
Chapter 2 

Background 

An important a~;pect of this thesis is to compare the performance of summation feed­

forward neural networks with product unit neural networks using global optimization 

algorithms . The objective is to test the hypothesis that global optimization algorithms 

are more successful in training product unit neural networks (PUNNs) than local op­

timization algorithms. In this chapter an overview of ANNs is given. Issues regarding 

training of neural networks (NNs), learning algorithms and neural network architec­

tures are addressed. Another important aspect of this thesis is the approximation of 

functions using feed-forward neural networks. It is therefore important to investigate 

the approximation capabilities of feed-forward neural networks for continuous functions 

and determine an appropriate architecture for such approximations. 

2.1 A Brief History of ANNs 

Attempts to mimic the human brain date back to work in the 1930's, 1940's and 1950's 

by Alan Turing, Warren McCullough, Walter Pitts, Donald Hebb and James von 

Neumann. Neural network simulations appear to be a recent development. However, 

this field was established before the advent of computers. The first artificial neuron was 
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9 CHAPTER 2. BACKGROUND 

produced in 1943 by the neurophysiologist Warren McCullogh and the logician Walter 

Pitts [Pitts et al1943]. These neurons were presented as conceptual components 

for circuits that could perform computational tasks. In 1957 Rosenblatt at Cornell 

University developed 'Perceptron', a hardware neural network for character recognition. 

Much of Rosenblatt's work is described in his book 'Principles of Neurodynamics' 

[Rosenblatt 1962]. One of the most significant results presented in this book, was 

the proof that a simple training procedure, i.e. the perceptron training rule, would 

converge if a solution to the problem existed. In 1959 Wid row and Hoff at Stanford 

University developed Adaline for adaptive control of noise on telephone lines. The 

1960's and 1970's period was hindered by inflated claims and criticism of early work. 

When Minsky and Papert published their book Perceptrons in 1969 [Minsky et a11969] 

in which they pointed out the deficiencies of perceptron models, most neural network 

funding was redirected and researchers left the field. Minsky and Papert showed that 

there is an interesting class of problems that single layer perceptrons cannot solve, 

and they also held out little hope for the training of multilayer systems that might 

deal successfully with some of these deficiencies. Only a few researchers continued 

their efforts, most notably Teuvo Kohonen, who was investigating nets that used 

topological features [Kohonen 1988b], Stephen Grossberg was laying the foundations 

for his Adaptive Resonance Theory (ART) [Grossberg 1987], and Kunihiko F\lkushima 

was developing the cognitron [Fukushima 1975]. 

In 1982 Hopfield, a Caltech physicist, tied together many of the ideas from previous 

research and showed that a highly interconnected network of threshold logic units 

could be analyzed by considering it to be a physical dynamic system possessing 

an 'energy' [Hopfield 1982]. A similar breakthrough occurred in connection with 

feed-forward networks, when it was shown that the 'credit assignment problem' 

(i.e. the contribution that each unit makes to the error the network has made in 

 
 
 



CHAPTER 2. BACKGROUND 10 

processing the current training vector) had an exact solution. The interest in neural 

networks re-emerged only after some important theoretical results were attained 

in the early eighties (most notably the discovery of the error back-propagation 

[Parker 1985, Rumelhart et al1986b, Werbos 1974]) and new hardware developments 

increased the processing capacities. This renewed interest is reflected in the number of 

scientists, the amounts of funding, the number of large conferences and the number of 

journals associated with neural networks. 

The next section defines the term ANN. 

2.2 What is An Artificial Neural Network? 

There is no universally accepted definition for an artificial neural network. There are 

several definitions of an ANN. Zurada defines ANNs as <physical systems which can 

acquire, store and utilize experiential knowledge' [Zurada 1992]. Aleksander defines 

neural computing as < the study of adaptable nodes which, through a process of learn­

ing from task examples, store experiental knowledge and make it available for use' 

[Aleksander et al1990]. Haykin defines ANN as <a massively parallel distributed pro­

cessor that has a natural propensity for storing experiential knowledge and making 

it available for use' [Haykin et al1992]. Fausett defines an ANN as <an information 

processing system that has certain performance characteristics, such as adaptive learn­

ing, and parallel processing of information, in common with biological neural networks' 

[Fausett 1994]. Nigrin defines an ANN <as a circuit composed of a very large number 

of simple processing elements that are neurally based. Each element operates only on 

local information. Furthermore, each element operates asynchronously, thus there is no 

overall system clock' [Nigrin 1993]. 

From these definitions we can conclude that an ANN 

 
 
 



11 CHAPTER 2. BACKGROUND 

• 	 consists of several simple processing elements called units; 

• 	 is well suited for parallel computations, since each unit operates independently of 

the other units; 

• 	 contains a high degree of interconnections between units; 

• 	 contains links between units, each with a weight (scalar value) associated with it ; 

• has adaptable weights that can be modified during training. 

2.3 Advantages of Neural Networks 

ANNs offer several advantages, including: 

• 	 Adaptive learning: A neural network is a dynamic system which has a built-in 

capability to adapt its weights to changing environments. 

• 	 Self-organization: An artificial neural network can create its own organization 

or representation of the information it receives during learning. There is little 

need for extensive characterization of the problem other than through training. 

• 	 Generalization: Neural networks are able to extrapolate to a certain extent 

from the training to previously unseen data. 

• 	 Graceful degradation: Partial destruction of a network leads to a correspond­

ing degradation of performance. However, network capabilities such as gener­

alization may be retained even with major network damage. Neural networks 

have a gradual rather than sharp drop-off in performance as conditions worsen 

[Kohonen 1988a). 
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2.4 Liluitations of Neural Networks 

Neural networks have some important limitations, namely: 

• 	 ANN s have poor explanation facilities. There are no facilities for justifying answers 

and responding to what or how questions. 

• 	 ANNs are not very good at performing symbolic computations. They cannot be 

used effectively for rule based reasoning and arithmetic operations. 

• 	The accuracy of an ANN's performance is dependent upon the quality of the train­

ing examples. It is difficult to find a complete and accurate set of training examples 

in real world problems. 

The next section justifies the use of ANNs . 

2.5 Why Artificial Neural Networks? 

Neural networks take a different approach to problem solving than that of conventional 

computers. Conventional computers use an algorithmic approach, i.e. the computer 

follows a set of instructions to solve a problem. The computer can solve a problem 

only if the specific steps that the computer needs to follow are known. The problem 

solving of conventional computers is therefore restricted to problems that we already 

understand and know how to solve. Neural networks, on the other hand, with their 

remarkable ability to derive meaning from complicated or imprecise data, can be used 

to extract patterns and detect trends that are too complex to be noticed by either 

humans or other computer techniques. The ability of neural networks to learn by 

example, make them suitable for tasks that cannot be solved algorithmically. One of 

the distinct strengths of neural networks is their ability to generalize. The network is 

said to generalize well when it sensibly interpolates input patterns that are new to the 
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network. Neural networks provide, in many cases, input-output mappings with good 

generalization capability. It can be said that neural networks behave as trainable, 

adaptive and even self-organizing information systems [Schalkoff 1997]. 

The following section describes the main classes of ANN applications. 

2.6 Classes of ANN Applications 

The following classes of neural network applications can be found. 

1. Pattern Classification 

Pattern classification concerns the classification of patterns into a fixed number 

of categories. The network is first trained on a set of patterns along with the 

categories to which each pattern belongs. Once the network is trained, a new 

pattern is presented to the network to be categorized. An example of a neural 

network classifier is the EEG (electroencephalogram) spike detector developed by 

Eberhart and Dobbins [Eberhart et al1990]. The EEG spike detector successfully 

identifies an EEG spike which indicates an imminent epileptic seizure in patients. 

Despite the few false alarms recorded, the performance of the network has been 

found to be significantly better than that required for practical application in 

hospitals [Eberhart et al1990]. 

2. Association or Pattern Completion 

In association each training pattern is associated with an image stored in the net­

work. Association can be subdivided into autoassociation and heteroassociation. 

