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CHAPTER 1 


OVERVIEW 


1.1. INTRODUCTION 

The magnetotelluric method provides the geophysicist with a frequency domain 

electromagnetic tool that is not hampered by the presence of conductive 

overburden or sampling frequencies that do not allow for deep penetration. 

Variations in the earth's natural magnetic field supply frequencies ranging from 

nearly DC to several kilohertz, thus giving one the ability to study the electric 

substructure of the earth to great depths. The final results of magnetotelluric 

soundings are log-log plots showing apparent resistivity as a function of depth 

calculated from large amounts of data collected during a sounding. One of the 

main problems affecting the quality of the results is the presence of artificial 

electromagnetic sources that are too close to satisfy the assumption that the 

electromagnetic energy consists of plane waves. Statistical reductions of the 

data aim to minimise the effect of this 'noise'. Unfortunately, most of the basic 

minimisation techniques assume noise with a Gaussian distribution. In reality 

this is not the case and this leads to poor quality results. The aim of this study is 

to compare two statistical minirnisation techniques that try to take the actual 

distribution of the noise into consideration. 

1.2. SUMMARY OF CONTENTS 

Chapter 2 gives a brief description of various sources of natural electromagnetic 

energy. It is important to be aware of the different sources since this will indicate 

the optimal time to do magnetotelluric soundings. The distance of the sources 

means that the electromagnetic energy is in the form of plane waves. This is 

one of the fundamental assumptions made in the deduction of the 

magnetotelluric theory. Chapter 3 starts with this assumption and uses 

Maxwell's equations to derive wave equations that describe the propagation of 

plane electromagnetic waves through the earth. By applying the wave equations 

to various geological models, it is possible to arrive at the equations describing 

the relation between the electric and magnetic fields measured at a sounding 
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station. These fields are related via the impedance tensor and it is the noise in 

this tensor that needs to be minimised. 

Data acquisitioning and basic processing techniques are described in Chapter 

4. One of the final results in this chapter shows the relation between apparent 

resistivity and impedance. 

Chapter 5 contains a discussion on various statistical methods used to minimise 

the effect of noise in data. It starts out with the L1- and L2 norms that make the 

assumption of normally distributed noise. Two methods that address this 

problem are the Robust M-estimation and adaptive Lp norm techniques . The 

robust M-estimation method uses a weight function to ignore outliers in the 

data. This effectively causes the actual distribution to approach a normal 

distribution. With the adaptive Lp norm technique the actual distribution of the 

noise is used to determine the value of p that will be used to minimise the error. 

These methods are applied to synthetic data with both normal and non-normal 

error distributions and the results are compared. 

Statistical reduction methods discussed in Chapter 5 are applied to real data in 

Chapter 6. Data for the case study were collected between Sishen and Keimoes 

along a traverse that crosses a number of tectonic boundaries. The final model 

calculated is compared to a deep reflection seismic line that ran along the same 

traverse. Chapter 7 discusses the final results obtained with the various 

statistical techniques. 
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CHAPTER 2 


NATURAL SOURCES OF ELECTROMAGNETIC ENERGY 


2.1. GENERAL 

Cagnaird (1953) based the theory of the magnetotelluric method on two important 

assumptions: 

• 	 The source is a natural electromagnetic plane wave propagating vertically 

downward into the Earth and 

• 	 The Earth has a one dimensional electrical substructure. 

The naturally occurring electromagnetic plane wave originates from a variety of 

sources and may comprise a wide range of frequencies, depending on the origin. 

The higher frequency component mainly emanates from meteorological activities 

such as lightning. Variations in the Earth's magnetic field linked to solar activity are 

responsible for a low frequency field. 

2.2. SOURCES RELATED TO SOLAR ACTIVITIES 

It is well known that the geomagnetic field is composed of three parts - the main 

field that originates from an internal source, the external field originating outside the 

earth and local variations in the main field caused by magnetic material in the 

earth's crust (Telford et aI., 1976). The variable nature of the external field is of 

particular interest to us since it induces currents in the ionosphere which act as 

sources of natural electromagnetic energy 

Pulkkinen and Baker (1997) describe geomagnetic activity as 'the general term 

used to define variations in the Earth's surface magnetic field caused by sources 

external to the Earth.' They point out that these variations are caused by 

fluctuations in current systems within the ionosphere and magnetosphere 

controlled by the variable nature of the solar wind, the interplanetary magnetic field 

(IMF) or the geometrical relation of the sun and earth. 
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2.1.1. Solar wind 

The close relationship between geomagnetic variations and solar activity 

warrants a quick look at the basic morphology of the sun. Frazier (1985) 

describes the sun as 'a series of concentric layers that interact continuously.' 

Figure 2.1 shows a schematic diagram depicting these concentric layers. 

In the solar core at extreme temperatures of 15 000 ooooe and pressure 

200 billion times the pressure at the earth's surface, hydrogen atoms are 

fused together to form helium, releasing massive amounts of energy during 

this process. As the energy passes through the radiation zone, decreases 

in temperature and pressure and a change in wavelength transform the 

gamma rays into X-rays and from there into ultraviolet and visible light. The 

convection zone consists of a cooler, more opaque gas and here the energy 

is moved upward by convection cells into the photosphere. The energy 

finally reaches the photosphere from where it is emitted into space. Solar 

gases are confined by magnetic loops form the sun's atmosphere or corona. 

Holes in the corona allow the constant movement of gas particles into space 

thus forrning what is known as the solar wind. 

The particles emitted by the sun consist mainly of ionized hydrogen that 

forms a plasma of protons and electrons (Kaufman and Keller, 1981). 

Experiments with the Lunik space probes four decades ago revealed a flux 
2 1of positive ions of approximately 2 X 108 particles cm- sec- beyond a 

distance of 39 earth radii (RE) (Snyder et al., 1963). During the end of 1962 

and into the beginning of 1963 the space probe Mariner measured the 

velocity of the interplanetary plasma for the first time directly and determined 

an average velocity of 504 km/s during the experiment (Snyder et aI., 1963). 

2.1.2. Relation between solar wind and geomagnetic activity 

The geomagnetic field presents a barrier to the solar wind stopping it at 

roughly 10 RE and deflecting it away from and around the earth (Moore and 

Delcourt, 1995). The protons and electrons are often deflected in opposite 
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directions causing a magnetic field that cancels the earth's magnetic field 

where it occurs. The boundary thus formed is known as the magnetopause 

(Kaufman and Keller, 1981). In the process the solar wind modifies the 

shape of the geomagnetic field compressing it on the daylight side and 

causing it to be extended on the opposite side (figure 2.2) . 

............. 

. . .. 

CORONA 

.. ' PHOTOSPHERE CHROMOSPHERE'·· . 

CONVECTION ZONE 

RADIATION ZONE 

.. . . 

Figure 2.1. Simplified diagram depicting the morphology of the sun 

(adapted from Frazier, 1985). 

The variable nature of the solar wind's strength and velocity cause the 

magnetopause to fluctuate. The size of the magnetosphere changes and 

new ionospheric currents form (Pulkkinen and Baker, 1997). When the solar 

wind is strongly enhanced, stronger magnetic effects known as magnetic 

storms occur. 
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Figure 2.2. The Earth's magnetosphere (Moore, 1994). 

2.1.3. Magnetic storms 

Sunspots, areas of intense magnetic activity on the surface of the sun, 

release energy in the form of solar flares and other eruptions. Already in the 

previous century scientists observed that sunspots waxed and waned in 

cycles of nearly 11 years. These cycles correlate directly to times of 

increasing and decreasing geomagnetic activity. This and the fact that 

increased geomagnetic activity occurs at roughly 27 day intervals (period of 

the sun's rotation) led to the assumption that solar flares serve as the main 

instigators of large geomagnetic storms. 

Solar flares were held responsible for solar energetic particle (SEP) events 

even when no flares were visible on the solar disk. These events were 

believed to result from flares on the back side of the sun. Several models 

were derived to explain the relatively long duration of most of these events 

compared with the short lifetime of a flare. One explanation for this 
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phenomenon was that the solar magnetic field extended through 

interplanetary space in the form of 'magnetic tubes.' Particles emitted by 

flares diffused through the solar atmosphere until they reached the tube of 

force that extended out to the earth at that time, slowly filling it and 

increasing the flux of particles measured on earth (figure 2.3). Rapid 

discharge of particles from the tube resulted in magnetic storms (Reid, 

1964). 

TUBE OF FORCE 

FLARE LOCATION 

Figure 2.3. Reid 's diffusive model for the initial phase of a solar 

proton event (Reid, 1964). 

However, in recent years coronal mass ejections (CMEs) have gained 

prominence as presenting the crucial link between solar activity and 

transient interplanetary disturbances that cause large geomagnetic storms 

1016(Gosling et aL, 1990). During coronal mass ejection events 1015 
- gms 

of solar material are suddenly propelled outward into space at speeds 

ranging from less than 50 km/s to greater than 1200 km/s (Gosling et aL, 

1991). CMEs are not always observed in association with solar flares but 

when they are temporally related, CMEs usually begin to lift of from the sun 

before any substantial flaring activity has occurred (Gosling, 1993). 

When CIVIEs have outward speeds exceeding that of the ambient solar wind 

a shock forms in front of the ejection and the slower moving plasma ahead 

is accelerated and deflected from its path (Sheeley et aL, 1985). Gosling et 

aL (1990) show that a strong relation exists between these shock 
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disturbances, CMEs and large geomagnetic storms. Still, it is important to 

note that not all CMEs and shock disturbances cause geomagnetic storms. 

A prerequisite for the formation of major magnetic storms seems to be the 

presence of an intense, long-duration, southward-directed, interplanetary 

magnetic field (Bz) within the CME or shock (Tsurutani and Gonzalez, 1992; 

Lundstedt, 1996; Pulkinnen and Baker, 1997). The strong Bz may be a result 

of either compression of the ambient interplanetary magnetic field (IMF) by 

the shock, or of draping of the IMF about the fast CME or a combination of 

compression and draping (Gosling and McComas, 1987). 

2.1.4. Geomagnetic activity as source for MT soundings 

Variations in the geomagnetic field induce currents to flow in the ionized 

layers of the earth's atmosphere (at 80-160 km altitude). These currents in 

the ionosphere lead to a displacement of mass and together the magnetic 

and inertial forces give rise to magnetohydrodynamic waves (Kaufman and 

Keller, 1981). By the time the magnetic effects reach the earth's surface 

they are strongly modified and classified as micropulsations. These are 

divided into continuous (Pc) and irregular (Pi) pulsations. They in turn induce 

currents in conductive layers within the earth. Table 2.1 summarises further 

subdivisions of the two classes as discussed by Kaufman and Keller (1981). 

