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Samevatting 
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'n Kort uiteensetting van kwantum statistiese meganika vir sekere eenvoudige fisiese 
stelsels word in Hoofstuk 2 gegee. In besonder word gekyk na die ewewigstoestande van 
sulke stelsels. In Hoofstuk 3 word aangetoon dat die ewewigstoestande van hierdie 
stelsels presies die sogenaamde KMS-toestande is. KMS-toestande word dan voorgestel 
as die ewewigstoestande van meer algemene stelsels. Hoofstuk 4 word gewy aan die 
Tomita-Takesaki-teorie. Die teorie lyk aanvanklik heeltemal verwyder van KMS­
toestande, maar in afdeling 4.4 word aangetoon dat daar in werklikheid 'n hegte verb and 
tussen die twee is. Die verband kan beskou word as die belangrikste resultaat in hierdie 
vehandeling want dit stel ons in staat om die fisiese betekenis van 'n groot deel van die 
Tornita-Takesaki-teorie te begryp, naamlik dat die tydevolusie van 'n fisiese stelsel in 
ewewig in terme van die Tomita-Takesaki-teorie uitgedruk kan word. Dat 'n abstrakte 
wiskundige teorie soos die van Tomita-Takesaki 'n eenvoudige fisiese interpretasie het, is 
die motivering vir hierdie verhandeling. 

 
 
 



Summary 


Title: Quantum statistical mechanics, KMS states and Tomita-Takesaki theory. 

Student: Rocco de Villiers Duvenhage. 

Supervisor: Prof A Stroh. 

Department: Mathematics and Applied Mathematics. 

Degree: MSc. 


A short exposition of quantum statistical mechanics for certain simple physical systems 
is given in Chapter 2. In particular the equilibrium states of such systems are discussed. In 
Chapter 3 it is shown that the equilibrium states of these systems are exactly the so-called 
KMS states. KMS states are then suggested as the equilibrium states of more general 
systems. Chapter 4 is devoted to the Tomita-Takesaki theory. This theory initially seems 
completely separate from KMS states, but in section 4.4 it is shown that there is actually a 
strong connection between the two. This connection can be viewed as the central result of 
this dissertation since it enables us to understand the physical meaning of a large part of 
the Tomita-Takesaki theory, namely that the time-evolution of a physical system in 
equilibrium can be expressed in terms of the Tornita-Takesaki theory. That an abstract 
mathematical theory such as the Tornita-Takesaki theory has a simple physical 
interpretation, is the motivation for this dissertation. 
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0.1 List of symbols 

General symbols 
ois the empty set. 

A c B means: x E A =} x E B. 

tC is the set of complex numbers. 

N = {O, 1,2, ... }. 

lR is the set of real numbers. 

lR+={xElR:X:::::O} . 

[n1= {1, ... , n} for n = 1, 2, 3, .... 

b(x, y) = 1 if x = y, and b(x, y) = 0 if x =f. y. 


Symbols defined in the text 
(-), 2.2 
C·),l.l 
1·1, l.l.4 

C ')IR , II·IIJR ' l.2 
A+, A a hermitian element of a C*-algebra, 1.8 
G*, G+, G_, Go, G a region in tC, l.6 
S, S a set in a metric space, l.1 
X + Y, X, Y subsets of a vector space, 4.1 
x ® y, l.9.1 
Xl ® ... 0 xN,l.10.2 
S"h ® .. . 0 SJN, l.1O.6 
0N.f) , l.10.6 
[8;], l.10 

~+,l.l 

~l' 1.4 

~s, l.1 

Aut, 3.1 

(3, 2.3.1 

Bco(K), l.8 


CONTENTS 

· 87 
· 99 
· 101 
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c~, C~, 1.6 
Q:(Xl' ... , X N , Y), 1.10.1 
D(x, z)A, 1.7.3 
j, 
~ 

Fourier transform of j, 1.6 
fdqs , 2.2.1 
J)]R, 1.2.1 
1m, 1.4.9 
Inv, 1.4 
](1., (i]()1., 1.2.7 
Ll, 1.6 

£(X, Y), £(X), £(J))5' 1.1 
£(J))+, 1.1.1 
9JlI , 9Jl~, 1.4 

9Jl*, 1.4 
[9Jl5], 1.4 
Re, 1.4.9 
o-(A), 1.4 
o-(X, Y), 1.3.9 
W(Ut )' 4.4.6 
Xs, 1.8 
X*, 1.3.7 

0.2 Introduction 

In this dissertation we study the connection between quantum statistical 
mechanics and the Tomita-Takesaki theory in operator algebras. 

A short discussion of quantum mechanics and quantum statistical me­
chanics for certain simple physical systems is given in Chapter 2. Specifically 
we look at equilibrium states in these systems. In Chapter 3 we show that the 
equilibrium states of these systems are exactly the so-called Kubo-Martin­
Schwinger (or KMS) states. KMS states are then conjectured to represent 
equilibrium in more general physical systems as well. 

In Chapter 4 the Tomita-Takesaki theory is developed. Initially this the­
ory seems very abstract and far removed from physics, but in 4.4 it is shown 
to be intimately related to KMS states. This can be considered our most 
important result since it allows us to give a simple physical interpretation of 
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a large portion of the Tomita-Takesaki theory. That an abstract mathemati­
cal theory such as the Tomita-Takesaki theory has a straightforward physical 
interpretation, is the motivation for this dissertation. 

A few historical remarks are in order (if for no other reason than to give 
credit where credit is due): 

KMS states were first formulated in 1967 by Haag, Hugenholtz and Win­
nink [Ha], stimulated by earlier work done by R. Kubo (in 1957), and P.C. 
Martin and J. Schwinger (in 1959), in statistical mechanics. 

Meanwhile, motivated by purely mathematical considerations, Minoru 
Tomita developed what would later come to be known as the Tomita-Takesaki 
theory (or modular theory). This took place from 1957 to 1967, but the 
results of his n::st:CLl'lJl (a,luIlg wiLli further developments) were only published 
in 1970 as a set oflecture notes by Takesaki [T]. 

The all important connection between the Tomita-Takesaki theory and 
KMS states (and hence also statistical mechanics) was first proved by Take­
saki [T]. 

 
 
 



Chapter 1 

Background and preliminary 
results 

The basics of operator algebras (C*- and von Neumann algebras) and mea­
sure theory are assumed (see [M, Chapters 1 to 4], [Br, Sections 2.1 to 2.4] 
and [Ru, Chapters 1,2,6 and 8]). We discuss here topics of specific interest 
to us. This chapter should be viewed as nothing more than a tool-box. The 
main attraction starts with Chapter 2. 

In this chapter most results for which easily accessible references are avail­
able are quoted without proof (our main references being [Br], [Con], [KJ, [M], 
[Ro], [Rul and [S]); these results are all part ofthe standard theory of complex 
analysis, functional analysis, topological vector spaces, operator algebras and 
measure theory. All other results are proven in full. 

1.1 Operators on Hilbert spaces 

Unless otherwise stated, all vector spaces in this dissertation will be assumed 
to be complex. Inner products will be denoted by (', .) which is linear in the 
second variable and conjugate linear in the first . 

For normed spaces X, Y (over lR or <C) 'c(X, Y) will denote the set of 
bounded linear operators X - Y, and we write 'c(X) := 'c(X, X). 

We denote the hermitian (i.e. self-adjoint) and positive elements of a 
C* -algebra 2!. by 2!.s and 2!.+ respectively. If 5) is a Hilbert space, ,C(5)) is 
a C*-algebra (where A* is defined by (x,Ay) = (A*x,y), x,y E 5), for all 
A E ,C(5))), and the hermitian and positive elements of ,C(5)) are defined in 

7 

 
 
 



8 CHAPTER 1. BACKGROUND AND PRELIMINARY RESULTS 

this context. 
Since the case of real Hilbert spaces is less familiar, we will consider it in 

more detail. 
For a real Hilbert space S) we define A* E £ (S)) for every A E £ (S) ) 

exactly as in the complex case above, and we call A hermitian (or self­
adjoint) if A* = A . See [K, 3.9-2] for a proof that this is a good definition. 
Following the complex case, we denote the hermitian elements of £(S)) by 
£(S))s' 

1.1.1 Definition Let S) be a realililbert space and let A E £(S))s ' We call 
A positive and write A ~ 0 if (x, Ax) ~ 0 for all XES) . We denote the 
positive elements of £(S)) by £(S))+. If A, B E £(S)) and A - B ~ 0, 
we write A ~ B or B :s; A.. 

(Note that 1.1.1 can be used in the complex case as well, but then the 
assumption A E £(fJ)s would be unnecessary; A E £(fJ) would be enough 
because from the polarisation identity and (x, Ax) E lR we can then in fact 
deduce A E £(S))s') 

In the following definition and proposition we quote [K, 9.3-1 and 9.4-2J. 
[K, 9.4-2] is stated only for the complex case but the proof given by [K] holds 
for the real case as well. 

1.1.2 Definition Let fJ be a real or complex Hilbert space and let A E 
£(S))+. The unique element of £(fJ)+, denoted by Al/2, such that 
(Al /2)2 = A, is called the positive square root of A.. 

(Of course 1.1.2 can be extended to any C*-algebra. But the point of 
1.1.2 is that it works for a real Hilbert space S), in which case £(S)) is not a 
C*-algebra.) 

1.1.3 Proposition Let S) be a real or complex Hilbert space and consider 
any A E £(fJ)+ and B E £(S)) such that AB = BA. Then A1/2B = 
BA1/2. If we also have B ~ 0, then AB ~ 0 .• 

For A E £(fJ), where S) is a real Hilbert space, we clearly have A*A ~ 0 
from 1.1.1, so we can give the next definition (inspired by the corresponding 
definition in C*-algebras): 

1.1.4 Definition Let S) be a real Hilbert space and let A E £(S)). We define 
IAI := (A* A)1/2.• 

 
 
 



9 1.2. 	 REAL SUBSPACES OF A HILBERT SPACE 

vVe know projections in C*-algebras are positive (if p is such a projection 
then p = p2 = p*p). This is also true for projections on real Hilbert spaces: 

1.1.5 	Proposition Let S) be a real Hilbert space and IC a closed vector sub­
space of S). Let P be the orthogonal projection of S) on IC, then P 2: o. 

Proof. Let Xl, X2 E S) and write Xl = Yl + Zl, X2 = Y2 + Z2 where YI, Y2 E IC 
and Zl,Z2 E 1C.1.. Then (XI,PX2) = (Yl +ZI,YI ) = (Yl,Y2) = (PXl,X2) so 
P E £(S))s' and setting X2 = Xl, (XI,PXl) = (Yl,YI) 2: 0, so P 2: 0.• 

vVe end this section with two useful results: 

1.1.6 Proposition Let S) be a real or complex Hilbert space and let A E 
£(S)). Then ker(A*) = (M).1.. 

Proof. X E ker(A*) ¢::::::> (A*x, y) = 0 for all yES) ¢::::::> (x, Ay) = 0 for all 
yES) ¢::::::> X E (AS)).1. .• 

For a set S in a metric space we denote by S the closure of S in the metric 
space. 

1.1.7 Lemma Let S) be a real or complex Hilbert space and let A E £(S)) s 

be injective. Then AS) = S). 

Proof. Since ker(A) is closed it follows from 1.1.6 that 

S) = ker(A) EB (ker(A)).1. = ker(A) EB A* S) = AS) .• 

1.2 Real subspaces of a Hilbert space 

In this section S) is a Hilbert space with inner product (.).) and norm 11·11· 

1.2.1 	Definition Set S)lR = S) as an additive group. Define (x, Y)lR := 

Re (x, y) and IlxlllR := (x, x)~2 for all x, Y E S)lR .• 

We'll use S)lR, (-'·)lR and 11·lllR as standard notation and its significance is 
the following: 

1.2.2 	Proposition S)lR is a real Hilbert space with the inner product given 
by (-, ·)lR· Also, 11 ·lllR = 11·11· 
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Proof. That (-")IR is a real inner product on S)IR is easy to see. So S)lR 
is a real inner product space with norm 11·lllR' For all x E S) IR we have 
IlxlllR = (x,x):/2 = (Re(x,x))1/2 = (x,x) 1/2 = Ilxll. SO S)IR has the same 
norm as S), but S) is complete in this norm since it is a Hilbert space, therefore 
S)1R is also complete in this norm, hence it is a Hilbert space .• 

1.2.3 	Proposition (x, y) = (x, Y)IR - i (x, iY)IR for all x, yES). 

Proof. (x, Y)IR-i (x, iY)IR = Re (x, y)-i Re (x, iy) = Re (x, y)-i Re (i (x ,y)) = 
Re (x, y) + i 1m (x, y) = (x, y) .• 

1.2.4 Proposition Consider any A E £(S)IR) such that A E £(SJ) (SJIR and 
SJ are the same sets so A E £(SJIR) gives a function SJ -+ SJ) . Then we 
have the following: 
(1) If A E £(SJIR)s' then A E £(SJ)s' 
(2) If A E £(SJIR )+, then A E £(SJ)+. 

Proof. (1) Assume A E £(SJIRL and let x, yES). Then 

(x, Ay) (x, AY)IR - i (x, iAY)IR (according to 1.2.3) 

(x, AY)IR - i (x, A(iY))1R (since A E £(SJ)) 
(Ax, y)IR - i (Ax, iY)lR (since A E £(SJlR)s) 
(Ax, y) (according to 1.2.3). 

In other words, A E £(SJ) s. 

(2) Assume A E £(SJIR)+ , so by (1) and 1.1.1 A E £(SJL. Let x E SJ, then 
(x, Ax) E lR since A E £(SJL. Therefore (x, Ax) = Re (x, Ax) = (x, AX)IR ~ 0 
since A E £(SJIR)+ .• 

1.2.5 	Definition A vector subspace f( of SJIR is called a real subspace of SJ. 
If f( is closed in SJ it is called a closed real subspace of SJ·. 

Since II·IIIR = 11· 11 according to l.2.2, f( in 1.2.5 is closed in SJ if and only 
if it is closed in S)lR. 

1.2.6 Proposition Let f( be a closed real subspace of SJ, then if( is also a 
closed real subspace of S). 

 
 
 



1.3. 	 TOPOLOGICAL VECTOR SPACES 11 

Proof. ilC is clearly a vector subspace of 5)lR since IC is a vector sub­
space of 5)lR. Let x E ilC, then there exists a sequence (xn) in IC such that 
Ilxn - i(-x)11 = Ilixn - xii O. Hence i(-x) E IC since IC is closed in 5),----t 

and so x = ii(-x) E ilC. Thus ilC is closed in 5) .• 

1.2.7 Definition Let IC be a closed real subspace of 5). 1C1. and (ilC)1. will 
denote the orthogonal complements of IC and ilC in 5)jR .• 

1.2.8 	Proposition In 1.2.7 we have ilC1. C (ilC)1.. 

Proof. Let x E 1C1., then for every y E IC we have (ix, iY)lR = Re (ix, iy) = 

Re (x, y) = (x, y)lR = 0, so ix E (ilC)1. .• 

1.3 Topological vector spaces 

The vector spaces considered in this section are real or complex. 

1.3.1 	Definition A vector space with a topology on it is called a topological 
vector space if vector addition and scalar multiplication are continuous 
in the topology.• 

It is easy to prove that if U is a neighbourhood base at the origin of a 
topological vector space, then U + a is a neighbourhood base at the point a 
of the space ([Ro, 1.3 Proposition 1]). 

1.3.2 	Definition A topological vector space is called a convex space if there 
is a neighbourhood base at the origin consisting of convex sets.• 

1.3.3 	Theorem ([Ro, 1.4 Theorem 3]) Let Q be a set of seminorms on a 
vector space X, then there is a coarsest topology T on X making X 
a topological vector space on which every seminorm in Q is continu­
ous. Under this topology X is a convex space, and a base of closed 
neighbourhoods at the origin of X is given by the sets 

{x EX: pdx) ~ E for k = I, ... ,n}, (E> O;Pl, ... ,Pn E Q) .• 

The topology given in 1.3.3 is said to be deter-mined by Q. 
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1.3.4 Proposition ([Ro, 1.4 Proposition 8]) The convex space X given by 
1.3.3 is a Hausdorff space if and only if for each x E X\{O} there is a 
p E Q such that p(x) > 0.• 

1.3.5 Example Let 5) be a complex Hilbert space, and (xn), (Yn) sequences 
in SS such that Ln IIxnl12 < 00 and Ln IIYnl12 < 00. Then A f---7 

2:n I(xn, AYn) I defines a seminorm on £(5)) (as can easily be confirmed). 
The topology on £(5)) determined by the set of seminorms of this form 
(by means of 1.3.3) is called the (J-weak topology. The (J-weak topology 
on a C*-subalgbra 2L of £(5)) is found by viewing 2L as as a topological 
subspace of £(.f:J) with this topology. We'll use this topology in 1.4 .• 

The following theorem follows from the Hahn-Banach theorem: 

1.3.6 Theorem ([Ro, II.2 Corollary 1 of Proposition 5]) Let Y be a convex 
subset of a convex space X , and let x E X\Y where Y is the closure 
of Y in X. Then there is a continuous linear functional f on X such 
that f(x) tt f(Y) .• 

1.3.7 Definition Let X be a topological vector space. The vector space 
consisting of all continuous linear functionals on X is called the d'ual 
of X, and denoted by X* .• 

1.3.8 	Definition Let X and Y be vector spaces over the same scalar field 
and let b be a bilinear form on (X, Y) (in other words b(axl +(3X2, yd = 
ab(xl' yd + (3b( X2, Yl) and b(Xl' aYl + (3Y2) = ab(xl' yd + (3b(Xl' Y2) for 
all Xl,X2 EX, Yl,Y2 E Y and scalars a,(3). (X, Y) is called a dual pair 
if the following two properties hold: 
(1) For each x E X\ {O} there is ayE Y with b(x , y) -I- O. 
(2) For each Y E Y\{O} there is an x E X with b(x, y) -I- 0 .• 

When the bilinear form of a dual pair is not specified the natural bilinear 
form is assumed. This happens when the one vector space consists of linear 
functionals on the other vector space. 

1.3.9 Definition Let (X, Y) be a dual pair and denote the corresponding 
bilinear form by b as in 1.3.8. Each Y E Y defines a seminorm Py on X 
by py(x) := Ib(x,Y)I. The topology on X determined by {Py : Y E Y} 
(by means of 1.3.3) is called the weak topology on X determined by Y, 
and it is denoted by (J(X, Y). (This topology is clearly Hausdorff by 
1.3.4 and 1.3.8.). 

 
 
 



1.4. 	 C*-ALGEBRAS AND VON NEUlVIANN ALGEBRAS 13 

1.3.10 	Proposition ([Ro, II.3 Proposition 7]) Let (X, Y) be a dual pair, 
then the dual of X under G(X ,Y) is Y, i.e . 

X* = 	{bC,y): y E Y} 

where b is the bilinear form of the dual pair as in 1.3.B.• 

1.3.11 	Alaoglu's theorem ([Ro, III.7 Corollary 2]) Let X be a normed 
space and set N:= {x E X* : Ilxll ::; 1}. Then N is G(X*,X)-compact. 
(It is known that (X*, X) is a dual paiT, (K 4.3-3J.). 

1.4 C*-algebras and von Neumann algebras 

Denote by G(A) the spectrum of an element A of a C*-algebra. Denote by 
Inv(2l) the invertible elements of a C*-algebra 2l. 

1.4.1 Proposition Let 2l be a C*-algebm and let A E 2ls . Then A ::; II All 
(if 2l is unital) and A ::; IAI. 

Proof. Let A E G(IIAII-A), then A E lR because IIAII-A E 2ls . By definition 
A- (IIAII- A) ~ Inv(2l) so (IIAII- A) - A ~ Inv(2l) which by definition means 
IIAII - A E G(A). 

.". IIIAII - AI ::; II All 
.".0 ::; A ::; 211AII 

We conclude G(IIA II - A) C lR+ and so IIAII - A 2: o. 
Let <p : C* (A) ---? Co (K) be the Gelfand representation of the abelian 

C*-algebra C*(A) generated by A (Co(K) is the functions from K to <C that 
vanish at infinity, K being some locally compact Hausdorff space, see [M, 
Theorem 2.1.10]). Then <p(IAI - A) = 1<p(A)1 - <p(A) 2: 0 since <p is a *­
isomorphism, and so IAI - A 2: 0.• 

Let Sj 	a Hilbert space. For 9J1 C £(Sj) we define 

9]1' := {A E £(Sj) : AB = BA for every B E 9J1}. 

It is clear that 9J1 C 9J1/1 and 9J1' = 9J1111 
. It is also easily seen that if 9J1 is 

self-adjoint (i.e. {A* : A E 9J1} c 9J1), then 9J1' is a C*-algebra. To avoid 
confusion we state that in this case 
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If 9J1 is self-adjoint and 9J1/1 = 9J1, we call 9J1 a von Neumann algebra on Sj . 

Hence it is clear that a von Neumann algebra on Sj is a C*-subalgebra of 
£(Sj). 

For 9J1 C £(Sj) and 8 C Sj, Sj being a Hilbert space, we denote by [9J18j 
the closure in Sj of the linear span of the set 9J18. 

1.4.2 Definition Let 9J1 C £(Sj) where Sj is a Hilbert space, and let 8 C Sj. 

8 is called cyclic faT 9J1 if [9J18j = Sj. 

8 is called separating faT 9J1 if for every A E 9J1 the following holds: If 
A8 = {O}, then A = O. 
We call D E Sj a cyclic vectoT faT 9J1 if {D} is cyclic for 9J1 . 
vVe call D E Sj a separating vectoT faT 9J1 if {D} is separating for 9J1 .• 

1.4.3 	Proposition ([Br, 2.5.3]) Let 9J1 be a von Neumann algebra on a 
HilbeTt space Sj, and let 8 C Sj. Then the following two conditions aTe 
equivalent: 
(1) 8 	is cyclic faT 9J1. 
(2) 8 	is separating faT 9J1'. 

Proof. (1)==?(2): Assume 8 is cyclic for 9J1. Consider any A E 9J1' such 
that A8 = {O}. Then for any B E 9J1 and x E 8 we have ABx = BAx = 0, 
so A[9J18] = {O}. But [9J18] = Sj since 8 is cyclic for 9J1, hence A = O. So 8 
is separating for 9J1'. 

(2)==?(1): Let P be the orthogonal projection of Sj on [9J18]. We first 
prove P E 9J1'. Let A E 9J1 and x E Sj. Write x = y + z where y E [9J18] 
and z E [9J18] J... Ay E [9J18] since 9J1 is an algebra. So APy = Ay = PAy . 
Let v E [9J18], then A*'u E [9J18] since 9J1 is a *-algebra. Therefore (v, Az) = 
(A*v, z) = 0 since z E [9J18] J... This means Az E [9J18jJ.. and it follows that 
APz = AO = 0 = PAz. We conclude that APx = PAx, and so AP = P A. 
Thus P E 9J1'. 

Assume now that 8 is separating for 9J1'. 8 C [9J18j since 1 E 9J1, so 
(1- P)8 = {O} by the definition of P . 1- P E 9J1' since 1, P E 9J1, therefore 
1 - P = 0 since 8 is separating for 9J1'. From the definition of P we conclude 
[9J18j = Sj, i.e. 8 is cyclic for 9J1 .• 

Let 9J1 be a von Neumann algebra on a Hilbert space Sj. 

The vector space of all O"-weakly continuous linear functionals on 9J1 is 
called the pTedual of 9J1 and denoted by 9J1* (see 1.3.5) . vVe assign the 
norm topology to 9J1* (this is possible since the O"-weak topology is clearly 
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weaker than the norm topology on £ (SJ) by 1.3.5, 1.3.3 and the Cauchy­
Schwarz inequality, hence the elements of 9J1* are in fact norm continuous, 
i.e. they are bounded linear functionals on 9J1). Then 9J1* is a Banach 
space, and (9J1*)* = 9J1 as normed spaces (i.e. their norms are equal) where 
A(w) := w(A) defines A as a linear functional on 9J1* for every A E 9J1, ([Br, 
2.4.18]). 

