

4 8 0.0292 0.0210 1 0.000219 0.000324

5 8 0.0290 0.0844 1 0 .000448 0.000290

6 8 0.0041 0 .0045 8 0.004073 0.004544

7 8 0.0102 0.Ql78 2 0.000643 0.003382

8 8 0.0157 0.0130 1 0.000205 0.000156

9 8 0.0077 0.0088 1 0 .000172 0.000186

10 8 0.0018 0.0014 1 0.000051 0.000054

11 8 0.0244 0.0271 1 0.000100 0.000082

12 8 0 .0193 0.0392 2 0 .000563 0.000652

13 8 0.Ql71 0.0131 1 0.000238 0.000269

14 8 0.0032 0.0034 1 0.000061 0.000048

15 8 0.0265 0.0187 2 0.000777 0.000297

16 8 0.0042 0.0895 2 0.000434 0.000530

17 8 0.0246 0.0206 2 0.000195 0.000098

18 8 0.0252 0.5363 2 0.000906 0.000553

19 8 0.0203 0.0342 1 0 .000270 0.000180

20 8 0.0083 0.0090 3 0.001427 0.001020

21 8 0.0056 0.0052 1 0.000126 0.000153

22 8 0.0369 0.0259 1 0.000101 0.000087

23 8 0.0177 0.0245 2 0.001014 0.000892

24 8 0.Ql72 0.0127 2 0.000189 0.000230

25 8 0.0121 0.0610 1 0.000140 0.000383

26 8 0.0124 0.0171 2 0.000359 0.000793

27 8 0.0051 0.0063 1 0.000131 0.000111

28 8 0 .0046 0.0032 1 0 .000648 0.000635

29 8 0.0224 0.0896 1 0.000632 0.000501

30 8 0.0075 0.0185 1 0.000253 0.000475

Average no of Average no of

hidden units 8 hidden units 1.6

Average 0.01450 0.04149 Average 0 .00054 0.00064

Confidence 0.00340 0.03512 Confidence 0.00028 0 .00036

Table 5.1: Pruning of hidden units - function F1

157 CHAPTER 5. ARCHITECTURE SELECTION

j(x) = X 3 - 0.04x

Oversized network Pruned Network

Simulation No of hidden MSE on MSE on No of hidden MSE on MSE on

No units Training set Test set units n'aining set T est set

1 8 0.0025 0.0075 1 0.000009 0.000009

2 8 0.0044 0.0106 1 0.000042 0.000035

3 8 0.0016 0 .0008 8 0.001625 0.000844

4 8 0.0050 0.0043 1 0.000008 0.000006

5 8 0.0055 0.0037 2 0.000229 0.000132

6 8 0.0074 0.0142 1 0.000024 0.000026

7 8 0.0061 0.0072 1 0 .000009 0.000008

8 8 0.0033 0.0034 1 0.000008 0.000007

9 8 0.0060 0.0065 1 0.000008 0.000009

lD 8 0.0121 0.0165 1 0.000012 0.000007

11 8 0.0048 0.0042 1 0.000013 0.000013

12 8 0.0024 0.0039 1 0.000007 0.000008

13 8 0.0009 0.0013 1 0.000013 0.000010

14 8 0.0024 0.0027 1 0 .000035 0.000035

15 8 0 .0035 0.0022 1 0.000014 0.000010

16 8 0.0017 0.0016 1 O.OOOOlD 0.000008

17 8 0.0063 0 .0052 1 O.OOOOll 0.000009

18 8 0.0098 0.0063 1 0.000019 0 .000016

19 8 0 .0003 0.0003 1 0.000009 0.000007

20 8 0.0037 0.0051 1 O.OOOOlD 0.000009

21 8 0.0033 0.0038 1 0 .000034 0.000035

22 8 0.0058 0.0076 1 0.000009 0.000010

23 8 0.0030 0.0034 1 0.000009 0.000008

24 8 0.0009 0.0008 1 0.000007 0.000006

25 8 0.0075 0.Oll4 1 0.000007 0.000016

26 8 0.0023 0.0040 8 0.002251 0 .004021

27 8 0.0028 0.0039 1 0.000013 0.000008

28 8 0.0059 0.0049 1 0.000011 0.000008

29 8 0.0053 0.0061 1 0.000015 0.000011

30 8 0.0081 0.0092 1 0.000008 0 .000008

