
Chapter 4 

Global Optimization Algorithms 

Gradient descent (GD) is the most popular local optimization algorithm to train 

multilayer NNs. While GD has shown to be successful in training SUNNs, GD 

fails to train PUNNs under general assumptions of weight initialization, as shown 

in the previous chapter. This chapter presents an overview of the following global 

optimization algorithms: Particle Swarm Optimization (PSO), Genetic Algorithms 

(GAs) and Leapfrog Optimization (LFOP) . These algorithms are subsequently applied 

to approximate a set of functions, using PUNNs. The results are compared with that 

of SUNNs, using gradient descent optimization. 

4.1 Particle Swarm Optimization 

Particle swarm optimization (PSO) is a global optimization approach, modeled 

after the social behaviour of flocks of birds [Eberhart et al1996, Heppner et al1990, 

Reynolds 1987] and schools of fish [Wilson 1975] . Heppner was interested in discov­

ering the underlying rules that enabled large numbers of birds to flock synchronously, 

often changing direction suddenly, scattering and regrouping [Kennedy et al1995b]. 
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These scientists had the insight that local processes, such as those modelled by cellular 

automata, might underlie the unpredictable group dynamics of bird social behaviour 

[Kennedy et al1995bJ. The models proposed by these scientists relied heavily on 

manipulation of inter-individual distances; that is, the synchrony of flocking behaviour 

was thought to be a function of birds' efforts to maintain an optimum distance between 

themselves and their neighbours. 

Particle swarm optimization was originally developed by Eberhart and Kennedy 

[Eberhart et al1995, Eberhart et al1996, Kennedy 1995a, Kennedy et al1995bJ. PSO 

is a population based search procedure where the individuals, referred to as parti ­

cles, are grouped into a swarm. Each particle in the swarm represents a possible 

solution to the optimization problem under consideration. In a PSO system, each 

particle is cflown' through the multidimensional search space, adjusting its position in 

search space according to own experience and that of neighbouring particles. Each 

particle is treated as a point in a D-dimensional space. The pth particle is repre­

sented as xp = (Xp,1,Xp,2, ... ,.-X;p,D). The best previous position (i.e. the position that 

produces the best fitness value) of the pth particle is recorded and represented as 

BESTx
) 

p = (BESTxp,l, BESTxp,2, ... , BESTxp,D) , and the index of the best parti ­

cle among all the particles in the population is represented by, GBEST. Let the rate of 

change in position (i.e. velocity) for particle p be represented as -Up = (Vp,l, Vp,2, ... , Vp,D). 

The pth particle is adjusted according to the following equation, 

C2 x r-and20 x (BEST~GBEST - xp(t)) ( 4.1) 

(4.2) 


where Cl and C2 are positive constants, referred to as the acceleration constants, and 

Cl + C2 < 4 to ensure convergence [Van den Bergh 2001a], r-and10 and r-and20 are two 
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random functions with output in the range [0,1], w is the inertia weight and vp the 

velocity of particle p before the adjustment [Shi et al1998]. 

Equation (4.1) is used to calculate the particle's new velocity using its previous velocity 

and the distances of its current position from its own best experience (position) and 

the group's best experience, which is defined in terms of the type of social interaction 

that is being modeled [Shi et al1998]. Two approaches of PSO have been developed 

by Eberhart and Kennedy, one globally oriented, referred to as GBEST, and one locally 

oriented referred to as LBEST [Eberhart et al1995]. In both approaches, each particle 

of the swarm keeps track of its coordinates in search space which are associated with the 

best solution the particle has achieved so far. This position is referred to as BESTx. In 

the local version of PSO, each particle keeps track of the best solution called 'LBEST', 

attained within a local topological neighbourhood of particles. In the GBEST model 

the group's best experience is indicated to by index 'GBEST'. The particle therefore 

makes use of the best position encountered by itself and the overall best position of 

either, 

• all particles, as indicated to by 'GBEST' (GBEST model) or 

• a neighbourhood of particles, as indicated to by 'LBEST' (LBEST model) 

to position itself towards the global minimum. The effect is that particles 'fly' towards 

the global minimum, while still searching a wide area around the best solution. 

The performance of each particle (i.e. the 'closeness' of a particle to the global 

minimum) is measured according to a predefined fitness function which is related to the 

problem being solved. Research has shown that the GBEST version of PSO performs 

best in terms of a median number of iterations to converge compared to the LBEST 

model [Eberhart et al1996]. 
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The PSO algorithm is summarized below to illustrate its simplicity: 

4.1.1 PSG Algorithm 

1. 	 Initialize a swarm of S D-dimensional particles, with positions and velocities, 

where D is the number of weights and biases. 

2. 	 Evaluate the fitness fp of each particle p as the MSE over a given data set. 

3. 	 If fp < BESTp then BESTp = fp and BESTlp = xp , where BESTp is the 

current best fitness achieved by particle p , xp is the current position of particle 

p in D-dimensional weight space, and BESTxp is the position corresponding to 

particle p's best fitness so far. 

4. 	 If j~ < BESTGBEST then GBEST = p, where GBEST is the particle having the 

overall best fitness over all particles in the swarm. 