2.3. SOURCES RELATED TO THUNDERSTORM ACTIVITY 

Transient electromagnetic fields (also called atmospherics or sferics) associated 

with lightning provide the main natural energy at frequencies ranging from 3 Hz to 

30 kHz. The electromagnetic field generated by a lightning stroke, shows high 

energy density at high frequencies when observed relatively nearby. As the energy 

propagates to greater distances through wave guide propagation, some lower 

frequencies are enhanced while the higher frequencies are attenuated (Kaufman 

and Keller, 1981). The measured field is a superposition of individual sferics 

originating from thunderstorms around the world (Zhang and Paulson, 1997). 
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Table 2.1. Summary of micropulsation's characteristics. 

Classification Appearance Time of occurrence Cause 

Pc Pc-1 Discrete signal 

with gradually 

increasing 

frequency (pearls) 

Middle and low latitudes: 

nights and mornings 

High latitudes: noon and 

afternoon 

Kinetic 

instabilities in 

magnetospheric 

plasma 

Pc-2 Two maxima on 

amplitude 

spectrum 

Midday 

Disturbance in 

geomagnetic 

field 

Pc-3 Two maxima on 

amplitude 

spectrum 

Midday 

Oscillations 

produced outside 

magnetosphere 

Pc-4 Two maxima on 

amplitude 

spectrum 

Mid latitudes: middays 

High latitudes: nigl1t 

Generated 

during onset of 

magnetic storms 

Pc-5 One maximum on 

amplitude 

spectrum 

High latitudes: mornings 

and evenings 

Interaction of 

solar wind with 

magnetopause 

Pc-6 

Pi Pi-1 PiB Groups of irregular 

variations with 

periods less than 

15s 

Occur with explosive 

phase of su bstorm 

(22:00-05:00) 

Transverse 

vibration of 

magnetosphere 

boundary 

PiC Irregular variations 

with dominant 

period of 5 to 1 Os 

Occur in both explosive 

and quasi-stable phase 

of substorm 

IPDP Decrease in 

period during 

course of 

occurrence 

16:00-01 :00 Excited in auroral 

zone 

Pi-2 Decaying 

sequence of Associated with 

Related to force 

lines of 
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oscillations with 

periods of 60-1 OOs 

and duration of 5­

10min 

explosive phase of 

substorm 

geomagnetic 

field along which 

auroral activity 

proceeds 

Pi-3 

Periods>150s Night time 

Development of 

Kelvin-Helmholtz 

instability at 

boundary of 

magnetosphere 
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CHAPTER 3 

BASIC THEORY OF THE MAGNETOTELLURIC METHOD 

3.1 INTRODUCTION 

Cagnaird and Tikhonov developed the theory underlying the magnetotelluric 

method independent of each other in the 1950's (Tikhonov, 1950; Cagnaird, 

1953). They both observed that the electric and magnetic fields associated with 

telluric currents that flow in the Earth as a result of variations in the Earth's 

natural electromagnetic field, should relate to each other in a certain way 

depending on the electrical characteristics of the Earth. Since then tremendous 

advances have been made in the understanding, processing and interpretation 

of the data. However, the fundamental principles and assumptions have 

remained unchanged. This chapter presents the principles that form the basis 

of the magnetotelluric method. 

3.2 MAXWELL'S EQUATIONS 

The magnetotelluric method is a frequency domain electromagnetic technique. 

As with all electromagnetic methods the fundamental principles underlying the 

technique are summarised in Maxwell 's equations given in differential form in 

equations (3.1) to (3.4) (Reitz et a!. 1979). 

V · S= 0 ------- (3.1 ) 

V · D =q ------- (3.2) 

as v x E =-­
at 

------- (3.3) 

aD 
V x H=J+­

at 
------- (3.4) 

The symbols are declared in the glossary. 
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It is important to have a clear understanding of these equations and therefore 

they will be discussed separately in more detail. 

3.2.1. V' . B = 0 

The divergence of a vector (X) is the limit of its surface integral per unit 

volume as the volume (V) enclosed by the surface goes to zero (Reitz, et 

ai., 1979). 

1 
V' . X = lim v <f X· nda ------- (3.5) 

v..... 0 s 

In other words it describes the net flow through a surface enclosing the 

source of the flow_ If V . X > 0 . thArA is rI nAt olltflow from the position of 

X. If V . X < 0 , there is a net inflow to the position of X. If V . X = 0 , there 

is no net inflow or outflow. 

Therefore, V'. B = 0 indicates that for a closed surface surrounding the 

source of a magnetic field, the net result of the inflow and outflow per 

unit volume is zero as the volume goes to zero. This implies that the 

magnetic source has a negative and positive pole and that isolated 

magnetic poles do not exist. Figure 3.1 illustrates this point. 

(a) 

I' 

I 

It­
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, 

, -(- , 
" 
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.... -' / ........ ,
..(- ------~=-=- -- -':>­

.... -- -~,- - .... 
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Figure 3.1 Maxwell's equation V'. B = 0 implies that the situation 

depicted in (a) prevails and that single magnetic poles as denoted in (b) 

cannot occur. 
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3.2.2. V' . 0 = q (Gauss' law) 

The electric flux across a closed surface is proportional to the net electric 

charge (q) enclosed by the surface. 

------- (3.6) 

The electric displacement (0) includes the charge embedded in the 

dielectric medium (EoE) as well as the polarisation charge (P). Reitz et al. 

(1979) defines polarisation as follows: 

A small volume element of a dielectric medium which is electrically 

neutral has been polarised if a separation of the positive and 

negative charge has been effected. The volume element is then 

characterised by an electric dipole moment L1p that determines the 

electric field produced by the small volume L1v at distant points. P 

is the electric dipole moment per unit volume. 

as
3.2.3. V' x E = - at (Faraday's law) 

Through experimentation it was found that an electromotive force (~ ) is 

associated with a change in magnetic flux (cD) through a circuit. 

dcD 
~ = - - ------- (3.7)

dt 

The EMF is independent of the way in which the flux changes. The 

minus sign indicates that the direction of the induced EMF is such as to 

oppose the change that produces it. 

Define the EMF around an electric circuit as 

------- (3.8) 

and the magnetic flux as 

cD = LS·nda ------- (3.9) 
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where da is an infinitesimal area and n is the unit vector perpendicular to 

da. Equation (3 .9) therefore gives the integral of the normal component 

of the magnetic field over a surface S. 

Substituting (3.8) and (3.9) into (3.7) yield 

{E.dl = - :t lB.nda ------- (3.10) 

Stokes' theorem states that the line integral of a vector around a closed 

curve is equal to the integral of the normal component of its curl over any 

surface bounded by the curve (1J.dl = 1V x F· nda). Therefore 

equation (3.10) can be written as 

r V x E . n da = - ~ r B . n da ------- (3 .11 ).ls dt Js 

Is V x E· nda = - Is ~ .nda ------- (3.12) 

This holds true for all fixed surfaces, therefore 

aB 
V x E=-- ------- (3.13)

at 

aD 
3.2.4. V x H = J + at (Ampere's law) 

This law describes the magnetic field due to a current distribution. J is 

the transport current density that consists of the motion of free electrons 

or charged ions. The electric displacement D was defined in equation 

(3 .6). a;: gives the variation of the electric displacement with time and is 

called the displacement current. 

It is worthwhile to discuss the definition of the 'curl' and examine this in 

order to gain a better understanding of Ampere's and Faraday's laws. 

Reitz et al. (1979) define the curl of a vector as the limit of the ratio of the 

integral of the vector's cross product with the outward drawn normal over 

14 
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a closed surface, to the volume enclosed by the surface as the volume 

goes to zero. 

\l x F = lim ~ J n x F da ------- (3.14)
V-40 V '1s 

The cross product of two vectors is the product of the magnitudes times 

the sine of the smallest angle between the two vectors, with the direction 

of the resultant vector perpendicular to the two vectors according to the 

right hand screw rule. The curl of a vector can therefore be interpreted 

as the tendency of a vector to rotate around an axis perpendicular to the 

vector and the normal (Ellis and Gulick, 1986). Figure 3.2 serves to 

illustrate this point. 

nxF 

n +---11. 

Figure 3.2. The curl of a vector (integration of n X F over 

the total closed surface divided by the enclosed volume 

V as V goes to zero) 

3.3. WAVE EQUATIONS 

A wave equation describes the wave propagation in a linear medium. To derive 

the wave equation for the magnetic field, one considers the curl of equation 

(3.4) (Reitz et aI., 1979). 

aD 
\l x \l x H=\l x J+\lx­ ------- (3.15)

at 

let D = eE, J =0 E and B = J10H and use (3.3), then 
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a 
v x V x H = G(V x E)+ £-(V x E)

01: 

aH a2 H 
= -Gllo 8t - £fl o 01: 2 

Using the identity V x V x X = VV . X - V2X and (3.1) lead to the wave equation 

for the magnetic field 

------- (3.16) 

The wave equation for the electric field can be derived similarly by taking the 

curl of (3.3). In a charge free medium where V . D = 0 this results in 

------- (3.17) 

Equations (3.16) and (3.17) describe the electromagnetic field in a 

homogeneous, linear medium with no free charge density. 

3.4. 	APPLICATION OF WAVE EQUATIONS IN THE 

MAGNETOTELLURIC METHOD 

In the development of the theory for the magnetotelluric method, we make the 

following assumptions (Kaufman and Keller, 1981): 

• 	 The Earth consists of N horizontal layers, each with resistivity pn and 

thickness hn (Figure 3.3) . 

• 	 A horizontal current sheet located above the surface of the Earth acts as a 

source for an electromagnetic field that depends only on the vertical (z) 

coordinate and the distribution of resistivities. 

• 	 The horizontal current sheet Ux) in the source plane induces a uniform 

primary magnetic field (H oy) that does not vary with z (z is positive 

downwards). 
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Temporal fluctuations of the primary magnetic field generate the primary 

horizontal electric field (Eox). Variations in the primary electric field cause 

currents to flow in conductive layers in the Earth which in turn serve as source 

for the secondary electromagnetic field. Since we assume that the Earth 

consists of homogeneous layers, the current density does not change over the 

horizontal planes and the secondary electromagnetic field also consists of an 

electric field in the x-direction and a magnetic field in the y-direction. 

. ~ = - ~= :z:-~-~ -~-=- -- = - ~?~-- --""-•• Eox(t) 
~-~'-~ "*'"1; . • 

Horizontal current sheet jx 

z 

Layer 3 

Layer N-1 

Layer N 

Figure 3.3 Schematic diagram depicting the assumptions made during the 

development of the MT theory 

The total electromagnetic field is time dependant. Assume that the electric and 

magnetic components can be written as 
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E(r, t) = Exe-iwt ------- (3.18) 

H(r, t) = Hye - iOlt ------- (3.19) 

In the above equations the time dependency e-i(J)t=cosO)t - isinO)t implies an 

assumption that the fields are continuous harmonic oscillators. 