Average no of Average no of

hidden units 8 hidden units 1.5

Average 0.00449 0.00542 Average 0.00015 0.00018

Confidence 0.00099 0.00140 Confidence 0.00018 0.00027

Table 5.2: Pruning of hidden units - function F2

158 CHAPTER 5. ARCHITECTURE SELECTION

Zt = 1 +0.3Zt _2 - 1.4zt-l

Oversized network Pruned Network

Simulation No of hidden MSE on MSEon No of hidden MSE on MSE on

No units Training set Test set units Training set Test set

1 10 0.0004 0.0010 4 0.000102 0.006468

2 10 0.0022 0.0409 5 0.000039 0.000083

3 10 0.0003 0.0038 7 0.000220 0.0003 15

4 10 0.0010 0.0061 9 0.000036 0.000050

5 10 0.0002 0.0003 10 0 .000175 0,000293

6 10 0.0007 0,0009 10 0.000658 0.000871

7 10 0,0117 0.0450 9 0.000069 0.000249

8 10 0.0008 0.Gl71 6 0.000017 0.000022

9 10 0,0003 0.0031 9 0.000015 0.000034

10 10 0,0006 0.0010 8 0.000109 0 .000286

11 10 0.0025 0,0078 4 0,000011 0.000018

12 10 0.0092 0.0684 7 0.000189 0,000220

13 10 0.0002 0.0009 10 0.000233 0.000908

14 10 0.0003 0.0002 7 0 .000062 0,000065

15 10 0.0011 0.1009 4 0.000041 0 .000055

16 10 0.0001 0.0010 4 0.000088 0,000112

17 10 0.0623 0.0637 6 0.000007 0,000009

18 10 0.0009 0.0035 6 0.000082 0.000098

19 10 0.0001 0.0007 10 0.000092 0.000660

20 10 0,0002 0.0002 5 0,000011 0,000014

21 10 0.0032 0,0495 6 0,000081 0.000446

22 10 0.0094 0.0395 4 0.000129 0,001090

23 10 0.0010 0 .0273 5 0.000027 0.000028

24 10 0.0004 0 .0012 10 0.000432 0.001203

25 10 0.0010 0.0016 5 0.000064 0.000070

26 10 0,0002 0 .0041 4 0.000001 0.000001

27 10 0.0032 0,0067 6 0.000005 0.000009

28 10 0.0010 0.0037 10 0.000196 0,000431

29 10 0.0008 0.0027 10 0.000829 0.002712

30 10 0,0020 0,0462 5 0,000090 0.000126

Average no of Average no of

hidden units 10 hidden units 6.8

Average 0.00391 0.03882 Average 0.00014 0,00056

Confidence 0,00415 0.04519 Confidence 0.00007 0.00020

Table 5.3: Pruning of hidden units - function F3

159 CHAPTER 5. ARCHITECTURE SELECTION

f(x,y) = y7x 3 - 0.5x6

Oversized network Pruned Network

Simulation No of hidden MSE on MSEon No of hidden MSEon MSE on

No units Training set Test set units Training set Test set

1 10 0.0015 0.0045 2 2.15E ­ 06 1.20E ­ 03

2 10 0.0037 0.0027 2 1.02E ­ 04 4.09E ­ 05

3 10 0 .0007 0.0009 3 1.22E ­ 04 1.03E ­ 04

4 10 0.0009 0 .0020 2 1.52E ­ 06 2.15E ­ 03

5 10 0.0013 0 .0024 4 7 .04E ­ 05 2.27E ­ 04

6 10 0.0017 0.0035 2 4.50E ­ 08 6.77E ­ 03

7 10 0.0002 0.0012 6 1.17E ­ 04 6.84E ­ 04

8 10 0.0008 0.0027 3 4 .57E ­ 05 9. 08E ­ 05

9 10 0.0023 0 .0028 2 1.32E ­ 04 1.98E ­ 03

10 10 0 .0011 0 .0018 2 1.76E ­ 06 2.10E ­ 04

11 10 0.0028 0.0035 2 3.43E ­ 05 4.85E ­ 04

12 10 0.0009 0 .0012 3 3.49E ­ 04 5.79E ­ 04

13 10 0.0007 0.0009 2 7. 24E ­ 04 1.30E ­ 04