5. 	 Change the velocity vp of each particle p using equation (4.1). 

6. 	 Fly each particle p to xp + vp 

7. 	Loop to step 2 until convergence 

~~~) )

In step 5, the coordinates BESTxp and BESTxGBEST are used to pull the particles 

towards the global minimum, and the acceleration constants, Cl and C2, control how 

far particles fly from one another. 

Initially, all particles are assigned random positions, selected from a range that covers 

the entire search space, and random velocities that do not exceed a maximum velocity 

as specified for the problem. 
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The next section discusses the parameters; inertia weight, maxImum velocity and 

acceleration constant of PSO. 

4.1.2 Inertia Weight 

The purpose of the inertia weight is to control the impact of the previous history of 

velocities on the current velocity. A larger inertia weight favours global exploration, 

while a smaller inertia weight tends to facilitate local exploration of the search area 

[Kennedy et al1995b]. Suitable selection of the inertia weight w can provide a balance 

between local and global exploration abilities of PSO, and thereby reducing the number 

of iterations required in reaching an optimum. The value for the inertia weight is 

problem dependent, but usually values between 0 and 1.0 are used. PSO with decreasing 

inertia weight has also been implemented, where the PSO usually starts off with a large 

inertia weight, say 1.0, and gradually reduces it with time. 

4.1.3 Maximum Velocity 

The maximum velocity is used to prevent large velocity updates, thereby preventing 

particles from leaving the search space. Thus, in PSO, the value of the maximum 

velocity is limited to prevent particles from flying out of the search space. Shi and 

Eberhart pointed out that the maximum velocity acts as a constraint that controls 

the maximum global exploration ability of PSO [Shi et at 1998]. The maximum global 

exploration ability of PSO is limited if the maximum velocity is too small. If the 

maximum velocity is too small, then particles may not explore sufficiently beyond 

good regions. Further, they may become trapped in local minima, unable to jump far 

enough to reach a better position in the search space [Eberhart et al1996]. A larger 

maximum velocity, increases PSO's maximum global exploration ability. A too high 
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maximum velocity, however, will result in particles fiying past good solutions. The 

maximum velocity determines also the fineness with which regions between the present 

position and the target position will be searched. The value of the maximum velocity 

should thus be selected carefully. The maximum velocity is limited by the maximum 

value of the parameters for the problem at hand, i.e. the maximum value of the inputs. 

Usually values in the range 0 to 5 are chosen for the maximum velocity. 

4.1.4 Acceleration Constants 

The acceleration constants, Cl and C2, represent the weighting of the stochastic accel­
=-~~) )

eration terms that pull each particle toward positions BESTxp and BESTxCBEST' 

Thus, adjustment of this factor changes the amount of 'tension' in the system. Low 

values allow particles from far target regions to explore the search space before 

being tugged back, while high values result in abrupt movement toward the target 

regions [Eberhart et al1995]. The selection of values for the acceleration constant 

is problem dependent, however values normally range between 0 and 5. Also, if 

the constraint, Cl + C2 < 4, is not satisfied then PSO does not usually converge 

[Eberhart et al2000, Van den Bergh 200la]. 

4.1.5 Applications of PSO 

Particle swarm has been used successfully to train SUNNs [Kennedy et al 1995b, 

Van den Bergh 1999, Van den Bergh et al2000] and PUNNs [Engelbrecht et al1999a, 

Ismail et al1999, Ismail et al2000, Van den Bergh et al 2001b], for function opti­

mization [Eberhart et al1995, Shi et al1999, Van den Bergh et al 2001d] and for 

human tremor analysis [Eberhart et al1999j. Van den Bergh found that training of 
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multilayer feed-forward networks using various gradient descent based algorithms can 

be improved significantly by using particle swarm optimization in selecting initial 

weights. Van den Bergh showed that the initial weights produced by PSO increased 

the speed and accuracy with which gradient descent algorithms find the minimum 

[Van den Bergh et al2000j. Another researcher, Salerno, also applied particle swarm 

optimization successfully to train a recurrent neural network in parsing natural 

language phrases [Salerno 1997]. 

PSO has also been demonstrated to perform well in optimizing genetic algorithm test 

functions, such as the extremely nonlinear Schaffer f6 function. The f6 function 

is very difficult to optimize, as the highly discontinuous data surface features many 

local minima. PSO found the global optimum each run and appears to approximate 

the results reported by Davis for basic genetic algorithms in terms of the number 

of evaluations to reach certain performance levels [Kennedy et al1995b]. PSO can 

be used to solve many of the same kind of problems as solved by genetic algorithms 

[Kennedy et al1995b]. Eberhart et at used PSO successfully to extract rules from fuzzy 

neural networks [Eberhart et al1998]. BK Birge, a former student of Eberhart, one of 

the developers of PSO, and Y Shi is currently applying PSO to 'intelligent control' for 

NASA's next generation 'Robotic Mars Landers'. Current research in PSO use constric­

tion coefficients which have lead to improved performance of PSO [Eberhart et al2000]. 

4.1.6 Advantages of PSG 

The PSO offers several advantages, which makes it an excellent choice to solve 

optimization problems with a continuous search space. These advantages include: 
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• 	 PSO is conceptually simple and can be implemented in a few lines of code, re­

quiring only basic mathematical operations. 

• 	 In PSO, neural network weights and structures are evolved in such a way as to 

make preprocessing of neural network data unnecessary. 

• 	 PSO is computationally inexpensive in terms of both memory requirements and 

speed [Kennedy et al1995b]. 

• 	 PSO is a stochastic global optimization algorithm. 

Another advantage is that PSO does not suffer from some of the difficulties encoun­

tered with genetic algorithms (e.g. running the risk of finding suboptimal solutions); 

interaction in the group enhances rather than detracts from progress toward a solution 

[Eberhart et al1996]. PSO also has memory, which a genetic algorithm generally does 

not have. Change in genetic populations results in destruction of previous knowledge 

of the problem except when elitism (i.e. when individuals with highest fitness 

of the current generation is copied into the next generation) is employed, in which 

case a small number of individuals retain their identities. This serves as limited memory. 

PSO is a global optimization algorithm and training of a NN is an optimization 

problem. Hence, PSO can be used for training a NN, in which case each particle 

will represent a weight of the NN (including biases). The dimension of the search 

space is therefore the total number of weights and biases. The fitness function is 

the mean squared error (MSE) over the training set, or the test set (as measure of 

generalization). This thesis implements the GBEST version of PSO. 

This concludes the presentation of PSO. The next section presents genetic algorithms 

(GAs) as an optimization algorithm. 
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4.2 Genetic Algorithms 

Evolutionary computing has been used successfully to solve optimization problems. 

Of these, genetic algorithms (GAs) are the most popular. GAs are based on the 

principle of natural evolution where principles such as survival of the fittest, natural 

selection, reproduction and mutation are used to produce a 'best' individual. The 

idea of a genetic algorithm as a global optimization tool was first introduced by 

John Holland in the 1970's [Goldberg 1989]. A genetic algorithm is a global search 

technique compared to gradient descent that is a local search method. A GA repre­

sents an intelligent exploitation of a random search used to solve optimization problems. 

Genetic algorithm paradigms work on populations of individuals, rather than on single 

data points or vectors. In a GA, a population of individuals compete to survive. Each 

individual represents a point in search space, which represents one possible solution 

to the optimization problem. In this thesis, an individual represents a weight vector 

(including biases and distortion units) of a NN. Each individual is represented as a 

character string that is analogous to the chromosome that occurs in DNA. The survival 

strength, or fitness, of an individual is measured using a fitness function, the MSE 

when a GA is used to train a NN. The fitness value represents the abilities of an 

individual to survive. 

Most optimization paradigms move around in the search space using some heuristic. 

One of the drawbacks of this approach is the likelihood of getting stuck at a local 

mmlmum. GAs on the other hand start off with a diverse set of points called a 

population. From one population to the next the same number of individuals is 

maintained, thus allowing many maxima to be explored efficiently and thereby lowering 

the probability of getting stuck in a local minimum. GAs use 'selective breeding' of 
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the solutions to produce 'ofFspring' that exhibit better fitness than the parents by 

combining 'genes' of the parents. GAs do not require any auxiliary information, such 

as derivatives in determining the maximum (or minimum). GAs are generally more 

robust than conventional artificial intelligence systems, in that they will still produce 

reasonable results in the presence of noise or if the inputs change. A GA may ofFer 

significant benefits over more typical search optimization techniques, such as linear 

programming, heuristics, depth-first and breadth-first [Mitchel 1996]. 

Optimization in a GA proceeds through the generation of new individuals by probabilis­

tically applying crossover and mutation operators. Parents are selected for reproduction 

based on their fitness. Individuals with high fitness are given more opportunities to re­

produce, than individuals with low fitness. Thus the larger the fitness of an individual, 

the more likely it is that it will be used during crossover to exchange (genetic material' 

with another individual to produce better individuals. Thus (genes' from good indi­

viduals produce ofFspring that are often 'better' than the parents. Mutation occurs by 

randomly changing a (gene' of an individual. New ofFspring replace other individuals 

with lower fitness. It is hoped that after successive generations better solutions will 

replace weaker ones. 

4.2.1 Applications of GAs 

GAs have been used successfully for many applications, which include the training of 

N Ts. SchifFman et al used GAs to train SUNNs [Schiffman et al1992], while Frenzel 

has applied GAs to train PUNNs [Janson et al1993]. In a study conducted by Dagli 

and James to search for optimal parameters ( such as the number of nodes in each layer 

and the number of layers) for a neural network, the parameters rather than the weights 

were encoded in the GA chromosome where the neural network's performance with 
