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Abstract 

Backpropagation (BP) has played a vital role in the resurgence of interest ill artificial 

neural networks (ANNs). Eversince, a lot of research effort concentrated 011 findillg ways 

to improve its performance. Active learning has emerged as an efficient alt<'mari"e to 

improve the performance of multilayer feedforward neural networks. The leamer is given 

active control over the information to include in the training set, and in doinp; so. the 

generalization accuracy is improved and the computational cost and complexity of the 

network are reduced compared to training on a fixed set of data. 

'While many research effort has been invested in designing new learning approadws. an 

elaborate comparison of active learning approaches is still lacking. The objective of this 

research study is to compare and critisize active learning approaches and also to plOpose 

a new selective learning algorithm. 

This thesis presents a comparison of four selected active learning algorithms. TIl(' thesis 

concentrates on one type of application, namely function and time series approximation. 
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Opsomming 

Terugwaartspropagering neurale netwerke het 'n belangrike rol gespeel in die opkwing­

van die belangstelling in kunsmatige neurale netwerke. Verskeie navorsing-sst.udi('s lWllSCll­

treer op die verbetering van die prestasie van neurale netwerke. Aktiewe leer h(:t ,U,<'toon 

om 'n effektiewe alternatief te wees om die prestasie van multi-vlak vorentoe-voel' ll('nrale 

netwerke te verbeter. Die leerder word aktiewe beheer gegee oor die inligting- \\'at ill die 

leerversameling ingesluit word. Sodoende word veralgemening verbeter. en die lWl'pkell­

ingskoste en -kompleksiteit van die netwerk verlaag in vergeleke met afrigting OJ) 'u vaste 

I eerversam eli ng. 

Terwyl vele navorsing gedoen is in die ontwikkeling van nuwe leerstrateg-i(:i>. is daar 'n 

tekort aan 'n uitgebreide vergelykende studie van aktiewe leer. Die doelwit vall biPl'die 

studie is om aktiewe leer strategiee te vergelyk en te kritiseer. 'n Nuwe se!ekti('\w> l(~er 

algoritme word ook aangebied. 

Hierdie tesis bied 'n vergelyking van vier aktiewe leer algoritmes aan. Die tesis kOllS('ntn'er 

op die benadering van funksies en tydreekse. 
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Chapter 1 

INTRODUCTION 

The study of neural networks (N"N) is one of the most rapidly expanding fields attracting 

people from a wide variety of disciplines. The study of neural networks is a fipld which 

cuts across many disciplines like philosophy, biology, psychology, mathematics. st it t istics. 

neuroscience, physics, engineering and even linguistics [VVasserman 1989]. Tlwsp illlf~l"W()­

ven disciplines have made the study of neural networks unique. Neural networks hring 

together various subjects and disciplines in building intelligent systems. 

1.1 What is a Neural Network? 

The term neural network (NN) in this thesis refers to artificial neural I1(~twork (AXX) 

which mimics biological neural systems. 

There are several definitions as to what a neural network means: ~1aren defines llPural 

networks as computational systems, either hardware or software, which mimic the ("Olnpu­

tational abilities of biological systems by using simple inten;onnected artificial ll('lll"OnS 

[Maren et al 1990]. 

1 

 
 
 



2 CHAPTER 1. INTRODUCTION 

Hecht-Nielsen gives a rigorous definition of a neural network as "a po:ralld clistriJ mt('d 

information processing structure consisting of processing elements which can possess a local 

memory and carry out localized information processing operations, inten;onncr:ted t()r.;ether 

with unidirectional signal channels called connections. Each processing element has a siup;le 

output connection which branches (fans out) into as many collateral connectiolls as ([('sired 

(each carrying the same signal - the processing element output signal). The Pl'OC('SSillg 

element output signal can be of any mathematical type desired. All of the ]lI'O('('ssing 

that goes on within each processing element must be completely locaL i.e. must (]('peIHl 

only upon the current values of the input signal arriving at the processing dPllH'llt via 

impinging connections and upon values stored in the processing element's local nlPlllor~' .. 

[Hecht-Nielsen 1989]. 

A simpler definition of a neural network, given by Fausett, is that, a NN is an information 

processing system that has certain performance characteristics, such as adaptiw l(~aru­

ing, and parallel processing of information, in common with biological neural ll<'tworks 

[Fausett ] 994], 

Haykins defines a neural network as a massively parallel distributed proc(~ssor that has a 

natural propensity for storing experiential knowledge and making the knowledge ilyailabh~ 

for use [Haykins, 1994]. 

A neural network can also be defined as a distributed computational Syst('lll composed of 

a number of individual processing elements operating largely in pam,ltd. intef'(:(i'/I'fI,u:teri 

according to some specific topology (architecture) and having the eapabilitv to spIt' ll10difv 

connection strengths and processing elements parameters [Rogas 1996J. 

From Muller and Reinhardt's view, a neural net,vork model is defined as an algorithm for 

cognitive tasks, such as learning and optimization, which are in a loose S811se 1><1s('(l on 

concepts derived from research into the nature of the brain [Muller et oj 1990]. 

From all these definitions. it can be deduced that 
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• 	 A neural network is inspired by studies of the brain. Though. it would 1)(' \\T()ll,l!, t () sa~' 

that a neural network duplicates brain functions. because the hraill is highh' ('olllplpx 

and the actual intelligence exhibited by the most sophisticated Beural network is well 

below the level of intelligence of any animal [vVasserman 1989j. 

• 	 A neural network is made of several interconnected units similar to the ll('l1\'()llS ill 

the brain. 

• 	 A NN is an information processing system that operates ill parallel. 

• 	 Signals are passed bet.ween units over connection links and each link has all associated 

weight. 

• 	 Artificial neurons are simple emulations of biological neurons. Artificial IJ('lll'OnS 

receive information from other artificial neurons or the environment. perform it simple 

operation by applying functions on these input signals and pass the res11lt t() ()t h(~r 

neurons or the environment. 

• 	 Each unit applies an activation function (usually nonlinear) tn the lwt ill]lnt and 

determines the unit's output signal. 

1.1.1 Characteristics Of A Neural Network? 

A neural network is characterized by 

• 	 the architecture of the NN, which refers to the number of layers ill tllf' IlNwork. 

the number of neurons in the layer. and how these neurons are illt.e},(·()llll('ct­

ed. Neural network types include single layer networks such as th(' Hopfidd T\\' 

[Maren et al1990], multilayer feedforward neural networks (MLNNs) s11ch (IS hac1\:­

propagation [Wasserman 1989jand recurrent NNs (RNNs) [Simpson 1990j. 

 
 
 



CHAPTER 1. INTRODUCTION 

• 	 The method of adjusting weights for each connection, referred to as tIw ](,<lmiu![ algo­

rithm. Learning algorithms are divided into two main categories, nanwlv sn]J('l'yisf'd 

and unsupervised learning. Learning in supervised mode is done b,' ("ompari ug the 

network's output to the desired output, which is provided by the system or ('xt(~mal 

teachers [Simpson 1990]. Learning in unsupervised mode, 011 the other ha11d. is h~' 

self organization. There is no target or desired output and hence 110 comparisoIl to 

predetermined responses [Simpson 1990] . 

• 	 The activatioIl function used which can be linear, discrete fUIlctions sHch as tJJ(' ralllp 

function or continuous functions such as the sigmoid function. 

The advantages of, and reasons for using neural networks rather than eonventionallllethods 

of optimization, regression, classification and clustering are discussed in sectio11 1.1. 

1.2 Why Neural Networks? 

The interest in neural networks is motivated by the desire to understand the braill. i.e. the 

principles on which the human brain works, to emulate some of the hrain's streug!hand 

the wish to build machines that are capable of performing complex tasks for \"bi('h the 

sequentially operating programmable computers are not well suited for. 

Everyday observation shows that. the brains of even animals of lower intelligew:e ("all per­

form tasks that are far beyond the range of even the largest and the fast.est modem elec­

tronic computers. For example, dogs bark at human beings that are strangPI's while they 

are quite relaxed \vith human friends. Dogs can distinguish between fops all< I frit'ud­

s. No present day electronic computer has sufficient computational pmver to match this 

similar accomplishment. This accomplishment involves some lleed for the n~('ogllirion of 

complex optical or acoustical patterns which are not determined by simpl(~ logic;d rules 

 
 
 



CHAPTER 1. INTRODUCTION 

[Miiller et al 1990J. 

Neural networks are also used when data, on which conclusions an' to based. j" fllzz~·. 

\iVhen the influential or informative patterns are subtle or hidden, a l\N has the ill lilitv to 

discover patterns which are not clear, or unknown to the human researcher or standard 

statistical methods. An example is credit worthiness of loan applicants based OIl sp<'llding 

and payment history [:Nlasters 1993]. NNs have been applied to data that pxhihits signif­

icant unpredictable nonlinearity [Fausett 1994J. NNs have been adaptpel to predict future 

values not based on strictly defined models, and offer possibilities for solving problems 

that require pattern recognition, pattern mapping, dealing with noisy data and pattern 

completion [Masters 1993]. 

The advantages of NNs are summarized bela-w: 

1. 	 A NN has the ability to learn. 

2. 	 Neural networks are robust to noise. 

3. 	 Neural networks work excellently for nonlinear data. 

4. 	 Because NN can learn to discriminate patterns based on examples and traiuillg. all 

elaborate a priori model is not needed neither is the probability function IH'ed('d to 

be specified. The statistical distribution of the data used for training is Hot ll('<,ded. 

Specific areas where NNs have been applied include: pattern recognition and classificatioll, 

adaptive control applications, financial analysis such as forecasting and credit aSS(,SSlllCllt. 

database mining, function approximation and clustering [Fausett 1994, l\Ia.stprs 1993. 

Wasserman 1989, Towell et al1993]. 
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1.2.1 Features of Neural Networks 

A very important feature of a neural network is an ability to adapt to changing ('lli'll'OIl­

ments, where learning is by examples. That is, the NN learns limv to perform Cf~rtilill tasks 

by undergoing training with illustrative examples. Once trained. a NK call pnfOl'lll tasks 

without any external help, even if presented v.:ith distorted patterns [Beale ret uI 1<)90]. 

This feature makes NNs very appealing especially in application problems when' little or 

no understanding of the problem is known, but where training data which refipcts the char­

acteristics of the problem is available. Neural networks can learn various thillgs sllch as 

distinguishing a straight line from a convex curved line. The NN can discriminat(' 1 )('tw('('n 

the lines once trained, even when the lines are shifted up or down. or <,yell if the data is 

noisy. 

Another feature of neural networks is the parallel architecture, which allows faster com­

putation of some problems when the network is implemented on parallel digital COlllp1lterS, 

or when the network simulates parallelism. Electronic computers are designed to GIlT\, out 

one instruction after the other, extremely rapid whereas the brain work with slmV<'l llllits. 

A computer is a high speed, serial machine compared to the highly parallel llatnr(' of tIlt, 

brain. Computers therefore manage tasks such as counting (an essentiallY s(~rial activi­

ty) which suit its design well, making the computer superior to the brain ill snch tasks. 

However, for highly parallel tasks such as vision or speech, computers perform badly. TIl(' 

brain is able to operate in parallel easily and thus is qmch faster than tIl<' COlllpllwr ill 

performing these tasks. 

The approach of NNs in various applications is to capture the guiding principl(~ That un­

derlines the way the human brain solve problems and apply these principles to (,Oll1]mtfT 

systems. 
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1.3 Background to Neural Networks 

Neural networks have been motivated right from their inception by the fact that t IH' 1>1'ai11 

computes in an entirely dift'erent way from the conventional von Neumann machilles (com­

puters) [Hassoun, 1995]. The brain is a highly complex, nonlinear and pal'alld information 

processing system. The brain has the capability of organizing neurons to p(~rfonll ('('rtain 

tasks such as pattern recognition, speech recognition. pattern classificatioll lllaIlY limps 

faster than the fastest digital computer in existence today. 