Substitute (3.18) into (3.17) and remember that the electric field varies only in 

the z-direction. The wave equation for the electric field induced under the 

assumptions made at the beginning of the section therefore is 

. [o2E . ~ e-Iwt __x + 10) f.!crE + O))J.D = 0 ------- (3.20) az2 x x 

According to Kaufman and Keller (1981) the displacement current can be 

neglected in the MT method. Equation (3.20) then becomes 

------- (3.21 ) 

In order to satisfy (3.21) the electric field must have the following form in each 

layer (n) 

------- (3.22) 

where 

------- (3.23) 

is the wavenumber. Skindepth (8) and wavenumber are related as follows 

1+i 
k=- ------- (3.24)

8 

Use (3.13) and (3.22) to determine the form of the magnetic field in each layer 
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------- (3.25) 

In (3.22) and (3.25) we assume that the tangential components of the electric 

and magnetic fields are continuous when passing through the interface 

between two layers. It is now possible to examine the behaviour of the electric 

and magnetic fields in different geological scenarios. 

3.4.1. Uniform half-space 

In a uniform half-space the electromagnetic energy must decrease with 

increasing depth since energy is transformed into heat. Since 

iz -z 

eikz = e& e & ------- (3.26) 

and 

- iz z 

e­ ikz = eb e& ------- (3.27) 

it is clear that in both (3.22) and (3.25) the first term between brackets 

represents the part of the field that decreases with increasing depth and 

the second term that part of the field that increases with increasing 

depth. For a uniform half-space, with the assumption that the field should 

approach 0 as z becomes very large, the electric and magnetic fields 

therefore reduce to 

------- (3.28) 

and 

------- (3.29) 

At the surface of the earth where z=O, (3.28) and (3.29) reduce to 

Ex(O) = e-iwtA ------- (3.30) 

and 
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------- (3.31) 

The ratio of the electric field to the magnetic field is known as the 

impedance, Z. 

Ex CD flZ ---­ ------- (3.32) xy - H - k 
y 

If the electric field is orientated in the y direction, the impedance Z xy can 

be derived in a similar fashion as 

------- (3.33) 

1 -~ 
By using (3.23) and the fact that Ii = e 4 (see Appendix A for 

derivation), (3.32) can be written in terms of the apparent resistivity p 

ffi 
- i1t 

_ ~ -34
Zxy - 2n 5T' 10 e ohm ------- (3.34) 

Since the impedance is complex, it has an amplitude and a phase. The 

amplitude is given by the modulus of Z 

3Izxy l= 2n~ :T .10- ohm ------- (3.35) 

and the phase by the tangency of the ratio of the imaginary part to the 

real part. 

------- (3.36) 

For Zyx the amplitude is the same as for Z xy and the phase is 

------- (3.37) 

3.4.2. Impedance of a two-layer medium 

The impedance for a two-layer medium can be derived from (3.22) and 

(3.25). Figure 3.4 depicts a model of a two-layer medium. 
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,/ 

,/ 

,/ h1,/ Pl 
,/ 

,/ 

.. X 
,/ 

,/ 

,/ 

,/ 

,/ 

h2P2 

I 

IZ
Y 

Figure 3.4 Two-layer medium 

In the first layer the electric and magnetic fields are 

------- (3.38) 

and 

------- (3.39) 

The second layer is considered to be a half-space, and the electric and 

magnetic fields are 

------- (3.40) 

and 

------- (3.4 1 ) 


Using the impedance ratio and the boundary conditions given in (3.42) 

and (3.43) the impedance relation (3.44) for a two layer medium can be 

derived (Kaufman and Keller, 1981). 

Z= hn ------- (3.42) 

z=hn ------- (3.43) 
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------- (3.44) 


3.4.3. 	 Electromagnetic fields in the presence of a two­

dimensional structure 

After developing the impedance for a layered medium, it is important to 

consider what effects two-dimensional structures will have on the 

electromagnetic field. Two scenarios will be considered, namely 

• electric field parallel to the vertical structure (E - polarisation) 

• electric field perpendicular to the vertical structure (H - polarisation) 

E-Polarisation 

Assume the two-dimensional structure strikes in the x-direction and the 

primary electric field is directed along the x-axis. The primary electric 

field does not intersect the surface and the total electric field has only an 

Ex component. As a result all derivatives with respect to x are zero. 

Maxwell's equation describing the magnetic field due to a current 

distribution (3.4) therefore becomes 

\1 x H =DE 	 ------- (3.45) 

(the displacement current is negligibly small compared to the conduction 

current 	 for the frequencies and conductivities measured in 

magnetotellurics (Kaufman and Keller, 1981 )). 

Equation (3.45) reduces to 

aE = 8Hz 8Hy 
------- (3.46) 

x 8y 8z 

and (3.3) together with H = Hoe- iwt yield 
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1 BEx
H =-- ------- (3.47) 

Y icu).! Bz 

and 

1 BEx
H =--- ------- (3.48) 

Z icu).! By 

Therefore, in the case of E-polarisation, the magnetic field has a vertical 

component. 

H-Polarisation 

In this case the primary electric field is directed perpendicular to the x­

striking two-dimensional structure. Electric charges develop on the 

structure and the electric field has components Ey and Ez. The electric 

field does not change in the x-direction and therefore all derivatives with 

respect to x are zero. Ampere's law (3.45) again gives the magnetic field 

associated with this current distribution, with 

crE = BHx ------- (3.4 9) 
Y Bz 

and 

BHx
crE =­ ------- (3.50)

Z By 

These equations are substituted into (3.3) and yield the following 

equation describing the magnetic field 

------- (3.51) 

When the electric field is directed perpendicular to the two-dimensional 

structure, the magnetic field does not have a z-component. 
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3.4.4. Tensor impedance 

From the previous section, it is clear that the relative orientation between 

structures in the earth and the primary electromagnetic field plays a 

crucial role in impedance calculations. This is further complicated by the 

fact that the orientation of the primary electromagnetic field changes with 

time and several orientations may be present at a certain time resulting 

in elliptical polarisation. In an attempt to deal with this problem the tensor 

impedance was derived (Sims et aI., 1971; Kaufman and Keller, 1981). 

In matrix form the tensor repesentation of (3.32) and (3.33) is 

------- (3.52) 

Therefore, the electric field in a certain direction may depend on 

magnetic fields parallel and perpendicular to it and the impedances can 

vary with time as the polarisation of the source field changes (Swift, 

1986). 
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CHAPTER 4 


DATA ACQUISITIONING AND PROCESSING 


The collection of magnetotelluric data in the field entails setting up the sounding 

station and recording until adequate data have been gathered in the appropriate 

frequency range. Time spent on a sounding depends on the required survey depth 

and the level of natural electromagnetic activity. Basic processing involves a 

number of steps, one of the most important being to determine whether natural 

electromagnetic events occurred. 

4.1. DATA ACQUISITIONING 

4.1.1. Field Setup 

It is clear from the development of the basic theory that inhomogeneities in 

the substructure of the earth cause secondary electric and magnetic fields 

that each have components in the X-, y- and z- directions. For this reason it 

is necessary to measure three perpendicular magnetic components and two 

horizontal perpendicular electric components. Two horizontal perpendicular 

magnetic components are also measured at a remote station away from the 

base station. This is based on the assumption that the noise will be different 

at the two stations but the events will be the same. A typical field setup is 

shown in Figure 4.1. 

4.1.1.1. Measuring the electric field 

To measure the electric field, the potential difference between two 

electrodes is measured. The electrodes must preferably be made of non­

polarising material such as a metal immersed in one of its salts in a porous 

cup. The voltage difference between a pair of non-polarising electrodes is 

relatively stable, whereas for metal electrodes potential differences resulting 
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from electrochemical reactions at the metal surface can be present 

(Kaufman and Keller, 1981). 
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Figure 4.1. Field setup for Magnetotelluric station 
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Contact resistances at electrodes can cause problems. In a dry soil or bare 

rock the contact resistance of the electrode may be very high and the soil or 

rock needs to be saturated with water or sometimes even saltwater to 

improve the contact. It is also true that when the contact resistances are 

high electrostatic and electromagnetic noise cause problems. 

Electrode intervals vary from site to site. According to Ohm's law potential 

(V) is proportional to resistance (R): 

V= I R ------- (4.1 ) 

Therefore, as the resistivity of the geology increases the strength of the 

measured signal will increase, if the current (1) remains constant. In a 

conductive earth, the signal will decrease and an increase in electrode 

spacing is necessary to amplify the signal strength (V = E I). It is important 

to remember that noise will behave the same as natural signals and 

consequently the amount of noise present will influence the choice of 

electrode spacing. 

Another important factor in laying out the electrodes is the geological 

substructure. For a small electrode spacing local variations in resistivity near 

the surface will negatively influence the measurements. If, for example, the 

electrodes are placed in a localised shallow conductor, the electric 

measurements will be strongly influenced by this feature while the magnetic 

measurements will be almost unaffected. If a longer separation is used 

between the electrodes, the average electric field will be more characteristic 

of the dominant electric field and the dominant resistivity in the surface 

layer. 

Coaxial cables are used between the electrodes and the recording 

equipment. Since motion of the cables must be minimised it should be laid 

flat on the ground . 
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4.1.1.2. Measuring the magnetic field 

Magnetic induction coils are used to measure the magnetic field intensity. 

The coil detects the rate of change of the magnetic field and the 

electromotive force (EMF) induced in the coil is 

dB 
EMF = -nA(Cit) cos e ------- (4.2) 

for a coil with negligible resistance, inductance and capacitance (Kaufman 

and Keller, 1981). In (4.2) 

n = number of turns of wire 

A =area of the coil (m2
) 

B = magnetic induction (T) 

e = angle between the magnetic field H and the normal to the plane 

of the coil. 

The voltage measured by an induction loop is proportional to the oscillation 

frequency or time rate of change of the magnetic field that cuts through the 

loop. 

The coils are buried beneath the earth to minimise the effect of wind and 

changes in temperature. Care must be taken to level the coils perfectly in 

the horizontal and vertical positions for the various components 

respectively. 

4.1.2. Data sampling 

The aim of a magnetotelluric sounding is to deduce an image of changes in 

the electrical substructure of the earth with depth. For this reason data are 

sampled at different frequencies. Frequency relates to depth via the skin 

depth 
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8= f2 ------- (4.3)
V~ 

Data are recorded from both the electrodes and the magnetic coils in 

analog form and need to be digitised. The main problem with digitising a 

signal is frequency aliasing. The Nyquist criterion states that at least two 

samples must be taken over each cycle of a frequency to be certain that the 

frequency can be recognised. The sampling interval must therefore be 

chosen in such a way that all the frequencies contained in the signal can be 

recognised and not just those that we are interested in. A possible solution 

is to filter out unwanted frequencies with an analogue filter before digitising 

the signal. Unwanted frequencies such as 50Hz and its harmonics can be 

filtered out before data processing starts. 

