
Chapter 3

Higher-Order Neural Networks

Higher-order neural networks are networks that utilize higher combinations of its inputs.

A goal of this thesis is to train PUNNs, which are examples of higher-order neural

networks. In this context, this section provides an overview of higher-order neural

networks. This chapter discusses four types of higher-order neural networks and the

problems associated with the training of product unit neural networks specifically.

3.1 Sigma-Pi Networks

Hidden units of a sigma-pi neural network calculate a product (or conjunct) of the inputs

[Lee Giles 1987, Maxwell et al1986]. In sigma-pi neural networks a weight is applied,

not only to each input, but also to the second and possibly higher-order products or

conjuncts of the inputs. The connections in sigma-pi neural networks allow one unit to

gate another: Thus, if one unit of a multiplicative pair of units is zero, then the other

member can have no effect on the output. On the other hand, if one unit of a pair has a

value 1, the output of the other unit is passed unchanged to the receiving unit. In this

way a polynomial function of the inputs is presented as input to the transfer function

of the output layer, i.e. the value of the output unit Ok is

56

57 CHAPTER 3. HIGHER-ORDER NEURAL NETWORKS

Figure 3.1: Sigma-pi network

Ok = f (L Wqk IT zqk)
qEconjunct k= l

where f is the activation function, Wqk a synaptic weight, Zql, Zq2, .. . , ZqN are the N

input signals combined to form the product or conjunct, and q indexes the conjuncts

or products that are used in unit k; conjunct is the set of all conjuncts of subscripts

for the inputs. The architecture derived from the above function presents a method of

constructing higher-order networks.

Figure 3.1 illustrates a sigma-pi network with two inputs, where multiplication instead

of summation is performed in the hidden layer, followed by a summation unit in the

output layer. That is, for example, Y2 = Z l Z 2 and Yl = Zl, where Yj is the output of

hidden unit }j. The weight between hidden unit }j and output unit Ok is denoted

by Wkj' In sigma-pi networks a polynomial function of the inputs is presented to the

activation function of the output layer. For the example in figure 3.1,

(3.1)

58 CHAPTER 3. HIGHER-ORDER NEURAL NETWORKS

Although the terms contain products of inputs there are no powers of each input greater

than one, this gives rise to the name multi-linear for the terms in this kind of expression.

Nodes with multi-linear terms are also called higher-order nodes, since their activation

depends on terms whose multiplicative order is greater than one. The problem with

sigma-pi units is that the number of terms, and therefore the weights, increase very

rapidly with the number of inputs, thus becoming unacceptably large for use in many

situations [Durbin et at 1989, Lee Giles 1987]. Thus a disadvantage of this type of ar­

chitecture (refer to figure 3.1) is that a combinatorial explosion in the number of weights

may result if conjuncts are not hand coded [Lee Giles 1987]. Researchers combat this

problem by restricting the number of units, i.e. the number of terms, to a configuration

sufficient to achieve the desired degree of accuracy using a priori knowledge about the

given task. Normally, only one or a few of these terms are relevant in neural networks

[Lee Giles 1987]. The most common approach to determine the best architecture is to

let the network grow incrementally. In this approach an initial network consisting of

a few terms is chosen and new terms are added to the network as soon as the error

cannot be reduced using the existing architecture. This incremental growth process is

repeated until the desired error level or accuracy is reached.

3.2 Pi-Sigma Networks

Ghosh and Shin introduced another higher-order network, the 'pi-sigma' network,

which avoided the exponential increase in the number of weights and processing

units normally associated with higher-order networks [Ghosh et al1992]. A pi-sigma

network (PSN) consists of an input layer, a single hidden layer of linear summation

units and product units in the output layer. The term pi-sigma comes from the fact

that these networks use products of sums of input components. PSNs have only one

layer of adjustable weights, the weights of the output layer is normally fixed at I,

59 CHAPTER 3. HIGHER-ORDER NEURAL NETWORKS

resulting in PSNs to exhibit fast learning [Ghosh et al1992].

