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Sumrrnry 

Summary 

The bootstrap approach to autoregressive 


time series analysis 


by 


Felicia Henriette de Koster 


Supervisor: Dr H Boraine 

Department of Statistics 

Submitted in fulfilment of part of the requirements 

for the degree of Master of Mathematical Statistics 

The bootstrap is a non-parametric computer-intensive statistical 

technique that uses a unique finite sample to describe the 

variability of a statistic without making any distributional 

assumptions about the data. The bootstrap is especially useful in 

situations where finite sample theory is difficult or even impossible 

to derive or when only asymptotic theory is available. The latter 

being the case with time series data. 

Fonnally, the bootstrap consists of a methodology for estimating 

standard errors by repeatedly resampling with replacement from 

the original finite sample, which is believed to be a sample of 

independent and identicailydistributed (i.i.d.) observations from 

an unknown probability distribution. Until recently however, it 
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was not possible to use the bootstrap in studies of time series data. 

The reason lies in the assumption of i.i.d. random variables which 

is violated when observations are serially correlated. Different 

approaches to this problem of preserving the correlation in the 

data are considered. 

A brief introduction to the standard bootstrap principle is 

provided and the different bootstrap approaches to the estimation 

of autoregressive time series parameters are discussed. The 

resampling of residuals, the moving blocks bootstrap and the 

stationary bootstrap methodologies are all examined. 

A comparison is made of the different bootstrap methods in terms 

of the sampling distributions of the parameters. The standard 

errors obtained by the methods are also examined. Finally, these 

methods are applied to the construction of prediction intervals. 

The results of a simulation study are included in order to compare 

the different bootstrap approaches with the conventional 

estimation methods for a specific second order autoregressive 

process. 

A discussion of the SAS program used for the bootstrap 

computations of the preferred method is given and the use of the 

application included on the diskette is also explained. 

 
 
 



Sam:u:ttting 

Samevatting 

Die bootstrap benadering tot outoregressiewe 


tydreeksanalise 


deur 


Felicia Henriene de Koster 


Studieleier: Dr H Boraine 

Departement Statistiek 

Voorgele ter vervulling van 'n deel van die vereistes 

vir die graad Magister in WlSkundige Statistiek 

Die bootstrap is 'n nie-parametriese rekenaar intensiewe statistiese 

tegniek wat gebruik maak van 'n unieke eindige steekproef om die 

variasie van 'n grootheid te beskryf sonder om enige aannames te 

maak oor die verdeling van die data. Die bootstrap is veral nunig 

wanneer dit moeilik of selfs onmoontlik is om eindige steekproef 

teorie af te lei of as slegs asimptotiese teorie beskikbaar is, soos 

wat die geval is met tydreeksdata. 

Fonneel kan die bootstrap beskryf word as 'n metode om 

standaardfoute te beraam deur herhaaldelike steekproefneming 

met teruglegging uit die oorspronklike eindige steekproef. Daar 

word aanvaar dat die steekproef bestaan uit onafhanklike en 

identies verdeelde waamemings vanuit 'n onbekende 
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waarskyn}ikheidsverdeling. Tot onlangs was dit egter nie moontlik 

om die bootstrap toe te pas op studies van tydreeksdata nie. Die 

rede hiervoor Ie in die aanname van onafhanlilike en identies 

verdeelde stogastiese veranderlikes wat nie meer geld wanneer 

opeenvolgende waamemings gekorreleerd is nie. Verskillende 

benaderings tot hierdie probleem om die korrelasie in die data te 

behou word oorweeg. 

'n Kort inleiding tot die basiese bootstrap beginsel word gegee en 

die verskillende bootstrap benaderings tot die beraming van 

outoregressiewe tydreeks parameters word bespreek Die 

hertrekking van residue, die bewegende blokke bootstrap en die 

stationere bootstrap metodiek word beskou 

'n Vergelyking van die verskillende bootstrap metodes word getref 

in terme van die steekproefverdelings van die parameters. Die 

standaardfoute verkty deur die metodes word ook beskou. 

Uiteindelik word hierdie metodes ook toegepas om 

voorspellingsintervalle te bereken. 

Die resultate van 'n simulasiestudie word ingesluit sodat die 

verskillende bootstrap benaderings vergelyk kan word met die 

tradisionele beramingsmetodes vir 'n tweede orde outoregressiewe 

proses. 

 
 
 



Sarmatting 

Die SAS program waarrnee die bootstrap berekenings uitgevoer is, 

word bespreek en die gebruik van die toepassing wat ingesluit is op 

die disket, word verduidelik. 

 
 
 



Notation 

Notation 

The following provides a list consisting of the notation adopted. 

Symbol 


{Zt,t = 1, ... ,n} 
Zt 
{Z;:- } 
n 

P 
~i,i=l, ... ,p 
cl> = t<l>1, ... ,<I>p) 
" <1> 

<l> ':', 
J 

B 
~:-

l 
m 

>:­

n 

):­

at 
a 
F(.) 
i(-) 

2 
(ja 

Zn+h 

Zn(h) 
{xJ 
Lx J 
j(mxi N) 

Commentary 


Observed time series 

Time series observation at time t 

Bootstrap time series 

Length of time series 
Order of time series 
Time series parameters 
Vector of parameters 

Estimate of <1> based on the original series 

Estimate of <1> based on the j th bootstrap 
senes 
Number of bootstrap replications 
Star notation indicates a bootstrap replication 
Block length 
Number of blocks resampled 
Length of pseudo-time series 
Residual at time t 

Estimated residual at time t 

Resampled residual at time t 

Mean of the residuals 
Distribution of the error terms 
Estimate of F(·) 
Error term variance 

Future value of Z at time n + h 
Predicted value of Z at time n + h 

Set of random i.i.d. variables 

Integer part of x 

Integer remainder of j / N 
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Chapter 1 


Introduction 


The bootstrap is a non-parametric computer-intensive statistical 

technique that was first introduced by Efron in 1979. This 

technique uses a unique finite sample to describe the variability of 

a statistic without making any distributional assumptions about the 

data. The bootstrap is especially useful in situations where finite 

sample theory is difficult or even impossible to derive or when 

only asymptotic theory is available. The latter being the case with 

time series data. 

Formally, the bootstrap consists of a methodology for estimating 

standard errors by repeatedly resampling with replacement from 

the original finite sample, which is believed to be a sample of 

independent and identically distributed (i.i.d.) observations from 

an unknown probability distribution. The resamples obtained in 

this manner are called pseuJo.dat£t or bootstrap samples and are used to 

estimate the statistics of interest. These estimates are then referred 

to as the bootstrap esti'lnltes. 

Until recently however, it was not possible to use the bootstrap in 

studies of time series data. The reason lies in the assumption of 

i.i.d. random variables which is violated when observations are 

serially correlated. Different approaches to this problem have 
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been suggested and a few will be considered in the following 

chapters. 

Chapter 2 provides a brief introduction to the standard bootstrap 

principle, while chapter 3 discusses the different bootstrap 

. approaches to parameter estimation in the context of 

autoregressive time series. The resampling of residuals, the 

moving blocks bootstrap and the stationary bootstrap 

methodologies are discussed in chapters 4, 5 and 6. Each one of 

these chapters points out relevant factors to consider for the 

different procedures. Chapter 7 compares the different bootstrap 

methods in terms of the sampling distributions of the parameters. 

The standard errors obtained by the methods are also examined. 

Finally in chapter 8, these methods are applied to the construction 

of prediction intervals. The results of a simulation study are 

included in order to compare the different bootstrap approaches 

with the conventional estimation methods for a specific 

autoregressive process of order 2. A discussion of the SAS 

program used for the bootstrap computations of the preferred 

method, is given in Chapter 9. This chapter also explains the use 

of the application included on the diskette. The last chapter 

offers conclusions and recommendations for further study. 

2 

 
 
 



Chapter 2 


The Standard Bootstrap Principle 


Let X =(x 1 ' ... , X n) represent the original finite sample of n 

independent identically distributed (i.i.d.) observations, obtained 

from a common unknown probability distribution F (-) and let 

Tn (X) be some statistic of interest which is under consideration. 
I' 

Denote the empirical distribution by F (-) which assigns 

probability mass n-1 to each sample element. The bootstrap is 

used to approximate the sampling distribution of Tn (X) under 

F(-) by the bootstrap distribution of Tn (X") under f (-) ,where 

X " = (X ~:- ,... ,X;) 1 is a bootstrap sample of size n obtained by 

randomly sampling 1.Rith rep!dcem::nt from the original sample X 

This approximation can be done according to the Monte Carlo 

method by repetitively resampling from the original data and 

recalculating the value of the statistic. The desired accuracy can be 

obtained by increasing the number of repetitions sufficiently. 

The bootstrap algorithm begins by generating a large number, B, 

of independent bootstrap samples denoted by X;- , i =1, ... , B, 

each of size n. These samples are in fact, drawn from the empirical 

I The star notation indicates that X* is not the original data set X , but rather a 
resampled version of X 

3 
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The Standard Bootstrap Principle 

distribution F 
I' 

(-). Corresponding to each bootstrap sample X;-is 

a bootstrap replication of Tn , namely Tn (X::- ) ,the value of the 

statistic evaluated for X;- . This bootstrap resampling scheme is 

illustrated in Figure 2.1. 