14 10 0.0002 0.0003 10 2.22E ­ 04 1.20E ­ 04

15 10 0.0025 0 .0032 2 7.34E ­ 05 5.48E ­ 05

16 10 0.0011 0.0019 2 4 .00E ­ 04 3 .36E ­ 03

17 10 0 .0002 0.0003 8 1.85E - 04 2.28E ­ 03

18 10 0 .0003 0.0003 10 2.80E ­ 04 7.76E ­ 04

19 10 0.001 3 0.0014 2 1.94E - 03 1.21E ­ 03

20 10 0.0064 0.0068 3 1.24E ­ 04 2.58E ­ 04

21 10 0.0028 0.0042 2 2.07E ­ 04 3.11E ­ 05

22 10 0 .0027 0 .0030 3 1.77E ­ 04 6.22E ­ 05

23 10 0.001 4 0.0021 2 6. 76E - 04 2.76E ­ 03

24 10 0.0001 0.0001 10 8.91E ­ 05 1.54E ­ 04

25 10 0.0003 0.0004 3 3 .21E ­ 04 9.21E ­ 04

26 10 0.0005 0 .0005 10 5. 17E-04 1.85E ­ 04

27 10 0.0045 0 .0059 4 4.13E - 05 5.70E ­ 03

28 10 0.0045 0.0057 3 7.12E ­ 04 2.46E ­ 04

29 10 0 .0012 0 .0014 2 4 .32E ­ 04 6.67E ­ 03

30 10 0.001 2 0 .0020 2 1.57E - 04 2.40E ­ 04

Average no of Average no of

hidden units 10 hidden un its 3.8

Average 0.001 66 0 .00232 Average 0.00028 0.001 32

Confidence 0.00055 0.00062 Confidence 0.00014 0 .00071

Table 5.4: Pruning of hidden units - function F4

160 CHAPTER 5. ARCHITECTURE SELECTION

f(x,y) = X2 + y2

Oversized network Pruned Network

Simulation No of hidden MSE on MSE on No of hidden MSE on MSE on

No units TI:aining set Test set units Ttaining set Test set

1 10 0.0470 0.0491 2 0.00727 0.00777

2 10 0.0301 0.0357 2 0.01654 0.018 64

3 10 0.0228 0.0262 2 0.00781 0.00875

4 10 0.Gl71 0.0174 2 0.01693 0.01674

5 10 0.0407 0.0774 4 0.02883 0.03137

6 10 0.Gl75 0.0186 10 0.01750 0.01859

7 10 0.0490 0.0433 2 0.00598 0.00596

8 10 0.1183 0.1338 2 0.00214 0.00212

9 10 0.0158 0.0152 10 0.01 576 0.01517

10 10 0.0354 0.0512 3 0.00688 0.00699

11 10 0.0309 0.0341 3 0.00714 0.00785

12 10 0.0215 0.0248 2 0.00402 0.00393

13 10 0 .0304 0.0345 2 0.01887 0.02020

14 10 0.0679 0.0774 2 0.00567 0.00508

15 10 0.0325 0 .0434 4 0.00037 0 .00043

16 10 0.0096 0.0113 10 0.00959 0.01129

17 10 0.0320 0.0328 3 0.02237 0.02253

18 10 0.0300 0.0297 3 0.00002 0.00002

19 10 0.0260 0.0359 2 0.01418 0.01467

20 10 0.0358 0.0368 2 0.01639 0.01590

21 10 0.0303 0.0457 6 0.01378 0.01374

22 10 0.0273 0.0328 3 0.00067 0.00069

23 10 0.0110 0.0162 3 0.00605 0.00633

24 10 0.0185 0.0233 2 0.00588 0.00591

25 10 0.0220 0.0291 3 0.01463 0.01780

26 10 0.0346 0.0309 2 0.01591 0.01385

27 10 0.0129 0.0169 2 0.00112 0 .00133

28 10 0.0512 0.0586 2 0.02316 0.02118

29 10 0 .0265 0.0359 2 0.01582 0.01483

30 10 0.0362 0.0537 3 0.00693 0.00687

Average no of Average no of

hidden units 10 hidden units 3.3

Average 0.03269 0 .03501 Average 0.01024 0.01122

Confidence 0.00744 0.00653 Confidence 0.00299 0.00281

Table 5.5: Pruning of hidden units - function F5

161 CHAPTER 5. ARCHITECTURE SELECTION

lex, y) = sin(x2) + sin(y2)