The output of a pi-sigma network is computed as follows,

(3.2)

where

HI

Ykj = L WkjiZi (3.3)
i = l

where f is the activation function, Zi, ... , ZI are the input signals, ZI+l an input to the

bias unit, Wkji is the weight between input unit Zi and hidden unit Ykj for the kth

output unit Ok, Wkj,!+l is the threshold (or bias), Ykj is the output of hidden unit

Ykj and Ok is the output of output unit Ok. Each hidden unit is connected to only

one output unit, as indicated to by the subscript k in Ykj. Thus equation (3.2) also

shows that for multiple output PSNs an independent summing unit is required for

each output unit. PSNs show a combinatorial explosion of higher-order terms as the

number of inputs to the network increases.

Figure 3.2 illustrates a typical pi-sigma network, where Wkji is the weight between

input unit Zi and hidden unit Ykj , fe) is the standard logistic function applied to

the output units and all the weights leading to the output unit are fixed to 1. The

hidden layer consists of summation units and the output layer of product units.

Let Ykj be the output of the lh summation unit of the kth output unit, Ok. A

linear activation is assumed for the hidden units. A PSN provides only constrained

approximation of a power series, resulting in the PSN not to uniformly approximate

all continuous multivariate functions that can be defined on a compact set. However,

universal approximation can be attained by summing the outputs of several PSNs of

different order. The resulting network of PSNs is called a Ridge Polynomial Network

60 CHAPTER 3. HIGHER-ORDER NEURAL NETWORKS

1

product
unit

1

summation
unit

Figure 3.2: Pi-Sigma Network

(RPN) [Shin et al1995]. A PSN can accept both analog and binary input/output by

using suitable non-linear activation functions. The logistic function can be used as a

non-linear activation funct ion and the signum or thresholding function can be used for

binary outputs.

The learning rule used by Ghosh et al for PSN is a randomized version of the gradient

descent procedure [Ghosh et al1992]. During each training cycle of a PSN, a summing

unit is randomly selected and all the weights associated with this summing unit are

updated using gradient descent. This modification of updating only a subset of weights,

instead of all the weights, in each training cycle resulted in reduced training time

of a PSN. Ghosh and Shin reported that pi-sigma networks using only three or four

summing units could tackle fairly complex approximation and classification problems

[Ghosh et al1992].

61 CHAPTER 3. HIGHER-ORDER NEURAL NETWORKS

3.3 Functional Link Networks

Functional link networks (FLNs) also generate higher-order functions of the input

components [Pao 1989, Pao et al1992]. FLNs are usually single-layer networks

that are able to handle linearly non-separable classes by increasing the dimen­

sion of the input space by using non-linear combinations of the inputs. In

FLNs, the input vector is augmented with a suitably enhanced representation of

the input data, thereby artificially increasing the dimension of the input space

[Ghosh et al1992, Hussain et al1997, Pao 1989, Pao et al1992]. The extended input

data are then used for training, as for standard feed-forward neural networks. Basically,

the inputs are transformed in a well understood mathematical way so that the network

does not have to learn basic math functions. Figure 3.3 depicts a typical functional

network. In figure 3.3 the I inputs are denoted by ZI, Z2, ... , ZI) the bias to the hidden

layer is denoted by Zl+1 and the JV! extended inputs for functional links by hI , h 2, ... , hM .

ZI

z·t

hI

01
0

02
0

: Ok
0

0

h2 OK
0

Figure 3.3: Functional Link Network

The dimensionality of the input space for FLNs can be increased in two ways [Pao 1989]:

• The tensor or output product model, where the cross-products of the input terms

CHAPTER 3. HIGHER-ORDER NEURAL NETWORKS 	 62

are added to the model. For example, for a network with three inputs Zl, Z2, and

Z3, the cross products are: ZlZ2, ZlZ3, Z2Z3 , therefor adding second order terms to

the network. Third order terms such as ZlZ2Z3 can also be added .

• 	 Functional expansion of base inputs, where mathematical functions, such as

sin , cos, log) etc. are used to transform the input data.

The number of terms generated using these methods grow rapidly with the increase

of the dimension of the input vector. In FLNs no new information is added, but

the representation of the input is merely enhanced. An advantage of FLNs is reduced

training time due to the higher-order representation of the inputs, since the network does

not have to learn these higher-order terms. Klassen et al found that functional links not

only increases learning rates, but also has an effect of simplifying the learning algorithms

[Klassen et al1988]. Another advantage of FLNs is that it can outperform multilayer

networks in certain cases due to its intrinsic mapping properties [Ghosh et al1992].