Figure 2.1 

Schematic representation of the bootstrap process for estimating the 


sampling distribution of a statistic Tn (X). 


~(X1>""V ~umu Original data set 

o 	 0 o --- Bootstrap 
--- samples 

/ 

/ 
/ 

/ 

.------------
---

---	 ~/ 

/ 

/ 

The set of bootstrap estimates {Tn (X:'), i =1, ... ,B} forms an 


approximation to the true sampling distribution of the statistic 


4 

 
 
 



The Standard Bootstrap Principle 

Tn(X). In particular, estimates of location, spread, confidence 

intervals and bias of the statistic can be evaluated from the set 

{~(X; )} . 

The bootstrap estimate of the parameter, denoted by Tn*, is 

defined by the mean of the bootstrap replications 

y i.- =~~ y (X '.:- ) (2.1)
n BL...J n 1 

i =l 

and the variance is estimated by the empirical variance of the 

replications which is denoted by V(T~~ ) and defined as 

(2.2) 

To illustrate the practical use of the bootstrap for estimating 

standard errors and probabilities, the following two examples are 

included. The second example is given with acknowledgement to 

Swanepoel (1990). 

Example 2.1 

Consider the estimation of the standard error of the sample mean 

n 

~(X)=X=n-1LXi · 
i=l 

5 

 
 
 



The Standard Bootstrap Principle 

The observed sample is Xl =Xl ,X2 =X2 , ••• , X n= Xn and FC) 

" is estimated by the empirical distribution F C) , 
" F : Probability=n-1 at each Xi' i = 1,2, ... , n. 

A bootstrap random sample Xx- = (X ~:- ,X;- ,...,X~-) is drawn 

from FC). This means that each X;:- is drawn independently with 

replacement and with equal probability n-1 from the observed set 

{X l' X2 , ... , Xn} . 

Calculate the sample mean for this bootstrap sample, 

n

TJX")=X ':- =n-1L:X;:­
i=l 

The bootstrap sampling and estimate calculation as explained 

above is repeated a large number, B, times to obtain the bootstrap 

replications Tn (X~-) = X~:- ,... , Tn (X~) = X; . 

Finally, the standard error of the sample mean is estimated by the 

sample standard deviation of the B bootstrap replications, 

s = (B - 1t 1L:
B 

[Tn (X;' ) - Tn] 2 

i=l 

B 

where Tn =B-1L: Tn (X::-) is the sample mean of the B bootstrap 
i=l 

replications. 

6 

 
 
 



The Standard Bootstrap Principle 

Example 2.2 


CDnsider the estimation of the probability 

p = p(Fn(X - ~)< 0.5) 

n 

where ~ = E(XJ and X = n-1IX i • 

i=l 

Define the statistic under consideration as Tn (X) = Fn(X - ~). 

Once again, the observed sample is 

I' 

and F (-) is estimated by the empirical distribution F (-) , 

f: :Probability= n-1 at each Xi' i = 1,2, ... , n. 

Draw a bootstrap random sample X"- = (X;- ,X;- ,...,X; ) 

I' 

independently from F (-) as described in Example 2.1. 

Calculate the relevant statistic for this bootstrap sample by 

n 

where X~- =n-1IX
i
'" 

i=l 

Repeat the above two steps a large number, B, times to obtain the 

bootstrap replications Tn (X~- ), ... , Tn (X~) . 
Finally, calculate 

i=l 

where J(-) is the indicator function. 

7 
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Chapter 3 


The Bootstrap Approach to 


Parameter Estinlation 


Efron (1979) introduced the bootstrap procedure for estimating 

sampling distributions based on a finite sample of i.i.d. 

observations. Mter two decades it is already well known that, in 

the i.i.d. setup, the bootstrap often provides more accurate 

approximations than classical large sample approximations (Singh 

1981; Babu 1986). However, Singh (1981) showed that the 

original bootstrap no longer succeeds when the observations are 

not necessarily independent. Originally this prevented the use of 

the bootstrap in studies of time series data, because the 

assumption of i.i.d. random variables is violated when observations 

are serially correlated. Several solutions to this problem have now 

been suggested, although most extensions in the literature so far 

only apply to the stationary case. They can roughly be divided into 

resampling and subsampling methods. 

There are broadly speaking, two approaches to the use of 

resampling methods for strictly stationary dependent data. The 

first is to apply Efron's bootstrap to an approximate i.i.d. setting 

by focusing on the residuals of some general regression model. 

Such examples include linear regression, autoregressive time series 

8 

 
 
 



The Bootstrap A ppro:uh to PararrEter Estimttion 

as well as other applications. In these situations the residuals are 

resampled instead of the original observations. In addition to 

being restricted to relatively simple contexts where structural 

models are both plausible and tractable, little is known about how 

this approach would perform for heteroskedastic observations. 

The fitted residuals will, in general, no longer behave like i.i.d. 

observations, but exhibit some form of heteroskedasticity. 

Fortunately it has been shown that Efron's bootstrap performs 

reasonably well even when the data are independent but not 

identically distributed. (Freedman 1981; Liu 1988; Liu and Singh 

1992). Therefore, one might hope for a certain degree of 

robustness to heteroskedasticity as well. 

As a second approach resampling methods for less restrictive 

contexts have more recently been suggested. They are based on 

blakingtechniques in which the data are divided into blocks of 

adjacent observations and these blocks are resampled rather than 

the single original observations or the estimated residuals. This is 

done in order to capture the dependence in consecutive 

observations. Carlstein (1986) proposed non-overlapping blocks, 

whereas Kiinsch (1989) and Liu and Singh (1992) independently 

introduced the rrming blaks method which utilises overlapping 

blocks. These overlapping blocks use the data more efficiently and 

consequently reduce variability. Figure 3.1 compares these two 

blocking methods schematically. 

9 
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The Bootstrap Appmuh to Param::ter Estim:ttion 

Figure 3.1 

Schematic comparison of Carlstein's non-overlapping blocks and Kiinsch's 


moving blocks. The black circles represent the original observations 

and are divided into blocks of length 3. 


Carlstein's non-overlapping blocks: 

( y y y 

Kiinsch's moving blocks: 

Hall et al (1995) analyze the asymptotic behaviour for estimates 

based on a scalar sample mean within a stationary environment 

and find that the moving blocks bootstrap enjoys an asymptotic 

superiority relative to Carlstein's method. Carlstein's method is 

therefore not discussed further in this study as the asymptotic 

quality is considered relevant for typical sample sizes found in 

economic situations. Furthennore, Carlstein's rule also neglects 

dependency between the different blocks of observations in the 

sample, which in particular might be of great importance for a 

nonstatlonary process. 

10 

 
 
 



The Bootstrap A ppro::uiJ to Pararm:er Estirrntian 

Politis and Romano (1992) also consider a blocks aJblocks scheme 

to obtain valid inference of parameters of the infinite-dimensional 

joint distribution of the process, such as the spectrum. It turns out 

that Klinsch's bootstrap enjoys some robustness property to 

heteroskedasticityas was pointed out by Lahiri (1992) in the case 

of the sample mean. 

In both Carlstein's and Kiinsch's bootstrap blocks of fixed length 

are resampled which means that the newly generated pseudo-time 

series is no longer stationary. To fix this shortcoming, Politis and 

Romano (1994a) suggested the stationary bootstrap which is based 

on resampling blocks of random length, where the length of each 

block has a geometric distribution. 

Building new pseudo-time series by joining randomly selected 

independent blocks together induces a different probability 

mechanism. Dependency will be reduced and for both Carlstein's 

and Kiinsch's bootstrap stationaritywill be lost. However in 

typical applications the underlying dependence is sufficiently weak. 

Therefore the main contributions come from the short lags which 

are well approximated by the blocking methods when an 

appropriate block size is chosen. This ensures that these methods 

work nevertheless. 

As an alternative to resampling methods, Politis and Romano 

(1994b) proposed the subsampling approach. Rather than 

11 

 
 
 



The Bootstrap A pprauh to Pararreter Estirrntion 

resampling blocks from the original series in order to construct a 

new pseudo-time series, each individual subblock or subseries of 

observations is viewed as a valid sub-tim serit5 in its own right. The 

motivation is that each block as a part of the original series, was 

generated according to the true underlying probability mechanism. 

It then seen1S reasonable to hope that one can gain information 

about the sampling distribution of a statistic by evaluating it on all 

of these subseries. 

Another attractive feature of the subsampling method is that it has 

been shown to be valid under very-weak assumptions. Apart from 

regularity and dependency conditions the only requirement in the 

~lalionary ~etup is that the sampling distribution of the properly 

normalized statistic of interest has a nondegenerate limiting 

distribution. Politis, Romano and Wolf (1997) consider 

subsampling for heteroskedastic time series. The subject of 

heteroskedasticity is beyond the scope of this study, therefore their 

methods will not be considered in greater depth. 

In the following chapters some of these proposed methods are 

explored in the context of autoregressive time series. Results of a 

simulation study is also given in an attempt to measure the 

performance of these methods and to compare them with the 

traditional Box-Jenkins methodology (1994). 