The weak* topology on 9J1 is defined to be the topology determined by 
means of 1.3.3 by the set of seminorms {Pw : w E 9J1*} on 9J1 defined by 
Pw(A) := Iw(A)I· 

The weak topology on 9J1* is defined to be the topology determined by 
means of 1.3.3 by the set of seminorms {PA : A E 9]1} on 9]1* defined by 
PA(W) := Iw(A)I· 

1.4.4 Proposition Let 9J1 be a von Neumann algebra on a Hilbert space SJ. 
Then 9J1s is weakly* closed in 9J1. 

Proof. Let A E 9J1s (the weak* closure of 9J1s in 9J1). Then there is a net 
(AA) in 9J1s such that AA A in the weak* topology. Given x, y E SJ, the-----t 

linear functional w on 9]1 defined by w(B) = (x, By) is in 9]1* as can easily 
be seen from 1.3.5. So from the definition of the weak* topology we find 

(x, AAY) (x, Ay) for all x, y E SJ.-----t 

So (X,AAY) = (AAX,y) -----t (Ax,y) for all X,y E SJ since AA E 9J1s . It follows 
that (Ax, y) = (x, Ay) for all x, y E SJ, i.e. A E 9J1s . We conclude 9J1s is 
weak* closed in 9J1.• 

For a C*-algebra 2l, let 2t1 := {A E 2t: II All :::; I}. 

1.4.5 	Proposition Let 9J1 be a von Neumann algebra on a Hilbert space. 
Then (9J1,9J1*) is a dual pair (see 1.3.8) and the following holds: 
(1) The weak* topology on 9J1 is the a(9JT,9J1*)-topology) hence 9J11 is 
weakly * compact. 
(2) The weak topology on 9JT* is the a(9JT* ,9J1) -topology) hence it is 
Hausdorff· 

Proof. 9J1 = (9J1*)* when 9J1* has the norm topology, hence (9JT,9]1*) is 
a dual pair ([K, 4.3-3]). So clearly by 1.3.9 the weak* topology on 9J1 
is the a(9J1, 9JT*)-topology, and the weak topology on 9J1* is the a(9J1*, 9]1)­
topology. Hence these topologies are Hausdorff (see 1.3.9). Since 9J1 = (9J1*) * 
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as normed spaces when 9]1* has the norm topology, it follows from 1.3.11 that 
N is 0"(9]1, 9J1*)-compact, i.e. weakly* compact .• 

Let SJ be a Hilbert space, then we can define a seminorm Px on ~ (SJ) 

by Px(A) := IIAxl1 for every x E SJ· The topology on ~(SJ) determined by 
{Px : x E SJ} (by means of 1.3.3) is called the strong topology. The strong 
topology on a C*-subalgebra 2{ of £,(SJ) is found by viewing 2{ as a topological 
subspace of ~(SJ) with this topology. 

It is known that any *-homomorphism between C*-algebras is norm de­
creasing ([lVI, Theorem 2.1.7]), hence the following proposition can be given: 

1.4.6 	Proposition ([Br, 2.4.1 and 2.4.23]) Let 9J1 and 5)1 be von Neumann 
algebras on Hilbert spaces, and 7f a *-homomorphism from 9J1 onto 5)1 . 

Then the restriction 7f : 9]11 ---t 5)11 is strongly continuous .• 

We will largely be concerned with von Neumann algebras later on. We 
now show ~(SJ) (where SJ is a Hilbert space) is a von Neumann algebra. This 
example will be very important to us in Chapters 2 and 3. 

1.4.7 	Proposition Let .f:J be a Hilbert space, then £'(SJ)' = C. 

Proof. Let E be a total orthonormal set in .f:J, i.e. E is an orthonormal set 
in.f:J such that span(E) = SJ. (E exists by [K, 4.1-8].) 

Consider any A E ~(.f:J)'. Let u E E and let P be the orthogonal projec­
tion of SJ onto Cu. Then for every v E E\{u}, 

(v, Au) = (v , APu) = (v, P Au) = (Pv, Au) = (0, Au) = ° 
so Au = a(u)u for some a(u) E CC since E is a total orthonormal set. Now 
let u, vE E "vith u =J. v, then 

a(u)u + a(v)v = Au + Av = A(u + v) = a(u + v)(u + v) 

hence 

a(u) = (u,a(u)u+a(v)v) = (u, a(u +v)(u+v)) =a(u+v). 

In the same way a(v) = a(u + v) = a(u). Hence, setting c := a(u), we find 
Ax = cx for all x E E. It follows that Ax = cx for all x E span(E) = SJ, i.e. 
A=c.• 
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1.4.8 	Corollary £(5)) is a von Neumann algebra on the Hilbert space 5). 

Proof. By l.4.7 , £(5))" = (e1)' = £(5)) .• 

For any A E 2L, where 2L is a C*-algebra, there exist unique B, C E 2Ls 
such that A = B + iC. Hence we can give 

1.4.9 	Definition Let 2L be a C*-algebra. For every A E 2L we define 
ReA,ImA E 2Ls by A = ReA+ilmA.. 

1.5 Polar decomposition 

For a real or complex Hilbert space 5) , we call U E £(5)) a partial isometry 
if IIUxl1 = Ilxll for all x E ker(U)~. 

1.5.1 	Polar decomposition Let V E £(5)) where 5) is a real or complex 
Hilbert space. Then there exists a unique partial isometry U E £(5)) 
such that 

V = U IVI and ker(U) = ker(V). 

U has the following properties: 
(1) U*V = IVI . 
(2) If 	V* = V, then V = IVI U. 
(3) If 	V* = V and ker(V) = {O}, then U* = U and U2 = l. 
(4) If 	.f) is complex and V* = V, then U* = U. 
(5) If 9J1 is a von Neumann algebra on .f) S'Uch that V E 9J1, then 
U E 9J1. 

Proof. The existence and uniqueness of U, as well as (1), is given by [M, 
Theorem 2.3.4] (the proof given in [M] works for the case of a real Hibert 
space as well , even though it's only stated for the complex case). (5) is given 
by [M, Theorem 4.l.10]. vVe now prove (2),(3) and (4). 

ker(IVI) c ker(V) since V = U lVI, and ker(V) C ker(lVl) since U*V = 
IVI. 	 So 

ker(lVl) = ker(V) 

Now assume V* = V . 
IVI = 	(V2)1 /2 and VV 2 = V 2V, so 

V IVI = IVI V 
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by 1.1.3. 
--.l 

(2) By 1.1.6 we have IVI Sj = ker(lVl) = ker(V) = ker(U). Let x E Sj 
-- --.l 

and write x = Y + z where Y E IVISj and z E IVISj , so Ux = Uyand 
V x = V y. Consider any sequence (Yn) in Sj such that IV IYn -----t y. Then 
Ux = lim U IVI Yn = lim VYn so 

n-4CO n-4CO 

IVI Ux = lim IVI VYn = lim V IVI Yn = Vy = Vx. 
n-4C<) n--+oo 

We conclude V = IVI U. 
(3) Assume ker(V) = {O}. It follows that ker(IVI) = {O}. We already 

know IVI U* = (U IVI)* = V* = V = IVI U, so U* = U since ker(IVI) = {O}. 
From this we have U2V = UU*V = U IVI = V which means U2x = x for all 
x E VSj, but V* = V and V is injective (ker(V) = {O}) so VSj = Sj by 1.1.7. 
Since U is continuous it follows that U2 = 1. 

(4) U* is a partial isometry since U is a partial isometry ([M, Theorem 
2.3.3(1) and (4)], the proof of this requires the fact that if (x, Ax) = (x, Ex) 
for all x E Sj, where A, E E .£ (Sj ), then A = E, but this follows from the 
polarisation identity, hence the need for Sj to be complex). 

V = V* = (U IVlt = IVI U*, so ker(U*) C ker(V). 


U IVI Sj = VSj, so U (IVI Sj) c VSj since U is continuous, but U (IVI Sj.l) = 


U(ker(U)) = {O} (as in the proof of (2)), therefore USj = U (IVI Sj EB IV I Sj.l) C 

VSj. It follows from 1.1.6 that ker(V) = VSj.l C (USj).l = ker(U*). Hence 

ker(U*) = ker(V) 

V = U* IV I by (2), but U is the unique partial isometry such that V = U IV I 
and ker(U) = ker(V), so U* = U.• 

1.6 Complex analysis 

1.6.1 Definition Let Gee be open. A function f : G -----t C is called 
analytic if it is differentiable. f is called an entire funtion if it is 
analytic and G = C. 

1.6.1 is motivated by the fact that if f : G -----t Cis different able (with G as 
in 1.6.1), then it is infinitely differentiable ([Can, Iy'8(Goursat's theorem), 
III.2.3 and IV.2.12]). 
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If X is a metric space and SeX, then we call x E X a limit point of S 
if there is a sequence (xn) of distinct points in S such that Xn ~ x. 

A connected open subset of (( is called a region. 

1.6.2 	Theorem ((Con, lY.3.7]) Let G be a region and f : G ~ (( an an­
alytic function such that {z E G : f (z) = O} has a limit point in G. 
Then f = 0.• 

For a region G we define G* = {z : z E G}, G+ = {z E G : lrn z > O}, 
G _ = {z E G : 1m z < O} and Go = {z E G : 1m z = O}. 

1.6.3 	Schwarz reflection principle ([Con, IX.l.ll) Let G be a region such 
that G* = G. Let f : G+ U Go ~ (( be a continuous function, analytic 
on G+, such that f(Go) C R Then the function 9 : G ~ (( defined 
by 

g(z) = f(z) for z E G+ U Go 

and 

g(z) = f(z) for z E G_ 


is analytic. 

For a, b E JR we write 

((~ := {z E (( : a < 1m z < b} 

and 
((~ : = {z E <C : a :; 1m z :; b}. 

The strips ((~ and ((~ playa key role in the formulation of KMS states in 
Chapter 3. We'll need the following two properties concerning these strips: 

1.6.4 	Corollary Consider a bounded continuous function f : <C6 ~ ((, an­
alytic on ((6, and real-valued on <C6\((6· Then f is constant. 

Proof. Say f is bounded by M E JR, i.e. If(z)l < M for all z E ((6· 
Let 9 : ((6 ~ <C : z 1-+ f (z - i), then 9 is continuous and bounded by LVI, 

it is analytic on ((6, and g(IR) C R Define 91 : ((~1 ~ <C by 91(Z) = g(z) for 

z E ((6, and 91(Z) = 9(z) for z E ((~1· Clearly 91 is continuous and bounded 
by M, and by l.6.3 it is analytic on <C~1. 
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Now 	let h : C6 ---7 C : z ~ 91 (z - i) then h is continuous and bounded 

by lVI, and it is analytic on C6. Also) for all z E (6) h(z) = 91 (z-i) 

9(z-i) =f(z-i-i) =f(z). 

In effect we have applied 1.6.3 to f along the line CL instead of along IR , 

to get h· This was posssible since f (Ci) C R 
Note 	that h (C~) = f(IR) c IR) so we can apply 1.6.3 on h along the 

line C~ to find a function 12 : C6 ---7 C which is continuous and bounded by 
lVI, and analytic on C6, such that h(z) = !I (z) for z E C6· 

By repeating this process (and setting fa := f) we find for every n E N a 
function fn : Cr ---7 C which is continuous and bounded by lVI) and analytic 
on Cr) such that fn+1(Z) = fn(z) for z E C6"· 

---7Thus we can define F : {z E C : Imz ~ O} C by F(z) = fn(z) for any 
n such that z E Cr. For every n E N) F is continuous and bounded by lVI 
on Cr) and analytic on Cr. It follows that F is continuous and bounded 
by lVI, and it is analytic on {z E C : Im z > O}. 
~learly G : C ---7 C defined by G(z) = F(z) for Im z ~ 0, and G(z) = 
F (z) for Im z < 0, is bounded by lvI, and by 1.6.3 it is analytic. So G 
is constant by Liouville's theorem. But f(z) = G(z) for z E C6, so f is 
constant.• 

The following result is a consequence of the maximum modulus theorem: 

1.6.5 	Lemma ([Con) VI.3.9]) Let a < b E lR and cons'ider a continuOllS 
function f : C~ ---7 C which is analytic on C~. Then 

If(z)1 ::::: sup {If(w)1 : wE C~\C~} for allz E C~. 

Let Ll be the Lebesgue measurable functions f : lR ---7 C such that 

1
+(Xl 

- (Xl 1f (x ) 1 dx < 00 

(where dx here and in the sequel refers to Lebesgue measure). 
For f E L1 we call the function j : IR ---7 C defined by 

~ 1 
00 

.1+
f(t) = - e-txtf(x)dx
V2n -00 
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the Fourier transform of f. j is well defined exactly because fEU. 

1.6.6 	Fourier inversion theorem ([Ru, 9.11]) Consider any fELl such 
that JELl, and define 9 : ~ ---+ C by 

1+00 

g(x) = 1rrc eixtj(t)dt. 
v21f 	 -00 

Then 9 = f almost everywhere. In particular, for any fELl such 
that j = 0, we have f = 0 almost everywhere .• 

1.6.6 will be needed in 4.3.7. We close this section with two results which 
we will need in 4.3.3 and 4.3.6: 

1. 6.7 Lemma Let VV be a closed convex subset of C and let z E C\VV. 
Then there is an r E C with Irl = 1 such that Re(rz) > Re(Tw) for 
every w E W. 

Proof. Since VV is closed and convex there exists a v E W such that 

Iz - v I ~ Iz - w I for every w E vV, 	 (1) 

([K, 3.3-1]). Set r := z - vi Iz - vi. We now show r has the required prop­
erties. 

Clearly Irl = 1. By the definition of r we have 

r z - rv = r (z - v) = Iz - v I . 	 (2) 

Let w E Wand suppose 
Re(rw) > Re(rv). (3) 

We assign the dot product of ~2 to C , i.e. 

x· y:= (Rex)(Rey) + (Imx)(Imy) (4) 

for all x, y E c.. Set 

rw -rv 
p = [(r z - rv) . (rw - rv)] 2 + rv = arw + (1 - a) rv (5)

Irw - rvl 

where a := [(rz - rv) . (rw - TV)] I ITW - rvl2, i.e. p - TV is the orthogonal 
projection of rz - rv on rw - TV (in the ~2 sense), hence rz - p and p - rv 
are orthogonal in ]R2. 
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rz - rv > 0 because of (2), therefore (rz - rv) . (rw - rv) = (rz -
TV) Re(rw - rv) > 0 by (3) and (4). Hence a > O. Set b := min{l, a} and 

u := brw + (1 - b)rv, (6) 

then 0 < b ::; a, and u E rW since rW is convex, 0 < b ::; 1 and rw, rv E rW. 
Since u lies on the line from rv to rw, it follows that r z - p and p - u are 
orthogonal in JR2. Now 

Ip - u + u - rvl = la(rw - rv)1 (by (5) and (6)) 
a Irw - rvl (since a > 0) 

- (a - b) Irw - rv I + bIrw - rv I 
I(a - b)(rw - rv)1 + Ib(rw - rv)1 (since 0 < b::; a) 

Ip - ul + lu - rvl (by (5) and (6)). 

Hence, since (rz - p)J..( p - rv) in JR2, we find 

Ir z - rvl2 Irz - pl2 + Ip - u + u - rvl2 

Irz - pl2 + (Ip - ul + lu - rvl)2 

> Ir z - pl2 + Ip - ul2 (since u =J. rv by (6) and (3)) 
- Ir z - ul 2 (since (r z ---.: p)J..(p - u) in JR2). 

Therefore Iz - vi > Iz - ~ul, while ~u E W as pointed out just after (6). 
This contradicts (1), so we conclude Re(rw) ::; Re(rv) < Re(rz) by (2) .• 

For use in the proof of the next lemma (given as Lemma 4.6 in [R]) , note 
that for z = x + iy, x, Y E JR, sin z = sin x cosh y + i cos x sinh y. Therefore 

Isin z l2: ISinxl and Isin z l 2: min {coshy, Isinhyl} · 

1.6.8 Lemma Let A = ei<p/2 where -7f < <.p < 7f. Let f be a complex­

val1~ed function defined, bounded and continuous on the strip iC~12/2' 
and analytic inside this strip. Then 

1
+00 


f(O) = e-<pt( e'lft + e-'lft)-l (Af(it + 1/ 2) + )..f(it - 1/2)) dt.
-00 
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Proof. Let S := iC~~/2 and Z := {z E S : sin 7rZ i= O}. So we can define 

9 : Z -+ C by g(z) = 7rei 'Pz J(z) / sin 7rZ. It is easy to see that Z = S\{O} . 
Since sine has a simple zero in 0, i.e. [dd sin z] z=o i= 0, the residue of 9 in 0z 
IS 

res(g,O) = [7rei'PZJ(z) / :zsin7rzL=o = J(O). 

Let a be any positive real number, and n any integer greater than 2. By the 
residue theorem we now have (integrating along the rectangle -(~ - ~) - ia, 
(1 _ 1.) - ia (1 - 1.) + ia - (1 - 1.) + ia)

2 n ' 2 n '2 n 

!-~ a (1 1 ) 
27riJ(0) = 11 1g(t - ia)dt +19 2-;, + it idt 

-("2-;;) -a 

-11~-~1g(t + ia)dt -1a 
9 

( 
-

(12 -;,1) + it)idt. 
-("2-;;) -a 

Isinzl2': ISin(Rez) l, therefore Isin7r(~ - ~ +it)l2': ~ since n > 2, hence 
Ig(~-~+it)1 ::::; 21fIJ(~-~+it)1 for real t. But J is continuous and 
bounded so from Lebesgue's dominated convergence theorem ([Ru, 1.34]) 
we have 

a 

1
a

lim 1 9 (~ - ~ + it) idt = (lim 9 (~ - ~ + it)) idt 
n-->oo -a 2 n -a n-HX> 2 n 

i I: 9 (it + 1/2) dt. 

Similarly, J~~ J~ag (- (~-~) + it) idt = iJ~ag(it -1/2)dt, hence 

l a 

27riJ(0) = I: g(t - ia)dt + i la g(it + 1/ 2)dt 
2 

- [~ 9(t + ia)dt - i [: 9(it - 1/ 2)dt. 
2 

Isinzl 2': min {cosh(Imz), Isinh(Imz)l} and J is bounded, so 

II~ g(t - ia)dt ::::; sup {Ig(t - ia)1 : -21::::; t::::; 2I} -+ 0 as lal-+ 00 

2 
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by the definition of g. Likewise f{~2 g(t + ia)dt -) 0 as lal -) 00. Therefore 

1
+00 


2nif(0) = i -00 (g (i t + 1/2) - g(it - 1/ 2)) dt. 


So by the definition of 9 and >. 

11+= [ei<P(it+ l/2) f(it + 1/2) ei<p(it-l/2) f(it - 1/2)]
f(O) = - - dt 

2 sin n(it + 1/2) sin n(it - 1/2) -00 

-1 1+= e-<pt(cosint)-l [ei<P/2 f(it + 1/2) + e-i<p/2j(it - 1/2)J dt 
2 -00 

- 1:= e-<Pt(e7rt + e-7rt )-l (>.f(it + 1/ 2) + ).f(it - 1/2)) dt .• 

1.7 Differentiation in normed spaces 

1.7.1 Definition Lpt. X hp i'l. no,med space and consider a function f : S --.' 
X where S c <C. Let z be an interior point of S. If the limit 

l' (z) :=l~ f (z + h~ - f (z) , (h E (C) 

exists, we call 1'(z) the derivative of f at z, and say f is differentiable 
at z. Vie also write 

:zf(z ) = 1'(z). 

If S is open and f is differentiable at every point of S, we call f 
differentiable.• 

Clearly if j is differentiable at z in 1.7.1 , then it is continuous at z . 
The proof of the following is easy (it's the same as for real functions): 

1.7.2 Product rule Let 2{ be a normed algebra and consider junctions f, 9 : 
S -) 2{) where S C (C, such that 1'(z) and g'( z) exist for some interior 
point z of S. Then (1g)'(z) exists and 

(1g)' = 1'(z)g( z) + f(z)g '(z) 

where fg: S -) 2{ is defined by (1g )(z) = j(z)g(z) .• 
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1. 7.3 Definition Consider a function A : S £(X, Y) where S c te, and-----7 

X, Yare normed spaces. Let x E X, and let z be and interior point of 
S. If tz (A (z )x) exists, we write 

d
D(x, z)A := - (A(z)x) .•

dz 

1.7.4 Proposition Let X, Y be normed spaces. Consider the Junctions A : 
S -----7 £(X,Y) and J : S -----7 X where S c CC, and assume A is bounded 
(in the norm oj £(X, Y)). Then we have: 
(1) IJ A(-)J(z) is continuous Jor every z E S, and J is contimwus, 
then 


AJ : S -----7 Y : z f--+ A(z)J(z) 


is continuous. 
(2) IJ S is open, and A(-)x and J are differentiable Jor every x EX, 
then AJ is differentiable and 

:z (A(z)J(z)) = D (1(z), z) A + A(z)j'(z) 

Jor every z E S. 

Proof. (1) For w, z E S we have 

IIA(w)J(w) - A(z)J(z)11::; IIA(w)IIIIJ(w) - J(z)11 + IIA(w)J(z) - A(z)f(z)11 

so clearly AJ is contiuous since A is bounded. 
(2) Let z E S be fixed but arbitrary. Define 9 : S -----7 X by 

g(w) = J(w) - J(z) if w =1= z, and g(z) = j'(z). 
w-z 

9 is contiuous by the definition of l' (z) and the fact that J is continuous 
(since it is differentiable). 

AC)x is continuous (since it is differentiable) for every x E X. So by (1) 

lim A(w)g(w) = A(z)g(z) = A(z)j'(z). 
w-+z 

It follows t hat 

lim A (w)J(w) - A (z)J(z ) lim A(w)g(w)+ lim A(w)J(z) - A(z)J(z) 
w-+z W - Z w->z w-+z w - z . 

A(z)j'(z) +D(f(z),z)A 
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by (2) .• 

our of 

1. The Borel functional calculus 

1 1 Definition K be a space and 
A C'Y1o,'t'Y'n to (K,S)) is a 

in £(Y)) 

E . 

(S) 
measure on K .• 

1, then II II ~ Ilx!lllyll· 

By definition II 
S1, .'" Sn E) B as 
and U ... USn' Then 

6.5]. 

n 

)1 = 
j=l j=1 

n 

x, (since is a 
j=l 

< LII II II 
j=1 

< (t, 11') l II II')' 

< 

n 

E(Sj)y 
j=1 
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The second to last step above follows from the fact that E(Sl)X, ... ,E(Sn)x 
are orthogonal by 1.8.1(1) and (2) since SknSI = 0for k =1= l , (and likewise for 
y), while the last step follows from the fact that L7=1 E(Sj) is a projection 
since E(Sk)E(SI) = 0 for k =1= l by 1.8.1(1) and (2). 

For a partition (Sj)~l of K (where by definition of a partition Sj E B) 
we therefore have 

since 	Sl, ... , Sn, K\ U7=1 Sj are mutually disjoint and K = Sl U '" U Sn U 

(K\ U7=1 Sj). Hence 

L 
00 

IEx ,y(Sj) 1 ::;; Ilx1111Y11 
j=l 

and we conclude by the definition of IEx,yl (K) (it is the supremum of E;:l IEx,y(Sj) I 
over all partitions (Sj)~l of K, [Ru, 6.1]) that IEx,yl (K) ::;; IlxIIIIYII .• 

Denote by Boo (K) the C*-algebra of all bounded Borel measurable complex­
valued functions on the compact Hausdorff space K. 

1.8.3 	Proposition ([M, Theorem 2.5.3]) Let K, ..\] and E be as in 1.8.1, 
then for each f E Boo (K) there is a 1miqll,e A E £(..\]) such that 

(x, Ay) = / fdEx,y faT all x , y E ..\] .• 

l.8.3 	allows us to give the following definition: 

1.8.4 Definition Let K, ..\] and E be as in l.8.l. For every f E Boo(K) we 
define the integral J f dE of f with respect to E as the element of £(..\]) 
such that 

(x, (/ fdE) y) = / fdEx,y for all x,y E ..\] .• 
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For any set S, we define a real-valued function Xs (called the characteristic 
function of S) by 

Xs(x) = 1 if X ES, and Xs(x) = 0 if x ~ S. 