Oversized network Pruned Network

Simulation No of hidden MSE on MSE on No o f hidden MSE on MSE on

No units Ttaining set Test set units TI:aining set Test set

1 10 0 .0068 0.0210 6 0.00019 0.00021

2 10 0.0015 0.0020 8 0.00020 0.00048

3 10 0.0016 0.0025 4 0 .00020 0.00021

4 10 0.0163 0.0440 2 0.00224 0.00343

5 10 0.0017 0.0142 2 0.00007 0.00007

6 10 0.0071 0.0112 2 0.00007 0.00008

7 10 0.0013 0.0035 7 0 .00029 0.00043

8 10 0.0014 0.0038 10 0.00136 0.00377

9 10 0.0002 0.0017 6 0.00020 0.00038

10 10 0.0018 0 .0021 7 0.00042 0.00069

11 10 0.0063 0.0091 4 0.00012 0.00021

12 10 0.0084 0.0141 6 0.00073 0.00134

13 10 0 .0009 0.0010 10 0.00092 0.00105

14 10 0.0039 0.0043 3 0.00019 0.00023

15 10 0.0046 0.0069 4 0.00017 0.00025

16 10 0.0061 0.0111 7 0.00013 0.00017

17 10 0 .0039 0.0047 5 0 .00064 0.00119

18 10 0.0006 0.0007 10 0.00061 0 .00071

19 10 0.0007 0.0026 4 0.00018 0.00020

20 10 0.0036 0.0046 5 0.00030 0 .00045

21 10 0.0082 0.0437 2 0.00010 0.00013

22 10 0 .0025 0.0102 3 0.00008 0.00011

23 10 0.0037 0.0079 5 0 .00009 0.00013

24 10 0.0011 0.0014 4 0.00027 0.00035

25 10 0.0023 0.0037 2 0.00006 0.00008

26 10 0.0008 0.0015 6 0.00041 0.00106

27 10 0.0053 0.1544 5 0.00020 0.00028

28 10 0.0019 0.0121 6 0.00007 0.00036

29 10 0 .0097 0.01 63 7 0.00108 0.00182

30 10 0.0046 0.0130 2 0.00250 0.00280

Average no of Average no of

hidden units 10 hidden units 5.1

Average 0.00396 0.01431 Average 0.00047 0.00076

Confidence 0.00127 0.01039 Confidence 0.00022 0 .00036

Table 5.6: Pruning of hidden units - function F6

162 CHAPTER 5. ARCHITECTURE SELECTION

f(x,y) = (4 - 2.1x 2 + (X;))X 2 + xy + (4y2 _ 4)y2

Oversized network Pruned Network

Simulation No of hidden MSE on MSEon No of hidden MSE on MSE on

No units Training set Test set units 1\'aining set Test set

1 15 0.0381 0.0459 12 0.03840 0.04219

2 15 0.0311 0.0471 5 0.02066 0.02591

3 15 0.0244 0.0317 10 0.03526 0.04204

4 15 0.0329 0.0421 2 0.06240 0.06875

5 15 0.0343 0.0436 15 0.03427 0.04364

6 15 0.0328 0.0362 6 0.03735 0 .03649

7 15 0.0240 0.0322 4 0.02728 0.03045

8 15 0.0356 0.0570 4 0.03397 0.04387

9 15 0.0327 0.0407 3 0.02985 0.03440

10 15 0.0253 0.0411 5 0.02566 0.03724

11 15 0.0290 0.0512 3 0.04249 0.05062

12 15 0.0273 0.0399 5 0.01284 0.01518

13 15 0.0293 0.0351 4 0.02905 0 .03501

14 15 0.0462 0.0145 7 0.02749 0.03669

15 15 0 .0268 0.0772 4 0.02502 0.03588

16 15 0.0245 0.0394 4 0.02544 0.03403

17 15 0.0250 0.0302 15 0.02503 0.03022