The range of frequencies finally utilised at a sounding station (and therefore 

the depth of investigation) depends mainly on the aim of the survey and the 

geo-electrical substructure. According to the Nyquist criterion the highest 

frequency that can be identified with a sampling period ~t is 

1
f -­ ------- (4.4) 
N - 2~t 

For example, if the sampling frequency is 3000 Hz, the highest frequency 

that can be recovered would be 1500 Hz. The lowest frequency that can be 

measured with a specific sampling period ~t is 

1 
------- (4.5)fL = (n * ~t) / 2 

2mwhere n is the number of points sampled (n = because the first step of 

processing is transformation to the frequency domain). Therefore, if we 

sample 2048 points at a frequency of 3000 Hz, the lowest frequency that 
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can be identified is approximately 3 Hz. From equation (4.5) it is clear that 

the range of frequencies can be improved by increasing the number of 

sampling points. 

4.2. DATA PROCESSING 

The steps involved in data processing are shown in Figure 4.2. Each of the steps 

will be discussed in more detail. 

4.2.1. Transformation to Frequency Domain 

Sampled time series data are transformed to complex amplitude spectra 

using Fourier transformation. The Fast Fourier Transform is the algorithm 

most widely used for this operation and the computational form to be 

implemented is 

N-1 -i 2 ;rk 

NX(n) = I xo(k)e- , n = 0,1, .. . , N -1 ------- (4.6) 
k=O 

where xo(k) is the sampled time function. 

4.2.2. Auto- and cross power spectra 

The auto- and cross spectra are the frequency domain equivalents of auto­

correlation and cross-correlation in the time domain. They are defined by 

Swift (1986) as follows: 

Auto-spectra <Ex Ex*>, <Ey Ey*>, <Hx Hx*>, <Hy Hy*> 

Cross-spectra <Ex H;>,<Ex H;>,<HxE;> , e~ . 

Ex = Ex(ro), Ey = Ey(ro), etc. are the Fourier spectra of the time domain 

functions and Ex* = Ex*(ro ), Ey* = Ey*(ro), etc. are the complex conjugates of 
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the Fourier spectra. The brackets <> represent an averaging in time for 

finite bandwidths. 
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enough calculate 
 -
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-

Figure 4.2. Processing steps 

4.2.3. Coherences 

It is necessary to determine whether a data set contains actual events or 

only noise. An event must appear simultaneously on at least two related 
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components, e.g. Ex and Hy but is usually visible on all the components. The 

following discussion is taken from an article on coherence functions by 

Reddy and Rankin (1974). 

We can view the MT system as a multi-input linear system where Hx and Hy 

are the inputs, Ex and Ey are the outputs and Zzz, Zxy , Zyx and Zyy are the 

frequency response functions. Three types of coherence functions can be 

used to analyse the data quality: 

• 	 Ordinary coherence: Coherency between the output and each of the 

inputs, e.g. between Ex and Hx or Ex and Hy. High ordinary coherences 

between Hx and Ey and between Hy and Ex indicate a linear relation 

between the inputs and outputs. 

------- (4 .7) 

• 	 Multiple coherence: Coherency between the output and all of the inputs, 

e.g. between output Ex and inputs Hx and Hy. High multiple coherences 

indicate good signal to noise ratios. 

------- (4.8) 

• 	 Partial coherence: This is the coherency between the output and a 

specific input after the effect of the other inputs has been removed by 

least-squares prediction from the specified output and input. For e.g. 

between Ex and Hx after the effect of Hy has been removed by least 

squares prediction from Ex and Hx. High partial coherences between Ex 

and Hy and between Ey and Hx and corresponding low partial 
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coherences between Ex and Hx and between Ey and Hy indicate that the 

rotation angle corresponds to the principal direction. The reason for this 

being that in the principal direction Zxx and Zyy is close to zero. This 

means that Ex = ZxxHx is close to zero and therefore the partial 

coherency between Ex and Hx is low. 

------- (4.9) 

The equation looks similar to (4.7) but it differs in that the effect of the other 

input (Hy in this case) has been removed. The partial coherency can also be 

formulated in terms of the multiple and ordinary coherences: 

------- (4.10) 

4.2.4. Impedances 

If the coherences are high enough, indicating that there may be a true event 

present in the data, we can proceed to calculate the impedance tensor 

elements. This can be done in two ways, one in which only the components 

measured at the local station are used and another in which the remote 

station components are incorporated. 

4.2.4.1. Single station impedance 

Zij in equation (3.52) can be estimated in a least squares way (Sims et aI., 

1971). Young (1962) states the principle of least squares as follows: the 

most probable value of a quantity is obtained from a set of measurements 

by choosing the value which minimises the sum of the squares of the 

deviations of these measurements. Deviation is defined as the difference 

between any measurement in the set and the mean of the set. For a set of 
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measurements Xi, the most probable value of X is that which minimises the 

quantity 

n 

L(X- XY 
;=1 

For this equation to be a minimum 

d n 

-L(X-XY = 0 ------- (4.11) 
dx ;=1 

Apply this to (3.52) (n is the number of measurements at a specific 

frequency): 

If' = L
II 

(Exi - (ZuHXi + ZXy Hy J )2 ------- (4.12) 
i=! 

Setting the derivatives of If' with respect to the real and imaginary parts of 

Zxx equal to zero yields 

n n n 

L Ex;H:; = Zxx L Hx;H:; + Zxy L Hy;H:; ------- (4 .13) 
;=1 ;=1 ;=1 

Setting the derivatives of If' with respect to the real and imaginary parts of 

Zxy equal to zero yields 

n n n 

LEx;H~; =ZxxL Hx;H~; + Zxy LHy;H~; ------- (4.14) 
;=1 ;=1 ;=1 

The solutions in (4 .13) and (4.14) minimise the error caused by noise on Ex. 

By taking another least-squares estimate the noise on Hx can be minimised . 

The various least squares estimates results in the following equations: 
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< ExE: >= Zxx < HxE: > +Z Xy < HyE: > ----- (4.15) 

< ExE: >= Zxx < HxE: > +ZXy < HyE: > ----- (4.16) 

< ExH: >= Zxx < HxH: > +ZXy < HyH: > ----- (4.17) 

< ExH: >= Zxx < HxH: > +Z Xy < HyH: > ----- (4.18) 

where the terms between brackets are the auto- and cross spectra and the 

brackets indicate the average spectra over finite bandwidths. 

By substituting (4.15) in (4.16), (4.17) and (4.18), (4 .16) in (4.17) and (4.18) 

and (4.17) in (4.18), six estimates for the impedance tensor element Zxy can 

be determined: 

----- (4.19) 

------(4.20) 

------(4.21 ) 

----- (4.22) 

----- (4 .23) 

----- (4 .24) 

Six estimates for Zxx can be determined in a similar way. 
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Following the same approach six estimates each for Zyx and Zyy can be 

determined. 

4.2.4.2. Remote reference impedance calculations 

The main problem in using the impedance estimates derived in the previous 

section is that the auto-spectra of functions that contain noise may severely 

bias the estimates. In order to address this problem, Gamble et al. (1979) 

proposed the use of a remote reference station. At this station two 

horizontally perpendicular magnetic components, H xr and Hyr, are 

measured . The noise at this station should not correlate with the noise at 

the local station. Multiply the two linear relations in (3.52) with Hxr* and Hyr* 

----- (4.25) 

----- (4.26) 

----- (4.27) 

----- (4.28) 

Solve these four equations for the impedance tensor elements: 

----- (4.29) 

----- (4.30) 

----- (4.31) 
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----- (4.32) 

4.2.5. Rotation of impedance tensor 

The impedance estimates in the previous section were calculated for the 

measuring axes x, y. In a two-dimensional earth the electric field in one 

direction may depend on magnetic field variations both parallel and 

perpendicular. The ideal is for the x-axis to point north in a one dimensional 

case or parallel to the strike in a two dimensional case (Hobbs, 1992). In the 

two dimensional case this will minimise the effects of the ExHx and EyHy 

terms. However, the strike direction of the two-dimensional structures may 

vary with depth and for this reason data are measured with x directed along 

magnetic north. The next step in data processing is to rotate the calculated 

impedance elements to the principal axes (parallel and perpendicular to 

strike) using the following equations: 

Zx·x.(a) = ~ ((Z xx + Zyy ) + (Z xx - Zyy ) cos 2a + (Z Xy + Zyx ) sin 2a ----- (4.33) 

Zx·y·{a) =~ ({Z XY - Zyx) + (Z XY + Zyx ) cos 2a + (Zyy - ZxJ sin 2a ----- (4 .34) 

ZY'x. {a) =~ ({Z YX - ZXy) + (Zyx + Zxy ) cos 2a + (Z yy - ZXX) sin 2a ----- (4.35) 

Zy.y. {a) = ~ ({Z xx + Zyy ) - (Z xx - Zyy ) cos 2a - (Z XY + Zyx) sin 2a ----- (4.36) 

The principal axes are those which maximise Zx' y' and Zy'x' (principal 

impedances) or minimise Zx'x' and Zy'y' (auxiliary impedances). The 

impedance elements are rotated a few degrees at a time until the desired 

maximum or minimum is found. 

Rotation of the data assuming a two dimensional earth as described above 

was proposed by Swift (1986). More recently various authors have given 

attention to the effect of three dimensional conductivity distributions on the 

impedance tensor (e .g. Bahr, 1988, 1991; Groom and Bailey, 1989, 1991). 
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The three dimensionality of the earth's electrical structure will ensure that 

the diagonal elements of the tensor never disappear. Several 

decomposition schemes for the measured impedance tensor have been 

proposed by these authors. Bahr (1988, 1991) chose what he called the 

principal superimposition model to be a local three dimensional anomaly 

over a regional two dimensional structure. He used certain parameters to 

classify different distortion types and subsequently decide whether 

decomposition of the impedance tensor is necessary (Bahr, 1991). Figure 

4.3(a) shows a schematic summary of his distortion classification process. 

The equations referred to in this diagram appear in figure 4.3(b). 