We call this function the characteristic function of S. 
Note that in 1.8.4 we have 

JXsdE = E(S) 

for every Borel set S c K, by 1.8.1(3). 

1.8.5 	Proposition ([M, Theorem 2.5.4]) With K ) Sj and E as in 1.B.l ) the 
map 

Boo(I<) --7 £(Sj) : f JfdEf-t 

is a 7.mital *-homomorphism.• 

1.8.6 	Spectral theorem ([M, Theorem 2.5.6]) Let Sj be a Hilbert space and 
A E £(Sj) a normal operator. Then there is a unique spectral measure 
E relative to (O"(A),Sj) such that 

A = JzdE 

where z : O"(A) --7 C : A f-t A.• 

1.8.7 Definition For A and E as in 1.8.6, E is called the resolution of the 
ident'ity for A. If A is hermitian we define 

E >, := E (O"(A) n (-00, A]) 

for all real A.• 

Using 	1.8.6 we can give the following definition: 

1.8.8 	Borel functional calculus For Sj, A and E as in 1.8.6 we define 
f (A) E £(Sj) by 

f(A) = JfdE 


for every f E Bco (O"(A)) .• 
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Note 	that for A2=: 0 in 1.8.8 we have VA = Al/2, where VA is given by 
1.8.8 and A1/2 by 1.1.2, as can easily be seen from 1.8.5. 

1.8.9 	Proposition ([NI, p.72]) Let 5) and A be as in 1.8.6, and consider 
any B E £(5)) such that AB = BA and A* B = BA*. Then 

f(A)B = Bf(A) for every f E Boo (a(A)). 

For a hermitian element A of a C*-algebra we write 

A+ = (IAI + A) /2. 

Using 1.8.4, 1.8.6 and 1.8.7, and [K , 9.7-1, 9.8-3, 9.9-1 and 9.10-1] (a 
different formulation of the spectral theorem) one can show the following: 

1.8.10 Proposition Let A E £(5)t where 5) is a Hilbert space, and let 
E be the resolution of the identity for A. Then E).. is the orthogonal 
projection of 5) on ker ((A - A) +) for every A E lR .• 

1.8.11 Corollary If A in 1.8.10 is positive and injective, then 

X(o,+oo)(A) = 1. 

Proof. By 1.8.10 Eo = 0 since A is injective and positive. a(A) C lR since 
A is hermitian. So by 1.8.4 and 1.8.5 we have for all x, y E 5) 

(x, y) = \ x, (J IdE) Y) = J1dEx,y 

JX(o,+oo)dEx,y (since Ex,y (a (A) n (-00,0]) = (x, EoY) = 0) 

\ x, (J X(O,+oo)dE) Y) . 

We conclude that 1 = JX(o,+oo)dE = X(o,+oo)(A), by 1.8.8 .• 

We will now discuss at some length an example of the Borel functional cal­
culus that will playa central role in our development of the Tomita-Takesaki 
theory in Chapter 4. 
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1.8.12 Example Define the function fz : JR.+ ~ C by 

= AZfz(O) = 0, and fz(>\) if A > 0 

for every z E C. For A> 0, fz(A) = e(Rez)lnAei(Irnz)lnA. So fz is continuous on 
JR.+\{O} and hence Borel measurable on JR.+. VVe also see that fz is bounded 
on bounded subsets of JR.+ if Re z 2: O. 

For A E £(Sj)+ (with Sj a Hilbert space), o-(A) C JR.+, so it follows from 
1.8.8 that we can define 

AZ : = f z (A) E £ (Sj ) for Re z 2: 0 

because o-(A) is a bounded set since A is bounded. In particular h /2(A) is 
the positive square root of A as noted after 1.8.8, hence the notation A 1/2 

for both causes no confusion .• 

1.8.13 	Proposition Let A be as in 1.8.12, and consider any w, z E C with 
Re w 2: 0 and Re z 2: O. Then: 
(1) AW AZ = AW+z. 
(2) (AZ)* = AZ. 
(3) AO = 1 and Al = A (where AO and Al are defined by 1.8.12). 

Proof. Let f be as in 1.8.12. Then by 1.8.8 and 1.8.5 we have 

and 
(AZ)* = (Jz(A))* = fAA) = fz(A) = AZ. 

From 1.8.11 we get AO = fo(A) = X(O,+CXl) (A) = 1. Clearly h(A) = A for all 
A, so Al = h(A) = A by 1.8.8 and 1.8.6.• 

It's straightforward to confirm that the Borel functional calculus for her­
mitian operators given in [S, 2.20] is the same as 1.8.8. Hence we can quote 

1.8.14 Theorem ([S, 2.30]) Let A E £(Sj)+ (with Sj a Hilbert space) and 
x 	E Sj. Then 


Z t------7 AZ x E Sj 


is continuous on {z E C : Re z 2: O} and differentiable on {z E C : 
Rez> O} (see 1.7.1) .• 
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1.8.15 Proposition Let A E £(5))+ where 5) is a Hilbert space) then 

CC~a --? £(fJ) : z ~ Aiz 

is bounded in the norm of £(5)) for every a E jR+. 

Proof. Let f be as in 1.8.12, let E be the resolution of the identity for 
A, and set s := sup o-(A) + 1 2 1. For z E CC~a and A E (0, s], we have 
IAizl = leiZlnAI = e-(Imz)lnA = A- 1mz :s s-Imz. So Ifiz (A)1 :s s-Imz :s sa for 

A E [0, s]. It follows that Ilfizll :s sa, Ilfizll being the sup-norm of fiz onoo oo 

[0, s]. 	 So for x, y E 5), we have 

I( X, AiZV)1 - If fiZdEX,yl (by 1.8.12,1.8.8 and 1.8.4) 

< f Ifizl d IEx,yl (by [Ru, 1.33 and 6.18]) 

< IIfizll oo IEx,yl (o-(A)) 


< sa IIEx,yll 

< sa Ilxllllvll (by 1.8.2). 


For x = AiZy , we obtain IIkZyl12 :s sa IIAiZyllllyll. This implies IIAizl1:s sa 
by the definition of the norm of £(5)). Since s does not depend on z, the 
result follows .• 

1.8.16 	Proposition Let A E £(5))8 where 5) is a Hilbert space. Consider 
any x E 5) such that Ax = x, and let f E Boo (o-(A)). Then 

f(A)x = f(1)x. 

Proof. Clearly we may assume x =1= o. 
(A - l)x = 0, therefore A-I ~Inv(£(5))) since x =1= O. This means that 

1 E o-(A) , so f(l) is defined. 
Using 1.8.8 we write f(A) = J fdE . 
We now prove the result in steps by considering special cases of f and 

building up to the most general case. 
N 

(a) Assume f is a polynomial, say f(A) = L: anAn where an E CC. Then 
n=l 
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by 1.8.5 and 1.8.6. 

(b) Assume f is continuous, then by the Stone-Weierstrass theorem there 
is a sequence of polynomials (Pn) such that Pn -----+ f uniformly on CT( A) (which 
is compact since A is bounded). Any *-homomorphism between two C*­
algebras is norm decreasing ([lVI, Theorem 2.1.7]), so from 1.8.5 it follows that 
II(Pn - j)(A)11 S IIPn - fll oo -----+ 0, hence Pn(A)x -----+ f(A)x. But Pn(A)x = 
Pn(l)x by (a), and Pn(l) -----+ f(l) since Pn -----+ f , so f(A)x = f(l)x. 

(c) Assume f = Xs for S = CT(A) n I where I is any open interval in lR 
(remember, CJ(A) c lR since A is hermitian). Clearly there is a sequence (gn) 
of continuous real-valued functions on o-(A) such that gn -----+ f pointwise and 
OS gn S f· So 

Ilgn(A)x - f(A)xI1 2 
- ((gn - f)(A)x, (gn - j)(A)x) 

(x, (9n - f)2(A)x)

J(gn - f) 2dEx,x 

(by 1.8.5) 

(by 1.8.8 and 1.8.4) 

-----+ 0 

by Lebesgue's dominated convergence theorem and using the definition of 
integration with respect to a complex measure ([Ru, 1.34 and 6.18]). But 
gn(A)x = 9n(l)x by (b), and gn(1) -----+ f(I), so f(A)x = f(l)x. 

(d) Let 6 be the collection of all Borel sets S in CT(A) such that Xs(A)x = 
Xs(1)x. We show that 6 is aCT-algebra. 

(d.i) By 1.8.5 (the *-homomorphism is unital) and the fact that 1 E CT(A), 
we have Xu(A)(A)x = I(A)x = Ix = Xu(A)(I)x . So CT(A) E 6. 

(d.ii) Consider any S E 6. Let se be the compliment of S in CT(A). 

(1 - Xs)(A)x = I(A)x - Xs(A)x (by 1.8.8 and 1.8.5) 

Ix - Xs(1)x (by 1.8.5 and since S E 6) 
- (1 - Xs)(l)x 

Xsc(l)x. 

Thus se E 6. 
(diii) Consider any Sl, S2 E 6. 

(Xs1XsJ(A)x (by the definition of X) 

- XS1(A)Xs2 (A)x (by 1.8.8 and 1.8.5) 
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- Xs1(1)Xs2(1)x (sinceSl,S2 E6) 

- Xs1ns2(1)x 

Thus SI n S2 E 6. 
(d.iv) Consider any S1,S2 E 6. SI U S2 = SI U (S2\SI) and S2\SI = 

S2 nSf E 6 by (d.ii) and (d.iii). So 

(XS
1 
+ Xs2 \sJ(A)x (since SI and S2\SI are disjoint) 


XS1 (A)x + XS2\Sl (A)x (by 1.8.8 and 1.8.5) 


XS1 (l)x + XS2 \Sl (l)x (since SI, S2\SI E 6) 


(Xs1 +Xs2 \Sl)(1)x 


Xs1 usJ l)x. 

ThismeansthatSlUS2 E 6. ItfollowsthatSlU ... USn E 6forSl, ... ,Sn E 6. 
00 

(cl.v) Let Sn E 6 for n = 1, 2,3, ... and set S:= USn. Set VI := Sl and 
n=l 

n-l (n-l ) C 

v,~ := Sn \ j~l Sj = Sn n j~l Sj for n > I , then Vn E 6 by (d.ii, iii and 

00 <Xl 

iv), U Vn = S, and Xs = 1: Xv" by the definition of X since Vl , V2, V3 , .. · 
n=l n=l 

are mutually disjoint. It follows for all y E SS that 

(y, Xs(A)x) 

JXSdEy," ~ J(~Xvn) dEy, 

f JXVn dEy,x (Lebesgue's dominated convergence theorem) 
n=l 

~ (y, Xv,,(A)x) 
n=l 

00 

~ (y, Xv,,( l)x) (since Vn E 6) 
n=l 

00 

(y, Xs(l)x) (since Xs = ~ XvJ· 
n=l 

So Xs(A)x = Xs(1)x , in other words S E 6. 
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(d.vi) According to (d.i, ii and v) (5 is a CT-algebra. By (c) (5 contains 
all sets CT(A) n I with I and open interval in lR, but every open set in lR is 
a countable union of open intervals ([B, 9.11]), hence (5 contains all open 
sets of the topological space CT(A) C lR since (5 is a CT-algebra. This implies 
that (5 contains all the Borel sets of CT(A) since by definition the collection 
of Borel sets is the smallest CT-algebra containing all the open sets. Thus 

Xs(A) x = Xs(1)x for all Borel sets S C CT(A) . 

(e) Assume f is positive. Then there is a sequence (3 n ) of simple functions 
on CT(A) such that 8 n --t f pointwise and 0 :s; 5 n :s; f , ([Ru, l.17]). Using 
exactly the same argument as in (c) we see that 5 n (A)x --t f(A)x (just 
replace 9n in (c) by 3 n ). But from (d) and 1.8.5 we deduce that 8 n (A)x = 

8n (1)X, since, by definition of a simple funtion, 5n is a linear combination 
of characteristic functions. Since 5 n (1) --t f(l) we conclude that f(A)x = 
f(l)x. 

(f) Now we consider the general case for f. Then we can write 

where il,i2,h,f4 E Boo (CT(A))+, ([Ru, 1.9(b) and 1. 14(b)]) . By (e) and 
l.8.5 we conclude j(A)x = f(l)x .• 

1.9 A functional calculus for finite dimensions 

VVe now present a functional calculus that is much simpler than the Borel 
functional calculus of 1.8. It will turn out to be very useful in Chapter 2 
where we work mostly with finite dimensional Hilbert spaces. 

Throughout this section SS is a finite dimensional Hilbert space. 

1.9.1 Definition For x, y E SS we define x 0 y E £(SS ) by 

(x 0y)z =x(y , z) .• 

Clearly we have the following two propositions: 

1.9.2 Proposition (v 0 w)(x 0 y) = (w, x) v 0 y .• 

 
 
 



1.9. 	 A FUNCTIONAL CALCULUS FOR FINITE DIIVIENSIONS 35 

1.9.3 Proposition Let h, ... ,bN be an orthonormal basis for Sj, then {bm @ bn : m, n E [N]} 
is a basis for Z(Sj). In particular, dim (Z(Sj)) = N 2 .• 

The following result is known from linear algebra: 

1.9.4 Theorem Let A E Z(Sjt. Then there exists an orthonormal basis 
b1, ... , bN of Sj consisting of eigenvectors of A. Let An be the eigenvalue 
of A corresponding to bn. Then A1, ... , AN are all the eigenvalues of A, 
and AI, ... , AN E R Furthermore, 

N 

A = 	L:Anbn@ bn .• 
n=l 

l.9.4 	allows us to give the following: 

1.9.5 	Definition(Functional calculus) Consider any A E Z(Sj)s and let 
bl , ... ) bN and AI) ... , AN be as in l.9.4. Let f : X ~ <C be any function 
such that A1) ... , AN EX C R Then we define 

f(A) = L
N 

f(An)bn @ bn.• 
n=l 

It is easily seen that f(A) is independent of the choice of b1 ) ... , bN in l.9 .5 
by considering the eigenspace of each An separately and using the fact that 

(n~l f(An)bn 0 bn) bm = f(Am)bm by l.9.I. 

From 	l.9.2 and l.9.5 we immediately see 

1.9.6 	Proposition Let A E Z(Sj)S ) and let f : X ~ <C and g : Y ~ <C be 
functions such that f(A) and g(A) are defined (by 1.9.5). Then 

f(A)g(A) = g(A)f(A) .• 

1.9.7 	Proposition For A and f as in 1.9.5 we have: 
(1) (f(A))* = 1(A) . 
(2) If 1/ f(x) exists in <C for every x E X, then (f(A))-l = (1/ f)(A). 
(3) If f ~ 0, then f(A) ~ o. 
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Proof. (1) Let b1 ) ... ) bN and A1) ... ) AN be as in 1.9.5. 

(b/) f(A)bm) 	 - (b/) f(Am)bm) = f(Am) (b/) bm) = f(A/) (b/) bm) = (f(AI)bl.) bm) 

- (f(A)b/) bm) 

because b1 ) ... ) bN are orthonormal. It follows that f(A) = (f(A))*. 
(2) From 1.9.5 and 1.9.2 we have 

N N 

f(A)(l/ f)(A) = L L f(Ak) (1/ f(An)) (bk Q9 bk)(bn Q9 bn) 
k=l n=l 

- L
N 

f(Ak) (1/ f(Ak)) bk Q9 bk 
k=l 

N 

- Lbk Q9 bk 

k=l 

= 1 

and so) using 1.9.6, (f(A))-l = (1/ f)(A) . 
(3) (f(A))* = f(A) by (1) since f ~ 0, and from 1.9.5 it is clear that 

f(A)'s spectrum is {f(Ad )... ,f(>'N)} C JR+. By definition this implies that 
f(A) ~ 0.• 

The following proposition is clear: 

1.9.8 	Proposition Let A} b1) ... ,bN and Al, ... )AN be as in 1.9.4. ConsideT 
a function f : JR x <C ~ <C. By 1.9.5 we have the function f(A,·) : 
<C-d~(SJ). FOTeach Z E <C such that ddzf(A1)Z)' ... )ddzf(AN)Z) exist} 
we have 

(see 1.7.1).• 

1.9.9 	Example Using 1.9.5 and 1.9.8 it is seen that 

!!:.-eiAz = iAeiAz for all A E £(SJ) and Z E <C .•
dz 	 S 
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1.10 Tensor products of Hilbert spaces 

This section is adapted from [C, ILF.2.a] and [D, V.l.Ol and 1.03]. 

1.10.1 Definition Let Xl, ... , X N , Y be vector spaces. A function 

is called a conjugate multilinear form if 

for all Xn E X n , Yk E X k, k E [NJ and Ci, (3 E C The vector space of 
all such forms is denoted by Q.:(Xl , ... , X N , Y) .• 

1.10.2 	Definition Let ..\]1, ···,..\] N be inner product spaces. For Xk E ..\]k we 
define 

by 

l.10.2 uses the same notation as l.9.1, but the former will be used only in 
2.1 while the latter will only be used later on, so there won't be any confusion. 

1.10.3 Proposition Let ..\]1, ... ,..\]N be finite dimensional Hilbert spaces and 
set d(k) := dim(..\]k) > O. Let bk,l, ... ,bk,d(k) be an orthonormal basis 
for ..\]k. Then 

is a basis for Q.:(..\]l, ... ' ..\]N'C). In particular, 

dim(Q.:(..\]l, ... ,..\]N, C)) = d(I) ...d(N). 

Proof. Let 

d(l) d(N)


L ... L Cil1, ... ,lNbl,h @ ... ® bN,lN = 0 where Cil1, .. .,lN E C. 

11=1 	 IN=l 
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For l~ E [d(k )] it now follows 

d(l) d(N) 

o = L ... L C< ll, ... ,lN b lh 0 ... 0 bN,IN (bl,l~, ... , bN,l;) 


11=1 IN=l 


d(l) d(N)


L ...L C< ll, .,lN (bl,l~' blh ) ... (bN,I~' bN,lN) (by 1.10.2) 

11=1 IN=l 


C<l~, .. "l~ (since bk,l, ... , bk,d(k) are orthonormal). 


This means B is linearly independent. 
Now consider any f E e.:(fh, ... ,.f)N,C). Set 

C< ll " ,lN := f(b lh , ... , bN,lN) for lk = 1, ... , d(k) and k = 1, ... , N. (1) 

For any Xk E .f)k we then have 

d(l) d(N)


L'" L C< ll, .. ,,lN (Xl, bl,IJ ... (XN , bN,I N) (by 1.10.2) 


d(l) d(N)


L·.. L f((bl ,lllXl)bl,lll, .. ,(bN,IN,XN)bN,IN) (by (1) and 1.10.1) 


d(l ) d(N) ) 


f L (b lJ1 , Xl) bl,lll ... , L (bN,IN' XN) bN,l N 

( 

h=l IN=l 

f (Xl, .. . , X N) (since bk,l , ... , bk,d(k) is an orthonormal basis for .f)k) . 

Thus 
d(l) d(N) 

f = L'" L C< ll, .."IN b lh 0 ... 0 bNJN' 

11=1 IN=l 

This means that B is a basis for e.: (.f) 1, .. . ,.f) N , C), and so 

dim(e.:(.f)l, ... ,.f)N,C)) = IBI = d(l) ...d(N) .• 


Because of 1.10,3 we can give the following definition: 
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1.10.4 Definition Consider the situation described in 1.10.3. We define an 
inner product on Q:(JJI ' ... ,JJ N, tC) by using the basis given in 1.10.3: 

1.10.5 	Proposition Consider the situation in 1.10.3. The inner product 

defined by 1.10.4 is the unique inner product on Q:(JJI, ... ,JJN,C) such 
that 

(Xl 0 ... 0XN,YI 0 ... 0YN) = (XI,YI) ... (XN,YN) 

for all Xk,Yk E SSk· The basis B for c.:(SSI, ... ,SSN,C) given by 1.10.3 is 
orthonormal in this inner product. 

Proof. That the basis given in 1.10.3 is orthonormal is clear from 1.10.4. 
d(k) 	 d(k) 

For Xk, Yk E SSk we can write Xk L o.lkbk,lk and Yk = L {3l 
k 
bk,lk 

Ik=1 1,,=1 

(a.lk,{3l
k 

E C). Hence by 1.10.4 

(x I 0 ... 0 X N , YI 0 '" 0 YN ) 

d(l) d(N) d(l) d(N) ) 

~ ... ~ o.I1 .. ·o.INb1,11 0 ... 0 bN,IN' ~ ... ~ (31~ ...{3I';ybIA 0 '" 0 bN,l';y( 
iI=1 	 IN=1 1~=1 l;v=l 

d(l ) d(N) d(l ) d(N) 


- ~ ... ~ ~ ... ~ o.I1· .. o.IN{3I~ ...{3I';y (bl,lll bl,lJ .. . (bN,IN' bN,l;J 

11=1 IN=II~=1 1';y=1 


'( d(l) d(l) ) (d(N) d(N ) ) 

-	 0o.hbl ,11l'0{31~bl,I~'" 0o.1NbN,lN,~{3I';ybN,I';y 

11-1 11=1 IN-l IN-l 


(Xl,YI) ... (XN,YN). 


Let (-, .)' be any inner product on c.:(SSl, ... ,JJN,tC) such that 

(Xl 0 ... 0 XN, Yl 0 ... 0 YN)' = (Xl, Yl) ... (XN ' YN) 

for all Xk, Yk E SSk. Then it is clear from 1.10.4 that (x, y)' = (x, y) for all 
x , Y E B , hence (, -)' = (-, .) on c.:(JJl, ... , JJN, tC) which proves uniqueness .• 

1.10.5 enables us to give the following definition which is independent of 
any particular basis: 
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1.10.6 	Definition Let fJl, ... , fJN be finite dimensional Hilbert spaces and 
consider the unique inner product on e:(fJI, ... , fJN , CC) such that 

for all Xk,Yk E fJk. e:(fJI, ... ,fJN,CC) with this inner product is called 
the tensor product of fJI, ... ,fJN and it is denoted by fJI Q9 ... Q9 fJN. If 
fJI = ... = fJN = fJ we write 

The inner product space J:h Q9 ' " Q9 fJN in 1.10.6 is a Hilbert space since 
it is a finite dimensional by l.10 .3. 

Finally we note that 

is multilinear by 1.10.2, and that's why we define Xl Q9 ... Q9 XN to be a 
conjugate multilinear form. If Xl Q9 ... Q9 XN was multilinear, 0 would be 
conjugate multilinear. In 2.1 we will use tensor products to set up a simple 
quantum mechanical model, and there the linearity of 0 will be seen to fit 
naturally into the physical ideas. 

 
 
 



Chapter 2 

Quantum statistical mechanics 


In this cha.pter we will give the postulates of quantum mechanics in the 
case of mathematically simple physical systems (meaning the Hilbert spaces 
involved are finite dimensional). A similar but more general development 
can be found in [Bo, Chapter II] where the postulates are discussed using 
the harmonic oscillator as an example. Vve will consider a model consist­
ing of many particles in a magnetic field because this requires only finite 
dimensional Hilbert spaces while the harmonic oscillator requires infinite di­
mensional Hilbert spaces. Systems consisting of many particles are also the 
whole point of quantum statistical mechanics. 

2.1 A simple quantum mechanical model 

2.1.1 A spin 1/2 particle in a magnetic field 
In nature there are particles, called spin 1/2 particles, that have the 

following property: If you put such a particle in a magnetic field and measure 
its spin, you can get only two values called up and down respectively (or 1/2 
and -1/2). Vve view the particle as a system, and the magnetic field as an 
external condition applied to the system. If the particle's spin is measured 
as up, we say the system is in the up state. If the spin is measured as down, 
we say the system is in the down state. 

In terms of classical physics we can describe it as follows: 'vVe view the spin 
1/2 particle as a little magnet . Measuring the spin of the particle is analogous 
to measuring the direction in which the little magnet is pointing. The fact 
that there are only two possible values for the spin means that the little 
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magnet can only point in two directions, namely parallel and antiparallel to 
the magnetic field. This is a purely quantum mechanical effect and it can not 
be explained by classical physics. According to classical physics the magnet 
can point in any direction. A simple example of this is a magnetic compass 
used to find the direction of the earth's magnetic north pole. The needle of 
a compass is a magnet, and if you shake the compass the needle will start 
to oscillate around the direction of the earth's magnetic north, so the needle 
is pointing in different directions as time goes on. If you were to build a 
compass using a spin half particle as the needle, the needle would only be 
able to switch in a binary fashion between pointing north and pointing south 
when you shake the compass. There will not be any oscillations. 