18 15 0.0333 0.0383 5 0.02383 0.02318

19 15 0.0292 0.0351 3 0.03048 0.03614

20 15 0.0308 0.0394 14 0.02389 0.02961

21 15 0.0210 0.0276 4 0.02909 0.02626

22 15 0 .0324 0.0783 4 0.02561 0.02977

23 15 0.0284 0.0403 4 0.03356 0.03624

24 15 0.0292 0.0388 4 0.03355 0.03580

25 15 0.0226 0.0384 3 0.07735 0.08508

26 15 0.0298 0 .0546 3 0.04043 0.04510

27 15 0.0271 0.0301 14 0.02730 0.02504

28 15 0.0372 0.0611 3 0.02646 0.05175

29 15 0 .0451 o.ono 5 0.05121 0.06213

30 15 0.0319 0.0459 3 0,02680 0.03542

Average no of Average no of

hidden units 15 hidden units 5.9

Average 0,03058 0,04252 Average 0.03273 0.03880

Confidence 0 ,00208 0.00498 Confidence 0,00457 0.00512

Table 5.7: Pruning of hidden units - function F7

163 CHAPTER 5. ARCHITECTURE SELECTION

f(x ,y) = .sin(x)· sin(y). v'XY
Oversized network Pruned Network

Simulation No of hidden MSE on MSE on No of hidden MSE on MSE on

No units Ttaining set Test set units 'I\'aining set Test set

1 12 0.0001 0.0001 8 0.000048 0.000056

2 12 0.0006 0 .0010 7 0.000010 0.000011

3 12 0 .0021 0.0038 8 0.000116 0 .001136

4 12 0.0001 0.0002 6 0.000107 0.000102

5 12 0.0001 0 .0001 12 0.000129 0.000131

6 12 0.0013 0 .0064 4 0 .00000 5 0.00000 5

7 12 0.0001 0.0001 7 0 .000060 0.000065

8 12 0 .0003 0 .0005 5 0 .000016 0. 000013

9 12 0.0002 0.0006 6 0 .000084 0.0001 37

10 12 0.0001 0.0017 12 0 .000096 0 .001705

11 12 0.0007 0 .0159 8 0 .000168 0.000421

12 12 0 .001l 0.0021 6 0.000041 0.000055

13 12 0.0038 0.0198 8 0 .000089 0.000071

14 12 0.0005 0.0009 6 0.000025 0.000069

15 12 0.0001 0 .0003 12 0.000108 0.000348

16 12 0 .0002 0 .0331 4 0 .000060 0 .000065

17 12 0 .0003 0.01 68 4 0 .000043 0.000167

18 12 0.0002 0 .0002 5 0.0000 14 0.000019

19 12 0.0003 0 .000 6 5 0.000010 0.000012

20 12 0.0007 0 .0009 6 0.000016 0.000017

21 12 0.0001 0 .0001 7 0.000050 0.000061

22 12 0.0002 0 .0003 12 0 .000178 0 .000298

23 12 0.0001 0.0002 12 0 .000102 0 .000192

24 12 0.0004 0 .0005 4 0 .000010 0 .000008

25 12 0.0004 0 .0008 5 0 .000039 0. 000039

26 12 0.0003 0 .0007 4 0.000076 0 .000220

27 12 0 .0001 0.0014 8 0.000333 0 .001303

28 12 0.0002 0.0286 12 0 .000608 0.003324

29 12 0.0006 0 .0138 4 0.000047 0000062

30 12 0.0003 0.0003 5 0.000042 0.000035

A verage no of Average no of

hidden units 12 hidden units 7. 1

Average 0.00052 0 .00506 Average 0.00009 0 .00068

Confidence 0 .00027 0.00325 Confidence 0 .00004 0.00077

Table 5.S: Pruning of hidden units - function FS