The understanding of this neurobiology has allowed researchers to simulate neurallwhayior. 

This idea of simulating neural behavior dates back to the early 40's when one of thp aJ)stract 

models of a neuron was introduced by McCulloch and Pitts. They propos(~d cl i!,('lleral 

theory of information processing based OIl networks of binary switches called lJ('lUOllS. 

These neurons were much simpler than their real biological cOllnterparts. IvIcCllllo('h a.nd 

Pitts demonstrated that even simple types of neural networks could in principle, (,()lllpute 

any arithmetic or logical function [Hecht-Nielsen 1989]. 

In 1949, Donalds Hebb proposed a learning rule that explained how a network of ll('llrons 

learned. He used the learning rule to build a qualitative explanation of sonw experilllclltal 

results. This bold step served to inspire many other researchers to pursue the same tlH'll1c. 

which further laid the ground work for the advent of neural net\vorks [Hecht-~i(~ls(,ll lU89]. 

Rosenblatt invented the perceptron and its learning algorithm in 1958. The P<'[('('ptroll 

in its simplest form consists of two separate layers of neurons representing the illput and 

output layers. An iterative algorithm for constructing synaptic coupling such that a sp(~cific 

input pattern is transformed into the desired output pattern was introduced. Hmv('\,('J'. the 

perceptron had a serious shortcoming: it was only capable of solving classificatioll l>l'Ohl(>ms 

that are linearly separable at the output layer [Fu 1994]. At the same time, Widrm\, alld 

Hoff developed an important variation of perceptron learning known as the \;\'idrow-Hoff 

rule [Fu 1994]. 

 
 
 



CHAPTER 1. INTRODUCTION 

In the late 60's, Minsky and Papert caused research in 1\1\S to be t(~nnillatf'd \yiT 11 t lwir 

results published in their landmark book called Peceptron [H(~cht-Nielsen 1989]. \Iinsk~' 

and Papert pointed out the theoretical limitations of single layer neural network lllodds. 

They proved that the perceptron cannot implement the exclusive or (XOR) lO!2,ical fllllCtioll. 

The perceptron also had difficulty in learning other binary predicate functions. TIH' illlplicit 

conclusion from their book ,vas that essentially all neural networks suffer thp SclllH' fatal 

flaw as the perceptron and they left the impression that neural network research wac-: i1 (\pad 

end [Hecht-Nielsen 1989]. Due to this pessimistic v..ark, research on neural network Llpsed 

into an eclipse (a dark age for neural network research) for nearly two decades fFll 199,1]. 

Despite this, a few faithful researchers still continued their \vork on NNs and producpd 

meaningful results during this period. For example, Anderson and Grossberg did impor­

tant work on the psychological models [Hecht-Nielsen 1989], Kohonell illvellt(~d t h(' sf'lf 

organising map (SOM), an associative memory model [Fu 1994]. 

In the early 80s, after two decades of obscurity, there was a renewpd enthusiasm ill the 

neural network field. A notable researcher "who increased the visibility amI respect for NN 

study is Hopfield. In 1982, Hopfield introduced the idea of energy minimizatioll in pin'sics 

to neural networks [Hopfield 1982, Fu 1994]. 

In the mid 80s, Rumelhart, Hinton and \iVilliams developed a learning algoritlnll fur mul­

tilayer networks called the backpropagation algorithm (BP) [vVasserman 1989]. Thi;-; algo­

rithm offered a powerful solution to training a multilayer neural network alld lWllC(, ('()lI11ters 

the implicit conclusion of l'viinsky and Papert. Their development of multila.ver f("edforward 

networks was not restricted to linearly separable training sets. Along "with a H'asollablv 

effective training algorithm for ~~s, Rumelhart et al demonstrated that llemal ll!'twork­

s can provide real solutions to practical problems [Rumelhart et al1986, l\Jasu"l'S 1993J. 

Problems such as the XOR and lack of a general method of training a Illultilaym lH'ural 

network, which had originally contributed to tht> demise of Beural netvmrks in tIl<' (lOs. 

were overcome using the backpropagation algorithm and other techniques which followpd 
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[\Vasserman 1989]. It is interesting to note that \Verbos had developed tlip idea of hac:k­

propagation in 1974 and also Parker in 1982 independently [Maren et al199()]. 

A spectacular success of backpropagation is demonstrated by the NETTALK :-;\":-;H~lll 

developed by Sejnowski and Rosenberg in 1987. NETTALK is a :;;:vstPlll tha I con­

verts English text into highly intelligible speech [Wasserman 1989]. The hackpropi-l­

gation algorithm is probably the most well known and widely used training algorith­

m [Maren et al1990]. Much research effort was expended to improve hackpropaga­

tion. The objective of this study is to further study methods to improw BP. Ap­

proaches and specific research to improve the performance of NNs usillg BP include 

finding optimal weight initialization [Wessels et a11992]' optimal learning rate awl mo­

mentum [Yu et a11997, \Veir 1990], finding optimal architectures [Engelbrecht ct (Ii 1996. 

Hassibi et a11994, Le Cun 1990, Kamin 1990, Sietsma et al19881, using second ordn opti­

mization techniques [Becker et a11988]' adaptive activation functions [Fletcher f't oj 1994, 

Engelbrecht et al1995, Zurada 1992a] and active learning [Robel 1994a, Zhaug 1994, 

Engelbrecht et al1999a]. 

A large number of neural networks are trained using the gradient descent optimization 

method in the supervised mode. In order to train the network successfully. thp output of the 

network is made to approach the desired output by continually reducing the P!Tor ]H't\\'eell 

the network's output and the desired output. Training a NN is achieved by pres('nting the 

network with information to learn, which consists of a fixed set of input attrihuh's and 

corresponding target outputs. The "veights between the layers are then adjusted llsing an 

optimization algorithm, usually the gradient descent optimization, the error is cOlllpmcd 

and backpropagated from one layer to the previous layer. But presenting all the (\\'ililable 

data to the network can he problematic, especially when there are redundant data ill the 

training set. The computational expense in terms of training time and the complexity can 

be unnecessarily high if all the data are used for training. 

Studies have shown that selecting the most informative data, rather than tUliniug OIl 
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all the available data, improves, or at least maintains the generalization pnrfonll(lJl('('. as 

well as reduces the training cost, and the data needed for training [Engelhreclit II 11.1 J 998. 

Engelbrecht et al1999a, Robel 1994a, Zhang 1994]. Active learning refers to snch S(·jl'c1iou 

of a subset of the available training data containing the most illformatiV(~ pattl'llls for 

training. The concept of active learning is to efficiently select high utility pattnus hom 

available data for training the network. There are 1:\vo approaches to active [(,illlling. 

namely incremental and selective learning. 

This thesis focuses all the study of active learning as a method of improving perfOl'lllaIlCe 

of NNs on function approximation and time series problems. Section 1.4 dis(,llSS('S tlw 

objectives of this study. 

1.4 Objective and Justification 

The backpropagation learning algorithm played a vital role in t.he resurgence of ill\('l'('st in 

neural networks. Eversince, a lot of research effort has been concentrated 011 findiug ways 

to improve the performance of back propagation learning. Research has C()lJ('(~lltT;\f('d 011 

finding the optimal size of networks, to make opti'mal use of training ci<1ta. to oldilll,izl: 

initial weights and learning parameters. 

This thesis concentrates on methods to optimize the use of training data, i.e. (l.divr: lefJ.rnirl.,cJ. 

A new selective algorithm for time series problems is proposed and is lls(~cl as Olll' or tll<J 

selected active learning algorithms to be compared. A comparative stuelv is carried ollt ou 

three additional active learning algorithms. \IVhile many research efforts havp COll('('lltrated 

all designing new active learning approaches, as well as other learning algori thlllS. all 

elaborate comparison of these approaches is still lacking and hence the lI1ot.i";\t jou for 

this study. The four selected active learning algorithms are compared to each OtlH'J with 

reference to their respective performances in terms of accuracy, computational (,Oll1p[('xity 

 
 
 



CHAPTER 1. INTRODUCTION 11 

and convergence characteristics. 

Accuracy of a learning algorithm is how well a function is approximated bv the ll(,twork 

llsing the algorithm. The mean squared error (T\ISE) on the trainiug set ami the ti'st S(~t 

are used as the measure of accuracy. The training error is the error compute'(\ (i\'('}' all 

the patterns or data presented to a network for training, while tlw generalizatiolJ eITor 

is the error computed over a set. of patterns not used for training a network i.e. \('st set. 

A low generalization and training error is an indication of good approximatioll of tlH' 

problem and a good performance of the network. However, a lov" training error al1(\ a large' 

generalization error is an indication that the training set is overfitted. A ::vlS£ v(llnc dose 

to zero shows a small error between the target and the output. function. COlllj)lltiltional 

complexity measures the cost of training the network. The cost is measured ~n' the' 1l1lmher 

of calculations made during training. The number of patterns selecteel for t.ra.iuillg is qllit.() 

important because of the proportional relationship between comput.ational cost dlld the 

number of patterns. The more patterns selected for training, the more calculatiolls arp 

made during training and thus, a higher training cost. Based on these eriteria, a ni tiqlle 

of the different algorithms as well as suggested future work are discussed. 

The scope of this thesis is multilayer feedforwaTd neural network.'), focllsing OIl f11ll('tiol1 

approximation and time series problems. Gradient descent is used as optimizatioll llwt.hod 

and sigmoid activation functions are used. A three layer neural rwtwork with ow' input 

layer, one hidden layer, and one output layer is used. 

1.5 Outline 

The rest of this thesis is organized as follows: 
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• 	 Chapter 2 deals with learning in multilayer neural networks. A g;eneral iutl'od lldioll 

and a background study of multilayer neural networks are giVf-:Il. The arcliiu,(·tnn's. 

learning algorithms and weight updating methods are discussed. The difficllities 

of training multilayer neural networks, as well as solutions to these difficlllti!'s an' 

discussed. 

• 	 Active learning is discussed in chapter 3. The concept and the basis for actin' l!'arning; 

are examined. Results and simulations of the four selected active learning alg;orithms 

are presented. 

• 	 Chapter 4 concludes this thesis with observations and suggestions for future l'<'s('(Jxc:h. 

 
 
 



Chapter 2 

MULTILAYER NEURAL 


NETWORK LEARNING 


This chapter discusses learning in multilayer neural networks (MNNs). MNl\s an' b:v far 

the most common applications of artificial neural networks (ANNs). The chapter ('OWl'S 

fundamental issues such as the different types of MNNs and available learnillg algorithms. 

Performance aspects of the different learning algorithms are discussed, as well as difficulties 

encountered in the learning process. 

2 .1 Introduction 

An artificial neural network (ANN) is a model of the biological neural system of human 

beings, modeling one of the most important features of the brain - the ability to lenni.. This 

feature shows parallel to the intellectual development of human beings. As humall I willgs, 

13 
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we learn how to write, read, understand speech, recognize and distinguish pattern - cll1 hy 

learning from examples. In the same way, ANNs are trained, rather than progl"mllllH'rl. 

ANN's develop solutions to problems unlike conventional data processing techlliqlH'S \yhich 

require complex programming. 

An artificial neural network consists of processing units, organized in lavers of units (also 

referred to as artificial neurons). Training of an ANN is done using a training algorithm. 

which is an adaptive way by which a network of processing units organizes thplllseh'("s to 

implement the desired behavior: \Vhen a network is presented with informatioll to k'arn 

(consisting of input attributes and corresponding desired output values). the COlllH'ction 

links in between, referred to as the weights, are adjusted to produce a response COllsistent 

to the desired output. This learning algorithm is a closed loop of presentation of p;\tterns 

or examples and of corrections to the network according to a learning rule. An optilllization 

algorithm such as gradient descent, conjugate gradient or second order deriyatiws tech­

niques, is used to adjust the weights of the network [Becker et al1988J. Then' are ditf('n~l1t 

classes of training algorithms and different topologies of artificial neural lwtworks. 

