
Chapter 2

Background

An important a~;pect of this thesis is to compare the performance of summation feed­

forward neural networks with product unit neural networks using global optimization

algorithms . The objective is to test the hypothesis that global optimization algorithms

are more successful in training product unit neural networks (PUNNs) than local op­

timization algorithms. In this chapter an overview of ANNs is given. Issues regarding

training of neural networks (NNs), learning algorithms and neural network architec­

tures are addressed. Another important aspect of this thesis is the approximation of

functions using feed-forward neural networks. It is therefore important to investigate

the approximation capabilities of feed-forward neural networks for continuous functions

and determine an appropriate architecture for such approximations.

2.1 A Brief History of ANNs

Attempts to mimic the human brain date back to work in the 1930's, 1940's and 1950's

by Alan Turing, Warren McCullough, Walter Pitts, Donald Hebb and James von

Neumann. Neural network simulations appear to be a recent development. However,

this field was established before the advent of computers. The first artificial neuron was

8

9 CHAPTER 2. BACKGROUND

produced in 1943 by the neurophysiologist Warren McCullogh and the logician Walter

Pitts [Pitts et al1943]. These neurons were presented as conceptual components

for circuits that could perform computational tasks. In 1957 Rosenblatt at Cornell

University developed 'Perceptron', a hardware neural network for character recognition.

Much of Rosenblatt's work is described in his book 'Principles of Neurodynamics'

[Rosenblatt 1962]. One of the most significant results presented in this book, was

the proof that a simple training procedure, i.e. the perceptron training rule, would

converge if a solution to the problem existed. In 1959 Wid row and Hoff at Stanford

University developed Adaline for adaptive control of noise on telephone lines. The

1960's and 1970's period was hindered by inflated claims and criticism of early work.

When Minsky and Papert published their book Perceptrons in 1969 [Minsky et a11969]

in which they pointed out the deficiencies of perceptron models, most neural network

funding was redirected and researchers left the field. Minsky and Papert showed that

there is an interesting class of problems that single layer perceptrons cannot solve,

and they also held out little hope for the training of multilayer systems that might

deal successfully with some of these deficiencies. Only a few researchers continued

their efforts, most notably Teuvo Kohonen, who was investigating nets that used

topological features [Kohonen 1988b], Stephen Grossberg was laying the foundations

for his Adaptive Resonance Theory (ART) [Grossberg 1987], and Kunihiko F\lkushima

was developing the cognitron [Fukushima 1975].

In 1982 Hopfield, a Caltech physicist, tied together many of the ideas from previous

research and showed that a highly interconnected network of threshold logic units

could be analyzed by considering it to be a physical dynamic system possessing

an 'energy' [Hopfield 1982]. A similar breakthrough occurred in connection with

feed-forward networks, when it was shown that the 'credit assignment problem'

(i.e. the contribution that each unit makes to the error the network has made in

CHAPTER 2. BACKGROUND 10

processing the current training vector) had an exact solution. The interest in neural

networks re-emerged only after some important theoretical results were attained

in the early eighties (most notably the discovery of the error back-propagation

[Parker 1985, Rumelhart et al1986b, Werbos 1974]) and new hardware developments

increased the processing capacities. This renewed interest is reflected in the number of

scientists, the amounts of funding, the number of large conferences and the number of

journals associated with neural networks.

The next section defines the term ANN.

2.2 What is An Artificial Neural Network?

There is no universally accepted definition for an artificial neural network. There are

several definitions of an ANN. Zurada defines ANNs as <physical systems which can

acquire, store and utilize experiential knowledge' [Zurada 1992]. Aleksander defines

neural computing as < the study of adaptable nodes which, through a process of learn­

ing from task examples, store experiental knowledge and make it available for use'

[Aleksander et al1990]. Haykin defines ANN as <a massively parallel distributed pro­

cessor that has a natural propensity for storing experiential knowledge and making

it available for use' [Haykin et al1992]. Fausett defines an ANN as <an information

processing system that has certain performance characteristics, such as adaptive learn­

ing, and parallel processing of information, in common with biological neural networks'

[Fausett 1994]. Nigrin defines an ANN <as a circuit composed of a very large number

of simple processing elements that are neurally based. Each element operates only on

local information. Furthermore, each element operates asynchronously, thus there is no

overall system clock' [Nigrin 1993].

From these definitions we can conclude that an ANN

11 CHAPTER 2. BACKGROUND

• 	 consists of several simple processing elements called units;

• 	 is well suited for parallel computations, since each unit operates independently of

the other units;

• 	 contains a high degree of interconnections between units;

• 	 contains links between units, each with a weight (scalar value) associated with it ;

• has adaptable weights that can be modified during training.

2.3 Advantages of Neural Networks

ANNs offer several advantages, including:

• 	 Adaptive learning: A neural network is a dynamic system which has a built-in

capability to adapt its weights to changing environments.

• 	 Self-organization: An artificial neural network can create its own organization

or representation of the information it receives during learning. There is little

need for extensive characterization of the problem other than through training.

• 	 Generalization: Neural networks are able to extrapolate to a certain extent

from the training to previously unseen data.

• 	 Graceful degradation: Partial destruction of a network leads to a correspond­

ing degradation of performance. However, network capabilities such as gener­

alization may be retained even with major network damage. Neural networks

have a gradual rather than sharp drop-off in performance as conditions worsen

[Kohonen 1988a).

12 CHAPTER 2. BACKGROUND

2.4 Liluitations of Neural Networks

Neural networks have some important limitations, namely:

• 	 ANN s have poor explanation facilities. There are no facilities for justifying answers

and responding to what or how questions.

• 	 ANNs are not very good at performing symbolic computations. They cannot be

used effectively for rule based reasoning and arithmetic operations.

• 	The accuracy of an ANN's performance is dependent upon the quality of the train­

ing examples. It is difficult to find a complete and accurate set of training examples

in real world problems.

The next section justifies the use of ANNs .

2.5 Why Artificial Neural Networks?

Neural networks take a different approach to problem solving than that of conventional

computers. Conventional computers use an algorithmic approach, i.e. the computer

follows a set of instructions to solve a problem. The computer can solve a problem

only if the specific steps that the computer needs to follow are known. The problem

solving of conventional computers is therefore restricted to problems that we already

understand and know how to solve. Neural networks, on the other hand, with their

remarkable ability to derive meaning from complicated or imprecise data, can be used

to extract patterns and detect trends that are too complex to be noticed by either

humans or other computer techniques. The ability of neural networks to learn by

example, make them suitable for tasks that cannot be solved algorithmically. One of

the distinct strengths of neural networks is their ability to generalize. The network is

said to generalize well when it sensibly interpolates input patterns that are new to the

13 CHAPTER 2. BACKGROUND

network. Neural networks provide, in many cases, input-output mappings with good

generalization capability. It can be said that neural networks behave as trainable,

adaptive and even self-organizing information systems [Schalkoff 1997].

The following section describes the main classes of ANN applications.

2.6 Classes of ANN Applications

The following classes of neural network applications can be found.

1. Pattern Classification

Pattern classification concerns the classification of patterns into a fixed number

of categories. The network is first trained on a set of patterns along with the

categories to which each pattern belongs. Once the network is trained, a new

pattern is presented to the network to be categorized. An example of a neural

network classifier is the EEG (electroencephalogram) spike detector developed by

Eberhart and Dobbins [Eberhart et al1990]. The EEG spike detector successfully

identifies an EEG spike which indicates an imminent epileptic seizure in patients.

Despite the few false alarms recorded, the performance of the network has been

found to be significantly better than that required for practical application in

hospitals [Eberhart et al1990].

2. Association or Pattern Completion

In association each training pattern is associated with an image stored in the net­

work. Association can be subdivided into autoassociation and heteroassociation.

In auto association a neural network is repeatedly presented with a set of patterns

to be stored by the network. After training, a partial description of the original

pattern is presented to the network, the task is then to retrieve the original pat­

14 CHAPTER 2. BACKGROUND

tern. In heteroassociation an arbitrary set of patterns are paired with another

arbitrary set of patterns. After training, when a partial description of the original

pattern of the first set is presented to the network, the task is to retrieve the

pattern paired off with the original pattern. Applications include the 'Human

Face Detection Network' of Rowley et al [Rowley et al1996] and the NETtalk

neural network of Sejnowski and Rosenberg that produced phonetic strings which

specified pronunciation for English text [Sejnowski et al1987].