12 

 
 
 



Resampling the Residuals 

Chapter 4 

Resampling the Residuals 

Let {Zt' t =1, ... , n} represent nobservations of a stationary 

autoregressive time series of order p. The AR(P) structure 

proposed by Box, Jenkins and Reinsel (1994) to model Zt is given 

by 

(4.1) 

where the at are the i.i.d. residuals from an unknown distribution 

F (-) with mean zero and finite variance cr;. For the purpose of 

explaining the procedures, assume that the mean of the series has 

been subtracted from each observation in order that Zt has a zero 

mean. Furthermore, for stationarity all p roots of the characteristic 

equatIon 1- ~lX - ~2X 2 - ••• - ~ pX P =0 lie outside of the unit 

circle. 

The vector of unknown parameters <1> = ~~p .. . ,~p) is obtained by 

the minimisation of the unconditional sum of squares of the 

residuals 

n 2 

5(<1»= L[at l<1>,Z] (4.2) 
t=l 

13 

 
 
 



Resamplirrg the Residuals 

Due to the non-linear nature of S ( <I>) the minimisation is carried 

out by an iterative process using a non-linear algorithm such as 

that proposed by Marquardt (1963). It is of interest to recall that if 

the residuals, at , in (4.1) are assumed to possess a Gaussian 

distribution, then the least squares estimates obtained by the 

minimisation of S ( <1» in equation (4.2) are equivalent to the 

maximum likelihood estimates for large samples (Box, Jenkins and 

Reinsel, 1994). The above equivalence is used in the evaluation of 

the variance of the estimates. It should be kept in mind that the 

variance estimator is an approximation of the true variance as it 

only holds asymptotically, i.e. it is only valid for large samples. 

Given the stationary time series {Zt}' the conventional Box and 

Jenkins approach is used to fit an AR(P) model. The 

corresponding vector of parameter estimates <i> =($1' ...$p) is 

then obtained by the traditional parametric estimation (4.2). This 

enables the evaluation of the model residuals, at by 

(4.3) 

In this way, the required random sample {at' t = 1, ... , n} of size n 

is obtained and B bootstrap samples can be generated by sampling 

with replacement from the empirical distribution of the estimated 

residuals, F(-) ,as described in Chapter 2. Note that the a;' are 

14 
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I' 

independent bootstrap random variables sampled from F (-) , even 

though the at are not independent random variables in the usual 

sense. 

Chatte~ee (1986), Holbert and Son (1986) and Efron and 

Tibshirani (1993) used the procedure described above to resample 

directly from the estimated residuals. This approach is justified 
. I' 

when the mean of F(-) is close to zero. If it is not, Efron and 

Tibshirani (1993) suggested that the definition EF (at) =0 could 

be honoured by centering the residuals around their mean. This 

means that the bootstrap residual samples are generated from the 

empirical distribution that puts mass n-1on (at -a) where 

1 n 1\ 

a = - :Lat. Shao and Tu (1995) also resampled from the 
n t=l 

empirical distribution of at centered at a and Freedman (1981) 

concluded that without centering, the bootstrap will usually fail. 

In their simulation study, Souza and Neto (1996) inflated the 

estimated residuals by the factor [nj(n - k )] 1/2 , where k is the 

number of free parameters of the model. This is done due to the 

degrees of freedom lost in the fitting process. McCullough (1994) 

used the same scaling factor in his study of bootstrapping forecast 

intervals. 

15 

 
 
 



Resampling the Residuals 

Finally, combining these two ideas, Shao (1996) generated i.i.d. 

a~c, ... ,a: from the empirical distribution putting mass n-1 on 

(at - a)j~1- pin, t = 1, .. .,n where a is the average of the at 

and p is the order of the modeL 

Let ~:, t = 1, ... , n} represent the i th bootstrap residual sample of 

size n, generated according to one of the proposed rules, where 

i = 1, ... ,B. The corresponding bootstrap series {Z:} can now be 

evaluated by 

(4.4) 

where the model parameters cD =(~l ,... ~ p) used in the generation 

of the pseudo-time series are those estimated according to the 

original series {Zt}. By repeating the above procedure, a set of B 

bootstrap series each of size n, can be generated and each series 

can be modelled by the same AR(P) structure adopted for the 

original series {Zt}' i.e. 

{Z; , i =1, ... ,B; t = 1, ... , n} ~ AR(P) (4.5) 

With the bootstrap series generated according to the above 

description, the traditional parametric estimation procedure can be 

16 

 
 
 



applied to each series {Z;} in order to obtain a set of bootstrap 

estimates {cI> '; , j = 1, ... , B}. Using this sequence of estimates an 

approximation of the true sampling distribution of each 

~i ,i = 1, ... , P can be calculated. In particular, bootstrap standard 

errors and confidence intervals for each parameter ~ i of cI> can be 

constructed. 

The above procedure was proposed by Chatterjee (1986), in a 

pioneer time series simulation study to bootstrap ARMA models. 

However in the case of the existence of autoregressive terms in the 

model for the series (i.e. p > 1) problems arise in the calculation of 

the bootstrap series {Z;} in equation (4.4) due to the starting 

values Z::o' Z::_1"'" Z::l_ p required in the evaluation of Z::l' 

One possible solution to this problem is to assume these 

unknowns fixed for each bootstrap sample. These values can thus 

be set equal to those used in the original series, i.e. 

, '" , (4.6) 

This approach has been adopted by Efron and Tibshirani (1986) 

for an AR(1) structure as well as by Chatterjee (1986) for AR(2) 

and ARMA(1,1) structures. 

17 

 
 
 



Resamplirg the Residuals 

Souza and Neto (1996) approached this problem differently by 

generating the starting values Z::o and Zi:-l (i.e. for the AR(l), 

AR(2) and ARMA(l,l) structures) for each bootstrap series. 

These starting values were generated according to their 

corresponding Gaussian marginal and conditional probability 

distributions. They have therefore, in each bootstrap series {Z;} 
generated according to equation (4.4), used the corresponding 

random starting observations instead of considering them fixed. 

This random selection process was also adopted by Holbert and 

Son (1986) for the AR(2) case. They found that the bootstrap 

estimates of the parameters' standard errors improved 

considerably when this random selection was used. 

Masarotto (1990) suggested that in order to obtain stationary data 

Z; could be generated from t = -k where k is a sufficiently large 

integer e.g. k = 50 or 100. This is also the approach followed in 

the simulation study. 

18 

 
 
 



Resarnpling the Residuals 

Simulation Results 

In order to test the procedure described in the previous section, a 

simulation study was conducted. The following AR(2) structure is 

considered 

(4.7) 

where the at are independent random observations from a normal 

distribution with zero mean and variance ()~ = 2. The mean of 

this series is J.l = 100. Another important factor to consider is the 

influence of the number of observations and therefore two series 

lengths, n = 30 and n = 100, were investigated. 

In order to simulate the population properties, 1000 Monte Carlo 

replications were generated. One series was then generated on 

which the bootstrap methods were performed. The parameters 

for this series were estimated by means of maximum likelihood 

estimation and the order was considered fixed as p = 2. The 

bootstrap estimates were computed from B = 1000 pseudo-time 

series, constructed according to (4.4) and generated from t =-50. 

Two approaches to the resampling of the residuals were followed. 

Firstly, the centered residuals, (at - a) were resampled and 

19 

 
 
 



Resampling the Residuals 

secondly, the resamples were taken from the empirical distribution 

of (at -a)/,)1- pi n. 

The results of these tests are summarised in the Tables 4.1 and 4.2. 

For each parameter, the estimated value as well as the standard 

deviation (SD) is given. 

Based on these results it seems that the bootstrap standard error 

estimates compare very well with the maximum likelihood 

estimates and are in accordance with the simulation results. 

Only in the case of the series mean, it seems as if all three methods 

underestimate the standard error. The bootstrap estimates may 

follow the trend of the maximum likelihood estimate, because the 

bootstrap series generation is dependent on the values of the 

maximum likelihood estimates. 

Even though the difference is quite small, resampling from 

(at -a)/,)1- pin appears to offer an improvement on the 

standard errors, compared to resampling from the centered 

residuals. 

One advantage of the bootstrap is that an estimate of the standard 

error of a~ can be calculated, which is not the case with the 

traditional estimation methods. 
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For a shorter series, where asymptotic validity is often questioned, 

the bootstrap method also performs quite well. The results 

obtained in this study show an improvement on the maximum 

likelihood standard error estimates. Once again it does seem 

useful to multiply the centered residuals by the factor (1- pjntl/2. 