3.4 Second-Order Neural Networks

Another type of higher-order neural network, the second order neural network, was de­

veloped by Milenkovic et al [Milenkovic et al1996]. The research of Milenkovic et al was

inspired by a greedy constructive neural network algorithm called the Hyperplane De­

termination from Examples (HDE) that suggested a discrete approach to neural network

optimization suitable for parallel and distributed implementation [Fletcher et al1995].

The objective of the neural network architecture developed by Milenkovic et al was to

overcome the HDE local minima problem by allowing hidden units with higher repre­

sentational power. The higher representational power was achieved by allowing neurons

with input interactions of the following forms :

I

f(z) = LW~l)Zi 	 (3.4)
i=l

63 CHAPTER 3. HIGHER-ORDER NEURAL NETWORKS

1 1

f(i) L wP) Zi + L W~2) Z'iZi (3.5)
·i=1 i=1

1 1 1-1 1

f(z; = L W~1) Zi + L W~2) ZiZi + L L W~J) ZiZj (3.6)
i = l i=l i = lj=i+l

where f is the activation function, Z' is the input vector to the network, W~l), W;2)

are weight parameters associated with the ith input value Zi, while w~;) is a weight

associated with the product of the ith and lh input values Zi and Zj' First-order neural

networks contain neurons only constructed with interaction functions described by

equation (3.4). Feed-forward neural networks that are constructed using neurons as

described by all three interaction functions above, i.e. as described by equations (3.4),

(3.5) and (3.6) , are referred to as second-order neural networks.

3.5 Product Unit Neural Networks

Product unit neural networks were introduced by Durbin and Rumelhart

[Durbin et al1989], and further explored by Janson and Frenzel [Janson et al1993]

and Leerink et al [Leerink et al1995]. Durbin and Rumelhart suggested two types of

networks incorporating PUs [Durbin et al1989]. In the one network type (refer to

figure 3.4(a)) each SU is directly connected to the input units, and also connected to a

group of dedicated PUs. The other network (refer to figure 3.4(b)) consists of alternat­

ing layers of product and summation units, terminating the network with a SU,

Product units compute the net input signal as:

1

netYj = II Z?i + ZI+1 . Vj,l+l
i = 1

instead of

1+1

netYj = L ZiVji
i= l

64 CHAPTER 3. HIGHER-ORDER NEURAL NETWORKS

(a) SuIllIlling units fed by inputs and dedicated product units

(b) Alternating layers of product and summing units

Figure 3.4: Two types of PUNNs

65 CHAPTER 3. HIGHER-ORDER NEURAL NETWORKS

A product unit can automatically learn the higher-order term that is required by the

network, unlike pi-sigma and sigma-pi units where the higher-order terms are hard­

coded in the network. Product uni ts can learn polynomials such as,

(3.7)

and any other function that can be represented by a polynomial. It can be shown

that any function can be represented by a polynomial of degree n, which is a Fourier

series expansion of z. The problem however, is to determine what the value of n should

be when approximating a specific function using a Fourier series. Product units are

much more general than sigma-pi units: While a sigma-pi unit is constrained to using

just polynomial products, product units can use fractional and even negative products

[Durbin et al1989]. The net input to a product unit is computed as follows,

1

net = II z~ji - ()jYj
i=l

where netYj is the net input to hidden unitYj, Zi is an input unit, Vji is the weight

between input unit Zi and hidden unit Yj, the threshold is denoted by ()j and I is the

total number of input units. Durbin and Rumelhart suggested two types of networks

incorporating PUs [Durbin et al1989]. This thesis assumes a network architecture

which consists of an input layer, a hidden layer consisting of product units and an

output layer consisting of summation units. Linear activations are assumed for all

units. It is assumed that bias units occur in both the input and hidden layers, that

respectively serve as bias to hidden units and bias to output units. However, it is

shown in section 3.7.2 that the bias unit in the input layer is redundant and thus

omitted from the input layer of PUNNs and replaced by a 'distortion unit' in this

thesis, while retaining the bias in the hidden layer.