Examples of spin 1/2 particles are electrons, protons and neutrons ([Su, 
appendix II]), and silver atoms in their ground state ([e, p.392]). 

The up and down states of a system consisting of a spin 1/2 particle in 
a magnetic field are called the spin eigenstates of the system. The quan­
tum mechanical description of the physical states of this system (ignoring 
all aspects of the particle other than the spin) consists of any two dimen­
sional Hilbert space (called the state space of the system) and two non-zero 
orthogonal vectors in the space. The one vector represents the up state, the 
other the down state. For simplicity we choose «:::2 := «::: x CC with its usual 
inner product as the Hilbert space, U = (1,0) as the vector representing the 
up state, and d = (0,1) as the vector representing the down state. It is 
important to notice that u, d forms an orthonormal basis for «:::2. 

Every non-zero element of «:::2 describes a physical state of the system (i.e. 
a state that can occur in nature) , and every physical state of the system is 
completely described by a non-zero element of «:::2. Hence we call the non­
zero elements of «:::2 state vectors. Two non-zero linearly dependent elements 
of «:::2 describe the same state of the system, therefore we can without loss of 
generality use vectors of norm one to describe the states of the system. 

The physical meaning of all this is as follows: Let the state of the system 
be described by v E (C2. 'vVe may assume Ilvll = 1 as just mentioned. 'vVrite 
v = AU + J-Ld where A, J-L E cc. If we now measure the spin of the particle, the 
probability of getting spin up is 

(1) 

and the probability of getting spin down is 

(2) 
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Note that IAI2 + 111-12 = 1 because Ilvll = 1, this is why we use normalized 
elements of ([2. (It is important to understand that (1) and (2) cannot be 
derived, these probabilities are part of the postulates of quantum mechanics 
which we will discuss in more detail in succeeding sections.) 

This illustrates the probabilistic nature of quantum mechanics. It also 
illustrates the so-called superposition principle, namely v = AU + f.Ld is a 
superposition of U and d. Any linear combination of state vectors is called 
a superposition, and if this superposition is non-zero it is of course itself a 
state vector (i.e. it describes some physical state of the system). 

Measuring the spin of the particle forces the system into one of the spin 
eigenstates, no matter what state the system was in before. If our measure­
ment gives spin up, then the system is forced into the up state. Measuring the 
spin a second time immediately afterwards (before the physical state of the 
system has time to change) then yields spin up with probability 1. Similarly 
for the down state. 

To complete our quantum mechanical description of the system we still 
have to consider its energy. vVe will assume the particle has a fixed position 
(hence it has no kinetic energy) and that it has no internal energy. We are 
only going to consider the energy of the system because of the particle's spin. 

If the particle is in the up state, it has energy E > 0, say, and if it is in the 
down state, it has energy -E. E depends on the strength of the magnetic 
field. vVhen we measure the system's energy, these values (namely E and 
- E) turn out to be the only ones we can get (similar to the two spin values 
1/2 and -1/2). If we get the value E, the system is forced into the up state, 
if we get - E, the system is forced into the down state (again similar to the 
measurement of the spin). We say that U and d are the energy eigenstates 
of the system, and E and -E the corresponding energy eigenvalues. If the 
system is in the state v E ([2 where IIvll = 1, then the probability of getting 
E is given by (1), and the probability of getting - E is given by (2), exactly 
as for the spin eigenvalues. 

Classically this can be understood as follows: In the up state the particle 
is "against" the magnetic field. This analogous to the north end of a compass 
needle pointing south. The earth's magnetic field will exert a turning force 
on the needle to get the north end of the needle to point north. Hence the 
needle has a high potential energy, corresponding to the spin energy E of the 
particle. In the down state the particle is "with" the magnetic field. This 
is analogous to the north end of the compass needle pointing north. In this 
case the earth's magnetic field exerts no turning force on the needle, hence 
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it has a low potential energy, corresponding to the spin energy - E of the 
particle. 

We can define a linear operator HE £(((:2) by Hu = Eu and Hd = -Ed. 
Then u and d are the eigenvectors of H with corresponding eigenvalues E 
and - E. Clearly H is hermitian because E E R H is called the Hamiltonian 
of the system. 

The pair (((:2, H) gives a complete quantum mechanical description of the 
system since it contains all the information on the possible physical states 
of the system (namely the non-zero elements of <e2) and the energy of the 
system (namely the energy eigenvalues and the energy eigenstates which are 
just the eigenvalues and eigenvectors of H). 

See [C, Chapter IV Sections A and B] for a more complete description of 
a spin 1/2 particle and its energy in a magnetic field. 

2.1.2 Many spin 1/2 particles in a magnetic field 
Consider N identical spin 1/2 particles in a magnetic field. Each particle 

has a fixed position in space. For the moment the spatial arrangement of 
the particles is not important. We also assume that the magnetic field is 
the same at each particle, and that the particles do not interact in any way 
(i.e. they do not exert forces on each other). Similar to 2.l.1, we view the 
particles as a system, and the magnetic field as an external condition applied 
to the system. 

As in 2.l.1, we want to find a quantum mechanical description of this 
system, in other words a Hilbert space SJ whose non-zero elements represent 
the physical states of the system (the state space), and an H E £(SJt whose 
eigenvalues are the energies the system can have (the Hamiltonian). 

Measuring the energy of the system is the same as measuring the energy of 
each particle on its own and then adding all these energies together , because 
the particles do not interact. We already know from 2.1.1 that if we measure 
the energy of a single spin 1/2 particle we get E > 0 (corresponding to the 
up state) or - E (corresponding to the down state). These energies are the 
same for each particle since the magnetic field is the same at each particle 
and the particles are identical. So, when we measure the system's energy we 
will find some of the particles in the up state and some in the down state, 
and we just have to add the corresponding E 's and -E's together. 

Look at the special case ,""here N = 2. The possible results of measuring 
the energy of the system are as follows: 

(u, u) with energyE + E = 2E 
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(u, d) with energy E - E = 0 
(d, u) with energy -E + E = 0 
(d, d) with energy -E - E = -2E 

where u represents the up state and d the down state for a single parti­
cle. For example (u, d) means the first particle is in the up state and the 
second in the down state. We thus get four energy eigenstates, namely 
(u, u) , (u, d), (d, u), (d , d) with corresponding energy eigenvalues 2E, 0, 0, -2E. 

In the same way we find that for N particles the energy eigenstates are 
represented by all strings of u's and d's of length N. These states are the 
eigenvectors of the Hamiltonian of the system and they form a basis for the 
state space of the system (exactly as for the case of a Single spin 1/2 particle 
described in 2.l.1). 

As in 2.l.1 we take the state space of a single particle as the Hilbert space 
C2 (with its usual inner product), but in order to simplify the expression for 
the Hamiltonian later on, we denote the up state by s(l) = (1,0) and the 
down state by s(-l) = (0,1). 

The tensor products described in l.10 now form a natural setting for our 
model. Look again at the case N = 2. The strings (u, u), (u, d), (d, u), (d, d) 
(representing the energy eigenstates which form a basis for the state space) 
can be represented by 5(1) ® 5(1), 5(1) ® s( -1) , s( -1) ® s(l), s( -1) ® s( -1) 
respectively. The latter forms an orthonormal basis for C 2 ® C2 by l.1O.3 
and 1.10.5. So C2 ® C2 can be taken as the state space for two particles. 

Similarly in the general case, the state space for N particles can be taken 
as the Hilbert space SJ := Q9 N C2 

, and the energy eigenstates are 

which is an orthonormal basis for SJ by l.10.3 and l.10.5. Defining the 
Hamiltonian H E £(SJ) of the system is now easy: 

because when the system is in the state 5 ( h) ® ... ® s(l N ), the k'th particle 
is in the state S(lk) and so has energy lkE. It is easy to see H is hermitian 
using the facts that E E lR and that B is orthonormal. 

And so we have a complete quantum mechanical description of N identical 
spin 1/2 particles in a homogeneous magnetic field. 

Note that we interpret the state space of the system as follows: If the 
k'th particle is in the state Vk, then the system is in the state Vl ® ... ® VN · 
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If one of these particles, say the n'th, is in the superposition Vn = AX + j..lY 
where x, y E ((:2 and A, j..l E ((:, then by the multilinearity of ~ mentioned at 
the end of 1.10 we have 

where X and yare in the n'th position in both terms. So the superposition of 
the single particle carries over to the whole system, which seems very natural 
physically. 

It is also interesting to note that not all the states of the system are of 
the form Vl 0 .. . 0 VN. Consider the case N = 2 and the state s(l) 0 s( -1) + 
8( -1) 08(1) of the system (this is indeed a state of the system because it is 
non-zero since B is a basis). Say 

8(1)08(-1)+8(-1)08(1) =v 0w (2) 

for some v, W E ((:2. Since 8(1), 8( -1) is a basis for ((:2 we can write v = 

08(1) + A8(-1) and w = ,5(1) + j..l8(-1) for some 0,A",j..l E cc. Then by 
the multilinearity of ~ we have 

v 0 W = 0,5 (1) 0 5 (1) + 0 j..l5 (1) 0 8 ( -1) + A,8 ( -1) 0 8 (1) + Aj..l8 (-1) 0 5 ( -1) . 

So by (2) and the fact that 8(1)08(1), 5(1)0 5(-1), 8( -1)0 5(1), 5( -1)08(-1) 
is a basis for ([2 0 ((:2 we see that 0, = 0,0j..l = 1, A, = 1 and Aj..l = O. 
The second of these implies 0 i= 0, hence the first implies , = 0 which 
contradicts the third. This means (2) is impossible, hence not all states of 
the system are of the form Vl 0 V2. Physically this means that the state of 
the system can not be specified by simply giving the state of each particle 
separately, even though the particles do not interact in any way. This is 
another instance where quantum mechanics deviates from classical mechanics 
and our everyday experience. As illustrated using (2), this is essentially 
a consequence of the superposition principle. It therefore seems that it is 
inherent to the the structure of quantum mechanics that a system is described 
as a whole. This makes perfect sense if one considers that the quantum 
mechanical descriptions we gave for a single spin 1/2 particle and a collection 
of many spin 1/2 particles in a magnetic field are exactly the same, namely 
both consist of a state space (a Hilbert space) and a Hamiltonian (a hermitian 
operator on the state space). This will become even clearer when we present 
the postulates of quantum mechanics in the succeeding sections. 
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Finally we point out that the model presented in this section can be 
made more realistic by bringing in an interaction (i.e. some sort of force) 
between the particles. Now the spatial arrangement of the particles becomes 
important (for example, we expect the strength of the interaction between 
two particles to depend on the distance between them). If we assume the 
interactions are weak enough that the magnetic field at each particle is not 
altered significantly, then the state space is still 0 N ([:2 since each particle 
still has the two states up and down which are not affected by the other 
particles. A simple model of this type is where we have the N particles equally 
spaced in a straight line and we assume only adjacent particles interact. 
This interaction has to be built into the Hamiltonian of the system. For 
example we might assume that if two adjacent particles have the same spin, 
their interaction gives an energy E, while if they have opposite spin their 
interaction gives an energy -E . These energies then have to be added to the 
Hamiltonian, in other words we will have to modify (1). This is called a one 
dimensional Ising model. For more details on Ising models refer to [P, 12.5]. 

In the rest of this chapter we formalize and extend the ideas of this section. 

2.2 Observables and states 

In 2.1 we described a quantum mechanical model in terms of a finite di­
mensional Hilbert space (the state space) and a hermitian operator (the 
Hamiltonian) on this space. This inspires the next definition: 

2.2.1 	Definition A fin ite dimensional quantum system (abbreviated fdqs) 
is a pair (5) , H ), where 5) is a finite dimensional Hilbert space called 
the state space of the system, and H E £(5)) s is called the Hamiltonian 
of the system .• 

In this chapter we restrict our discussion of quantum mechanics to phys­
ical systems that can be described by fdqs 's, because of their mathematical 
simplicity. In 4.5 we will outline a generalization of some of these ideas. 

In 2.1 we saw that the eigenvalues of the Hamiltonian are the energies 
the system can have. So the operator H in 2.2.1 represents the energy of 
the system. The energy of a system is not necessarily the only measurable 
quantity associated with the system (witness the spin in 2.1.1). It turns 
out that the following postulate regarding measurable quantities (of which 
energy is an example) and the physical state of a system holds: 
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2.2.2 	Postulate I Consider a fdqs (5s, H). The physical state of this system 
is completely determined (or described or represented) by a non-zero 
element x of 5); conversely, every non-zero element of 5) determines 
some physical state of the system. Any two non-zero linearly dependent 
elements of 5) determine the same physical state of the system, hence 
we can completely describe any physical state of the system by a x E 5) 

with 11:z:11 = 1. 
Every attribute of the system that can be physically measured to yield 
a real number as result, is called an observable of the system. Every 
observable of the system is represented by an A E £(5))s in the following 
sense: The eigenvalues of A (which are real since A is hermitian, see 
1.9.4) are the values we can get when measuring the observable. If 
al, ... ,aN is an orthonormal basis of 5) consisting of eigenvectors of 
A (see 1.9.4) with corresponding eigenvalues ai , "., aN, and we write 
x = clal + ". + CNaN, Cl, .'" CN E C, where x E 5) with Ilxll = 1 is the 
state of the system, then the probability of getting the value ak when 
measuring the observable is 

N 

II Pk X l1 2 = L Icn l2 
8(ak, an) 

n=l 

where Pk is the orthogonal projection of 5) on the eigenspace of ak. 

(This is a generalization of the probabilistic interpretation given in 
2.1.1.) If this measurement yields the value ak , then the physical state 
of the system immediately after the measurement is represented by 
Pkx. 
Conversely, every A E £(5)) 5 represents an observable of the system in 
the way described above. For this reason we also refer to the elements 
of £(5))s as the observables of the system.• 

So we can call the Hamiltonian the energy observable. 
We mention that in more advanced quantum mechanics, £(5)) in 2.2.2 is 

replaced by more general *-algebras. It turns out that these algebras are the 
important objects in a rigorous mathematical study of quantum mechanics. 
The Hilbert space acts merely as a "carrier" of the algebra. As we develop 
the theory further it will be clear that we work with the C*-algebra £(5)) 
rather than 5) itself. Even the physical state of the system can be described 
without refering to the Hilbert space as is done in 2.2.2. For this reason 
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2.2.2 should be seen as a preliminary postulate to help us set up the theory 
of quantum mechanics in such a way that it fits into the theory of operator 
algebras. The first step towards this is the concept of expectation values. 

Consider a large number of identical fdqs's (fJ, H), each in the same 
physical state namely x E fJ with Ilxll = 1. Let A be an observable of 
(fJ, H), as in 2.2.2. We measure A for each system and take the average of 
the results. The expectation value (A) of A is intuitively seen as the limit of 
this average as the number of systems goes to infinity. Using 2.2.2 (and its 
notation) we make this more precise: 

l2(A) := L
N 

Icn Q n = (x, Ax) . 
n=l 

We now define a linear functional w on £(fJ) by w(A) = (x, Ax) (for every 
A E £(fJ)). w(A) is then the expectation value for every observable A. 
Clearly w(A* A) = (Ax, Ax) 2: 0 and w(l) = 1. This leads us naturally to 
the next definition: 

2.2.3 	Definition(State) A linear functional w on a unital C*-algebra Ql is 
called a state on Ql, if w(A* A) 2: 0 for all A E Ql, and w(l) = 1.. 

We note that an equivalent definition of a state would be to replace w(l) = 

1 in 2.2.3 by Ilwll = 1 ([Br, 2.3.11]), and so the notion of a state can be 
extended to non-unital C*-algebras. The latter is of course the more usual 
definition of a state known from C*-algebra theory and we will use it in 3.2.4. 

Instead of using elements of fJ to represent physical states as in 2.2.2, it 
will prove more useful to represent physical states by states on £(fJ) (hence 
the name state in 2.2.3). This is in keeping with our move away from Hilbert 
spaces and towards operator algebras. The main advantage of using states 
on £(fJ) instead of elements of fJ, is that the former allows us to describe 
the physical state of the system even if we do not have complete knowledge 
of its physical state, while the latter can only be used to describe the phys­
ical state of the system if its physical state is known completely. States on 
£(fJ) therefore introduce a statistical nature to our theory above and beyond 
the probabilistic interpretation given in 2.2.2. This of course is essential 
in quantum statistical mechanics where we work with systems consisting of 
many particles and complete knowledge of the physical state of the system 
is impossible in practice. vVe describe this in more detail in the next section. 
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2.3 Equilibrium and the Gibbs state 

From now on we will use the notion of temperature. We will not define it , 
but it. has the usual intuitive physical meaning (hotter means higher temper­
ature) and it is measured using a thermometer. For a rigorous definition of 
temperature see [Th, (2.3.16)]. 

It is important to note that we will not regard temperature as an ob­
servable of the physical system under consideration (see 2.2.2), but rather as 
an external condition applied to the system. This is similar to the magnetic 
field in the model described in 2.1. For example, the system might be put in 
a refrigerator to cool it down, or in an oven to heat it up. 

As it turns out it is easier to work with the inverse temperature, which 
we now define: 

2.3.1 	Definition(Inverse temperature) vVe measure temperature T on 
the absolute temperature scale (SI unit: Kelvin, K) . The inverse tem­
perature of a temperature T is defined as 

j3 := 1/kB T 

for all T E lR U {-oo, +oo}\{O}, where kB is Boltzmann's constant . 
(In particular, j3 = 0 if T = -00 or T = +00.) The SI unit of j3 is J-1, 
where J stands for joule .• 

In 2.3.1 we allow negative temperatures, even though strictly speaking OK 
is the theoretical lower bound for the temperature of any object. However , 
negative values of j3 fits naturally into our mathematical analysis later on. 
(vVe can also note that the concept of negative temperature is often useful in 
physics when considering entropy or non-equilibrium conditions in systems 
that have an upper bound for its energy (for example the model described in 
2.1.2). In such cases negative temperatures have been verified experimentally 
(see [P, 3.9] and [To, 2.1.4(c) and 2.2.2]). The energy of a system at a 
negative temperature is higher than when it is at a positive temperature. 
To understand this one has to study entropy and the rigorous definition 
of temperature in terms of entropy. Further details can be found in the 
references already given.) 

We are now going to look at the notion of equilibrium in some detail. 
Consider any physical system at some fixed temperatme T. We also 

assume that the system is not changing as time goes on, more precisely, 
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the expectation value of every observable of the system is constant in time 
(observable here having the same meaning as in 2.2.2, namely an attribute of 
the system yielding a real number when measured). We also want the system 
to be stable. We can describe this intuitively as follows: If the system is 
disturbed slightly in some way without the temperature changing, the system 
only changes slightly and then starts to return to its previous physical state 
as time passes. This disturbance would be described mathematically by a 
temporary change in the Hamiltonian of the system. In the model described 
in 2.1.2 the most obvious example of a disturbance would be to change the 
magnetic field (and hence the Hamiltonian) for a few moments and then 
restoring it . See [Br, Section 5.4.1] and [H, V.3.2] for further discussion on 
stability. 

If a system has the three properties described above, we say it is in equi­
librium. Obviously this is not a very clear definition of equilibrium because 
we did not give a mathematically rigorous definition of stability, but at least 
we now have a good idea what equilibrium means physically. The question 
is: If the only thing we know about a system is that it is in equilibrium 
at some given temperature, how can we describe the physical state of the 
system mathematically? 

Let US, H) be a fdqs in equilibrium at inverse temperature (3 > 0, with 
b1 , ... ) bN an orthonormal basis for fJ consisting of eigenvectors of H; and 
E 1 , ... , EN the corresponding eigenvalues (i.e. the energies of the physical 
states described by the vectors b1, ... , bN ). It is important to note that this 
is the only information we have regarding the system. 

If we could measure the energy of this system precisely, the probability 
of getting En would be 

N 

e-f3En / ~ e-f3Ek . (1) 
k=l 

This is called the Gibbs distribution and it forms the basis of all our further 
analysis of equilibrium. Arguments in favor of this distribution as a discrip­
tion of equilibrium can be found in [F, Section 40-1] and [P, 3.1 and 3.2]. 
We only mention that as the temperature goes down (i.e. (3 rises) the lower 
energies tend to become more probable in our measurements. This makes 
sense intuitively since we associate low temperatures with low energies. For 
example, say El is the lowest energy (El < Ek for k = 2, ... , N) then the 
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probability of getting El during a measurement is (by (1)) 

1/ (1+ f, e-P(E,-E,J) 

which goes to 1 as the temperature goes to 0 (i.e. as (J goes to infinity). This 
means that at absolute zero temperature, the system is in its lowest energy. 
On the other hanel, as the temperature goes to infinity (i.e. (J goes to 0) we 
see from (1) that all the energies become equally probable. 

The expectation value for the energy (i.e the average energy after many 
measurements, see 2.2) is of course just the expectation value (H) of H since 
H is the energy observable. From (1) it is therefore clear that 

(H) ~ (~e-PE'Ek) /fe-PE, ~ Tr(e-PHH)/Tr(e-PH ) 

(see 1.9.5). If we now define a linear functional w on £(fl) by 

w(A) = Tr(pA) where p := e-f3H jTr(e - f3H), (2) 

then w(H) = (H). 
p ;:::: 0 by 1.9.7(3), and clearly Tr(p) = 1. (This holds even if (J ::; 0.) So 

w(l) = 1, and for any A E £(fl) we have 

w(A* A) = Tr(ApA*) = Tr(Apl /2pl/2A*) = Tr(Apl/2(Apl/2)*) ;:::: 0 (3) 

using the elementary properties of the trace. Therefore w is a state on £(fl) 
by 2.2.3. 

Because w(H) = (H), we might guess w(A) is the expectation value of 
any observable A. This turns out to be the case. 

We now generalize and formalize these ideas. 

2.3.2 Definition(Density operator) Let fl be a Hilbert space. An opera­
tor p E £(fl)+ with Tr(p) = 1 is called a density operatoT (or statistical 
operatoT) on fl .• 

If p is a density operator on a Hilbert space fl , and 2t is any C*-subalgebra 
of £(fl) that contains the unit of £(fl) ,then we can define a linear functional 
w on 2t by w(A) =Tr(pA) , (linearity of course follows directly from the defi­
nition of the trace). w is then a state on 2t exactly as in (3) , by 2.2.3. 
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2.3.3 	Definition(Normal state) Let 9J1 be a von Neumann algebra on a 
Hilbert space f), and let p be a density operator on f). Then the state 
w on 9J1 defined by w(A) =Tr(pA) is called a normal state .• 

Keep in mind that £(f)) is a von Neumann algebra on the Hilbert space 
f) by 1.4.8. 

2.3.4 	Definition(Gibbs states) Let (f), H) be a fdqs and take any (3 E R 
The normal state w on £(f)) defined by 

w(A) 	= Tr(e-iJH A)jTr(e-iJH ) 

(as in (2)) is called the (3-Gibbs state of (f), H) .• 

Our discussion of the Gibbs distribution above suggests the following two 
postulates: 

2.3.5 	Postulate II Consider any fdqs (f), H). The physical state of this 
system is described by a state w on £(SJ) in the following sense: w(A) 
is the expectation value of A for every observable A E £(f))s. (The 
expectation value of an observable A is by definition the limit of the 
average value we get when measuring A in n copies of (f), H), each in 
the state w, as n goes to infinity.) Furthermore, w is a normal state, 
i.e. it is determined by some density operator p in the following way: 
w(A) =Tr(pA) for every A E £(f)) .• 

2.3.6 	Postulate III The physical state of a fdqs (SJ, H) in equilibrium at 
inverse temperature (3 > 0 is described by the ,6-Gibbs state of (f), H) .• 

It should be noted that postulate II cannot be proven mathematically (at 
least not without making other assumptions). We have made this postulate 
seem plausible by considering the special case of the energy observable (the 
Hamiltonian) and the Gibbs state, and by our discussion in 2.2 (based on 
2.2.2). Its only real justification is that it can be verified experimentally. 
Attempts to prove postulate III leads one into ergodic theory (see [To, 2.1.1 
and 2.4.1]), but we will take it as our starting point for further analysis (see 
Chapter 3). 