3. Approximation

Approximation requires a neural network to approximate a non-linear function or

time-series given a set of patterns in the form of input and desired (target) output

pairs. Once the network is trained, the neural network is then used to calculate

an output for patterns not used in training (i.e. the neural network interpo­

lates). An application of approximation is weather forecasting [Hsieh et al1998]

and forecasting the behaviour of multivariate time series [Chakraborty et al1992].

4. Clustering

The objective of clustering networks is to group similar patterns into groups,

or clusters. Similarity is usually measured as the Euclidean distance between

patterns [Kohonen 1988a]. Clustering was achieved by the Kohonen network that

simply inspects the data for regularities , and organizes itself in such a way as to

form an ordered description of the data [Bilbro et al1989, Kawato 1990]. Feature

detection aims at detecting a subset of input data or features which is relevant

for a given problem. Feature detection is usually related to the dimensionality

red uction of data [Saund 1989]. More sophisticated processing methods can then

be applied to the smaller dimensional spaces. Applications of feature selection

clustering has been applied to document classification to enhance information

retrieval [MacLeod 1990j .

CHAPTER 2. BACKGROUND 15

5. Control

There have been a number of successful applications to control systems. Ap­

plication fields range from process control, robotics, industrial manufacturing,

aerospace applications and vehicle and automobile control [Pomerlau 1989]. The

basic objective of control is to provide the appropriate input signal to a given

physical process to yield its desired response. Neural networks for control were

developed by Werbos [Werbos 1989] and Jordan et al [Jordan et al1990]. The

term neuro-control has been coined by Werbos to refer to the class of controllers

that involve the use of neural networks [\iVerbos 1974].

6. Optimization

The objective of neural networks in optimization application is to optimize certain

cost functions. Neural networks have successfully been applied to optimization

problems such as job-shop scheduling [Foo et al1988]. Problems that are simpler

but which belong to the same group of optimization tasks include scheduling

classrooms to classes, hospital patients to beds, etc. [Zurada 1992].

2.7 A Typical Artificial Neural Network

An artificial neural network (ANN) consists of interconnected artificial neurons,

organized in a layered structure. Usually, all the neurons of a current layer are

connected to neurons that occur at the next immediate layer. An artificial neuron

receives a number of inputs (either from the given input pattern, or from the output

of other neurons in a previous layer of the neural network). Each input comes via a

connection which has a strength (or weight) associated with it. Each neuron also has

a single threshold value (also referred to as a bias). The input to a neuron can be

excitatory if they cause the firing of a neuron, or inhibitory if they hinder the firing

16 CHAPTER 2. BACKGROUND

of a response. A more precise condition for firing is that the excitation should exceed

the inhibition by the threshold. In mathematical terms the net input of neuron j is

usually netj = 'L{ ZiWj'i - OJ where Zl, Z2, ... Z] are the input signals, Wjl, Wj2, .. .Wj] are

the synaptic weights leading to neuron j, netj is the neuron's net input and OJ is the

threshold.

An activation function is used to determine the output signal based on a net in­

put signal. In summation unit neural networks (SUNNs) the threshold can be treated

as any other weight, by adding an extra unit, Zl+l, whose input z]+l is -1 and whose

weight, Wj,I+l is {)j. The net input signal for this augmented network is computed as

netj = 'L{+l ZiWji. The activation signal, or net input, is passed through an activation

function (also known as a transfer function) to produce the output signal of the neuron.

The activation function, also called the squashing function, often squashes or limits

the permissible amplitude range of the output signal to some finite value; except in

the case of linear functions where the output is unlimited. A neural network is trained

by adjusting the weights of the neural network and thresholds so as to minimize the

error in its output on the training data. If the network is properly trained, it has then

learned to model the unknown function which relates the input variables to the target

variables , and can subsequently be used in predictions where the target is not known.

2.8 Learning

Neural networks, like human beings learn from examples. This feature distinguishes

neural networks from conventional programming paradigms. In conventional computer

programming the relationship between the output and the input must be well defined.

In the case of neural networks, this requirement is not needed. In fact, the strength

of neural networks lies in their ability to learn the relationship between the input

17 CHAPTER 2. BACKGROUND

and the output, given a set of representative examples. One of the most significant

attributes of a neural network is its abili ty to learn by interacting with its environment

or with an information source. Learning or training of a neural network is normally

accomplished through a learning rule or algorithm, whereby the weights of the network

are incrementally adjusted so as to improve a predefined performance measure over

time. Essentially, learning of a neural network entails presenting a training pattern

at the input units, resulting in an actual output to be produced by the network. The

error between the desired output and actual output is then determined. The synaptic

weights are then subsequently adjusted so as to reduce the error between the desired

and actual output. The entire set of training patterns is usually used in adjusting

the weights during the training process. The training terminates when an acceptable

training error is reached. On a definition for 'learning', Minsky noted that there are

too many notions associated with learning to justify the term in a precise manner

[Minsky 1961]. As stated in section 2.2, Aleksander [Aleksander et al1990] defines

neural computing as "The study of networks of adaptable nodes which, through a

process of learning from task examples, store experiential knowledge and make it

available for use."

The next section introduces a typical artificial neuron that is the basic building block

for neural networks.

2.9 Model of An Artificial Neuron

A neuron is an information processing element that is fundamental to the operation of

a neural network. Figure 2.1 represents a model of a neuron [Haykin 1994]. A neuron

consists of three basic elements:

1. A set of synapses or connecting links, each with its own strength or weight.

18 CHAPTER 2. BACKGROUND

Figure 2.1: Model neuron using a Summation Unit

2. 	 An adder , I:, that computes the weighted sum of the signals in the case of summa­

tion unit networks or a multiplier, TI, in the case of product unit neural networks

that performs weighted multiplication of the signals.

3. 	 An activation function that squashes the amplitude of the neuron to a finite range

if a bounded activation function is used or an infinite range when an unbounded

activation function, such as the identity function, is used.

In figure 2.1, the input signals are denoted by Zl, Z2, Z3, ... , Zj and Wjl, Wj2, Wj3, ... , Wjj

are the synaptic weights of neuron OJ, OJ is the output of neuron OJ, Zl, Z2, Z3, ... , Zj

are the input units and je) is the activation function. In this model an additional

input signal, Zl+l , fixed at -1 and synaptic weight, Wj,J+l, is added to the neuron to

represent the threshold, or bias. This additional unit is referred to as the bias unit.

A bias is added to the hidden and output units only. Neurons can be combined in

different ways to construct neural networks such as feed-forward, recurrent neural

networks, etc .

The next section discusses the different types of network architectures.

19 CHAPTER 2. BACKGROUND

2.10 Network Architectures

There are three basic classes of network structures, namely, single-layer, multilayer and

recurrent neural networks.

1. Single-layer feed-forward neural networks

A single-layer feed-forward neural network as defined by Haykin [Haykin 1994]

consists of an input layer of units that are connected to an output layer of

nodes. The input layer of nodes is not counted as a layer since no computation

is performed in this layer.

2. Multilayer feed-forward neural networks

Refer to figure 2.3 on page 23 for an illustration of a multilayer feed-forward neural

network with one hidden layer. A multilayer feed-forward neural network contains

at least one or more hidden layers situated between the input and output layers.

Neurons that occur in the hidden layer network are referred to as hidden units.

In a feed-forward neural network, links are unidirectional, and there are no cycles.

In a layered feed-forward neural network, each unit is usually linked to units in

the next layer, although direct connections between the input and output layers

are possible. There are no links between units in the same layer, and thus no com­

putational dependencies between units in the same layer. This allows the outputs

of these units to be computed in parallel. Also, no links point backwards to a

previous layer. The units in the input layer receive signals from the environment

and distribute the signals to the next layer in the network. The hidden layer(s)

enable a network to extract higher-order statistics and thus provides the network

with a global perspective, because of the extra set of synaptic connections and

the extra dimension of neural interactions [Churchland et al1992]. The output

20 CHAPTER 2. BACKGROUND

layer provides results of the network to the environment. Each neuron in the

network provides an output which is a weighted sum, in the case of summation

unit networks, or a weighted product of terms in the case of product unit neural

networks. A feed-forward neural network has no memory and the output is solely

determined by the inputs and synaptic weights.

