
Chapter 3 

Higher-Order Neural Networks 

Higher-order neural networks are networks that utilize higher combinations of its inputs. 

A goal of this thesis is to train PUNNs, which are examples of higher-order neural 

networks. In this context, this section provides an overview of higher-order neural 

networks. This chapter discusses four types of higher-order neural networks and the 

problems associated with the training of product unit neural networks specifically. 

3.1 Sigma-Pi Networks 

Hidden units of a sigma-pi neural network calculate a product (or conjunct) of the inputs 

[Lee Giles 1987, Maxwell et al1986]. In sigma-pi neural networks a weight is applied, 

not only to each input, but also to the second and possibly higher-order products or 

conjuncts of the inputs. The connections in sigma-pi neural networks allow one unit to 

gate another: Thus, if one unit of a multiplicative pair of units is zero, then the other 

member can have no effect on the output. On the other hand, if one unit of a pair has a 

value 1, the output of the other unit is passed unchanged to the receiving unit. In this 

way a polynomial function of the inputs is presented as input to the transfer function 

of the output layer, i.e. the value of the output unit Ok is 
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Figure 3.1: Sigma-pi network 

Ok = f ( L Wqk IT zqk) 
qEconjunct k= l 

where f is the activation function, Wqk a synaptic weight, Zql, Zq2, .. . , ZqN are the N 

input signals combined to form the product or conjunct, and q indexes the conjuncts 

or products that are used in unit k; conjunct is the set of all conjuncts of subscripts 

for the inputs. The architecture derived from the above function presents a method of 

constructing higher-order networks. 

Figure 3.1 illustrates a sigma-pi network with two inputs, where multiplication instead 

of summation is performed in the hidden layer, followed by a summation unit in the 

output layer. That is, for example, Y2 = Z l Z 2 and Yl = Zl, where Yj is the output of 

hidden unit }j. The weight between hidden unit }j and output unit Ok is denoted 

by Wkj' In sigma-pi networks a polynomial function of the inputs is presented to the 

activation function of the output layer. For the example in figure 3.1, 

(3.1) 
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Although the terms contain products of inputs there are no powers of each input greater 

than one, this gives rise to the name multi-linear for the terms in this kind of expression. 

Nodes with multi-linear terms are also called higher-order nodes, since their activation 

depends on terms whose multiplicative order is greater than one. The problem with 

sigma-pi units is that the number of terms, and therefore the weights, increase very 

rapidly with the number of inputs, thus becoming unacceptably large for use in many 

situations [Durbin et at 1989, Lee Giles 1987]. Thus a disadvantage of this type of ar­

chitecture (refer to figure 3.1) is that a combinatorial explosion in the number of weights 

may result if conjuncts are not hand coded [Lee Giles 1987]. Researchers combat this 

problem by restricting the number of units, i.e. the number of terms, to a configuration 

sufficient to achieve the desired degree of accuracy using a priori knowledge about the 

given task. Normally, only one or a few of these terms are relevant in neural networks 

[Lee Giles 1987]. The most common approach to determine the best architecture is to 

let the network grow incrementally. In this approach an initial network consisting of 

a few terms is chosen and new terms are added to the network as soon as the error 

cannot be reduced using the existing architecture. This incremental growth process is 

repeated until the desired error level or accuracy is reached. 

3.2 Pi-Sigma Networks 

Ghosh and Shin introduced another higher-order network, the 'pi-sigma' network, 

which avoided the exponential increase in the number of weights and processing 

units normally associated with higher-order networks [Ghosh et al1992]. A pi-sigma 

network (PSN) consists of an input layer, a single hidden layer of linear summation 

units and product units in the output layer. The term pi-sigma comes from the fact 

that these networks use products of sums of input components. PSNs have only one 

layer of adjustable weights, the weights of the output layer is normally fixed at I, 
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resulting in PSNs to exhibit fast learning [Ghosh et al1992]. 