Table 4.1 
A comparison of the parameter estimates obtained by maximum 


likelihood estimation and two residual resampling schemes 

for a series of length n = 100 


Parameter Simulation 

results 

Maximum 

likelihood 

estunatlo n 

Res amp ling 

from 

(at - a) 

Res amp ling 

from 

(at -a) 
-Jl- pjn 

2 
(Ja Estimate 2.00495 2.08226 2.09515 2.13720 

SD 0.28200 0.28722 0.28514 

J.l Estimate 100.01815 99.26085 99.25040 99.27405 

SD 1.32986 0.91234 0.96615 0.94508 

<1>1 Estimate 1.28383 1.30623 1.29090 1.28869 

SD 0.08912 0.08915 0.09009 0.08867 

<1>2 Estimate -0.40876 -0.45893 -0.46496 -0.46340 

SD 0.08592 0.08917 0.08632 0.08771 
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Table 4.2 
A comparison of the parameter estimates obtained by maximum 


likelihood estimation and two residual resampling schemes 

for a series of length n = 30 


Parameter Simulation 

results 

Maximum 

likelihood 

estunatlon 

Res amp ling 

from 

(at -a) 

Resampling 

from 

(at -a) 
~1- pin 

2 
(ja Estimate 1.98757 1.85625 1.66753 1.80883 

SD 0.52908 0.41403 0.45126 

~ Estimate 99.81101 101.07308 101.12170 101.08721 

SD 2.34217 1.60515 1.60978 1.61796 

~1 Estimate 1.23587 1.25915 1.19295 1.18531 

SD 0.18291 0.17031 0.18373 0.18394 

~2 Estimate -0.42543 -0.39604 -0.42401 -0.41350 

SD 0.16729 0.17200 0.16593 0.16441 
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Chapter 5 


The Moving Blocks Bootstrap 


The moving blocks bootstrap is presented as an extension of the 

standard bootstrap principle, to take into account weak 

dependency in the data. Rather than fitting a model and then 

sampling from the residuals, this method takes an approach closer 

to that used for independent data problems. The idea is to 

generate a bootstrap realization of the time series by choosing a 

suitable block length and considering all possible contiguous 

blocks of this length. These blocks are sampled with replacement 

and pasted together to form the bootstrap time series. Just 

enough blocks are sampled to obtain a series of roughly the same 

length as the original series. The standard bootstrap is the special 

case when the block size equals unity. Figure 5.1 provides a 

schematic representation of the moving blocks bootstrap applied 

to a t1Ille senes. 

For a description of the method, consider the moving blocks 

bootstrap resampling for a statistic of interest. Given a time series 

{ZJ and the statistic Tn(Z) = Tn(Zl"'" Zn)' Fitzenberger (1997) 

defined Bj as the block of I consecutive observations starting from 

Zj , that is 

Bj=tZj"",Zj+l-l) for j=l, ... ,n-l+l (5.1) 
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The Maring Blaks Bcxxstrap 

Figure 5.1 
Schematic diagram of the moving blocks bootstrap for time series. The 


black circles are the original time series observations and the white 

circles denote a bootstrap realization of the time series. 


This figure represents blocks of length 3 . 


~~______~A_______~A_ ______~A_______~) 

000000000000 


Let q =n -I + 1 and n~- = rri , with m and n':- positive integers, 

such that n" is the smallest integer multiple of 1which is greater 

than or equal to n. Now m blocks ~, ... , Ym can be resampled 

independently from {Bl' .. .,Bq J with equal probability q- l where 

each ~, i = 1, ... , m is a block of size 1 with ~ = (YiP"" Yil ). 

The bootstrap distribution of ~,conditional on the series {Zt} 

can be denoted by p':-. Thus, given {Zt} the mrandom blocks 

~ , ... , Ym are i.i.d. according to the conditional distribution P*. 

The moving blocks bootstrap res ample of size n" , denoted by 

{Z;- ,...,Z~* } is then fonned by joining the blocks ~, ... , Ym into 
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one series i.e. Zi" = YTU for 1: =li l 1J + 1, where Lx Jdenotes the 

integer part of x and \) = i -I ("( - 1). The resample statistic is then 

calculated according to Tn' (Z~:-, ... , Z~. ) . 

Fitzenberger (1997) used the actual resample size as n '~ = ni but 

other authors (Kiinsch 1989; Liu and Singh 1992) have proposed 

deleting the observations Z; for j > n. If n is not exactly divisible 

by l , the bootstrap standard errors need to be multiplied by ~~ 
to adjust for the difference in lengths of the series. 

The justification for the moving blocks bootstrap lies in the 

correlation structure of the data. Simply res amp ling from the 

original observations will destroy this correlation that needs to be 

captured and modelled. With the moving blocks bootstrap, the 

idea is to choose a block length 1 large enough so that the 

observations more than 1 time units apart will be nearly 

independent. By sampling the blocks of length 1, the correlation 

present in observations less than 1 time units apart, is retained. 

However, the correct choice of the block length is quite important 

and requires careful consideration. The next section is devoted to 

this subject. 
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The moving blocks bootstrap also has the advantage of being less 

model dependent than the bootstrapping of residuals approach as 

the latter method depends on the model that is fit to the original 

time series. Although the same model structure is used to estimate 

the parameters for the bootstrap time series as for the original 

series, it is not used in the generation of the bootstrap realizations 

of the time series. Note however that in the moving blocks 

bootstrap sampling, the first and last few observations in the series 

do not have the same chance of being drawn as the observations 

in the middle part of the series. Politis and Romano (1992a) and 

Shao and Yu (1993) proposed a circularblak method by wrapping 

the observations 21 , ... , 2n around in a circle and then generating 

consecutive blocks of the bootstrap data from the circle. This 

circular method is also used in the stationary bootstrap of Politis and 

Romano (1994) and will be considered again in Chapter 6. 

Choosing the Optimal Block Length 

The purpose of this section is to address the problem of optimal 

choice of block length when the block bootstrap is used in a 

variety of different contexts. According to Hall, Horowitz and 

Jing (1995), it turns out that optimal block size depends very much 

on the context. They identify three different settings of practical 

importance, namely estimation of bias or variance, estimation of a 
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one-side distribution function, e.g. F,(x) =p{ (9 5 8) < x}, and 

estimation of a two-sided distribution function, e.g. 

F2(x) =p{19 ~ 81 < x}. The two-sided distribution function is 

used to construct symmetrical confidence intervals for an 

unknown parameter and these intervals were shown to enjoy 

enhanced coverage accuracy among two-sided confidence regions 

(Hall 1988). Hall, Horowitz and Jing (1995) show that optimal 

block lengths in the three problems are of different order sizes, 

being nl/3
, nl/4 and nl/5 respectively, where n is the length of the 

time series. At first this disparity might be confusing but they 

offer a simple explanation for it. Optimal block length is achieved 

by balancing error-about-the-mean against bias to minimise mean 

square error. Bias terms in all three problems are of similar sizes, 

but variances are quite different for the three cases as they are 

essentially the variances of standardised second, third and fourth 

cumulants in the respective problems. Elementary calculations 

based on this observation lead Hall, Horowitz and Jing (1995) to 

their claims about orders of block length in the different cases. 

The optimal asymptotic formula for block length I is I ~ Cnl/k 

where k = 3,4 or 5 . As indicated above, the value of k is known, 

being determined by the specific context. This result is of practical 

benefit as well as theoretical interest, since it may be used as the 
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basis for a simple rule for choosing block size. The rule operates 

by using empirical methods to choose the block size for a sub­

series of the original data set of length m < n. This quantity may 

be re-calibrated so that it applies to the original larger sample size, 

by multiplying by the factor (n/m)1/k
• 

Without considering the detailed theoretical results, the empirical 

rule for estimating optimal block size for a time series of smaller 

length than the original, say m < n is first investigated (Hall, 

" Horowitz and ling, 1995). Let 1m denote this block size for a time 

" series of length m Once 1m has been determined, the optimal 

" block size In for the original time series of length n may be 

" ( 1/k " estimated by the formula In = n/m) 1m' 

Let c; denote the set of all n - m+ 1 runs of length m, obtainable 

from the original time series and apply the moving blocks 

bootstrap method to each subseries from c;. Let I' denote the 

block size used here. Each application of the bootstrap produces a 

point estimate of the statistic of interest. Let Tm (Z;-) ,for 

1< i < n - m + 1 denote the bootstrap estimates of Tn computed 

from the n - m+ 1 runs of length min c; and let Tn(Z) be the 

estimate computed from the entire data set of length n, using a 

plausible pilot block size I. An estimate of mean squared error in a 

sample of size m, using block length I, is the average of the squares 
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of the differences Tm(Z;-)- TJZ). Select that value of l', denoted 

" by lm' which minimises this quantity and then revise the choice of 

the pilot block size l, to (n/m)1/k 1m' This procedure may be 

iterated if desired, replacing the original pilot choice of l with an 

updated version. 

In their simulation study, Hall, Horowitz andJing (1995) chose the 

length of the subseries to be 171 = 25 for a time series of 100 

observations. They considered a moving average model for which 

they found that the number of iterations required for this 

procedure to converge was one for 93% of their variance 

estimation simulations as well as for 92% of their distribution 

estimation simulations. For the remaining cases, convergence was 

always achieved after two iterations. In the case of the distribution 

estimation, the theoretical optimum could not be reached. They do 

however state that larger sample sizes give better performance 

which suggests that this empirical rule might not work as 

effectively for short series. 

They also studied block bootstrap estimation of the one-sided 

distribution function for two first order autoregressive models. In 

both these cases the medians of the distributions of empirically 

chosen block length were equal to the optimal block sizes. 
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Simulation Results 

The simulation study was also extended to include the moving 

blocks bootstrap. It was executed for two cases. In the first, the 

bootstrap time series were of length rri and the corresponding 

standard errors were multiplied by ~~ . In the second case, the 

bootstrap time series lengths were all taken equal to n. 

In both of these cases, the block sizes were chosen to be 1=13. 