In auto association a neural network is repeatedly presented with a set of patterns 

to be stored by the network. After training, a partial description of the original 

pattern is presented to the network, the task is then to retrieve the original pat­
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tern. In heteroassociation an arbitrary set of patterns are paired with another 

arbitrary set of patterns. After training, when a partial description of the original 

pattern of the first set is presented to the network, the task is to retrieve the 

pattern paired off with the original pattern. Applications include the 'Human 

Face Detection Network' of Rowley et al [Rowley et al1996] and the NETtalk 

neural network of Sejnowski and Rosenberg that produced phonetic strings which 

specified pronunciation for English text [Sejnowski et al1987]. 

3. Approximation 

Approximation requires a neural network to approximate a non-linear function or 

time-series given a set of patterns in the form of input and desired (target) output 

pairs. Once the network is trained, the neural network is then used to calculate 

an output for patterns not used in training (i.e. the neural network interpo­

lates). An application of approximation is weather forecasting [Hsieh et al1998] 

and forecasting the behaviour of multivariate time series [Chakraborty et al1992]. 

4. Clustering 

The objective of clustering networks is to group similar patterns into groups, 

or clusters. Similarity is usually measured as the Euclidean distance between 

patterns [Kohonen 1988a]. Clustering was achieved by the Kohonen network that 

simply inspects the data for regularities , and organizes itself in such a way as to 

form an ordered description of the data [Bilbro et al1989, Kawato 1990]. Feature 

detection aims at detecting a subset of input data or features which is relevant 

for a given problem. Feature detection is usually related to the dimensionality 

red uction of data [Saund 1989]. More sophisticated processing methods can then 

be applied to the smaller dimensional spaces. Applications of feature selection 

clustering has been applied to document classification to enhance information 

retrieval [MacLeod 1990j . 
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5. Control 

There have been a number of successful applications to control systems. Ap­

plication fields range from process control, robotics, industrial manufacturing, 

aerospace applications and vehicle and automobile control [Pomerlau 1989]. The 

basic objective of control is to provide the appropriate input signal to a given 

physical process to yield its desired response. Neural networks for control were 

developed by Werbos [Werbos 1989] and Jordan et al [Jordan et al1990]. The 

term neuro-control has been coined by Werbos to refer to the class of controllers 

that involve the use of neural networks [\iVerbos 1974]. 

6. Optimization 

The objective of neural networks in optimization application is to optimize certain 

cost functions. Neural networks have successfully been applied to optimization 

problems such as job-shop scheduling [Foo et al1988]. Problems that are simpler 

but which belong to the same group of optimization tasks include scheduling 

classrooms to classes, hospital patients to beds, etc. [Zurada 1992]. 

2.7 A Typical Artificial Neural Network 

An artificial neural network (ANN) consists of interconnected artificial neurons, 

organized in a layered structure. Usually, all the neurons of a current layer are 

connected to neurons that occur at the next immediate layer. An artificial neuron 

receives a number of inputs (either from the given input pattern, or from the output 

of other neurons in a previous layer of the neural network). Each input comes via a 

connection which has a strength (or weight) associated with it. Each neuron also has 

a single threshold value (also referred to as a bias). The input to a neuron can be 

excitatory if they cause the firing of a neuron, or inhibitory if they hinder the firing 
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of a response. A more precise condition for firing is that the excitation should exceed 

the inhibition by the threshold. In mathematical terms the net input of neuron j is 

usually netj = 'L{ ZiWj'i - OJ where Zl, Z2, ... Z] are the input signals, Wjl, Wj2, .. .Wj] are 

the synaptic weights leading to neuron j, netj is the neuron's net input and OJ is the 

threshold. 

An activation function is used to determine the output signal based on a net in­

put signal. In summation unit neural networks (SUNNs) the threshold can be treated 

as any other weight, by adding an extra unit, Zl+l, whose input z]+l is -1 and whose 

weight, Wj,I+l is {)j. The net input signal for this augmented network is computed as 

netj = 'L{+l ZiWji. The activation signal, or net input, is passed through an activation 

function (also known as a transfer function) to produce the output signal of the neuron. 

The activation function, also called the squashing function, often squashes or limits 

the permissible amplitude range of the output signal to some finite value; except in 

the case of linear functions where the output is unlimited. A neural network is trained 

by adjusting the weights of the neural network and thresholds so as to minimize the 

error in its output on the training data. If the network is properly trained, it has then 

learned to model the unknown function which relates the input variables to the target 

variables , and can subsequently be used in predictions where the target is not known. 

2.8 Learning 

Neural networks, like human beings learn from examples. This feature distinguishes 

neural networks from conventional programming paradigms. In conventional computer 

programming the relationship between the output and the input must be well defined. 

In the case of neural networks, this requirement is not needed. In fact, the strength 

of neural networks lies in their ability to learn the relationship between the input 
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and the output, given a set of representative examples. One of the most significant 

attributes of a neural network is its abili ty to learn by interacting with its environment 

or with an information source. Learning or training of a neural network is normally 

accomplished through a learning rule or algorithm, whereby the weights of the network 

are incrementally adjusted so as to improve a predefined performance measure over 

time. Essentially, learning of a neural network entails presenting a training pattern 

at the input units, resulting in an actual output to be produced by the network. The 

error between the desired output and actual output is then determined. The synaptic 

weights are then subsequently adjusted so as to reduce the error between the desired 

and actual output. The entire set of training patterns is usually used in adjusting 

the weights during the training process. The training terminates when an acceptable 

training error is reached. On a definition for 'learning', Minsky noted that there are 

too many notions associated with learning to justify the term in a precise manner 

[Minsky 1961]. As stated in section 2.2, Aleksander [Aleksander et al1990] defines 

neural computing as "The study of networks of adaptable nodes which, through a 

process of learning from task examples, store experiential knowledge and make it 

available for use." 

The next section introduces a typical artificial neuron that is the basic building block 

for neural networks. 

2.9 Model of An Artificial Neuron 

A neuron is an information processing element that is fundamental to the operation of 

a neural network. Figure 2.1 represents a model of a neuron [Haykin 1994]. A neuron 

consists of three basic elements: 

1. A set of synapses or connecting links, each with its own strength or weight. 
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Figure 2.1: Model neuron using a Summation Unit 

2. 	 An adder , I:, that computes the weighted sum of the signals in the case of summa­

tion unit networks or a multiplier, TI, in the case of product unit neural networks 

that performs weighted multiplication of the signals. 

3. 	 An activation function that squashes the amplitude of the neuron to a finite range 

if a bounded activation function is used or an infinite range when an unbounded 

activation function, such as the identity function, is used. 

In figure 2.1, the input signals are denoted by Zl, Z2, Z3, ... , Zj and Wjl, Wj2, Wj3, ... , Wjj 

are the synaptic weights of neuron OJ, OJ is the output of neuron OJ, Zl, Z2, Z3, ... , Zj 

are the input units and je) is the activation function. In this model an additional 

input signal, Zl+l , fixed at -1 and synaptic weight, Wj,J+l, is added to the neuron to 

represent the threshold, or bias. This additional unit is referred to as the bias unit. 

A bias is added to the hidden and output units only. Neurons can be combined in 

different ways to construct neural networks such as feed-forward, recurrent neural 

networks, etc . 

The next section discusses the different types of network architectures. 
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2.10 Network Architectures 

There are three basic classes of network structures, namely, single-layer, multilayer and 

recurrent neural networks. 

1. Single-layer feed-forward neural networks 

A single-layer feed-forward neural network as defined by Haykin [Haykin 1994] 

consists of an input layer of units that are connected to an output layer of 

nodes. The input layer of nodes is not counted as a layer since no computation 

is performed in this layer. 

2. Multilayer feed-forward neural networks 

Refer to figure 2.3 on page 23 for an illustration of a multilayer feed-forward neural 

network with one hidden layer. A multilayer feed-forward neural network contains 

at least one or more hidden layers situated between the input and output layers. 

Neurons that occur in the hidden layer network are referred to as hidden units. 

In a feed-forward neural network, links are unidirectional, and there are no cycles. 