The output of a pi-sigma network is computed as follows, 

(3.2) 

where 

HI 

Ykj = L WkjiZi (3.3) 
i = l 

where f is the activation function, Zi, ... , ZI are the input signals, ZI+l an input to the 

bias unit, Wkji is the weight between input unit Zi and hidden unit Ykj for the kth 

output unit Ok, Wkj,!+l is the threshold (or bias), Ykj is the output of hidden unit 

Ykj and Ok is the output of output unit Ok. Each hidden unit is connected to only 

one output unit, as indicated to by the subscript k in Ykj. Thus equation (3.2) also 

shows that for multiple output PSNs an independent summing unit is required for 

each output unit. PSNs show a combinatorial explosion of higher-order terms as the 

number of inputs to the network increases. 

Figure 3.2 illustrates a typical pi-sigma network, where Wkji is the weight between 

input unit Zi and hidden unit Ykj , fe) is the standard logistic function applied to 

the output units and all the weights leading to the output unit are fixed to 1. The 

hidden layer consists of summation units and the output layer of product units. 

Let Ykj be the output of the lh summation unit of the kth output unit, Ok. A 

linear activation is assumed for the hidden units. A PSN provides only constrained 

approximation of a power series, resulting in the PSN not to uniformly approximate 

all continuous multivariate functions that can be defined on a compact set. However, 

universal approximation can be attained by summing the outputs of several PSNs of 

different order. The resulting network of PSNs is called a Ridge Polynomial Network 
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Figure 3.2: Pi-Sigma Network 

(RPN) [Shin et al1995]. A PSN can accept both analog and binary input/output by 

using suitable non-linear activation functions. The logistic function can be used as a 

non-linear activation funct ion and the signum or thresholding function can be used for 

binary outputs. 

The learning rule used by Ghosh et al for PSN is a randomized version of the gradient 

descent procedure [Ghosh et al1992]. During each training cycle of a PSN, a summing 

unit is randomly selected and all the weights associated with this summing unit are 

updated using gradient descent. This modification of updating only a subset of weights, 

instead of all the weights, in each training cycle resulted in reduced training time 

of a PSN. Ghosh and Shin reported that pi-sigma networks using only three or four 

summing units could tackle fairly complex approximation and classification problems 

[Ghosh et al1992]. 
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3.3 Functional Link Networks 

Functional link networks (FLNs) also generate higher-order functions of the input 

components [Pao 1989, Pao et al1992]. FLNs are usually single-layer networks 

that are able to handle linearly non-separable classes by increasing the dimen­

sion of the input space by using non-linear combinations of the inputs. In 

FLNs, the input vector is augmented with a suitably enhanced representation of 

the input data, thereby artificially increasing the dimension of the input space 

[Ghosh et al1992, Hussain et al1997, Pao 1989, Pao et al1992]. The extended input 

data are then used for training, as for standard feed-forward neural networks. Basically, 

the inputs are transformed in a well understood mathematical way so that the network 

does not have to learn basic math functions. Figure 3.3 depicts a typical functional 

network. In figure 3.3 the I inputs are denoted by ZI, Z2, ... , ZI) the bias to the hidden 

layer is denoted by Zl+1 and the JV! extended inputs for functional links by hI , h 2, ... , hM . 
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Figure 3.3: Functional Link Network 

The dimensionality of the input space for FLNs can be increased in two ways [Pao 1989]: 

• The tensor or output product model, where the cross-products of the input terms 
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are added to the model. For example, for a network with three inputs Zl, Z2, and 

Z3, the cross products are: ZlZ2, ZlZ3, Z2Z3 , therefor adding second order terms to 

the network. Third order terms such as ZlZ2Z3 can also be added . 

• 	 Functional expansion of base inputs, where mathematical functions, such as 

sin , cos, log) etc. are used to transform the input data. 