This is the optimal value based on the minimisation of the mean 

squared error (MSE) of the variance of the sample mean, with 

respect to the block length 1and not a value determinded by the 

empirical rule of Hall, Horowitz and Jing (1995). For each block 

length, the bootstrap variance of the mean of the series was 

computed and averaged over 500 simulations. From this average 

and the true value of the variance of the mean of an AR(2) 

process, the bias was calculated. This bias was then used together 

with the variance of the 500 simulations to obtain the MSE. A 

minimum MSE was reached at the block length 1= 13 . 

A comparison of the results is set out in Table 5.1 and Table 5.2. 

The moving blocks bootstrap doesn't seem to perfonn as well as 

the resampling of residuals. For the series of length 100 the 

bootstrap standard errors tend to overestimate, except in the case 

of the mean, where the bootstrap estimate is considerably less than 
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the simulated standard error. For the series of length 30, it 


appears as if the bootstrap generally llilderestimates the standard 

errors, except in the case of the error variance. This can be 

ascribed to the fact that an AR(2) structure is fit to the pseudo­

time series, which are not necessarily AR(2) processes. The 

estin1ation of the error variance is largely dependent on the fit of 

the model. In the residual resampling case the AR(2) structure is 

used to reconstruct the bootstrap time series and therefore the 

error variance can be estimated more accurately. 

Table 5.1 

A comparison of the parameter estimates obtained by maximum 


likelihood estimation and two moving blocks bootstrap 

resampling schemes for a series of length n = 100 


Parameter Simulation 

results 

Maximum 

likelihood 

estllIlatlon 

Bootstrap 

series length 

rri 

Bootstrap 

series length 

n 

2 cra 
Estimate 2.00495 2.08226 3.77201 3.81258 

SD 0.28200 1.13101 1.15876 

~ Estimate 100.01815 99.26085 99.09187 99.06240 

SD 1.32986 0.91234 0.81098 0.78419 

<PI Estimate 1.28383 1.30623 1.05678 1.05350 

SD 0.08912 0.08915 0.12013 0.12815 

<P2 Estimate -0.40876 -0.45893 -0.28663 -0.28718 

SD 0.08592 0.08917 0.10028 0.10358 
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Furthermore, for both series the bootstrap estimates of the 

parameters are generally unacceptably far from the true values. 

Table 5.2 
A comparison of the parameter estimates obtained by maximum 

likelihood estimation and two moving blocks bootstrap 
resampling schemes for a series of length n = 30 

Parameter Simulation 

results 

Maximum 

likelihood 

estlffiatlOn 

Bootstrap 

series length 

rri 

Bootstrap 

series length 

n 

2
Ga 

Estimate 1.98757 1.85625 3.50937 3.78603 

SD 0.52908 1.72439 1.92458 

I.l Estimate 99.81101 101.07308 101.91317 102.28872 

SD 2.34217 1.60515 1.27075 1.24002 

~1 Estimate 1.23587 1.25915 1.03640 0.94938 

SD 0.18291 0.17031 0.18068 0.20487 

~2 Estimate -0.42543 -0.39604 -0.25881 -0.23774 

SD 0.16729 0.17200 0.14758 0.14704 

32 

 
 
 



The Stationary Bootstrap 

Chapter 6 

The Stationary Bootstrap 

In the previous chapter, techniques for resampling blocks were 

considered. These methods share the construction of pseudo-time 

series by res amp ling blocks of observations, so that the statistic of 

interest may be recalculated based on the resampled data set. In 

the context of applying this method to stationary data, it is natural 

to require that, conditional on the original data, the resampled 

pseudo-time series should also be stationary. 

In this chapter another resampling method, introduced by Politis 

and Romano (1994) is discussed. This stationary bootstrap is 

generally applicable for stationary weakly dependent time series. 

Similar to the block resampling techniques, the stationary 

bootstrap involves resampling the original data to form a pseudo­

time series from which the statistic of interest may be recalculated, 

thereby building up an approximation to the sampling distribution 

of the statistic. In contrast to the aforementioned moving blocks 

bootstrap though, the pseudo-time series generated by he 

stationary bootstrap method is actually a stationary time series. 

This means that, conditional on the original series, Z1 ,- -_, Zn' a 

stationarypseudo-time series, Z~' , ___ ,Z~, is generated by an 

appropriate resampling scheme_ Hence, this procedure attempts 
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to mimic the original model by retaining the stationarity property 

of the original series in the resampled pseudo-time series. 

Basically, the pseudo-time series is generated by res amp ling blocks 

of random size, where the length of each block has a geometric 

distribution. 

Suppose that {Zt ' t =1,···, n} is a strictly stationary and weakly 

dependent time series. Typically, an estimate of the sampling 

distribution of some statistic Tn(Z) =Tn(ZI' ... ' Zn), is required 

and the stationary bootstrap was developed for this putpose. Let 

Bjl = lZ j' ... ' Zj+l-l) be the block consisting of l consecutive 

observations starting from Z j. To ensure that all observations 

have the same probability of being drawn a circular block scheme 

is introduced. In the case of i > n, Zi is defined as Zj where 

j = i(mxl n) and Zo = Zn. Let p be a fixed number in the interval 

[0 , 1]. Independent of Z 1 , ... , Zn let L l'L 2 ' . .. be a sequence of 

i.i.d. random variables having the geometric distribution, such that 

P(L i =m) = (1- p)m-l p for 17/ =1,2,... . (6.1) 

Furthermore, independent of the Zi and the L i let 11 ,12 , ••• be a 

sequence of i.i.d. variables that have a discrete uniform distribution 

on {1, ... ,n}. Now a pseudo-time series Z;-, ...,Z; is generated in 
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the following manner. Sample a sequence of blocks of random 

length by the prescription Bj L , Bj L , . .. . The first L 1 
l' 1 2' 2 

observations of the pseudo-time series are determined by the first 

block, Bj L of observations Zj , .. "Zj +L -1 and the following 
l ' 1 1 1 1 

L 2 observations of the pseudo-time series are the observations in 

the second sampled block Bj L ,namely Zj , ... ,Zj +L -1' Of 
2 ' 2 2 2 2 

course this process is stopped as soon as n observations have been 

generated for the pseudo-time series, although it is clear that this 

resampling method allows for time series of arbitrary length. 

Once Z~~ , ... , Z ~- have been generated Tn (Z ~:- , ... , Z; ) can be 

computed. By simulating a large number, B, of pseudo-time series 

according to the same algorithm, the true distribution of Tn(Z) 

can be approximated by the empirical distribution of the B values 

of ~ (Z '~ ). 

An alternative description of this resampling algorithm can also be 

given. Let Z~:- be picked at random from the original n 

observations such that Z~~ =Z j Now, let Z; be picked at • 
1 

random from the original n observations with probability p and 

with probability (1- p), let Z; =Zj +1 so that Z~c will be the 
1 

observation in the original time series following directly after Zj1 . 
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This means that 


p(Z~- =zI 
2 

z~' =Zl 
j 
)= P1 

and p(z; =Z1 
1 

+11 Z~:- =ZIJ= 1- P 


where 11 ,12 - DU(1,2 ... ,n) (6.2) 


In general, given that Z;' is determined by the Jh observation Z J 

in the original time series, let Z::~l be equal to Z J+l with 

probability (1- p) and picked at random from the original n 

observations with probability p, i.e. 

P(Z:~l = ZII Z;:- = ZJ)= p 

and p(Z ::~1=ZJ+11 z:' =ZJ ) =1- P 

where I - DU(1,2 ... ,n) (6.3) 

Politis and Romano (1994) proposed that by following this 

procedure, Z~> , ... ,Z; is stationary, conditional on Z1' ... ,Zn. 

Some of the similarities and differences between the stationary 

bootstrap and the moving blocks bootstrap are pointed out by 

Politis and Romano (1994). To begin with, the pseudo-time series 

generated by the moving blocks bootstrap is not stationary. Both 

methods involve sampling blocks of observations. For the moving 

blocks technique, the number of observations in each block is a 
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fixed number I , whereas in the stationary bootstrap method, the 

number of observations in each block is random and has a 

geometric distribution. The methods also differ in how they deal 

with end effects. For example, because there is no data after n, the 

moving blocks method does not define a block of length I 

beginning at Zn (if I> 1). To achieve stationarity for the 

resampled time series, the stationary bootstrap method wraps the 

data around in a circle so that 21 follows 2n' 

Other variants on the stationary bootstrap based on resampling 

blocks of random length are also possible. Instead of assuming a 

geometric distribution for the L i , other distributions can be 

considered. Alternative distributions for the Ii can be used as 

well. In this sense, the moving blocks bootstrap may be seen as a 

special case. The choice of the L i having a geometric distribution 

and the Ii as the discrete uniform distribution was made by Politis 

and Romano (1994) so that the resampled series is stationary. 

There is also another way to think about the difference between 

the moving blocks bootstrap and the stationary bootstrap. For 

each fixed block size I , one can compute a bootstrap distribution 

or an estimate of standard error of a given statistic. The stationary 

bootstrap proposed here is essentially a weighted average of these 

moving blocks bootstrap distributions or estimates of standard 
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error, where the weights are determined by a geometric 

distribution. 