4.2.6. Apparent resistivity 

The final processing step is the calculation of the apparent resistivity as a 

function of frequency using Cagnaird's (1953) formula 

Pij = ;f IZijl2 i,j = x, Y ------- (4.37) 

The apparent resistivities are shown on a log-log graph as a function of 

frequency. Spies and Eggers (1986) noted that curves calculated with 

equation (4.37) usually show an oscillation at low frequencies. Since these 

oscillations are not present in the time domain they concluded that the 

oscillations are artefacts of the frequency domain representation and 

suggested using some alternative forms of (4.37) 

2 
Pij = 5f [Re(Z)f i,j = x, Y ------- (4.38) 

2 
Pij = 5f ~m(Z):r i,j = x, Y ------- (4.39) 

Pij = ;f Um(Z2)] i,j = x, Y ------- (4.40) 

Pij = ;f IZ21 i,j = x, Y ------- (4.4 1 ) 
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Equation 4: Strike angle (Swift, 1986) 
Equation 2 : Skew Equation 3: Dimensionality 

Equation 1: Modified impedances 
I _ I (zxx - zvv )(z:v + z~x)+ (z:x + Z~y )(z xv + Zvx)IS" (Of + sOs, =zX7, +z 'I'f S2 = z.~y + Zyx 0, = z" - z." D2 = Z'1.'f - Zyx I = ~--,:;--~ as =-tan 7 2K=iDJ 

. 4 IZxx - Zvvl- ~ IZxv+ Zvxl'O~ 

Equation 6: 20 Impedance tensor Equation 7: AnisotropyEquation 5: Coordinate transformation Equation 8: Phase difference 

0 ,' = 0, cos(2a) + S, sin(2a). 0; =0, z= (0 Zx.v'J '= ( , 0 , S~ + 0 ~J A = Re(ZX'V')
ZV'x'S; =S, cos(2a) - 0, sin(2a), S,'=S, Zv'x' 0 S2 - O2 0 

Equation 9: Phase difference Equation 11: Regional skew , Equation 12: Regional strike , Equation 10: Phase 
([S" S2] - [0,.02 ])(1[0,.S2 ]1-I[S,,02 ]IF(1[0,,82]1 + I[S,.02 ]IF 4> = ar9(S, - 0,) tan(2a psm ) = ( )[S, .O,] + [S2,02]11 = 10 21I.l = 10 21 

, 
A, = ([S,.D,l + [S,.D,]) casto) A, = ({S"D,) + {S,.D,}) sin(S) 

1 (B,A 2 + A,B2 + C,E2) . [ 1 (B,A 2 + A,B2 + C,E2)2 (B,B2 - C,C2)]2
tan(2a'2)=- ± 2 -( B, = ([S"S,] - [0, ,0,]) cos(o) B, = ({S, .S,) - {D,.DJ) sin(S) 

, 2 (A,A 2 - C,C2) 4 (A,A2 - C,C 2) A,A2 - C,C 2) 
C, = ([D"S,l - [S"D,]) cos(o) ·C, = ({D,.S,) - {S,. D,}) sin(8) 

E, = ({S,.S,) - {D"D,)) sin(S) 

Equation 16: Impedance tensor (Eggers, 1982) Equation 14: Skew angles Equation 15: Impedance tensor , Equation 17: Skew angle 

-Zx'x' ZV'v' -Z= (- a'2Znv'x· a"Znx'v'J o [02 
- J2 tan(~) = Ktan(13,) = Zv'x' tan(132) = Z x'v' "'.2= -f± -f- det(Z)- a22 Znv'x· a2,Znx'V' 

Equation 19: Principal phases , 
Commutators: 

Equation 18: Rotation [(lm(zxx)Y + (,m(zyxW]i [(lm(zxv)Y + (Im(Zvv )YY [C"C,] = Re(C,) Im(C,} - Re (C,) Im(e,)
tan(<Pe)= , tan(q,e,) = ,Zp = T~TZ {C"C,} = Re(e,) Re(C,) + 1m (e, ) Im(C,) 

[(Re(Z xx)t + (Re(zvxWY [(Re(Zxv)r + (Re(Zvv )rr 
Figure 4,3(b). Equations used in Figure 4.3(a) 
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4.2.7. Other parameters calculated during processing 

A number of additional parameters can be calculated from the impedance 

tensor and can assist in gaining a better understanding of the earth's 

electrical substructure. 

4.2.7.1. Skewness 

When the impedance tensor has been rotated to the principal direction, Zxx 

and Zyy will be very small if the earth is laterally uniform or two-dimensional , 

but larger when the earth has a three dimensional structure (Vozoff, 1972). 

At the same time the difference between the elements Zxy and Zyx is large 

when the earth is strongly two-dimensional and small otherwise. The ratio 

------- (4.42) 

is known as the 'skewness' ratio. If S is large the structure of the earth 

appears to be three-dimensional for that specific frequency range. 

4.2.7.2. Tipper 

We saw in equations (3.47), (3.48) and (3 .51) that the magnetic field does 

not have a vertical component when the electric field is directed 

perpendicular to the strike direction (H-polarisation). Therefore, the vertical 

magnetic component can be used to determine the strike direction of the 

two-dimensional structure (the horizontal direction in which the magnetic 

field is most highly coherent with Hz is perpendicular to the strike). In 

defining the 'Tipper' parameter we assume that Hz is linearly related to Hx 

and Hy (Vozoff, 1972). At each frequency 

Hz =AHx + BHy ------- (4.43) 
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where A and B are unknown complex coefficients. These coefficients (A,B) 

can be thought of as 'tipping' part of the horizontal magnetic field into the 

vertical and is therefore called the tipper. The tipper (T) is defined as 

------­ (4.44) 

with a phase 

(A~ + A~) arctan( :i ) + (B~ +Bn arctan(:i ) 
8 = ' T2 ' ------- (4.45) 
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CHAPTERS 


STATISTICAL REDUCTION OF DATA 


5.1. GENERAL 

In chapter 3 we derived the basic equations used in MT (eq. 3.52). In reality, in 

the presence of noise the equations look as follows 

Ex =Zxx Hx + ZxyHy+ r ----- (5.1 ) 

Ey = ZxyHx + ZyyHy + r ----- (5.2) 

where r represents the noise component. In the field N data sets are collected at 

a specific frequency. The above equations in matrix form are 

----- (5.3) [E,] ~ [H"HYl[~:]+[r'1 

----- (5.4)~Y ]~ ~, Hy, g: ] + [r, ] 

In general the equations are written as 

x = u~ +r ----- (5.5) 

with x an Nx1 matrix representing the electric field components, U an Nx2 matrix 

containing the measured magnetic field components, ~ the 2x1 impedance matrix 

and r an Nx1 matrix containing the noise component. Since the impedance 

tensor is indicative of the properties of the underlying geology, there is only one 

tensor for N sets of data recordings at a particular frequency. If the data were 

noise free and consisted only of true natural electromagnetic events, it would be 

sufficient to do only one recording per frequency. In reality noise contamination is 

an ever-present problem in magnetotelluric data collection and consequently it is 

necessary to record several data sets at a specific frequency. From a statistical 

point of view the aim is to determine the impedance tensor that most Ilrohrlhly 

represents the electrical properties of the underlying earth . 

In order to determine the impedance value, it is necessary to minimise the error 

between observed and calculated values, for example between Eobserved and 
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Ecalcualted (as calculated using equation (3.52)). Figure 5.1 shows a schematic 

diagram of this process. 

I' 

>. 
x 

N 
iC 

::r: 
o 
>. 

• 	 Calculated using a 
first estimate of Z xy and Z xx 

o 	 Calculated using a second 
estimate of Z Xy and Z xx 

EXC1 

.~aI1 

-* E.- ...,. xo 


EXC2 .-'- Residual 2 

o 

Figure 5.1 Visualisation of the minimisation of a residual 

The objective is to minimise the residuals between N calculated and N observed 

electrical components for an estimate of Zxx and Zxy. 

5.2. II AND l2 NORMS 

A possible solution to this problem is to use the Least Squares method to 

determine ~. The principle of least squares was outlined in section 4.2.4.1. as the 

most probable value of a quantity obtained from a set of measurements by 

choosing the value that minimises the sum of the squares of the deviations of 

these measurements (Young, 1962). For a set of measurements Xi the most 

probable value of X is that which minimises the quantity 

----- (5.6) 


with x a variable that can be varied to obtain the minimum value of the function. 

For this function to be a minimum the following condition must be satisfied: 

d 	 N
-L(X-xY = 0 	 ----- (5.7) 
dx 	;-1 
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The derivative of a sum of terms is equal to the sum of the derivatives, therefore 

1 N 

x=- LXi ----- (5.8) 
N i=1 

The most probable value of X turns out to be the mean of the observations. This 

minimisation is called the L2 norm. A major problem with this method is the effect 

of one poor observation on the mean. The technique works best if the errors are 

normally distributed. A first step to improve the robustness of the method is to 

work with the median instead of the mean . This is achieved by minimising the 

summed absolute values instead of the summed squared differences and is 

known as the L1 norm: 

d N 

-Llx-xil=O 
dx i-1 

N d 
L-Ix - xil= 0 ----- (5.9) 
i= 1 dx 

L
N 

sign(x- Xi) = 0 
i=1 

sign is +1 when the argument is positive, -1 when the argument is negative and 

somewhere in between when the argument is zero (Claerbout, 1976). For N odd 

X is equal to tile middle order statistic X(lN/2J+1) where LJ denotes the integer part 

while for N even the median is chosen as (XLN/2J+X(lN/2J+1))/2 (Chave et aI., 1987). 

Before the median can be computed the data have to be ordered in ascending 

order. 

5.3. ROBUST M-ESTIMATION 

From the discussion it is clear that the L1 norm is not as sensitive as the L2 norm, 

but it is still prone to the effect of outliers. Weighted medians go some way to 

improving the robustness of the impedance estimation procedure, minimising 

N 

Llwillx - Xii ----- (5.10) 
i=1 

with Wi the weight factor, but is still too vulnerable to bad data points. 

Furthermore, the Least Squares estimate is only really adequate when the errors 

in the input data have a Gaussian distribution (Egbert and Booker, 1986). It is 
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possible to test whether the errors are Gaussian distributed by making use of 

Quantile-Quantile plots (Q-Q plots) 

5.3.1. Q-Q Plots 

A way of examining the distribution of the error data is by drawing Q-Q 

plots. The Q-Q plot is achieved by plotting observed residuals against the 

values expected if the residuals were normally distributed (Johnson and 

Wichern, 1998). The observed residuals must be ordered (written in 

ascending order). The inverse of the Gaussian distribution function (~-1) 

gives the expected residuals. 

Plot the ith value of the N observed residuals rj against ~-1(ilN). If the 

points fall on a straight line with unit slope, the residuals have a normal 

(Gaussian) distribution. 

To determine the residual expected from a Gaussian error, calculate (i­

~)/N and consult a table that depicts the areas under a normal curve 

(Table A3. Walpole and Myers, 1989) for a value that corresponds to (i­

~)/N. 

However, impedance tensors still have to be estimated regardless of the error 

distribution. According to Johnson and Wichern (1998), it is possible to transform 

non-normal data so that it has a more Gaussian distribution. This is in effect the 

approach suggested by Sutarno and Vozoff (1989,1991) where they minimise a 

function of the residuals and not the residuals themselves. 

