
Chapter 1 

Introduction 

The recent resurgence of interest in neural networks can be ascribed to the recognition 

that the brain does not perform calculations in the same way as conventional (Von Neu­

mann) computers. Despite the fact that computers execute instructions at extremely 

fast speeds, human beings whose brains operate at much slower speeds still outper­

form computers at tasks such as speech recognition, face recognition, etc. The human 

brain consists of an extremely large number of interconnected nerve cells, or neurons, 

which operate in parallel to process information. An artificial neural network (ANN) 

is an information processing system that mimics the structure and operating principles 

found in the information processing systems of human beings. The study of neural 

networks is one of the most rapidly expanding fields attracting researchers from a wide 

variety of disciplines such as biology, engineering, linguistics, mathematics, medicine, 

neuroscience, physics, psychology and statistics. ANNs have been applied successfully in 

many applications such as speech recognition [Cohen et al1993], handwritten character 

recognition [Guyon 1990], steering of an autonomous vehicle [Pomerlau 1989], medical 

diagnosis of heart attacks [Harrison et al1991], radar target detection and classification 

[Haykin et al1992]' and many more. 

1 

 
 
 



2 CHAPTER 1. INTRODUCTION 

1.1 Why Product Unit Neural Networks? 

Standard neural networks use summation units (SUs), where the net input signal to 

a unit is the weighted sum of the inputs connected to that unit. Research has shown 

that these summation unit neural networks (SUNNs) can approximate any continuous 

function to an arbitrary degree of accuracy, provided that the hidden layers contain a 

sufficient number of hidden units [Funahashi 1989, Hornik et al1989a]. However, these 

networks require a large number of summation units (SUs) when approximating com­

plex functions that involve higher order combinations of its inputs [Leerink et al1995]. 

When approximating polynomials, higher-order combinations of inputs, such as X 3 y 7, 

are often required. Networks that utilize higher-order combinations of its inputs will 

greatly reduce the number of processing units required to represent these complex 

functions [Janson et al1993]. 

Several neural network models have been developed to gain an advantage in 

using higher-order terms [Gurney 1992, Leerink et al1995, Redding et al1993]. 

Examples of these higher-order neural networks are: pi-sigma network (PSN) 

[Ghosh et al1992]' sigma-pi networks [Lee Giles 1987], second-order neural networks 

[Milenkovic et al1996] and functional link neural networks [Ghosh et al1992, Hussain 

et al1997, Zurada 1992]. An alternative network that also employs higher-order terms, 

is a product unit neural network (PUNN), where the net input is now a product 

of terms; each term consisting of an input raised to a weight [Durbin et al1989]. 

Advantages of PUNNs are increased information capacity and the ability to form 

higher-order combination of inputs. Durbin and Rumelhart determined empirically 

that the information capacity of product units PUs (as measured by their capacity 

for learning random boolean patterns) is approximately 3N, compared to 2N of a SU 

network for a single threshold logic function, where N denotes the number of inputs to 

 
 
 



3 CHAPTER 1. INTRODUCTION 

the network [Durbin et al1989]. 

The next section briefly describes the problems associated with the training of PUNNs 

using back-propagation by gradient descent. 

1.2 	 Problems with Training Product Unit Neural 

Networks using Gradient Descent 

The back-propagation algorithm, independently developed by Werbos [Werbos 1974] 

and Bryson [Bryson et al1969], provides a computationally efficient method for the 

training of multilayer neural networks. Its greatest strength is in finding non-linear 

solutions to ill-defined problems [Haykin 1994]. Unfortunately, the search space for 

PUNNs can be extremely convoluted, with numerous local minima that trap gradient 

descent [Durbin et al1989, Leerink et aI1995]. While it is possible for local minima 

to occur in SU networks, they are particularly prevalent in networks containing PUs, 

due to the effect of the exponential terms in the learning equations. Thus, while PUs 

increase a neural network's capability, they also add complications in the training pro­

cess. Although gradient descent has shown to be successful in training SUNNs, gradient 

descent fails to train PUNN s in general. The reason for its failure is discussed in more 

detail in section 3.8 on page 74. Gradient descent requires auxiliary information such 

as function derivatives, in order to calculate the minimum. The search space of PUNNs 

have an increased number of local minima, deep ravines and valleys, often surrounded 

by steep gradients that lead to huge adjustments of the weights when gradient descent 

is used, and consequent saturation. 