The rest of this chapter is organized as follows: The parallelism between lliologica.l and 

artificial neural networks is discussed in section 2.2 to show hm" ANNs were inspired from 

the biological counterpart. A taxonomy of different neural network trainillg algorir hms is 

given in section 2.3. Section 2.4 discusses the training of multilayer m~ural networks using 

gradient descent. The learning equations are derived in this section. Section 2.0 dis('llsses 

problems of learning by gradient descent. 

2.2 Biological Neural Networks 

The basic building block of biological neural systems is the neuron. A Hemon is a ('(,11 which 

communicates information to and from the various parts of the human bod\'. Figure 2.1 
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shuws a simplified representation of a neuron. A neuron consists of a cell l)()(l~' l"('f('lTPd to 

as 8om,a, several spline-like extensions of the cell bod~r ref(~rred to as dnuin:tr:s dll< I il single 

nerve fiber referred to as an axon. An axon branches out frOlll the sonla and COllll<'ds to 

rnany other neurons. 

----~C> axon 

soma 

nucleus 

----------=;::(>dendlites 

Figure 2.1: A simplified representation of a biological neuron 

Dendrites extend from the cell body to other neurons where the dendrites n~(:(-'iY(, signals 

at a connection point referred to as a synapse. These signals serve as inpnts \yhich are 

conducted to the soma (cell body). In the nucleus, these received inputs are 811111111('d up. 

If the cumulative excitation in the nucleus exceeds a threshold, the neuron fires. s(,]Hlillg 

signals down the axon to other neurons. While the biological neural systeIll is ('xrn'lnel~T 

complex, an ANN is an attempt at modeling the infonnation processillg capabilities of the 

biological neural system. 
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An artificial neuron was designed to 11lilnic sirnple characteristics of tlw hiolog-icallH'l1l'Oll. 

An artificial neuron receives input signals frol11 the enVirOllIl1pnt. or froll! oth(\l' (\ rt ificial 

neurons. These inputs signals are weighted with a value which Illodels the s~rlla pti(' STT('l1gth 

of the corresponding connection. The \veighted sum of the input signals is used to <1('1 ('1'l11iw' 

the activation level of the neuron. The activation of an artificial neuron is lliodel('</ llsing 

an activation (or transfer) function. The different activation functions are disc1lssed in 

section 2.3.2. 

Figure 2.2 illustrates a general representation of an artificial neuron. III the 1'('s1 of this 

w 

n output =f(netl 

net=~ 
i=1 

Figure 2.2: All artificial neuron 

thesis, the term neural network (NN) is used instead of artificial neural network (A~'\). 

Several key features of the processing elements of a neural network are suggested 1)~. the 

properties of the biological neuron, namely that, 
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• 	 a processing unit (neuron) receives many signals from oth(~r lWllI'0I1S or tIl(' ('JlyirOll­

ment; 

• 	 these signals may be modified by a weight: 

• 	 the processing units sum the weighted inputs which IS transformed to illl ()Iltput 

signal using a squashing function to simulate firing; 

• 	 the neuron transmits this single output to other neurons. or to the ellvirolllllCllt: ;mQ 

• 	 the output from a particular neuron may be transmitted to many othl'r 11(,11ro118. 

One important characteristic an ANN shares vvith biological neural s~'stems (BNS) is fault 

tolerance. A BNS is fault tolerant in two ways: Firstly, human beings are ahh-' to n'('o12,"nizt' 

many input signals that are somewhat different from any signals they hav(c seell I)('fore. 

Secondly, a BNS can tolerate damage to itself. Human beings are born \vith as lWlll\, as 

100 billion neurons. Most of these neurons are located in the brain and arc llot replaced 

when neurons die [Fausett 1994]. Despite the loss of these neurons. human l)('ill~S still 

continue to learn. Even in cases of traumatic neural loss. other neurons ('all SOllH't iw('s he 

trained to take over the function of the damaged cells [Fausett 1994]. In a silllilar llIiUlllf'I'. 

an ANN can be designed to be insensitive to small damage to the uetwork and tIl(' ll<'twork 

can be retrained in cases of significant damage. 

The number of layers, and the way in which neurons arcc interconIleded. l<'slllt('d ill thcc 

design of various ANN topologies. Section 2.3.1 surveys different ANK topolo),!;ic8 ilwl also 

discusses the different classes of training available. 

2.3 A Taxonomy Of Training 

One of the interesting features of neural networks is their abilitv to learn. whi(·1t implies 

that the NN has to be trained. How is this done:C 
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The objective of training a NN is to produce desif(~cl (or at lc'ast cOllsistent) 01ltPilt ,,"hc'll 

a set of inputs is applied to the network. A Hemal network is trailH~d ])," apph'illg (111 iU]Jnt 

vector to neurons while adjusting the wc~ights according to a pn~dpt.C)nllillpd ]ll(w('(illn' ill 

order to bring the l'l"N's learned concept closer to t.he d(~sirecl outpnt. Duril1g Trrtiuillg, 

\veights gradually converge to values such that each set of input pattpl'lls prodnct's rt dosp 

approximation to the desired output patterns. There are two main traiuing paradigills: 

1. 	 Supervised training, which is perhaps the most freqlH~ntl\' used training lIH'thod. 

For training purposes, a training patter'n is required whiclt COllsists of H \"('('lor of 

input values and a vector of associated target/desired output values. Patt('llls ('<Ill 1)(' 

provided by external teachers or by the system which contains the network. ill \\"hich 

case the network is self supervised. The network is usuall~' traiued hv pn'st'llting 

an input vector to the NN, the actual output of the NN is calculated awl cOl1lpared 

to the corresponding desired (target) output. Training patterns are grouj)(>d into a 

training set. Each pattern in the training set is presented to t.he lH:twmk. ,HId the 

prediction error used to adjust weights. Patterns ill tlw training spt an' n'1)(',li<'dlv 

presented to the network until an acceptablt> error is achieved OV('l" the entire 1r<lillillg 

set. 

Supervised learning is analogous to a lesson in school where the teadH~l' ilppli<'s tlw 

correct answer for each problem. Different approaches to Supf~l'vised l('aming have 

been developed . 

• 	 ErToT correction learning which adjusts the ("omH~etioll wc:ights I H'tm'<'ll JllO­

cessing units, in proportion to the difference between t.he d(~sin~d alHl ("(jIll) n!Ted 

values of each neuron in the output layer [Simpson 1990]. 

• 	 Reinforcement learning which is similar to error-correction kal'llillg ill 1hat 

weights are reinforced for properly performed actions and pll11ish('d fOJ poor­

ly performed actions [Simpson 1990]. 

The difference between error correction and reinforcement learning. IS Thi) 1. ('lTOl" 
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correction learning requires an error value for each output unit while H'illf()J('('IlH'ut 

learning requires only a state to deseril)(' tlu~ output la~'(~l"S p('rfonWlllct', 

2. 	 Unsupervised training, also referred to as sdf-orgallizat.ion kaming. u'qllin's uo 

target or desired outputs. Hence, no comparison to predetf'nnillC'd 1'('SP011S('S an' 

needed. Training sets consist solely of input. patterns. The task of the ~:\' is I() jpam 

to group together patterns that are similar and also to find common thn~nds ill a 

mass of data. The NN is supposed to discover statistically salient f{:atmcs of iu]>nt 

patterns and develop its own repres(~nt.ation of these patt.erns. Cwmpenised l('iuuiug 

is used for tasks such as dustering [Fausett 1994]. 

For the purpose of this thesis, only supervised training is considered. 

2.3.1 Topology of Neural Networks 

In addition to the classes of neural uetwork training algorithms, another distingllishing 

characteristic of the different neural networks is t.opology. Topology H'fers to til<' architec­

ture of neurons, including the interconnection scheme within the uetwork. 

Neurons are arranged in one or more than one layer. Neurons within the sam(' la,w1' llsllalh· 

have the same activation function, and are fully connected to the neurons ill tl!p 11('xl !em'L 

A NN can consist of just a single layer of full:,,' interconnected units, or can haw i\ Il illput 

and an output layer with zero or more hidden units, referred to as a multilnV('\ IH'11U1.1 

network (MLI\'N). Figure 2.3 illustrates a MLNN ,,,ith a hidden layer. The figure has thre(, 

units in the input layer with a single output unit. The input layer consists of lluit s that 

receive input signals from the environment and distributes the signals to thl' ot.her layers III 

the network. The output layer returns signals to the environment. Hidden lav(~rs iln' thosp 

layers in between the input and output layers. The hidden units provide nOlllilwilli I ips for 

the netvmrk. 
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Z J 

Z 2 

Z 3 

Figure 2.3: A multilayer neural network with a hidden lav(·'r 

Each neuron produces an activation value (output signal) \vhich usnallv is (1 flluctioll of 

the weighted sum of the input signals. The activation value represents the actinltiou l<~\'pl 

for the neuron. Section 2.3.2 discusses activation functions that can be used iu a :\:\. 

2.3.2 Activation Functions 

The basic operation of an artificial neuron (unit) involves summing the neurou's w('ight(~d 

input signal and to produce an output signal through application of all attiv(\tioll fll11ctioll 

to the net input signal. Activation functions map a neuron's domain. which is tIl(' illpnt. 

to a prespecified range the output. Figure 2.2 illustrated the basic huildiuf.!, hlock of a 

NN. In figure 2.2 net is the weighted input signal. The output signal () is (,llkulat('d as 

0= f(net) (2.1 ) 
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Various mathematical functions have been used as activation fuuctiollS. Tlwl'(' me flllWriolls 

that squashes the Het input signal into a finite range. These fUllctions CClll 1)(, d is<Tct<, 

functions, snch as the ramp and step functions, or continuous functions. for ('Xalllj ll(' tIl<' 

arctangent, sigmoid, sine or gaussian (radial basis). Linear functions call ;ds() j H' llsed 

as activation functions, in which case the input signal is not mapped iIlto a nuit!' raugf'. 

Figure 2.4 illustrates the different activation functions that cau be used. 

One of the major reasons why earlier work on NNs came to a halt. was thar TIll' 1('iHll­

iug rule could not be substantially improved for multilayer l\Ns llsillg th!' diS<T(,t(' H11(l 

linear acti·vation functions [Maren et o,l1990J. Linear and discrete functions ('onl<1 only 

solve problems that are linearly separable, and being linearly separable limits t IH' .:\:\ to 

problems (classification) in \vhich the sets of points (corresponding to input valm's) Cilll be 

separated geometrically. Hence, the network used then (perceptron) could Hot solw rh(J 

XOR problem. 

A new learning rule (backpropagation) was developed to handle linearlv ins(~pHraJ)k fllll(,­

tions. However, backpropagation requires continuous, monotonic illcn~asillg ilctiYat.iou 

functions, since these functions need to be differentiated when the gradient of t he' (~rror 

surface is calculated during the weight update process. 

The sigmoid function, given in equation (2.2), is widely 1lsed as actiyatiou fllllctioll aud 

is a continuous function bounded in the range (0,1). The sigmoid fUIlction is ('x])1'('s5(>([ 

mathematically as: 
1

f(net) = --­ (:2.2 ) 
I + e~HeI 

The sigmoid function is desirable because of its simple derivative. The sigmoid fnllc1ioll has 

the advantage of providing a form of automatic gain control. That is, for slIlall sigwds (net 

near zero), the slope is steep producing high gain in the magnitude of the uet,\york's olltput 

and as the magnitude of net increases, the gain in the magnitude of the network's output 

decreases. In this way. large input signals can be accommodated by the lH~twork wirho1l1 

saturation, while small signals arc allowed to pass through without excessive atrPlllliltioll. 