In a layered feed-forward neural network, each unit is usually linked to units in 

the next layer, although direct connections between the input and output layers 

are possible. There are no links between units in the same layer, and thus no com­

putational dependencies between units in the same layer. This allows the outputs 

of these units to be computed in parallel. Also, no links point backwards to a 

previous layer. The units in the input layer receive signals from the environment 

and distribute the signals to the next layer in the network. The hidden layer(s) 

enable a network to extract higher-order statistics and thus provides the network 

with a global perspective, because of the extra set of synaptic connections and 

the extra dimension of neural interactions [Churchland et al1992]. The output 
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layer provides results of the network to the environment. Each neuron in the 

network provides an output which is a weighted sum, in the case of summation 

unit networks, or a weighted product of terms in the case of product unit neural 

networks. A feed-forward neural network has no memory and the output is solely 

determined by the inputs and synaptic weights. 

3. 	 Recurrent Neural Networks (RNNs) 

A recurrent neural network contains at least one feedback loop, where the 

activations of the hidden units are fed as the network's inputs. The feedback 

loops in recurrent networks have a profound impact on the learning capability 

of the network and its performance when data exhibit temporal tendencies or 

characteristics. Temporal learning is concerned with capturing a sequence of 

patterns necessary to achieve some final outcome . . In temporal learning, the 

current response of the network is dependent on previous inputs and responses. 

Through the feedback connections, RNNs can learn temporal characteristics of 

data presented for learning, thereby exhibiting properties very similar to short 

term memory in human beings. Recurrent networks are dynamic in t.he sense 

that their state is changing continuously until an equilibrium is reached. There 

are different types of RNNs, namely, Jordan and Elman RNNs, as shown in 

figure 2.2. In the Jordan RNN, the activation values of the output units are fed 

back into the input layer through a set of extra inputs referred to as the state 

units [Jordan 1986]. There are as many state units as there are output units in 

the Jordan network. The connections between the output and state units usually 

have a fixed weight of l. Learning takes only place in the connections between 

input and hidden units as well as hidden and output units. In the Elman RNN 

a set of context units are introduced, which are extra input units representing 

activation values of the hidden units from the previous time step [Elman 1990]. 
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Thus the Elman RNN is very similar to the Jordan network except that the 

hidden units, instead of the output units, are fed back. 

Minsky and Papert also pointed out that every discrete-time recurrent net­

work can be represented by a feed-forward network with identical behaviour 

[Minsky et al1969]. The Elman and Jordan RNNs can also be combined to ex­

ploit the benefits of both RNNs. 

hidden 

hidden 
layer 

unit 

output 
layer 

layer 

output 
layer 

(a) Jordan RNN (b) Elman RNN 

Figure 2.2: Typical Recurrent Neural Networks 

Neurons can be connected to neurons in the adjacent layers in various ways. In a fully 

connected network every node in each layer is connected to every node in the adjacent 

forward layer. A network is partially connected if some of its synaptic connections 
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are missing from the network. The neurons in a feed-forward neural network (FNN) 

can also be combined to form higher-order networks. Examples of such higher-order 

networks are pi-sigma [Ghosh et al1992], sigma-pi [Lee Giles 1987] and functional link 

networks [Hussain et al1997, Pao 1989]. 

In the preceding section, the term architecture referred to classification of neural net­

works, i.e. single-layer FNNs, multilayer FNNs and RNNs. The term topology on the 

other hand, refers to: 

1. the network architecture, 

2. the type of neurons, and 

3. the connections between these neurons. 

This thesis distinguishes between two types of units, i.e. summation and product units. 

A summation unit (SU) computes the net input signal to a unit as a weighted sum, 

i.e. ~{!f ZiVji· A product unit, however, calculates the net input signal as a product 

of 'terms', where each 'term' comprises an input exponentiated to a weight value, i.e. 

n{=l z~ji. In a feed-forward network the flow of signals is in the direction of the outputs, 

with no feedback loops present. The architecture of a two-layer feed-forward network 

is illustrated in figure 2.3 where Z, Y and 0 are respectively the input, hidden and 

output layers. 

The input signals to the network is denoted by Zi (1 :s; i :s; 1) where I denotes the 

total number of input units (excluding the bias unit) to the network. The activation 

or output of a hidden unit is denoted by Yj (1 :s; j :s; J) where J denotes the number 

of hidden units (excluding the bias unit). The activation of an output unit is denoted 

by Ok (1 :s; k :s; K), where K refers to the total number of output units in the network. 

The weight between input unit Zi and hidden unit Yj is denoted by Vji, while Wkj 
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Y1 

ZI 

0 1 
0 

Ok 
0 

ZI+I 

VJ,I+l 
YJ+l 

Figure 2.3: Multilayer feed-forward Neural Network 

denotes the weight between hidden unit }j and output unit Ok. The biases for the 

hidden and output units are respectively denoted by Vj,I+1 and Wk,J+1' The biases 

in the input and hidden layers have a constant input of -1; the inputs to the bias 

units are denoted respectively by ZHI and YJ -H' The biases are trained in exactly 

the same way as the other weights. The activation of hidden unit }j is calculated as 

Yj = f(I:,{!l ZiVji), using summation units, or Yj = f(I1{=l z? + ZI+1 . Vj,HI) using 

product units (if a bias is included for PUs). 

The activation functions for the hidden units of summation unit networks should be 

non-linear, in order to derive any benefit from the multilayer architecture over a single 

layer network. Rumelhart et al have shown that everything that can be computed 

by a multilayer network, using linear activation functions, can also be computed by 

an equivalent single layer network [Rumelhart et al1986a]. The standard logistic 

activation function is assumed for the summation unit neural networks. In this thesis 

the activation functions for product unit neural networks are assumed to be linear. 

The activation of unit Ok is calculated as Ok = f(I:,f~-i YjWkj) for both the summation 

and product units. The network in figure 2.3 has only one hidden layer, but networks 
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can be constructed with any number of hidden layers. 

The next section highlights the activation functions that can be used by neural networks. 

2.11 Activation Functions 

This section introduces the different types of activation functions that can be used with 

neural networks. An activation function maps the net input signal of a neuron to an 

output signal. Usually, activation functions are used to limit the amplitude of the output 

of a neuron. Activation functions are also referred to as squashing functions because of 

the squashing or limiting effect of most activation functions. All the activations listed 

below, except the linear activation function are bounded. In this thesis the activation 

functions will be denoted by f (-). Types of activation functions that are commonly 

used are given below, where z is the net input of the unit. 

• Threshold function 

1 for z 2 0 
J(z) = { (2.1 ) 

0 for z < 0 

• 	 Signum function 


1 for z > 0 


f( z) = 0 for z = 0 (2.2) 

-1 for z < 0 

• Ramp function 

y for z 2 y 

f(z) = z for Izl < y (2.3) 

-y for z :S -y 

• Sigmoid function 

1
f(z) 	 (2.4)

1 + e-Q Z 
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where a is the slope parameter of the sigmoid function. 

• Hyperbolic tangent function 

f (z) = tanh (~) (2.5) 

• Linear activation function (or identity function) 

J(z) z (2.6) 

The threshold and sigmoid functions produce outputs in the range [0, 1]. Engelbrecht 

et al showed that scaling data is not only time-consuming but can also introduce 

inaccuracies in modelling of the data [Engelbrecht et alI995a]. Also, the maximum 

and minimum ranges must be known when scaling is performed. These values are 

difficult to obtain in incremental learning (refer to section 2.14 on page 34) systems, 

since all training pairs are not available before training. When it is desirable to have 

activation functions with output in the range -1 to +I, the activation function assumes 

an antisymmetric form with respect to the origin, i.e. f( -a) = - f(a). Engelbrecht 

et al highlighted the benefits of scaling the output to [-1,1] [Engelbrecht et al1995a]. 

The signum and hyperbolic tangent functions yield values in the range [-1 , 1]. 

Activation functions can further be classified as (a) discrete and (b) continuous acti­

vation functions. Examples of discrete activation functions are the threshold, signum 

and ramp functions. The sigmoid, hyperbolic tangent and the identity function are 

examples of continuous activation functions. Neural networks with no hidden layers 

and linear or discrete activation functions can only solve problems that are linearly 

separable [Aleksander et al1990]. A set of input vectors, Z = {Z'p : p = 1, ... , P} of 

dimension I is linearly separable if there exists a set of non-zero constants Ci, resulting 

in a hyperplane, specified below, that separates the set of input vectors into two disjoint 
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sets, 

I 

LCiZ'i = 0 (2.7) 
i=l 

where Zi is the ith coordinate of the hyperplane. 