2.3.7 	Proposition Let (SJ, H) be a fdqs, {3 E IR, and w the (3-Gibbs state of 
(f), H). Then w(A) > 0 for every A E £(SJ)+ \ {O}. 
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Proof. Let A E £(SS)+ \{O}. From 1.9.1 and 1.9.3 we see 

N N 

A = L L (bm , Abn ) bm 0 bn 

m=l n=l 

where b1, ... , bN is an orthonormal basis of.fj consisting of eigenvectors of H 
(see 1.9.4). Let En be the eigenvalue of H corresponding to bn- So 

Tt(e-f3HA) 

'Il (t,t,t,e-PE' (bm,Abn) (bI0bl)(bm0bn}) (by 1.9.5) 

'Il (t,t, e-M, (b" Abn) b, 0 bn) (by 1.9.2) 

PEt, (b" (t t, e- , (6" Abn) b,0 bn) b,) (definition of 'Il) 

L
N 

e-f3Ek (bk , Abk ) (by 1.9.1). 
k=l 

N 

Tt(A) = I:: (bn , Abn ), but Tr(A) is also the sum of the eigenvalues of A 
n=l 

(multiplicities included) as can be seen from 1.9.4 and 1.9.1 and the definition 
of TI:. Since A ~ 0, the spectrum of A lies in ffi.+, i.e. the eigenvalues of A 
are non-negative, but since A -::I 0 it follows from 1.9.4 that at least one of 
A's eigenvalues is non-zero. Hence Tr(A) > 0, and since (bn , Abn ) ~ 0 for 
all n (because A ~ 0) it follows that (bn , Abn ) > 0 for at least one n. Since 
clearly e-f3Ek > 0 for all k, we find from the expression for Tt(e-f3HA) given 
above that w(A) =Tt(e-f3H A)jTr(e-f3H) > 0.• 

2.3.7, and the fact that £(SS) is a von Neumann algebra by 1.4.8, inspires 

2.3.8 	Definition(Faithful state) Let SJR be a von Neumann algebra on a 
Hilbert space. A state w on SJR is called faithful if w(A) > 0 for all 
A E SJR+ \ {O}.• 

Combining 2.3.4 and 2.3.7 we get 
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2.3.9 	Proposition Let (5) , H) be a fdqs, {3 E lR, and w the (3-Gibbs state of 
(5) , H). Then w is a faithful normal state on £(5)) .• 

If in 2.3.5 p is the orthogonal projection of 5) on CCx for some x E 5) 
with Ilxll = 1, then clearly w(A) =Tr(pA) = (x, Ax) for every A E £(5)) 
(just compute Tr(pA) using an orthonormal basis of 5) containing x). But 
if the system's state is given by x as in 2.2.2, then (x, Ax) = (A) (see 2.2) , 
so we conclude that a state given by a density operator (as in 2.3.5) is a 
generalization of the description of the physical state of (5), H) by an element 
of 5). As mentioned in 2.2.2 an element of 5) gives a complete description 
of the physical state of the system. For this reason we call a state w over 
£(5)) pure if it is given by w(A) =Tr(pA) where p is the projection of 5) on 
CCx for some x E 5) \ {o}. If w is not pure it is called a mixture. The reason 
for this name is that various pure states are combined with different weights, 
for example in the Gibbs state the eigenvectors of H are combined by using 
weights of the form e-fJE where E E lR. Mixtures are used when we do not 
have complete knowledge of the physical state of the sytem, and pure states 
when we do. 

From now on we will refer to the physical state of a fdqs (5), H) simply 
as the state, meaning the state over £(5)). 

Only one part of our theory is still missing, namely how a fdqs evolves 
with time. We turn to this next. 

2.4 The dynamical law 

2.4.1 	Postulate IV Consider an observable A E £(5))8 of a fdqs (5), H) 
which is in the state w, at time O. Then the expectation value of the 
observable at time t E lR is given by 

iHt Ae-iHtw(e ) 

where we measure t in multiples of Ii , i.e. if tf is the time in seconds 
then t = tf Iii. (Ii is Planck's constant devided by 21[", and the SI unit 
of t is J- 1 , where J stands for joule.). 

We can interpret 2.4.1 in two ways. Firstly we can view the state w 

as evolving with time. Secondly we can view the hermitian operator A, 
representing the observable, as evolving with time (note that eiHt Ae-iHt is 
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hermitian by 1.9.7(1), and therefore represents an observable by 2.2.2, for 
every t E JR). In keeping with our approach of setting up quantum mechan­
ics in terms of operator algebras (in this case £(J))) we choose the second 
interpretation. More on this in 3.1. 

2.4.1 is our dynamical law. We cannot really give any explanation for 
this law except to say that t f--> e-iHt satisfies the Schrbdinger equation 

d . 
dt A(t) = -7,H A(t) 

by 1.9.9 (here A is a function lR ~£(Sj)). Refer to [Su, 3.1 and 3.4J for more 
about this. 

In 2.3 we said that if a system is in equilibrium, the expectation value 
of each of its observables is constant in time. We can now test this for the 
,8-Gibbs state using 2.4.1 in order to lend some more credibility to 2.3.6. 
Consider a fdqs (SJ, H) in the ,e-Gibbs state as given by 2.3.4. For every 
A E £(J)) and t E lR we then have 

w(eiHt Ae-iHt ) Tr(e-,6H eiHtAe-iHt)/Tr(e-,6H) 

_ Tr(e-iHte-,6HeiHt A) /T'r(e- ,6H) 

Tr(e-,6H A)/Tr(e-,6H) (by 1.9.6 and 1.9.7(2)) 

w(A). 

In particular, if A is an observable, this says (according to 2.4.1) that the 
expectation value of the observable does not change with time (see 2.3.5). 
This is of course not a complete characterization of equilibrium (any normal 
state whose density operator is a funtion only of H (by means of 1.9.4) 
ensures the constancy of the expectation values in time, the same proof as 
above applies) but it certainly is a minimum requirement. 

 
 
 



Chapter 3 

KMS states 

We are now going to discuss the so-called Kubo-Martin-Schwinger (KMS for 
short) states. These states turn out to be exactly the equilibrium states of 
fdqs's, but because of the way they are expressed they are easy to extend 
to infinite dimensional systems. They also fit naturally into the Tomita­
Takesaki theory as we will see in 4.4. 

The key to arriving at the KMS states is the following simple observation 
concerning a fdqs (SS, H): 

iHt f3He = e- if t = i{3 where (3 E R 

This connects the dynamical law 2.4.1 with the equilibrium states given by 
2.3.4 and 2.3.6. It certainly is a mathematical trick rather than a big physical 
insight, but it will take us a long way. 

3.1 C*- and W*-dynamical systems 

The group of all *-automorphisms of a C*-algebra 2l will be denoted by 
Aut(2l). (A *-automorphism of 2l is a *-isomorphism from 2l onto itself.) 

The following two definitions are distilled from [Br, 2.7.1]: 

3.1.1 	Definition(One-parameter *-automorphism group) Let 2l be a 
C*-algebra. A function of the form 

T : IR 	---) Aut(2l) : t f-7 Tt 

is called a one-parameter *-automorphism group of 2l if TO is the iden­
tity map on 2l and TsTt = Ts+t .• 

57 
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3.1.2 Definition(C*-dynamical system) Let 2l be a C*-algebra and T a 
one-parameter *-automorphism group of 2l. If JR --->2l : t ~ Tt(A) is 
continuous in the norm of 2l for every A E 2l, we call (2l, T) a C*­
dynamical system.• 

In Chapter 4 we will work with von Neumann algebras and there we will 
need a slighty different type of dynamical system (also see [Pe, 7.4.2]): 

3.1.3 	Definition(W*-dynamical system) Let 9J1 be a von Neumann al­
gebra on a Hilbert space 5), and T a one-parameter *-automorphism 
group of 9J1. If lR --->5) : t ~ Tt(A)x is continuous for every A E 9J1 and 
x E 5), then we call (9J1, T) a W*-dynamical system.• 

Clearly we have 

3.1.4 Proposition If (2l, T) is a C*-dynamical system and 2l is a von Neu­
mann algebra on a Hilbert space, then (2l ,T) is a W*-dynamical sys­
tem.• 

We will only work with vV*-dynamical systems later on (see 4.4), but in 
this chapter we also consider C*-dynamical systems since it doesn't require 
much extra effort. 

The motivation for 3.l.2 and 3.l.3 is the fact that the dynamical law of 
a fdqs (2.4.1) fits into these settings as we will now see. 

3.1.5 	Definition(Time evolution) Let (5), H) be a fdqs and define 

T : lR --->Aut(~(5))) : t ~ Tt 

by 
iHt Ae-iHtTt(A) 	= e . 

T is called the time evolution of (5) ,H) because of 2.4.1. Note that T 

can be naturally extended from lR to tC by 

3.1.6 Proposition The time evolution T of a fdqs (5) , H) is well-defined (in 
fact Tz(A) EAut(~(5))) for every Z EtC), and (~(5)), T) is a C*- and 
W*-dynamical system. 
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Proof. (a) Let z E <C and look at the function T z on £ (f) ) . T z is clearly 
linear, and by 1.9.7(1) and (2) we have Tz(AB) = eiHz Ae-iHzeiHz BCiHz = 
Tz(A)Tz(B) and Tz(A*) = ((e-iHz)*A(eiHz)*)* = (eiHzAe-iHz)* = (Tz(A))*. 
If Tz(A) = 0 then A = e-iHzTz(A)eiHz = 0, and clearly A = Tz(e- iHz AeiHz ) 
for every A E £(f)), hence T z is a bijection. We conclude T z EAut(£(f))).

iHO Ae-iHO(b) From 1.9.5 and 1.9.1 we see that To(A) = e = 1A1 = 
A. Also , TsTt(A) = eiHseiHtAe-iHte-iHs = eiH(s+t)Ae-iH(s+t) = Ts+t(A) for 

every A E £(f)) and s, t E lR as is easily seen from 1.9.5 and 1.9.2. So T is a 
one-parameter *-automorphism group of £(f)). 

(c) Let A E £(f)) and define f : lR --t£(f)) by f(t) = Tt(A). We want to 
prove that f is continuous in the norm of £,(f») , but for r, s E lR 

f(r) - f(8) = eiH(r-s)Ts(A)eiH(s-r) - Ts(A), 

iHtso we only have to prove Il e - 111 --t 0 as t E lR goes to O. 
Let b1 , ... , bN be an orthonormal basis for f) consisting of eigenvectors 

of H with E l , ... ,EN the corresponding eigenvalues. By 1.9.5 IleiHt - 111 ~ 
N 

I: leiEnt 
- 1111bn @bnll --t 0 as t -10. We conclude that f is continuous and 

n=l 

so (£(f)), T) is a C*-dynamical system according to 3.l.2. This proves the 
proposition by 3.1.3, 1.4.8 and 3.1.4.• 

3.2 KMS states 

The following definition is adapted from [Br, 5.3.1]: 

3.2.1 	Definition(KMS states with respect to time evolution) Let T be 
the time evolution (as given by 3.1.5) of a fdqs (f), H). Let f3 ERA 
state w on £(f)) is called a (T, (3)-KMS state if 

W(ATif3(B)) = w(BA) for all A, B E £(f)) .• 

The importance of 3.2.1 is the following proposition which says that the 
KMS states with respect to time evolution are exactly the equilibrium states 
of a fdqs (see 2.3.6 and 2.3.4): 

3.2.2 	Proposition Let T be the time evolution of a fdqs (f), H)) w a state 
on £(f))) and f3 E R Then w is a (T,f3)-KMS state (in the sense of 
3.2.1) if and only if it is the ,S-Gibbs state of (f), H). 
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Proof. (a) Assume w is the ,3-Gibbs state of (S),H). For any A,B E ,S(5)) 
we then have 

w(ATi!3(B)) w(Ae-!3HBe!3H) = Tr(e-!3HAe-!3HBe!3H)jTr(e-!3H) 

Tr(Ae-!3HB)jTr(e-!3H) = Tr(e-!3HBA)jTr(e-!3H) 

- w(BA) 

so w is a (T, ,3)-KMS state. 
(b) Now assume w is a (T,,3)-KMS state. Let b1, "., bN be an orthonormal 

basis for S) consisting of eigenvectors of H with corresponding eigenvalues 
E 1 , .'" EN (see 1.9.4). Let l, m, n E [N], then 

w((bm @ bn)(bl @ bm)) w((bl @ bm)Ti!3(bm @ bn)) 

= w((b[@bm)e-!3H(bm@bn)e!3H) 

= w((b/ @ bm)e-!3Ern (bm @ bn)e!3En ) 

by 1.9.5 and 1.9.2, so e-!3En (bn , bl) w(bm @ bm) = e-!3Ernw(bl @ bn) by 1.9.2. 
Hence 

N 

But L bm @ bm = 1 as is easily seen from 1.9.1, and w(l) = 1 by 2.2.3, so 
m=l 

N 

since Tr(e-!3 H) = L e-!3Em by 1.9.5 and the definition ofTr. Let A E ,S(S)) , 
m=l 

N N 
then by 1.9.3 we can write A = L L al,nbl @ bn where a/,n E C, so we find 

l=l n=l 

N N N N 

w(A) - L L al,nw(bl @ bn) = L L a/,n e-!3E 
n (bn, bl) jTr( e-!3H

) 

l=l n=l [=1 n=l 

L
N 

e-!3E
l al ,L/Tr(e-!3H) (since b1 , ... , bN are orthonormal) 


l=l 

Tr(e-!3HA)jTr(e-!3H) (by 1.9.5 and 1.9.2). 
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In other words w is the ,6-Gibbs state of (SJ, H) .• 

We are now going to give another characterization of KMS states which 
we will then use to define KMS states for any C* - or VV*-dynamical system: 

3.2.3 	Proposition Let 7 be the time evolution of a (SJ ,H), w a state on 
£(SJ), and,6 E K 
Set 

1) f3 '-.- cP0 and 1)f3 := <cg if ,6 '2 0, 

and 
~ /3'-.- <cOf3 and ~f3 := <C~ if {3 < O. 


Then the following two conditions are equivalent: 

(1) w 	is a (7, {3)-KMS state (as defined by 3.2.1). 
(2) For every pair A, B E £(SJ) their exists a bounded continuous func­
tion 

FA,B : 1)/3 ~ <c 

which is analytic on 1)f3 and has the following properties: 


and 

for every t E JR. 

Proof. (a) Assume w is a (7,,6)-KMS state. So w is the ,6-Gibbs state of 
(SJ, H) by 3.2.2. We define 

FA,B : <C ~ <C : z 1----7 W(A7 z (B)) 

for any A, B E £(SJ). So, for t E JR , FA,B(t) = w(A7t(B)) and 

FA,B(t + i,6) Tr(e-f3I-I AeifI (Hif3) Be-iI-I(Hif3 ))/Tr(e- f3 I-I) 

_ Tr(e-f3I-I Ae-f3I-IeiI-ItBe-iHtef3H)/Tr(e-f3H) (by 1.9.5) 

Tr(e-f3H eiHt B e-iI-It e(3I-I e-f3I-I A) /Tr(e-f3 I-I) 

- w(7t(B)A) (by 1.9.7(2)). 

w is bounded (with norm 1) since it is a state, hence it is continuous. So 
from the definition of FA,B it follows by 3.1.5, 1.9.9 and 1.7.2 that FA,B is 
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differentiable (i.e. analytic), namely :fz FA,B( Z) = w (:fz (AT z(B))). Hence 
FA,B is continuous. Let bl , ... , bN be any orthonormal basis for SJ consisting 
of eigenvectors of H with corresponding eigenvalues E l , ... , EN. Let Z E fJ {3 

and write Z = x+iy where x, y E R Since Ilwl! = I , IFA ,B (z) I :s II ATz(B) II :s 
IIAlllleiHzlllIBlllie-iHzlI, but by 1.9.5 

N N N 

lIeiHz II L e-EnY :S L elEn~ L leiEnz Illbn® bnll = {31
n=l n=l n=l 

since Iyl :S 1,61 and Ilbn® bnll = 1 by 1.9.1. A similar inequality holds for 
/le- i Hz/i . It follows that FA ,B is bounded on '1J{3. We have thus proven that 
(1) implies (2). 

(b) Our proof that (2) implies (1) is loosely based on the proof of [Br, 
5.3.7(3)::::}(1)]. Assume (2) holds. Consider any A, B E £(SJ) and let 

GA,B : CC ---+ CC : Z f-t W(ATAB)). 

We will now prove that GA,B( Z) = FA,B(Z) for Z E fJ{3. By 1.7.2, 1.9.9 and 
3.1.5 we know that iz(ATz(B)) exists for all z E C. Clearly :fzW(ATAB)) = 
W (;z( ATz(B))) for all Z E CCsince w is continuous. So GA,B is analytic and 
therefore also continuous. Let 

f := G A,B - FA,B on fJ{3. 

f is continuous on fJ {3 and analytic on fJ (3 since this is the case for GA,B and 
FA,B· We want to show f = O. 

Clearly f (t) = 0 for t E JR. by the definition of GA,B and the first of the 
two equalities given in (2). So we may assume ,6 =I- 0 since fJ{3 = lR for ,6 = O. 

First assume,6 > O. We will now use the terminology and notation given 
in 1.6. Set D := fJ_{3 U JR. UfJ{3, then D* = D is a region, Do = JR., D+ = fJ{3 
and D+ U Do C fJ{3. From 1.6.3 it now follows that there is an analytic 
function 9 : D ---+ CC such that 9 (z) = f (z) for zED+ U R In particular 
g(t) = 0 for t E JR., so 9 = 0 by 1.6.2. Therefore f = 0 since it is continuous 
and D+ is dense in fJ,e. 

We now consider the case,6 < O. Let h : fJ -{3 ---+ CC : z f-t f (2). It is easily 
seen that h is continuous on :D -{3 and analytic on fJ - (3 since f is continuous 
on fJ {3 and analytic on :D{3. Also h(t) = f(t) = 0 for t E R Furthermore, 
-,6 > 0, so we can replace f with h, and ,6 with -,6 in the argument above 
(for ,6 > 0) to find h = o. So f = O. 
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We conclude that FA,B(Z) = GA,B(Z) = W(ATz(B)) for z E '1)/3. In 
particular W(ATi/3(B)) = FA,B(i{3) = w(To(B)A) = w(BA) by the second 
equality given in (2). So w is a (T,{3)-KMS state by 3.2.1. 

This 	proves that (2) implies (1) .• 

In our approach to KMS states thus far we have not referred to C*­
or W*-dynamical systems. Since we worked with a concrete example of a 
one-parameter *-automorphism group (namely the time evolution) we could 
prove 3.2.2 and 3.2.3 by using the definition of the time evolution. However, 
in the general case C*- and W* -dynamical systems become important. The 
following definition is motivated by 3.1.6, 2.3.9, 3.2.2 and 3.2.3. (Also see 
[Br,5.3.7].) 

3.2.4 Definition(KMS states) Let (2t, T) be a C*- or VI*-dynamical sys­
tem, w a state on 2L, and {3 ERIn the W* -case we assume that w is 
normal (see 2.3.3). 
Set 

'1) /3.-.- cP0 and '1)/3 := reg if {3 2: 0, 

and 

'1)/3 := re~ and '1)/3 := re~ if {3 < O. 


w is called a (T, {3) -KMS state if for every pair A, B E 2L there exists a 
bounded continuous function 

which is analytic on '1) /3 and has the following properties: 

and 

FA,B(t + i{3) = w(Tt(B)A) 


for every t ERA (T, -l)-KMS state is called a T-KMS state .• 

3.2.5 	Proposition Let (.f), H) be a fdqs, {3 E JR., w the {3-Gibbs state of 
(.f) , H), and T the time evolution of (.f),H), (see 2.3.4 and 3.1.5) . 
Then w is the only (T,{3)-KMS state on £(.f)) (in both the C*- and 
W*-dynamical settings) as defined by 3.2.4. 

 
 
 



3. 


Proof. is clear 3.1.6, 3.2.2, and 2.3.9.• 

(A) 

is a C*-dynamical 
be as 3.2.4. 
BE 21. and let 

_ 1 ---t : Z I---> 
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and then clearly GA,B is analytic on 1)-1, and bounded and continuous on 
1)-1' Also, 

and 
GA,B(t - i) = W(T -l3t(B)A) = w(at(B)A) 

for every t E IR. So W is an a-KMS state, proving (1). 
Now assume that (3 =j:. 0 and that W is an a-KMS state. Consider any 

A , B E 2L By 3.2.4 there exists a bounded continuous function G A,B : 1)-1 -7 

ee, analytic on 1) -1, such that 

for every t E IR. Setting 

FA,B : 1)13 -7 ee : z f----7 GA,B ( - z/ (3) 

we see that FA,B has all the properties required in 3.2.4, so W is a (T,{3)-KMS 
state, proving (2) .• 

3.2.6(1) says that if we can prove a property of the a -KMS states, then 
the property can be extended to the (T, (3)-KMS states. So we can often 
restrict ourselves to the case (3 = -1 when we study general properties of 
KMS states, and this is indeed what we will do in Chapter 4. 

vVe illustrate 3.2.6(1) in the proof of the next proposition which says that 
a (T, (3) -KMS state is T -'inva'l"iant if {3 =j:. O. 

3.2.7 Proposition Let (QL, T) be a C*- or W*-dynamical system where 2l is 
unital. Let W be a (T, (3) -KMS state on QL where (3 =j:. 0, For A E QL we 
then have 

w(Tt(A)) = w(A) for every t E IR. 

Proof. w(Tt(A)) = w(Tt(ReA)) +iw(Tt(ImA)), see 1.4.9, so we may assume 
without loss of generality that A is hermitian. Since {3 =j:. 0, we may assume 
(3 = -1 by 3.2.6(1). According to 3.2.4 there exists a bounded continuous 
complex-valued function f := F1,A on ee~I' analytic on ee~u such that 

f(t) = w(Tt(A)) = f(t - i) for every t E IR. 

Since w(Tt(A)) = w(Tt(A)*) = w(Tt(A*)) = w(Tt(A)), (see [Br, 2.3. 11 (a)]) , 
it follows that f is real-valued on ee~1 \ee~ I' Hence f is constant by 1.6.4 
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applied to z I---t 1(z - i) . (Note that for {3 = 0 this argument would break 
down even if we didn't use 3.2.6(1) because a bounded continuous function 
on lR isn't necessarily constant.) Thus 

w(Tt(A) ) = I(t) = 1(0) = w(To(A)) = w(A) for every t E R . 

As described in 2.3 and 2.4, one of the properties of a physical system in 
equilibrium is that it doesn't change with time (i.e. the expectation value 
of each of its observables is constant in time). So 3.2.7 lends support to 
our conjecture that a (T, {3)-KMS state is an equilibrium state of a general 
physical system (not just a fdqs) at inverse temperature f3 with the time 
evolution given by T. This is because w(A) is the expectation value of the 
observable A at time 0, and w(Tt(A)) is the expectation value of the same 
observable at time t , when the system is in the state w. 

 
 
 



Chapter 4 

Tomita-Takesaki theory 

This chapter (except for 4.5 and 4.6) is based on [R, sections 2, 3 and 4J. 
The two central results are 4.3.11 (the Tomita-Takesaki theorem), and 4.4.11 
which gives the connection with KMS states. In 4.5 we discuss the physical 
significance of the Tomita-Takesaki theory, bringing together the physical 
ideas of Chapter 2 and the mathematical ideas of this chapter, using the 
KMS states of Chapter 3 as a bridge. The main theme of our approach to 
the Tomita-Takesaki theory is the use of real subspaces of Hilbert spaces 
which allows us to avoid unbounded operators entirely. 

4.1 A preliminary definition and result 

Let S) be a real Hilbert space, and lC, I: two closed vector subspaces of S) 

such that 
lC n I: = {O} , 

and 
lC + I: is dense in S). 