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these parameters was used as the fitness function [Dagli et al1995]. Other applications 

of GAs include, 

• 	 pattern classification [Chang et al1991]' 

• feature selection for neural networks [Guo et al1992]' 

• 	 the initialization of Radial Basis Networks [Billings et al1995, Burdsall et al1997], 

• 	 the training of cellular neural networks [Zamparelli 1997], 

• 	 to explain the behaviour of neural networks by defining a function linking the 

network inputs and outputs [Opitz et al1994]' and 

• 	 to configure radial basis function (RBF) neural networks [Billings et al1995 , 

Kuo et al1994, Whitehead et al1996]. Specifically, they have been applied to 

find the optimal (Gaussian) parameters used (centres, widths), as well as the 

structure (number of hidden nodes) of the RBF network. 

A general genetic algorithm for training NNs is presented below. 

4.2.2 Genetic Algorithm 

1. 	 Initialize a population, G(t), of individuals (weight vectors). 

2. 	 Calculate the fitness of each individual of the population as the MSE over the 

training set. 

3. 	 Select parents for reproduction from the current population, G(t) . Two individu­

als are selected from the population using ranking as the selection operator (refer 

to section 4.2.8). 

4. 	 Perform crossover to produce new individuals for population, G(t + 1). A two­

point crossover operator is used (refer to section 4.2.8). 
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5. Perform mutation of population, G(t + 1). 

6. Loop to step 2 until best individual is acceptable. 

4.2.3 Initialization and Size of Population 

Initialization of the population is usually done stochastically. It is sometimes appro­

priate to start with one or more individuals that are selected heuristically, to aim 

the GA in a promising direction. Generally the population should represent a wide 

assortment of individuals. Researchers have shown that the urge to skew the population 

significantly should generally be avoided. Choosing the size of the population is more 

an art than science. Following De Jong's guidelines, a moderately sized population 

should be used initially [De J ong 1975]. 

4.2.4 Representation 

The objective of applying GAs to neural network training is to find a suitable set of 

weights that results in the smallest MSE on the training set and that generalizes well on 

the test set . To achieve this objective the GA has to be populated with sets of weights 

where each set of weights is a possible solution in training the network. Thus, for NN 

training, each individual of the GA contains the same number of genes as the number 

of weights (including biases) that occur in the neural network. Each weight value has to 

be converted to a binary representation, since this thesis assumes that the G A paradigm 

uses a binary alphabet. The accuracy of the final weight values are determined by the 

number of bits used in the binary representation and the range of values that is mapped 

onto this binary representation, e.g. to map real numbers in the range [-3.0,3.0] onto a 30 

bit binary representation, implies a mapping onto 23°,( i.e. 1073741824), distinct values. 

Thus -3.0 is mapped onto say 000000000000000000000000000000 and 3.0 mapped onto 
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111111111111111111111111111111 (30 ones); a finite number ofreal values between -3.0 

and 3.0 are then mapped onto the remaining binary representations that exist between 

these two binary numbers. In this representation two successive real numbers will 

therefor differ by magnitude (3.0 - (-3.0))/(230 
- 1) = 6/1073741823 = 5.5879E - 09. 

In this representation any two weights that differ by less than this magnitude are thus 

indistinguishable or regarded as representing the same number. For the implementation 

in this thesis, each weight is mapped onto a 30 bit binary number. Weight values are 

restricted to the range [Wmin, wmax ], in other word the evolutionary process cannot 

evolve weights beyond these boundaries. The following mapping function is used to 

convert floating-point weight values to binary representation: 

(230 _ 1) W - Wmin (4.3) 
W max - Wmin 

4.2.5 Fitness 

One method of fitness calculation is to 'equally space' the fitness values in some manner, 

say from 0 to 1. The most fit individual has a maximum fitness of 1. Another method 

of fitness calculation is 'scaling' that takes into account the recent history of the pop­

ulation. If the objective of a GA is to maximize some function , then scaling involves 

keeping a record of the minimum fitness value obtained in the last s generations, where 

s is the size of the scaling window. If, for example, s = 10, then the minimum fitness 

value in the last 10 generations is kept and used instead of 0 as the 'floor' of fitness 

values. Fitness values are then assigned a value based on their actual distance from 

the floor value. The fitness function used in this thesis is defined as f(w) = l+M1E(w)" 

Hence, the smaller the MSE, the larger the fitness value. 
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4.2.6 Crossover 

Crossover is inspired by natural evolution processes. Crossover is a reproduction op­

erator which forms a new individual (chromosome) by combining parts of each of two 

'parent' chromosomes with an objective of increasing the fitness value of the new indi­

vidual. The most 'basic' crossover type is one-point crossover, as describe by Holland 

[Holland 1992] and others, e.g. Goldberg [Goldberg 1989] and Davis [Davis 1991]. One­

point crossover involves selecting a single crossover point at random and exchanging the 

portions of the individual strings of the parents to the right of the crossover point. In 

two-point crossover, on the other hand, two parents are randomly selected from the 

population and a stochastic decision is made whether or not to perform crossover. 

Subsequently, if crossover has to be performed, a two-point crossover site along the 

character string is randomly chosen. The corresponding values occurring between these 

two points in each parent are then exchanged. An alternative is uniform crossover, 

where two parents are chosen at random and a stochastic decision is made whether 

or not to perform crossover [Syswerda 1991]. If crossover has to be performed then 

a random decision is made at each bit position in the string as to whether or not to 

exchange corresponding bits between the two parent strings. De Jong suggested a high 

crossover rate of between 0.5 and 0.9 [De Jong 1975]. The values for crossover is, how­

ever, problem dependent. In this thesis two-point crossover is used with crossover rates 

varying between 0.5 and 0.9. 

4.2.7 Mutation 

Mutation is a way of varying the 'gene pool' that provides some protection against 'in 

breeding' in a population. Mutation is achieved by stochastically flipping the bits of 

the individuals during each generation at a certain probability. Mutation is usually 

performed with a low probability, but higher probabilities are not unusual. A good 
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strategy is to start off with a fairly high probability for mutation that is decreased with 

time. This allows the GA, initially, greater exploration abilities. In this thesis fixed 

mutation rates between 0.001 and 0.5 are used. 

4.2.8 Reproduction or Selection 

Reproduction is a process in which individual strings are selected for mating according 

to their fitness values. Thus strings with high fitness values have a high probability 

of contributing to one or more offspring in the next generation [Goldberg 1989]. 

Operators for implementing reproduction are random selection, biased roulette wheel 

or tournament selection. In random selection individuals for the next generation are 

randomly selected from the current population. In the biased roulette wheel approach 

each individual is assigned a roulette wheel slot sized in proportion to its fitness. 

Individuals with high fitness will thus have a bigger size slot than individuals with 

low fitness values. The roulette wheel is then spun n times to generate a population 

of size n. The individual that corresponds to the slot that the dice ends up in after 

each spin is added to the next generation. Thus the bigger the slot size, the greater 

the probability that the dice will land in it and thus the greater the probability of that 

individual being added to the next generation. One variation on the roulette wheel 

was developed by Baker in which the portion of the roulette wheel is assigned, based 

on each unique string's relative fitness [Baker 1987] . One spin of the roulette wheel 

then determines the number of times each string will appear in the next generation. 

In the most common variation of tournament selection two individuals are selected at 

random and the member with a higher fitness value is selected for the next generation. 

This process is repeated n times for a population of size n. Other variations include 

using more than two members selected at a time, and selecting the highest fitness 
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valued member with a certain probability. In the reproduction operators discussed so 

far all individuals are replaced each generation. 

Another approach for selection is referred to as ranking where the individuals are 

sorted or ranked in ascending fitness values. The pool of individuals to take part 

in the reproduction is constructed as follows: The top 20% individuals are placed 

ill the mating pool and duplicated. The bottom 20% are culled and do not take 

part in reproduction. The remainder of the mating pool comprises all the individuals 

that appear between the top 20% and the bottom 20% on the sorted list of fitness values. 

The fitness function defined in section 4.2.5 reveals that the higher the fitness, the lower 

the corresponding MSE for an individual. In this thesis the (Simple Genetic Algorithm' 

(SGA) of Goldberg is implemented [Goldberg 1989]. In the SGA the bottom 20% of 

each population with respect to fitness is culled. A two-point crossover is used with 

ranking as the selection operator, where the top 20% individuals with respect to fitness 

were added twice to the mating pool. The other 60% comprise all individuals between 

the top 20% and the bottom 20% of the sorted list. For crossover two individuals were 

randomly selected from the mating pool. R,andom mutation is used on the offspring. 

In this thesis, De Jong's guidelines were followed by using a relatively high crossover 

rate, a relatively low mutation rate and a moderately sized population [De Jong 1975]. 

On subsequent simulations the crossover rate is decreased, while the mutation and size 

of population are increased in order to find optimal values for these parameters. 

4.2.9 Advantages of GAs 

Genetic algorithms have several advantages, for example, 
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• 	 they require no knowledge or gradient information about the error surface, 

• 	 they are generally not trapped by local optima, 

• discontinuities on the error surface have little effect on overall optimization per­

formance, 

• 	 GAs perform very well for large-scale optimization problems, and 

• 	 GAs can be used in a wide variety of optimization problems, 

4.2.10 Disadvantages of GAs 

While GAs do offer several advantages as mentioned above, they do have drawbacks, 

such as: 

• 	 they generally require more fitness evaluations compared to hill-climbing tech­