Linear separability limits the neural network to classification problems where the sets 

of points, corresponding to input values, can be separated geometrically. Non-linear 

units have a higher representational power than ordinary linear units. Research has 

shown that a network with a single hidden layer consisting of a sufficient number 

of non-linear units can approximate any continuous function [Hornik et al1989a]. 

Neural networks could handle linearly inseparable functions with the discovery of the 

back-propagation algorithm [Werbos 1974]. Back-propagation, however, requires that 

the activation function must be continuous and differentiable to enable weight update 

calculations. 

2.12 Learning Paradigms 

This section presents a short overview of early learning paradigms. The four basic 

training or learning rules, namely error-correction, Hebbian, competitive and stochas­

tic/probabilistic learning rules are discussed in the following sections. 

2.12.1 Error-Correction Learning Rule 

The aim of the error-correction rule is to minimize a cost function based on an error 

signal. When a pattern (a vector), Zp is presented to the network's input layer, 

a corresponding output, Ok,p is produced by the network at the kth output unit, Ok. 

Usually, the actual response Ok ,p of output unit Ok is different from the desired response, 

tk,p' An error signal can now be defined, which is usually the difference between the 
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target and actual output. The error correction learning rule for a single layer network, 

assuming linear activation for the output units, is given by, 

(2.8) 

where 7] is the learning rate and I:!..Wki is the adjustment to weight, Wki, between in­

put unit Zi and output unit Ok [Widrow et al1960j. The synaptic weights are subse­

quently adjusted so that the resulting error signal is minimized. Once a cost function 

is selected, then error-correction learning can be viewed as an optimization problem. 

More precisely, the error-correction learning process can be viewed as a <search' in a 

multidimensional parameter (weight) space, which gradually optimizes a pre-specified 

objective (criterion) function [Hassoun 1995]. A criterion commonly used for the cost 

function is the mean-squared-error criterion, defined as: 

(2.9) 

where P is the total number of training patterns (or observations), K is the number of 

outputs, tk,p is the target output for the kth output unit for a specific pattern p, and Ok,p 

is the actual output generated by the kth output unit for pattern p. The error is a sum 

of P errors computed for single patterns. The fraction, ~, is a matter of convenience 

and simplifies the calculation of the derivative of the error with respect to a weight in 

back-propagation by gradient descent. 

2.12.2 Hebbian Learning 

Hebb's postulate of learning is the oldest and most famous of all learning rules, stated 

as [Rumelhart et al1986a]: 

«When unit A and unit B are simultaneously excited, increase the strength 

of the connection between them." 
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An extension to this rule to cover the positive and negative activation values is, 

"Adjust the strength of the connection between units A and B in proportion 

to the product of their simultaneous activation." 

According to Hebb's postulate, the adjustment applied to the synaptic weight Wki that 

links unit Zi with unit Ok at time t is expressed by the following function: 

(2.10) 

where F is a function of both the input and the output of unit k . The following is a 

special case of the above, 

(2 .11) 

where 1] is a positive constant that determines the rate of learning. Equation (2.11) 

is the simplest rule for a change in the synaptic weight Wki. It is sometimes referred 

to as the activity product rule [Haykin 1994]. The rule states that if the crossproduct 

of output and input is positive, then weight Wki is increased, otherwise the weight is 

decreased. It can also be proved that if the set of input patterns used in training are 

mutually orthogonal, then association can be learned by a two-layer pattern network 

using Hebbian learning. However, if the set of input patterns are not mutually or­

thogonal , interference may occur and the network may not be able to learn associations. 

The basic Hebbian learning rule in equation (2.11) is fundamentally unstable, since the 

weights reveal an unlimited growth during the learning process. Stabilization of the 

Hebbian rule is achieved by Oja's rule, assuming a single output neuron, in (2.12), 

!::::.Wi(t) = 1]. o(t) . (Z'(-t) - o(t) . w(t)) (2.12) 

In Oja's rule the negative term brings in the required stabilization of the learning law 

[Hassoun 1995]. 
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2.12.3 Competitive Learning 

In competitive learning the output units of a neural network compete against each 

other for the 'right' to represent the input data on a winner takes all basis. In a winner 

take all circuit, the output unit receiving the largest input is assigned a full value (e.g. 

1), whereas all other units are suppressed to a zero value. Therefore, in the case of 

competitive learning, using a single layer network, only a single output unit is active 

at anyone time, compared to Hebbian learning, where several output units may be 

active simultaneously. 

There are three basic elements to a competitive learning rule [Rumelhart et at 1985]. 

1. 	 A set of units that are the same except for some randomly distributed synaptic 

weights, which makes each of the units respond differently to a given set of input 

patterns. 

2. 	 A limit is imposed on the strength of each unit. 

3. 	 A mechanism that allows the units to compete for the right to respond to a given 

subset of inputs, such that only one output unit is active at a time. All the units 

that lose the competition are regarded as being inactive. 

In competitive learning, individual units learn to specialize on sets of similar patterns 

and thereby become feature detectors. In order to ensure a fair competition, the sum 

of all the weights linked to all the output nodes should be normalized. If Wki denotes 

the synaptic weight connecting input node Zi to output node Ok, then 

1 

LWki = I, for all k 	 (2.13) 
i=l 

A neuron learns by shifting synaptic weights from its inactive to active input nodes or 

neurons. If a neuron does not respond to a particular input pattern, no learning takes 
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place in that neuron. If a particular neuron wins the competition, then each input 

node of that neuron gives up some proportion of its synaptic weight, and that weight 

is then distributed equally among the active input nodes. According to the standard 

competitive learning rule, the change tJ.Wki applied to synaptic weight Wki is defined by 

_ { T}' (Zi - Wki) if neuron k wins the competition
tJ.Wki - (2.14) 

o if neuron k loses the competition 

where T} is the learning rate parameter [Zurada 1992]. The effect of the rule is to move 

the weight vector Wki of winning neuron k towards the input pattern Zi. The number of 

classes that a competitive network is capable of representing is limited to the number 

of nodes in the output layer. 

2.12.4 Stochastic Learning 

Stochastic learning is characterized by an energy function E. In the case of simulated 

annealing, the energy function is defined as E(t) = ~r:= lEk = ~:=l(tp,k(t) - Op,k(t))2. 

The stochastic learning procedure consists of the following steps [Rojas 1996]: 

1. 	 The output value of a hidden layer neuron is changed randomly. 

2. 	 The change in energy is evaluated, i.e tJ.E(t + 1) = E(t + 1) - E(t). If the en­

ergy is lower than the energy of the previous state, then the change is accepted, 

meaning that the current configuration is accepted, otherwise the change is ac­

cepted according to a predefined probability distribution. In the case of simulated 

annealing the change is accepted with a certain probability, given by P , 

-(Et+ l-Etl)
P 	= e( 

KT (2.15) 

where E t is the energy at time t, T denotes the temperature and K is the Boltz­

mann constant. 
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3. 	 Applying the above will eventually result in the network becoming stable, i.e. the 

network will converge. 

4. 	 Steps 1 to 3 are repeated for each input-target pair in the data set. The output 

is used to statistically adjust the weights. 

5. 	 Steps 1 to 4 are repeated until the network performance is adequate as defined by 

an acceptance criterion. Simulated annealing is terminated when the acceptance 

ratio drops below a certain preset value, or when the temperature reaches zero. 

Also, for simulated annealing a cooling schedule defines the rate at which T is 

reduced , and hence the probability of accepting a new weight vector with a higher 

energy than current. The most common cooling law uses a geometric decrement 

function first proposed by Kirkpatrick et al [Kirkpatrick et al1983]: 

Tk 	= a· Tk- 1 (2.16) 

where a is a constant usually chosen in the range (0.8, l.0). 

The ability of these networks to probabilistically accept higher energy states, despite 

poorer performance as reflected by the increase in energy, allows these networks to 

escape local energy minima in favour of a deeper energy minimum. The Boltzmann 

machine was the first neural network to employ stochastic learning [Ackley et al1985]. 

This technique was also applied in simulated annealing where a temperature param­

eter slowly decreases the number of probabilistically accepted higher energy states 

[Kirkpatrick et al1983j. 

The following section discusses the three classes of learning paradigms. 