3. 	 Recurrent Neural Networks (RNNs)

A recurrent neural network contains at least one feedback loop, where the

activations of the hidden units are fed as the network's inputs. The feedback

loops in recurrent networks have a profound impact on the learning capability

of the network and its performance when data exhibit temporal tendencies or

characteristics. Temporal learning is concerned with capturing a sequence of

patterns necessary to achieve some final outcome . . In temporal learning, the

current response of the network is dependent on previous inputs and responses.

Through the feedback connections, RNNs can learn temporal characteristics of

data presented for learning, thereby exhibiting properties very similar to short

term memory in human beings. Recurrent networks are dynamic in t.he sense

that their state is changing continuously until an equilibrium is reached. There

are different types of RNNs, namely, Jordan and Elman RNNs, as shown in

figure 2.2. In the Jordan RNN, the activation values of the output units are fed

back into the input layer through a set of extra inputs referred to as the state

units [Jordan 1986]. There are as many state units as there are output units in

the Jordan network. The connections between the output and state units usually

have a fixed weight of l. Learning takes only place in the connections between

input and hidden units as well as hidden and output units. In the Elman RNN

a set of context units are introduced, which are extra input units representing

activation values of the hidden units from the previous time step [Elman 1990].

21 CHAPTER 2. BACKGROUND

Thus the Elman RNN is very similar to the Jordan network except that the

hidden units, instead of the output units, are fed back.

Minsky and Papert also pointed out that every discrete-time recurrent net­

work can be represented by a feed-forward network with identical behaviour

[Minsky et al1969]. The Elman and Jordan RNNs can also be combined to ex­

ploit the benefits of both RNNs.

hidden

hidden
layer

unit

output
layer

layer

output
layer

(a) Jordan RNN (b) Elman RNN

Figure 2.2: Typical Recurrent Neural Networks

Neurons can be connected to neurons in the adjacent layers in various ways. In a fully

connected network every node in each layer is connected to every node in the adjacent

forward layer. A network is partially connected if some of its synaptic connections

I i S C; foAtLnw

~ I S 3'7 9 4~S

22 CHAPTER 2. BACKGROUND

are missing from the network. The neurons in a feed-forward neural network (FNN)

can also be combined to form higher-order networks. Examples of such higher-order

networks are pi-sigma [Ghosh et al1992], sigma-pi [Lee Giles 1987] and functional link

networks [Hussain et al1997, Pao 1989].

In the preceding section, the term architecture referred to classification of neural net­

works, i.e. single-layer FNNs, multilayer FNNs and RNNs. The term topology on the

other hand, refers to:

1. the network architecture,

2. the type of neurons, and

3. the connections between these neurons.

This thesis distinguishes between two types of units, i.e. summation and product units.

A summation unit (SU) computes the net input signal to a unit as a weighted sum,

i.e. ~{!f ZiVji· A product unit, however, calculates the net input signal as a product

of 'terms', where each 'term' comprises an input exponentiated to a weight value, i.e.

n{=l z~ji. In a feed-forward network the flow of signals is in the direction of the outputs,

with no feedback loops present. The architecture of a two-layer feed-forward network

is illustrated in figure 2.3 where Z, Y and 0 are respectively the input, hidden and

output layers.

The input signals to the network is denoted by Zi (1 :s; i :s; 1) where I denotes the

total number of input units (excluding the bias unit) to the network. The activation

or output of a hidden unit is denoted by Yj (1 :s; j :s; J) where J denotes the number

of hidden units (excluding the bias unit). The activation of an output unit is denoted

by Ok (1 :s; k :s; K), where K refers to the total number of output units in the network.

The weight between input unit Zi and hidden unit Yj is denoted by Vji, while Wkj

23 CHAPTER 2. BACKGROUND

Y1

ZI

0 1
0

Ok
0

ZI+I

VJ,I+l
YJ+l

Figure 2.3: Multilayer feed-forward Neural Network

denotes the weight between hidden unit }j and output unit Ok. The biases for the

hidden and output units are respectively denoted by Vj,I+1 and Wk,J+1' The biases

in the input and hidden layers have a constant input of -1; the inputs to the bias

units are denoted respectively by ZHI and YJ -H' The biases are trained in exactly

the same way as the other weights. The activation of hidden unit }j is calculated as

Yj = f(I:,{!l ZiVji), using summation units, or Yj = f(I1{=l z? + ZI+1 . Vj,HI) using

product units (if a bias is included for PUs).

The activation functions for the hidden units of summation unit networks should be

non-linear, in order to derive any benefit from the multilayer architecture over a single

layer network. Rumelhart et al have shown that everything that can be computed

by a multilayer network, using linear activation functions, can also be computed by

an equivalent single layer network [Rumelhart et al1986a]. The standard logistic

activation function is assumed for the summation unit neural networks. In this thesis

the activation functions for product unit neural networks are assumed to be linear.

The activation of unit Ok is calculated as Ok = f(I:,f~-i YjWkj) for both the summation

and product units. The network in figure 2.3 has only one hidden layer, but networks

24 CHAPTER 2. BACKGRDUND

can be constructed with any number of hidden layers.

The next section highlights the activation functions that can be used by neural networks.

2.11 Activation Functions

This section introduces the different types of activation functions that can be used with

neural networks. An activation function maps the net input signal of a neuron to an

output signal. Usually, activation functions are used to limit the amplitude of the output

of a neuron. Activation functions are also referred to as squashing functions because of

the squashing or limiting effect of most activation functions. All the activations listed

below, except the linear activation function are bounded. In this thesis the activation

functions will be denoted by f (-). Types of activation functions that are commonly

used are given below, where z is the net input of the unit.

• Threshold function

1 for z 2 0
J(z) = { (2.1)

0 for z < 0

• 	 Signum function

1 for z > 0

f(z) = 0 for z = 0 (2.2)

-1 for z < 0

• Ramp function

y for z 2 y

f(z) = z for Izl < y (2.3)

-y for z :S -y

• Sigmoid function

1
f(z) 	 (2.4)

1 + e-Q Z

25 CHAPTER 2. BACKGROUND

where a is the slope parameter of the sigmoid function.

• Hyperbolic tangent function

f (z) = tanh (~) (2.5)

• Linear activation function (or identity function)

J(z) z (2.6)

The threshold and sigmoid functions produce outputs in the range [0, 1]. Engelbrecht

et al showed that scaling data is not only time-consuming but can also introduce

inaccuracies in modelling of the data [Engelbrecht et alI995a]. Also, the maximum

and minimum ranges must be known when scaling is performed. These values are

difficult to obtain in incremental learning (refer to section 2.14 on page 34) systems,

since all training pairs are not available before training. When it is desirable to have

activation functions with output in the range -1 to +I, the activation function assumes

an antisymmetric form with respect to the origin, i.e. f(-a) = - f(a). Engelbrecht

et al highlighted the benefits of scaling the output to [-1,1] [Engelbrecht et al1995a].

The signum and hyperbolic tangent functions yield values in the range [-1 , 1].

Activation functions can further be classified as (a) discrete and (b) continuous acti­

vation functions. Examples of discrete activation functions are the threshold, signum

and ramp functions. The sigmoid, hyperbolic tangent and the identity function are

examples of continuous activation functions. Neural networks with no hidden layers

and linear or discrete activation functions can only solve problems that are linearly

separable [Aleksander et al1990]. A set of input vectors, Z = {Z'p : p = 1, ... , P} of

dimension I is linearly separable if there exists a set of non-zero constants Ci, resulting

in a hyperplane, specified below, that separates the set of input vectors into two disjoint

26 CHAPTER 2. BACKGROUND

sets,

I

LCiZ'i = 0 (2.7)
i=l

where Zi is the ith coordinate of the hyperplane.