Neural networks are trained using learning or training rules. The next section derives

66 CHAPTER 3. HIGHER-ORDER NEURAL NETWORKS

the product unit training rule for the PUNN architecture used in this thesis, assuming

gradient descent as optimization algorithm.

3.6 Product Unit '!raining Rule

Using the architecture outlined above, the activation of a product unit for a specific

pattern p is expressed in terms of logarithms and exponentials:

Yj,p netyj ,p

J

II Vji
zi,p + ZHl,p' Vj,HI (3.8)

i=l

In (TI 1 +1 z~ji)

= e .=1 ',p + ZJ+I ,p' Vj,J+I

"I Vi Inlzi Ie D ,=l J ,p + ZJ+I ,p ' Vj,J+l

1 [

e ~:=l Vji lnlzi,p l (COS(7r L VjiIi) + z · sin(7r L VjiIi)) + z l+l,p . Vj,J+I (3.9)
i = l i = l

Yj ,p

where
if Zi,p 2: 0

(3.10)
if Zi,p < 0

and Zi,p Ie O. The complex part of equation (3.9) is omitted for training the PUNN, since

Durbin and Rumelhart have discovered in their experiments that apart from the added

complexity of working in the complex domain, i.e. doubling of equations and weight

variables, no substantial improvements in results were gained [Durbin et al 1989].

Equation (3.9) then simplifies to (refer to appendix A),

Yj eP,cos(7r¢) + Z1+1' V j,1+1 (3.11)

where

1

p L Vjdn IZi l (3.12)
i=l

and

1

"v·.y. (3.13)~ J' '
·i= l

67 CHAPTER 3. HIGHER-ORDER NEURAL NETWORKS

The objective of supervised training of NNs is to minimize the error between the ap­

proximation by the NN and the target function. The error in approximation is usually

expressed as the mean squared error (MSE)

1 P K

[MSE = 2P K L L (tk,p - Ok,p)2 (3.14)
p=lk=l

where P is the total number of training patterns (or observations), K is the number

of outputs, tk,p is the desired (target) output for the kth output unit, Ok, for a specific

pattern p, and Ok,p is the actual output of the NN. If gradient descent is used, the change

in hidden-to-output weights are

(3.15)

and for input-to-hidden weights,

BE
6.v" = -'11.- (3.16)l' . f »

UVji

where 77 is the learning rate, Wkj is the weight between hidden unit 1j and output unit

Ok, and Vji is the weight between input Zi and hidden unit 1j. For more detail on the

derivations of these equations refer to appendix A. In the case of the hidden-to-output

weights, the equations are as for standard feed-forward networks, i.e.

(3.17)

- (tk.,p - Ok",P). Y'1,P (3 .18)

where f'(netok ,p) is the derivative of the activation function used for output unit Ok

(which is equal to one in the case oflinear activation functions), 60k ,p is the output error,

6yj ,p is the hidden layer error, netok,p and netyj,p are the net input to the kth output

unit and yth hidden unit respectively and Yj,p is the activation of the ;th hidden unit.

For the input-to-hidden weights,

BE
-6yj ,p . Dji,p (3 .19)

http:11.-(3.16

68 CHAPTER 3. HIGHER-ORDER NEURAL NETWORKS

where

0Yj,p = L
]{

OOk,P . Wkj . !'(netyj,p)
k=l

with f'(nety j,p) the derivative of the activation function used for hidden unit }j (which

equals one in this case). In equation (3.19), Dji,p is computed as (refer to appendix A

for the derivations)

with
I

P = L 'Uji lne IZ'il
i=l

and
I

¢ = LVjJi
i=l

3.7 The Bias Unit

For the equations derived up to now, it was assumed that both the hidden units and

output units receive a bias. This section shows that it is sufficient to use a bias only

for the output units. This section refers to networks with biases for both hidden and

output units as case I, and networks with biases for only the output layer as case 2.

The aim is to show that the learning rules for these two cases for PUNNs are equivalent,

which justifies the removal of the hidden unit biases for the remainder of this thesis.

For both cases 1 and 2, consider a PUNN consisting of 1 input unit, 2 hidden units

and a single output unit. Figure 3.5 illustrates a network of case 1, while a network

of case 2 is illustrated in figure 3.6. In figure 3.6 a bias occurs only in the output

layer. An extension of PUNNs of case 2 is considered in section 3.7.3, where a 'distor­

tion unit ' is included in the product term ofthe product units as illustrated in figure 3.7.