(Notation: X + Y := {x + y : x E X, Y E Y} for any subsets X, Y of a real 
or complex vector space.) 

4.1.1 Definition Let P and Q be the orthogonal projections of S) on lC and 
I: respectively. Set 

R := P + Q and T:= IP - QI (see 1.1.4) 
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and let J be the partial isometry given by the polar decomposition, 
1.5.1, such that 

JT = P - Q and ker(J) = ker(P - Q) .• 

We have 	P, Q, R, T E £(55)+ by 1.1.1, 1.1.2, 1.1.4 and 1.1.5. 

4.1.2 Proposition In 4.1.1 we have: 
(1) 	Rand 2 - R are injective and 0 ~ R ~ 2. 
(2) 	T = R1/2(2 - R)1/2 and T is injective. 
(3) 	 J is hermitian and isometric, and j2 = 1. 
(4) 	T commutes with P, Q, Rand J. 
(5) 	JP = (1 - Q)J, JQ = (1- P)J and JR = (2 - R)J. 
(6) 	Jj( = £1-. 

Proof. (1) As already mentioned, R 2:: O. Also, 1 - P and 1 - Q are 
projections since P and Q are, so 2 - R = (1 - P) + (1 - Q) 2:: 0 by 1.1.5, 
i.e. 	R ~ 2. 

Suppose Rx = 0, where x E 5).. Then 

(Px, Px) + (Qx , Qx) 


(x , Px) + (x, Qx) (since P and Q are projections) 


(x , Rx) 

O. 

So Px = 0 = Qx which implies x E JC 1- n£1-. But JC 1- n£1- = (JC+ £)1- = {O} 
since JC + £ is dense in 5), therefore R is injective. 

JC1-+£1- = (JC1-+£1-)1-1- = (JC1-1-n£1-1-)1- = (JCn£)1- = {0}1- = 5), 

and JC 1- n £ 1- = {O} as mentioned above. 1 - P and 1 - Q are the orthogonal 
projections of 5) on JC1- and £1- respectively, so by replacing P,Q , R,JC,£ 
in the above argument by 1 - P,l - Q, 2 - R, JC 1-, £1- we see that 2 - R is 
injective. 

(2) 	By definition 

T2 	 (P - Q)*(P - Q) = P - PQ - QP + Q = (P + Q)(2 - P - Q) 

R(2 - R) 
(R1/2(2 - R)1/2)2 (by 1.1.3). 
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Moreover, T2 2: 0 and R1/2(2 - R)1/2 2: 0 by 1.1.3, so T = R1/2(2 - R)1/2 by 
1.1. 2 since T 2: O. 

Suppose Tx = 0, where x E fJ, then R(2 - R)x = T 2x = 0, so x = 0 by 
(1). Therefore T is injective. 

(3) Suppose (P-Q)x = 0, where x E fJ, then T 2x = (P-Q)*(P-Q)x = 
0, so x = 0 by (2). Therefore ker(P - Q) = {O}. Hence J* = J and j2 = 1 
by 1.5.1(3). Since J is a partial isometry, we have by definition (see 1.5) that 
IIJxl1 = Ilxll for every x E ker(J)~ = ker(P - Q)~ = fJ. In other words, J is 
isometric. 

(4) Note that JT = T J by 1.5.1(2). Also T2 P = (P_Q)2 P = P-PQP = 

P(P - Q)2 = PT2, hence TP = PT by l.l.3. Similarly TQ = QT, and so 
T R = RT since R = P + Q. 

(5) By (4) we have T JP = (P - Q)P = (1- Q)(P - Q) = (1 - Q)TJ = 

T(l - Q)J, so JP = (1 - Q)J since T is injective by (2). Hence, by (3) , 
PJ = (JP)* = ((1 - Q)J)* = J(l - Q), so JQ = J - PJ = (1 - P)J. 
Therefore JR = JP + JQ = (1- Q)J + (1 - P)J = (2 - R)J. 

(6) By (5), the definition of P and Q, and the fact that J is surjective 
(since j2 = 1), JK. = JPfJ = (1 - Q)JfJ = (1 - Q)fJ = £~ .• 

4.2 The operators of the theory 

In this section we obtain a unitary group 6. t and a conjugate linear isometry 
J that will form the main ingredients of the Tomita-Takesaki theorem in the 
next section. 

Let SJ be a Hilbert space, and K. a closed real subspace of SJ (see 1.2.5) 
such that 

K.niK. = {O}, 

and 
K.+iK. is dense in S). 

SJ and fJIR has the same norm by 1.2.2, so K.+iK. is dense in SJ IR . iK. is a 
closed real subspace of SJ by 1.2.6. Therefore, replacing SJ,K.,£ in 4.1.1 by 
fJIR,K.,iK. , we can define 

P, Q, R, T, J E £(fJ IR ) 

and then 4.1.2 still holds. In particular P and Q are the orthogonal projec­
tions of SJiR on K. and iK. respectively. K.~ and (iK.)~ are defined by 1.2.7. 
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4.2.1 Proposition We have: 
(1) R,2 - R, T E £(Sj)+. 
(2) J is a conjugate linear isometry on Sj. 
(3) (x, Jy) = 	 (y, Jx) for all x, y E Sj. 
(4) (JAJ)* = JA*J for all A E £(Sj) . 

Proof. (1) Let x E SjIR and write x = y + z where y E JC and z E JCl.. Then 
iz E (iJC)l. by l.2.8. ix = iy + iz and iy E iJC, hence by the definition of P 
and Q we have iPx = iy = Q(ix). This implies 

iP = Qi and so Pi = -i(iP)i = -i(Qi)i = -iQ(-1) = iQ. 

Therefore R(ix) = P(ix) + Q(ix) = iQx + iPx = iRx. Combining this 
with R E £(SjIR) we see that R E £(Sj). So R, 2 - R E £(Sj)+ by 4.l.2(1) and 
l.2.4(2). Therefore the positive square roots of Rand 2 - R exist in £(Sj). 

T = R 1/ 2(2 - R)1/2 by 4.1.2(2), where R1/2 and (2 - R)1/2 denote the 
positive square roots of Rand 2 - R on SjIR' But positive square roots are 
unique on SjIR, so the positive square roots of Rand 2 - R in £(Sj) must be 
equal to R1/2 and (2 - R)1 /2 (respectively) as functions since Sj and SjIR are 
the same set . It follows that Rl/2, (2_R)1/2 E £(Sj). So T = Rl /2(2_R)1/2 E 
£(Sj). Therefore T E £(Sj)+ by 4.1.1 and l.2.4(2). 

(2) From 4.l.1 and 4.l.2(4) it follows that 

T J(ix) 	 (P - Q)(ix) = P(ix) - Q(ix) = iQx - iPx = -i(P - Q)x 

-iTJx 

T(-iJx) (sinceTE£(Sj)). 

Therefore J(ix) = -iJx since T is injective by 4.1.2(2). But J is linear on 
SjIR, hence it is conjugate linear on Sj. By 4.l.2(3) and l.2.2, J is an isometry 
on Sj . 

(3) Let x, y 	E Sj. Then 

(x, Jy) 	 (x, JY)IR - i (x, iJY)1R (by l.2.3) 

(x, JY)IR - i (x, J( -iY))1R (by (2)) 
(Jx ' Y)1R - i (Jx,-iY)1R (since J E £(SjIR)s by 4.l.2(3)) 

- (y , JX)IR 	- i (-iy , JX)IR (by l.2.1) 

- (y, JX)IR 	- i (y, iJx)1R (by 1.2.1) 

- (y, Jx) (by 1.2.3). 
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(4) By (3) we have (x, J AJy) = (AJy, Jx) = (Jy, A* Jx) = (JA* Jx, y) .• 

From now on we will view T, Rand J as operators on Sj (as given by 
4.2.1) rather than on SjlR.. 

For future use we note that 

JRJ = 2 - Rand R = J(2 - R)J 

by 4.1.2(3) and (5) . 

4.2.2 Proposition vVe have 0"(2 - R) = O"(R). 

Proof. Let A E R Since J2 = 1 by 4.1.2(3), we have that J is a bijection 
and J(A - R)J = JAJ - JRJ = A - (2 - R). Therefore A - R is a bijection 
if and only if A - (2 - R) is a bijection. By the open mapping theorem it 
follows that A - R Elnv('c(Sj)) if and only if A - (2 - R) Elnv("c(Sj)). By 
definition this means that O"(R) = 0"(2 - R) .• 

Because of 4.2 .1(1), RZ and (2 - R)Z are defined by 1.8.12 for every z E C 
with Rez :;::: o. In particular, Rit and (2 - R)it are defined for every t E R 

4.2.3 Proposition We have J Rit J = (2 - Rtit for every t E R 

Proof. Throughout this proof x and yare arbitrary elements of Sj. 

By 1.8.6 there is a unique spectral measure such that R = JzdE, where 
z : O"(R) --> C : A f-+ A. By 1.8.5 we have JIdE = 1 and 

2 - R = J(2 - z)dE (1) 

(where by definition (2 - Z)(A) = 2 - A for A E O"(R)) . By 4.2.2 

(2 - z)(O"(R)) = 0"(2 - R) = CJ(R), (2) 

so 2 - z is a homeomorphism from CJ(R) to itself. Thus we can define a 
function F on the collection of Borel sets of O"(R) by 

F = JE 0 (2 - z )J, 

i.e. F(8) = JE((2 - z)(8))J for every Borel set 8 C CJ(R). vVe now show 
that F is a spectral measure relative to (CJ(R) ,Sj); see 1.8.1. 
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For every projection P E £(5)) we have (JP J)2 = J P j2P J = J P J and 
(JP J)* = J P J by 4.1.2(3) and 4.2.1 (4). So J P J is also a projection in £(5)) 
since it is bounded and linear by 4.2.1(2). This means that the values of the 
function F lie in the set of projections in £(5)). We have 

F(0) = JE((2 - z)(0))J = JE(0)J = 0 by 1.8.1(1) 

and 
F(CJ(R)) = JE(CJ(R))J = 1 by 1.8.1(1) and 4.1.2(3). 

For Borel sets Sl, S2 C CJ(R) we have 

F(Sl n S2) 	 - JE((2 - Z)(Sl) n (2 - Z)(S2))J (since 2 - z is injective) 

= JE((2 - z)(Sd)JJE((2 - Z)(S2)) J (by 1.8.1(2) and 4.1.2(3)) 

= F(Sl)F(S2). 

For every Borel set S C CJ(R), we write Fx,y(S) := (x, F(S)y). Then 

Fx,y(S) 	 = (x, JE((2 - z)(S))Jy) = (E((2 - z)(S)Jy, Jx) (by 4.2.1(3)) 

= (Jy, E((2 - z)(S))Jx) = EJy ,Jx((2 - z)(S)) (by 1.8.1) 

so Fx,y is a regular Borel complex measure on CJ(R) because of 1.8.1(3) and 
the fact that 2 - z is a homeomorphism. 

We conclude that F is a spectral measure relative to (CJ( R), .f:J). As shown 
above 

Fx,y = EJy,Jx 0 (2 - z). (3) 

We now see that 

(x, Ry) - (x, J(2 - R)Jy) = (Jy, (2 - R)Jx) (by 4.2.1(3) and (1)) 

-	 (by (1))\JY, (/(2 - Z)dE) JX) 

- /(2 - z)dEJy,Jx (by 1.8.4) 

/ (2 - z) 0 (2 - z)d(EJy,Jx 0 (2 - z)) (because of (2)) 

- / zdFx,y (by (3) since (2 - z) 0 (2 - z) = z) 

- (by 1.8.4).\ x, (/ ZdF) y) 
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Therefore R = JzdF which implies that F = E by the uniqueness of E 
given in l.8.6. 

Consider any t E lR. and let i be as in l.8.12. We now find 

(x, JRitJy) 	 - (Jy,R-itJx) (by 4.2.1(3) and l.8.13(2)) 


- (Jy , i-it(R)Jx) (by l.8.12) 


Ji -itdEJy,Jx (by l.8.8 and l.8.4) 

Ji-it 0 (2 -	 z)d(EJy,Jx 0 (2 - z )) (because of (2) 

Ji-it 0 (2 -	 z)dEx,y (by (3) since F = E). 

Set G := Eo (2 - z) on the collection of Borel sets of CJ"(R) and let Gx,y(S) := 

(x, G(S)y) for all x, y E .55 and every Borel set S C CJ"(R). Then G is a 
spectral measure relative to (CJ"(R),.55) (the proof is like the one given for F, 
just remove the J's). Therefore by (1) 

(x, (2 - R)y) J(2 - z)dEx,y = J(2 - z) 0 (2 - z)d(Ex,y 0 (2 - z)) 

JzdGx,y = (x, (J ZdG) Y) (by l.8.4). 

So 2 - R = JzdG which means G is the resolution of the identity for 2 - R , 
see l.8.7. It follows from l.8.8 that (2 - R)-it = i-it(2 - R) = Ji-itdG. 
Therefore 

(x,(2-R)-it y) - Ji-itdGx,y= Ji_itO(2-z)d(Gx,yo(2-z)) 

Ji-it 0 (2 -	 z)dEx,y (since (2 - z) 0 (2 - z) = z) 

(x , JRit Jy) (as was shown above). 

vVe conclude that JRitJ = (2 - R)-it .• 

4.2.4 	Definition A function lR. -d~(.55) : t f---t Ut is called a one-parameter 
unitary group on .55 if the following properties are satisfied for all s, t E 
lR.: 
(1) UsUt = Us+!; 
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(2) (Ut )* 	= U-t ; 

(3) Uo = 1. 

(As a shorthand we will denote the one-parameter unitary group given 

above simply by Ut . Note that t 1----+ Ut is bounded, in fact JJUt JJ2 = 


JJUtUtl1 = 	11111 = 1.). 

4.2.5 	Definition Let 6.t := (2 - R)it R-it for every t E R . 

4.2.6 	Proposition We have that 6. t is a one-parameter unitary group on 
5) with the following properties: 

J 6.t = 6.t1, T 6. t = 6.tT and 6.tlC = IC 

for every t E lR. 

Proof. Ris (2 - R)it = (2 - R)it Ris for all s, t E lR by 1.8.9 and 1.8.12. So 
6. t is a one-parameter unitary group on 5) by 4.2.5,4.2.4 and 1.8.13. 

By 4.1.2(3) and 4.2.3 

R-it J R-it J 6. t 	 J(2 - R)it R-it = J(2 - R)it J2 R-it = 


R-it J R-it J2 = R-it(2 - R)it J = 6.t l. 


T6. t = 6.tT and R6.t = 6.tR by 4.2.5, 4.1.2(4), l.8.12 and l.8 .9. So 
6.t (P - Q) = 6.tJT = JT6. t = (P - Q)6.t and 6.t(P + Q) = (P + Q)6.t 
by 4.l.1, which implies that 6.tP = P6.t . It follows that 6. tlC = 6.tP5) = 
P6.t5) = P5) = K since P is the projection of 5)lR on K while 5) and 5)lR are 
the same sets (see l.2.1) and 6.t is surjective since 6.t6.-t = 6.0 = 1._ 
4.2.7 Definition A one-parameter unitary group Ut on 5) is called strongly 

continuous if the function ffi. -----+5) : t 1----+ Utx is continuous for every 
x E 5). (By 1.3.3 it is clear that Ut is strongly continuous if and only if 
it is continuous in the strong topology on £(5)) defined in 1.4.). 

4.2.8 	Proposition The one-parameter unitary group 6. t is strongly contin­
uous. 

Proof. The function t 1----+ (2 - R)it is bounded on ffi. by 1.8.15. The functions 
t 1----+ (2 - R) itx and t 1----+ R-itx are continuous on ffi. for every x E 5) by 

1.8.14. 
It follows from l.7.4(1) that the flmction t 1----+ (2 - R)it R-itx = 6.tx is 

continuous on ffi. for every x E 5) .• 
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4.3 The Tomita-Takesaki theorem 

In this section we consider a von Neumann algebra 9J1 on a Hilbert space Sj, 

and we assume that there exists a D E Sj such that D is cyclic and separating 
for 9J1 (see 1.4.2). 

Set lC 	:= 9J1s D, the closure of 9J1sn in Sj. 

4.3.1 	Proposition lC is a closed real subspace of Sj, lCnilC = {o}, lC+ilC 
. is dense in Sj, and 9J1~n C (ilC).L (see 1.2.7). 

Proof. lC is clearly a closed vector subspace of SjIR (i.e. a closed real subspace 
of Sj) because of 1.2.2. 

For any A E 9J1 we can write A = B + iC where B, C E 9J1s , so An E 

9J1sn + i9J1s n C lC+ilC. However, 9J1n is dense in Sj since n is cyclic for 9J1, 
therefore lC+ilC is dense in Sj . 

Consider any A E 9J1s and B E 9J1~, then (An, Bn) = (BAn, n) = 

(ABn, n) = (Bn, An), so (An, Bn) E R Therefore (AD, iBn)IR = Re (An, iBn) = 

O. This implies that i9J1~n C lC.L, so 9J1~n C -ilC.L = ilC.L C (ilC).L by 1.2.8. 
For any A E 9J1' we can write A = B + iC where B, C E 9J1~, so An E 

9J1~n + i9J1~n C ilC.L+iilC.L = ilC.L+lC.l.. C (ilC).L +lC.L C (lCnilC).L where 
(lCnilC).L is taken in SjIR' The vector n is separating for 9J1 = 9J1", so it is 
cyclic for 9J1' by 1.4.3, i.e. 9J1'n is dense in Sj = Sj]R (see 1.2.1 and 1.2.2). 
Hence (lCnilC).L = Sj]R and we conclude that lCnilC = {O} .• 

Using 4.3.1 we can now define P and Q on SjIR, and R, T, J and 6. t on Sj 

exactly as in 4.2 in terms of lC = 9J1sn. 
4.3.2 	Definition We call J the modular conjugation associated to (9J1 , n). 

We call 6. t the unitary group associated to (9J1, n) .• 

In what follows we give a series of intermediate results culminating in the 
Tomita-Takesaki theorem (4.3.11). These intermediate results are nothing 
more than a breakdown of the proof of 4.3.11 into smaller parts , except for 
6.t n = n in 4.3.9 which will be used in 4.4. 

4.3.3 	Lemma Let B E 9J1~ and consider any A E C with Re A > O. Then 
there is an A E 9J1s such that 

(Bn, cn) = Re(A (An, cn)) 

for every C E 9J1s · 
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Proof. Since every U E 9J1 can be written in a unique way as U = V + iW 
where V, W E 9J1s , we can define linear functionals 'I/J and 'l/Ji on 9J1 by 

'I/J (C) = (Bn, Cn) and 'l/Ji(C) = Re(A (An ,Cn)) for C E 9J1s 

for every A E 9J1. Note that 'I/J(C) E IR for C E 9Jts since B E 9J1~ . 

We are now going to show that 'I/J = 'l/Ji for some A E 9Jts , and this will 
complete our proof. We break the proof down into several parts . 

(a) Clearly'I/J is a-weakly continuous by 1.3.5 and 1.3 .3. For every A E 9J1 
and C E 9J1s 

1fJ i(C) = ~A (An, cn) + ~-x (cn, An) = ~A (An, cn) + ~-x (n, CAn) 

so 'l/Ji(u) = ~A (An, un) + ~-x (0" UAn) for every U E 9J1. It follows from 
1.3.5 and 1.3.3 that 1fJi is a-weakly continuous. 

In other words 1fJ, 'l/Ji E 9J1* for every A E 9J1 (see 1.4). 
(b) Suppose there is an A' E 9J1s such that 

'I/J (C) = Re (R~A (A'n,Cn)) for every C E 9J1s · 

Then, setting A:= A'/ReA, we find that 'I/J(C) = 1fJi(C) for every C E 9J1s 

as wanted. So we may assume that Re A = 1. 
(c) Suppose there is an A' E 9J1s such that 

((B + IIBIDn, cn) = Re(A (A'n, Cn)) for every C E 9J1s · 

It then follows for every C E 9J1s that 

(Bn, Cn) = Re(A ((A' -IIBII)n, Cn)) 

since Re A = 1 and (IIBII 0" cn) E IR as C* = C. Therefore A := A' - IIBII 
is the wanted operator. B + IIBII 2: 0 by 1.4.1, so we may assume B 2: o. 

(d) If B = 0 the result follows by setting A := o. So we may assume that 
B #- O. Suppose there is an A' E 9J1s such that 

\ II~II n, cn) = Re(A (A'n, Cn)) for every C E 9J1s · 

Then A := liB II A' is the wanted operator. Since B/ IIBII :::; IIB / IIBllil = 1 
by 1.4.1, we may assume B :::; 1. 
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(e) By (a) we may define 9 : 9J1s --t 9J1* : A r-t 'IjJ~. We show that 9 
is continuous with the weak* topology on 9J1 and the weak topology on 9J1* 
(see 1.4 for the definitions of these topologies). Let A E 9J1s and consider 
any basic closed weak neighbourhood of g(A) as given by 1.3.3, say 

N:= {w E 9J1*: I(w - g(A))(Mk)1 ~ c for k = 1, ... ,n} 

where c > 0 and M I , . . . , Mn E 9]1. We have to show there exists a weak* 
neighbourhood N' of A such that g(N') C N. 

Set Wk := 'IjJ~eMk + i'IjJimNh E 9J1* (by (a)) for k = 1, ... ,n. (See 1.4.9 for 
the definition of Re and 1m.) Let 

N' := {A' E 9J1s : IWk(A' - A)I ~ c for k = 1, ... ,n} 

then N' is a weak* neighbourhood of A by 1.3.3. Consider any A' E N'. 
Then, for k = I, ... , n, we have 

l(g(A') - g(A))(Mk)1 

1 'IjJ ~1 (Re Nh) + i'IjJ~, (1m Mk) - 'IjJ~ (Re Nh) - i 'IjJ~ (1m Nh) I 
- IRe(A (A'D, (Re NIk)D)) + i Re(A (A'D, (1m NIk)D) 

- Re(A (AD, (Re Mk)D)) - i Re(A (AD, (1m NIk)D)) I 
IRe(A ((A' - A)D, (ReMk)D)) + iRe(A ((A' - A)D, (lmNh)D))1 

IRe(>: ((Re Nh)D, (A' - A)D)) + i Re(>: ((1m Mk)D, (A' - A)D)) I 
IWk(A' - A) I (by the definition of Wk) 

< c (by the definition of N') . 

So g(A') E N and therefore g(N') C g(N) as needed. 
(f) From now on we write 

'ljJA:= 'IjJ~. 

Let V := {'IjJ;1 : A E 9J1s and IIAII ~ I} C 9J1*. We show that V is weakly 
closed and convex. 

Let N := {A E 9J1 : II All :::; I}, then V = g(9J1s n N). The set N 
is weakly* compact according to 1.4.5(1). Also, 9J1s is weakly* closed by 
1.4.4. Therefore 9J1s n N is weakly* compact. Because of the continuity of 
9 given in (e) , we conclude that g(9J1s n N) is weakly compact, i.e. V is 
weakly compact. Hence V is weakly closed since the weak topology on 9]1* 

is Hausdorff by 1.4.5(2) . 
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Consider any t E [0,1] and A, A' E 9J1s n N. For every C E 9J1s 

(tg(A) + (1 - t)g(A'))(C) - t Re(>. (AD, CD)) + (1 - t) Re(>. (A'D, CD)) 

Re(>. ((tA + (1 - t)A'D, CD)) 

g(tA + (1 - t)A')(C) 

which means that tg(A) + (l-t)g(A') = g(tA+ (l-t)A'). Clearly tA+ (1-
t)A' E 9J1s n N, therefore tg(A) + (1 - t)g(A') E V, so V is convex. 

(g) If 1jJ E V, the result follows. So suppose 1jJ tj:. V. Then by 1.3.6 there 
exists a weakly continuous linear functional f on 9J1* such that f(1jJ) tj:. f(V) 
since V is convex and weakly closed by (f). Also, J(V) is convex since J is 
linear and V is convex, so by 1.6.7 there exists an rE<C with Irl = 1 such that 

Re(rf(1jJ)) > Re(rw) for every wE f(V). (1) 

But by l.4.5(2), l.3.10 and l.3.7 there exists an M E 9J1 such that 

f(w) = w(M) for all w E 9J1*. 