It is important to keep in mind that a difficult aspect in applying 

these methods is how to choose l in the moving blocks scheme 

and how to choose the geometric distribution parameter p for the 

stationary bootstrap. Politis and Romano (1994) showed that the 

stationary bootstrap estimate of variance and the moving blocks 

bootstrap estimate of variance are quite close, provided that p-l is 

approximately equal to l. However, from a simulation study, they 

concluded that the stationary bootstrap estimate of variance is 

much less variable, that is it is less sensitive to the choice of p than 

the moving blocks bootstrap is to the choice of l. This means that 

the choice of p in the stationary bootstrap is less crucial than the 

choice of l in the moving blocks scheme. 

Finally, they acknowledge that in practice, a data- based choice of p 

would be inevitable, but state that as long as p satisfies p ~ 0 and 

np ~ 00, the choice of p will not enter into first-order properties, 

such as coverage error of the stationary bootstrap. Further work, 

focusing on the optimal choice of p is of vital importance and it 

should be investigated. 
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Simulation Results 


In order to investigate the performance of the stationary 

bootstrap, it was also applied to the generated AR(2) time series. 

The value for the geometric distribution parameter was taken as 

p = ~. This choice is in accordance with the optimal value of the 
13 

block length determined in the previous chapter. 

Table 6.1 

A comparison of the parameter estimates obtained by maximum 


likelihood estimation and the stationary bootstrap 

for a series of length n = 100 


Parameter Simulation 

results 

Maximum 

likelihood 

estunatlon 

Stationary 

bootstrap 

2 
CJa 

Estimate 2.00495 2.08226 4.12246 

SD 0.28200 1.29009 

/-l Estimate 100.01815 99.26085 99.24669 

SD 1.32986 0.91234 0.71283 

~1 Estimate 1.28383 1.30623 1.01484 

SD 0.08912 0.08915 0.14706 

~2 Estimate -0.40876 -0.45893 -0.25860 

SD 0.08592 0.08917 0.11333 

39 

 
 
 



The Stationary Bootstrap 

Tables 6.1 and 6.2 contain the results found for this procedure. As 

shown by Politis and Romano (1994) the standard error estimates 

are relatively close to those obtained with the moving blocks 

bootstrap. For the series of length 100, the stationary bootstrap 

overestimates the standard errors, except in the case of the mean. 

The same is true for the series of length 30, but the standard error 

for the second autoregressive parameter ~2' is underestimated. 

These results may also be due to the fact that the pseudo-time 

series are assumed to be AR(2) processes. The parameter 

estimates are also disappointingly far from the simulated values. 

Table 6.2 

A comparison of the parameter estimates obtained by maximum 


likelihood estimation and the stationary bootstrap 

for a series of length n = 30 


Parameter Simulation 

results 

Maximum 

likelihood 

estunatlon 

Stationary 

bootstrap 

2 
(ja Estimate 1.98757 1.85625 3.73788 

SD 0.52908 1.65648 

~ Estimate 99.81101 101.07308 101.40458 

SD 2.34217 1.60515 1.08577 

<1>1 Estimate 1.23587 1.25915 0.98168 

SD 0.18291 0.17031 0.20978 

~2 Estimate -0.42543 -0.39604 -0.24906 

SD 0.16729 0.17200 0.14851 
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Chapter 7 

Comparing the Methods 

This chapter offers an overall comparison of all the methods 

discussed so far in tenns of the sampling distributions of the 

parameters of the time series. They are judged both on location as 

well as spread. The standard errors of the parameters as obtained 

by the different methods are also compared in order to determine 

the success of the methods to estimate accuracy measures. 

Based on these comparisons, the performance of the different 

methods may be evaluated and the use of the most reliable 

methods might be suggested. The comparisons are presented in 

the form of graphs that clearly show the difference in the methods. 

Apart from the graphs, only a short discussion is offered to point 

out the most important findings. 

Comparison of the Sampling Distributions 

The following abbreviations are used to distinguish between the 

methods: 

sun The simulated distribution 

res (c) - Resampling from the centered residuals 
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res (cs) - Resampling from the centered residuals, scaled by 

the factor V~1- pin 

mbb (ml) - The moving blocks bootstrap with n* = rri 

mbb (n) - The moving blocks bootstrap with n ~- =n 

stat - The stationary bootstrap 

Figures 7.1 and 7.2 represent the sampling distributions of cr; for 

the two series lengths. It is clear that the residual resampling 

methods closely resemble the simulation results in both location 

and spread. In contrast, the moving blocks methods and the 

stationary bootstrap show a much wider spread, with a peak at a 

higher value than that obtained in the simulation. This is true for 

both the longer and the shorter series. 

In order to compare the sampling distributions of the series mean 

J-l, Figures 7.3 and 7.4 are considered. In this case, all the 

bootstrap methods seem to provide similar sampling distributions. 

For both the series, the bootstrap spread is narrower than the 

spread of the simulated values. This is to be expected as the 

bootstrap time series are reconstructed from one original series 

and are dependent on the mean of that series. The means of the 

simulated series vary more because they were generated 

independently. Therefore the spread of the bootstrap series means 

should be narrower than that of the different simulated series. 
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trend, the estimates of standard error provided by the moving 

blocks and stationary bootstrap methods were once again the least 

satisfactory. For the long series these methods overestimated and 

for the short series they underestimated the standard errors as 

compared to the simulated values. 

After studying these comparative sampling distributions and 

estimates of standard error, it becomes apparent that in the 

context of this study the methods based on the resampling of the 

residuals are superior to the other bootstrap methods tried. In 

addition, they compare well with the simulated values and those 

obtained by maximum likelihood estimation. 

Of course one has to remember the dependency on the observed 

series' representation of the underlying mechanism being modelled 

as well as the accuracy of the maximum likelihood estimation used 

in the construction of the bootstrap series. When these 

assumptions are handled with caution, the residual resampling 

methods may be used with confidence in situations similar to 

those considered in this study. 
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Chapter 8 

Bootstrap Prediction Intervals 

When studying a time series, one of the main goals is to forecast 

its future values. However, point estimates are seldom really 

helpful unless their reliability is assessed. Therefore, interval 

forecasts are often preferable because they take into account the 

predictor variability. The traditional method of forecasting for 

ARMA and ARIMA models is due to Box, Jenkins and Reinsel 

(1994). However, their method assumes a Gaussian distribution 

for the errors and does not consider the variability caused by the 

estimation of the model parameters. 

This chapter describes the application of the bootstrap technique 

to the construction of prediction intervals. Masarotto (1990) 

highlighted that the resulting method seems interesting, since 

1. 	 it is distribution-free 

ii. 	 it explicitly takes into account that the parameters and the 

order of the model is unknown, and 

111. 	 the suggested probability limits can be computed using 

available computer software. 
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Consider the stationary autoregressive time series {It} which 

satisfies 

where the at are i.i.d. random variables and (J> = l~ 1 , ... , ~ p) are 

parameters such that the roots of the characteristic equation 

1- ~lX - ••• - ~ pX P =0 are greater than one in absolute value. In 

addition assume that the at have zero mean, finite variance cr; 

and common distribution function F (-). The problem to be 

considered is that of predicting the future value l n+h' having 

observed (ll' ... ' In). It is well known that the minimum squared 

error linear predictor, In(h) can be obtained, when p and <I> are 

known, by the recursion 

where it is understood that In(h) = In+h when h ~ o. 

When the model is unknown, equation (8.2) is used with p and <I> 

replaced by suitable estimates pand ci>. Denote the resulting 
,A 

predictions by In(h). 
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The usual (1- 2a)-level prediction interval for Zn+h' due to Box, 

Jenkins and Reinsel (1994), is given by 

(8.3) 

Here Z a is the a th percentage point of a standard normal variable, 

•/< 	 • f d "'2 1 "'2 "'2 h h 2 
(Ja IS an estunate 0 (Ja an 1Jh = + \.V 1 + ... + \.V h-l' were t e \jJ j 

are the coefficients of the infinite order moving average 

representation of the fitted mode1.1 

When using (3), the following assumptions are made: 

1. 	 P= p, i.e. the true model order is p 
ii. 	 <I> =cD, i.e. the true model parameters are cD = (~l' ... '~ p) 

and 

Ill. 	 F (x ) =.p(~J ' i.e. the at's distribution F (.) is Gaussian 

with zero mean and variance (J;, where tP(x ) is the 

distribution function of a standard Gaussian variable. 

Hence (8.3) is based on a parametric assumption about F(-) and in 

addition, it does not account for the sampling variability of the 

I See Appendix A on the infinite order moving average representation of autoregressive 
models 
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parameter estimates <I> and p. In order to set up exact probability 

limits for Zn+h' the distribution of the prediction errors 

(8.4) 

must be known. Denote this distribution as Hh (. ; p, <1>, F). 

Alternatively, the distribution, Gh (. ; p, <1>, F) of the standardised 

prediction errors 

(8.5) 

can be used. 