Linear separability limits the neural network to classification problems where the sets

of points, corresponding to input values, can be separated geometrically. Non-linear

units have a higher representational power than ordinary linear units. Research has

shown that a network with a single hidden layer consisting of a sufficient number

of non-linear units can approximate any continuous function [Hornik et al1989a].

Neural networks could handle linearly inseparable functions with the discovery of the

back-propagation algorithm [Werbos 1974]. Back-propagation, however, requires that

the activation function must be continuous and differentiable to enable weight update

calculations.

2.12 Learning Paradigms

This section presents a short overview of early learning paradigms. The four basic

training or learning rules, namely error-correction, Hebbian, competitive and stochas­

tic/probabilistic learning rules are discussed in the following sections.

2.12.1 Error-Correction Learning Rule

The aim of the error-correction rule is to minimize a cost function based on an error

signal. When a pattern (a vector), Zp is presented to the network's input layer,

a corresponding output, Ok,p is produced by the network at the kth output unit, Ok.

Usually, the actual response Ok ,p of output unit Ok is different from the desired response,

tk,p' An error signal can now be defined, which is usually the difference between the

27 CHAPTER 2. BACKGROUND

target and actual output. The error correction learning rule for a single layer network,

assuming linear activation for the output units, is given by,

(2.8)

where 7] is the learning rate and I:!..Wki is the adjustment to weight, Wki, between in­

put unit Zi and output unit Ok [Widrow et al1960j. The synaptic weights are subse­

quently adjusted so that the resulting error signal is minimized. Once a cost function

is selected, then error-correction learning can be viewed as an optimization problem.

More precisely, the error-correction learning process can be viewed as a <search' in a

multidimensional parameter (weight) space, which gradually optimizes a pre-specified

objective (criterion) function [Hassoun 1995]. A criterion commonly used for the cost

function is the mean-squared-error criterion, defined as:

(2.9)

where P is the total number of training patterns (or observations), K is the number of

outputs, tk,p is the target output for the kth output unit for a specific pattern p, and Ok,p

is the actual output generated by the kth output unit for pattern p. The error is a sum

of P errors computed for single patterns. The fraction, ~, is a matter of convenience

and simplifies the calculation of the derivative of the error with respect to a weight in

back-propagation by gradient descent.

2.12.2 Hebbian Learning

Hebb's postulate of learning is the oldest and most famous of all learning rules, stated

as [Rumelhart et al1986a]:

«When unit A and unit B are simultaneously excited, increase the strength

of the connection between them."

28 CHAPTER 2. BACKGROUND

An extension to this rule to cover the positive and negative activation values is,

"Adjust the strength of the connection between units A and B in proportion

to the product of their simultaneous activation."

According to Hebb's postulate, the adjustment applied to the synaptic weight Wki that

links unit Zi with unit Ok at time t is expressed by the following function:

(2.10)

where F is a function of both the input and the output of unit k . The following is a

special case of the above,

(2 .11)

where 1] is a positive constant that determines the rate of learning. Equation (2.11)

is the simplest rule for a change in the synaptic weight Wki. It is sometimes referred

to as the activity product rule [Haykin 1994]. The rule states that if the crossproduct

of output and input is positive, then weight Wki is increased, otherwise the weight is

decreased. It can also be proved that if the set of input patterns used in training are

mutually orthogonal, then association can be learned by a two-layer pattern network

using Hebbian learning. However, if the set of input patterns are not mutually or­

thogonal , interference may occur and the network may not be able to learn associations.

The basic Hebbian learning rule in equation (2.11) is fundamentally unstable, since the

weights reveal an unlimited growth during the learning process. Stabilization of the

Hebbian rule is achieved by Oja's rule, assuming a single output neuron, in (2.12),

!::::.Wi(t) = 1]. o(t) . (Z'(-t) - o(t) . w(t)) (2.12)

In Oja's rule the negative term brings in the required stabilization of the learning law

[Hassoun 1995].

29 CHAPTER 2. BACKGROUND

2.12.3 Competitive Learning

In competitive learning the output units of a neural network compete against each

other for the 'right' to represent the input data on a winner takes all basis. In a winner

take all circuit, the output unit receiving the largest input is assigned a full value (e.g.

1), whereas all other units are suppressed to a zero value. Therefore, in the case of

competitive learning, using a single layer network, only a single output unit is active

at anyone time, compared to Hebbian learning, where several output units may be

active simultaneously.

There are three basic elements to a competitive learning rule [Rumelhart et at 1985].

1. 	 A set of units that are the same except for some randomly distributed synaptic

weights, which makes each of the units respond differently to a given set of input

patterns.

2. 	 A limit is imposed on the strength of each unit.

3. 	 A mechanism that allows the units to compete for the right to respond to a given

subset of inputs, such that only one output unit is active at a time. All the units

that lose the competition are regarded as being inactive.

In competitive learning, individual units learn to specialize on sets of similar patterns

and thereby become feature detectors. In order to ensure a fair competition, the sum

of all the weights linked to all the output nodes should be normalized. If Wki denotes

the synaptic weight connecting input node Zi to output node Ok, then

1

LWki = I, for all k 	 (2.13)
i=l

A neuron learns by shifting synaptic weights from its inactive to active input nodes or

neurons. If a neuron does not respond to a particular input pattern, no learning takes

30 CHAPTER 2. BACKGROUND

place in that neuron. If a particular neuron wins the competition, then each input

node of that neuron gives up some proportion of its synaptic weight, and that weight

is then distributed equally among the active input nodes. According to the standard

competitive learning rule, the change tJ.Wki applied to synaptic weight Wki is defined by

_ { T}' (Zi - Wki) if neuron k wins the competition
tJ.Wki - (2.14)

o if neuron k loses the competition

where T} is the learning rate parameter [Zurada 1992]. The effect of the rule is to move

the weight vector Wki of winning neuron k towards the input pattern Zi. The number of

classes that a competitive network is capable of representing is limited to the number

of nodes in the output layer.

2.12.4 Stochastic Learning

Stochastic learning is characterized by an energy function E. In the case of simulated

annealing, the energy function is defined as E(t) = ~r:= lEk = ~:=l(tp,k(t) - Op,k(t))2.

The stochastic learning procedure consists of the following steps [Rojas 1996]:

1. 	 The output value of a hidden layer neuron is changed randomly.

2. 	 The change in energy is evaluated, i.e tJ.E(t + 1) = E(t + 1) - E(t). If the en­

ergy is lower than the energy of the previous state, then the change is accepted,

meaning that the current configuration is accepted, otherwise the change is ac­

cepted according to a predefined probability distribution. In the case of simulated

annealing the change is accepted with a certain probability, given by P ,

-(Et+ l-Etl)
P 	= e(

KT (2.15)

where E t is the energy at time t, T denotes the temperature and K is the Boltz­

mann constant.

31 CHAPTER 2. BACKGROUND

3. 	 Applying the above will eventually result in the network becoming stable, i.e. the

network will converge.

4. 	 Steps 1 to 3 are repeated for each input-target pair in the data set. The output

is used to statistically adjust the weights.

5. 	 Steps 1 to 4 are repeated until the network performance is adequate as defined by

an acceptance criterion. Simulated annealing is terminated when the acceptance

ratio drops below a certain preset value, or when the temperature reaches zero.

Also, for simulated annealing a cooling schedule defines the rate at which T is

reduced , and hence the probability of accepting a new weight vector with a higher

energy than current. The most common cooling law uses a geometric decrement

function first proposed by Kirkpatrick et al [Kirkpatrick et al1983]:

Tk 	= a· Tk- 1 (2.16)

where a is a constant usually chosen in the range (0.8, l.0).

The ability of these networks to probabilistically accept higher energy states, despite

poorer performance as reflected by the increase in energy, allows these networks to

escape local energy minima in favour of a deeper energy minimum. The Boltzmann

machine was the first neural network to employ stochastic learning [Ackley et al1985].

This technique was also applied in simulated annealing where a temperature param­

eter slowly decreases the number of probabilistically accepted higher energy states

[Kirkpatrick et al1983j.

The following section discusses the three classes of learning paradigms.

32 CHAPTER 2. BACKGROUND

2.13 Learning Paradigms

There are basically three learning paradigms, namely supervised, unsupervised and

reinforcement learning. These paradigms are discussed in this section.