The number of terms generated using these methods grow rapidly with the increase 

of the dimension of the input vector. In FLNs no new information is added, but 

the representation of the input is merely enhanced. An advantage of FLNs is reduced 

training time due to the higher-order representation of the inputs, since the network does 

not have to learn these higher-order terms. Klassen et al found that functional links not 

only increases learning rates, but also has an effect of simplifying the learning algorithms 

[Klassen et al1988]. Another advantage of FLNs is that it can outperform multilayer 

networks in certain cases due to its intrinsic mapping properties [Ghosh et al1992]. 

3.4 Second-Order Neural Networks 

Another type of higher-order neural network, the second order neural network, was de­

veloped by Milenkovic et al [Milenkovic et al1996]. The research of Milenkovic et al was 

inspired by a greedy constructive neural network algorithm called the Hyperplane De­

termination from Examples (HDE) that suggested a discrete approach to neural network 

optimization suitable for parallel and distributed implementation [Fletcher et al1995]. 

The objective of the neural network architecture developed by Milenkovic et al was to 

overcome the HDE local minima problem by allowing hidden units with higher repre­

sentational power. The higher representational power was achieved by allowing neurons 

with input interactions of the following forms : 

I 

f(z) = LW~l)Zi 	 (3.4) 
i=l 
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1 1 

f(i) L wP) Zi + L W~2) Z'iZi (3.5) 
·i=1 i=1 

1 1 1-1 1 

f(z; = L W~1) Zi + L W~2) ZiZi + L L W~J) ZiZj (3.6) 
i = l i=l i = lj=i+l 

where f is the activation function, Z' is the input vector to the network, W~l), W;2) 

are weight parameters associated with the ith input value Zi, while w~;) is a weight 

associated with the product of the ith and lh input values Zi and Zj' First-order neural 

networks contain neurons only constructed with interaction functions described by 

equation (3.4). Feed-forward neural networks that are constructed using neurons as 

described by all three interaction functions above, i.e. as described by equations (3.4), 

(3.5) and (3.6) , are referred to as second-order neural networks. 

3.5 Product Unit Neural Networks 

Product unit neural networks were introduced by Durbin and Rumelhart 

[Durbin et al1989], and further explored by Janson and Frenzel [Janson et al1993] 

and Leerink et al [Leerink et al1995]. Durbin and Rumelhart suggested two types of 

networks incorporating PUs [Durbin et al1989]. In the one network type (refer to 

figure 3.4(a)) each SU is directly connected to the input units, and also connected to a 

group of dedicated PUs. The other network (refer to figure 3.4(b)) consists of alternat­

ing layers of product and summation units, terminating the network with a SU, 

Product units compute the net input signal as: 

1 

netYj = II Z?i + ZI+1 . Vj,l+l 
i = 1 

instead of 

1+1 

netYj = L ZiVji 
i= l 

 
 
 



64 CHAPTER 3. HIGHER-ORDER NEURAL NETWORKS 

(a) SuIllIlling units fed by inputs and dedicated product units 

(b) Alternating layers of product and summing units 

Figure 3.4: Two types of PUNNs 
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A product unit can automatically learn the higher-order term that is required by the 

network, unlike pi-sigma and sigma-pi units where the higher-order terms are hard­

coded in the network. Product uni ts can learn polynomials such as, 

(3.7) 

and any other function that can be represented by a polynomial. It can be shown 

that any function can be represented by a polynomial of degree n, which is a Fourier 

series expansion of z. The problem however, is to determine what the value of n should 

be when approximating a specific function using a Fourier series. Product units are 

much more general than sigma-pi units: While a sigma-pi unit is constrained to using 

just polynomial products, product units can use fractional and even negative products 

[Durbin et al1989]. The net input to a product unit is computed as follows, 

1 

net = II z~ji - ()jYj 
i=l 

where netYj is the net input to hidden unitYj, Zi is an input unit, Vji is the weight 

between input unit Zi and hidden unit Yj, the threshold is denoted by ()j and I is the 

total number of input units. Durbin and Rumelhart suggested two types of networks 

incorporating PUs [Durbin et al1989]. This thesis assumes a network architecture 

which consists of an input layer, a hidden layer consisting of product units and an 

output layer consisting of summation units. Linear activations are assumed for all 

units. It is assumed that bias units occur in both the input and hidden layers, that 

respectively serve as bias to hidden units and bias to output units. However, it is 

shown in section 3.7.2 that the bias unit in the input layer is redundant and thus 

omitted from the input layer of PUNNs and replaced by a 'distortion unit' in this 

thesis, while retaining the bias in the hidden layer. 