However, these distributions are generally unknown. This chapter 

aims to discuss an estimate for Hh (. ; p, <1>, F) or Gh (. ; p, <1>, F), 

which is not based on parametric assumptions about F (-) 

(Masarotto, 1990). The focus is on the second distribution, 

Gh (- ; p,<1>,F), because the forecast intervals based on the 

standardised prediction error have in general coverage probabilities 

closer to the nominal level (Li and Maddala, 1996; Kabaila, 1993), 

but the method described here can easily be modified to estimate 

H h (.; p,<1>,F). 
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Firstly, suppose that the order of the model, p, is given. Since <1> 

and F (.) are not known, Gh (. ; p, <1>, F) cannot be used to set up 

probability limits for Zn+h. However, consistent estimators can be 

found for <1> and F(·) from the available data. In particular, <1> 

can be estimated using some variant of the method of least squares 

while a non-parametric estimate of F(·) can be obtained from the 

residuals 

t = 1, .. .,n (8.6) 

where cl> = (~l ,...,~ p) denotes the estimate of <1>. 

For example, a possible estimate of F(·) is the empirical 

distribution of the residuals i.e. the distribution which assigns 

1probability n- to each point at ' t = 1, .. .,n. Other estimates of 

F(·) can also be used, as discussed in Chapter 4 on the methods 

that utilise the resampling of residuals. 

Let f(.) be an estimate of F(-). Then Gh (.; p,d>,F) seems a 

natural estimator of the standardised prediction error distribution. 
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This is equivalent to the approximation of the unknown 

distribution of rn (h) with the distribution of 

(8.7) 

where {Z;,} are random variables which satisfy 

(8.8) 

and Z~- (h), cr: and D; are obtained from (Z~:-, ... ,Z;) with the 

same method used to calculate Zn(h), cra and Dh from 

(Z1' .. .,Zn). In this case, the a;:- are independent random variables 
~ 

with distribution F(·). 

Exact computation of Gh (.; p, <1>, f) is not possible. However, 

the distribution can be approximated by means of the Monte Carlo 
I' I' I' 

method in the following way. Firstly, obtain <1>, F(-) and Zn(h) 

from the observed data. Generate n +h pseudo-data 

(Z;-, ... ,Z;+h) from model (8.8) and, using the same estimation 

procedure as before, compute Z; (h), cr: and D; from the first n 

pseudo-data and then calculate the pseudo-error according to (8.7). 

This generation of pseudo-time series and estimation of the 

pseudo-error is repeated B times, where B is some large number. 
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Finally, take the (1- 2a)-level prediction interval for Zn+h to be 

(8.9) 

where j =LBaJ, with Lx Jdenoting the integer part of x and 

(r~:- (h )(1) , ... , rn*(hYB)) are the ordered bootstrap replications of the 

standardised prediction errors. 

Masarotto (1990) also showed that, under reasonable requirements 
I' I' 

for at' <l> and F (-), the obtained prediction intervals are 

asymptotically consistent in the sense that 

limP{Z," /> El,,} = 1- 2a 
n,m 

In practice, it cannot be assumed that p is known. However, it is 

easy to adopt the given approach if p is estimated by means of 

some model selection criteria. To do that, let pbe an estimate of 

p. Then (Zl*"'" Z;+h) can be found by substituting p for p in 

(8.8) and from this pseudo-series, r~f (h) can be computed. 

Masarotto (1990) notes that in order to account for the variability 

in the estimate of p, the point forecast in(h) and the related 
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quantities a: and l);, must be computed with reference to a 


model of order p '~, where p~- is obtained from the first n pseudo­

data with the same method used to compute p from the obseIVed 

senes. 

Masarotto (1990) also showed that the resulting prediction 

inteIVals are consistent for the usual model selection criteria in 

particular the Akaike AIC criterion (1974), the Hannan and Quinn 

criterion (1979) and the Schwartz criterion (1978). 

An Improved Estimator 

Grigoletto (1998) showed that better probability limits than those 

introduced by Masarotto (1990), can be found. The bootstrap 

forecast may be expressed as 

p 

i ; (h) = IdhJ<I> ':-)Z;+l-i (8.10) 
i=l 

where dhi (-), i =1, ... ,P are continuous functions andPis the 

maximum lag tried in the selection of the order. 
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Then 


A+B 
C 

(8.11) 

The estimator of the a -percentile of the standardised prediction 

error bootstrap distribution can be seen as the x value which 

satisfies 

1 ~ {A. +B· }UB=-~I 1 l<X ~a (8.12) 
B i=l Ci 

where Ai' Bi and Ci , i = 1, ... , B are the outcomes of the ith 

bootstrap replication and 1(.) is the indicator function. 

Refer to Grigoletto (1998) for a more detailed explanation, as well 

as the most efficient use of this proposed method. He has claimed 

that this new estimating procedure leads to a substantial reduction 

in the variances of the predictive distribution percentile estimators. 
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Simula tion Re suIts 

Prediction intervals for zn+l' ... ' Z n+5 were constructed using all of 

the methods discussed in this study. The resulting intervals are 

compiled in Tables 8.1 to 8.4. 

For a series with 100 observations, Table 8.1 surrunarises the 

prediction intervals obtained for lead time one, while Table 8.2 

provides the results for lead time five. 

Both the residual resampling methods compare very well with the 

intervals obtained by maximum likelihood estimation. These 

intervals are all in line with the simulated intervals. 

The moving blocks bootstrap results seem less appropriate. 

Although not that far off, the intervals obtained by the moving 

blocks method with nt' =n are generally narrower than the 

simulated intervals. It is however the method with n" = rri that is 

troubling. The very wide intervals raise suspicion and therefore 

the procedure was repeated. This time the interval for lead time 

one was forecast as (90.1557; 104.4018) and for lead time five it 

was (88.8079; 105.8884). Using this moving blocks method for 

prediction interval calculation is thus not recommended, although 

the reason for this unexpected result should be investigated. 
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Finally, the stationary bootstrap also results in intervals that are in 

good comparison with the simulated intervals. 

Table 8.1 
Summary of 95% prediction intervals for Zn+l0btained by 

the respective methods for a series of length n = 100 

Method Lower bound Upper bound Length of 

interval 

Simulation 93.9812 100.1760 6.1948 

Maximwn 94.1337 99.7901 5.6564 

likelihood 

Res amp ling 93.7537 99.5997 5.8460 

from (at -a) 

Resampling 93.9130 99.5568 5.6438 

from (at -a)
-Jl- pin 

Moving blocks 89.6360 104.3145 14.6785 

with nx- = rri 

Moving blocks 94.1409 99.0750 4.9341 

with n" =n 

Stationary 93.9002 99.8602 5.9600 

bootstrap 
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Table 8.2 
Summary of 95% prediction intervals for Zn+S obtained by 

the respective methods for a series of length n =100 

Method Lower bound Upper bound Length of 

interval 

Simulation 90.8837 105.8718 14.9881 

Maximum 

likelihood 

91.6101 105.3725 13.7624 

Res ampling 

from (at -a) 

90.7183 105.5992 14.8809 

Res ampling 

from (at -a) 
~1- pi n 

90.6544 105.9882 15.3338 

Moving blocks 

with n ' f = rri 

89.2167 105.6776 16.4609 

Moving blocks 89.6324 103.6326 14.0002 

with n" =n 

Stationary 

bootstrap 

88.6778 105.5382 16.8604 

66 

 
 
 



Bootstrap Prediction Irtteruds 

The same prediction intervals were constructed for the shorter 

series with 30 observations. Those results are given in Table 8.3 

and Table 8.4. 

For lead time one, the residual resampling methods provide 

intervals that are very close to the simulated interval. In this case, 

the maximum likelihood interval is slightly narrower. 

Both the moving blocks methods provide rather narrow intervals, 

with the method using n'c =ni once again being the worst 

performer. 

The stationary bootstrap doesn't compare badly, providing a 

slightly wider interval than the simulated one. 

The least consistent results were obtained for the short series with 

a lead time five. Resampling the scaled, centered residuals offered 

the interval comparing closest to the simulated values, while the 

boundaries obtained by maximum likelihood estimation leads to an 

interval that might prove to be too narrow. 

The other bootstrap methods don't appear to be faring badly, 

except for the moving blocks method with n'c = n that resulted in 

a wide interval of which especially the lower bound is less than 

expected. 
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Table 8.3 
Summary of 95% prediction intervals for Zn+l obtained by 

the respective methods for a series of length n =30 

Method Lower bound Upper bound Length of 

interval 

Simulation 95.6075 101.4563 5.8488 

Maximum 95.7513 101.0920 5.3407 

likelihood 

Resampling 95.0348 100.8797 5.8449 

from (at -a) 

Res ampling 95.0761 100.9874 5.9113 

from (at -a)
-/1- pi n 

Moving blocks 97.7511 100.9532 3.2021 

with n* = rri 

Moving blocks 95.3052 100.1493 4.8441 

with n':­ = n 

Stationary 95.2070 101.5447 6.3377 

bootstrap 
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Table 8.4 

Summary of 95% prediction intervals for Zn+S obtained by 


the respective methods for a series of length n =30 


Method Lower bound Upper bound Length of 

interval 

Simulation 90.7074 108.9629 18.2555 

Maximum 

likelihood 

93.7688 106.4265 12.6577 

Res ampling 

from (at -a) 

91.2115 108.7503 17.5388 

Resampling 

from (at -a) 
~1- pin 

90.5343 108.6828 18.1485 

Moving blocks 

with n ':­ = rri 

89.6484 106.1413 16.4929 

Moving blocks 

with n" =n 

82.6086 105.4858 22.8772 

Stationary 

bootstrap 

89.3027 105.8956 16.5929 
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Chapter 9 

Discussion of Bootstrap Computations 

In order to apply the different bootstrap methods, programming 

was done in SAS. A program was written for each bootstrapping 

procedure in order to estimate the parameters for the second order 

autoregressive time series model. These programs are set out 

according to the different algorithms as described in the relevant 

chapters. 