164 CHAPTER 5. ARCHITECTURE SELECTION

J(x) = x 2

Oversized network Pruned Network

Simulation No of input MSE on MSEon No of input MSE on MSE on

No units Training set Test set units Training set Test set

1 4 0.0239 0.0365 1 0.00063 0.00054

2 4 0.0231 0.0224 1 0.00019 0.00016

3 4 0 .0354 0 .0313 4 0.04229 0.03902

4 4 0.0118 0.0229 1 0.00020 0.00028

5 4 0.0431 0 .0711 1 0.00060 0.00087

6 4 0.0103 0.0100 1 0.00019 0.00020

7 4 0.0167 0 .0166 2 0.00157 0.00246

8 4 0 .0177 0 .0318 2 0.00135 0.00129

9 4 0.0225 0.0284 1 0 .00046 0.00055

10 4 0.0093 0.0359 1 0.00029 0.00031

11 4 0.0227 0.0242 1 0.00028 0 .00017

12 4 0.0151 0.0122 1 0.00026 0.00021

13 4 0.Gl76 0.Gl76 2 0.00021 0.00019

14 4 0.0219 0 .0142 1 0 .00054 0.00023

15 4 0.0161 0.Gl70 2 0.00135 0.00139

16 4 0.0187 0.0214 1 0.00021 0.00016

17 4 0.0191 0 .0078 1 0.00053 0.00050

18 4 0.0333 0.0275 1 0.00045 0.00061

19 4 0.0185 0.0160 1 0.00030 0.00033

20 4 0.0132 0.0113 2 0.00107 0.00095

21 4 0.0164 0.0179 1 0.00025 0.00022

22 4 0.0404 0.0363 1 0.00053 0.00039

23 4 0.0219 0.0257 1 0.00009 0.00009

24 4 0.0243 0 .0385 1 0.00049 0.00045

25 4 0.0082 0.0101 1 0.00007 0.00009

26 4 0.0275 0.0248 1 0 .00011 0.00009

27 4 0 .0209 0.0096 2 0.00034 0.00025

28 4 0.0139 0.0091 1 0 .00051 0.00032

29 4 0.0036 0.0026 1 0.00002 0.00007

30 4 0.0189 0.0161 1 0.00048 0.00031

Average no of Average no of

hidden units 4 hidden units l.3

Average 0.01970 0.02223 Average 0.00186 0.00171

Confidence 0.00327 0.00477 Confidence 0.00278 0.00257

Table 5.9 : Pruning of input units - function F1

165 CHAPTER 5. ARCHITECTURE SELECTION

f(x) = x3 - 0.04x

Oversized network Pruned Network

Simulation No of input MSE on MSEon No of input MSEon MSE on

No units Training set Test set units Training set Test set

1 4 0.00201 0.00370 1 0.000011 0.000038

2 4 0.00624 0.00605 1 0.000012 0.000010

3 4 0.00011 0.00009 1 0.000040 0.000036

4 4 0.00038 0.00065 1 0.000008 0.000007

5 4 0.00033 0.00054 1 0.000011 0.000009

6 4 0.00002 0.00001 4 0.000015 0.000014

7 4 0.00228 0.00522 1 0 .000008 0.000007

8 4 0.00024 0.00085 1 0.000009 0.000007

9 4 0.00003 0.00003 4 0.000026 0.000026

10 4 0.00004 0.00003 1 0.000007 0.000007

11 4 0.01621 0.02198 1 0.000007 0.000006

12 4 0.00015 0.00008 1 0.000041 0.000048

13 4 0.00007 0.00004 4 0.000072 0.000044

14 4 0.00010 0.00015 4 0 .000059 0.000047

15 4 0.00622 0.00465 1 0.000008 0.000006

16 4 0.00041 0.00020 1 0.000016 0.000025