69 CHAPTER 3. HIGHER-ORDER NEURAL NETWORKS

3.7.1 Case 1 PUNNs

bias unit

Figure 3.5: Case 1 PUNN

The output of the PUNN in figure 3.5 is,

(3.20)
i=l

(3.21)

where W3 is the bias and Y3 is the net input of the bias unit (always -1). Equation (3.21)

simplifies to,

(3.22)

where Co = -W3' We now proceed to compute the activation values Yl and Y2 for the

hidden units Yj and Y2 respectively:

70 CHAPTER 3. HIGHER-ORDER NEURAL NETWORKS

(3.23)

(3.24)

Substitutition of (3.23) and (3.24) in (3.22) yields,

(3 .25)

where C3 = Co + Cl . WI + C2 . W2· All the Ci'S (i.e. Co, Cl and C2) are basically weights

obtained through training and can thus be replaced and trained as a single weight, C3.

3.7.2 Case 2 PUNNs

Now consider the second case where the bias is removed from the hidden layer. The

PUNN in figure 3.6 represents a 1:2:1 network configuration.

The output for the PUNN in figure 3.6 is,

1+1

LYi· Wi (3.26)
i =1

(3.27)

Once again, the net input of the bias unit, }3, is assumed as -l. Equation (3.27) then

simplifies to,

(3.28)

where C4 = -W3· The values for Yl and Y2 are computed as,

(3.29)

(3.30)

71 CHAPTER 3. HIGHER-ORDER NEURAL NETWORKS

bias unit

Figure 3.6: Case 2 PUNN

Substitution of (3.29) and (3.30) in (3.28) yields,

(3.31)

A comparison of equations (3.25) and (3.31) indicates that these two equations are

equivalent if and only if C3 is equal to C4 . In equation (3.25) , C3 is a function of biases

and weights that are not dependent on inputs, clearly indicating that C3 is basically

a constant. Thus, instead of learning three different constants (i.e. Co, Cl and C2),

only one constant, namely C4, can be learnt, which will result in equations (3.25) and

(3.31) to be equivalent. Note, however, that 'case l' has more weights and thus more

degrees of freedom than 'case 2'. The higher the degrees of freedom, the higher the

probability of getting poor results, since an increase in the number of weights causes

a corresponding increase in dimensionality of the search space, that will inevitably

contain more local minima and plateaus. Generally, case 2 should therefor produce

72 CHAPTER 3. HIGHER-ORDER NEURAL NETWORKS

better results than <case 1'.

3.7.3 The Distortion Unit

In addition to having biases only for the output units, the PUNNs studied in this

thesis were further extended by including a <distortion' factor in the product term of

the product units. The PUNN in figure 3.7 represents a 1:2:1 network configuration

with a distortion unit replacing the bias unit in the input layer.

bias unit

Figure 3.7: PUNNs with a distortion unit

For the product units, the net input signal is therefor calculated as

(3 .32)

73 CHAPTER 3. HIGHER-ORDER NEURAL NETWORKS

where ZI+! = -1 and Vj,I+ l is the distortion factor. The distortion unit has a constant

input of -1. Thus, Z~~~+l simplifies to (_J.)Vj,T+l. This expression, (_1)Vi,T+1 , is not

defined for all values of Vj,1+1 in the real domain. However, in the derivation of the

learning equations for PUNNs the calculation of (-l)VU +1 is performed in the complex

domain (refer to equations A.20 to A.22 on page 196). Since, Z1+1 = -1, lnlzI-1-l1

reduces to lnl - 11 which equals O. Thus, the distortion unit does not make any

contribution to term {J, however the value of the weight Vj,1+1 is added in calculating

term ¢ on page 196 when ZI+l = -1. This shows that (_1)Vj,l+1 is defined for all

negative values of Vj,I+!' The distortion unit acts to assist in shaping the activa­

tion function to more accurately fit the true function as represented by the training data.