 
 
 



32 CHAPTER 2. BACKGROUND 

2.13 Learning Paradigms 

There are basically three learning paradigms, namely supervised, unsupervised and 

reinforcement learning. These paradigms are discussed in this section. 

2.13.1 Supervised Learning 

In supervised learning, a supervisor (or teacher) provides the network with an input 

pattern and the associated target, or desired response. The difference between the actual 

output of the network and the target output serves as an error measure and is used in 

correcting synaptic weights. The weights are adjusted gradually, by updating them at 

each step of the learning process so that the error between the network's output and 

corresponding desired output is reduced. This adjustment is carried out iteratively in a 

step-by-step fashion with the aim of eventually making the neural network emulate the 

teacher. Since adjustable weights are assumed, the teacher may implement a reward­

and-punishment scheme to adapt the network's weights [Zurada 1992]. This type of 

learning is also known as reinforcement learning. Supervised learning rewards accurate 

classifications or associations and punishes those that yield inaccurate responses. The 

reward or punishment is based on the teacher's estimate of the negative error gradient 

direction. An example of supervised learning is error-correction learning, of which 

gradient-descent by back-propagation is an example. 

2.13.2 Unsupervised Learning 

Unsupervised learning, also referred to as self-organization, requires no target or desired 

outputs and relies only upon local information during the entire learning process. Error 

information cannot be used to improve network behaviour, since the desired response is 

not known. \Vith no information being available as to the correctness or incorrectness of 

responses , learning must somehow be accomplished based on observations of responses 
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to inputs that the neural network has little or no knowledge about. The task of un­

supervised learning is to learn to group together patterns that are similar of a given 

training set. In this mode of learning, the network must discover for itself any possi­

bly existing patterns, regularities, separating properties, etc. [Kohonen 1988b]. While 

discovering these, the network undergoes change of its parameters, which is referred to 

as self-organization. Examples of unsupervised learning are Kohonen's self-organizing 

feature maps and Hebbian learning [Kohonen 1988b] . 

2.13.3 Reinforcement Learning 

Reinforcement learning is similar to error correction learning in that weights are 

reinforced for properly performed actions and punished for poorly performed actions. 

The difference between the two types of learning is that error correction learning 

utilizes more specific error information by using the error values at each output unit, 

while reinforcement learning uses non specific error information to determine the 

performance of the network. In error correction learning an entire vector of values is 

used for error correction, whereas only one value is used to describe the output layer's 

performance during reinforcement learning. This form of learning is ideal in areas such 

as prediction and control where specific error information is not available, but overall 

performance is [Barto 1992]. 

This thesis concentrates on supervised learning. 

2.14 Modes of Learning 

Mode of learning refers to the type of weight adjustment implemented during training. 

Weights can be updated in two ways, namely batch and on-line modes. 
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• Batch learning 

In batch, or off-line learning, weight changes are done only after the entire training 

set has been presented to the network. Weight changes for each presented pattern 

are therefor accumulated and updated after each epoch. An epoch is one complete 

presentation of the entire training set during the training process. In off-line 

learning, once the network has been trained and enters recall mode (i.e. when 

the network is in operation) the weights are fixed and not modified at all. All the 

patterns must be resident for training in off-line training systems with the result 

that new patterns cannot automatically be incorporated into the system as they 

occur. To include new training patterns, it must be added to the entire training 

set and the network must be re-trained. Off-line training provides a more accurate 

estimate of the gradient vector even though it requires more storage space than 

on-line training [Haykin 1994] . 

• On-line learning 

In on-line, or incremental learning the weights are adjusted after each pattern is 

presented to the network. Once the network has been trained and enters recall 

mode, the weights are fixed and not modified at all. The advantage of on-line 

learning is that it requires less storage space than batch training. 

This thesis assumes on-line learning. 

The next section discusses the different performance measures used in training neural 

networks. 
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2.15 Performance Measures 

This section discusses the various training errors that are used in training neural net­

works. All supervised training algorithms involve the reduction of an error value. When 

weights are adjusted in a single training step, the error to be reduced is usually com­

puted for a single pattern presented at the input layer. However, the prediction error of 

the neural network must be computed using the entire set of training patterns in order 

to assess the quality and success of the training process [Zurada 1992]. 

2.15.1 True Error versus Empirical Error 

During training of a NN a finite set of input-target pairs D = {dp = (~,~) I p = 

I, ... , P}, sampled from a stationary density O(D), is used where Zi,p is the value of 

input unit Zi and tk,p is the target value of output unit Ok for pattern p. The target 

can be expressed as a function of the input vector, i.e. 

(2.17) 

where p,(i) is the unknown function approximated by the network. The objective of 

learning is then to approximate the unknown function using the information contained 

in the finite data set D. Since prior knowledge about O(D) is usually not known, a 

non-parametric regression approach is used by the NN learner to search through its 

hypothesis space 7-{ for a function FNN(D, W) which gives a good estimation of the 

unknown function p,(Z) , where FNN(D, W) E 7-{ . In the case of multilayer NNs, the 

hypothesis space consists of all functions realizable from the given network architecture 

as described by the weight vector W. 

The function FNN : RI RI( is found which minimizes the empirical error, ---t 

(2.18) 
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where PT is the total number of training patterns. Hopefully, a small empirical error 

will also yield a small true error, defined as 

(2.19) 


The empirical error in equation (2.18) is usually referred to as the objective function. 

Prediction errors are mainly defined as: 

• Sum-squared-error (SSE) 

The sum-squared-error is computed over the entire training cycle and is expressed 

as a quadratic error, 

(2.20) 


where P is the total number of training patterns (or observations), K is the 

number of outputs, tk ,p is the target output for the kth output unit for a specific 

pattern p, and Ok,p is the actual output generated by the kth output unit for 

pattern p. The error above reflects the accuracy of the neural network mapping 

after a number of training cycles have been completed. The SSE is not very 

useful when comparing networks with different numbers of training patterns and 

having a different number of output units. If a large training set is used to train 

different networks that contain the same number of output units, a large SSE will 

be produced due to the large number of terms in the summation, while a smaller 

training set will produce a smaller SSE. Similarly, networks with a large number 

of output units trained using the same training set would usually also produce 

large SSE errors . 

• Root-mean-squared error (RMS) 

(2.21) 
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The value has the sense of a root-mean squared normalized error, and is more 

descriptive than, ESSE, when comparing the outcome of the training of different 

neural networks among each other [Zurada 1992] . 

• Mean-squared-error (MSE) 

(2.22) 

A more adequate error measure is given by the root-mean-squared error and the 

mean-squared-error, since they have no bias towards networks with fewer output units, 

or networks trained on fewer patterns. 

The following section discusses the minimum number of hidden layers that are required 

to approximate continuous functions using feed-forward neural networks. 

2.16 	 Approximation Capabilities of Feed-Forward 

Neural Networks 

Cybenko proved that a feed-forward neural network with 1 hidden layer and a sufficient 

number of hidden units, of the sigmoidal activation type, and a single linear output 

unit is capable of approximating any continuous function, {f : Rn ---+ R} to any desired 

accuracy [Cybenko 1969]. Rigorous mathematical proofs for the universality of feed-

forward layered neural networks employing continuous sigmoid activation functions as 

well as other more general activation functions were also given independently by F\.l­

nahashi [Funahashi 1989] and Hornik et al [Hornik et al1989b]. The universality of 

single-hidden-layer nets with units having non-sigmoidal activation functions was for­

mally proved by Stinchcombe and White [Stinchcombe et al 1989]. Baldi showed that a 

large class of continuous multivariate functions can be approximated by a weighted sum 
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of bell-shaped functions, referred to as multivariate Bernstein polynomials [Baldi 1991]. 

Baldi also proved that a single-hidden-layer network with bell shaped activation func­

tions in the hidden layer and a single linear output unit is a possible approximator of 

functions f : Rn -> R. Similarly, Hornik proved that a sufficient condition for universal 

approximation can be obtained by using continuous) bounded) and non-constant hidden 

unit activation functions [Hornik et al1989b]. Li et at proved that higher-order neural 

networks can approximate any continuous function on a compact set with an arbitrary 

degree of accuracy, provided that the activation function belongs to the complex do­

main [Li et al1996]. A single-hidden-layer neural network would thus be adequate to 

approximate the continuous functions in this thesis, provided that a sufficient number 

of hidden units are included. 