Therefore Re(r1jJ(M)) > Re(rw(M)) for every w E V by (1). It follows that 
Re(r1jJ (M)) > Re(r1jJ A(Nf)) for every A E 9J1s n N by the definitions of V 
and N given in (f). In other words 

(Rer)1jJ(ReM) - (Imr)1jJ(ImM) > (Rer)1jJA(ReM) - (Imr)1jJA(ImNI) 

for every A E 9J1s n N, since by definition 1jJ(C), 1jJ A(C) E lR for C E 9J1s . 

Writing D:= (Rer) ReNI - (Imr)ImM E 9J1s , we get 1jJ(D) > 1jJA(D) for 
every A E 9J1s n N, i.e. 

(BD , DD) > Re(>. (AD, DD)) for every A E 9J1s n N (2) 

by the definition of 1jJ and 1jJ A- By l.5.1 we have a partial isometry U E £(5)) 
such that D = UIDI. By 1.5.1(4) U* = U , so by 1.5.1(1) U D = U* D = 

IDI = IDI* = (U* D)* = DU. Hence (UD, DD) = (D, U DD) = (D, DUD) = 

(DO" UD) which implies that (UD, Do') E R Since U is a partial isometry 
IIUII :S 1 , while U E 9J1 by l.5.1(5), thus U E 9J1s n N. Note that Bl /2 E 9J1' 
since B 2:: 0 by (c) and B E 9J1' which is a C*-algebra. Therefore, setting 
A = U in (2), we find 

Re(>. (UD, DD)) < (BD, DD) 
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(Bl/2D, B 1/ 2 Do') 

(Bl/2D, DBl/2D) (since B 1
/ 
2 E 9J1') 

< (Bl /2D,IDIBl/2D) (since D ~ IDI by l.4.1) 
2(IDI 1

/ 
2D, BIDll/2D) (since B 1/ E 9J1' and D E 9J1) 

< (IDI 1
/ 
2D,IDI 1

/ 
2D) (since B ~ 1 by (d)) 

(D,IDID) 
- (D,U*DD) (by 1.5.1(1)) 

(UD,DD) 

Re(A (UD, DD)) 

since Re A = 1 by (b) and (UD, Do') E JR. But this is absurd, hence our 
supposition 'IjJ ~ V must be wrong.• 

4.3.4 	Corollary For every B E 9J1' there is an A E 9J1 such that 

JTBD = AD and JTB*D = A*D. 

Proof. (a) First assume B E 9J1~. Apply 4.3.3 with A = 1 to obtain an A E 

9J1s such that (BD, CD) = Re (AD, CD) for all C E 9J1s , i.e. (BD, CD)IR = 

(AD, CD)IR for all C E 9J1s . So (BD - AD, CD)IR = 0 for all C E 9J1s . Hence 

B 0, - AD E 9J1sD..l = K..l, but AD E K since A E 9J1s, therefore 

o= P(BD - AD) = PBD - AD 

since by definition P is the projection of ..DIR on K. BD E (iK)..l by 4.3.1, so 
QBD = 0 since by definition Q is the projection of SJIR on iK. Thus 

JTBD = (P - Q)BD = AD according to 4.1.1. 

(b) Now consider any BE 9J1'. Then by (a) there exist A,A' E 9J1s such 
that JT(ReB)D = AD and JT(lmB)D = A'D. By 4.2 .1(2) we then have 
JT(i 1m B)D = -iA'D. Hence 

JTBD = JT(ReB + ilmB)D = (A - iA')D 

and 

JTB*D = JT(ReB - ilmB)D = (A + iA')D = (A - iA')*D. 

So A := A - iA' E 9J1 is the operator we wanted.• 
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4.3.5 Lemma 	Let B E 9Jl' and >- E C with Re>- > O. Then there is an 
A E 9Jl such that 


T JBJT = >-(2 - R)AR + >':RA(2 - R). 


Proof. 	Suppose there are A, A' E 9Jl such that 

T J(Re B)JT = >-(2 - R)AR + >':RA(2 - R) 

and 
T J(Im B)JT = >-(2 - R)A'R + >':RA'(2 - R). 

Then 

T JBJT = TJ(ReB)JT - iTJ(ImB)JT (by 4.2.1(2)) 

= >-(2 - R)(A - iA')R + >':R(A - iA')(2 - R) 

while A - iA' E 9Jl. So we may assume that B is hermitian. Therefore, by 
4.3.3, there is an A E 9Jls such that for all C E 9J1s 

(Bn, cn) = Re(>- (2An, cn)) = 2 Re(>- (An, cn)) 

- >- (An, cn) + >.: (cn, An) . 

So for all C E 9Jl we have 

(Bn, cn) - (Bn, (Re c)n) + i (Bn, (1m C)n) 

- >- (An, (ReC + i ImC)n) + >.: ((ReC - i 1m C)n, An) 

- >- (An, cn) + >.: (c*n, An) . 

For all C, D E 9Jl it follows (substituting D*C for C in the equality above) 
that 

(BDn, cn) = (Bn, D*cn) = >- (DAn, cn) + >.: (Dn, CAn) (1) 

since B E 9J1'. Consider any C', D' E 9Jl', then by 4.3.4 there exist C, D E 9Jl 
such that 

JTC'n = cn and JTD'n = Dn (2) 

and 
JTc'*n = c*n and JTD'*n = D*n. (3) 
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Substituting (2) into (1) we get 

(BJTD'D, JTG'D) =,\ (DAD, JTG'D) +"X (JTD'D, GAD) 

but B* = B, so using 4.2.1(3) we have 

(JBJTG'D, T D'D) =,\ (TG'D, JDAD) +"X (JGAD, TD'D) . 

Since T* = T by 4.2.1(1), it follows that 

(TJBJTG'D, D'D) =,\ (G'D, T JDAD) + X(T JGAD, D'D) (4) 

For every U E 9J1s , we have UD E K (by definition) so PUD = UD by 
definition of P, hence by 4.1.1 and 4.1.2(4) 

T JUD = (P - Q)UD = (2 - P - Q)UD = (2 - R)UD. (5) 

For every U' E 9J1~, we have u'n E (iK).l.. by 4.3.1 so QU'D = 0 by definition 
of Q, hence by 4.1.1 and 4.1.2(4) 

T JU'n = (P - Q)U'n = (P + Q)U'n = RU'n. (6) 

Using (5) and 4.2.1(2) we find that for every U E 9J1 

T JUn = T J(Re U)n - iTJ(Im U)n = (2 - R)U*n. (7) 

Similarly we find using (6) that 

T JU'n = RU'*n for every U' E 9J1'. (8) 

By (7) and (3) we have (setting U = DA in (7)) 

T JDAn = (2 - R)AD*n = (2 - R)AJTD'*n 
= (2 - R)ARD'n (by (8) and 4.1.2(4)). 

Likewise T JGAD = (2 - R)ARG'n. Substituting these two expressions in 
(4) we get 

(TJBJTG'n, D'n) = ,\ (G'n, (2 - R)ARD'n) +"X ((2 - R)ARG'D, D'n) 

= (XRA(2 - R)G'n, D'D) + ('\(2 - R)ARG'D, D'D) 

since R* = R by 4.2.1(1). Since 0, is cyclic for 9J1' as pointed out in the proof 
of 4.3.1, it follows that 

T JBJT = XRA(2 - R) + '\(2 - R)AR 

by the definition of a cyclic vector, 1.4.2.• 
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4.3.6 	Lemma Let A = ei 'P/2 where -7r < cp < 7r) and let A and B be as in 
4·3.5 (this is possible since Re A = cos 3> 0). Then

1:00 
(x, Ay) = e-'Pt(e7rt + e-7rt )-l (x, 6.tJBJ6.-ty) dt 

for all x , y E 5). 

Proof. Set Z := {z E C : IRezl :S Dand consider any x, y E J). Let 

f : Z 	-+ C : z f--t (x, R-Z+1/2(2 - Ry+l/2 ARz+l/2(2 - R)-Z+1/2y) 

(this is well-defined by l.8.12 and 4.2.1(1) since Re( -z + 1/2), Re(z + 1/2) E 

lR+ for z E Z) . By l.8.15, l.8.14 and l.7.4 it is clear that f is bounded and 
continuous on Z, and differentiable (i.e. analytic, see l.6.1) inside Z. For 
every t E lR we have by 4.2.5, l.8.9 and l.8.13(1) and (3) that 

1 - 1 	 ­
Af(it + 2) + Af(it - 2) - A (x , 6.t(2 - R)AR6.-ty) + A (x, 6. t RA(2 - R)6.-ty) 

(x,6. tT JBJT6._ ty) (by 4.3.5) 

- (Tx,6.t1BJ6._ tTy) (by 4.2.6 and 4.2.1(1)). 

Moreover, f(O) = (x,TATy) = (Tx,ATy) by 4.l.2(2), l.8.12 and 4.2.1(1) , 
so from l.6.8 it follows that 

(Tx, ATy) = [:00 e-'Pt(e7rt + e-7rt )-l (Tx, 6.t1BJ6._tTy) dt. (1) 

By 4.2.1(1) , 4.l.2(2) and l.l.7 we have that TJ) is dense in J), hence there 
exist sequences (xn) and (Yn) in TSj such that 

xn -+ 	x and Yn -+ y. (2) 

g(t) = (x,6. tJBJ6._ ty) , h(t) = G(t)g(t) (3a) 

gn(t) = (xn,6.t1BJ6.-tYn) , hn(t) = G(t)gn(t) (3b) 

for n = 1,2, 3, .... So by (1) 

(4) 
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JBJ is a bounded linear operator by 4.2.1(2), and (xn) and (Yn) are bounded 
by (2), hence since t l-7 D.. t is bounded (see 4.2.4 and 4.2.6) it follows that 
there exists an !VI E IR such that 19n (t) I < M for all nand t. Clearly 

(5) 

From (2) and (3) it is clear that 9n(t) --t 9(t) for every t, hence by (3) 

hn(t) --t h(t) for every t. 

Also, Ihn(t)1 :S MG(t) for all nand t, while 

00 01: < 1 e(-rr-<p)tdt + f+OO e-(-rr+<p)tdtG(t)dt (using (5)) 
-00 Jo 

1/(1l' - r.p) + 1/(1l' + r.p) 

< 00 (since - 1l' < r.p < 1l'). 

So from Lebesgue's dominated convergence theorem ([Ru, l.34]) it follows 
that 

001: h(t)dt = l~~1: hn(t)dt. 

By (2) and (4) we conclude that (x, Ay) = J~: h(t)dt.• 

4.3.7 Lemma Let B E 9J1'. For every t E IR we then have 

Proof. Set A = ei <p/2 where -1l' < r.p < 1l' (so Re A = cos 3 > 0) and let A 
then be given by 4.3.5. Consider any C E 9J1' and x, Y E.5). Define 9 : IR --t CC 
by 

9(t) (x, (CD..t1BJD.._ t - D..t1BJD.._t C)y) 

- (C*x,D..tJBJD.._ty) - (x,D..t1BJD.._ t Cy). 

Then according to 4.3 .6 

(1) 
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since A E 911 and C E 911'. Let Z := {z E C : IRe zI < 7r} and 

00 
zt (e7rt + e-J : Z -> C: z f------+ e- 7rt )-lg(t)dt (2)1:

The function J is well-defined. Indeed, since t f------+ 6 t is bounded (see 4.2.4), 
we have that 9 is bounded (say by M E lR) and continuous by 4.2.1(2),4.2.8 
and 1.7.4 ( 1) ). Furthermore 

in the same way as J~: G(t)dt < 00 in the proof of 4.3.6. 
Let S be any triangular path in Z, then by applying Fubini's theorem 

([Ru, 8.8]) to each edge of S separately we find from (2) using Cauchy's 
integral theorem that 

since Z f------+ e-iz is analytic. Hence J is analytic by Morera's theorem ([Con, 
IV 5.10]) since J is continuous as can easily be confirmed from the definition 
of J using Lebesgue's dominated convergence theorem. According to (1) , 
J(z) = 0 if z is real, thus J = 0 by 1.6.2. In particular J(is) = 0 for real s, 
but then by (2) and 1.6.6 

(e7rt + e­7rt t 1g(t) = 0 for all t E lR\X 

where X is some set in lR with Lebesgue measure O. Since 9 is continuous 
we conclude that 9 = O. So, by the definition of g, 

C6t JBJ6_t = 6 t JBJ6_t C for every C E 911' , 

i.e. 6tlB J 6_ t E 9)1" = 911 for all t E lR since J B J is a bounded linear 
operator by 4.2.1(2) .• 

4.3.8 Corollary J911' J c 911. 

Proof. JBJ = 6oJBJ60 E 911 for B E 911' by 4.2.6 and 4.3.7 .• 

4.3.9 Proposition JD = D and 6 t D = D. 
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Proof. 1 E 	9J1s and 1 E 9J1~, so D E 9J1sD c JC and D E 9J1~D C (iJC)l.. by 
4.3.1. Therefore PD = D and QD = 0 by the definitions of P and Q. So 
T2D = (P - Q)2D = D and JTD = (P - Q)D = D by 4.l.1, l.l.4 and l.l.5. 
Also, T 2:: 0 and T2 2:: 0 by 4.2.1 and 1.l.3. Therefore TD = (T2)1/2D = 
(1)1/2D = D by 1.8.16 and 1.8.12, and so JD = PTD = TD = D by 4.1.2(3). 

RD = (P + Q)D = D, so (2 - R)D = D. Therefore .6.t D = D by 4.2.5, 
1.8.12 and 1.8.16.• 

4.3.10 Lemma J9J1J C 9J1'. 

Proof. We break the proof down into several parts. 
(a) Consider any A, B E 9J1s . Then JAD E (iJC)l.. since JJC = (iJC)l.. by 

4.1.2(6). So Re (JAD, iBD) = (JAD, iBD)~ = 0 by the definition of JC and 
1.2.7. Hence 1m (JAD,BD) = -Re(i(JAD,BD)) = -Re(JAD,iBD) = 0 
which means that (JAD, BD) E R Therefore (JAD, BD) = (BD, J AD) = 

(AD, J BD) by 4.2.1 (3). So 

(B J AD, D) = (JAD, BD) = (AD, J BD) = (D, AJBD) . 

(b) Consider any A E 9J1s and B E 9J1, then it follows from (a) that 

(BJAD, D) 	 - ((ReB)JAD,D) - i ((1mB)JAD, D) 

= (D, AJ(Re B)D) - i (D, AJ(1m B)D) 

= (D,AJBD) (by 4.2.1(2)). 

(c) Consider any A, B E 9J1s and C E 9J1', then BJCJ E 9J1 by 4.3.8, so 
from (b) we get ((BJCJ)JAD,D) = (D,AJ(BJCJ)D) . Therefore 

(BJCAD,D) 	= (D,AJBJCD) (1) 

by 4.3.9 and 4.1.2(3). Now, 

(AJBJD, CD) 	 - (JBJD,ACD) 

- (D, JBJACD) (by 4.2.1(4)) 

- (BJACD, JD) (by 4.2.1(3)) 

- (BJACD , D) (by 4.3.9) 

- (D,AJBJCD) (by (1) since AC = CA) 

- (AD,JBJCD) 

- (JBJAD,CD) (by 4.2.1(4)). 
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Since 0 is cyclic for 9Jl' (as mentioned in the proof of 4.3.1) it follows that 

AJBJO = JBJAO. 

(d) Now consider any A, B, C E 9Jl. Since A = Re A + i 1m A and B = 
Re B + i 1m B, we see from (c) and the conjugate linearity of J (4.2.1(2)) 
that 

AJEJO = JBJAfl. 	 (2) 

Replacing A in (2) by AC and then by C, we find that 

lBl(AC)n = (AC)lBln = AlBlcn. 

Since 0 is cyclic for 9Jl, and J E J A and AJB J are continuous linear operators 
by 4.2.1(2), it follows that JEJA = AJBJ, i.e. JBJ E 9Jl' .• 

4.3.11 	Tomita-Takesaki theorem Let 9Jl be a von Neumann algebra on 
a Hilbert space Sj, and let fl E Sj be cyclic and separating for 9Jl (see 
1.4.2). Let J and 6 t be the modular conjugation and unitary group 
associated to (9Jl, fl) (see 4.3.2). Then: 
(1) J9JlJ=9Jl'. 
(2) 6 t 9Jl6_ t = 9Jl for every t E JR . 

Proof. By 4.1.2(3) and 4.3.8 we have 9Jl' = j29Jl' j2 c J9JlJ. So from 4.3.10 
we get (1). Now 4.3.7 implies 

since j2 = 1 by 4.1.2(3). Of course this still holds if we replace t by -t, so 
from 4.2.4 and 4.2.6 we find that 

Usually in Tomita-Takesaki theory an operator 6 = (2 - R)R-l, called 
the modular operator, is defined. (This operator may be unbounded which 
is why we avoided it.) Then one considers 6 it (which requires a functional 
calculus for unbounded operators). Comparing this with 4.2.5 we see that 
we have replaced 6 it by 6 t in our approach to the theory. 

We will need 4.3.11(2) in the proof of 4.4.11. 
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4.4 The KMS condition and the modular group 

In this section we present the connection between 6.t in the Tomita-Takesaki 
theorem (4.3.11) and KMS states (3.2.4). 

But first we return to the situation described in 4.2. In 4.4.1 to 4.4.8 we 
study this situation further) 4.4.8 being the main result . So let .f)) J() p) Q) 
R) T) J and .6.t be as in 4.2 . 

4.4.1 	Definition(KMS function) A bounded continuous function f : C~l ---+ 

C which is analytic on C~l is called a KMS function.• 

4.4.2 	Definition(KMS condition) Let .[ be a real subspace of S) (see 
1.2.5). A one-parameter unitary group Ut on S) is said to satisfy the 
KMS condition with respect to .[ if for any given x) y E .[ there is a 
KMS function f such that 

f(t) = (x) Uty) and f(t - i) = (Uty) x) 

for all t E R. 

4.4.3 	Proposition The function f in 4.4.2 is unique. 

Proof. Let 9 also be a KMS function satisfying 4.4.2 for the given x) y. Then 
clearly f - 9 is a KMS function and f(t) - g(t) = 0 for all real t. So by 1.6.3 
there is an analytic function F : C~l ---+ C such that F(z) = f(z) - g(z) for 

z E C~l n C~l' In particular, F(t) = 0 for real t) hence F = 0 by 1.6.2 which 
means f - 9 = 0 since f - 9 is continuous.• 

We now give a useful alternative formulation of the KMS condition: 

4.4.4 Proposition Let .[ be a real subspace of .f), and Ut a one-parameter 
unitary group on .f) . Ut satisfies the KMS condition with respect to .[ if 
and only if given any x) y E .[ there is a bounded continuous function 
f : C~1/2 ---+ C, analytic on C~1/2' such that 

f(t) = (x) Uty) and f(t - i/2) E ~ 

for all t E ~. 
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Proof. First we prove that these conditions imply the KMS condition. Sim­

ilar to the proof of 1.6.4 we apply 1.6.3 along the line <c=~~~ to find that the 

function 9 : <C~1 -+ <C defined by 

g( z ) = J(z) and g(z - i/2) = J(z - i/2) for z E <C~1/2 

is analytic on <C~l. The function 9 is bounded and continuous since J is. 

(What makes all this work is the fact that it is given that J (<C=~ ~n c R) 

So 9 is a KMS function that extends J, and 

g(t - i) = g(t - i/2 - i/2) = J (t - i/2 - i/2) = J(t) = (Uty, x) 

for all real t. Hence Ut satisfies the KMS condition with respect to L 
Conversely, assume Ut satisfies the KMS condition with respect to .c. 

Consider any x, Y E .c and let J be as in 4.4.2. Clearly the function 

9 : <C~l -+ <C : z 1---+ J(z - i) 

is a KMS function since J is. Also 

g(t) = J(t - i) = (x, Uty) and g(t - i) = J(t) = (Uty , x) 

for all real t by the definitions of 9 and 1. So by 4.4.3 9 = J, hence J(t-i/2) = 

g(t - i/2) = J (t - i / 2 - i) = J(t - i/2), i.e. J(t - i/2) E JR, for all real t .• 

6.t is a one-parameter unitary group on .fJ by 4.2.6. Hence we can state 

4.4.5 Proposition 6.t satisfies the KMS condition with respect to /C . 

Proof. Let x, Y E /C. By 4.l.1, 4.1.2(4) and the definition of P (as given in 
4.2) we have 

2y 	 2Py = (P + Q)y + (P - Q)y = (R + JT)y (1) 
(R + T J)y = Rl/2(Rl/2 + (2 - R)1/2 J)y 

by 4.l.2(2) and the fact that R1/2 (respectively (2 - R)1/2) is the same in 
£(.fJ) and £(.fJIR ), as mentioned in the proof of 4.2.1(1). 
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Set 
v:= (Rl /2 + (2 - R)1/2J)y/2 

then 	y = R 1/ 
2

V and 

(2) 

by 4.2.5, 1.8.12 and 1.8.13(1). Let 

2f : CC~1/2 ---+ cc: z t--+ (x, (2 - R)iz R- iZ+1
/ V). 

By 4.2.1(1), 1.8.12, 1.8.14, 1.8.15 and 1.7.4 f is well-defined, bounded and 
continuous on CC~1/2 and analytic on CC~1/2 ' Clearly 

f(t) = (x,6 t y) for all t E IR 	 (3) 

by (2). Consider any t E IR. By 1.8.9 and 4.2.4(2) 

f(t - i/2) = (x, (2 - R)it+l/2R-itv) = (6_ t x, (2 - R)1/2v) . 

But by 4.1.2(2), 1.1.3 and the definition of v 

2(2 - R)1/2V 	 (T + (2 - R)J)y = (T + JR)y (by 4.1.2(5)) 

J(JT + R)y = 2Jy (by (1) and 4.1.2(3)). 

So f(t - i/2) = (6_ t x, Jy). However, 6_t x E K by 4.2.6, and Jy = JPy = 
(1 - Q)Jy E (iK).l by 4.1.2(5) and the definition of P and Q (as given in 
4.2), hence 

Im (6_tx, Jy) = Im(i (i6_tx, Jy)) = Re (i6_ t x, Jy) = (i6_ t x, JY)IR = O. 

Therefore f(t - i/2) E IR for all real t, so the result from (3) and 4.4.4 .• 

4.4.6 	Definition Let Ut be a one-parameter unitary group on 5). x E 5) is 
called a weak entire vector for Ut if there is a function h : CC ---+ S) such 
that 
(1) h(t) = Utx for all t E IR; 
(2) (y, h(·)) is an entire function for every y E 5); 

(3) h is bounded on every bounded subset of iIR. 

We denote the set of all weak entire vectors for Ut by W(Ut ) .• 
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4.4.7 Lemma Let £ be a closed real subspace of 5) I and Ut a strongly 
continuous one-parameter unitary group on 5) (see 4.2.1) such that 
Ut£ c.c. Then £ nW(Ut) is dense in .c. 

Proof. Consider any x E £. For n = 1,2,3, ... let 

(1) 

This is a well-defined Riemann integral since t f--t UtX is bounded and con­
tinuous on lR (boundedness follows from IIUtXl1 ~ IIUtllllxll, see 4.2.4, while 
the continuity is clear from the fact that Ut is strongly continuous). 

nt2 UtX nt2UtX E £ since x E £, so e- E £ (since e- E IR) for t E IR and 
n = 1, 2, 3, .. .. Since £ is closed in 5) it is now clear from (1) that 

Xn E £ for all n. (2) 

nt2 dtIt is easy to confirm that (n/7f) 1/2 r~: e- = 1 by squaring it, writing 
the result as a double integral and changing to polar coordinates). So it 
follows from (1) that 

Xn -+ Uox = Ix = x (3) 

by 4.2.4(3). (We will show (3) in detail at the end of this proof.) 
For n = 1, 2, 3, ... let 

(4) 

(a well-defined Riemann integral since e-n(t-z)2 = en(Irnz)2 e-n(t-Rez)2 e2in(t-Rez) Irnz, 

and the factor e-n(t-Rez)2 causes the integral to converge similar to the ar­
gument given after (1)). Let y E 5). By definition of a Riemann integral 
there is a sequence of sums converging to the integral in (4), hence by the 
continuity of inner products 

1/21+
00 n 2(y,hn(z)) = (;:) - 00 e-n(t-z) (y,Utx)dt. 