2.13.1 Supervised Learning

In supervised learning, a supervisor (or teacher) provides the network with an input

pattern and the associated target, or desired response. The difference between the actual

output of the network and the target output serves as an error measure and is used in

correcting synaptic weights. The weights are adjusted gradually, by updating them at

each step of the learning process so that the error between the network's output and

corresponding desired output is reduced. This adjustment is carried out iteratively in a

step-by-step fashion with the aim of eventually making the neural network emulate the

teacher. Since adjustable weights are assumed, the teacher may implement a reward­

and-punishment scheme to adapt the network's weights [Zurada 1992]. This type of

learning is also known as reinforcement learning. Supervised learning rewards accurate

classifications or associations and punishes those that yield inaccurate responses. The

reward or punishment is based on the teacher's estimate of the negative error gradient

direction. An example of supervised learning is error-correction learning, of which

gradient-descent by back-propagation is an example.

2.13.2 Unsupervised Learning

Unsupervised learning, also referred to as self-organization, requires no target or desired

outputs and relies only upon local information during the entire learning process. Error

information cannot be used to improve network behaviour, since the desired response is

not known. \Vith no information being available as to the correctness or incorrectness of

responses , learning must somehow be accomplished based on observations of responses

33 CHAPTER 2. BACKGROUND

to inputs that the neural network has little or no knowledge about. The task of un­

supervised learning is to learn to group together patterns that are similar of a given

training set. In this mode of learning, the network must discover for itself any possi­

bly existing patterns, regularities, separating properties, etc. [Kohonen 1988b]. While

discovering these, the network undergoes change of its parameters, which is referred to

as self-organization. Examples of unsupervised learning are Kohonen's self-organizing

feature maps and Hebbian learning [Kohonen 1988b] .

2.13.3 Reinforcement Learning

Reinforcement learning is similar to error correction learning in that weights are

reinforced for properly performed actions and punished for poorly performed actions.

The difference between the two types of learning is that error correction learning

utilizes more specific error information by using the error values at each output unit,

while reinforcement learning uses non specific error information to determine the

performance of the network. In error correction learning an entire vector of values is

used for error correction, whereas only one value is used to describe the output layer's

performance during reinforcement learning. This form of learning is ideal in areas such

as prediction and control where specific error information is not available, but overall

performance is [Barto 1992].

This thesis concentrates on supervised learning.

2.14 Modes of Learning

Mode of learning refers to the type of weight adjustment implemented during training.

Weights can be updated in two ways, namely batch and on-line modes.

34 CHAPTER 2. BACKGROUND

• Batch learning

In batch, or off-line learning, weight changes are done only after the entire training

set has been presented to the network. Weight changes for each presented pattern

are therefor accumulated and updated after each epoch. An epoch is one complete

presentation of the entire training set during the training process. In off-line

learning, once the network has been trained and enters recall mode (i.e. when

the network is in operation) the weights are fixed and not modified at all. All the

patterns must be resident for training in off-line training systems with the result

that new patterns cannot automatically be incorporated into the system as they

occur. To include new training patterns, it must be added to the entire training

set and the network must be re-trained. Off-line training provides a more accurate

estimate of the gradient vector even though it requires more storage space than

on-line training [Haykin 1994] .

• On-line learning

In on-line, or incremental learning the weights are adjusted after each pattern is

presented to the network. Once the network has been trained and enters recall

mode, the weights are fixed and not modified at all. The advantage of on-line

learning is that it requires less storage space than batch training.

This thesis assumes on-line learning.

The next section discusses the different performance measures used in training neural

networks.

35 CHAPTER 2. BACKGROUND

2.15 Performance Measures

This section discusses the various training errors that are used in training neural net­

works. All supervised training algorithms involve the reduction of an error value. When

weights are adjusted in a single training step, the error to be reduced is usually com­

puted for a single pattern presented at the input layer. However, the prediction error of

the neural network must be computed using the entire set of training patterns in order

to assess the quality and success of the training process [Zurada 1992].

2.15.1 True Error versus Empirical Error

During training of a NN a finite set of input-target pairs D = {dp = (~,~) I p =

I, ... , P}, sampled from a stationary density O(D), is used where Zi,p is the value of

input unit Zi and tk,p is the target value of output unit Ok for pattern p. The target

can be expressed as a function of the input vector, i.e.

(2.17)

where p,(i) is the unknown function approximated by the network. The objective of

learning is then to approximate the unknown function using the information contained

in the finite data set D. Since prior knowledge about O(D) is usually not known, a

non-parametric regression approach is used by the NN learner to search through its

hypothesis space 7-{ for a function FNN(D, W) which gives a good estimation of the

unknown function p,(Z) , where FNN(D, W) E 7-{ . In the case of multilayer NNs, the

hypothesis space consists of all functions realizable from the given network architecture

as described by the weight vector W.

The function FNN : RI RI(is found which minimizes the empirical error, ---t

(2.18)

36 CHAPTER 2. BACKGROUND

where PT is the total number of training patterns. Hopefully, a small empirical error

will also yield a small true error, defined as

(2.19)

The empirical error in equation (2.18) is usually referred to as the objective function.

Prediction errors are mainly defined as:

• Sum-squared-error (SSE)

The sum-squared-error is computed over the entire training cycle and is expressed

as a quadratic error,

(2.20)

where P is the total number of training patterns (or observations), K is the

number of outputs, tk ,p is the target output for the kth output unit for a specific

pattern p, and Ok,p is the actual output generated by the kth output unit for

pattern p. The error above reflects the accuracy of the neural network mapping

after a number of training cycles have been completed. The SSE is not very

useful when comparing networks with different numbers of training patterns and

having a different number of output units. If a large training set is used to train

different networks that contain the same number of output units, a large SSE will

be produced due to the large number of terms in the summation, while a smaller

training set will produce a smaller SSE. Similarly, networks with a large number

of output units trained using the same training set would usually also produce

large SSE errors .

• Root-mean-squared error (RMS)

(2.21)

37 CHAPTER 2. BACKGROUND

The value has the sense of a root-mean squared normalized error, and is more

descriptive than, ESSE, when comparing the outcome of the training of different

neural networks among each other [Zurada 1992] .

• Mean-squared-error (MSE)

(2.22)

A more adequate error measure is given by the root-mean-squared error and the

mean-squared-error, since they have no bias towards networks with fewer output units,

or networks trained on fewer patterns.

The following section discusses the minimum number of hidden layers that are required

to approximate continuous functions using feed-forward neural networks.

2.16 	 Approximation Capabilities of Feed-Forward

Neural Networks

Cybenko proved that a feed-forward neural network with 1 hidden layer and a sufficient

number of hidden units, of the sigmoidal activation type, and a single linear output

unit is capable of approximating any continuous function, {f : Rn ---+ R} to any desired

accuracy [Cybenko 1969]. Rigorous mathematical proofs for the universality of feed-

forward layered neural networks employing continuous sigmoid activation functions as

well as other more general activation functions were also given independently by F\.l­

nahashi [Funahashi 1989] and Hornik et al [Hornik et al1989b]. The universality of

single-hidden-layer nets with units having non-sigmoidal activation functions was for­

mally proved by Stinchcombe and White [Stinchcombe et al 1989]. Baldi showed that a

large class of continuous multivariate functions can be approximated by a weighted sum

38 CHAPTER 2. BACKGROUND

of bell-shaped functions, referred to as multivariate Bernstein polynomials [Baldi 1991].

Baldi also proved that a single-hidden-layer network with bell shaped activation func­

tions in the hidden layer and a single linear output unit is a possible approximator of

functions f : Rn -> R. Similarly, Hornik proved that a sufficient condition for universal

approximation can be obtained by using continuous) bounded) and non-constant hidden

unit activation functions [Hornik et al1989b]. Li et at proved that higher-order neural

networks can approximate any continuous function on a compact set with an arbitrary

degree of accuracy, provided that the activation function belongs to the complex do­

main [Li et al1996]. A single-hidden-layer neural network would thus be adequate to

approximate the continuous functions in this thesis, provided that a sufficient number

of hidden units are included.