2.16.1 Generalization 

The objective of back-propagation is to train a network, using as many patterns as 

possible, that will subsequently produce correct (or nearly correct) output for input 

patterns that were not presented to the network during training. For a given input­

target pair, (,;" t~), the output o~, produced by the trained network when presented 

with z~ as input, is correct if lit;, - opll = 0, or nearly correct if lit;, - opll ::; E, where 

E > 0 is an arbitrary small number. A network that does achieve the preceding ob­

jective, is said to generalize well. Although enough information is crucial to efFective 

learning, too large training set sizes may also be of disadvantage to generalization per­

formance and training time [Engelbrecht et al1999d, Lange et al1996, Zhang 1994]. 

The learning process may be visualized as a "curvefitting" problem, where the network 

itself may be considered as a nonlinear input-desired-output mapping [Haykin 1994]. 

This viewpoint allows generalization of neural networks to be looked at as the efFect 

of a good nonlinear interpolation of the input data [Wieland et al1987]. The network 
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performs useful interpolation simply because multilayer perceptrons with continuous 

activation functions lead to output functions that are also continuous [Haykin 1994]. A 

neural network that generalizes well will produce a correct input-output mapping even 

in cases where the input is slightly different from the patterns of the training set. A 

network is said to be overtrained if too many weights were used in training the network, 

resulting in the network to accurately memorize the training data, but not generalizing 

well on similar input-output patterns. Generalization is influenced by three factors: 

1. 	 The size and relevance of the training set. 

2. 	 The architecture of the network. 

3. 	 The complexity of the problem to be solved. 

Hush and Horne viewed the problem of generalization from two different perspectives 

regarding the first two factors [Hush et at 1993], 

• 	 by fixing the architecture of the network and then to determine the size of the 

training set needed for good generalization, or 

• 	 by fixing the size of the training set and then determine the best architecture that 

results in good generalization. 

2.17 Architecture Selection 

One of the most important problems encountered in the practical application of 

neural networks is to find a suitable, or ideally minimal, neural network topology 

that accurately maps the true function described by the training data. An unsuitable 

topology increases the training time or even causes non-convergence, and is likely to 

decrease the generalization capability of a network [Ghosh et at 1994]. An oversized 

network (too many training units) can lead to overfitting, while a network with too few 
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training units can lead to underfitting [Baum et al1989, Le Cun 1989]. Overfitting 

occurs when the network (memorizes' the training patterns, including all of their 

peculiarities resulting in a network that does not generalize well. In both over and 

underfitting the network fails to approximate the true mapping between the inputs 

and desired outputs. Architecture selection has to reduce network complexity while 

maintaining good generalization. The objective of training is that the network should 

only learn the general properties of the examples. 

Architecture selection approaches are grouped into the following four classes. 

1. 	 Brute Force Pruning 

Successively smaller networks are trained until the smallest network with the 

best generalization is found. This approach is time-consuming and prohibitive 

for large networks, since the search space explodes as the weights are increased 

[Moody et al1996]. 

2. 	 Network Growing 

With network growing, a small network configuration is used initially, and new 

neurons are added only when the performance is unsatisfactory. Network grow­

ing algorithms start training with a small network and incrementally add hid­

den units during training when the network is trapped in a local minimum 

[Hirose et al1991, Kwok et al1995, Zhang et al1997]. This process of adding 

units is stopped when a satisfactory performance of the network is attained. Ex­

amples of the network growing approach are the cascade-correlation learning ar­

chitecture developed by Fahlman and Lebiere [Fahlman et al 1990], the upstart 

algorithm of Frean [Frean 1990] and the pocket algorithm developed by Gallant 

[Gallant 1986]. 
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3. Network Pruning 

With network pruning, training commences with an oversized network that yields 

an adequate performance for the problem under consideration, but possibly 

overfits the training data. The network is pruned by removing redundant or 

excess parameters, i.e. weights, hidden and input units, in a selective and orderly 

process to produce smaller networks [Le Cun et al1990, Sietsma et al1988] . 

Small networks are usually faster and generalize better than large networks 

[Reed 1994]. The aim of pruning is therefor to solve the problem of overfit­

ting and to reduce the computational cost of training and using the network 

[Le Cun et al1990j. The various pruning algorithms use differen t criteria to 

identify irrelevant parameters that must be removed. The decision to prune 

a network parameter is based on some measure of parameter relevance or 

significance. A relevance is computed for each parameter and a pruning heuristic 

is used to decide when a parameter is pruned or not. 

Optimal Brain Damage (OBD), developed by Le Cun et al [Le Cun et al1990], 

uses the criterion of minimal increase in training error for weight elimination. 

OBD can only prune network weights. The goal of OBD is to find a set of 

weights that, when deleted, would cause the least increase in the training error. 

Le Cun et al defined the saliency of a parameter as the change in the error caused 

by deleting that set of weights. A strategy was employed to delete weights with 

low saliency [Le Cun et al1990j. The saliency when the weight vector, W, is 

perturbed is computed as follows, 

8E = 2:g 8w + ~2:.h8w2 + ~2:h. ·8w8w· + O(118WI1 2 
) (2.23)

'-'2 2 2 2 2 22 2 2 2,J 2 J 

where the 8Wi's are the components of 8vll, gi are the components of the gradient 

of E with respect to vll, i.e. g., = g.! and the hij are the elements of the Hessian 
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matrix (H). Second order derivatives of the error with respect to the weights, which 

are computationally complex due to t he size of the Hessian matrix (H), where each 

hij = a!:!j' are required for the computation of the saliency. In OBD, pruning 

is done on a well trained network, hence the first term in equation (2.23) will be 

approximately zero, since E is at a minimum. Also, for small perturbations of 

the weights the last term will be negligible. For computational simplicity, OBD 

assumes that the off-diagonal elements of the large Hessian matrix are zero; thus 

the third term evaluates to zero. Equation (2.23) then simplifies to, 

-E-h-·tSw (2.24)tSE ~ 2 
1 

,n , 
2 

An efficient way of evaluating the diagonal second order derivatives hi" was derived 

using a fast back-propagation method. The saliency of weight Wi is then, 

(2.25 ) 

A drawback of OBD is that it does only prune network weights and not units. 

However, if all the weights leading to, or emanating from a unit are pruned, that 

unit can be pruned also. 

Optimal Cell Damage (OCD) was developed to extend OBD to allow pruning of 

input and hidden units [Cibas et al1996]. 

Hassibi and Stork have discovered that Hessian matrices, for the problems that 

they considered, were all strongly non-diagonal, resulting in OBD to eliminate 

the wrong weights [Hassibi et al1994]. Optical Brain Surgeon (OBS) was 

developed by Hassibi and Stork as an extension of OBD to remove the restrictive 

assumption about the (diagonal) form of the Hessian. The typical slow retraining 

 
 
 



43 CHAPTER 2. BACKGROUND 

by back-propagation of the network after pruning required by OBD was also not 

required in OBS, since OBS not only removed the irrelevant weights, but also 

adjusted the remaining weights automatically to minimize the error. OBS, like 

OBD prune network weights, but the same technique can be applied to prune 

network units. Disadvantages of OBS are, (a) OBS is computational intensive 

due to the calculation of the large Hessian matrix and (b) it also requires large 

storage space for intermediate results. 

Skeletonization, developed by Mozer and Smolensky, defined a measure of the 

relevance of a unit as the error when the unit is removed from the network 

minus the error when the unit is left in the network [Mozer et al1989]. The 

least relevant units can then be removed to construct a skeleton version of the 

network. The usual sum of squared errors was used for training, however, since 

the quadratic error provided a poor estimate of relevance if the output pattern is 

close to the target, a linear error function, i.e. E = ~Itk,p - ok,pl, was used to 

measure relevance. Skeletonization pruned network units only, but it can also be 

applied to prune network synaptic weights [Mozer et al1989]. 

Zurada et al developed a sensitivity analysis tool which can be applied to a trained 

neural network in order to automatically identify all input parameters which have 

a significant influence on anyone of the possible outcomes [Zurada et al1997]. 