By an argument like the one given in the proof of 4.3.7 (using Fubini's theo­
rem, Cauchy's integral theorem, Lebesgue's dominated convergence theorem 
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and Morera's theorem) we see that (y, hn (-)) is an entire function for all n. 
Take any s E lR. From (4) we see 

so hn is bounded on every bounded subset of iIft Changing the integration 
variable from t to s + t we also see from (4) that 

OO OO 

hn(s) = e-n(t-s)2Utxdt = e-nt2Us+txdt(;r/21: (;r/21:
(n) 1/2 (+00 nt2;: J-oo e- UsUtxdt (by 4.2.4(1)) 

00 2
Us ( (;) 1/21: e -nt Utxdt ) (the operator Us is continuous) 

Usxn (by (1)). 

vVe have thus shown Xn is a weak entire vector for Ut , i.e. Xn E vV(Ut ). 

Combining this with (2) and (3) completes the proof. 
Vile now show (3). Keep in mind that J~: e-nt2 dt = (1f/n)1/2 as pointed 

out above. Consider any [ > O. Since Ut is strongly continuous, there is a 
6 > 0 such that IlUtx - Uoxll < [ if It I < 6. So 

+00 nt2 1+00 1 1 
e- dt :s; -2 dt = £. 

18 8 nt nu 

Thus 

Ilxn - xii 

n 1/2 (+00 nt2 ((n)1/2 (+00 nt2 ) II 


II C;:) J-00 e- Utxdt - ;: J-00 e- dt Uox 

n 1/211 (+00 nt II2(;:) J-00 e- (Utx - Uox )dt 
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nt	 nt< (;;) 1/2 11xll (( e- ' IIUt - Uoll dt + 11[= e- ' IIUt - Uoll dtll) + E 

nt2< 4 C;) 1/2 Ilxll 1+00 

e- dt + c (since IlUtll = 1, see 4.2.4) 

41 1xll 

< (nn)1/28 + c. 


Hence Xn -+ x .• 

The following result gives a characterization of 6.t in terms of the KMS 
condition, and as such it is the first important step in obtaining the connec­
tion between 6.t and KMS states. 

4.4.8 	Theorem 6.t is the unique strongly continuous one-parameter unitary 
group on S) satisfying the KMS condition with respect to K such that 
6.t KcK. 

Proof. We know by 4.2.6, 4.2.8 and 4.4.5 that 6.t has the stated properties. 
Conversely, let Ut be a strongly continuous one-parameter group on S) 

satisfying the KMS condition with respect to K such that UtK C K. Consider 
any x E K n W(Ut ) and let h be as in 4.4.6. We now break the proof into 
several parts. sand t will be arbitrary real numbers throughout the proof. 

(a) Consider any yES). Then 

z f-+ (y,h(t+iz)) and z f-+ (y,Uth(iz)) = (Uty,h(iz)) 

are entire functions (by the definition of h) which are equal for imaginary z 
(since h(t+s) = Ut+sx = UtUsx = Uth(s) by the definitions of hand Ut) and 
hence equal on <C by 1.6.2. In particular (y,h(t+is)) = (y,Uth(is)) for all 
yES). So h(t + is) = Uth(is). Thus 

Ilh(t + is)11 ~ IIUtl l llh(is)11 = Ilh(is)11 since IIUtl1 = I, see 4.2.4 . 

Therefore h is bounded on sets of the form <C~, a, b E JR., because of 4.4.6(3). 
(b) Consider any y E K. In this section of the proof we show that 

Let v 	be as in the proof of 4.4.5, so 

y = R1/2V and Jy = (2 - R)1/2v . 	 (1) 
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Let 
g: (C~1/2 --t (C: z ~ (J(2 - R)iz R-iz+l/2

V, h(z)). 

The function J : (C~1/2 --t SJ : z ~ (2- R)iz R-iz+l/2V is well-defined, bounded 

and continuous on (C~1/2' and differentiable on (C~1/2' by 1.8.12,1.8.14, 1.8.15 
and 1.7.4. So g is well-defined and bounded since J is isometric by 4.2.1(2). 
For u E SJ and z E (C 

I(Ju, h(z)) 1:S IIJullllh(z)11 = Ilullllh(z) II· 

Hence (J., h(z)) E £(5), (C) since J is conjugate linear, and 

II(J·,h(z))11 :S Ilh(z)ll· 

So A : (C~1/2 --t £(5), (C) : Z ~ (J., h(z)) is bounded because of (a). Also, 
for every u E 5), the function A(-)u = (Ju, he)) is entire (and therefore 
continuous) by 4.4.6(2). Putting all this together we conclude from 1.7.4 
LllCLL /I = AJ it> cUllLillUUUt> Ull ~ amI allCLlytic UIl <cO . 

:J -1/2 -1 /2 

By (1), 4.2.5, 1.8.13(1), 1.8.12, 4.4.6(1) and 4.2.6 


g(t) = (JD.tR1
/ 
2
V, Utx) = (JD.ty, Utx) = (D.tJy, Utx) . (2) 

D.ty E K since y E K, so JD.ty E (iK)l. by 4.1.2(6). Utx E K since x E K , 
therefore 1m (JD.ty, Utx) = - Re (JD.ty, iUtx) = - (JD.ty, iUtx)m. = o. Thus 

g(t) E R (3) 

Similar to (2), we have (using (1), 1.8.9 and 4.1.2(3)) that 

g(t - i/2) = (J D.t(2 - R)1 /2V , h(t - i/2)) = (D.ty, h(t - i/2)) . (4) 

Let s be fixed. Since Ut satisfies the KMS condition with respect to K, and 
D.sY E K, we know from 4.4.4 that there is a bounded continuous function 
J : (C~1/2 --t (C, analytic on (C~1/2' such that 

J(t) = (D.sY, Utx) and J(t - i/2) E R (5) 

Let F : (C~1/2 ----7 (C : z ~ (D.sY, h(z)) - J(z). Then F is continuous on (C~1/2 
and analytic on (C~1/2' and F(t) = 0, by the definition of hand f. So by 
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1.6.3 there is an analytic function G : C~12/2 -7 C which agrees with F on 

C~1/2 U R Hence G(t) = 0 which implies G = 0 by 1.6.2. It follows that 
F = 0 since it is continuous, i.e. 

(f::.sY, h(z)) = J(z) for all z E C~1/2' 

So (f::.sY, h(t - i/2)) E IR by (5). In particular, 

g(t - i/2) = (f::.ty, h(t - i/2)) E IR by (4). 

This combined with (3) implies 9 is constant according to 1.6.4. So (f::.t1y, UtX) = 
g(t) = g(O) = (Jy, x) by (2) and 4.2.4(3). 

(c) Consider any y E K, then 

(U_tf::.t1y,X) = (Jy,x) by (b) and 4.2.4(2) . (6) 

K is total in SJ (i.e. the span of K is dense in Sj, [K, 3.6-1]) since K + iK is 
dense in SJ by definition. Hence K n vV(Ut ) is total in SJ by 4.4.7. So by (6) 
and the definition of x we have 

(7) 

J is surjective (since j2 = 1 by 4.1.2(3)) and continuous (since it is a bounded 
linear operator on SJIR by 4.1.1), therefore 

SJ = J (K + iK) c J (K + iK). 

But JK + iJK = J(K - iK) = J(K + iK) since J is conjugate linear, so we 
deduce JK is total in SJ . Thus U-tf::.t = 1 by (7), i.e. Ut = f::. t by 4.2.4 .• 

4.4.8 completes our study of the situation presented in 4.2. We now give 
three results concerning C*-algebras and von Neumann algebras in general. 
The third of these (4.4.11) is our ultimate mathematical goal, the first two 
(4.4.9 and 4.4.10) are just some more tools we need in order to prove 4.4.11 
(the other important tools being 4.3.11 and 4.4.8). 

Before we proceed we quickly recall the GNS construction ([Br, 2.3.16]): 
Given a state won a C*-algebra 2L there exists a cyclic representation (6, 7r , ,0) 
of 2L (i.e. a Hilbert space 6, a *-homomorphism 7r : 2L -7 £(6) , and a vec­
torn E 6 which is cyclic for the C*-algebra 7r(2L) , see 1.4.2) such that 
w(A) = (.0, n(A)n) for all A E 2L . This representation is unique up to uni­
tary equivalence and is called the cyclic representation oj 2L associated to 
w. 

The following result and its proof is adapted from [Br, 2.5 .6]: 
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4.4.9 	Proposition Let m be a von Neumann algebra on a Hilbert space 
S), and w a faithful normal state on m (see 2.3.3 and 2.3.8). Let 
(6, 7r, 0) be the cyclic representation of m associated to w, and set 
S)1 := 7r(m). Then S)1 is a von Neumann algebra on 6, 7r : 9J1 ---+ S)1 is 
a *-isomorphism, and 0 is a cyclic and separating vector for S)1 such 
that 

w(A) = (O,7r(A)O) 


for all A E 9J1. 


Proof. vVe know S)1 := 7r(9J1) is a von Neumann algebra on 6 (since w is 
normal, [Br, 2.4.24]) with cyclic vector Sl such that w(A) = (Sl,7r(A)Sl) for 
all A E 9J1. 

Consider any A E 9J1 such that 7r(A)Sl = O. Then 

w(A* A) = (0, 7r(A* A)O) = (7r(A)O,7r(A)O) = 0 

since by definition 7r is a *-homomorphism. Hence A*A = 0 since w is faithful. 
SO IIAI12 = IIA* All = 0, which means A = O. Therefore 7r(A) = 0, since 7r is 
linear, so by 1.4.2 we conclude 0 is separating for S)1. 

As a special case of the foregoing argument we see that 7r(A) = 0 implies 
A = 0, hence 7r is injective since it is linear. This means 7r : 9J1 ---+ S)1 is a 
*-isomorphism .• 

4.4.10 	Proposition Let 2i be a C*-algebra, w a state on 2i, and T a one­
parameter *-automorphism group of 2i (see 3.1.1) such that 

w(Tt(A)) = w(A) for all t E ~ and A E 2i. 

Let (6, 7r ,0) be the cyclic representation of 2i associated to w. Then 
their exists a 'un'iq'ue one-pammeter unitary group Ut on 6 such that 

for all t E ~ and A E 2i. Furthermore, if (2(, T) is a W*-dynamical 
system (see 3.1.3) and 7r(2i) is a von Neumann algebra on 6, then Ut 

is strongly continuous. 

Proof. For every t E ~ there is a unique unitary operator Ut E £( 6) such 
that 

UtO = 0 and 7r(Tt(A)) = Ut7r(A)Ut-
1 for all A E 2( (1) 
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(this follows from the uniqueness of the cyclic representation associated to 
w, see [Br, 2.3.17]). We now show that Ut is a one-parameter unitary group. 

UsUt7r(A)Ut-1Us-l = 7r(Ts(Tt(A))) = 7r(Ts+t(A)) = Us+t7r(A)Us1t while we 
know UsUt is unitary (namely (UsUt)*(UsUt) = UtU;UsUt = 1, and similarly 
UsUt(UsUt)* = 1, since Us and Ut are unitary) and clearly UsUtO = 0 by (1). 
Hence, using the uniqueness of Ut in (1), we see UsUt = Us+t. 

Uo7r(A)U01 = 7r(To(A)) = 7r(A), hence Uo = 1 by the uniqueness in (1). 
We now see UtU-t = Ut- t = 1 so Ut = UtUtU-t = U-t. 
Assuming (21, T) is a W*-dynamical system and 7r(21) a von Neumann 

algebra, it remains only to show that Ut is strongly continuous. Consider 
any A E 21\{O}. Then 

limUs7r(A)U_sO = lim7r(Ts(A))O (by (1))
s--'>t 	 s--'>t 
IIAlllim 7r(Ts(Aj IIAII)Os--'>t 
IIAII7r(Tt(Aj IIAII))O (by 1.4.6) 

since IITs(Aj IIAII)II = IIAj II All II = 1 (Ts is a *-isomorphism from 21 to itself, 
see [M, Theorem 2.1.7]) and since s f--t Ts(Aj IIAII) is strongly continuous on 
lR by 3.1.3, 1.3.3 and the definition of the strong topology in 1.4. Thus 

lim Us7r(A)O = 7r(Tt(A))O = Ut7r(A)U_tO = Ut7r(A)O. (2)
s--+t 

By definition 0 is cyclic for 7r(21) , i.e. 7r(21)0 is dense in Q). Take any sequence 
(tn) in lR converging to t E lR, then by (2) 

Utnx ~ Utx for all x E 7r(21)0. 

Furthermore, the sequence (UtJ is clearly bounded (every member of this 
sequence is unitary and so has norm 1), hence 

UtnX ~ Utx for all x E Q), ([K, 4.9-6]). 

It follows that t f--t Utx is continuous on lR for every x E Q) , i.e. Ut is strongly 
continuous (see 4.2.7) .• 

We are now in a position to formulate and prove our main result: 

4.4.11 	Theorem Let 9J1 be a von Neumann algebra on a Hilbert space f), 

and w a faithful normal state on 9J1 (see 2.3.3 and 2.3.8). Then there 
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is a unique W*-dynamical system (9J1, ex) such that w is an ex-Kll1.S 
state (see 3.1.3 and 3.2.4). a is given by 

(1) 

for all t E IR and A E 9J1} where (Q), 1T, D) and SJ1 are as in 4.4.9} and 
6 t is the unitary group associated to (SJ1, D) (see 4.3.2). 

Proof. Define ex by means of (1). By 4.3.11(2) we then have 1T(at(A)) = 

6 t1T(A)6_t E SJ1, hence at(A) E 9)1, for all t E IR and A E 9)1. Since 1T is 
a *-isomorphism and 6 t a one-parameter unitary group, it is therefore clear 
from 3.1.1 and 4.2.4 that a is a one-parameter *-automorphism group of 9)1. 

6 t is strongly continuous by 4.2.8, and 116 t ll = 1 since 6 t is unitary. 
Hence t 1--+ 1T-1(6t ) is strongly continuous on IR by 1.4.6, i.e. t 1--+ 1T- 1(6t)x 
is continuous on IR for every x E fj (see 4.2.7). Also, 111T- 1 (6t)11 = Illltl l = 1 
since 1T is a *-isomorphism ([M, Theorem 2.1.7]), so from (1) and 1.7.4(1) it 
follows that t 1--+ at (A) x is continuous on IR for every A E 9J1 and x E f). 

Therefore (9)1, a) is a W*-dynamical system by 3.1.3. 
Given any A, B E SJ1s , we know by 4.4.5 and 4.4.2 that there is a KMS 

function f such that for all real t 

and 

Given any A, B E SJ1, it now follows using 1.4.9 that there is a KMS function 
f such that 

since a linear combination of KMS functions is again a KMS function (this is 
clear from 4.4.1). Therefore, given any A, B E 9)1, there is a KMS function 
f such that for all real t 

f(t) 	 = (D,1T(A)llt1T(B)6_tD) = (D,1T(A1T- 1 (llt)B1T- 1 (ll_t))D) 

= w(Aat(B)) (by (1) and 4.4.9), 

and f(t - i) = w(at(B)A) by a similar argument. So w is an a-KMS state 
by 3.2.4. 
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Now we have to show the uniqueness of the W*-dynamical system. So, 
let (m, ex) be any W*-dynamical system making wan Q-KMS state. We have 
to prove that (1) now holds. 

According to 3.2.7, 4.4.10 and 4.4.9 there is a strongly continuous one­
parameter unitary group Ut on Q5 such that 

(2) 

Hence we only have to prove Ut = 6.t . We will use 4.4.8 to do this. 
Set lC := SJ'tsn (the closure of SJ'tsn in (5). Consider any A E SJ'ts , then 

(UtAU_t)* = U~tA*Ut = UtAU_t , so UtAU_t = 1I"(Qt(1I"-1(A))) E SJ'ts . There­
fore UtAn = UtAU-tn E SJ'tsn according to (2) , which implies 

(3) 

Consider any A, B E SJ't s . Since w is an Q-KMS state it follows from 3.2.4 
that there is a KMS function f such that for all real t 

f (t) 	 - w(11"-1 (A) Qt (11"-1 (B))) = w(1I"-1 (A1I"( Qt (11"-1 (B))))) 

- w(1I"-1(AUtBU_t )) = (,0, AUtBU_tn) (by (2) and 4.4.9) 

- (An, UtBn) 

and 

f(t - i) - w(ext(1I"-1(B))1I"-1(A)) = (,0, UtBU_tAn) = (UtBU_tn, An) 

(UtBn, An) . 

Now take any x E lC, then there is a sequence (An) in SJ'ts such that Ann ---t x, 
by the definition of lC. Hence by the equalities given above, there is a sequence 
(fn) of KMS functions such that 

for all real t. Hence by 1.6.5 and the fact that IIUtl! = 1 (since Ut is unitary), 

Ifm(z) - fn(z) I :s: II (Am - An)nllllBnll for all m, nand z. 

This means (fn) is a Cauchy sequence in the complete normed space Cb ( C~l) 
(the space of all bounded continuous complex-valued functions on C~l' the 

 
 
 



4.5. 	 THE PHYSICAL INTERPRETATION 99 

norm being the sup-norm II·tJ. Hence Un) converges uniformly to an 

f E Cb (<C~l). Since every fn is analytic on <C~l' we know that f must 

also be analytic on <C~l' ([Con, VII 2.1 and 1.10(b)]). In other words f is a 
KMS function, and from (4) and the definition of An it follows that for all 
real t 

f(t) = lim fn(t) = (x, UtBD.) and f(t - i) = (UtBD., x) . (5) 
n ...... oo 

By repeating the foregoing argument for y E JC and a sequence (Bn) in 5)18 

such that EnD -t y, it follows from (5) that there is a KMS function f such 
that 

f(t) = (x, Uty) and f(t - i) = (Uty, x) for all t E lR. 

This means Ut satisfies the KMS condition with respect to JC (4.4.2), hence 
we conclude from (3) and 4.4.8 that Ut = 6 t .• 

4.4.11 gives the connection between KMS states and the theory developed 
in 4.1,4.2 and 4.3. In this sense 4.4.11 can be considered the most important 
result in this dissertation since it binds together almost everything we have 
done so far, except for 4.3.11(1). 4.4.11 is by no means a trivial result. This 
whole section was devoted to its proof, and in its proof we also used the 
Tomita-Takesaki theorem (specifically 4.3.11(2)) which in turn took us the 
whole of 4.3 to prove. In 4.5 we will discuss the physical implication of 4.4.11. 

We end this section with one last definition: 

4.4.12 	Definition(Modular group) Let 9J1 be a von Neumann algebra 
on a Hilbert space, and w a faithful normal state on 9J1. The one­
parameter *-automorphism group ex of 9J1 given by 4.4.11 is called the 
modular group associated to w.• 

4.5 The physical interpretation 

In Chapter 2 we considered physical systems for which the observables were 
given by £(SJ)8' with SJ a finite dimensional Hilbert space. £(SJ) is a von Neu­
mann algebra by 1.4.8, and according to 3.1.6 (£(SJ),7) is a W*-dynamical 
system where 7 is the time evolution of the system as given by 3.1.5. In 2.3.6 
and 2.3.9 we saw that the equilibrium states of such a system are faithful 
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normal states on £(5)), and according to 3.2.5 the equilibrium state at inverse 
temperature {3 is exactly the (T,{3)-KMS state on £(5)). 

We now generalize these ideas. Consider a physical system for which 
the observables are given by 9J1s , where 9J1 is a von Neumann algebra on 
some Hilbert space. Assume (9J1, T) is a W*-dynamical system, T being the 
time evolution of the system. A physical state of the system is represented 
by a normal state w on 9J1 such that w(A) is the expectation value of any 
observable A E 9J1s (this is a generalization of 2.3.5). If we consider an 
observable A at time 0, its expectation value at time t is then w(Tt(A)). We 
further assume that the equilibrium states of this system are precisely the 
faithful (T, (3) -KMS states on 9J1 (these states are normal by definition, see 
3.2.4). In other words any (T,{3)-KMS state on 9J1 is an equilibrium state of 
the system at inverse temperature {3. (The question arises whether a (T, (3)­
KMS state exists on 9J1 for any given (3 E lR, and if it is unique if it does exist. 
We know by 3.2.5 that the answer is yes in both instances for the fdqs's of 
Chapter 2. The situation is not nearly this simple in the general case; the 
answer can be no in both instances. See for example lBr, Section 5.3.2 and 
Example 5.3.2]. We will not pursue this question any further.) 

Now assume the system described above is in equilibrium at inverse tem­
perature {3 E lR, and that its state is w (i.e. w is a faithful (and normal) 
(T,{3)-KMS state on 9J1). 

Let 
at (A) 	:= T _pt(A) for all t E lR and A E 9J1, (1) 

then (9J1, a) is a W*-dynamical system and w is an a-KMS state by 3.2.6(1). 
So by 4.4.11 and 4.4.12 we know that a is the modular group associated to 
w, and 

where (6,1f,rl) and 6.t are as in 4.4.11. Hence the modular group and 6. t 

has a direct physical meaning: 

4.5.1 	Conclusion For a physical system represented by the W*-dynamical 
system (9J1, T) which is in an equilibrium state w on 9J1 at inverse 
temperature (3 #- 0, the time evolution T is determined by means of (1) 
where a is the modular group associated to w. a in turn is determined 
by (2) where 6. t is unitary group associated to (1f(9J1), rl), (Q:), 1f, rl) 
being the cyclic representation of 9J1 associated to w .• 
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This conclusion can not be over-emphasized. It represents the sum total 
of almost everything we have done in this dissertation. The Tomita-Takesaki 
theorem, 4.3.11, seems to be a rather abstract theorem, and it certainly 
has a long and intricate proof. Yet fit, which appears in 4.3.11(2), has a 
straightforward physical meaning as spelled out by 4.5.1. This surprising 
connection between theoretical physics and pure mathematics is the main 
motivation for this dissertation. It is important to note that although we 
have not really applied the Tomita-Takesaki theorem (except in the proof of 
4.4.11), it does indeed have applications in mathematics; more about this in 
4.6. 

The physical meaning of J (the modular conjugation associated to (n(9J1) , D)) 
in 4.3.11 is not as clear. However, it is known that if two observables com­
mute then the measurement of one does not in any way affect the result of 
a measurement of the other (this is not the case for non-commuting observ­
abIes), see for example [C, III.C.6] or [Su, 2.4]. Since 7f: 9J1---t 91:= 7f(9J1) is 
a *-isomorphism according to 4.4.9, we can consider !JJ1 and 91 to be the same 
*-algebra. Let us assume for the moment that we can in fact view 91 as our 
algebra of observables (this is not so far-fetched since SJ1 is a von Neumann 
algebra according to 4.4.9, the question is only if SJ1 can be considered to be 
the same von Neumann algebra as 9)(:), i,e. the elements of SJ1s are now our 
observables. 4.3.11(1) says that JSJ1J = 91/, and it would now seem that this 
has no direct physical implications, because if we view any A E SJ1~ as an 
observable, and measure it in our system, then it will not have any effect on 
the measurements of any of the system's observables (namely 915 ), since A 
commutes with every element of 91s , vVe could say that JSJ1J = 91/ effectively 
throws us out of our physical system. 

4.6 Further remarks 

In this dissertation we concentrated on showing the connection between the 
Tomita-Takesaki theory and equilibrium states in quantum statistical me­
chanics. One might be led to believe that this is the only significance of the 
Tomita-Takesaki theory. This is not the case. It turns out that the Tomita­
Takesaki theory is a very important tool in the classification of the so-called 
type III von Neumann algebras (see for example [Pe, 8.15]). 

It is a remarkable fact that the type III von Neumann algebras are of con­
siderable importance in algebraic quantum field theory (the operator alge­
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braic approach to relativistic quantum physics). See for example [H, III.2.1, 
V.2.4 and V.6]. This is an indication that the relevance of the Tomita­
Takesaki theory to physics is far greater than just the equilibrium states of 
quantum statistical mechanics that we discussed. 
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