\ t Cf//to ?-S2-x.. 

b i 5 "-I :r;.G:, 7 5 
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IlIll'droutput 
I 

/ 
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/ 	

~lcll 

net 

I 
Figure 2.4: Actiyation functions 

2.3.3 Neural Network Types 

Based on the different network topologies and training approaches, different types of NNs 

have been developed. A surnmary of the different NN types are presented belo\v: 

1. 	 Recurrent neural network (RNN): A RNN, also referred to as a feedback IH'ural 

network, employs feedback connections in order to learn teInporal characteristics of 

data presented for learning. The feedback connections thus allo\\' the network to pro­

duce cOlnplex tirne varying outputs in response to silnple static input [Carlillg 1992]. 

RNNs exhibit properties very similar to short term menlory in human beings. There 

are different types of RNNs, e.g. Jordan and Elman RNNs. 

In Jordan RNNs, the state of the output layer is fed back to state units ill tIl<' illput 

layer (see figure 2.5( a)): while the state of the hidden layer is copied illto context 
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INPUT 
LAYER HIDDEN LAYER 

STATE UNIT 

(a) Jordall RNN 	 (b) Elmanll RNN 

Figure 2.5: Recurrent Neural Networks (RNNs) 

units in the input layer for Elman RNNs (see figure 2.5(b)). H:vbrid lletvvorks can 

also be built by combining Jordan and Elman networks. Also, any nurnlwr of previous 

time steps can be incorporated by simply having additional state units (for .1ordan 

RNN) and context units (for Elman RNN) for each tirne step [Carling 10021. 

2. 	 Functional link neural network (FLNN): In a FLNN~ the input layer is 0X])Clllded 

to a layer of functional units, which consists of higher order combinations of tlH\ input 

units [Zurada 1992b, Hussain et al1997]. Each functional unit is full:v' COlllH'cted 

to the next layer. The addition of higher order combinations of inputs al'tihciall? 

increases the dimension of the input space. Figure 2.6 shows an illustratioll of a 

functional link neural network. 

3. 	 Product unit neural network (PUNN): PUNNs allow learning of higher-order 
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----·-"1 
output laY""1 

YJ 
hidden layc,'functional layer 

Figure 2.6: A functional link neural network (FLNN) 

input terms, by using product units instead of summation units to cornpntp tllP net 

signal to a neuron [Durbin et al1989]. 

A weighted product 
I 

IT 
i=l 

is therefore used instead of the usual weighted sum 

I 

L 
i=l 

where Zi is the input signal to neuron j, 'Uji is the weight betlveen nellrOll i ill the 

previous layer and unit j. Durbin and Rumelhart proposed two PUNN archit('ctllres 

(refer to figure 2.7): 

(a) 	 In the first architecture, a set of product units is added to the current sllllllnation 

units in the hidden layer (refer to figure 2.7(a)). 

(b) 	 In the second arrangement, layers of product units alternate with layers of Slllll ­

mation units (refer to figure 2.7(b)) 

The 	main reason for using PUNNs, is to learn to represent generalized pol~'ll()lnial 
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(a) The first arrangement 

(b) The second arrangement 


Figure 2.7: Product Unit Neural Networks 
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h\'p~rb()lIc 

lined!output 
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net 

Figure 2.4: Activation functions 

2.3.3 Neural Network Types 

Based on the different network topologies and training approachetl, different types of ;\iNs 

have been developed. A summary of the different NN types are presented helm'\': 

L 	 Recurrent neural network (RNN): A RNN, also referred t.o as a feedback lH~mal 

network, employs feedback connections in order to learn temporal characr,!~ristin; of 

data presented for learning. The feedback connections thus allow the network to pro­

duce complex time varying outputs in response to simple static input [Carliu!!, 1992]. 

RNNs exhibit properties very similar to short term memory in human lwin!!,;.;. Tlwre 

are different types of RNNs, e.g. Jordan and Elman R!'L\'tl. 

In Jordan RNNs, the state of the output layer is fed back to state units in till' illPut 

layer (see figure 2.5(a)), while the state of the hidden layer is copied into context 
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terms in the input and hence a better representation of data in cases wlwl'<' high­

er order combinations of inputs are significant [Leerink et al1995]. Adjllsrillg thc' 

weights is, however, computational expensive since derivatives of these prodUd nnits 

are complex due to an exponential term and the occurrence of complf'x lllllllil('l's. 

4. 	 Feedforward neural network (FFNN): In a FFNN data flows strictly from the 

input layer to the output layer. A FFNN has no memory and the output is solely 

determined by the current input and weights values. A feedforward neural ll('fw01'k 

consists of one or more layers of usually non-linear processing units (call 11S(' linear 

activation functions as well). The output of each layer serves as input to tIl(' llext 

layer. This thesis concentrates on FFNNs, and studies network learning using FFXNs 

as well as problems associated with learning in FFNNs. 

Apart from the neural network types mentioned above, there are other NN t:vp<,s: for 

example the single layer Hopfield NN (HNN) [Hopfield 1982, Fausett 1994]. awl cluster­

ing NNs, for example the self organizing map (SO~1). which use unsuperviHed l(~aruing 

[Simpson 1990J. 

Section 2.3.4 discusses optimization algorithms that can be used to adjust thp weights of 

feed forward neural networks. 

2.3.4 Optimization Algorithms 

Training a neural network involves finding optimal values for the weights of the lH'twork 

through numerical optimization of a nonlinear objective function. The objectiw flludion 

is usually the sum squared error, computed from the actual network output and tIl(' (ksinxl 

output of the NN to be trained. Different optimization algorithms can be applied to NN 

learning. The algorithm chosen is usually based on the characteristics of tIl(' prohlc'Hl to 

be solved. 
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1. 	 Gradient descent optimization is by far the most common techniq1l(~ lls('d for 

weight optimization. In training the network, a gradient descent is perf(JrnH~d OIl the 

error function, which is a function of the weights of the neural network. \Yeight­

s are adjusted to move towards the negative gradient of the objective fllllCtion 

[Masters 1993, Becker et al1988]. Gradient optimization is discussed ill 11101(' de­

tails in the next section. 

2. 	 Newton optimization uses a better approximation of the error function than the 

gradient descent technique. The newton technique uses second derivatives and gracli­

ent information of the error function to determine the next step direction. This helps 

in reducing the number of steps taken to reach a minimum, thus aehieving faster 

convergence. However, Newton optimization has the disadvantage of being compu­

tationally expensive because the inverse of the Hessian matrix needs to 1)(' caklllatecl 

at each training step. Newton's optimization should preferably be used with Hemal 

networks with a few number of weights due to the cost of computing the illn~rse of 

the Hessian matrix(Darken et ai1992, Becker et al1988J. 

3. 	 Pseudo newton optimization is an adaptation of Newton's method. PSC'lld(J Hew­

ton optimization computes an approximation to the inverse Hessian matrix. and is 

therefore more computationally efficient than Newton's optimization. Pseudo lH'\vton 

optimization should be preferably used for neural networks with a moderat<' llulllber 

of weights due to the cost of approximating the Hessian matrix (Darken cot at 1992]. 

4. 	 Conjugate gradient optimization is used for large optimization probl<"IllS. since 

it does not require the computation and storage of the Hessian matrix. COlljllgate 

gradient uses only gradient information. The objective of conjugate gradient is to 

minimize both the weight vector and a direction vector. Conjugate gradiellt is r!'iated 

to gradient descent optimization using momentum, because the weight s(,;IITh in 

conjugate gradient optimization combines the new gradient direction and thp pn~violls 

gradient direction. Each step involves computing a conjugate direction followed b~' 
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a line search, to get an approximate minimum in the conjugate din'ctioll. C()lJjllgatP 

gradient optimization increases speed of training aud the convergencp of the Iwtwork 

[Becker et a11988, ~1011er 1993]. 

5. 	 Simulated Annealing can be used where the objective function (the (~IT01 fuuc­

tion in neural network training) is not differentiable. Optimizatioll is 1)()rf()nlH~d 

by randomly perturbing the independent variables (inputs in this c(k')e) amI k(~(-'ping 

track of the best (lowest error) function value for each randomized set of variHhl(~s. 

Simulated annealing can be combined together with other optimizatioll algorithms 

such as conjugate gradient,where simulated annealing is used to find a good ini­

tial weight vector, after which conjugate gradient is used to find the local lllillirnum 

[Masters 1993, Desai et aI1996]. 

2.3.5 Why Neural Networks? 

Neural network applications emphasize areas where NNs appear to offer a mon~ appro­

priate approach than traditional computing has. ;'\Ns can be used when data. Oil which 

conclusions are to be based, is noisy. 

\\Then the influential or informative patterns are subtle or hidden, a neural lletwork has 

the ability to discover patterns which are not clear, or unknown, to the human resf'archer 

or standard statistical methods. For example, to determine the credit worthiness of a loan 

applicant, the information needed is hidden within data OIl the spending and the' panllellt 

history of loan applicants. NNs have shown to provide decisions superior to those' wade hv 

human beings [Masters 1993]. Neural networks have also been applied to data that ('xhibits 

significant unpredictable nonlinearity [Masters 1993]. :'-JNs adapt to predict futul"(' values 

not based on strictly defined models, and offer possibilities for solving problems that j'('quire 

pattern recognition, pattern mapping, dealing with noisy data, pattern classificatiolJ and 
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function approximation. 


Specific areas where NNs have been applied include, amongst others: 


• 	 Neural networks have excelled in pattern recognition. NNs deal with thp cOlllplex­

ities inherent in many applications such as recognizing patterns in speech. radar and 

seismic readings. A real world application is the NETTALK, a Beural lletwork de­

signed by Sejnowski and Rosenberg to produce phonetic strings which in tum sp(~cify 

pronunciation for written texts [Dayhoff 1990]. 

• 	 ~Ns are used for pattern classification. Input patterns of a network are mapped 

into one or more classes. That is, each pattern belongs to Olle of thp classes 

[Fausett 1994]. For example, NNs are used for medical diagnosis to identify diseases 

of the heart from electrocardiograms. NNs can also be used in plaut classificatioll to 

determine crop types from satellite photographs [Ma.'3ters 1993]. 

• 	 NNs have also been used in adaptive control applications s11ch as in robots and 

automatic vehicles. Neural networks are used to control robots in the iudllstr)' 

[Dayhoff 1990]. 

• 	 Neural networks are used in financial analysis problems such as credit assessment 

and financial forecasting. NNs have also find application in optimizatioll. sdH'duling 

and routing problems. A practical application is in optimizing resources for airlines 

[Dayhoff 1990J. 

• 	 NNs are used in function approximation problems. A NN can learn 1\ !2,lV(~ll 

function or time series problem when presented with training patterns l'Ppn's(>lltin!2, 

that function or time series. This application has found its usefulness in forpulsting, 

such as weather and in the stock exchange market. 

• 	 Neural networks are used for database mining. A major problem which surfaced 

in information retrieval is that explicit information can easily be n~tripypd ,vhilp 
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implicit information can not. Implicit information is distributed across tltt' patterns 

stored in the database and is difficult to extract by human experts. \'?\s (ll'(' Olle 

of the most promising technologies available to extract such implicit iuforllwrioll - a 

process referred to as data mining. [Towell et al1993, Fu 1994]. 

2.4 Gradient Descent Optimization 

Multilayer neural networks (MLNNs) perform excellently in most applications. ~~sl)('("iall~! 

in classification problems because of the inclusion of one or more hidden laver. Trainillg 

a MLNN is not as straight forward, nor as easy, as training a single layer m~twOlk. This 

section discusses training of MLNNs using gradient descent. Complete derivatiou<ps of the 

learning equations are given and problems with gradient descent optimization are discussed. 