niques, 

• 	 have trouble finding the exact minimum. GAs are best at reaching the global 

region but sometimes have difficulty reaching the exact optimum location. This 

problem can be overcome by a hybrid approach that uses a genetic algorithm to 

find the general area of a minimum followed by using gradient descent to find the 

corresponding minimum. 

• finding a 	suitable configuration for a GA, using the various parameters and oper­

ators for GAs, is not straightforward. 

The next section presents an overview of the Leapfrog Optimization Algorithm (LFOP) 

developed by Snyman [Snyman 1982b]. 

 
 
 



CHAPTER 4. GLOBAL OPTIMIZATION ALGORITHMS 	 97 

4.3 Leapfrog 

Leapfrog is a gradient-based optimization approach based on the physical problem 

of the motion of a particle of unit mass in an n-dimensional conservative force field 

[Snyman 1982a, Snyman 1982b]. The potential energy of the particle in the force field 

is represented by the function to be minimized - in the case of NNs, the potential energy 

is the MSE. The objective is to conserve the total energy of the particle within the 

force field, where the total energy consists of the particle's potential and kinetic energy. 

The optimization method simulates the motion of the particle, and by monitoring the 

kinetic energy, an interfering strategy is adopted to appropriately reduce the potential 

energy. This algorithm employs an improved time step selection routine in which the 

time step is automatically reduced or increased to ensure an efficient utilization of the 

basic dynamic algorithm developed by Snyman [Snyman 1982b]. Snyman recorded 

results for leapfrog optimization that performed well compared to the conjugate 

gradient algorithm on the three test functions; Rosenbrock, the homogeneous quadratic 

and Oren's extended functions [Snyman 1982bJ . Other researchers, Holm and Botha 

have shown that the leapfrog optimization algorithm is a robust algorithm for training 

summation unit neural networks [Holm et al1999]. 

The algorithm is summarized below: 

4.3.1 Leapfrog Algorithm 

l. 	Compute an initial weight vector wo, with random components. Let 6t = 0.5 , 

5 = 1, m = 3, 51 = 0.001 and t = 10-5 . Initialize i = 0, j = 2, s = 0, p = 1 and 

k = -1, where 5 denotes the maximum allowable stepsize. 

2. 	 Compute the initial acceleration 0,0 = -VE(wo) and velocity Va = ~ao 6t, where 

E(wo) is the MSE for weight vector woo 
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4. 	 If II~wk II < 0 goto step 5, otherwise set Vk = 6~I~kll and goto step 6. 

5. 	 Set p = p + 01 and ~t = p~t . 

. t t 7 th . t At 6t d -. WIc+Wk-l - . ih +Vk- l 6. If S < m, go 0 s ep ,0 erwlse se u = 2 an Wk = 2 ,Vk = 4 

s = 0 and goto 7. 

9. 	 If aI+1 .ak > 0, then s = 0 and goto 10, otherwise s = s + 1, p = 1 and goto 10. 

10. 	 If Ilak+111 :::; t then stop, otherwise goto 11. 

11. 	 If Ilvk+lll > Ilvkll then i = 0 and goto 3, otherwise Wk+2 = WIc+~+WIc, i = i + 1 and 

goto 12. 

12. 	 Perform a restart: If i :::; j, then Vk+l = VIc+~+Vk and k = k + 1, goto 8, otherwise 

Vk+1 = 0, j = 1, k = k + 1 and goto 8. 

Whereas PSO and GA perform stochastic parallel searches, leapfrog uses gradient in­

formation to guide the search from one search point to the next. 

4.4 Experimental Results 

This section applies the optimization algorithms discussed in the previous section 

to the training of product unit neural networks. Results are also compared to that 

obtained from applying these optimization algorithms to SUNNs. The comparison also 

includes training PUNNs and SUNNs using gradient descent. The objective of these 

experiments is to determine if any gain in performance with respect to generalization 
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can be achieved by usmg PUs. First, the functions used in the experiments are 

summarized, followed by a description of the experimental procedure. 

4.4.1 Test Functions 

Eight functions, varying in complexity, were used . These functions are summarized 

below. 

r-.J1. 	 The quadratic function f(z) = Z 2, with z U(-l,l). The training, test and 

validation sets consisted of 50 distinct randomly selected patterns. 

2. 	 The cubic function f( z) = Z 3 - 0.04z, with z r-.J U(-l, 1). The training, test and 

validation sets consisted of 50 distinct randomly selected patterns. 

3. 	 The henon time series Zt = 1 + 0.3zt - 2 - 1.4Zi-1' with Z l, Z2 U( -1,1). Ther-.J 

training, test and validation sets consisted of 200 distinct randomly selected pat­

terns. 

4. 	 The surface f(x,y) = y7x3 - 0.51;6 , with x,y r-.J U(-l, 1). The training, test and 

validation sets consisted of 300 distinct randomly selected patterns. 

5. 	 The paraboloid f(.r,y) = 1;2 + y2, with x,y r-.J U(-2,2). The training, test and 

validation sets consisted of 300 distinct randomly selected patterns. 

6. 	 The function f(x, y) = sin(x2)+ sin(y2), with x, y r-.J U( -2,2). The training, test 

and validation sets consisted of 300 distinct randomly selected patterns. 

7. 	 The camel function f(x, y) = 4-2.1x2+ X; x2+x·y+(4y2-4)y2, with x r-.J U(O, 10) 

and y r-.J U(O, 10). The training, test and validation sets consisted of 500 distinct 

randomly selected patterns. 
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8. 	 The function f(x, y) = sin(x) . sin(y)·~, with x, y f'V U(O, 10). This function 

is also referred to as the 'graph' in this thesis. The training, test and validation 

sets consisted of 500 dis tinct randomly selected patterns. 

The graphs for the 8 test functions above are displayed in figures 4.1 and 4.2 on pages 

100 and 101, respectively. 

1.1 ,----~---~--~---__, 
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(c) F3: Zt = 1 + 03zt _ 2 - L4zZ-1 

Figure 4.1: Functions to be approximated 

The next section discusses the performance criteria used for optimization of the algo­

rithms. 
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(g) F7: f(x, y) = (4 - 21x2+ (h) F8: f(x, y) = sin(x) . sin(y) . ~ 

Figure 4.2: F\mctions to be approximated 

4.4.2 Performance Criteria 

Each optimization algorithm contains a set of parameters that must be fine-tuned 

to improve convergence. Thus, the optimal parameters for each global optimization 

algorithm have to be determined before comparing the performance of the various 

optimization algorithms. 

Three performance criteria were considered to determine the optimal PSG, GA, LFOP 

and BP for each function, namely, 
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1. 	 the average of 30 simulations of the mean squared error (MSE) on the training 

and test sets after 500 training epochs for each of the eight functions; 

2. 	 the number of epochs required within a maximum of 1000 epochs to reach various 

generalization levels, i.e. 0.5, 0.1, 0.05, 0.01, 0.001, 0.0001 and 0.00001; 

3. 	 the number of simulations that converged for each of the generalization levels 

mentioned above. 

The next section describes the experimental procedure applied to determine the optimal 

parameters for each optimization algorithm. 

4.5 Experimental procedure 

In determining the optimal parameters for each of the optimization algorithms, the 

following procedure was adhered to. All but one parameter were fixed, while the 

parameter that was not fixed (i.e. the one for which the optimal value has to be 

determined) assumed values from a range of possible values for that parameter. For 

each training session one value was selected from the range of values for the parameter 

under consideration. Training proceeded until all the values from the range were 

exhausted. A training session consisted of 30 simulations, where each simulation was 

trained for 500 epochs (for CD and LFOP), iterations (for PSO) or generations (for 

CA). In each simulation a different training set was used. The average MSE on the 

test set over the 30 simulations and the number of simulations that converged to a 

predefined generalization level were recorded. The parameter value that resulted in 

the lowest average MSE on the training and test sets and that had a high number 

of simulations that converged to a predefined generalization level was then selected 

as the best value for the parameter under consideration. This optimal value is then 

subsequently used in training to determine the optimal parameter values for the re­
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maining parameters. The other remaining parameters are optimized in a similar fashion. 

The next sections determines the optimal values of parameters for each of PSO, GA, 

LFOP and BP for each function. 

4.5.1 Parameters for the Optimization Methods 

Performance of each of the optimization algorithms used in this thesis is influenced by 

a number of parameters which should be optimized for each new problem. This section 

lists for each algorithm the set of parameters for which optimal values were found. 

1. 	 PSO 


Parameters that influence the performance of PSO include, 


(a) the inertia weight, which controls the balance between the global and local 

exploration abilities. 

(b) 	 the maximum velocity, which limits the maximum jump that a particle can 

make in one step. 

(c) 	 the acceleration constants, which control how far particles fly from one an­

other. 

(d) 	 the size of the population (i.e. number of particles in the swarm) affects the 

run-time of PSO; the larger the swarm, the longer the PSO will take to find 

a solution. 

2. 	 Back-propagation (BP) 

A number of factors influence the performance of back-propagation by gradient 

descent. These include, 

(a) 	 the interval for initial weights, which influences the speed and accuracy with 

which BP will find the minimum. 
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(b) 	 the learning rate, which controls the step sizes in the direction of the negative 

gradient of the error surface. 

(c) 	 the momentum, which smoothes out the oscillatory behaviour caused by 

the stochastic selection of training patterns for on-line learning. 

3. 	 GA 

Convergence of genetic algorithms is influenced by the following three factors, 

(a) probability for crossover, 	 which determines how much genetic material will 

be exchanged between individuals. The higher the crossover rate, the greater 

the chance of convergence. 

(b) probability for mutation, 	 which determines the rate at which bits are mu­

tated or flipped in a bit string. Convergence of a GA, generally requires a 

small rate for mutation. 

(c) 	 the size of the population; the larger the population, the greater the chance 

of convergence, but the longer it takes to find the solution. 

4. 	LFOP 

Parameters that influence the convergence of LFOP are, 

(a) 	0 (the maximum allowable stepsize) 

(b) 	01 

(c) 	 ~t (the time step) (refer to section 4.3.1 on page 97). 

(d) 	m specifies the number of steps before re-start. A value of 3 for m, worked 

well in practice. 
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4.6 Optimizing the Parameters 

This section determines the optimal values for parameters for BP and each of the global 

optimization algorithms. Experimental results are presented to support decisions on 

which values to use. 

4.6.1 Optimal Parameters for PSO 

A range of values for the inertia weight, maximum velocity, acceleration constant and 

number of particles have been tested to find the best combination of parameter values 

for each experiment (these values are listed in tables 4.1 to 4.3). The acceleration 

constant in this thesis was implemented using one value to represent both acceleration 