A very important fact to realise is that in all the above we have made use of the 

principle of maximum likelihood, namely the assumption that the set of 

measurements we obtained was the most probable set of measurements (Young, 

1962). 

With the classical least squares approach, impedance tensor estimates can be 

determined by minimising the error component in equation (5.5) (Sutarno and 

Vozoff, 1989, 1991). 
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N 2 

I(Xi - IUij~j) 2 ~ min ----- (5.11 ) 
i= l j= ! 

Find the value of ~ that minimises (5.11), that is, solve for the derivative equal to 

o. 
N 2 

I(xi - Iqpj)qj = 0 ----- (5.12) 
i=1 j=1 

In matrix form equation (5.12) becomes 

(x-U~)u = 0 

UTX-UTU~ = 0 

UTUP =UTx 

p= (UTUr1UTx ----- (5.13) 

Huber (1981) solves the problem of robustness by minimising a sum of less 

rapidly increasing functions of the residuals instead of minimising a sum of 

squares: 

----- (5. 14) 

p(t) is known as a loss function and should be chosen so that the influence 

function \V(t) = dp(t) is continuous and bounded. 
dt 

----- (5.15) 

To ensure that the solution to (5.14) is scale invariant it is necessary to introduce 

a scaling parameter. Equations (5.14) and (5.15) are substituted by 

----- (5.16) 
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= 0, k = 1,2 ----- (5.17) Uik 

Chave et al. (1987) propose two possible choices for the scaling parameter, 

namely 

----- (5.18) 


----- (5.19) 


SMAD is the median value of the absolute residuals (median absolute deviation 

(MAD)) 

SMAD =median(lrj - median(r)l) ----- (5.20) 

and CJMAD is the expected value of the MAD for the appropriate probability density 

function . In equation (5.19) the subscript IQ marks the interquartile distance. SIO 

is the spacing between the 75% and 25% points of the sample distribution, or the 

centre range containing half of the probability (Chave et aI., 1987) 

----- (5.21) 

CJIO is the corresponding theoretical value and is equal to twice the MAD for 

symmetric distributions. 

Egbert and Booker (1986) follow a slightly different approach in determining the 

scale factor. They compute an initial estimate from the root mean square residual 

----- (5.22) 


Using the actual rms of the residuals nn for the nth iteration makes the estimate 

extremely vulnerable to the effect of outliers. By replacing sample averages by 

expectations, the scale estimate for the nth iteration becomes 

1 2N 
___ " {Emeas _ E pred)2 ----- (5.23) 
~(2N - 4) '8 ~ In n 

with ~=O.7784. 

48 



Chapter 5: Statistical data reduction 

For the loss function Huber (1981) uses a convex function that has a positive 

minimum at O. It is based on a density function that has a Gaussian centre and 

Laplacian tails and is defined as follows: 

~ t 2 
ItI < to 

p(t) = 1 ----- (5.24) 

toltl- 2 t~ It1 ;:::: to1 
to is the tuning constant and value of 1.5 gives at least 95% efficiency for outlier­

free normal data (Chave et aI., 1987). 

3.0 -r---,----------r---, 

p(t) 1.5 

0.0 -+----,-----=::::..,..::::=----.----1 

-3.0 -1.5 0.0 1.5 3.0 
t 

Figure 5.2. The Huber loss function (Sutarno and Vozoff,1989) 

The influence function is 

- to < t < to 

t ;:::: to ----- (5.25) 

t ~ -to 

In order to achieve the best possible solution for the impedance tensor, the 

robust linear regression problem can be converted into a weighted least squares 

problem. Division of the influence function by the scaled residuals produces the 

weight function. Through substituting the influence function in equation (5.15) with 

the 
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2.0 -,.------------, 

\!f{t) 0.0 

-2.0-+----.---.,---,-----1 
-3.0 -1.5 0.0 1.5 3.0 

t 

Figure 5.3. The Huber influence function (Sutarno and Vozoff, 

1989) 

weighted function and writing it in matrix form, the problem reduces to solving the 

following equation iteratively: 

UTWr = 0 

UTW(x - U~) = 0 

UTWU~ = UTWx 

~ = (UTWUr1[jTV\tx ----- (5.26) 

For the loss function in (5.24), the Huber weight function reduces to 

ItI < t 

W(t) = {t: ----- (5.27)
It I ;::: to

ItI 

Equation (5.26) is solved iteratively, choosing the least squares estimate as an 

initial solution. From this the predicted outputs and residuals are calculated using 

equations (5.1 and 2) and (5.28) respectively. 

i = 1, ... ,N ----- (5.28) 
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W(t) 1.0 

2.0 --.----------------, 

0.0 -f-----r----r----r--------I 

-1.5 0.0 1.5 3.0-3.0 
t 

Figure 5.4. The Huber weight function (Sutarno and Vozoff, 1989) 

Next, the scale parameter and Huber weights are determined and used to solve 

(5.26). The new impedance tensor estimate is then used to calculate the 

predicted outputs and the process is repeated until the estimates converge. 

Sutarno and Vozoff (1991) states that "the Huber weights fall off slowly for large 

residuals and provide inadequate protection against severe residuals". They 

suggest the use of Thomson weights for a few iterations after convergence with 

the Huber weights. Thomson weights are described by the function 

------ (5.29) 


a determines the scale at which down weighting begins. Egbert and Booker 

(1986) use a value of 2.8 for a. Chave et al. (1987) describes the Nth quantile of 

the appropriate probability distribution as an excellent choice for a. Furthermore, 

if outliers have been eliminated, the residuals are x2 distributed. This distribution 

with two degrees of freedom is equivalent to the exponential distribution and thus 

has the pdf 

1 .::..t. 
f(t) = - e 2 t ~ 0 ----- (5.30)

2 

with (JMAD =2sinh-1(0.5) }} 0.9624 and OIQ =2 log 3 » 2.1972 (Chave et aI., 1987). 

The quantiles of the exponential distribution are given by 
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j = 1, ... ,N. ----- (5.31) 

According to Sutarno and Vozoff (1991), if outliers have been eliminated the 

magnitudes of the residuals are Rayleigh-distributed with pdf 

f(t) = te 2 t ~ 0 	 ----- (5.32) 

and (JMAD =0.44845. The quantiles are given by 

j = 1, ... ,N. ----- (5.33) 

With magnetotelluric data, equations (5.1) and (5.2) consists of complex 

numbers. Sutarno and Vozoff (1989) suggest two ways of handling complex data: 

• 	 regard the data as having independent Gaussian real and imaginary 

parts and apply separate weights to them, 

• 	 use the magnitude of the complex numbers and apply identical weights 

to the real and imaginary parts. 

The second method is preferable since it is rotationally invariant (Sutarno and 

Vozoff, 1991). Equation (5.26) then becomes 

~ = (O'wOr10'V\rx ----- (5.34) 

where' denotes the Hermitian conjugate. 

5.4. ADAPTIVE Lp NORM 

An alternative approach has been developed to deal with the problem of non­

Gaussian distributed errors. Kijko (1994) proposes that it is not always necessary 

to use the L1 or L2 norm to minimise residuals, but that one can use the Lp norm 

where p can be a real value not necessarily equal to 1 or 2. He goes further to 

develop an adaptive procedure whereby the value of p is automatically 

determined from the quality of the data . The teohnique W03 developed for use 

with seismological data but can easily be applied to magnetotelluric data. 

Instead of minimising equation (5.6), the following misfit function is minimised 
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n

Ilx-xr 	 ------ (5.35) 
i=1 

where 1 :::; P < (f). The value of p depends on the distribution of the residuals and 

is therefore related to the kurtosis of the residual distribution. Press et al. (1992) 

define the kurtosis as a measurement of the peakedness or flatness of a 

distribution relative to the normal distribution. A distribution with a sharp peak is 

known as 'Ieptokurtic' and the term 'platykurtic' describes a flat distribution. The 

kurtosis (P2) is given by 

114
P2 = -2 ------ (5.36) 

112 

where 112 and 114 are the second- and fourth order central moments. 

Several authors suggested different ways to determine the value of p using the 

kurtosis. Money et al. (1982) used the equation 

A 9 
P = ~~ 	+ 1 ------ (5.37) 

where 	1:::; p< (f). Sposito et al. (1983) developed a different equation 

A 6
P= -;;-	 ------ (5.38) 

P~ 

with 1:::; p:::; 2. 

Therefore, when data are severely contaminated, the error distribution will have 

long tails, resulting in a large kurtosis and subsequently a small value for p. 

Kijko (1994) developed an adaptive algorithm for determining an estimate for the 

p-value. 

5.5. 	 APPLICATION OF STATISTICAL REDUCTION 

TECHNIQUES TO SYNTHETIC DATA 

The statistical reduction methods discussed in the previous sections will first be 

applied to synthetic data. Hattingh (1989) describes the construction of a unit 

apparent resistivity curve. He generates electric field data by multiplying real 
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magnetic field data with unit impedance (equation (3.52)). The resultant apparent 

resistivity versus frequency curve will plot as a straight line on double logarithmic 

paper. 

5.5.1. Synthetic data with Gaussian distributed random errors 

For the first test, noise with a Gaussian distribution was added to the data. Figure 

5.4 shows the apparent resistivity and phase versus frequency curves. Noise 

added to the two curves both had a zero mean, but different standard deviations. 

The Q-Q plots for these data sets (Figure 5.6) plot on roughly straight lines, 

confirming that the noise is normally distributed. The correlation coefficients 

between the observed and expected residuals are 0.89516 and 0.896132 for 

noise with standard deviations of 0.0001 and 0.2 respectively. 

Figures 5.7 to 5.12 show the curves fitted to the data using the L1 norm, L2 norm, 

adaptive Lp norm and robust M-estimation techniques. In the calculation of the L1, 

L2 and adaptive Lp norms, an algorithm for the downhill simplex method taken 

from Press et al. (1992) was used to minimise the impedance variables. Neider 

and Mead (1965) introduced this method of minimising multidimensional 

functions. 

The L1 and L2 norm methods yield very similar results (Figures 5.7 and 5.8). 

Curves estimated by these two techniques approximate the original data 

displayed in Figure 5.5 very well. 
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Figure 5.5. Unit impedance magnetotelluric curves with Gaussian distributed 

noise added. 
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Figure 5.7. Apparent resistivity versus frequency curves produced by the L1 norm 

estimation technique for the synthetic data (with Gaussian distributed noise) 

displayed in Figure 5.5. 
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Figure 5.B. Apparent resistivity versus frequency curves produced by the least 

squares (L2 ) estimation technique for the synthetic data (with Gaussian 

distributed noise) displayed in Figure 5.5. 

The adaptive Lp norm technique yielded similar results to the L1 and L2 norms. 