2.4.1 Introduction 

NNs that are trained usmg GD are referred to as backpropagation Heural lH'1-works 

(BPNNs). In order to train the network successfully, the output of the network is lllade 

to approach the desired output by continually reducing the error between tlw Iletwork's 

output and the desired output. This is achieved by adjusting the weights betweell la~reTs: 

by calculating the approximation error and backpropagating this error from th(~ fillal layer 

to the first layer. The weights are then adjusted in such a way to reduce the approxima­

tion error. The approximation error is minimized using the gradient descent optimization 

technique [Rogas 1996J. 

The gradient descent technique searches for the minimum of the error function in the \v('ight 
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space. The combination of weights which minimizes the error function is cOIH:,ich'red to lw 

the solution to the learning problem. \Vhen an input pattern is presented to the lWliYork. 

the network produces an output or) for output unit Ok which is different from tIl(' targpt 

value tr). 

The objective of training is then to minimize the error arising from these two val1ws OWl' 

the entire training set. The error function is defined as the S11m squared error function 

(SSE): 

(:2.:3) 

where P is the total number of patterns in the training set. J{ is the total lllllUl)('1' of 

output units, t't) is the target value for kth output unit for pattern p, alld O;.'1i is dw 

output value for the k-th output unit for pattern p. 

The gradient for the error function is computed and is used to adjust the weights. \\'eight 

adjustment can be done in two ways: 

• 	 Batch training which adjusts and updates the ,,,,eights after presenting a 11ll111ber 

of training patterns. \Veight changes are accumulated and applied once Ollh-. Batch 

training is also referred to as offline training . 

• 	 Online Training where the weights are adjusted after each pattf'nl pn~s(,lltatioll. 

Online training has the advantage of not needing a separate rnemoI'\- to store 1,11(' 

derivatives of patterns as is needed by the offline training. 

Training using G D involves two passes: 

1. 	 The forward pass: During the forward phase, each input unit zlP 
) an[,('('(,I\'('S 

input signal and distribute this signal to the hidden units 'Uj for all j = 1. .... J. 

Each hidden unit then computes its activation and sends the activatioIl signal to 

each output unit at the output layer or to hidden units in the next hidd(~ll laV(~r if 
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there are more than one hidden layer. As there are no connections \vithin a 1;\\,('1'. all 

the units in that layer can have their output computed in parallel, whUp the lawrs 

are dealt with in sequential order. The output layer provides the respOIlSP of the 

network for a given input pattern. 

2. 	 The backward pass: Each output unit compares its computed activation O)I}) with 

its target value t~) to determine the associated error for that pattern. The ('ITor is 

backpropagated to all units in the previous layer and is used to update the weights 

between the output and hidden layers. The accumulated error at each hidd('ll unit 

is then calculated, and backpropagated to adjust the weights between tlJ(-' inpllt and 

hidden layers. The error value associated with each processing unit reflects the ('ITor 

of that unit. A larger error value indicates that a larger correction will lw lllade to 

the corresponding weights. 

2.4.2 Gradient descent training algorithm 

Certain aspects have to be addressed before commencing training of multilayer lWl\Yorks. 

One important aspect is the activation function used in the hidden and outpnt lavers. 

GD requires the activation function to be continuous, differentiable and mOl1otollicallv 

increasing. For the purposes of this thesis the logistic (sigmoid) function is assumed. 

Another issue is the data set: the output value of logistic function is always ill the range 

(O,l)~ thus requiring scaling of the desired output (target) before training to fit iuto tllis 

range. Though it is not required to scale inputs, it is advisable to scale the inpnts to 

[-1,1] if logistic function is used. The input values will then lie within the actiw~ 1'a11/2;(-' of 

the sigmoid fUIlction. The number of hidden layers also has to be c:onsidered. Al1hough 

gradient descent can be applied to any number of layers, it has been shown that H single 

layer of hidden units is sufficient to approximate any fUIlction with IIlany discontinllitips to 
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arbitrary precision provided that the activation function is nOll-linear [1<ros(' d (1/1<)93]. 

This thesis assumes a single hidden layer. 

The training algorithm is summarized below: 

1. 	 Weight initialization: Set all weights to small random values. Let 'Uji 1)(' tIl<' \H'ight 

between the j-th hidden unit and i-th input unit, and Wkj the weight lwtW('<'1l the 

k-th output unit and j-th hidden unit. 

2. 	 Calculate the activation of the units in the network, layer-by-Iayer. startill?, from the 

input layer. 

• 	 The activation level of each input is the value of the training patteI'll appli(~d to 

the input. 

• 	 The activation of each hidden and output unit is calculated as: 

I 
(p) , .(1') (' 'U ·z· - ,/). ) 	 (2.4 ) YJ • YJ L.. JZ ,[ JO 

1=1 

J 

f~~)(2= 'Wkj'!Jj - "WkO) 	 (2.S) 
J=l 

where yY) is the activation of the j-th hidden unit, and o~) is the <tctinltion 

of the k-th output unit for pattern p. f{ is the total number of outpnt units, 

I is the total number of input units and J is the total number of hidden 

units. VjO is the weight connected to the bias unit in the input lawL while WkO 

is the weight connected to the bias unit in the hidden layer. The term bias is 

discussed in the section 2.4.3. 

3. 	 'Weight adjustment 

• 	 Start at the output units and recursively propagate error signals to tll(' input 

layer. 
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• Calculate the weight adjustments: 

The output o~) is compared with the correspondinl!; targc>t value f),f'; the()n'] 

entire training set using the function 

(:2.G) 

to express the error in the network's approximation of the target fUlHtioll. 

Minimization of E(p) by GD requires the partial derivative of E(p) with U'S]wct to 

each weight in the network to be computed. The change in weight is proportional 

to the corresponding derivative: 

( ?-.1'""') 

(:2.8) 

where: Tf is the learning rate which is ill the step length in the llel!;atiw gradient 

direction. The value of T] is usually between 0 and 1. The last tpnll is ;\ lllO­

mentum term which is a fUllction of the previous \veight change. The ("()l1c<'pt 

of momentum is discussed in the section 2.4.3. 

For notational convenience, the (p) superscript is dropped in t h(' relllaiuder of 

this section. The reader should keep in mind that the equatiolls bellm' ill(' for a 

single pattern. 

The partial derivative of with respect to WkJ is computed as 

(2.9) 
aWkj aOk aWkj 

The term aaE in equation (2.9) is calculated as 
Ok 

(2.10) 
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and 

(:2.11) 

From equations (2.10) and (2.11) 

(2.12) 

Therefore, 

(1.13) 

The contribution of hidden units to the output error is not readily known. 

However, the error measure can be written as a function of the error cOlltribution 

over all output units. 

8E 

(2.14) 

The partial derivative :;;}i is computed as 

(2.IS) 

Therefore, 

J{ 

flVji = 'fJ I:(tk - odok(l - ok)y/wkJYj(1 Yj)Zi (2.16) 
k=l 
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4. 	 Update the weights: 

Wkj(t + 1) Wkj(t) + flWkj(t + 1) 	 (:2.17) 

Vji(t + 1) 'Uii(t) + 6.V,ii(t + 1) 	 (2.18) 

where t represents the current time step, 6.Vji and 6.wkj are the weight adjustments 

from equations (2.13) and (2.16). 

5. 	 Test for convergence, for example if an acceptable :tvlSE has been reached. or the 

maximum number of epochs has been exceeded. Go to step (2) and n~pe(lt ulltil 

convergence in terms of selected stopping criteria. 

An iteration, which is referred to as an epoch. is one pass through the traillillg set 

which includes presenting training patterns, calculating the activation values. and 

modifying the weights. 

2.4.3 Additional Features To The 'Training Algorithm 

Some features have been incorporated into the GD training algorithm to improw w'ural 

network learning . 

• 	 Addition of neuron bias: The addition of a bias to the neural networks is to offset 

the origin of the activation function. This allows more rapid convergeuce of the 

training process [Masters 1993, 'Wasserman 1989, Fausett 1994J. By acldiug il hias 

unit with a constant activation value of -1. The weight between the bias llllil aud a 

unit in the next layer serves as bias to that unit. These bias weights are trained ill 

the same way as the other weights. Therefore, for hidden units 

I 

Yj = f(I:. Vj'iZi (:2.19) 
i=O 

and for output units 
J 

Ok = .f(I:. Wk,iYj (2.20) 
j=O 
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with Zo = -1 and Yo 1. VjO is the weight to the bias unit "7:n ill till' iU]lll t laver 

anduJko is the weight to the bias unit Yo in the hidden layer. 

• 	 Another prominent feature that can be added to improve the perforrmnu'(' of tlw 

network is to add a momentum term. The addition of a momeuturn t('l'lll helps 

to avoid oscillations in weight adjustments [Beale et a11990j. Momentum is propor­

tional to the magnitude of previous weight changes. \Veight changes are then ill 

the direction that is a eombination of the current gradient and the previolls gradi­

ent. Momentum allows the net.work to make reasonably large >veight adj llstllH'llts, 

as long as corrections are in the same direction for several patterns, while llsing a 

smaller learning rate. Momentum also reduces the chances of getting stuck in it local 

minimum [Wasserman 1989, Dayhoff 1990J a problem of learning with 1.11(' gradient 

descent technique which is discussed in the next section. In effect, momentulll tries to 

find the global minimum of the error surface by repeatedly jumping in the downhill 

direction. Momentum is typically implemented by multiplying a numeric parame­

ter between zero and one with the previous weight change (refer to <'qua tiOllS (2. T) 

and (2.8)). 

2.5 Learning Difficulties With Gradient Descent 

Optimization 

Despite gradient descent's usefulness in training multilayer neural networks. there 

are difficulties associated with learning using gradient descent. Problems with GD 

include network paralysis. local minima and slow convergence. 

One of the problems that occurs when GD is used is network paml:l/si8. Network pand­

ysis occurs when the weights are adjusted to very large values dnring training, Large 
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Local Minimum 

Global Minimum 
Figure 2.8: An illustration of local and global minimum 

weights can force most of the units to operate at extreme values, in a region where 

the derivative of the activation function is very small. Since the error backpmpal2,ated 

is proportional to the derivative of the activation function (refer to eqnations (2.9) 

and (2.14)' the training process can come to a stand still [\Vasserman 1989]. 

A prominent problem with training using GD is the occurrence of lo(:al wininw 

[Rumelhart et al1986]. The network finds a combination of weights that that rep­

resents a local and not a global minimum. The gradient descent tedllliqne follows 

the slope of the error surface downward, constantly adjusting the \veights towards 

the minimum. The error surface could be highly complex: full of hills. vali('v;,;. folds 

and gullies in high dimensional space. The network may therefore. get trap]wd in 

a local minimum (shallow valley), while there is a much deeper minimum IH'HriJy or 

elsewhere. Figure 2.8 illustrates the concept of local minimum and global rnillimum. 

There is also the problem of slow convergence: A multilayer neural m~twork IHjllires 

many repeated presentations of the input patterns, for which the weights lH'('d to 

be adjusted before the network is able to settle down into an optimal suI1ltioll. The 
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method of gradient descent could be very slow to conveq:?;e for a complex pmhl(Jlll 

due to the complexity of the error surface [\Vasserman 1989]. 

Over-fitting and under-fitting are not unique problems of GD bllt general prolJlem­

s of any learning or regression algorithm. Overfitting occurs when a network has 

too many training units (an oversized architecture), causing the net\,"ork to pro­

duce good results with the training data, but performing badly with data not 

seen during training. Rather than learning the basic structure of tlw <1;11(\ the 

network learns the irrelevant details, for example noise in tllt' training patterns 

[Sarle 1995, Schittenkopf et al1997]. A low training error therefore does not alwa,vs 

imply a good performance of the network. A network can also be 'I1:ruler:fittr:d. \\'11ieh 

occurs when the number of training units in a network is too few, Le. an undersized 

architecture. Thus the network fails to approximate the true form of the I'elatiollship 

between inputs and targets. 