1"·""""···,,·,,········...._· ...""".-..""-"-.-""""".f.~5- .-......""..-.......-"""".......~-"".-~~.-......"~-,,.---"',

I .).......... I

:

•
0.5 •• • I

• • . !
• i>- ! • •

-h -Q.5 ~ 0.5 • 1
1 : -0.5 •• I .. • • !
I •• • ••• I

~..... -1 •• ~

I It....."................".....""..."""... _..............""",,-·-1..:5....."""""""..._...._ .__ ..".............."...."".............."...,

distortion unit's value

Figure 3.8: Effect of the distortion unit in approximating J(z) = Z 2

74 CHAPTER 3. HIGHER-ORDER NEURAL NETWORKS

This unit cannot be seen as a bias, since it is not added to the learning rule and plays no

role in offsetting the origin of the function, but is rather included in the product. Upon

inspection of netYj = eP·cos(n·cjJ) (from equation (A.45) on page 200), it is observed that

the distortion factor's contribution to term p is 0 since in eweighLoj_distortiOTLunitxln(l-ll), , ,

lnl - 11 = 0 thus reducing eweighLoj -Liistortion_unitxln(l-ll) to 1. The distortion unit thus

only contributes to term ¢. The net effect of the distortion factor on netYj is thus

limited to the contribution of cos(n· ¢) to the net input signal. Thus,

(3.33)

where

1

p 2:: Vj'i ln IZi I (3.34)
i=l

and

1+1

<y '" = ~vLl (3.35)~ Jl

i=l

To explain the purpose of the distortion unit, consider approximation of function

f(z) = Z2 as illustrated in figure 3.9. Further inspection of the distortion term, in

the case of function f(z) = Z2, for - 1 < z < I, revealed that the unit mapped a

function of the form cos(3z) over the data, re-affirming the fact that this distortion

unit effectively assists in shaping the function to better fit the set of training data.

The remainder of this thesis assumes PUNNs with a distortion unit.

3.8 Problems with Training of PUNN using Gradi­

ent Descent

Gradient descent (GD) is one ofthe most popular optimization algorithms used to train

multilayer neural networks that employ summation units, resulting in the so-called

75 CHAPTER 3. HIGHER-ORDER NEURAL NETWORKS

back-propagation neural network [Werbos 1974]. Gradient descent works best when

the search space is relatively smooth, with few local minima or plateaus. In such cases

the minima are not too deep and any randomness added to the training process will

prevent the network from getting stuck in local minima [Zurada 1992]. This section

shows that GD has difficulties in training networks that use product units. These

difficulties arise from the increased number of local minima and more convoluted search

space due to PUs [Durbin et al1989, Leerink et al1995].

Durbin and Rumelhart have constructed a neural network consisting of 1 hidden prod­

uct unit and a standard summing output unit to solve the 6-parity problem where

the weights were calculated from first principles [Durbin et al 1989]. The parity func­

tion, when implemented using summation unit neural networks, require as many hidden

units as inputs. Leerink et al [Leerink et al1995], however, have found that the back­

propagation algorithm could not train a product unit neural network on the 6-parity

problem, due to the following reasons:

• 	 Incorrect weight initialization:

The initial weights of a network is usually computed as small random values in

order to use the dynamic range of the sigmoid function and its derivative. Leerink

et al argued that this is the worst possible choice of initial weights for PUNNs,

and suggested that larger initial weights be used instead [Leerink et al 1995].

From own experience, back-propagation only manages to train product unit

neural networks when the weights are initialized in close proximity of the optimal

weight values. The optimal weight values are, however, usually not available.

Gradient descent procedures are usually not able to compensate for bad initial

values of weights and biases, getting stuck in local minima. To combat the

problem of bad initial weights, global optimization algorithms can be used to find

CHAPTER 3. HICHER-ORDER NEURAL NETWORKS 	 76

initial weights and CD subsequently applied to train the network, as suggested

in [Ismail et at 2000j.

• 	 Increased number of local minima:

A major drawback of product units is an increased number of local minima, deep

ravines and valleys on its error surface. The search space for product units is

usually extremely convoluted [Janson et al1993J. This is because the exponent

component, Vji, in equation (3.8) can cause large changes in the computation of

the total error. Back-propagation by gradient descent therefore frequently gets

trapped in local minima that it cannot escape from, or becomes paralyzed if a local

minimum is reached, thus resulting in no adjustment of the weights due to the

fact that the error with respect to the current weight is close to zero; the weight

vector thus remains the same for the remainder of the training session.