The curves in Figure 5.9 were calculated using the formula of Money et al. (1982) 

to calculate exponent p. Figures 5.10.1 to 5.10.10 show the values of p 

calculated for each frequency during the estimation of the apparent resistivity and 

phase versus frequency curves. 
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Figure 5.9. Apparent resistivity versus "frequency curves produced by the 

adaptive Lp norm technique for the synthetic data (with Gaussian distributed 

noise) displayed in Figure 5.5. The formula suggested by Money et al. (1982) 

was used to calculate the exponent p. 
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Figure 5.10.1. Values calculated for the exponent p during the estimation of the 

apparent resistivity values displayed in Figure 5.9 at 2.93 Hz 
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Figure 5.10.2. Values calculated for the exponent p during the estimation of the 

apparent resistivity values displayed in Figure 5.9 at 5.28 Hz 
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Figure 5.10.3. Values calculated for the exponent p during the estimation of the 

apparent resistivity values displayed in Figure 5.9 at 9.52 Hz 
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Figure 5.10.4. Values calculated for the exponent p during the estimation of the 

apparent resistivity values displayed in Figure 5.9 at 17.17 Hz 
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Frequency = 30.95 Hz 
Synthetic data with Gaussian distributed noise added (Std dey =0.0001) 
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Figure 5.10.5. Values calculated for the exponent p during the estimation of the 

apparent resistivity values displayed in Figure 5.9 at 30.95 Hz 
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Figure 5.10.6. Values calculated for the exponent p during the estimation of the 

apparent resistivity values displayed in Figure 5.9 at 55.81 Hz 
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Frequency = 100.62 Hz 

Synthetic data with Gaussian distributed noise added (Std dey =0.0001) 
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Figure 5.10.7. Values calculated for the exponent p during the estimation of the 

apparent resistivity values displayed in Figure 5.9 at 100.62 Hz 

Frequency = 181.43 Hz 

Synthetic data with Gaussian distributed noise added (Std dey =0.0001) 
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Figure 5.10.8. Values calculated for the exponent p during the estimation of the 

apparent resistivity values displayed in Figure 5.9 at 181.43 Hz 
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Frequency = 327.11 Hz 
Synthetic data with Gaussian distributed noise added (Std dey =0.0001) 
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Figure 5.10.9. Values calculated for the exponent p during the estimation of the 

apparent resistivity values displayed in Figure 5.9 at 327.11 Hz 

Frequency =589.79 Hz 

Synthetic data with Gaussian distributed noise added (Std dey =0.0001) 


1.6,------------------------------------------------------, 
.-..............-.-.-.-. - • .• - +- .... - +-+-. -... +- ...+- +... - ......+-.-+.+-. -....- .............- .-.-...............+-.... - ... . 


Q. 1.4 -_ .. _. / _.. .... ..... . .... . .... ........ ... .... ... .. ...... .. . .... ...... .. .. . .... ..... .. .. . . .. ..... ... . .... .... . 


1.2 --....~- - - ----

/ 
o m N ~ ro o 

~ N N N v 
Nr of iterations 

Frequency = 589.79 Hz 

Synthetic data with Gaussian distributed noise added (Std dey =0.2) 


2 ,-----------------------------------------------------~• 
Q. 1.5 ./V~~~...'.,·:·.-..:·~·.'.:·,.:..::~~.:.·.·.·:.,·-.·'.~·.-....,.-....~:.:...-.,.-.....~ :~ :.....:.~.~.,(~~.~.....:.~~;'.e· 

• 
~ 0 m N ~ ro o 

N N N V 

Nr of iterations 

Figure 5.10.10. Values calculated for the exponent p during the estimation of the 

apparent resistivity values displayed in Figure 5.9 at 589.79 Hz 

Using the formula suggested by Sposito et al. (1983) in equation (5.38) to 

calculate the exponent p, yield the apparent resistivity versus frequency curves 

shown in Figure 5.11. The results are again of high quality as would be expected 

for noise with a normal distribution. Figures 5.12.1 to 5.12.10 show the values of 

p calculated during the adaptive Lp norm process. 
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Synthetic data 

Gaussian distributed noise added 

(Stddev= 0.0001) 
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Figure 5.11. Apparent resistivity versus frequency curves produced by the 

adaptive Lp norm technique for the synthetic data (with Gaussian distributed 

noise) displayed in Figure 5.5. The formula suggested by Sposito et al. (1983) 

was used to calculate the exponent p. 
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Frequency =2.93 Hz 

Synthetic data with Gaussian distributed noise added (Std dey =0.0001) 
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Figure 5.12.1. Values calculated for the exponent p during the estimation of the 

apparent resistivity values displayed in Figure 5.11 at 2.93 Hz 
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Synthetic data with Gaussian distributed noise added (Std dey =0.0001) 
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Figure 5.12.2. Values calculated for the exponent p during the estimation of the 

apparent resistivity values displayed in Figure 5.11 at 5.28 Hz 
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Frequency =9.52 Hz 
Synthetic data with Gaussian distributed noise added (Std dey =0.0001) 
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Figure 5.12.3. Values calculated for the exponent p during the estimation of the 

apparent resistivity values displayed in Figure 5.11 at 9.52 Hz 
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Synthetic data with Gaussian distributed noise added (Std dey =0.0001) 
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Figure 5.12.4. Values calculated for the exponent p during the estimation of the 

apparent resistivity values displayed in Figure 5.11 at 17.17 Hz 
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Frequency = 30.95 Hz 

Synthetic data with Gaussian distributed noise added (Std dev =0.0001) 
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Figure 5.12.5. Values calculated for the exponent p during the estimation of the 

apparent resistivity values displayed in Figure 5.11 at 30.95 Hz 

Frequency = 55.81 Hz 
Synthetic data with Gaussian dis tributed noise added (Std dev =0.0001) 
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Figure 5.12.6. Values calculated for the exponent p during the estimation of the 

apparent resistivity values displayed in Figure 5.11 at 55.81 Hz 
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Frequency =100.62 Hz 

Synthetic data with Gaussian distributed noise added (Std dey =0.0001) 
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Figure 5.12.7. Values calculated for the exponent p during the estimation of the 

apparent resistivity values displayed in Figure 5.11 at 100.62 Hz 

Frequency = 181.43 Hz 

Synthetic data with Gaussian distr ibuted noise added (Std dey =0.0001) 
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Figure 5.12.8. Values calculated for the exponent p during the estimation of the 

apparent resistivity values displayed in Figure 5.11 at 181.43 Hz 
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Frequency = 327.11 Hz 


Synthetic data with Gaussian distributed noise added (Std dev =0.0001) 
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Figure 5.12.9. Values calculated for the exponent p during the estimation of the 

apparent resistivity values displayed in Figure 5.11 at 327.11 Hz 

Frequency = 589.79 Hz 


Synthetic data with Gaussian distributed noise added (Std dev =0.0001) 
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Synthetic data with Gaussian distributed noise added (Std dev =0.2) 
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Figure 5.12.10. Values calculated for the exponent p during the estimation of the 

apparent resistivity values displayed in Figure 5.11 at 589.79 Hz 

The amount of iterations is markedly less when Sposito's formula is used in the 

estimation of p. A main reason for this is that equation (5.38) does not allow p to 

be greater than two. The adaptive procedure is terminated when p becomes too 

large. 
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The minimisation uSing the Robust M estimation technique also yielded very 

good results (Figure 5.13), similar to the L1, L2 and adaptive Lp norm methods. 
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Figure 5.13. Apparent resistivity versus frequency curves produced by the 

Robust M estimation technique for the synthetic data (with Gaussian distributed 

noise) displayed in Figure 5.5. 

All of the tested statistical reduction methods yielded good results for data 

containing normally distributed errors, as would be expected . An increase in 

standard deviation of the noise did not affect the quality of the estimated curves. 

5.5.2. Synthetic data with non-Gaussian distributed random errors 

Figure 5.14 shows two curves, both with Gaussian distributed random noise 

added. In this case the mean is 0.0 and the standard deviation is 1.0 for both 
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curves. Random noise without a specific distribution was added to the data in the 

first curve. This introduced outliers to the data. 

Figure 5.14. Apparent resistivity versus frequency curves using the unit 

impedance with Gaussian and randomly distributed noise added. 

The Q-Q plots for these two data sets calculated at a frequency where outliers 

are clearly visible (Figure 5.15) confirm that the noise in the first curve does not 

have a perfect normal distribution. The correlation coefficients between the 

observed and expected residuals are 0.771726 for the curve with the randomly 

distributed errors, and 0.984253 for the data containing only normally distributed 

errors. 
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Figure 5_15. Q-Q plots for the curves displayed in Figure 5.14. 

The curves fitted to the data using the L1 and L2 norms yield very different 

results (Figures 5.16 and 5.17). The L1 norm produces a good fit for the 

apparent resistivity curve and a mediocre fit for the phase curve. In contrast with 

this the L2 norm results in a very bad fit for both apparent resistivities and 

phases compared to the L1 norm. Phases calculated for the data containing 

only Gaussian distributed noise also show larger misfits at higher frequencies. 
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Synthetic data Synthetic data 
Gaussian distributed noise Gaussian distributed noise added 

(Stddev= 1. 0)+ random noise added (Std dev = 1.0) 
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Figure 5.16. Apparent resistivity versus frequency curves produced by the L1 

norm estimation technique for the synthetic data displayed in Figure 5.14. 
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Synthetic data Synthetic data 
Gaussian distributed noise Gaussian distributed noise added 

(Stddev= 1. 0)+ random noise added (Std dev = 1.0) 
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Figure 5.17. Apparent resistivity versus frequency curves produced by the L2 

norm estimation technique for the synthetic data displayed in Figure 5.14. 

Results obtained with the adaptive Lp norm procedure and using Money et al.'s 

method of calculating p (equation 5.37) are depicted in Figure 5.18. The 

apparent resistivity curve is very similar to the curve estimated with the L1 norm. 