2.5.1 Solutions to these learning difficulties 

Many research efforts have been invested in the study of how to improve the learning 

of multilayer neural networks. Approaches to improve performance range from finding 

the optimal learning rate to finding the optimal network architecture. SOlllP of thp 

most promising approaches are discussed below: 

1. 	 Adaptive learning rate and momentum factor: Rathpr than lltiing (l fixed 

learning rate in training, the learning rate and momentum can be ad.illst~)d 

dynamically during training [Vveir 1990, Fausett 1994]. Decreased t.raining time 

and improved convergence have been achieved using adaptive learning r<lt(' and 

momentum. A careful selection of the learning rate is often necessary to ellsure 

smooth convergence. A large learning rate can cause network paralvsis and a 

small learning rate causes slow convergence. An advantage of a larllP l(>a.ming 
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rate is to accelerate learning when a plateau is reached in the weight SP;l{"('. A 

small learning rate, on the other hand. is helpful in slowing dowlI leaming whell 

a valley is approach in the search space [Yu et 0,[1997]. 

A momentum factor is used to smooth error oscillation. Plaut ct al haY<' shm\'ll 

that low momentum is good to maintain movement along a particular direction 

in the error surface, but should be increased when the learning procedun' has 

settled in a stable direction of movement [Plaut et al1986 ]. The learning rate 

and momentum should therefore be varied according to the region where the 

weight adjustment is. An optimal learning rate for a learning problelll can also 

be found [\Veir 1990]. However, the optimal learning rate is problenl dep<'llcient. 

2. 	 Random weight initialization: The choice of initial weight vahlPs illfiuences 

whether the network converges quickly or not [Fausett 1994]. The weigllt up­

date between two units depends on both the derivative of the ohjective (error) 

function with respect to weights, as well as the activation value of nnits. Initial 

weights must not be too large, to ensure that the initial input signal of the a 

hidden unit or output unit does not fall in the region where the d(~ri\,(ltin-' of 

the sigmoid function is very small. If the derivative is small, the Bet illJlut of 

the hidden or the output unit will be close to zero and will cause extremely 

slow learning due to small weight updates. Weights are initialized !'(),u!lm/l.ly to 

break symmetry [Rumelhart et al1986J. Symmetry occurs when all w(-'ights art> 

initialized to the same value. Consequently, the hidden uIlits are assiglH'( I idell­

tical error values. All weights in the network are then adjusted ill an idplltital 

manner, and thus prevent the error function from being reduced. vVeights are 

usually initialized randomly to small values [Rumelhart et al198GJ. 

3. 	 Optimal network architecture selection: The aehievernent of good perfor­

mance in a trained network is through careful selection of the n(~t'work size'. An 

oversized network can lead to overfitting of the data but on the ot.lH~r hmld. a 
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small sized (simple) network can lead to llnderfitting [Le Cun 1990]. 

Optimal architecture selection is adaptive in the sense that acijnstinp: lwmal 

network size is incorporated into the network training. R(~search iuto opti­

mal architecture selection is split into three areas: growing tht' lletwOl'k dm­

ing training by adding more parameters to the network [Hirose d 1/.1 1991, 

Jutten et al1995], J?runing the network by removing redundant parameter­

S during training [Sietsma et al1988, Engelbrecht et o,l1996. Lp CnlJ 1990] 

or regularization through penalty terms added to the ob.iecti\'(~ fUllction 

[Weigend et al1991, Kamimura et al1994, Karayiannis ef, al1g93j. 

Network pruning involves training an oversized network and removiug re­

dundant and irrelevant network parameters, including units and / or Wi'ight­

s. Starting with an oversized network rather than a small or uudersized 

network, the network is guaranteed to learn the desired input and ontput 

mapping [Le Cun 1990]. Once a network has learn a solution to a lJl'Ohlem, 

the network can then be pruned to the minimum size [Sietsma d a/ 1988]. 

Pruning aims at solving the problem of the overfitting as well as reducing 

the computational cost of training and applying the network [Le CUll 1990]. 

Selecting the parameters to remove is the main focus of pruning lllethod­

S and is based on different criteria proposed by different researdwl"s. Le 

Cun et al introduced the concept of network pruning through tlwi! work 

on optimal brain damage (OBD) [Le Cun 1990]. Le Cun et al, ('lllpirical­

ly showed that by removing unimportant weights from a network. several 

improvements could be achieved. These improvements include lwtl(T gen­

eralization, fewer training examples and improved speed of learning. (>ED 

reduces the size of a network by selectively deleting weights. The g()al of 

OBD is to find a set of parameters, that when deleted would CHnse the 

least increase in the error function. To find such set of paramH('fs. Le 

Cun et al defined the saliency of parameter as the change ill erl'OI" callsed 
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by deleting that paramf'ter. The parameter with least saliPlHT is ridded. 

The second derivative information is used to calculate this saliew·.,· awl 

therefore is computationally complex due to calculation of Hessi<lu matrix. 

Hassibi et al extended OBD to remove the required H'trainillg aftn pnlll­

ing [Hassibi et al1994]. Their approach, referred to as OBS, antolllaticallv 

computes the adjustments needed to the remaining weights due to tIl<' pl'llll­

ing of weights. Engelbrecht et al developed a pruning algorithm ",·here till' 

sensitivity of t.he output of the network to small parameter ptTtmlmtiolls is 

used to identify irrelevant parameters [Engelbrecht et al199Gj. This algo­

rithm prunes both input. and hidden layers of feedforward neural lwtworks. 

Units that have the least statistical influence on all units in the slHTeed­

ing layers are pruned. An adaptation to this pruning algorithm W<lS also 

proposed by Engelbrecht et al [Engelbrecht et al 1999b]. A llew pruning 

heuristic based on variance analysis of sensitivity information is lls('d to 

find irrelevant parameters. 

Network growing involves growing the network during U"aiuing. Hidden 

units are added to the network when needed. Network growing rpduc('s com­

putational cost and complexity of the trained network [Jutteu d at 1995j. 

A reduction in computational cost is achieved becanse tIl(' optimal archi­

tecture needed to train a network is problem dependent. A small lH'twork 

architechure have fewer weights than a large network and thus lwpds i\ fe,,,, 

weight adjustments. Once the optimal solution for a problem is ohtained, 

the resulting network has an optimal architecture [Jutten et (J.l19~F)l. Hi­

rose et al also used network growing to solve the problem of local millima 

[Hirose et al1991]. In their research, Hirose et al added more hidd(~n nnits 

to a network being trained as soon as the network starts ovprfitr.ill,L',. The 

error function was used to detect local minima. 

Regularization, where all weights are penalized. 
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is achieved by adding a penalty term to the objectin> fllUctioIl 

[\Veigend et alI991]. In doing so, network complexity is penalized. TIl(' 

effect is that redundant weights are driven to zero, while active wpi~llts re­

tain their importance [Kamimura et al1994, Kamin 1990]. \Vei~hl dpccl.v 

is one form of regularization [Fu 1994]. 

4. 	 Training with jitter: Jitter is artificial noise deliberately addf~d to inputs 

during training. Training with jitter is a form of regularization, such as w(>ight 

decay. An advantage of jitter is that the NN can be brought out of a local 

minimum [Beale et al1990j. Injecting artificial noise into inputs durill~ trailling 

is very effective in improving generalization performance when small trailling 

sets are used. Noise injected into inputs is assumed to have zero meall and a 

small variance in order not to change the distribution of the given traillill~ data. 

5. 	 Adaptive learning function: Activation functions can be adapted and 

trained just like the weights of a l\'N. This adaptation improves leaming 

in terms of faster convergence and more accurate results [Zurada 1992a, 

Engelbrecht et al1995, Fletcher et alI994]. Zurada [Zurada 1992a] and Fletch­

er et al [Fletcher et al1994] proposed a learning rule where t.he stpepIlPSS or 

slope of the activation function used for learning is trained alollgsirle 'wit h the 

weights. The learning rule produced better solutions and a faster COllv('r~pnce 

to problems when compared to conventional error backpropagatioll. .Allother 

research on adaptive learning functions is the gamma learning propos(·>d l)y En­

gelbrecht et al [Engelbrecht et alI995]. Gamma learning extends the lamda rule 

of Zurada, by dynamically adjusting the output range of the sigmoid acti,'atioll 

function, thereby performing automatic scaling. 

6, 	 Active learning involves making optimal use of the training da­

ta. Much research has been done in developing active leamill~ lllod­

els [Engelbrecht et al1998, Engelbrecht et al1999a, Engelbrf'cht et oJ 1999(:. 
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Zhang 1994, Robel 1994a, Plutowski et al1993. Cohn et aZ199Gj. Activ(' lC'iuH­

ing refers to the selection of a subset of the available training data d,vllilluicallv 

during training, where the subset contains the most informative elata. Activp 

learning has been found to save computational cost and reduce trainillg time 

[Cohn et al1996, Plutowski et al1993, Robel 1994a, Engelbrecht d al ]<)99<1]. 

This thesis presents a survey and comparison of active learning algoritJulls for 

function approximation and time series problems. The next chapter da] lOl'ates 

on active learning. 

2.6 CONCLUSION 

This chapter discussed the training of the neural networks. A backgroulH 1 intro­


duction into multilayer neural networks was given. The chapter focused on training 


feed forward MLNNs using gradient descent optimization. 


The learning equations were derived and the problems of training a NN llsiup; p;ra.dient 


descent as well as the solutions to these problems were discussed. 


The next chapter discusses one of the methods to improve learning with gradient 


descent technique, i.e. acUve learning. 
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Problem II Equation! PC-PG-Pv I Ar'chitectun~ 
F1 (3.3) 600 -200-200 2-5-1 
TS1 (3.4) 600-200-200 1-5-1 
TS2 (3.5) 600-200-200 2-5-1 
TS3 (3.6) 140-60-60 10-10-1 
TS4 600-200-200 2-5-1 
TS5 600-200-200 2-7-1 

Table 3.1: Summary of the functions and time series used 

that 

DcnDv = 0 

Dc n DG 0 

DGn Dv 0 

Let Pc be the number of training patterns in Dc, Pv the number of training patterns 

in Dv and PG the number of patterns in test set D G . Table 3.1 shows the size of 

these sets for each problem. Dc is the candidate training set from which training 

patterns are selected. Dv contains data used to determine the generalizatioll factor 

during training. DG contains data llsed to determine the generalization perfonnance 

of the network. 

The performance of the active learning algorithms was tested on dean and nOISY 

data, as well as data containing outliers. Section 3.5.1 explains the exp('rillH~ntal 

procedure, including a discussion of the performance criteria used to COlnpare the 

learning algorithms. The results are compared in section 3.5.2. 

The characteristics of the functions and time series used for experirnentati()ll an.) 

discussed next. The following functions and time series were used: 

1. Function F1 is defined as (see figure 3.1(a)) 

(:3.4) 
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where Z1, Z2 U( -1,1). All target values were scaled to the range [O,lJ.rv 

2. 	 Time series TS1 is a sine function defined as (see figure 3.1 (b)) 1 


TS1: F(z) sin(27Tz)e(-z) +( 


where z rv U( -1,1) and ( N(O, 0.1). Target values were scaled to 111<\ rangerv 

[0,1]. 

3. Time series TS2 is the henon-map function defined as (refer to figure 3.1 (c)), 

TS2 : Ot Zt 

Zt 1 + 0.3zt - 2 + 1.4zt 
2 
_ 1 

where ZI, Z2 U( -1,1). The target values were scaled to the range (iLl].rv 

4. 	 Time series TS3 is a difficult time series, having 10 input parameters of yrhich 

7 are irrelevant (see figure 3.2(c)). 

TS3:o t Zt 

2 ~. 
Zt 0.3zt - 6 0.6zt - 4 + 0.5zt- 1 + 0.3zt _ G - 0.2zt _ + (f (3.7)4 

for 	t = 1"",10, where Z4, Z6, Z9 U( 1,1) and (t lV(O, 0.05). All t.arget rv 	 rv 

values were scaled to the 	range [0,1]. 