constants Cl and C2 as suggested by Eberhart [Eberhart et al1996]. The PUNNs were 

trained for each of the functions for a fixed number of epochs (500) , where an epoch 

is one training pass through the training set. Training started with a swarm of 50 

particles and parameters maximum velocity and acceleration constant, both initialized 

to 1.0. In all 8 functions, the weights (or particles) were initialized to random values in 

the range [-1, 1], also ensuring that approximately 50% of the particles had negative 

values. 

The values for the parameters inertia weight, maximum velocity and acceleration con­

stant appear below in tables 4.1, 4.2 and 4.3 , respectively. 

I Parameter I Values 

Inertia 

weight om 0.25 0.5 0.75 0.875 0.9 0.925 0.95 1.0 

Table 4.1: Range of values for inertia weight for PSO 
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I Parameter I Values 

Maximum 

velocity 0.0 0.5 1.0 1.5 2.0 2.5 5.0 10.0 

Table 4.2: Range of values for maximum velocity for PSO 

I Parameter I Values 

Acceleration 

constant 0.0 0.25 0.5 0.75 1.0 1.5 1.75 2.0 

Table 4.3: Range of values for acceleration constant for PSO 

The optimal values for each of the parameters for the eight functions using PUs and 

SUs appear in tables 4.4 and 4.5, respectively. 

Function 

PSO Parameters (PU) 

Inertia 

weight 

Maximum 

velocity 

Acceleration 

Constant 

No of 

particles 

f(x) = x 2 1.0 1.0 2.0 30 

f(x) = x3 - 0.04x 0.95 1.5 0.75 30 

Henon 0.8 5.0 0.75 50 

f(x,y) = y7x 3 -0.5x6 0,75 10.0 1.5 50 

f(x, y) = x 2 + y2 0.9 2,0 1.0 50 

f(x, y) = sin(x2) + sin(y2) 0,75 2.0 1.5 50 

Camel 0.75 10.0 1.0 100 

f(x, y) = sin(x) , sin(y) . ~ 0,5 1.0 1.5 100 

Table 4.4: Best parameters for PSO using PUs 


The following section determines the optimal parameters for BP for PUNNs and SUNNs. 


 
 
 



107 CHAPTER 4. GLOBAL OPTIMIZATION ALGORITHMS 

Function 

pso Parameters (SU) 

Inertia 

weight 

Maximum 

velocity 

Acceleration 

Constant 

No of 

particles 

f(x) = x 2 0.875 5.0 1.0 30 

f(x) = x3 - 0.04x 0.875 1.75 0.75 30 

f(x, y) = y7x 3 - 0.5x6 0.75 10.0 1.0 50 

Henon 1.0 1.5 0.75 50 

f(x,Y) =x2 +y2 0.875 1.5 1.0 50 

f( x, y) = sin(x2 ) + sin(y2) 0.75 2.5 1.0 50 

Camel 0.75 1.0 1.0 100 

f(x, y) = sin(x) . sin(y) . vx-:Y 0.75 1.5 1.75 100 

Table 4.5: Best parameters for PSG using SUs 

4.6.2 Optimal Parameters for BP 

The same procedure for determining the optimal parameters in PSG, was also applied 

to BP, using various initial weight initialization, learning rate and momentum values. 

The range of values tested for weight initialization appear in table 4.6 on page 108. 

Various intervals were considered ranging from values close to zero to intervals that 

contain larger initial values such as [2.0, 4.0]' since research by Leerink et al suggested 

larger values for weight initialization [Leerink et al1995j . During weight selection 

for SUNN and PUNN, it was ensured that approximately 50% of the weights were 

negative. Tables 4.7 and 4.8 contain the range of values tested for the learning rate 

and momentum, respectively. The number of simulations of BP applied to PUNNs 

were increased to 70 to compensate for the high number of simulations that resulted 

in overflows, due to exponentiation in the learning rule of gradient descent , while the 

number of simulations for SUNNs remained at 30. In the case of PUNN using gradient 

descent , optimal parameter values for functions F3, F4, F5, F6, F7 and F8 could not 

be established, since none of the simulations returned a result, other than overflows. 
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I Parameter I Intervals 

Weight 

interval 

[-1.0,1.0] [-1.5,1.5] [-2.0,2.0] [-3.0,3.0] [-4.0,4.0] 

[-1.0, -0.5] 

& 

[0.5,1.0] 

[-1.5, -0.5] 

& 

[0 .5,1,5] 

[-2.0, -0.5] 

& 

[0.5,2.0] 

[-2.0 , -1.0] 

& 

[1.0,2.0] 

[-2.5, -1.0] 

& 

[1.0, 2.5] 

[-3.0, -1.0] 

& 

[1.0,3.0] 

[-2 .0, -1.5] 

& 

[1.5,2.0] 

[-3.0, -1.5] 

& 

[1.5,3.0] 

[-3.5, -1.5] 

& 

[1.5,3.51 

[-3.0, -2.0J 

& 

[2.0,3.0] 

[-4.0, -2.0] 

& 

[2.0,4.0] 

[-4.0, -3.0] 

& 

[3.0,4.0] 

[-5.0, -30] 

& 

[3.0,5.0] 

Table 4.6: Intervals for initial weights for BP 

I Parameter I Values 

Learning 

rate 0.001 om 0.025 0.0275 0.05 0.075 0.1 0 .15 0.2 0.25 0.5 0.75 

Table 4.7: Range of values for learning rate for BP 

A possible explanation for this behaviour is that the weights selected from the initial 

interval are too far from the optimal weights, causing too large jumps in weight space. 

This already illustrates the failure of G D to train PUs. Tables 4.9 and 4.10 on pages 

109 and 109 contain the optimal values for the parameters for BP applied to product 

and summation unit networks, respectively. In tables 4.9 and 4.10, the notation 

± [1.5,3 .5] is an abbreviation for the intervals [-3.5, -1.5] and [1.5,3.5]. 

The next section determines the optimal parameters for GAs applied to SUNNs and 

PUNNs. 

I Parameter I Values 

Momentum 

Table 4.8: Range of values for momentum for BP 
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Backpropagation (SU) 

Function weight learning momentum 

interval rate 

f(x) = x 2 ±[1.5,3.5) 0.01 0.7 

f( x) = x3 - 0.04x ±[1.5 ,3.0] 0.0275 0.5 

Table 4.9: Best parameters for BP using PUs 

Backpropagation (SU) 

Function weight 

interval 

learning 

rate 

momentum 

f(x) = x 2 ±[0.5, 1.5] 0.25 2.0 

f( x ) = x 3 - 0.04x ±[0, 3.0] 0.5 2.0 

Henon ±[0,1.5] 0.5 1.25 

f(x, y) = y7x 3 - 0.5x6 ±[1.5 , 35] 0.5 2.0 

f( x , y) = x 2 + y2 ±[0.5 , 1.0J 0.25 0.7 

f(x, y) = sin(x2) -I- sin(y2) ±[0.5, 20] 0.15 1.0 

Camel ±[0.5,2.0] 0.25 1.5 

f( x, y) = sin(x) . sin(y) . ,jXy ±[0.5,1.0] 0.5 0.9 

Table 4.10: Best parameters for BP using SUs 
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Probability 

of crossover 0.5 0.6 0.7 0.8 0.9 

Table 4.11: Range of values for crossover 

Probability 

mutation 0.001 0.005 0.01 0.05 0.1 0.25 0.5 

Table 4.12: Range of values for mutation 

4.6.3 Optimal parameters for GA 

In determining the optimal parameter values for the GA, 30 simulations were used. 

Various initial values were used for the probability of crossover and mutation in the GA 

algorithm. The number of individuals was also increased to determine the optimal size 

of the population. The range of values for mutation and crossover appear in tables 4.11 

and 4.12 follow the guidelines suggested by De Jong [De Jong 1975]. In determining 

the optimal population size, the number of individuals were gradually increased from 

50 to 200 during training. 

The optimal values for GAs using SUNNs and PUNNs appear in tables 4.13 and 4.14 

on page 111. 

The optimal parameters for leapfrog optimization are determined in the next section. 

4.6.4 Optimal parameters for LFOP 

In determining the best parameters, the average MSE of 30 runs was used during 

training. During each training session the parameters were fixed to values that appear 
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Genetic Algorithm - PU 

Function Probability of 

crossover 

Probability of 

mutation 

Size of 

population 

f(x) = x 2 0.6 0.01 50 

f(x) = x 3 - 0.04x 0.6 0.01 50 

Henon 0.7 0.005 100 

f(x, y) = y7 x 3 - 0.5x 6 0.6 0.01 100 

f(x, y) = x 2 + y2 0.7 0.005 120 

f(x, y) = sin(x2) + sin(y2) 0.6 0.005 120 

camel 0.8 0.005 200 

f(x, y) = sin(x) . sin(y) . ,;x:y 0.7 0.005 200 

Table 4.13: Best parameters for GA using PUs 

Genetic Algorithm - SU 

Function Probability of Probability of Size of 

crossover mutation population 

2f(x) = x 0.5 0.005 50 

j)(x) = x3 - 0.04x 0.8 0.005 50 

Henon 0.7 0.005 100 

f(x, y) = y7 x 3 - 0.5x6 0.8 0.005 100 

f(x, y) = x 2 + y2 0.5 0005 120 

f(x, y) = sin(x2 
) + sin(y2) 0.8 0.001 120 

camel 0.8 0.001 200 

f(x, y) = sin(x) . sin(y) .,;x:y 0.5 0.001 200 

Table 4.14: Best parameters for GA using SUs 
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Parameter Values 

o 10 1 100 \ 1000 

Table 4.15: Range of values for 0 

Parameter Values 

01 0.001 \ 0.01 \ 0.1 

Table 4.16: Range of values for 01 

in tables 4.15 to 4.17. 


The optimal values for LFOP applied to PUNNs and SUNNs appear in tables 4.18 and 


4.19 respectively. An entry of (-' in table 4.18 indicates that all simulations produced 

overflows and optimal values could not be determined in these cases. The overflows 

can again be ascribed to the fact that gradient methods suffer from an explosion in the 

growth of weight values due to large derivatives. 

The next section summarizes the initial NN architectures used in training each function 

using SUNNs and PUNNs. 

4.7 Initial Neural Network Architectures 

Tables 4.20 and 4.21 contain the initial neural network architectures that were used 

in optimizing the parameters for each of PSO, GA, LFOP and BP using PUNNs and 

SUNNs. The oversized networks of tables 4.20 and 4.21 are used to determine the 

Parameter Values 

6t 0.01 \ 0.05 \ 0.075 \ 0.1 

Table 4.17: Range of values for 6t 
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Leapfrog Algorithm - PU 

Function 0 01 /j.t 

f(x) = x2 10.0 0.01 0.05 

f(x) = x 3 - 0.04x 100.0 0.01 0.01 

Henon 10.0 0.01 0.05 

f(x, y) = y7x 3 ­ 0.5x6 10.0 0.001 0.01 

f( x , y) = x2 + y2 10.0 0.01 0.01 

f(x, y) = sin(x2) + sin(y2) - - -

camel - - -

f(x, y) = sin(x) . sin(y) . ~ - - -

Table 4.18: Best parameters for LFOP using PUs 

Leapfrog Algorithm - SU 

Function £5 61 /j.t 

j(x) = x 2 100.0 0.001 0.075 

f(x) = x 3 - 0.04x 10.0 0.001 om 
Henon 100.0 0.001 0.05 

f(x , y) = y7x 3 ­ 0.5x6 10.0 0.001 0.01 

f(x,y) = x 2 +y2 10.0 0.001 0.075 

j(x, y) = sin(x2) + sin(y2) 100.0 0.001 om 

camel 100.0 0.001 0.1 

f(x, y) = sin(x) . sin{y) . ~ 100.0 0.001 0.075 

Table 4.19: Best parameters for LFOP using SUs 
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Configuration for PUNNs 

Function Initial Configuration 

f(x) = x 2 1:4:1 

f(x) = x3 - 0.04x 1 : 5 : 1 

Henon 2:6:1 

f(x, y) = y7x 3 - 0.5x6 2:5:1 

f(x, y) = x 2 + y2 2:4:1 

f(x, y) = sin(x2) + sin(y2) 2: 10: 1 

Camel 2: 10 : 1 

f(x , y) = sin(x) . sin(y) . ~ 2: 12 : 1 

Table 4.20: Initial configuration for PUNNs 

optimal parameters for the different global optimization algorithms. 


The next section discusses the procedure to determine the optimal number of hidden 


units for SUNNs and PUNNs. 


4.8 Best Configuration for SUNNs and PUNNs 

Once the optimal parameters for each of the global optimization algorithms and BP 

have been determined, pruning by 'brute force' is then applied to the optimization 

algorithms using the optimal parameters of section 4.6 to find near optimal configu­

rations for P U INs and SUNNs. The optimal configurations for PUNNs and SUNNs 

were determined by comparing results of experiments where the number of hidden 

units varied for each training session. The architecture that produced the smallest 

average MSE on the test set over 30 simulations and the highest number of simulations 

that cClllvergeu Lv a tivecifleu generalization level of 0.001 was accepted as t.he best 

configuration. Table 4.22 contains t.he results for PUNNs, and table 4.23 for SUNNs, 

where training started with the initial configuration tabulated. After each training 
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Configuration for SUNNs 

Function Initial Configuration 

f(x) = x2 1:4:1 

f(x) = x3 - 0.04x 1 : 5 : 1 

Henon 2:8:1 

f(x, y) = y7 x3 - 0.5x6 2: 10: 1 

f(x, y) = x 2 + y2 2:6:1 

f(x, y) = sin(x2) + sin(y2) 2: 10 : 1 

Camel 2: 12: 1 

f(x, y) = sin(;z;) . sin(y) . ~ 2: 15: 1 

Table 4.21: Initial configuration for SUNNs 

session, consisting of 30 simulations, the number of hidden units was decreased by 