The phase data again yield better results than the L2 norm but worse results 

than the L1 norm. Figures 5.19.1 to 5.19.10 show the value for p calculated 

during each iteration. 
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Gaussian distributed noise 

(Stddev= 1. 0)+ random noise added 
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Figure 5.18. Apparent resistivity versus frequency curves produced by the Lp 

norm estimation technique for the synthetic data displayed in Figure 5.14. Money 

et al. 's (1982) equation was used to calculate p. 
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Frequency =2.93 Hz 


Synthetic data with Gaussian distributed noise (Std dev ;; 1.0) + random noise 
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Figure 5.19.1. Values calculated for the exponent p during the estimation of the 

apparent resistivity values displayed in Figure 5.18 at 2.93 Hz 
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Figure 5.19.2. Values calculated for the exponent p during the estimation of the 

apparent resistivity values displayed in Figure 5.18 at 5.28 Hz 
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Frequency = 9.52 Hz 

Synthetic data with Gaussian distributed noise (Std dey = 1.0) + random noise 
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Figure 5.19.3. Values calculated for the exponent p during the estimation of the 

apparent resistivity values displayed in Figure 5.18 at 9.52 Hz 

Frequency =17.17 Hz 

Synthetic data with Gaussian distributed noise (Std dey =1.0) + random noise 
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Figure 5.19.4. Values calculated for the exponent p during the estimation of the 

apparent resistivity values displayed in Figure 5.18 at 17.17 Hz 
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Frequency = 30.95 Hz 
Synthetic data with Gaussian distributed noise (Std dev = 1.0) + random noise 

Nr of iterations 

Frequency = 30.95 Hz 
Synthetic data with Gaussian dis tributed noise added (Std dev = 1.0) 
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Figure 5.19.5. Values calculated for the exponent p during the estimation of the 

apparent resistivity values displayed in Figure 5.18 at 30.95 Hz 

Frequency =55.81 Hz 
Synthetic data with Gaussian distributed noise (Std dev = 1.0) + random noise 
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Figure 5.19.6. Values calculated for the exponent p during the estimation of the 

apparent resistivity values displayed in Figure 5.18 at 55.81 Hz 
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Frequency =100.62 Hz 
Synthetic data with Gaussian distributed noise (Std dev = 1.0) + random noise 

Nr of iterations 

Frequency = 100.62 Hz 

Synthetic data with Gaussian distributed noise added (Std dev = 1.0) 
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Figure 5.19.7. Values calculated for the exponent p during the estimation of the 

apparent resistivity values displayed in Figure 5.18 at 100.62 Hz 

Frequency =181.43 Hz 

Synthetic data with Gaussian distributed noise (Std dev = 1.0) + random noise 
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Figure 5.19.8. Values calculated for the exponent p during the estimation of the 

apparent resistivity values displayed in Figure 5.18 at 181.43 Hz 
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Frequency =327.11 Hz 

Synthetic data with Gaussian distributed noise (Std dev = 1.0) + random noise 


~ rw-:---- .• . .• •. . .• -.- ---.•-•. -.- -~-- .~- .• . -- -- .• .~--"I0. .....•.. ..-~-~-.• --•-.• --.~-..--•.-•- ...-.• .• .• .•-.•. .•.~-.• - ...-.-.-.-.-..-•-.-.•.• ..-•. -.-~-.•.• .~--.• ­
ol" , " " , " "' " '" "" ", II" " "Ii ' , 

Nr of iterations 

Frequency =327.11 Hz 

Synthetic data with Gaussian distributed noise added (Std dev = 1.0) 


~ : LLr-.. -.• .• .. •. •. ..-.-• -.--•.• .....- - .• .• .. .• ".- .• -.• -.-.-- -- -.-.-.• .• -.-•..• ..... •. -.-.:-.-.- ----- . .• ..- -- .. •. -.-.-- -•-.-.-- ..-.-,,- .• .• ..... ..- - .- --- ..-•-'j 
1 ~ '" , , . ,-,- . , " , " " '" '" , , , , , " "'~ 

v ~ 0 ~ ill m N ~ ro ~ v ~ 0 ~ ill m 
N N N ~ ~ ~ v v v v 

Nr of iterations 

Figure 5.19.9. Values calculated for the exponent p during the estimation of the 

apparent resistivity values displayed in Figure 5.18 at 327.11 Hz 

Frequency =589.79 Hz 
Synthetic data with Gaussian distributed nois e (Std dev = 1.0) + random noise 
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Figure 5.19.10. Values calculated for the exponent p during the estimation of the 

apparent resistivity values displayed in Figure 5.18 at 589.79 Hz 

Figure 5.20 shows the results of using the adaptive Lp norm estimation 

technique and Sposito et al.'s (1983) formula (Equation 5.38) to calculate p. 
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Chapter 5; Statistical data reduction 

Where non-Gaussian distributed noise was added, the results are very poor and 

correlate very well with the curves obtained from the least squares method. The 

reason for this becomes clear when one looks at the values of p calculated for 

each iteration in Figures 5.21.1 to 5.21.10. At most frequencies the adaptation 

procedure was terminated after only a few iterations because the values 

calculated for p were greater than 2, and this is not allowed when using 

equation (5.38). 

Synthetic data Synthetic data 
Gaussian distributed noise Gaussian distributed noise added 

(Stddev= 1. 0)+ random noise added (Std dev= 1.0) 
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Figure 5.20. Apparent resistivity versus frequency curves produced by the Lp 

norm estimation technique for the synthetic data displayed in Figure 5.14. 

Sposito's (1983) equation was used to calculate p. 
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Freque ncy = 2.93 Hz 
Synthetic data with Gaussian distributed noise (Std dev = 1.0) + random noise 
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Frequency =2.93 Hz 

Synthetic data with Gaussian distributed noise added (Std dev = 1.0) 
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Figure 5.21.1. Values calculated for the exponent p during the estimation of the 

apparent resistivity values displayed in Figure 5.20 at 2.93 Hz 
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Figure 5.21.2. Values calculated for the exponent p during the estimation of the 

apparent resistivity values displayed in Figure 5.20 at 5.28 Hz 

82 



Chapter 5: Statistical data reduction 

Frequency =9.52 Hz 
Synthetic data with Gaussian distributed noise (Std dev =1.0) + random noise 
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Figure 5.21.3. Values calculated for the exponent p during the estimation of the 

apparent resistivity values displayed in Figure 5.20 at 9.52 Hz 
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Synthetic data with Gaussian distributed noise (Std dev = 1.0) + random noise 
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Figure 5.21.4. Values calculated for the exponent p during the estimation of the 

apparent resistivity values displayed in Figure 5.20 at 17.17 Hz 
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Frequency =30.95 Hz 
Synthetic data with Gaussian distributed noise (Std dev =1.0) + random noise 
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Figure 5.21.5. Values calculated for the exponent p during the estimation of the 

apparent resistivity values displayed in Figure 5.20 at 30.95 Hz 
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Figure 5.21.6. Values calculated for the exponent p during the estimation of the 

apparent resistivity values displayed in Figure 5.20 at 55.81 Hz 

84 



Chapter 5: Statistical data reduction 

Frequency = 100.62 Hz 
Synthetic data with Gaussian distributed noise (Std dev = 1.0) + random noise 

~- .. ...- .. ..,, ,.. .... , - ..:··----.,· ---, ·1~ :F", " ,..,.., .... ~. ," ;-',",,-..... ... ..-~ .... ~ ..-.., -........;- -" ·....· ..,


Nr of iterations 

Frequency =100.62 Hz 

Synthetic data with Gaussian distributed noise added (Std dev = 1.0) 


~ ~:: t um,m, ,"u umm: 

Nr of iterations 

Figure 5.21.7. Values calculated for the exponent p during the estimation of the 

apparent resistivity values displayed in Figure 5.20 at 100.62 Hz 

Frequency =181.43 Hz 
Synthetic data with Gaussian distributed noise (Std dev = 1.0) + random noise 
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Figure 5.21.8. Values calculated for the exponent p during the estimation of the 

apparent resistivity values displayed in Figure 5.20 at 181.43 Hz 

85 



Chapter 5: Statistical data reduction 

Frequency =327.11 Hz 
Synthetic data with Gaussian distributed noise (Std dev =1.0) + random noise 
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Figure 5.21.9. Values calculated for the exponent p during the estimation of the 

apparent resistivity values displayed in Figure 5.20 at 327.11 Hz 

Frequency = 589.79 Hz 
Synthetic data with Gaussian distributed noise (Std dev =1.0) + random noise 
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Figure 5.21.10. Values calculated for the exponent p during the estimation of the 

apparent resistivity values displayed in Figure 5.20 at 589.79 Hz 
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The Robust M estimation method yields very good results for the apparent 

resistivity curve at most frequencies (Figure 5.22), even though it starts with the 

least squares estimate of the impedance tensor as an initial estimate. 
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Figure 5.22. Apparent resistivity versus frequency curves produced by the 

Robust M estimation technique for the synthetic data displayed in Figure 5.14. 

Where random noise without any specific distribution was introduced to the 

impedance tensor, the L1 norm, Robust M estimation and Lp norm (using 

equation (5.37) to calculate p) techniques yielded satisfactory results for the 

apparent resistivity curves. The least squares technique and Lp norm with 

equation (5.38) yielded bad results. All of the estimation methods used resulted 

in bad fits for the phase curves. 
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5.5.3. Conclusions drawn from synthetic data tests 

In the case where only Gaussian distributed noise are introduced to the 

impedance tensor, all the tested statistical reduction techniques yielded very 

good results. An increase in the standard deviation of the distribution of the 

noise causes a slight deterioration in the quality of the curve fitted to the phase 

data. 

Completely random noise added to the impedance tensor caused a marked 

decrease in the success of some of the minimisation techniques. The least 

squares method did not produce good results at all. The same is true for the 

adaptive Lp technique where equation (5.38) was used to determine the value of 

p. Estimated values of p greater than 2 caused the adaptive process to be 

terminated and therefore at most frequencies L2 minimisation occurred. 

The L1 norm, robust M estimation method and Lp norm using equation (5.37) all 

yielded good results , with the best fit produced by the L1 norm. From the above 

examples it is concluded that the adaptive Lp-norm method is more susceptible 

to the starting impedance values than the robust M-estimation technique. 

From the examples studied in this chapter it is clear that none of the 

minimisation techniques yielded perfect results. It is therefore critical that the 

curves obtained should be studied very carefully, keeping in mind the amount of 

artificial noise present near the sounding station. Additionally calculated 

parameters that can provide more information on the presence of noise, such 

as the Tipper, must be taken into account. 
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CHAPTER 6 


CASE STUDY 


A magnetotelluric (MT) survey was conducted along the road between Sishen 

and Keimoes in the Northern Cape Province of South Africa. It followed the 

route of a deep seismic reflection survey that was carried out during 1989 on 

behalf of the Geological Survey and the National Geophysics Programme by 

Geoseis (Pty) Ltd. of South Africa. The aim of the MT survey was twofold: 

• 	 Compare the results obtained by the two methods to determine 

whether it would be beneficial to do a magnetotelluric survey prior to a 

deep reflection seismic survey in order to locate areas of interest. This 

would be of economic interest since a deep reflection seismic survey 

costs considerably more than a magnetotelluric survey. 

• 	 Shed light on a number of interesting features that is visible on the 

reflection data. 

The statistical techniques discussed in the previous chapter were applied to the 

data . 

6.1. SURVEY LOCATION 

Eleven sounding stations were positioned along the Sishen - Keimoes road at 

roughly 20km intervals. Figure 6.1 shows the location of the survey area in 

South Africa. 
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