Neural networks are trained using learning or training rules. The next section derives 
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the product unit training rule for the PUNN architecture used in this thesis, assuming 

gradient descent as optimization algorithm. 

3.6 Product Unit '!raining Rule 

Using the architecture outlined above, the activation of a product unit for a specific 

pattern p is expressed in terms of logarithms and exponentials: 

Yj,p netyj ,p 


J 


II Vji 
zi,p + ZHl,p' Vj,HI (3.8) 

i=l 


In (TI 1 +1 z~ji)

= e .=1 ',p + ZJ+I ,p' Vj,J+I 

"I Vi Inlzi Ie D ,=l J ,p + ZJ+I ,p ' Vj,J+l 

1 [ 

e ~:=l Vji lnlzi,p l (COS(7r L VjiIi) + z · sin(7r L VjiIi)) + z l+l,p . Vj,J+I (3.9) 
i = l i = l 

Yj ,p 

where 
if Zi,p 2: 0 

(3.10) 
if Zi,p < 0 

and Zi,p Ie O. The complex part of equation (3.9) is omitted for training the PUNN, since 

Durbin and Rumelhart have discovered in their experiments that apart from the added 

complexity of working in the complex domain, i.e. doubling of equations and weight 

variables, no substantial improvements in results were gained [Durbin et al 1989]. 

Equation (3.9) then simplifies to (refer to appendix A), 

Yj eP,cos(7r¢) + Z1+1' V j,1+1 (3.11) 

where 

1 

p L Vjdn IZi l (3.12) 
i=l 

and 

1 

"v·.y. (3.13)~ J' ' 
·i= l 

 
 
 



67 CHAPTER 3. HIGHER-ORDER NEURAL NETWORKS 

The objective of supervised training of NNs is to minimize the error between the ap­

proximation by the NN and the target function. The error in approximation is usually 

expressed as the mean squared error (MSE) 

1 P K 

[MSE = 2P K L L (tk,p - Ok,p)2 (3.14) 
p=lk=l 

where P is the total number of training patterns (or observations), K is the number 

of outputs, tk,p is the desired (target) output for the kth output unit, Ok, for a specific 

pattern p, and Ok,p is the actual output of the NN. If gradient descent is used, the change 

in hidden-to-output weights are 

(3.15) 

and for input-to-hidden weights, 

BE
6.v" = -'11.- (3.16)l' . f » 

UVji 

where 77 is the learning rate, Wkj is the weight between hidden unit 1j and output unit 

Ok, and Vji is the weight between input Zi and hidden unit 1j. For more detail on the 

derivations of these equations refer to appendix A. In the case of the hidden-to-output 

weights, the equations are as for standard feed-forward networks, i.e. 

(3.17) 

- (tk.,p - Ok",P ). Y'1,P (3 .18) 

where f'(netok ,p ) is the derivative of the activation function used for output unit Ok 

(which is equal to one in the case oflinear activation functions), 60k ,p is the output error, 

6yj ,p is the hidden layer error, netok,p and netyj,p are the net input to the kth output 

unit and yth hidden unit respectively and Yj,p is the activation of the ;th hidden unit. 

For the input-to-hidden weights, 

BE 
-6yj ,p . Dji,p (3 .19) 
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where 

0Yj,p = L 
]{ 

OOk,P . Wkj . !'(netyj,p) 
k=l 

with f'(nety j,p) the derivative of the activation function used for hidden unit }j (which 

equals one in this case). In equation (3.19), Dji,p is computed as (refer to appendix A 

for the derivations) 

with 
I 

P = L 'Uji lne IZ'il 
i=l 

and 
I 

¢ = LVjJi 
i=l 

3.7 The Bias Unit 

For the equations derived up to now, it was assumed that both the hidden units and 

output units receive a bias. This section shows that it is sufficient to use a bias only 

for the output units. This section refers to networks with biases for both hidden and 

output units as case I, and networks with biases for only the output layer as case 2. 