Sensitivity analysis thus provides a tool to automatically identify all relevant 

input parameters from a set of potential parameters. The irrelevant parameters 

can then be pruned using the significance measures obtained from the sensitivity 

analysis tool. 
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Engelbrecht et al developed a pruning algorithm where the sensitivity of 

the output of the network to small changes to the parameters is used to 

identify irrelevant parameters [Engelbrecht et al1999b, Engelbrecht 2001], 

compared to OBD where the sensitivity of the objective function is used. 

Engelbrecht's algorithm prunes both input and hidden units, and can be 

adapted to prune weights also. Engelbrecht also developed a computationally 

efficient pruning heuristic based on variance analysis of sensitivity information 

[Engelbrecht et al1999c, Engelbrecht 2001j. This algorithm utilizes first-order 

derivatives, which are already calculated during training. Thus Engelbrecht's 

algorithm is not as computational intensive as OBD and OBS. The only assump­

tions are that the network must be well trained and that the activation function 

must at least be once differentiable. 

4. 	 Complexity Regularization 

In regularization a penalty term is added to the objective function to penalize all 

the weights. This augmented function then serves as the objective function to 

be minimized [Poggio et al1990, VVeigend et al1991j. The objective function is 

expressed as 

(2.26) 

where ~T is the standard performance measure and ~c is the complexity term 

[Cirosi et al1995, Shittenkopf et al1997, Weigend et al1991]. The regulariza­

tion parameter ,\ controls the influence of the penalty term. If,\ is zero, then 

the penalty term will have no effect. A too large ,\ will drive all weights to zero. 

Regularization requires a delicate balance between the normal error term and the 

complexity term. In complexity regularization the redundant synaptic weights 

are forced to take on values close to zero, while permitting other weights to retain 
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their relatively large values. This improves generalization of the resulting net­

work. Examples of regularization are weight-decay [Hinton 1987] and the weight­

elimination procedures [Weigend et al1991]. A disadvantage of regularization is 

that the complexity terms tend to create additional local minima, thus increasing 

the possibility of converging to bad local minima [Hanson et al1989]. Training 

time is also increased due to the extra calculations required during updating of 

the weights. 

2.18 Back-propagation 

Back-propagation, also referred to as backprop, is probably the most widely applied 

neural network learning algorithm. Backprop's popularity is related to its ability to 

deal with complex multi-dimensional mappings. The feed-forward, back-propagation 

architecture was discovered independently in the early 1970's by Werbos and Bryson 

[Bryson et al1969, Werbos 1974]. It was re-discovered and popularized by Rumelhart 

in the 1980's [Rumelhart et al1986b]. A generalization of the back-propagation 

algorithm was derived by Parker in 1985 [Parker 1985]. Its greatest strength is in 

finding non-linear solutions to ill-defined problems [Haykin 1994] . Although the 

back-propagation algorithm did not provide a solution for all solvable problems it has 

put to rest the pessimism about learning in multilayer networks that may have been 

inferred from the book by Minsky and Papert [Minsky et al1969]. Back-propagation 

provides a computationally efficient method for changing the weights in a feed-forward 

network, with differentiable activation function units, to learn a training set of input 

and desired-output examples. Back-propagation multilayer neural nets have been 

applied successfully to solve some difficult and diverse problems such as speech 

recognition [Cohen et al1993], handwritten character recognition [Guyon 1990], 

steering of an autonomous vehicle [Pomerlau 1989], medical diagnosis of heart attacks 
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[Harrison et al1991]' radar target detection and classification [Haykin et al1992]' and 

many more. 

The next section discusses the back-propagation algorithm. 

2.18.1 Overview of Back-propagation 

The discussion of back-propagation assumes that the multilayer network in figure 2.3 on 

page 23, consisting of an input, a hidden and an output layer, is fully connected, which 

means that a neuron in the second or third layer of the network is connected to all 

neurons in the previous layer. Back-propagation uses gradient descent as optimization 

algorithm. The process of back-propagation consists of two distinct phases, namely, (a) 

the forward phase and (b) the backward propagation phase . 

• 	 Phase 1: Forward Phase 

During the forward phase, a pattern, p, presented at the input layer of the network 

results in signals to be propagated through to the hidden units . An activation 

signal is computed for each hidden unit and then propagated through to the 

next layer, which is either another hidden layer or the output layer. Eventually, 

the activation of the output units are calculated. The output layer provides the 

response of the network for a given input pattern, p. The actual output for pattern 

p at output unit Ok is denoted by Ok,p and the desired output of Ok is denoted by 

tk,p' The error signal for each output unit, Ok, for a given pattern, p, is computed 

as the difference between the desired and the actual output, i.e. tk,p - Ol." p' 

• 	 Phase 2: Backward Propagation Phase 

In the backward pass, which starts at the output layer, the error computed in the 

forward pass is propagated backwards through the network, layer by layer, and 

the (j, i.e. the local error or gradient, for each neuron is computed recursively. For 
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a neuron in the output layer, the local error is simply equal to the error signal 

of this neuron, tk,p - Ok,p, multiplied by the first derivative of the output of this 

neuron with respect to the neuron's net input. For a neuron in the hidden layer, 

the local error equals the product of the associated derivative f' (netyJ and the 

weighted sum of the error signals (i.e. 8's) computed for the neurons in the output 

layer that are connected to neuron Yj. The objective of the learning process is to 

adjust the weights of the network so as to minimize the error, E = ~:~l Ep and 

Ep = ~ ~{~l (tk,p - Ok,p)2, where p refers to a specific pattern, and k refers to the 

kth component of the output vector. For notational convenience, the subscript p 

is dropped from subsequent equations. The adjustment of weights are computed 

as follows, 

8E 
~V " -'1]- (2.27)Jt 8vJt 

8E 
~Wkj = -'1]-- (2.28)

8W kj 

where 'I] is a constant that determines the rate of learning, Vji is the weight 

between input unit Zi and hidden unit Yj and Wkj is the weight between hidden 

unit Yj and output unit Ok. 

The learning rate has a profound impact on the convergence of the back-

propagation algorithm, as is discussed in the following section. 

The weights can be updated using on-line or off-line modes of learning. In the 

on-line or incremental update mode the weights are updated after the presentat ion 

of a single pattern to the network. In the off-line or batch mode, weight updating 

is performed after all the training examples that constitute an epoch have been 
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presented to the network. Finnofi' showed that for "very small" learning rates, on-line 

back-propagation approaches batch back-propagation, producing essentially the same 

results [Finnofi' 1993aj. 

The on-line mode is preferred over the batch mode for the following two reasons: 

1. 	 On-line training requires less storage, and 

2. 	 With on-line training, the patterns are presented in a random manner, thus mak­

ing the search in weight space stochastic in nature, which in turn makes it less 

likely for back-propagation to be trapped in a local minimum. 

2.18.2 The Effect of the Learning Rate 

The efi'ectiveness and convergence of back-propagation training depend significantly 

on the learning rate. A good initial learning rate can speed up the training of a neural 

network. A small learning rate will result in slow convergence due to the large number 

of update steps required to reach a local minimum. Thus, the smaller the learning rate, 

the smaller will the changes to the synaptic weights in the network be from one iteration 

to the next. If the learning rate parameter is too large, the resulting large changes in 

the weights cause the network to produce oscillations between relatively poor solutions, 

or it may jump over the global minimum and end in a weaker local minimum. It is 

desirable to have large steps when the search point is far from a minimum, which are 

decreased as the search approaches a minimum. For small constant learning rates there 

is a nonneglible stochastic element in the training process that allows the search to 

escape local minima with shallow basins of attraction [Hassoun 1995]. The danger of 

a learning rate that is too small may still cause the search to be trapped in local minima. 
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Many heuristics have been proposed so as to adapt the learning rate automatically. 

Sutton presented a method that increases or decreases the learning rate for each weight 

Wi according to the number of sign changes observed in the associated partial deri vati ve 

~! [Sutton 1986]. Franzini investigated a technique that heuristically adjusts the 

learning rate, increasing it whenever \1E(t) is close to \1 E(t - 1) and decreasing it 

otherwise [Franzini 1987]. Chan and Fallside proposed an adaptation rule for the 

learning rate that is based on the cosine of the angle between the gradient vectors 

\1E(t) - \1E(t - 1) [Chan et al1987]. Silva and Almeida used a method where the 

learning rate parameter for a given weight Wi is multiplied by factor a, where a > 1, 

if a:~:) and aE~:~l) have the same sign; if the partial derivatives have different signs, 

then the learning rate parameter is multiplied by b, where 0 < b < 1 [Silva et al1990]. 