2.16.1 Generalization

The objective of back-propagation is to train a network, using as many patterns as

possible, that will subsequently produce correct (or nearly correct) output for input

patterns that were not presented to the network during training. For a given input­

target pair, (,;" t~), the output o~, produced by the trained network when presented

with z~ as input, is correct if lit;, - opll = 0, or nearly correct if lit;, - opll ::; E, where

E > 0 is an arbitrary small number. A network that does achieve the preceding ob­

jective, is said to generalize well. Although enough information is crucial to efFective

learning, too large training set sizes may also be of disadvantage to generalization per­

formance and training time [Engelbrecht et al1999d, Lange et al1996, Zhang 1994].

The learning process may be visualized as a "curvefitting" problem, where the network

itself may be considered as a nonlinear input-desired-output mapping [Haykin 1994].

This viewpoint allows generalization of neural networks to be looked at as the efFect

of a good nonlinear interpolation of the input data [Wieland et al1987]. The network

39 CHAPTER 2. BACKGROUND

performs useful interpolation simply because multilayer perceptrons with continuous

activation functions lead to output functions that are also continuous [Haykin 1994]. A

neural network that generalizes well will produce a correct input-output mapping even

in cases where the input is slightly different from the patterns of the training set. A

network is said to be overtrained if too many weights were used in training the network,

resulting in the network to accurately memorize the training data, but not generalizing

well on similar input-output patterns. Generalization is influenced by three factors:

1. 	 The size and relevance of the training set.

2. 	 The architecture of the network.

3. 	 The complexity of the problem to be solved.

Hush and Horne viewed the problem of generalization from two different perspectives

regarding the first two factors [Hush et at 1993],

• 	 by fixing the architecture of the network and then to determine the size of the

training set needed for good generalization, or

• 	 by fixing the size of the training set and then determine the best architecture that

results in good generalization.

2.17 Architecture Selection

One of the most important problems encountered in the practical application of

neural networks is to find a suitable, or ideally minimal, neural network topology

that accurately maps the true function described by the training data. An unsuitable

topology increases the training time or even causes non-convergence, and is likely to

decrease the generalization capability of a network [Ghosh et at 1994]. An oversized

network (too many training units) can lead to overfitting, while a network with too few

40 CHAPTER 2. BACKGROUND

training units can lead to underfitting [Baum et al1989, Le Cun 1989]. Overfitting

occurs when the network (memorizes' the training patterns, including all of their

peculiarities resulting in a network that does not generalize well. In both over and

underfitting the network fails to approximate the true mapping between the inputs

and desired outputs. Architecture selection has to reduce network complexity while

maintaining good generalization. The objective of training is that the network should

only learn the general properties of the examples.

Architecture selection approaches are grouped into the following four classes.

1. 	 Brute Force Pruning

Successively smaller networks are trained until the smallest network with the

best generalization is found. This approach is time-consuming and prohibitive

for large networks, since the search space explodes as the weights are increased

[Moody et al1996].

2. 	 Network Growing

With network growing, a small network configuration is used initially, and new

neurons are added only when the performance is unsatisfactory. Network grow­

ing algorithms start training with a small network and incrementally add hid­

den units during training when the network is trapped in a local minimum

[Hirose et al1991, Kwok et al1995, Zhang et al1997]. This process of adding

units is stopped when a satisfactory performance of the network is attained. Ex­

amples of the network growing approach are the cascade-correlation learning ar­

chitecture developed by Fahlman and Lebiere [Fahlman et al 1990], the upstart

algorithm of Frean [Frean 1990] and the pocket algorithm developed by Gallant

[Gallant 1986].

41 CHAPTER 2. BACKGROUND

3. Network Pruning

With network pruning, training commences with an oversized network that yields

an adequate performance for the problem under consideration, but possibly

overfits the training data. The network is pruned by removing redundant or

excess parameters, i.e. weights, hidden and input units, in a selective and orderly

process to produce smaller networks [Le Cun et al1990, Sietsma et al1988] .

Small networks are usually faster and generalize better than large networks

[Reed 1994]. The aim of pruning is therefor to solve the problem of overfit­

ting and to reduce the computational cost of training and using the network

[Le Cun et al1990j. The various pruning algorithms use differen t criteria to

identify irrelevant parameters that must be removed. The decision to prune

a network parameter is based on some measure of parameter relevance or

significance. A relevance is computed for each parameter and a pruning heuristic

is used to decide when a parameter is pruned or not.

Optimal Brain Damage (OBD), developed by Le Cun et al [Le Cun et al1990],

uses the criterion of minimal increase in training error for weight elimination.

OBD can only prune network weights. The goal of OBD is to find a set of

weights that, when deleted, would cause the least increase in the training error.

Le Cun et al defined the saliency of a parameter as the change in the error caused

by deleting that set of weights. A strategy was employed to delete weights with

low saliency [Le Cun et al1990j. The saliency when the weight vector, W, is

perturbed is computed as follows,

8E = 2:g 8w + ~2:.h8w2 + ~2:h. ·8w8w· + O(118WI1 2
) (2.23)

'-'2 2 2 2 2 22 2 2 2,J 2 J

where the 8Wi's are the components of 8vll, gi are the components of the gradient

of E with respect to vll, i.e. g., = g.! and the hij are the elements of the Hessian

42 CHAPTER 2. BACKGROUND

matrix (H). Second order derivatives of the error with respect to the weights, which

are computationally complex due to t he size of the Hessian matrix (H), where each

hij = a!:!j' are required for the computation of the saliency. In OBD, pruning

is done on a well trained network, hence the first term in equation (2.23) will be

approximately zero, since E is at a minimum. Also, for small perturbations of

the weights the last term will be negligible. For computational simplicity, OBD

assumes that the off-diagonal elements of the large Hessian matrix are zero; thus

the third term evaluates to zero. Equation (2.23) then simplifies to,

-E-h-·tSw (2.24)tSE ~ 2
1

,n ,
2

An efficient way of evaluating the diagonal second order derivatives hi" was derived

using a fast back-propagation method. The saliency of weight Wi is then,

(2.25)

A drawback of OBD is that it does only prune network weights and not units.

However, if all the weights leading to, or emanating from a unit are pruned, that

unit can be pruned also.

Optimal Cell Damage (OCD) was developed to extend OBD to allow pruning of

input and hidden units [Cibas et al1996].

Hassibi and Stork have discovered that Hessian matrices, for the problems that

they considered, were all strongly non-diagonal, resulting in OBD to eliminate

the wrong weights [Hassibi et al1994]. Optical Brain Surgeon (OBS) was

developed by Hassibi and Stork as an extension of OBD to remove the restrictive

assumption about the (diagonal) form of the Hessian. The typical slow retraining

43 CHAPTER 2. BACKGROUND

by back-propagation of the network after pruning required by OBD was also not

required in OBS, since OBS not only removed the irrelevant weights, but also

adjusted the remaining weights automatically to minimize the error. OBS, like

OBD prune network weights, but the same technique can be applied to prune

network units. Disadvantages of OBS are, (a) OBS is computational intensive

due to the calculation of the large Hessian matrix and (b) it also requires large

storage space for intermediate results.

Skeletonization, developed by Mozer and Smolensky, defined a measure of the

relevance of a unit as the error when the unit is removed from the network

minus the error when the unit is left in the network [Mozer et al1989]. The

least relevant units can then be removed to construct a skeleton version of the

network. The usual sum of squared errors was used for training, however, since

the quadratic error provided a poor estimate of relevance if the output pattern is

close to the target, a linear error function, i.e. E = ~Itk,p - ok,pl, was used to

measure relevance. Skeletonization pruned network units only, but it can also be

applied to prune network synaptic weights [Mozer et al1989].

Zurada et al developed a sensitivity analysis tool which can be applied to a trained

neural network in order to automatically identify all input parameters which have

a significant influence on anyone of the possible outcomes [Zurada et al1997].

Sensitivity analysis thus provides a tool to automatically identify all relevant

input parameters from a set of potential parameters. The irrelevant parameters

can then be pruned using the significance measures obtained from the sensitivity

analysis tool.