The aim is to show that the learning rules for these two cases for PUNNs are equivalent, 

which justifies the removal of the hidden unit biases for the remainder of this thesis. 

For both cases 1 and 2, consider a PUNN consisting of 1 input unit, 2 hidden units 

and a single output unit. Figure 3.5 illustrates a network of case 1, while a network 

of case 2 is illustrated in figure 3.6. In figure 3.6 a bias occurs only in the output 

layer. An extension of PUNNs of case 2 is considered in section 3.7.3, where a 'distor­

tion unit ' is included in the product term ofthe product units as illustrated in figure 3.7. 
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3.7.1 Case 1 PUNNs 

bias unit 

Figure 3.5: Case 1 PUNN 

The output of the PUNN in figure 3.5 is, 

(3.20) 
i=l 

(3.21) 

where W3 is the bias and Y3 is the net input of the bias unit (always -1). Equation (3.21) 

simplifies to, 

(3.22) 

where Co = -W3' We now proceed to compute the activation values Yl and Y2 for the 

hidden units Yj and Y2 respectively: 
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(3.23) 

(3.24) 

Substitutition of (3.23) and (3.24) in (3.22) yields, 

(3 .25) 

where C3 = Co + Cl . WI + C2 . W2· All the Ci'S (i.e. Co, Cl and C2) are basically weights 

obtained through training and can thus be replaced and trained as a single weight, C3. 

3.7.2 Case 2 PUNNs 

Now consider the second case where the bias is removed from the hidden layer. The 

PUNN in figure 3.6 represents a 1:2:1 network configuration. 

The output for the PUNN in figure 3.6 is, 

1+1 

LYi· Wi (3.26) 
i =1 

(3.27) 

Once again, the net input of the bias unit, }3, is assumed as -l. Equation (3.27) then 

simplifies to, 

(3.28) 

where C4 = -W3· The values for Yl and Y2 are computed as, 

(3.29) 

(3.30) 
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bias unit 

Figure 3.6: Case 2 PUNN 

Substitution of (3.29) and (3.30) in (3.28) yields, 

(3.31) 

A comparison of equations (3.25) and (3.31) indicates that these two equations are 

equivalent if and only if C3 is equal to C4 . In equation (3.25) , C3 is a function of biases 

and weights that are not dependent on inputs, clearly indicating that C3 is basically 

a constant. Thus, instead of learning three different constants (i.e. Co, Cl and C2), 

only one constant, namely C4, can be learnt, which will result in equations (3.25) and 

(3.31) to be equivalent. Note, however, that 'case l' has more weights and thus more 

degrees of freedom than 'case 2'. The higher the degrees of freedom, the higher the 

probability of getting poor results, since an increase in the number of weights causes 

a corresponding increase in dimensionality of the search space, that will inevitably 

contain more local minima and plateaus. Generally, case 2 should therefor produce 
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better results than <case 1'. 

3.7.3 The Distortion Unit 

In addition to having biases only for the output units, the PUNNs studied in this 

thesis were further extended by including a <distortion' factor in the product term of 

the product units. The PUNN in figure 3.7 represents a 1:2:1 network configuration 

with a distortion unit replacing the bias unit in the input layer. 