1 and training was re-started on this smaller network until the performance on the 

test set deteriorated by 20% or more compared to the initial oversized network. The 

number of hidden units that occurred in optimal PUNNs expressed as a percentage of 

the number of hidden units that occurred in the equivalent optimal SUNNs, are for 

functions F1 50%, F2 33.3%, F3 80%, F4 33.3%, F5 50%, F6 66.7%, F7 75% and F8 

77.8%. 

The optimal configurations or architectures for each function obtained in this section 

is subsequently used in the remainder of this thesis in experiments that compare the 

various global optimization algorithms and BP. In chapter 5 the variance nullity pruning 

algorithm is applied to the oversized PUNNs to determine optimal architectures. The 

results obtained in chapter 5 will then be compared to the results obtained by brute 

force pruning. 
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Configuration for PUNNs 

Function Initial Configuration Best Configuration 

f(x) = x 2 1:4:1 1 : 1 : 1 

f(x) = ::r; 3 - O.04x 1 : 5 : 1 1: 1 :1 

Henon 2 :6:1 1:4:1 

f( x , y) = y7 x 3 - O.5x 6 2: 5:1 1: 2 : 1 

f(x,y)= x 2 +y2 2: 4 :1 2:2:1 

f(x, y) = sin(x 2) + sin(y2) 2: 10 : 1 2:4 :1 

Camel 2: 10 : 1 2:6:1 

f( x, y) = sin(x) . sin(y) . vx:Y 2: 12 : 1 2: 7:1 

Table 4.22: Configuration for PUNNs 

Configuration for SUNNs 

Function Initial Configuration Best Configuration 

f(x) = x 2 1 : 4 : 1 1 : 2 : 1 

f( x ) ­ x 3 - 0.04x 1: 5 : 1 1:3:1 

Henon 2:8: 1 1 : 5 : 1 

f(x,y) = y7 x3 - 0.5x6 2: 10 : 1 1 : 6 : 1 

f( x , y) = x2 +y2 2: 6 : 1 2 :4: 1 

f(x, y) = sin(x 2) + sin(y2) 2: 10 : 1 2:6:1 

Camel 2: 12 : 1 2:8:1 

f( x, y) = sin(x) . sin(y) . vx:Y 2: 15 : 1 2:9: 1 

Table 4.23: Configuration for SUNNs 
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4.9 	 Comparison Between PUNNs Containing Bias 

and Distortion Units 

The MSEs of two PUNN s, one containing a bias and the other a distortion unit in the 

hidden layer, are compared in this section. Both architectures contained a bias in the 

output layer. The objective is to determine whether there is any gain in performance 

when using a distortion unit compared to a bias unit in the hidden layer of a PUNN. 

PSO was used to compare the resulting MSEs of these two architectures of PUNNs. 

First, optimal parameters were determined for both type of architectures (similarly 

3to section 4.6 .1 on page 105) for the following three functions: f(x) = x - 0.04x, 

f(x,y) = y7x3 - 0.5x6 and f(x,y) = sin(x) . sin(y)·~. Subsequently, PSO with 

optimal parameter values for each type of PUNN architecture (i.e. bias or distortion 

unit PUNN) was trained to approximate each of the three functions for a maximum of 

500 epochs. The average MSEs on the training and test sets over 30 simulations to­

gether with a 95% confidence interval for the three functions are displayed in Table 4.24. 

The results of the tests show that PUNNs with a distortion unit produced smaller 

MSEs on the training set and generalized much better than PUNNs that contain a bias 

in the hidden layer. The PUNN with distortion unit is therefor chosen as the PUNN 

architecture for implementation in the remainder of this thesis. 
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Function 

PUNN using a 

bias unit 

PUNN using a 

distortion unit 

MSE on 

Training 

set 

MSE on 

Test 

set 

MSE on 

Training 

set 

MSE on 

Test 

set 

f(x) = x3 - 0.04x 0.002970 

±0001l28 

0.002785 

±0.000967 

0.000018 

±0.0000043 

0.000016 

±0.0000042 

f(x, y) = y7x3 ­ 0.5x6 0.002574 

±0.000777 

0.002840 

±0.00079 

0.000919 

±0.000476 

0.001213 

±0.000625 

f(x, y) = sin(x) . sin(y) . ~ 0.002383 

±0 .001665 

0 .002614 

±0.001841 

0.0005684 

±0.0004004 

0.0007953 

±0.0005696 

Table 4.24: Comparison of MSEs on PUNN containing a bias and a PUNN containing 

a distortion unit 
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4.10 	 Comparison of Global Optimization Algo­

rithms 

This section uses the optimized parameters from section 4.6.1 to compare t he perfor­

mance of PSG, GA, LFOP and BP on both PUNNs and SUNNs. 

Tables 4.25 and 4.26 summarize the average mean squared error (MSE) for the 

training and test sets for PUNNs and SUNNs, respectively, after 500 training passes 

for each of the algorithms, PSO, LFOP, GA and BP, together with 95% confidence 

intervals. A '*' in tables 4.25 and 4.26 indicates the algorithm that performed 

the best in each case of PUNNs and SUNNs, respectively. A 't' in tables 4.25 and 

4.26 indicates the algorithm that performed the best in both, PUNNs and SUNNs, cases. 

Figures 4.3, 4.4 and 4.5 illustrate the learning profiles for each optimization method 

for the training and test sets (as a measure of generalization). Tables 4.27 to 4.29 

list the average number of epochs to reach specified MSE levels on the training set. 

The entries in the first column for the tables 4.27 to 4.29 refer to (a) the type of 

algorithm and (b) the type of network used, i.e. BP:SU refers to back-propagation by 

gradient descent applied to a summation unit neural network. Similarly, LFOP:PU 

refers to leapfrog optimization applied to a product unit neural network. Tables 4.30 

to 4.33 summarize, for different generalization levels (i.e. the MSE on the test set), 

the percentage of simulations that did converge to these generalization levels. A '-' 

entry in table 4.25 implies that not a single simulation out of the 30 simulations 

produced any result other than overflows. In tables 4.27 to 4.29, a ' -' entry means 

that not a single simulation reached convergence within the maximum of 1000 epochs 

allowed. In tables 4.32 and 4.33, a '-' indicates that all simulations produced overflows. 
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The fact that only the quadratic and cubic functions produced results for BP using 

product units, is an indication of the difficulty that is associated with backpropagation 

by gradient descent when applied to PUs. LFOP for training PUs, a derivative based 

algorithm, also produced overflows for the functions f(x, y) = sin(x2) + sin(y2), 

f(x, y) = sin(x) . sin(y) . ~ and the camel function as reflected in table 4.32. 

4.11 Analysis of Results 

The results in this section were produced by experiments that used optimal architec­

tures as determined in section 4.8 for both PUNNs and SUNNs. Table 4.25 indicates 

that PSO produced better MSEs on both the training and test sets in training PUNN s 

compared to the other global optimization algorithms. GAs also performed fairly well, 

but not as good as PSO. In table 4.26 LFOP using SUs produced the smallest MSEs 

on both the training and test sets, except for f(x) = x2 and f(x, y) = x2 + y2, where 

BP using SUs produced much better results. Thus, in training SUNNs, LFOP would 

be the recommended optimization algorithm. 

Next, the results for each function are discussed separately. 

2f(x) = x

The graphs in figure 4.3 show that PSO using PUs and GA using PUs started off 

with fairly low MSEs on both training and test sets. All the global optimization 

algorithms, (i.e. PSO, LFOP and GA) produced substantially better training errors 

and generalization than the equivalent SUs for the quadratic function as shown in tables 

4.25 and 4.26. BP:SUs (read as back-propagation using summation units) performed 

slightly better than BP:PUs (read as back-propagation using PUs). However, the 
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Function Algorithm Average Mean Squared Error 

'I\'aining set Test set 

J(x) = x 2 

BP 0.006823 ± 0.004255 0.005949 ± 0.003679 

PSO 0.000344 ± 0.000112 0.000334 ± 0.000112 * t 
GA 0.000518 ± 0.000518 0.001340 ± 0.002131 

LFOP 0.001583 ± 0.000725 0.001930 ± 0.000893 

j(x) = x 3 - 0.04x 

BP 0.001210 ± 0.000696 0.000977 ± 0.000510 

PSO 0.000018 ± 0.0000043 0.000016 ± 0.0000042 * t 
GA 0.000072 ± 0 .0000528 0.000082 ± 0.0000585 

LFOP 0.000122 ± 0.000141 0.000156 ± 0.0001863 

J-Jenon 

BP - -
PSO 0.003173 ± 0.001754 0.007881 ± 0.004455 

GA 0.004365 ± 0.002613 0.006101 ± 0.004645 

LFOP 0.000651 ± 0.000698 0.000608 ± 0.000651 * 

J( x ,y) = y 7x 3 ­ 0.5x6 

BP - -

PSO 0.000919 ± 0.000476 0.001213 ± 0.000625 * 
GA 0,0021079 ± 0.0007105 0.0022844 ± 0.0007620 

LFOP 0.0043720 ± 0.0005151 0,0049928 ± 0.0004130 

j(x,y) = x 2 +y2 

BP - -

PSO 0.0088368 ± 0.0028955 0,0083125 ± 0.0027094 * 
GA 0,0094581 ± 0,0025222 0,0089599 ± 0.0023852 

LFOP 0.0200444 ± 0.0054125 0.0195222 ± 0.0050495 

J(x, y) = sin(x 2) + sin(y2 ) 

BP - -

PSO 0,0021190 ± 0.0009562 0.0041067 ± 0,0031883 * t 
GA 0,005998 ± 0.002610 0.005807 ± 0.002668 

LFOP - -

camel 

BP - -

PSO 0.0316965 ± 0.0026735 0.0398755 ± 0.0032916 * 
GA 0.0509293 ± 0.0037854 0.0632008 ± 0,0059496 

LFOP - -

j( x , y ) = sin (x) , sin(y) , ..;x-:y 

BP - -

PSO 0,0005684 ± 0.0004004 0,0007953 ± 0.0005696 * t 
GA 0.0007359 ± 0.0002295 0.0009474 ± 0,0002870 

LFOP - -

Table 4.25: Mean squared error results for PUs 
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Function Algorithm Average Mean Squared Error 

Training set Test set 

BP 0.001477 ± 0.001323 0.001434 ± 0.001023 * 
PSO 0.001945 ± 0.00172 0.001873 ± 0.001355f(x) = x 2 

0.005696 ± 0.002512 0.006965 ± 0.003288GA 

LFOP 0.006117 ± 0.003559 0.009518 ± 0.005372 

0.001695 ± 0.000498BP 0.001957 ± 0.000501 

3f(x) = x - O.04x PSO 0.000095 ± 0.0000254 0.000165 ± 0.0000496 

0.000410 ± 0.0002135 0.000525 ± 0.0002425GA 

0.000053 ± 0.0000177LFOP 0.000065 ± 0.0000197 * 
0.000800 ± 0.000773 0.000926 ± 0.000810BP 

Henan PSO 0.0004200 ± 0.0000490 0.0004050 ± 0.0000450 

0.0016431 ± 0.0003998 0.0017022 ± 0.0003907GA 

LFOP 0.0002004 ± 0.0000232 0.0001943 ± 0.0000231 * t 
0.000493 ± 0.000061 0 .002172 ± 0.000637BP 

f(x, y) = y7x 3 - 0.5x6 0.001086 ± 0.000089 0.003604 ± 0.000953PSO 

0.0014528 ± 0.0001069 0.0030766 ± 0.0005732GA 

LFOP 0.0003959 ± 0.0000482 0.0007645 ± 0.0000765 * t 
0.000413 ± 0.000013 0.000529 ± 0.000019BP * t 

f(x,y) = x 2 +y2 PSO 0.001860 ± 0.000776 0.002164 ± 0.000753 

GA 0.0096575 ± 0.0020188 0.0143728 ± 0.0029755 

LFOP 0.0010507 ± 0.0010435 0.0012780 ± 0.0012015 

0.006722 ± 0.001068BP 0.005595 ± 0.000883 

0.008542 ± 0.000572f(x, y) = sin(x 2) + sin(y2) PSO 0.011924 ± 0.000804 

0.012365 ± 0.00lO19 0.014279 ± 0.001087GA 

LFOP 0.004477 ± 0.001194 0.005483 ± 0.001184 * 
BP 0.000560 ± 0.000090 0.002256 ± 0.000702 

0.001228 ± 0.000217camel PSO 0.002044 ± 0.000344 

0.005017 ± 0.000917GA 0.006842 ± 0.000809 

LFOP 0.0000535 ± 0.0000022 0.0000963 ± 0.0000058 * t 
BP 0.008764 ± 0.000144942 0.010274 ± 0.000189 

0.010991 ± 0.000368 0 .012457 ± 0.000309f(x,y) = sin(x)· sin(y). ~ PSO 

0.0111821 ± 0.0003309 0.0125407 ± 0.0002641GA 

0.004335 ± 0.000975 0.005601 ± 0.001115LFOP * 

Table 4.26: Mean squared error results for SUs 
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PUNN used a smaller architecture; the SUNN consisted of 2 hidden units, whereas the 

PUNN contained only 1 hidden unit. Table 4.27 shows that PSO:PUs, GA:PUs and 

LFOP:PUs required substantially fewer epochs than its SU equivalents to reach each 

of the generalization levels, 0.01 and 0.001, with LFOP:PUs having the least number 

of epochs for each of the generalization levels. Not one of the global optimization 

algorithms using SUs could generalize up to a level of 0.0001; these algorithms could 

only manage to generalize up to a level of 0.001, with convergence observed in 46.7% 

of the simulations of PSO:SUs. All algorithms using PUs were able to reach an MSE 

of 0.0001 on the training sets as shown in tables 4.30 to 4.33. For the quadratic 