The disadvantage of Silva and Almeida's method is that it introduced two extra 

parameters. Moreira also employed adaptive learning rates and showed that the 

adaptive learning rates can compensate for a bad initial value [Moreira et al1995]. 

Haffner et al propose a learning rate 77 = e-4.Zog (s)+c for a sigmoid activation function 

of the form f(neti) = l+e 
s 

neti. Unfortunately, they do not compare their approach 

to others, neither give details (the constant c is not precisely given) [Haffner et al 1988]. 

The local minima problem can be eased by adding noise to the weights 

[Von Lehman et al1988] or by adding noise to the input patterns [Sietsma et al1988]. 

Convergence in back-propagation can also be increased by using a momentum term, 

which is discussed in the following section. 

2.18.3 The Effect of Momentum on Back-propagation 

A momentum term is used to stabilize the weight change by making nonradical re­

visions using a combination of the gradient decreasing term with a fraction of the 
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previous weight change. A momentum term was first introduced by Rumelhart et at 

[Rumelhart et at 1986b] , where weight changes are calculated as 

where the momentum constant, a, is restricted to the range 0 :S a < 1. The effect of 

a on 6Vj 'i (t) in equation (2.29) is described below: 

• 	 When ex is zero, the back-propagation algorithm operates without momentum. 

• 	When tV~i has the same algebraic sign on consecutive iterations, then the ad­

justment 6Vji grows in magnitude, and the weight is adjusted by a large amount. 

Thus, the inclusion of the momentum term tends to accelerate descent in steady 

downhill directions, instead of fluctuating with every change in the sign of the 

associated partial derivative, tV~i' 

• 	 When tv~i has opposite algebraic signs on consecutive iterations, then the ad­

justment 6Vji shrinks in magnitude, resulting in the weight being adjusted by a 

small amount. Thus, the effect of the momentum term has a stabilizing effect in 

directions that oscillate in sign. 

Adaptive momentum rates may also be employed. Fahlman proposed, and extensively 

simulated, a heuristic variation of backprop, called quickprop, that employs a dynamic 

momentum rate given by [Fahlman 1989] : 

BE 

a(t) = Bw;(t) 
BE BE 

BWi(t-l) + OWi(t) 

(2.30) 

With this adaptive a(t) substituted in equation (2.29), if the current slope is per­

sistently smaller than the previous one but has the same sign, then a(t) is positive, 

and the weight change will accelerate. Thus the acceleration rate is determined by 

magnitude of successive differences between slope values. If the current slope is in the 
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opposi te direction from the previous one, it signals that the weights are crossing over 

a minimum. In this case a(t) has a negative sign, and the weight change starts to 

decelerate. 

The momentum term may also have the benefit of preventing the learning process 

from terminating in a shallow local minimum on the error surface [Haykin 1994]. The 

net effect of momentum is that of traversing flat error surfaces quickly, while moving 

slower when the surface becomes irregular. 

The next section discusses the on-line implementation of back-propagation applied to 

SUNN. 

2.18.4 On-line Implementation of Back-propagation 

1. 	 Initialization 

Choose a reasonable network configuration and set all weights including biases to 


small random numbers. 


For each pattern in the set, perform processes listed in 2 and 3 below. 


2. 	Forward Phase 

The input vector Z, is presented to the input layer of the network, and the target 

vector, ~ to the output layer of the network. The activation values are then 

computed for the hidden and output units, respectively. The activation value for 

a summation hidden neuron is calculated as, 

1+1 

fC'£Vji Z',) 	 (2.31) 
i=l 
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while the activation value for the kth neuron of the output layer is computed as, 

J+1 

Ok = fCLJ WkjYj) (2.32) 
j=l 

The error signal, i.e. the difference between the desired response tk and the 

networks output Ok, is subsequently computed: 

(2.33) 

3. Backward propagation phase 

The local gradients (or errors) of the network, i.e. o's, are computed by proceeding 

backward layer-by-layer. For a neuron in the outer layer, OOk is computed using, 

(2.34) 

For a neuron in the hidden layer, Oyj is computed using, 

K 

0Yi = f'(net yj )' LOOk' Wkj 	 (2.35) 
k=l 

Subsequently, the weights in the output layer are adjusted with, 

(2.36) 

and the weights in the hidden layer are adjusted with, 

(2.37) 

4. 	 Iteration 

Repeat the process listed in 2 to 4 by presenting all the patterns in the training 

set repetitively until the weights of the network stabilize their values and the 

average error computed over the entire training set is acceptable. 

The next section discusses the stopping criteria for the back-propagation algorithm. 
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2.18.5 Terminating criteria 

In general, it cannot be shown that the back-propagation algorithm converges, nor are 


there well defined criteria for stopping its operation. However, reasonable criteria do 


exist, each with its own practical merit, which may be used to teminate the back­


propagation algorithm [Haykin 1994]. 


The back-propagation algorithm is considered to have converged, when any of the fol­


lowing becomes true: 


1. 	 When the Euclidean norm of the gradient vector reaches a sufficiently small gra­

dient threshold [Kramer et al1989]. 

2. 	 When the absolute rate of change in the average squared error per epoch is suffi­

ciently small. 

3. 	 If the maximum value of the average squared error on the test set is equal to or 

less than a sufficiently small threshold. 

4. 	 When the generalization performance, tested after each learning iteration, is ad­

equate, or when it is clear that the generalization performance has peaked. 

5. 	 When the network starts to overfit, i.e. when 

~v 	> ~v + 6~v (2.38) 

where ~v is the current error on the validation set and ~v is the average error on 

the validation set over the previous iterations and 6~v is the standard deviation 

in validation error. 

2.18.6 Initialization 

The first step in the back-propagation algorithm is the initialization of the synaptic 

weights. Owing to its gradient-descent nature, back-propagation is very sensitive 
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to initial conditions. If the choice of the initial weight vector is located within the 

attraction basin of a strong local minima attractor, convergence of back-propagation 

will be fast. On the other hand, back-propagation converges very slowly if the initial 

weights start the search in a relati vely fiat region of the error surface. 

A good choice for the initial weights can be of a tremendous help in a successful 

network design. The random weight initialization method is often preferred for its 

simplicity and ability to produce multiple solutions, as the weights may, due to their 

initial randomness, converge to various attractors [Kolen et al1990]. In practice 

all the weights are set to random numbers that are uniformly distributed inside 

a small range of values [Rumelhart et al1986b]. Rumelhart, Hinton and Williams 

discovered that if all weights start out with equal values, where the solution requires 

that unequal weights be developed, the network does not learn [Rumelhart et al1986b]. 

Premature saturation occurs when the error value remains almost constant for some 

period of time during the learning process. This point in the error surface cannot 

be considered as a local minimum, because the squared error continues to decrease 

on subsequent iterations. Premature saturation corresponds to a saddle point in 

the error surface. Large weights tend to prematurely saturate units in a network 

and render them insensitive to the learning process [I-lush et al1991, Lee et al1991]. 

Wessels and Barnard describe two initialization methods [Wessels et al1992] . The 

first method sets the initial weight range to a value which assumes that the output 

of the network and the target patterns have the same variance. The second method 

puts equally distributed decision boundaries in the input space which produces initial 

weights for the first layer of connections. The weights of the second layer are set to 

1.0. A comparison of generalization on both methods was done, on three sets of data. 

\i\Tessels and Barnard found that the second method outperformed the first in terms 
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of generalization. However, convergence speeds were not compared [Wessels et al1992]. 

2.19 Conclusion 

This chapter provided an overview of summation unit neural networks and gradient de­

scent applied to SUNNs (the so-called back-propagation networks). Various network 

architectures , learning paradigms, learning rules and modes of learning were discussed. 

The back-propagation neural network which uses gradient descent was introduced and 

explained. The effect of weight initialization, momentum and the learning rate on 

convergence of back-propagation was addressed in this chapter. The next chapter dis­

cusses higher-order neural networks, where the training of product unit neural networks 

is discussed in detail. 
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