bias unit 

Figure 3.7: PUNNs with a distortion unit 

For the product units, the net input signal is therefor calculated as 

(3 .32) 
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where ZI+! = -1 and Vj,I+ l is the distortion factor. The distortion unit has a constant 

input of -1. Thus, Z~~~+l simplifies to (_J.)Vj,T+l. This expression, (_1)Vi,T+1 , is not 

defined for all values of Vj,1+1 in the real domain. However, in the derivation of the 

learning equations for PUNNs the calculation of ( -l)VU +1 is performed in the complex 

domain (refer to equations A.20 to A.22 on page 196). Since, Z1+1 = -1, lnlzI-1-l1 

reduces to lnl - 11 which equals O. Thus, the distortion unit does not make any 

contribution to term {J, however the value of the weight Vj,1+1 is added in calculating 

term ¢ on page 196 when ZI+l = -1. This shows that (_1)Vj,l+1 is defined for all 

negative values of Vj,I+!' The distortion unit acts to assist in shaping the activa­

tion function to more accurately fit the true function as represented by the training data. 
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Figure 3.8: Effect of the distortion unit in approximating J(z) = Z 2 
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This unit cannot be seen as a bias, since it is not added to the learning rule and plays no 

role in offsetting the origin of the function, but is rather included in the product. Upon 

inspection of netYj = eP·cos(n·cjJ) (from equation (A.45) on page 200), it is observed that 

the distortion factor's contribution to term p is 0 since in eweighLoj_distortiOTLunitxln(l-ll), , , 

lnl - 11 = 0 thus reducing eweighLoj -Liistortion_unitxln(l-ll) to 1. The distortion unit thus 

only contributes to term ¢. The net effect of the distortion factor on netYj is thus 

limited to the contribution of cos(n· ¢) to the net input signal. Thus, 

(3.33) 

where 

1 

p 2:: Vj'i ln IZi I (3.34) 
i=l 

and 

1+1 

<y '" = ~vLl (3.35)~ Jl 

i=l 

To explain the purpose of the distortion unit, consider approximation of function 

f(z) = Z2 as illustrated in figure 3.9. Further inspection of the distortion term, in 

the case of function f(z) = Z2, for - 1 < z < I, revealed that the unit mapped a 

function of the form cos(3z) over the data, re-affirming the fact that this distortion 

unit effectively assists in shaping the function to better fit the set of training data. 

The remainder of this thesis assumes PUNNs with a distortion unit. 

3.8 Problems with Training of PUNN using Gradi­

ent Descent 

Gradient descent (GD) is one ofthe most popular optimization algorithms used to train 

multilayer neural networks that employ summation units, resulting in the so-called 
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back-propagation neural network [Werbos 1974]. Gradient descent works best when 

the search space is relatively smooth, with few local minima or plateaus. In such cases 

the minima are not too deep and any randomness added to the training process will 

prevent the network from getting stuck in local minima [Zurada 1992]. This section 

shows that GD has difficulties in training networks that use product units. These 

difficulties arise from the increased number of local minima and more convoluted search 

space due to PUs [Durbin et al1989, Leerink et al1995]. 

Durbin and Rumelhart have constructed a neural network consisting of 1 hidden prod­

uct unit and a standard summing output unit to solve the 6-parity problem where 

the weights were calculated from first principles [Durbin et al 1989]. The parity func­

tion, when implemented using summation unit neural networks, require as many hidden 

units as inputs. Leerink et al [Leerink et al1995], however, have found that the back­

propagation algorithm could not train a product unit neural network on the 6-parity 

problem, due to the following reasons: 

• 	 Incorrect weight initialization: 

The initial weights of a network is usually computed as small random values in 

order to use the dynamic range of the sigmoid function and its derivative. Leerink 

et al argued that this is the worst possible choice of initial weights for PUNNs, 

and suggested that larger initial weights be used instead [Leerink et al 1995]. 

From own experience, back-propagation only manages to train product unit 

neural networks when the weights are initialized in close proximity of the optimal 

weight values. The optimal weight values are, however, usually not available. 

Gradient descent procedures are usually not able to compensate for bad initial 

values of weights and biases, getting stuck in local minima. To combat the 

problem of bad initial weights, global optimization algorithms can be used to find 

 
 
 



CHAPTER 3. HICHER-ORDER NEURAL NETWORKS 	 76 

initial weights and CD subsequently applied to train the network, as suggested 

in [Ismail et at 2000j. 