5. 	 Time series TS4 is a convolution of two discrete functions with outliers. Fig­

ure 3.2(a) shows an illustration of this function. 

6. 	 Time series TS5 is the sine function TSI with 5% of the candidate traiuing set 

consisting of outliers (see figure 3.2(b)). 

3.5.1 Experimental Procedure 

In order to obtain statistically valid assertions in comparing experimental I'(~s1l1ts of 

the four learning algorithms, thirty simulations were performed for each prohlern. 
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Figure 3.1: Function and Time series problems to be approximated 
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Online training was used for the active learning algorithms. The initial sllhs{~t size 

for incremental learning algorithms consisted of one pattern and a suhsrlectiol1 size 

of one pattern was used. Each simulations was executed for 2000 epochs. A learning 

rate 0.1 and momentum 0.9 were used for all the approximation probh~lns . n(~sults 

reported are averages over the 30 simulations together with 95%) confidence illl<TVals 

as obtained from the t-distribution. 

The selective learning algorithm was not applied to F1, since F1 is not a tinH' series 

problem. The 7 value used in the subset selection criterion for AL \va.s adjusted 

for each problem using a trial and error approach. For TS3, a high 7 \vas used 

(7 = 1000), a value of 100 was used for TS1: TS4 and TS5 while a valu{~ of It)O was 

used for TS2 and Fl. 

Performance measures 

To evaluate the performance of each learning algorithm, the following perfonnance 

criteria were used: 

1. 	 The mean squared error (:rvlSE) ,vas used as a measure of accuracy. Th<' lVISE 

measures how well a function is approximated by the network, and is (lefiuecl as 

2 
,"",I\: (t(p) - o{p))
L.."k=l k kli1SE 

21( P 

A MSE value close to zero shows a small error between the target and the 

output function. The MSE over the three sets Dv , Dc and De were COluput­

ed. The MSE over Dc, denoted by Ec provides an unbiased estirnate of the 

generalization error since the patterns in Dc were not used for training. 

2. 	 Robel's generalization factor p was used to measure overfitting effects. The 

generalization factor was computed as p , where Ee is the l'vISE over 

candidate training set Dc and Ev is the MSE over the validation set 1),·. A 

network overfits when the value of p increases substantially above 1. 
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3. 	 The computational complexity of learning algorithms ,vas also llspd as perfor­

mance criterion. For the purpose of this thesis, eomputational cost is llH'(\sun~d 

as the number of calculations needed to train the network. Calculatiolls illdude 

subtraction, multiplication, addition and division. 

At 	any epoch ~, the cost C fe of training a NN on a training set, is pxpl'Pssed as 

Cfc=(CV+CW)*PT 

where C\I is the cost of updating weights between input and hidden llnits and 

Cw is the cost of updating \veights between hidden and output units. PI' is thp 

number of patterns in the training subset DT . For conventional backpropagation 

with fixed set learning, PT Pc. Thus the cost of training C fsl is cornpnted as 

C fsl (Cv + Cw ) * Pc. 

The costs of updating the weights are calculated as 

Cv Cv * (Nv ) 

Cw Cw * (NHr) 

where Cv is the cost of updating a single weight between the input and hidden 

layers, Cw is the cost of updating a single weight between the hidden and output 

layers. Cv is the total cost of updating the \veight connections betW('('ll the 

input and the hidden layers, and C\v is the total cost of updating the weight 

connections between the hidden and output layer. ~Nv is the total llUluber of 

connections between the input and hidden layers and Nw is the total llurnber 

of connections between the hidden and output layers. 

The total number of connections Nv and N w are expressed as 

JVv = (1 + 1) * (J + 1) 

lvw=(J+l)*(1{) 

and 

Cli = 13 
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Therefore, 

Cw 11 * (J + 1) * I{ (:3.8) 

The cost of training a network using any active learning algorithm includes Cf(:~ 

the cost of selecting patterns for training and the cost of cornputing the subset 

termination criterion. Therefore, at any epoch ~, the cost of training a IlPtwork 

using SLA, SAILA, DPS and AL are: 

C SL C fe + Csia * Fe 

C DP C fe + C dps * (Fc - Fr) + (CSclPS * Fr) 

CAL C fe + Cal * (Fe Fr) + (CSal * Fr) 

CSA C fe + C sai * (Fc Fr) + (CSsai * Fr) 

For all the incremental learning algorithms, the subset selection criteria are 


tested on the remaining patterns in the candidate set Dc which is equal to Pc ­

Fr- Also, for incremental learning algorithms, an additional cost of s(\lecting 


pattern is incurred when a pattern is selected. 


C SL , CSA, CAL and C DP are the cost of training a network using SLA, SAILA. 


AL and DPS respectively. Csla = 15 is the cost of computing the subset s(~lp<:tion 


criteria for SLA, Cdps = 11 is the cost of computing the subset selection criteria 


for DPS, Cal = 4 is the cost of computing the subset selection criteria for AL 


and Csai 18 is the cost of computing the subset selection criteria for SAILA. 


CSdps 2, CSal = 2 and CSsai = 7 are the cost of selecting patterns into DT for 


DPS, AL and SAILA respectively. 


Therefore, 


CSL Cfe + 15Fc 
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CDP 	 Gfc + 11(Fc FT) + 2FT 

Gfc + 4(Fc FT) + 2FT 

G1c * FT + 18(Fc - FT) + 7FT (:3.9) 

From equation (3.9), the cost of training is directly proportional to tIl{' lllllubpr 

of patterns selected for training. The more patterns are selected for tl'aillillg. the 

higher the computational cost. Initially, FT for SLA is greater than the other 

algorithms because DPS, AL and SAILA are incremental learning algorithrn 

and a small initial trainig set and subset size is used in the siInulations. Thus, 

G SL is expected to be greater than GAL, G DPS and CSA illitiall~T. SAlLA is 

computationally more expensive in selection criteria than the other algorithms 

because SAILA has more subset selection criteria to implement than tIl(' other 

algorithms. 

Section 3.5.2 illustrates the costs for the different algorithms. 

3.5.2 	 Results 

This section presents the results of the simulations carried out 011 the active l<'arlling 

algorithms. 

Training 	error 

In order to compare the performance of the four active learning algorithnls. the 

MSE over the candidate set Dc was computed for the simulations and the ,rvcrage 

calculated. Tables (3.2) and ( 3.3) show the result over 2000 epochs for clPHU data 

and data with noise and outliers. 

For TSl, DPS had a very low error with the lowest variance which nleans that all 

the errors of the simulations for DPS were all closer to the average error of 0.0003. 

Although, SLA had a low error as well. However SLA had a large variance vvhen 

compared to DPS. AL had the largest error with a very large variance. 
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DPS achieved the smallest error for TS2, having a small variance. For TS~3. all the 

algorithms had very low errors but SAlLA had a high variance. DPS had tll(' :-1111allest 

error for Fl with a very small variance. 

For TS4 and TS5, SLA achieved the smallest error with the lowest variallcP. AL had 

the largest error for TS4 and TS5. This is because AL selected and trailwd ()Il just 

a single pattern for TS4 and an average of 4 patterns for TS5. Thus AL. had high 

errors for TS4 and TS5. 

The training errors for all the problems with noise and outliers were larger ( x 1(2 
) 

than for problems with dean data. DPS had the lowest average error for d(lClU data 

while SLA had the lowest error for noisy data. 

Generalization error 

To compare the generalization ability of the four active learning algorithrns, tlw .'vISE 

over the generalization set, Ee, was computed and the average over the :30 sirnulations 

was plotted as a function of number of epochs. Figures 3.3 and :3.4 illustrates the 

trend of the generalization errors for the entire training period. 

DPS achieved a very low average error faster than the other algorithrns for FI (refer 

to figure 3.3(a)). However, both SAlLA and AL achieved a comparable n-':-1111t to 

DPS at epoch 1000. From table 3.3, DPS had the lowest error with the a ver~' srnall 

variance (5.07 E - 05) which means all errors of the simulations are doser to the 

average. 

For TSl, SAlLA initially had the highest generalization error but decreased to a low 

level of error (see figure 3.3(b)). SLA initially had the lowest average error. which 

can be explained by the fact that SLA used more patterns initially than the other 

algorithms (refer to figure 3.7(b)). Although SLA and DPS had slnall errors. DPS 

had the smallest variance and thus DPS achieved the smallest error. AL bad the 

largest error after 2000 epocbs with a large confidence interval. 

For TS2, DPS, AL and SLA achieved a very low average error before epodl 500. 
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Selective Sensitivity 
Function Zhang LearningRobel Analysis 
TSI 

0.02172Training Error 0.00036 0.00045 0.00346 
± ± ± ± 
0.00017 0.04186 0.00035 0.00712 

Generalization 0.022410.00039 0.00047 0.0035 
± ± ± 

0.041910.0002 0.00040 0.00737 
used Patterns 4.73485.43 270.93 571.67 

± ± ± ± 
234.79 0.92 3.48 88.91 

TS2 
Training Error 0.00014 0.00023 0.00029 0.00126 

± ± ± ± 
0.00011 0.00021 0.00038 0.00163 

Generalization 0.00012 0.00022 0.00029 0.00129 
± ± ± ± 
0.25E - 05 0.00019 0.00037 0.00169 

U sed Patterns 411.77 174.63 272.57 522.57 
± ± ± ± 
215.87 61.48 7.61 173.37 

I 

TS3 
Training Error 0.00039 0.00044 0.00050 0.00068 

± ± ± ± 
0.00086 0.00091 0.00085 0.00146 

Generalization 0.00275 0.00253 0.00302 0.00225 
± ± ± ± 
0.00155 0.00133 0.00138 0.00174 

Used Patterns 180 78.17180 180 
± ± ± ± 

0 1.530 0 

Table 3.2: Comparison results over 2000 epochs for times series problerlls 
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Selective I Sensitivity 
Function I Robel Zhang Learning Analysis 

FI 
Training Error 0.000226 0.000412 0.000791 

± ± ± 
5.07E 05 0.000366 0.001852 

Generalization 0.000221 0.000392 0.000754 
± ± ± 
5.2E ­ 05 0.000347 0.001624 

U sed Patterns 320.2 82.8 445.1333 
± ± ± 
167.6698 32.37935 121.476 

TS4 
Training Error 0.01141 0.19935 0.00516 0.02828 

± ± ± ± 
0.00573 0.03093 0.00393 0.09522 

Generalization 0.01077 0.19051 0.00478 0.02739 
± ± ± ± 
0.00534 ! 0.02169 0.00349 0.09170 

U sed Patterns 493.03 1 245.23 597.03 
± ± ± ± 
193.37 0 7.89 27.41 

TS5 
Training Error 0.00683 0.10278 0.00155 0.00562 

± ± ± ± 
0.00468 . 0.08731 0.00158 0.00768 

I 

Generalization 0.00714 0.09904 0.00158 0.00595 
± ± ± ± 
0.00489 0.08932 0.00142 0.00842 

Used Patterns 103.5 4.67 269.13 584 
± ± ± ± 

:120.14 1.35 9.89 93.4 

Table 3.3: Comparison results over 2000 epochs for problems Fl and tinl(~s spries \vith 
noise and outliers 
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Figure 3.3: Average generalization error vs epoch 
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Figure 3.4: Average generalization error vs epoch 

SAILA was slower to achieve a comparable low error but SAILA had a low (-'rror by 

the end of training. From the table 3.2, DPS had the smallest error with a vel'." slllall 

variance after 2000 epochs, iIIlplying that all errors of the silllulations an' cl()s(~r to 

the average. 

For TS3, the generalization error for all the algorithIIls increased as the lllllllh(-'r of 

epochs increased except SAILA (see figure 3.3(c)). 