After executing the programs, it was found that the residual 

resan1pling methods are the most reliable. This is evident from the 

results of the simulation study and is clearly seen in the 

comparison between the methods in Chapter 7. For this reason, 

only the program that performs the resampling from the centered, 

scaled residuals (at -a)/~1- pin, will be discussed here. 

A copy of this SAS program is given on the enclosed diskette 

under the filename "BOOTRES.5AS". Although the simulation 

study was only performed on an AR(2) model, this program was 

adjusted to accommodate autoregressive models of any order. To 

facilitate the use of the SAS bootstrap application, another 

program "BTSOl.EXE" is included. This program serves to capture 

the necessary information for the application, which includes the 
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length of the time series and the autoregressive order to be 

modelled. As this application does not include model 

identification, the user first has to examine the data in order to 

determine the correct autoregressive order to be applied to the 

observed time series. When the file "BTS01.EXE" is run from the 

diskette, the necessary files are created on the diskette. The SAS 

program reads these files from the A drive. If the user's stiffy is 

not located on the A drive, the path specified in the main part of 

the SAS program "BOO1RES.SAS", needs to be chang~d to the 

appropriate drive. 

The observed series can be captured in two ways. Firstly, if the 

data is already available on an existing file, this file need only be 

copied onto the diskette under the name that is referenced by the 

SAS application which is "BTSDATADAT". Figure 9.1 shows an 

example of the correct format to be used for the file containing 

the observations. 

The second option is to capture each observation individually as 

prompted. In this case, the data file is automatically created and 

the number of observations is counted. The user will thus not be 

asked to specifythe length of the time series. 

As soon as the necessary data has been captured, the SAS 

application can be executed. This is done by submitting the 

program statements of "BOOTAPPL.SAS" to the SAS System. 
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Figure 9.1 
Example of the format to be used for the file containing the observed data 

101. 314 
103.351 
105.058 
105.492 
103.563 
101.691 
99.349 
97.522 
93.797 
92.486 
91. 894 
88.999 
87.944 
88 . 905 
93.516 
96.550 
100.763 
100.702 
100 . 039 
100.333 

The SAS program starts by reading the captured data from the 

correct files. An autoregressive model is fit to the observed series 

in order to estimate the vector of parameters <I> =(~1"'" ~ p), 

which is used to construct the bootstrap time series. Then the 

program executes a macro that performs the bootstrap 

computations. Within this macro, the process is repeated for 

B = 1000 replications. 

For each replication, the macro involves centering and multiplying 

the residuals with the factor 1/~1- P/n and then draws a random 

sample of size n from these adjusted residuals. Using these 

resampled residuals, a pseudo-time series is constructed and the 

parameters ~~., ... ,~; are estimated for this bootstrap series. 
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Finally, the standardised prediction errors are calculated which are 

used in the construction of the forecast intervals. 

When the macro ends, data sets containing 1000 bootstrap 

replicates of the parameter estimates and the pseudo-errors are 

available. The sample mean and standard deviation of the 

parameter values are calculated to obtain the bootstrap estimates. 

Finally, the pseudo-errors are sorted and the forecast intervals are 

calculated accordingly. 

A brief description of the given SAS output is as follows. Firstly 

the output prints the autoregressive order, the number of 

observations as well as the observed series. Furthermore, it 

provides bootstrap estimates of the parameters as well as their 

standard deviations. The variable ERR V AR denotes the error 

variance cr;; the variable MU is the series mean ~ and the rest of 

the variables are the autoregressive parameters. This means that 

mL3 is equivalent to ~1' mL4 to ~2 and so forth. Then 95% 

forecast intervals for the first five step forecasts are also displayed. 

The output is also written to files on the diskette. These files are 

"ESTIM.OUT" containing the estimates and their standard errors 

and "INfERVAL.OUT" containing the bounds of the forecast 

intervals. 

An example of the output is given in Figure 9.2 where the 

bootstrap was applied to a stationary AR(2) model with 100 
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observations. The one step forecast interval is (102.975; 108.462) 

and the five step forecast interval is (93.664; 108.462) . 

Figure 9.2 

Example of the output obtained by the SAS application 


The SAS system 

Autoregressive order 

OSS P 

1 2 

The SAS system 

Number of observations 

OSS N 

1 100 

The SAS System 

The observed series 

OSS YT 

1 102.097 
2 102.404 
3 102 . 675 
4 102.723 
5 102.202 
6 102.139 
7 103.160 
8 102.353 
9 103.813 

10 105.845 
11 105.373 
12 106.024 
13 105.323 
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Figure 9.2 (continued) 

Example of the output obtained by the SAS application 


The SAS system 

Bootstrap estimates of the parameters
and their standard deviations 

variable Mean std Dev 

ERR_VAR 2.1331355 0.2799856 
MU 99.2800188 0.8939345 
(oU 
(OL4 

1.2896609 
-0.4606597 

0.0879916 
0.0875169 

The SAS system 

95% forecast intervals for the first five step forecasts 

OBS LOWER UPPER 

1 102.975 108.462 
2 100.181 109.686 
3 97.286 109.226 
4 95.240 108.980 
5 93.664 108 . 462 

It was found however, that performing the bootstrap procedures 

in SAS is not particularly efficient. The execution times of the 

programs are unfavourably long and they would not be fit for 

general use. Better approaches surely exist and should be 

investigated and developed further. 
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Chapter 10 


Conclusiol1 


In this study, the methodology and perfonnance of bootstrapping 

procedures were studied. Different methods were discussed in the 

context of autoregressive time series and tested on a specific AR(2) 

model. 

For this specific application the resampling of residuals method 

seems to perfonn better than the moving blocks, or stationary 

bootstrap schemes. The standard error estimates obtained by the 

residual resampling procedure compare very well to the simulated 

values, which suggest that the bootstrap con1petes well with 

conventional methods. The value of the two blocking methods 

should however, not be underestimated. Further study in the field 

of the optimal block choice and the choice of the geometric 

distribution parameter, might prove to be extremely valuable. 

One would hope that the bootstrap perfonns well for a short 

series in comparison to traditional estimation methods that are 

based on asymptotic results. Such a statement cannot be made 

based on the results of this study. This might be due to the fact 

that the residual resampling methods that were found to work 

most satisfactory, are still dependent on the maximum likelihood 

estunates. 
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One aspect of the formulation of time series models was not 

considered in this study. This is actually the first stage of the 

process, namely the model identification. For the pmpose of this 

study, the order of the models were considered to be fixed, 

because of the fact that an AR(2) model was generated. In 

practical situations, such an assumption would of course not be 

possible. Therefore, this first step is of great importance, since an 

incorrectly identified model would likely lead to poor forecasts. 

Aczel and Josephy (1992) propose that a bootstrap procedure can 

make a difference in model identification by improving accuracy 

and thereby leading to a correct model being identified more often 

and resulting in better forecasts. They show how the bootstrap 

method can be used as an alternative to the normal theory in 

estimating the distribution of sample autocorrelations and setting 

confidence bounds for these parameters. 

Shao (1996) developed a bootstrap model selection procedure in 

the context of linear models which can easily be extended to more 

complicated problems, such as autoregressive time series. This 

procedure is based on the minimisation of the average conditional 

expected loss in prediction. This means that the selected model is 

the one with the best prediction ability. He points out that it 

might be preferable to use the same method both in model 

selection and in the subsequent inference based on the selected 

model. The bootstrap observations generated for the model 
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selection can then also be used in the inference, which means that 

there is no extra cost in terms of generating bootstrap 

observations. 

A complete application of the bootstrap methods will definitely 

contain a bootstrap model identification procedure. This is thus 

another field that needs to be explored in greater detail. 

The conclusions reached in this study, are based on one 

application of the bootstrap methods. In order to make strong 

statements, this experiment should ideally be repeated a number of 

times. Only then can the comparative performance of the 

bootstrap methods be judged. 

An extension of these methods, to be applied to higher order 

models as well as moving average and mixed models would make a 

valuable contribution to the statistical community. 

The SAS programs used in this study were a basic attempt to apply 

the methods and compare the results. Theywere not found to be 

sufficiently effective and other options should be researched. 

Ultimately, the development of a software package that includes 

these bootstrapping methods is a goal worth striving for and an 

excltmg prospect. 
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Appendix A 

The Infinite Order Moving Average 

Representation of an Autoregressive Model 

A rrlYling au;rage prw:ss of order q, can be represented as a weighted 

linear combination of q+ 1 independent and identically distributed 

random variables, i.e 

Zt = at + \jJ lat - 1 + \jJ 2at-2 + ... + \jJ qat_q 

Any autoregressive series can be rewritten in the form of an 

infinite order moving average process. In particular, the 

coefficients \jJ i in the MA(00) representation for an AR(2) series 

are given by 

\Vo=l 

\jJl =~l 


\Vk = ~l\Vk-l +~2\Vk-2 for k = 2,3, ... 
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