• 	 Increased number of local minima: 

A major drawback of product units is an increased number of local minima, deep 

ravines and valleys on its error surface. The search space for product units is 

usually extremely convoluted [Janson et al1993J. This is because the exponent 

component, Vji, in equation (3.8) can cause large changes in the computation of 

the total error. Back-propagation by gradient descent therefore frequently gets 

trapped in local minima that it cannot escape from, or becomes paralyzed if a local 

minimum is reached, thus resulting in no adjustment of the weights due to the 

fact that the error with respect to the current weight is close to zero; the weight 

vector thus remains the same for the remainder of the training session. 

As an example to illustrate the complexity of the search space for product units, and 

the problems mentioned above, consider the approximation of the function f(z) = Z3, 

with Z E [-1,1]. To approximate this function using PUNNs, one PU is sufficient, 

resulting in a minimal 1-1-1 architecture. In this case the optimal weight values are 

v C_CC 3 (the input-to-hidden weight) and w = 1 (the hidden-to-output weight), where 

the bias and the distortion are both equal to zero. Figure 3.9 visualizes the search space 

for v E [-1,4] and W E [-1,1.5]. The error is computed as the mean squared error over 

500 randomly generated patterns. Figure 3.9 clearly illustrates 2 local minima, one 

located at v = -0.55 and the other at v = 1.25. The global minimum is at v = 3. Initial 

small random weights will cause the network to be trapped in one of the local minima 

(having very large MSE). Large initial weights may also be a bad choice. Assume an 

initial weight v ~ 4 (or v ::; -1). The derivative of the error with respect to v is 

extremely large due to the steep gradient of the error surface. Consequently, a large 
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weight update will be made which may cause jumping over the global minimum. The 

neural network either becomes trapped in a local minimum, or oscillates between the 

extreme points of the error surface. 
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Figure 3.9: MSE values with weight w fixed at 1 for J( z ) = Z2 

Another example to illustrate the numerous local and global minima that occur in the 

search space of PUNNs is illustrated in figure 3.10, for approximation of the function 

J( Zl' Z2) = zi + z~. 

The function J(Zl, Z2) = zi+z~, with Zl, Z2 E [-1 , 1], can be approximated with a PUNN 

that contains a minimum of 2 hidden PUs which amounts to 6 weights. A PUNN to 

approximate J( Zl, Z2) = zi+ z~ , comprising a 2:2:1 configuration, is represented in figure 

3.11. The search space for this PUNN is thus 6-dimensional, making visualization of 

the error surface very difficult. However, slices of the error surface can be viewed by 
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Figure 3.10: Error surface for the straight line between 3 minima, f( Zl' Z2) = zi + zi 

fixing most of the weights and varying only one or two of the weights. Figure 3.10 

visualizes the search space for all weights fixed, except V21 E [-1,4]. Three minima are 

illustrated with the global minimum at V21 = O. Initial small random weights will cause 

the network to converge to the global minimum. Large initial weights, however, will 

cause the network to be trapped in one of the local minima resulting in a large MSE. 

Initial weights V21 > 3 or V21 < -1 will also be a bad choice, since the derivative of 

the error with respect to V21 is extremely large due to the steep gradient of the error 

surface. A large weight update will be made which may result in overshooting the global 

minimum. Thus, the neural network becomes trapped in a local minimum, or oscillates 

between extreme points of the error surface. 
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Wll = 1 

W12 = 1 

Figure 3.11: PUNN to approximate f(Zl' Z2) = zi +- zi 

3.9 Conclusion 

This chapter discussed the problems encountered when GD is used to train PUNNs. 

Gradient descent is frequently trapped by local minima that occur in the search space 

for PUNNs. Local minima are particularly prevalent in networks containing PUs, due 

to the effect of the exponential terms in the learning equations. These exponential 

terms cause large weight adjustments that result in the network to be trapped or 

oscillate between the extreme points. To alleviate these problems, global optimization 

algorithms should be used to train PUNNs. 

The next chapter discusses various global optimization algorithms to train PUNNs. 
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