44 CHAPTER 2. BACKGROUND

Engelbrecht et al developed a pruning algorithm where the sensitivity of

the output of the network to small changes to the parameters is used to

identify irrelevant parameters [Engelbrecht et al1999b, Engelbrecht 2001],

compared to OBD where the sensitivity of the objective function is used.

Engelbrecht's algorithm prunes both input and hidden units, and can be

adapted to prune weights also. Engelbrecht also developed a computationally

efficient pruning heuristic based on variance analysis of sensitivity information

[Engelbrecht et al1999c, Engelbrecht 2001j. This algorithm utilizes first-order

derivatives, which are already calculated during training. Thus Engelbrecht's

algorithm is not as computational intensive as OBD and OBS. The only assump­

tions are that the network must be well trained and that the activation function

must at least be once differentiable.

4. 	 Complexity Regularization

In regularization a penalty term is added to the objective function to penalize all

the weights. This augmented function then serves as the objective function to

be minimized [Poggio et al1990, VVeigend et al1991j. The objective function is

expressed as

(2.26)

where ~T is the standard performance measure and ~c is the complexity term

[Cirosi et al1995, Shittenkopf et al1997, Weigend et al1991]. The regulariza­

tion parameter ,\ controls the influence of the penalty term. If,\ is zero, then

the penalty term will have no effect. A too large ,\ will drive all weights to zero.

Regularization requires a delicate balance between the normal error term and the

complexity term. In complexity regularization the redundant synaptic weights

are forced to take on values close to zero, while permitting other weights to retain

45 CHAPTER 2. BACKGROUND

their relatively large values. This improves generalization of the resulting net­

work. Examples of regularization are weight-decay [Hinton 1987] and the weight­

elimination procedures [Weigend et al1991]. A disadvantage of regularization is

that the complexity terms tend to create additional local minima, thus increasing

the possibility of converging to bad local minima [Hanson et al1989]. Training

time is also increased due to the extra calculations required during updating of

the weights.

2.18 Back-propagation

Back-propagation, also referred to as backprop, is probably the most widely applied

neural network learning algorithm. Backprop's popularity is related to its ability to

deal with complex multi-dimensional mappings. The feed-forward, back-propagation

architecture was discovered independently in the early 1970's by Werbos and Bryson

[Bryson et al1969, Werbos 1974]. It was re-discovered and popularized by Rumelhart

in the 1980's [Rumelhart et al1986b]. A generalization of the back-propagation

algorithm was derived by Parker in 1985 [Parker 1985]. Its greatest strength is in

finding non-linear solutions to ill-defined problems [Haykin 1994] . Although the

back-propagation algorithm did not provide a solution for all solvable problems it has

put to rest the pessimism about learning in multilayer networks that may have been

inferred from the book by Minsky and Papert [Minsky et al1969]. Back-propagation

provides a computationally efficient method for changing the weights in a feed-forward

network, with differentiable activation function units, to learn a training set of input

and desired-output examples. Back-propagation multilayer neural nets have been

applied successfully to solve some difficult and diverse problems such as speech

recognition [Cohen et al1993], handwritten character recognition [Guyon 1990],

steering of an autonomous vehicle [Pomerlau 1989], medical diagnosis of heart attacks

46 CHAPTER 2. BACKGROUND

[Harrison et al1991]' radar target detection and classification [Haykin et al1992]' and

many more.

The next section discusses the back-propagation algorithm.

2.18.1 Overview of Back-propagation

The discussion of back-propagation assumes that the multilayer network in figure 2.3 on

page 23, consisting of an input, a hidden and an output layer, is fully connected, which

means that a neuron in the second or third layer of the network is connected to all

neurons in the previous layer. Back-propagation uses gradient descent as optimization

algorithm. The process of back-propagation consists of two distinct phases, namely, (a)

the forward phase and (b) the backward propagation phase .

• 	 Phase 1: Forward Phase

During the forward phase, a pattern, p, presented at the input layer of the network

results in signals to be propagated through to the hidden units . An activation

signal is computed for each hidden unit and then propagated through to the

next layer, which is either another hidden layer or the output layer. Eventually,

the activation of the output units are calculated. The output layer provides the

response of the network for a given input pattern, p. The actual output for pattern

p at output unit Ok is denoted by Ok,p and the desired output of Ok is denoted by

tk,p' The error signal for each output unit, Ok, for a given pattern, p, is computed

as the difference between the desired and the actual output, i.e. tk,p - Ol." p'

• 	 Phase 2: Backward Propagation Phase

In the backward pass, which starts at the output layer, the error computed in the

forward pass is propagated backwards through the network, layer by layer, and

the (j, i.e. the local error or gradient, for each neuron is computed recursively. For

47 CHAPTER 2. BACKGROUND

a neuron in the output layer, the local error is simply equal to the error signal

of this neuron, tk,p - Ok,p, multiplied by the first derivative of the output of this

neuron with respect to the neuron's net input. For a neuron in the hidden layer,

the local error equals the product of the associated derivative f' (netyJ and the

weighted sum of the error signals (i.e. 8's) computed for the neurons in the output

layer that are connected to neuron Yj. The objective of the learning process is to

adjust the weights of the network so as to minimize the error, E = ~:~l Ep and

Ep = ~ ~{~l (tk,p - Ok,p)2, where p refers to a specific pattern, and k refers to the

kth component of the output vector. For notational convenience, the subscript p

is dropped from subsequent equations. The adjustment of weights are computed

as follows,

8E
~V " -'1]- (2.27)Jt 8vJt

8E
~Wkj = -'1]-- (2.28)

8W kj

where 'I] is a constant that determines the rate of learning, Vji is the weight

between input unit Zi and hidden unit Yj and Wkj is the weight between hidden

unit Yj and output unit Ok.

The learning rate has a profound impact on the convergence of the back-

propagation algorithm, as is discussed in the following section.

The weights can be updated using on-line or off-line modes of learning. In the

on-line or incremental update mode the weights are updated after the presentat ion

of a single pattern to the network. In the off-line or batch mode, weight updating

is performed after all the training examples that constitute an epoch have been

http:1]--(2.28
http:1]-(2.27

48 CHAPTER 2. BACKGROUND

presented to the network. Finnofi' showed that for "very small" learning rates, on-line

back-propagation approaches batch back-propagation, producing essentially the same

results [Finnofi' 1993aj.

The on-line mode is preferred over the batch mode for the following two reasons:

1. 	 On-line training requires less storage, and

2. 	 With on-line training, the patterns are presented in a random manner, thus mak­

ing the search in weight space stochastic in nature, which in turn makes it less

likely for back-propagation to be trapped in a local minimum.

2.18.2 The Effect of the Learning Rate

The efi'ectiveness and convergence of back-propagation training depend significantly

on the learning rate. A good initial learning rate can speed up the training of a neural

network. A small learning rate will result in slow convergence due to the large number

of update steps required to reach a local minimum. Thus, the smaller the learning rate,

the smaller will the changes to the synaptic weights in the network be from one iteration

to the next. If the learning rate parameter is too large, the resulting large changes in

the weights cause the network to produce oscillations between relatively poor solutions,

or it may jump over the global minimum and end in a weaker local minimum. It is

desirable to have large steps when the search point is far from a minimum, which are

decreased as the search approaches a minimum. For small constant learning rates there

is a nonneglible stochastic element in the training process that allows the search to

escape local minima with shallow basins of attraction [Hassoun 1995]. The danger of

a learning rate that is too small may still cause the search to be trapped in local minima.

49 CHAPTER 2. BACKGROUND

Many heuristics have been proposed so as to adapt the learning rate automatically.

Sutton presented a method that increases or decreases the learning rate for each weight

Wi according to the number of sign changes observed in the associated partial deri vati ve

~! [Sutton 1986]. Franzini investigated a technique that heuristically adjusts the

learning rate, increasing it whenever \1E(t) is close to \1 E(t - 1) and decreasing it

otherwise [Franzini 1987]. Chan and Fallside proposed an adaptation rule for the

learning rate that is based on the cosine of the angle between the gradient vectors

\1E(t) - \1E(t - 1) [Chan et al1987]. Silva and Almeida used a method where the

learning rate parameter for a given weight Wi is multiplied by factor a, where a > 1,

if a:~:) and aE~:~l) have the same sign; if the partial derivatives have different signs,

then the learning rate parameter is multiplied by b, where 0 < b < 1 [Silva et al1990].