 
 
 



4 CHAPTER 1. INTRODUCTION 

1.3 	 Global Optimization Algorithms to Train 

PUNNs 

What is needed, is a global optimization method instead of gradient descent, which is 

a local optimizer, to allow searching for larger parts of the search space, and which has 

the ability to get out of local minima. Genetic algorithms (GA) and particle swarm 

optimization (PSO) are global optimization methods that do not require auxiliary 

information, such as function derivatives, about the function being approximated in 

order to calculate the minimum. Leapfrog optimization (LFOP), a derivative based 

global optimizer, will also be used in training PUNNs. Each optimization algorithm 

has its own set of parameters. Optimal parameters are determined for each of these 

optimization algorithms. This thesis is dedicated to the training of PUNNs using PSO, 

GA and LFOP. Architecture selection, i.e. pruning, of PUNNs is also studied and 

applied to determine near optimal neural network architectures. The variance nullity 

pruning algorithm of Engelbrecht is applied to PUNN to determine near optimal 

network architectures [Engelbrecht et al1999c, Engelbrecht 2001]. 

1.4 	 Objectives 

The main objective of this thesis is to illustrate that gradient descent fails to train 

PUNNs and to show that global optimization algorithms, such as particle swarm 

optimization , genetic algorithms and leapfrog optimization, are more successful at 

training PUNNs. 

The second objective is to determine which global optimization algorithm is more effi­

cient and robust in training PUNNs. This thesis assumes a PUNN architecture with a 

 
 
 



5 CHAPTER 1. INTRODUCTION 

bias (for an explanation of a bias, refer to section 2.7 on page 15) to the output units 

and no bias to the hidden units. Instead, an extra unit, referred to as a 'distortion 

unit', is included in the hidden layer (refer to section 3.7.3 on page 72 for an explanation 

of the distortion unit). In this case, product units compute the net input signal as: 

1+1 

net
Yj 

= II Z:ji (1.1 ) 
i=1 

instead of 

1 

netYj = II Z:ji + Z1+1 . Vj,l+1 (1.2) 
i=1 

where netYj is the net input to hidden unit Yj, I is the total number of input units, 

Zi is an input unit, Z'i is an input signal to unit Zi, Vji is the weight between input 

unit Zi and hidden unit }j. In equation (1.2), the threshold (or bias) is denoted by 

Vj,1+1 , Z1+1 is the input to the bias unit and has a value of -1. In equation (1.1), Z1+1 

cannot be viewed as the input to the bias, since it does not perform the function of a 

bias, i.e. it does not act as an oHset to the other hidden units, but rather distorts the 

activation function to more accurately fit the data. In this case, Z1 +1 is now referred to 

as the input to the 'distortion' unit, Z1+1 with value -1, clearly distinguishing it from a 

bias unit. Note, equation (1.1) does not contain a bias to the hidden units. The linear 

activation function is assumed for the hidden and output units of the PUNNs, while the 

sigmoidal activation function is assumed for the hidden and output units of the SUNNs. 

The third objective is to find the smallest architecture in training PUNNs for a 

particular function using the variance nullity pruning algorithm of Engelbrecht 

[Engelbrecht et al1999c, Engelbrecht 2001]. The thesis also compares the pruned 

architectures of PUNNs and SUNNs to determine whether there is any gain in 

architecture complexity and performance using PUs. 

 
 
 



6 1. INTRODUCTION 

1. Out of Thesis 

'I'he thesis is as of Topics 

VLNV"V'"'-' of 

U<AHH"r, of classification 

learning measures ANNs, 

approximation networks, 

by CNUL'vHV descent. 

An of the as 

chapter 3. 

network is and 

PUNNs ae~;cellt are also 

Chapter 4 is to a U'-'V<NU~~U discussion swarm 

Optimal for optimization 

Results of 

8 are also discussed. 

5 artificial 

lity IS adapted 

et of are for 

6 possible 

 
 
 



1. 7 

improvements are 

 
 
 


	Front
	CHAPTER 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Back