function, GA:PUs and LFOP:PUs managed to generalize up to a low level of 0.00001 

with LFOP:PUs having the highest percentage of simulations (47.1%) that converged 

to this low level followed by GA where 40% of the simulations converged. The average 

number of simulations required by LFOP:PUs and GA:PUs to reach this level of 

generalization are 90.1 and 301.5, respectively. Tables 4.25 and 4.26 show that GA 

using PUs and LFOP using SUs, overfitted the data, as indicated by the MSE on the 

test set compared to the MSE on the training set. In both cases the MSE on the test 

set exceeded the MSE on the training set, indicating overfitting of the data. Thus, 

PSO:PUs is the recommended algorithm for training the quadratic function. 

f(x) = x 3 - 0.04x 

The graphs in figure 4.3 show that GA:PUs started off with very small MSEs on both 

training and test sets. Once, again all the global optimization algorithms produced a 

smaller MSE on the training set than its SU equivalent, except for LFOP. The optimal 

architecture of PUNNs for this function contained 1 hidden unit compared to the 3 

hidden units in the case of SUNNs. LFOP using SUs with the larger network than its 

PUs equivalent had a much lower MSE on the training and test sets than LFOP:PUs 

as shown in tables 4.25 and 4.26. Table 4.26 indicates that all the algorithms that used 
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SUs overfitted the data. Tables 4.25 and 4.26, further show that BP:PUs produced 

results similar to BP:SUs, with BP:PUs being slightly better than BP:SUs. BP:SUs 

exhibits a generalization that is much lower than the MSE on the training set. It 

should however also be borne in mind that the PUNN contained 1 hidden unit and is 

much smaller than the SUNN with 3 hidden units . Table 4.27 shows that PSO:PUs, 

GA:PUs and LFOP:PUs required fewer epochs than its SU equivalents to reach the 

generalization level of 0.001, 0.0001 and 0.00001, with LFOP:PUs having the least 

number of epochs (314.7 ± 64.03) to reach 0.00001. Not one of the global optimization 

algorithms using SUs could generalize up to a level of 0.00001. Global optimization 

algorithms using SUNNs could only manage to generalize up to 0.0001, with 33.3% 

of the simulations of PSO converging to this low generalization level. The results of 

the cubic function using GA with PUs are significantly better than GA using SUs as 

reflected in Tables 4.25 and 4.26. PSO:PUs produced the best training and test error 

compared to all the other algorithms including SUNNs. It is interesting to note that 

although LFOP:PUs has a larger number of simulations that converged to a level of 

0.00001 as indicated in table 4.32, it has an average MSE much greater than PSO:PUs. 

PSO:PUs is thus recommended for training the function J(x) = x3 - 0.04x. 

J(z) = 1 + 0.3zt - 2 - 1.4Z;_1 (henon) 

The graphs in 4.3 reflect fairly low MSEs for LFOP using PUs and BP using SUs 

on both training and test sets early in training. The global optimization algorithms 

applied to the SUs outperformed the PUs as indicated in tables 4.25 and 4.26, with the 

results of the optimization algorithms of SUs having a much smaller variance than its 

PU equivalents. LFOP:SUs had the lowest training error and generalization than the 

optimization algorithms applied to PUs. Note that LFOP:SUs had a larger network 

(2:5:1) with a training error of 0.0002004 ± 0.0000232, compared to LFOP:PUs, 2:4:1 

network that produced a training error of 0.000651 ±0.000698. Interestingly, In the case 
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of the SUs the global optimization algorithms PSO:SUs and LFOP:SUs gave better 

training and generalization than BP:SUs (which is a local optimizer). BP:PUs did not 

produce a single result, except for overflows (as indicated to by '-' in table 4.31), in all 

the training sessions. LFOP using PUs required the least number of epochs of all the 

optimization algorithms to reach the various generalization levels for the henon time 

series. The LFOP:PUs as shown in table 4.27 used much less epochs than LFOP:SUs 

to reach generalization levels 0.01, 0.001, and 0.0001. Only LFOP:PUs and PSO:PUs 

managed to reach low generalization levels of 0.00001, with convergence reached in only 

1.4% of the simulations in LFOP:PUs. In PSO:PUs slightly more simulations (3.3%) 

converged than LFOP:PUs at this low level of generalization. However, LFOP:PUs 

only needed 63.3 epochs compared to 465.3 epochs required by PSO:PUs to reach 

this low level. For a generalization of 0.0001, 35.7% of simulations for LFOP:PUs 

converged compared to only 10% convergence in the case of PSO:PUs. In the case of 

SUNNs only the LFOP managed to reach a level of 0.0001, with convergence in 13.3% 

of the simulations. PSO and GA using PUs overfitted the data as reflected in table 

4.25. LFOP:SUs, with a low training and test error (see table 4.25) is recommended as 

training algorithm for the henon time series. 

f(x, y) = y7x3 - 0.5x6 

PSO using PUs produced small MSEs on the training set but overfitted the data 

as shown by MSEs on the test set in table 4.25. Similarly, BP:SUs produced low 

training errors but did not generalize equally well. GAs:SUs performance was similar 

to GA:PUs. LFOP:SUs produced the best MSEs on the training and test sets of all the 

algorithms. LFOP:SUs, however, could not reach a generalization level of 0.0001 (all 

30 simulations ended in MSEs on the test sets between 0.0002 and 0.0007), whereas 

13.3% simulations of PSO:PUs achieved 0.00001 (refer to table 4.30). PSO using 

PUs is the only algorithm that managed to reach a generalization level of 0.00001 as 
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shown in table 4.30. The lowest generalization level achieved by SUNNs is 0.001; with 

convergence of 63.3% and 6.7% of simulations for LFOP and BP, respectively. Also, 

did PSO:PUs and GA:PUs require fewer epochs than its SU equivalent to reach a 

generalization level of 0.001. BP:PUs did not produce any results, other than overflows 

in all training sessions. LFOP:SUs with its much lower MSEs on training and test sets, 

as tabulated in 4.26 is recommended as the optimization algorithm for the function 

f(x, y) = y7x3 - 0.5x6. 

f(X,Y) = X2+y2 

PSO:PUs reached lower generalization levels than PSO:SUs as indicated in table 4.28. 

Table 4.26 shows that BP:SUs produced the smallest MSEs on the training and test 

sets, but could only generalize up to a level of 0.001, despite the fact that the general­

ization in table 4.26 is 0.000529 ± 0.000019; the average of all simulations is 0.000529 

with not a single simulation reaching an MSE on the test set lower than 0.0001 (all 

simulations ended with values greater than 0.0001 but smaller than 0.0009). However, 

both PSO:PUs and LFOP:PUs managed to reach lower generalization levels than 

BP:SUs as shown in table 4.28. The lowest generalization level achieved by SUNNs 

is 0.001 , with 16.7% of the simulations of BP:SUs and 13.3% of the simulations of 

PSO:SUs converging at this low level. However, all the global optimization algorithms 

using PUs managed to reach generalization levels of 0.001 and 0.0001, with 33.3% of 

PSO:PUs and 15.7% of LFOP:PUs generalizing up to a level of 0.00001. PSO:PUs had 

twice as many simulations than LFOP:PUs that converged to this low level of gener­

alization as shown in tables 4.30 and 4.32. Of all the global optimization algorithms, 

LFOP:SUs, not forgetting the bigger network (i.e. 2:4:1) than the equivalent PUNN 

(2:2:1), produced the lowest MSE on the training and test sets within the allowed 

500 epochs as reflected in table 4.25. LFOP:SUs, however, could not manage to 

reach a generalization level lower than 0.001 within the 1000 epochs allowed. Neither 
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BP:PUs nor LFOP:PUs produced any results. BP:PUs, with the smallest MSE aver­

age as reflected in table 4.26, is recommended for training the function f(x, y) = x2+y2. 

f(x, y) = sin(x2) + sin(y2) 

The graphs in figure 4.4 show that PSO using PUs produced large MSEs early in 

training, but eventually had the lowest MSEs of all the algorithms when training 

terminated. In this case PSO:PUs produced the lowest training error as indicated in 

table 4.25. GA:PUs and LFOP:SUs produced similar training errors. Table 4.28 shows 

that only PSO:PUs and LFOP:SUs managed to reach generalization levels of 0.0001, 

with PSO:PUs taking fewer epochs to achieve this generalization level. In both cases 

only 3.3% simulations converged. BP:PUs and LFOP:PUs did not produce any results . 

PSO:PUs with its good generalization ability is recommended as global optimization 

algorithm for the function f(.T, y) = sin(x2) + sin(y2). 

f(x, y) = 4 - 2.1x2 + (~)X2 + xy + (4y2 - 4)y2(camel) 

The graphs in figure 4.5 show that all algorithms using SUs had small MSEs early in 

training and that not one of the algorithms using PUs managed to reach MSE levels 

lower than 0.03. The SUs performed much better than the PUs in this case. The 

LFOP:SUs produced the smallest MSEs on the training and test sets. LFOP:SUs 

was able to achieve a generalization level of 0.0001 (refer to table 4.29). BP:SUs also 

produced very good MSEs but indicated overfitting of the data in table 4.25. BP:PUs 

and LFOP:PUs did not produce any results, other than overflows in all the training 

sessions. LFOP:SUs is recommended for training of the camel function. 

f(x , y) = sin(x)sin(y)yIX-Y 

The graphs in figure 4.5 clearly show that PSO using PUs had the lowest MSEs early 

in training and ended the training session with the lowest MSEs on both the training 
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and test sets. PSO:PUs and GA:PUs outperformed all the other algorithms. PSO:PUs 

is the only algorithm that managed to generalize up to a level of 0.00001, GA:PUs 

could only generalize up to 0.001 (with MSEs on the test set ranging between 0.0002 

and 0.0006) simulations. The lowest generalization level achieved by SUNNs is 0.01, 

with 15.7% of simulations converging at this level. In the case of SUNNs, LFOP:SUs 

BP:PUs and LFOP:PUs did not produce any results, other than overflows. Only 

PSO:PUs managed to generalize up to level 0.00001 (refer to table 4.29), with only 

3.3% simulations converging as reflected in table 4.30. 

Table 4.27 shows that LFOP:PUs had the most simulations that converged to the 

different generalization levels, especially for the low generalization level of 0.00001. 

BP:SUs did manage to have simulations that converged to a generalization level 

up to 0.001 but not a single simulation converged to a MSE on the test set lower 

than 0.0001. Figures 4.3 to 4.5 illustrate that PSO:PUs and GA:PUs have larger 

reductions in error early in training reaching low errors using substantially less training 

epochs. LFOP:PUs has shown to use much less epochs than do PSO and GA for low 

generalization levels of 0.001, 0.0001 and 0.00001. 

4.12 Conclusion 

PUNNs compared favourably with SUNNS with respect to functions F1, F2, F6 and F8. 

However, SUNNs performed much better on functions F3, F4, F5 and F7. Generally, 

LFOP using SUs, produced a much smaller training error than BP:SUs. LFOP:SUs 

also generalized far better than BP:SUs. LFOP:SUs produced much smaller MSEs 

than BP:SUs in training the test functions, except for functions f(x) = x2 and 

f(x,y) = x2 -I- y2, where BP:SUs outperformed PSO:SUs and LFOP:SUs. Although 
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the global optimization algorithms did not perform better than BP:SUs in all cases, 