As an example to illustrate the complexity of the search space for product units, and

the problems mentioned above, consider the approximation of the function f(z) = Z3,

with Z E [-1,1]. To approximate this function using PUNNs, one PU is sufficient,

resulting in a minimal 1-1-1 architecture. In this case the optimal weight values are

v C_CC 3 (the input-to-hidden weight) and w = 1 (the hidden-to-output weight), where

the bias and the distortion are both equal to zero. Figure 3.9 visualizes the search space

for v E [-1,4] and W E [-1,1.5]. The error is computed as the mean squared error over

500 randomly generated patterns. Figure 3.9 clearly illustrates 2 local minima, one

located at v = -0.55 and the other at v = 1.25. The global minimum is at v = 3. Initial

small random weights will cause the network to be trapped in one of the local minima

(having very large MSE). Large initial weights may also be a bad choice. Assume an

initial weight v ~ 4 (or v ::; -1). The derivative of the error with respect to v is

extremely large due to the steep gradient of the error surface. Consequently, a large

77 CHAPTER 3. HIGHER-ORDER NEURAL NETWORKS

weight update will be made which may cause jumping over the global minimum. The

neural network either becomes trapped in a local minimum, or oscillates between the

extreme points of the error surface.

500

450

400

350

300
W
en 250
:E 200

150

100

50

0

3 3.5 4

•

local
local minimum

minImum

···1--__1.....----·--···...
global

minimum

...-.. .,
·1 ·0.5 0 0.5 1.5 2 2.5

v

Figure 3.9: MSE values with weight w fixed at 1 for J(z) = Z2

Another example to illustrate the numerous local and global minima that occur in the

search space of PUNNs is illustrated in figure 3.10, for approximation of the function

J(Zl' Z2) = zi + z~.

The function J(Zl, Z2) = zi+z~, with Zl, Z2 E [-1 , 1], can be approximated with a PUNN

that contains a minimum of 2 hidden PUs which amounts to 6 weights. A PUNN to

approximate J(Zl, Z2) = zi+ z~ , comprising a 2:2:1 configuration, is represented in figure

3.11. The search space for this PUNN is thus 6-dimensional, making visualization of

the error surface very difficult. However, slices of the error surface can be viewed by

78 CHAPTER 3. HIGHER-ORDER NEURAL NETWORKS

w 10
en
:E 8­

6

4

2

global

o

local
minimum

2

local
minimum

3 4

weight V2,1

Figure 3.10: Error surface for the straight line between 3 minima, f(Zl' Z2) = zi + zi

fixing most of the weights and varying only one or two of the weights. Figure 3.10

visualizes the search space for all weights fixed, except V21 E [-1,4]. Three minima are

illustrated with the global minimum at V21 = O. Initial small random weights will cause

the network to converge to the global minimum. Large initial weights, however, will

cause the network to be trapped in one of the local minima resulting in a large MSE.

Initial weights V21 > 3 or V21 < -1 will also be a bad choice, since the derivative of

the error with respect to V21 is extremely large due to the steep gradient of the error

surface. A large weight update will be made which may result in overshooting the global

minimum. Thus, the neural network becomes trapped in a local minimum, or oscillates

between extreme points of the error surface.

79 CHAPTER 3. HIGHER-ORDER NEURAL NETWORKS

Wll = 1

W12 = 1

Figure 3.11: PUNN to approximate f(Zl' Z2) = zi +- zi

3.9 Conclusion

This chapter discussed the problems encountered when GD is used to train PUNNs.

Gradient descent is frequently trapped by local minima that occur in the search space

for PUNNs. Local minima are particularly prevalent in networks containing PUs, due

to the effect of the exponential terms in the learning equations. These exponential

terms cause large weight adjustments that result in the network to be trapped or

oscillate between the extreme points. To alleviate these problems, global optimization

algorithms should be used to train PUNNs.

The next chapter discusses various global optimization algorithms to train PUNNs.

	Front
	Chapter 1
	Chapter 2
	CHAPTER 3
	Chapter 4
	Chapter 5
	Chapter 6
	Back