17 4 0.00034 0.00047 1 0.000036 0.000068

18 4 0.00007 0.00005 4 0.000155 0.000152

19 4 0.00238 0.00376 1 0.000007 0 .000006

20 4 0.00572 0.00484 1 0.000009 0.000008

21 4 0.01302 0.01765 1 0.000011 0.000015

22 4 0.00243 0.00337 1 0.000007 0.000006

23 4 0.00022 0.00045 4 0.000216 0 .000450

24 4 0.00001 0.00001 1 0.000013 0.000009

25 4 0.00025 0.00021 1 0.000038 0.000040

26 4 0.00011 0.00006 1 0.000007 0.000007

27 4 0.00041 0.00052 1 0.000008 0.000006

28 4 0.00005 0.00003 1 0.000008 0.000006

29 4 0.00013 0.00013 4 0.000130 0.000132

30 4 0.00074 O.OOlOS 1 0.000009 0.000007

Average no of Average no of

hidden units 4 hidden units 1.7

Average 0.00199 0.00256 Average 0.00003 0.00004

Confidence 0 .00142 0.00185 Confidence 0.00002 0.00003

Table 5.10: Pruning of input units - function F2

166 CHAPTER 5. ARCHITECTURE SELECTION

f(x,y) = y7 x 3 ­ x6

Oversized network Pruned Network

Simulation No of hidden MSE on MSE on No of hidden MSE on MSE on

No uni ts Ttaining set Test set units n'aining set Test set

1 4 0 .0046 0.0067 2 0.00038 0.00063

2 4 0.0087 0.0109 2 0.00003 0.00006

3 4 0.0031 0 .0066 2 0.00033 0 .00058

4 4 0 .0059 0.0072 2 0.00056 0.00071

5 4 0.0040 0.0077 2 0.00041 0. 00073

6 4 0.0089 0.0160 4 0 .00887 0.01596

7 4 0.0077 0.0094 2 0.00038 0.00063

8 4 0 .0100 0.0125 2 0.00055 0.00095

9 4 0.0071 0.0083 2 0.00005 0.00006

10 4 0.0057 0.0096 2 0.00032 0.00062

11 4 0 .0045 0.0074 2 0.00046 0.00067

12 4 0.0030 0 .0060 2 0.00030 0 .0005 9

13 4 0.0092 0.0119 2 0.00036 0.00060

14 4 0.0046 0.0062 2 0.00042 0.00060

15 4 0 .0092 0.0187 4 0.00921 0.01865

16 4 0.0100 0.011 8 2 0.00041 0 .00065

17 4 0.0093 0.0109 3 0.00108 0.00158

18 4 0 .0033 0.0060 2 0.00036 0.00062

19 4 0.0083 0.0113 2 0.00036 0.00062

20 4 0.0077 0.0086 2 0.00049 0.00064

21 4 0.0078 0.0116 2 0.00370 0.00600

22 4 0.0067 0.0093 4 0.00665 0.00932

23 4 0.0059 0.00 62 2 0.00064 0.00071

24 4 0.0087 0.Ql05 2 0.00053 0.00059

25 4 0.0096 0.0119 3 0.00044 0.00058

26 4 0.0067 0.0079 2 0.00477 0.0062 2

27 4 0.0050 0.0074 2 0.00042 0 .00062

28 4 0.0100 0.0107 2 0.00005 0.00006

29 4 0.0029 0 .0061 2 0.00030 0.00060

30 4 0.0060 0.0097 4 0.00599 0.00973

Average no of Average no of

h idden units 4 hidden units 2.3

Average 0.00680 0.00950 Average 0.00163 0.00269

Confidence 0.00084 0.00108 Confidence 0.00097 0.00172

Table 5.ll: Pruning of input units - function F 4

	Front
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	CHAPTER 5
	Chapter 6
	Back