The disadvantage of Silva and Almeida's method is that it introduced two extra

parameters. Moreira also employed adaptive learning rates and showed that the

adaptive learning rates can compensate for a bad initial value [Moreira et al1995].

Haffner et al propose a learning rate 77 = e-4.Zog (s)+c for a sigmoid activation function

of the form f(neti) = l+e
s

neti. Unfortunately, they do not compare their approach

to others, neither give details (the constant c is not precisely given) [Haffner et al 1988].

The local minima problem can be eased by adding noise to the weights

[Von Lehman et al1988] or by adding noise to the input patterns [Sietsma et al1988].

Convergence in back-propagation can also be increased by using a momentum term,

which is discussed in the following section.

2.18.3 The Effect of Momentum on Back-propagation

A momentum term is used to stabilize the weight change by making nonradical re­

visions using a combination of the gradient decreasing term with a fraction of the

50 CHAPTER 2. BACKGROUND

previous weight change. A momentum term was first introduced by Rumelhart et at

[Rumelhart et at 1986b] , where weight changes are calculated as

where the momentum constant, a, is restricted to the range 0 :S a < 1. The effect of

a on 6Vj 'i (t) in equation (2.29) is described below:

• 	 When ex is zero, the back-propagation algorithm operates without momentum.

• 	When tV~i has the same algebraic sign on consecutive iterations, then the ad­

justment 6Vji grows in magnitude, and the weight is adjusted by a large amount.

Thus, the inclusion of the momentum term tends to accelerate descent in steady

downhill directions, instead of fluctuating with every change in the sign of the

associated partial derivative, tV~i'

• 	 When tv~i has opposite algebraic signs on consecutive iterations, then the ad­

justment 6Vji shrinks in magnitude, resulting in the weight being adjusted by a

small amount. Thus, the effect of the momentum term has a stabilizing effect in

directions that oscillate in sign.

Adaptive momentum rates may also be employed. Fahlman proposed, and extensively

simulated, a heuristic variation of backprop, called quickprop, that employs a dynamic

momentum rate given by [Fahlman 1989] :

BE

a(t) = Bw;(t)
BE BE

BWi(t-l) + OWi(t)

(2.30)

With this adaptive a(t) substituted in equation (2.29), if the current slope is per­

sistently smaller than the previous one but has the same sign, then a(t) is positive,

and the weight change will accelerate. Thus the acceleration rate is determined by

magnitude of successive differences between slope values. If the current slope is in the

51 CHAPTER 2. BACKGROUND

opposi te direction from the previous one, it signals that the weights are crossing over

a minimum. In this case a(t) has a negative sign, and the weight change starts to

decelerate.

The momentum term may also have the benefit of preventing the learning process

from terminating in a shallow local minimum on the error surface [Haykin 1994]. The

net effect of momentum is that of traversing flat error surfaces quickly, while moving

slower when the surface becomes irregular.

The next section discusses the on-line implementation of back-propagation applied to

SUNN.

2.18.4 On-line Implementation of Back-propagation

1. 	 Initialization

Choose a reasonable network configuration and set all weights including biases to

small random numbers.

For each pattern in the set, perform processes listed in 2 and 3 below.

2. 	Forward Phase

The input vector Z, is presented to the input layer of the network, and the target

vector, ~ to the output layer of the network. The activation values are then

computed for the hidden and output units, respectively. The activation value for

a summation hidden neuron is calculated as,

1+1

fC'£Vji Z',) 	 (2.31)
i=l

52 CHAPTER 2. BACKGROUND

while the activation value for the kth neuron of the output layer is computed as,

J+1

Ok = fCLJ WkjYj) (2.32)
j=l

The error signal, i.e. the difference between the desired response tk and the

networks output Ok, is subsequently computed:

(2.33)

3. Backward propagation phase

The local gradients (or errors) of the network, i.e. o's, are computed by proceeding

backward layer-by-layer. For a neuron in the outer layer, OOk is computed using,

(2.34)

For a neuron in the hidden layer, Oyj is computed using,

K

0Yi = f'(net yj)' LOOk' Wkj 	 (2.35)
k=l

Subsequently, the weights in the output layer are adjusted with,

(2.36)

and the weights in the hidden layer are adjusted with,

(2.37)

4. 	 Iteration

Repeat the process listed in 2 to 4 by presenting all the patterns in the training

set repetitively until the weights of the network stabilize their values and the

average error computed over the entire training set is acceptable.

The next section discusses the stopping criteria for the back-propagation algorithm.

53 CHAPTER 2. BACKGROUND

2.18.5 Terminating criteria

In general, it cannot be shown that the back-propagation algorithm converges, nor are

there well defined criteria for stopping its operation. However, reasonable criteria do

exist, each with its own practical merit, which may be used to teminate the back­

propagation algorithm [Haykin 1994].

The back-propagation algorithm is considered to have converged, when any of the fol­

lowing becomes true:

1. 	 When the Euclidean norm of the gradient vector reaches a sufficiently small gra­

dient threshold [Kramer et al1989].

2. 	 When the absolute rate of change in the average squared error per epoch is suffi­

ciently small.

3. 	 If the maximum value of the average squared error on the test set is equal to or

less than a sufficiently small threshold.

4. 	 When the generalization performance, tested after each learning iteration, is ad­

equate, or when it is clear that the generalization performance has peaked.

5. 	 When the network starts to overfit, i.e. when

~v 	> ~v + 6~v (2.38)

where ~v is the current error on the validation set and ~v is the average error on

the validation set over the previous iterations and 6~v is the standard deviation

in validation error.

2.18.6 Initialization

The first step in the back-propagation algorithm is the initialization of the synaptic

weights. Owing to its gradient-descent nature, back-propagation is very sensitive

54 CHAPTER 2. BACKGROUND

to initial conditions. If the choice of the initial weight vector is located within the

attraction basin of a strong local minima attractor, convergence of back-propagation

will be fast. On the other hand, back-propagation converges very slowly if the initial

weights start the search in a relati vely fiat region of the error surface.

A good choice for the initial weights can be of a tremendous help in a successful

network design. The random weight initialization method is often preferred for its

simplicity and ability to produce multiple solutions, as the weights may, due to their

initial randomness, converge to various attractors [Kolen et al1990]. In practice

all the weights are set to random numbers that are uniformly distributed inside

a small range of values [Rumelhart et al1986b]. Rumelhart, Hinton and Williams

discovered that if all weights start out with equal values, where the solution requires

that unequal weights be developed, the network does not learn [Rumelhart et al1986b].

Premature saturation occurs when the error value remains almost constant for some

period of time during the learning process. This point in the error surface cannot

be considered as a local minimum, because the squared error continues to decrease

on subsequent iterations. Premature saturation corresponds to a saddle point in

the error surface. Large weights tend to prematurely saturate units in a network

and render them insensitive to the learning process [I-lush et al1991, Lee et al1991].

Wessels and Barnard describe two initialization methods [Wessels et al1992] . The

first method sets the initial weight range to a value which assumes that the output

of the network and the target patterns have the same variance. The second method

puts equally distributed decision boundaries in the input space which produces initial

weights for the first layer of connections. The weights of the second layer are set to

1.0. A comparison of generalization on both methods was done, on three sets of data.

\i\Tessels and Barnard found that the second method outperformed the first in terms

55 CHAPTER 2. BACKGROUND

of generalization. However, convergence speeds were not compared [Wessels et al1992].

2.19 Conclusion

This chapter provided an overview of summation unit neural networks and gradient de­

scent applied to SUNNs (the so-called back-propagation networks). Various network

architectures , learning paradigms, learning rules and modes of learning were discussed.

The back-propagation neural network which uses gradient descent was introduced and

explained. The effect of weight initialization, momentum and the learning rate on

convergence of back-propagation was addressed in this chapter. The next chapter dis­

cusses higher-order neural networks, where the training of product unit neural networks

is discussed in detail.

	Front
	Chapter 1
	CHAPTER 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Back