it did however manage to achieve lower generalization levels using much fewer epochs 

than BP:SUs with a corresponding higher convergence than BP:SUs. Thus, global op­

timization algorithms tend to find the best minimum on the error surface faster than 

BP:SUs. PSO:PUs is the only algorithm that managed to reach a low generalization 

level of 0.0001 in all functions except for the camel function. Although, BP:SUs ap­

plied to function F5 had a smaller training error than PSO:PUs, it did not ma.na.ge 

to reach the low generalization level of 0.0001, that was achieved by PSO:PUs. The 

results also show that global optimization algorithms can reach lower generalization 

levels than BP when applied to SUNNs. The tests have also indicated that PUNNs 

are not always an improvement over SUNNs, even though PUs may produce smaller 

networks. These smaller networks do not always produce good training errors and gen­

eralization compared to the slightly bigger SUNNs. However, global optimization using 

SUs showed an improvement in performance compared to back-propagation. In certain 

cases the PUNNs (f(x,y) = x2, f(x,y) = :r3 
- 0.04x , f(x,y) = sin(x2) + sin(y2) and 

f(x, y) = sin(x) . sin(y) . J(x· y)) outperformed the SUNNs. PSO appears to be more 

robust with respect to functions F1, F2 and F5 since they have a larger percentage 

of simulations that converged to a generalization level of 0.00001 than LFOP:PUs. In 

general, PUNNs did not show a remarkable gain in performance, other than reaching 

lower generalization levels faster than back-propagation. 
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Figure 4.3: Learning profiles for functions F1; F2 and F3 
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j(x) = X 2 

MSE 0.5 0.1 0.05 0.01 0.001 0.0001 0.00001 

BP:SU 1.0 ± 0 1.0 ± 0.07 6.8 ± 4.00 108.5 ± 32.61 227.6 ± 53.72 - -

BP:PU 2.2 ± 0.10 3.9 ± 0.48 17.8 ± 23.06 101.7 ± 52.95 216.2 ± 76.33 216.2 ± 76.33 395.4 ± 58.01 

PSO:SU 1.0 ±O 1.0 ± 0 1.4 ± 0.36 101.7 ± 58.73 228.5 ± 62.69 - -

PSO:PU 1.0 ±O 1.0 ± 0 1.3 ± 0.25 38 ± 19.84 154.5 ± 44.09 485.6 ± 28.16 -

GA:SU 1.0 ± 0 1.0± 0 1.2 ± 0.27 40.0 ± 31.85 494.9 ± 9.93 - -

GA:PU 1.1 ± 0.09 1.2 ± 0.17 2 ± 0.57 8.8 ± 2.15 95.4 ± 58.81 211.3 ± 77.02 301.5 ± 74.58 

LFOP:SU 2.4 ± 0.41 7.4 ± 1.64 9.6 ± 5.60 192.6 ± 99.35 273 ± 53.80 - -

LFOP:PU 5.0 ± 0.69 10.3 ± 1.45 13.7 ± 1.69 78.4 ± 46.30 143.3 ± 62.80 173.9 ± 59.92 90 .J. ± 40.11 

j(x) = x 3 - 0.04x 

MSE 0.5 0.1 0.05 0.01 0.001 0.0001 0.00001 

BP:SU 1.0 ± 0 1.0 ± 0.00 1.0 ± 0.00 6.3 ± 0.52 44.8.6 ± 22.51 - -

BP:PU 1.9 ± 0.09 2.8 ± 0.31 48.8 ± 49. 4.5 36.8 ± 29.00 224.5 ± 56.78 377.5 ± 50.54 408.5 ± 50.46 

PSO:SU 1.0 ±O 1.0 ±O 1.1 ± 0.13 7.0 ± 0.55 144.7 ± 38.43 330.4 ± 50.85 -

PSO:PU 1.0 ± 0 1.0 ± 0 1.7 ± 0.43 16 ± 3.32 63.1 ± 12.01 138.4 ± 30.03 422.5 ± 40.42 

GA:SU 1.0 ± 0 1.0± 0 1.0 ± 0 5.1 ± 1.50 91.1 ± 49.06 397.0 ± 64.84 -

GA:PU 1±0 1.4 ± 0.26 2.8 ± 0.48 11.1 ± 2.81 105.8 ± 92.27 91.3 ± 50.08 485.5 ± 28.48 

LFOP:SU 5.4 ± 1.12 16.7 ± 7.31 18.0 ± 3.94 43.3 ± 7.94 185 ± 11.17 310.7 ± 25.15 -

LFOP:PU J.5.3 ± 2.19 22.4 ± 1.81 24.1 ± 2.15 30.8 ± 2.36 166.6 ± 68.53 159.6 ± 58.87 314.7 ± 64.03 

Zt = 1 + 0.3Zt_2 - 1.4zt-l (henon) 

MSE 0.5 0.1 0.05 0.01 0.001 0.0001 0.00001 

BP:SU 30.5 ± 3.26 53.2 ± 10.46 63.0 ± 6.68 85.0 ± 12.56 123.2 ± 58.01 152.5 ± 68.35 -

BP:PU - - - - - - -

PSO:SU 1.0 ± 0 1.0 ±O 1.0 ± 0 26.6 ± 4.84 147.9 ± 37.05 - -

PSO:PU 2.4 ± 1.26 31.9 ± 4.27 83.9 ± 64.31 116 ± 49.06 233.6 ± 58.26 371.3 ± 53.32 465.3 ± 31.72 

GA:SU 1.0 ± 0 1.0 ± 0 1.2 ± 0.18 31.8 ± 3.76 436.2 ± 47.46 - -

GA:PU 5.1 ± 0.77 21.9 ± 3.66 45.4 ± 13.22 109.2 ± 32.05 357.1 ± 64.38 - -

LFOP:SU 2.9 ± 0.51 15.3 ± 3.74 21.6 ± 5.28 730 ± 3.64 112 ± 8.70 480.4 ± 23.54 -

LFOP:PU 3.8 ± 0.53 15.2 ± 4.43 15.3 ± 2.35 38.4 ± 29.29 32.2 ± 2.38 69 .8 ± 41.89 63.3 ± 28.65 

Table 4.27: Epochs needed to reach MSE levels 
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f(x, y) = y7 X 3 ­ 0.5x6 

MSE 0.5 0.1 0.05 0.01 0.001 0.0001 0.00001 

BP:SU 1.0 ±O 1.1 ± 0.13 1.1 ± 0.11 7.6 ± 10.92 - - -

BP:PU 1.0 ± 0 1.0 ± 0 1.0 ± 0 1.2 ± 0.33 - - -

PSO:SU 1.0 ± 0 1.0 ± 0 1.0 ± 0 1.2 ± 0.33 580.1 ± 102.99 - -

PSO:PU 1.0 ± 0 1.5 ± 0 .58 3.7 ± 1.59 25.2 ± 3.64 394 ± 121.32 783.3 ± 90.39 904.5 ± 81.34 

GA:SU 1.1 ± 0.2 2.2 ± 0.6 63. ± 1.8 54.8 ± 13.9 924.5 ± 78.60 - -

GA:PU 3.5 ± 0.86 6.8 ± 1.01 7.8 ± 1.27 20.3 ± 2.11 279.1 ± 100.29 994.8 ± 8.88 -

LFOP:SU 1.8 ± 0.33 4.0 ± 0.43 4.9 ± 0.33 10.1 ± 1.27 473.2 ± 32.71 - -

LFOP:PU 9.2 ± 1.84 18.7 ± 1.62 21.8 ± 0.95 37.5 ± 4.02 - - -

f(x,y) = x 2 +y2 

MSE 0.5 0.1 0.05 0.01 0.001 0.0001 0.00001 

BP:SU 1.0 ± 0 1.0 ± 0.00 1.0 ± 0.00 16.23 ± 2, 68 98.9 ± 40.68 - -

BP:PU - - - - - - -

PSO:SU 1.0 ± 0 1.0 ± 0 1.0 ± 0 56.1 ± 20.72 766.0 ± 154.22 - -

PSO:PU 1.2 ± 0.24 3.0 ± 0.51 14.3 ± 2.28 543 ± 153.78 786.2 ± 110.16 821.0 ± 95.12 864.4 ± 86.07 

GA:SU 1.0 ± 0 1.0 ± 0 1.1 ± 0.20 182.3 ± 67.47 - - -

GA:PU 4.1 ± 0.75 12.4±1.19 19.2 ± 2.02 277.6 ± 77.15 480.8 ± 26.14 896.3 ± 59.61 -

LFOP:SU 30.9 ± 7.23 0.5 ± 0.35 1.6 ± 0.53 153.7 ± 55.90 - - -

LFOP:PU 1.7 ± 0.14 2.7 ± 0.53 95.3 ± 98.01 511.9 ± 124.63 850.6 ± 90.63 822.6 ± 95.57 818.1 ± 97.62 

f(x, y) = sin(x2 ) + sin(y2) 

MSE 0.5 0.1 0.05 0.01 0.001 0.0001 0 .00001 

BP:SU 1.0 ± 0 1.0 ± 0.00 1.0 ± 0.00 195.8 ± 49.32 - -

BP:PU - - - - - - -

PSO:SU 1.0 ± 0 1.0 ± 0 1.0 ± 0 638.3 ± 177.60 - - -

PSO:PU 2.7 ± 1.18 17.4±2.38 33.9 ± 6.61 171 ± 28.58 720.5 ± 118.47 927.2 ± 56 .35 -

GA:SU 1.0 ± 0 1.0 ± 0 12.6 ± 3.52 870.6 ± 107.36 - - -

GA:PU 14.1 ± 1.03 28.2 ± 1.98 39 ± 5.01 180 ± 48.28 452 ± 33.52 - -

LFOP:SU 1.0 ±O 11.9 ± 6.09 24.8 ± 6.72 121.5 ± 4.90 981 ± 19.97 970.8 ± 55.30 -

LFOP:PU - - - - - - -

Table 4.28: Epochs needed to reach MSE levels 
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f( x, y) = (4 ­ 2.1 x 2 + ('"3 
3 

))X2 + xy + (4 y2 - 4)y2 

MSE 0.5 0.1 0.05 

1.1 ± 0 .09 

0.01 0.001 0.0001 0.00001 

BP:SU 1.0 ± 0 1.0 ± 0. 07 6.5 ± 1.52 75.5 ± 7.27 - -

BP:PU - - - - - - -

PSO:SU 1.0 ± 0 1.0 ±O 1.0 ± 0 31.5 ± 5.37 - - -

PSO:PU 26.2 ± 1.68 66.9 ± 10.15 154.6 ± 61.23 - - - -

GA:SU 1.0 ±O 1.0 ± 0 1.0 ± 0.07 214.1 ± 97.56 - - -

GA:PU 19.6 ± 1.92 77 .7 ± 12.82 302.6 ± 96.03 - - - -

LF OP:SU 1.0 ± 0 0.7 ± 0.47 0.7 ±0.31 30.7 ± 3.18 89 ± 5.86 247.8 ± 28.7 -

LFOP:PU - - - - - - -

f( x,y) = sin(x)· sin(y)~ 

MSE 0.5 0.1 0.05 0 .01 0.001 0.0001 0.00001 

BP:SU 1.0 ± a 1.0 ± 0.00 1.0 ± 0.00 161.4 ± 27.37 - - -

BP :PU - - - - - - -

PSO:SU 1.0 ± a 1.0 ± a 1.0 ± a - - - -

PSO:PU 1.4 ± 0.26 4.0 ±0.82 5.9 ± 0.79 16 ± 1.63 199.8 ± 88.82 761. 3 ± 123 .76 991.2 ± 17.18 

G A:SU 1.0 ±O 1.0 ± 0.07 1.0 ± 0 - - - -

GA :PU 10 ± 1.15 16.7 ± 1.64 19 ± 1.56 35.1 ± 2. 07 277.3 ± 103.85 - -

LFOP:SU 1.0 ±O 0.6 ± 0.38 3.2 ± 1.68 - - - -

LFOP:PU - - - - - - -

Table 4.29: Epochs needed to reach MSE levels 
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PSO 

Function Unit 

Type 

Generalization levels 

(MSE) 

0.5 0.1 0.05 0.01 0.001 0.0001 0 .00001 

x 2 SU 

PU 

100.0% 

100.0% 

100.0% 

100.0% 

100.0% 

100.0% 

63.3% 

96.7% 

46.7% 

86.7% 

0.0% 

13.3% 

0.0% 

0.0% 

x 3 - 0.04x SU 

PU 

100.0% 

100.0% 

100.0% 

96.7% 

100.0% 

93.3% 

76.7% 

90.0% 

53.3% 

90.0% 

33.3% 

90.0% 

0.0% 

53.3% 

Henon SU 

PU 

100.0% 

83.3% 

100.0% 

80.0% 

100.0% 

60.0% 

93.3% 

53.3% 

86.7% 

30.0 % 

0.0 % 

10.0% 

0.0% 

3.3% 

y 7 x 3 _ 0.5x6 SU 

PU 

100.0% 

100.0% 

100.0% 

93.3% 

100.0% 

93.3% 

66.7 % 

56.7% 

0.0% 

20.0% 

0 .0% 

20.0 % 

0.0% 

13.3% 

x2 +y2 SU 

PU 

100.0% 

100.0% 

100.0% 

76.7% 

100.0 % 

70.0% 

33.3% 

40.0% 

13.3% 

30.0% 

0.0% 

20.0% 

0.0% 

33.3% 

sin(x2 ) + sin(y2) SU 

PU 

100.0% 

96.7% 

100.0% 

83.3% 

100.0% 

66.7% 

16.7% 

53.3% 

0.0% 

16.7% 

0.0% 

3.3% 

0.0 % 

0.0% 

camel SU 

PU 

100.0% 

70.0% 

100.0% 

46.7% 

100.0% 

10.0% 

16.7% 

0.0% 

0.0% 

0.0 % 

0.0 % 

0.0% 

0.0% 

0.0% 

graph SU 

PU 

100.0% 

96.7% 

100.0 % 

96.7% 

100.0% 

90.0% 

0.0% 

50.0% 

0.0% 

6.7% 

0.0% 

3.3% 

0.0% 

3.3 % 

Table 4.30: Percentage simulations that converged to MSE levels 
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GA 

Function Unit 

Type 

G e neralization levels 

(MSE) 

0.5 0.1 0.05 0.01 0.001 0.0001 0.00001 

x 2 SU 

PU 

100.0% 

100.00% 

100.0% 

96 .7% 

86.7% 

93.3% 

63.3% 

90.0% 

0.0% 

66.7% 

0.0% 

50.0% 

0.0% 

40.0% 

x 3 - 0.04x SU 

PU 

100.00% 

100.0% 

100.0% 

96. 7% 

100.0% 

93.3% 

80.0% 

83.3% 

66.7% 

76 .7% 

13.3% 

70.0% 

0.0 

6.7% 

Henon SU 

PU 

100.0% 

93.3% 

100.0% 

90.0% 

100.0% 

83.3% 

93.3% 

70 .0 % 

13.3% 

30.0% 

0.0% 

0.0% 

0.0% 

0.0% 

y7 x 3_0.5x6 SU 

PU 

100.0% 

96.7% 

100.0% 

80.0% 

100.0% 

76.7% 

100.0% 

50 .0 % 

0.0 % 

43.3% 

0.0% 

3.3% 

0.0% 

0.0% 

x 2 +y2 SU 

PU 

100.0% 

90.0% 

100.0% 

83.3% 

86 .7% 

80.0% 

20.0% 

60.0% 

0.0% 

13.3% 

0.0 % 

6.7% 

0.0% 

0.0 % 

.sin(x 2 ) + .sin(y2) SU 

PU 

100.0% 

90.0% 

96.7% 

83.3% 

60.0% 

80.0% 

3.3% 

76.7% 

0.0% 

23.3% 

0.0% 

0.0 % 

0.0% 

0.0% 

camel SU 

PU 

100.0% 

70.0% 

100.0% 

36.7% 

100.0% 

10.0% 

33% 

3.3% 

0.0% 

0.0% 

0.0% 

0.0% 

0.0% 

0.0% 

graph SU 

PU 

100.0% 

63.3% 

100.0% 

60.0% 

100.0% 

56.7% 

0.0% 

50.0% 

0.0% 

500% 

0.0 % 

0.0% 

0.0 % 

0.0% 

Table 4.31: Percentage simulations that converged to MSE levels 
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LFOP 

Function Unit 

Type 

Generalization levels 

(MSE) 

0.5 0.1 0.05 0.01 0.001 0.0001 0.00001 

x 2 SU 

PU 

100 .0% 

62.9% 

100.0% 

58.6% 

90.0% 

48.6% 

56 .7% 

42.9% 

33.3 % 

41.4% 

0.0% 

42.9% 

0.0% 

47 .1% 

x 3 - 0.04x SU 

PU 

100.0% 

94.3% 

100.0% 

94.3% 

96.7% 

93.3% 

93.3% 

90 .0% 

46.7% 

84.3% 

26.7% 

72 .9 % 

0.0% 

72. 9% 

I-Ienon SU 

PU 

100.0% 

75. 7% 

100.0% 

48 6% 

100.0 % 

44.3% 

76.7% 

44. 3% 

53.3% 

37.1% 

13.3% 

35.7% 

0.0 % 

1.4% 

y7 x 3 _ 0. 5x6 SU 

PU 

100 .0% 

91.4% 

100 .0% 

90 .0% 

100.0% 

78.6% 

93 .3% 

57 .1% 

63 .3% 

0.0% 

0.0 % 

0.0% 

0.0% 

0 .0% 

x 2 + y 2 SU 

PU 

100.0% 

98.6% 

90 .0% 

98.6% 

86. 7% 

87.1 % 

6. 7% 

35.7% 

0.0% 

12.9% 

0.0% 

15.7 % 

0.0% 

15 .7% 

sin(x 2 ) + sin(y2 ) SU 

PU 

100.0% 

-

90.0% 

-

80.0% 

-

13 .3% 

-

3.3%% 

-

3.3% 

-

0.0% 

-

camel SU 

PU 

100.0% 

-

96.7% 

-

86.7% 

-

16.7 % 

-

10.0% 

-

6.7% 

-

0.0% 

-

graph SU 

PU 

100.0% 

-

90.0% 

-

86.7% 

-

15.7% 

-

0 .0% 

-

0.0% 

-

0.0% 

-

Table 4. 32: Percentage simulations that converged to MSE levels 
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BP 

Function Unit 

Type 

Generalization levels 

(MSE) 

0.5 0.1 0.05 0.01 0.001 0.0001 0.00001 

x 2 SU 

PU 

93.3% 

100.0% 

86.7% 

97.6% 

33.3% 

97.6% 

10.0% 

78.7 % 

6.7% 

27.8% 

0.0% 

13.8% 

0.0% 

0.0% 

x 3 - 0.04x SU 

PU 

90.0% 

100.0% 

93.3% 

100.0% 

83.3% 

87.9% 

13.3% 

67.2% 

10.0% 

41.3% 

0.0% 

17.0% 

0.0% 

11.4% 

Henon SU 

PU 

96.7% 

-

96.7 % 

-

93.3% 

-

93.3% 

-

63.3% 

-

0.0% 

-

0.0% 

-

y7 x 3_0.5x6 SU 

PU 

100.0% 

-

100.0% 

-

100.0% 

-

96.7% 

-

6.7% 

-

0.0% 

-

0.0% 

-

x2 +y2 SU 

PU 

100.0% 

-

100.0% 

-

100.0% 

-

83.3% 

-

16.7% 

-

0.0% 

-

0.0% 

-

.5in(x2 ) -I- .5in(y2) SU 

PU 

100.0% 

-

100.0% 

-

100.0% 

-

0.0% 

-

0.0% 

-

0.0% 

-
0.0% 

-

camel SU 

PU 

100.0% 

-

100.0% 

-

100.0% 

-

33.3% 

-

10.0% 

-

0.0% 

-

0.0% 

-
graph SU 

PU 

100.0% 

-

100.0% 

-

100.0 % 

-

0.0% 

-

0.0% 

-

0.0% 

-

0.0% 

-

Table 4.33: Percentage simulations that converged to MSE levels 
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