From the table 3.3, SLA had the lowest generalization errors for TS4 and TS5. \Vhile 

AL had the largest error for TS4 and TS5. AL did not learn the functions (refer to 

figure 3.4(a)). AL selected a few patterns for training, thus had littlc~ infonllation 

about the time series to be approximated and therefore AL had a bad ~(-'rwra.lization. 

DPS had the lowest generalization errors for functions with clean data \\'hilp SLA had 

the lowest generalization errors for functions with noise and outliers. Although DPS 

had better generalization with clean functions than SLA, DPS used 1110re patterns 

than SLA to achieve the low generalization error in all the problellls. AL had very 

large generalization errors for TSl, TS4 and TS5. This bad generalizatioll call be 
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attributed to the extremely small training set sizes used by AL which is an illdi('ation 


of an inferior subset selection criterion. The subset selection criterioll dep<'llds 011 


the number of connections in the network. Redundant or irrelevant w(~ights ill the 


network will make the value of the perforrnance level f£ very large which call ('ause 


the network to train on the current training subset DT too long without selecting 


additional patterns. Thus the network selects a few patterns, hence having insufficient 


information to train the network. On the other hand, too few weights in the lwtwork 


can make K, small. Thus, the network selects patterns rnore often than an' u('C'ded 


for training. 


Overfitting effects 


The average generalization factor p for all the problems were com.putect OV('l' the 30 


simulations. Figures 3.5 and 3.6 show the charts for the average generalizatioll factors. 


The average generalization factors were plotted as function of pattern presentations. 


A pattern presentation represents one weight update. 


TS3 was the only function for which all the algorithms except SAILA~ overfitted. 


SAIL A had an average generalization factor of less than one, w hiIe the other algo­


rithms had high generalization factors. For the entire training period for TS4. AL 


had a generalization factor constantly larger than L indicating that .-\L oy<,rfitted 


TS4. For the other functions, the average generalization factor ,-a111<'s fluctnated. 


The fiunctuation is due to the overfitting of a training subset until 11<'\" pattenls are 


selected for training. When new patterns are selected, the overfitting of tIl(-' training 


subset is reduced. The average generalization factor for all the algoritlnIls (<,xcept 


TS3) were slightly over one, and indicating a mild case of overfitting. 


Computational costs 


The computational costs for AL, DPS, SLA and SAILA were cornputed llS111g e­


quation (3.9) for specified epochs. The costs are plotted as a function of (~po<:hs as 


illustrated in figures (3.9) and (3.10). 
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Figure 3.6: Average generalization factor vs pattern presentations 

SAILA has the most expensive and AL has the least expensive subset selpctioll cri­

teria. However, AL performed badly (refer to tables 3.2 and 3.3). For all the ap­

proximation problems, DPS, AL and SAILA had increasing costs because tlH)~' are 

incremental learning algorithms. i\1ore patterns \vere used as training progrpssed 

(refer to figures (3.7) and (3.8)). 

For F1 and TS2, AL had the smallest cost (see figure 3.9( a) and (b)). These srnall 

costs can be attributed to the cheap cost of the subset selection criterioll as wpll as 

the fact that AL used the smallest number of patterns for training. 

Despite the fact that AL has the cheapest subset selection criterion alld a sirnple 

selection criterion, AL had the highest cost for TS3. This is because AL seh~('tpd all 

the patterns in Dc within a short training interval (by epoch 400). SLA initiall~T had 

the highest cost (first 350 epochs). However, at epoch 1000, the cost was half of the 

other algorithms. 

For all the functions approximated, SLA initially had a higher training cost thaIl the 

other algorithms - aln10st four times the training cost of other algorithrlls. l)(~<:ause 
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Figure 3.8: Average number of patterns used per epoch 

SLA is a selective approach (see figure (3.9) and (3.10)). 

From tables (3.2) and (3.2), SLA used less number of patterns after 2000 epochs 

than the other algorithms, thus SLA was computationally less expensive. 

Convergence 

The convergence performance of the four active learning algorithnls are cOlnpared in 

figures 3.11 and 3.12. These figures plot the percentage of simulations that reached 

specific generalization errors. 

For Fl, DPS had the best convergence, all the simulations converged to a vpry lo\v 

error of 0.0004. AL also had a good convergence, more than half of the sinullations 

converged to 0.0004 (refer to figure 3.11(a)). 

None of AL's simulations converged to the specified error level for TS2. SLA aud DPS 

achieved good convergence for TS2, as more than half of their simulations cOllverged 

to a low error (refer to figure 3.11 (b) ) . 

For TS2, DPS had the best generalization, most of all the simulations converg(~d to a 
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Figure 3.10: Average computational cost per epoch 

very low error (0.0002). SLA and AL also had good convergence (see figure :3.11(c)). 

While the other algorithms had few converged simulations at 0.002. ahnost half of 

SAILA's simulations converged to this error (refer 3.11 (d)). 

AL had bad generalization for TS4 and TS5. None of AL's simulations cOllverg-ed to 

the specified error levels for TS4 while only a few converged for TS5. 

SLA had the best generalization for TS4, with all the sirnulations converging to a 

low error of 0.004 (refer to figure 3.12(a)). SAILA had a good convergenct' ''''ith 40o/c) 

of the simulations converging to this error of 0.004. Only a few of DPS's siIllulation 

and none of AL's simulation converged at this point. 

SLA also had the best generalization for TS5. Almost all the sirllulations (74 o/c)) 

converged to a error level of 0.005 while only a few of the other algoritllllls siUllIlations 

converged to this error level (see figure 3.12(b)). 

SLA had the best convergence for data with outliers and noise. DPS had the l)('st COIl­

vergence for clean data, although SLA had good convergence for clean data. SAILA 
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had a good convergence for TS3. For all the sine functions (TS L TS4 and TS:)). AL 

had bad convergence, none of its sinlulations converged to the specified error level­

s. The errors specified for data with outliers and noise were larger than the e1'1'ors 

specified for clean data. This is because the performance of all the algoritluns were 

degraded in the presence of nois8 and outliers. 

3.6 Conclusion 

The objectives of the chapter were to present a new learning algorithlll (SLA) and also 

to compare four active learning algorithms with respect to their accuracy, COllV(,1'genee 

and the complexity on both clean and noisy data as well as overfitting effects for the 

problems were also examined. 

The results presented showed that AL was unstable, producing good results for the 

henon-map and PI only. The bad training behavior can be attributed to the extreme­

ly small training set sizes used by AL, which is an indication of an inferior subset 

selection trigger. 

DPS and SLA performed very similar on the clean data, while SLA outperf01'llH'd all 

the other algorithms on the noisy and outliers training data. The sensitivity analysis 

approach (SAlLA) performed well under the occurrence of outliers and llois~' tilne 

series, and very well for the complex function TS3. SAlLA performed hettP!' than 

AL in TS1, TS4 and TS5, but worse than SLA and DPS. SAlLA is cOlnputationally 

more expensive, requiring larger training subsets than the other algorithIIls. 

As is expected, the performance of the error selection approaches degraded lIIlder 

the occurrence of outliers and noise. The degradation is due to the earl~r select.ion of 

outliers, since outliers result in the largest prediction errors. 

The comparison above showed that SLA had the best generalization performance. and 

lowest complexity. The selective learning approach (SLA) produced better accuracy 
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than the other approaches, and showed to be more robust in the occurrence of ontliers 

and noise. 



Chapter 3 

ACTIVE LEARNING 

One of the goals when designing and training a neural network is to rnaximiz(' or to 

improve generalization, which is, the ability to give accurate response to datil that 

the NN has not seen as part of the training process. In conventional backpropagatioll 

learning, all the available data are presented to the network for training. Leamiug on 

all the training data can be quite problematic especially when there are Iwlnndallt 

data in the training set. The computational cost of training t.he net\vork ill terms of 

training time can become high, especially if these redundant data are incl1lded in the 

training set. 

Studies have shown that selecting the most informative data for tl'aiuillg rather 

than presenting all the available data to the network improves, or at least main­

tains the generalization performance. Selecting data for training also Iwluces 

training time and the data needed for training [Zhang 1994, Plutowski d 0.11993. 

Engelbrecht et al1998, Engelbrecht et al1999a. Robel 1994a]. 

This chapter discusses the concept and advantages of using of actiw jpa.millg. The 

objective of this chapter is to present a new selective learning algorithm and also 

to compare this new algorithm with three additional active learning algorit.hllls with 

reference to their respective generalization performance, overfit.ting chantcleristics. 
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computational complexity and convergence characteristics. 

3.1 Introduction 

There have been vanous research efforts on improving the learning of 

BPl\l\s. These research efforts include finding optimal weight initialization 

[Rumelhart et a/1986]' optimal learning rate and momentum [Plant d al1986 , 

Weir 1990, Yu et aI1997], finding the optimal architectures [Le C1111 1990. 

Kamin 1990, Hirose et a11991, Pelillo et a11993, Engelbrecht ret o,l19961: llsing sec­

ond order optimization techniques [Becker et a11988], adaptive activatiolJ fnnc­

tions [Zurada 1992a, Engelbrecht et o,l1995, Fletcher et o,l1998] and active learn­

ing [Zhang 1994, Engelbrecht et a11999a, Engelbrecht et al1998, Robel 1994<1]. This 

chapter concentrat.es on active learning as an approach to improve perforlu<lnee of 

NNs. Active learning is a technique in which patterns t.hat have the highest iutillPnce 

on weight changes are dynamically selected by the NN learner from a candidatp set of 

training patterns. The network utilizes current attained knowledge about the tasks 

to be learned as encapsulated in the current weights to seleet the most iuformative 

training patterns. There are two main approaches to aetive learning: 

- Incremental learning, where patterns are seleeted and removed from a can­

didate training set. The seleeted patterns are added or injeeted into the actual 

training set. The effect is that the actual training set grows as trai11ing pro­

gresses, while the candidate training set. is pruned. 

Selective learning, where a subset of the training patterns that sarisf? a 

selection criterion is selected from a candidat.e training set and used for training. 

Unlike the incremental learning, the candidate training set is not prlllH'<i. At 

each pattern selection interval, all the patterns in the candidate set haw' a 
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chance to be selected. The candidate set remain fixed while the SlZ(' of the 

actual training set varies from time to time. 

A brief outline of this chapter is as follows: Section 3.2 discusses tlw cOlJ('ept of 

active learning and section 3.3 presents a general algorithm for act.ive leaming. A 

new selective learning strategy for time series problems is presented ami cOlllpared 

with three other active learning algorithms in section 3.4. Section 3.5 presentt-i l'<'t-iults 

obtained from the different learning algorithms. Finally, section 3.6 highlightt-i the 

conclusions, comments and observations. 

3.2 Concept of Active Learning 

Active learning has emerged as an efficient alternative to improve tIlE' performance of 

multilayer layer NNs. Active learning refers to the selection of a subset of til(' Hyail­

able training data dynamically during training, where the subset cont.ains tIl(' lllost 

informative data. The objective of active learning algorithms is to identih·. <\lH 1train 

on the most informative patterns in a candidate training set. Active leamiug effi­

ciently selects optimal training patterns from available training patterns for training 

the network. Efficiency refers to the complexity of the pattern selection mechanism 

which should be minimized. Optimal patterns are patterns that haw Ut-idlll infor­

mation about the current state of the network and such patterns bring the uptwork 

closer to the target funct.ion. The network plays an active role in data t-ieiPctiOll. 

Rather than being a passive learner, the network utilizes information bat-ied 011 its 

current state to gather useful information for further training. 

Active learning addresses two fundamental questions: 

\Vhich of the patterns should be selected for training from the candidat(' S(·t? 
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When should an additional set of patterns be selected? 

Answers to these questions have resulted in the design of diflerent approach­

es to active learning. These approaches mainly use the error in prediction as 

selection criterion [Cohn 1994, Robel 1994a, Zhang 1994, Plutowski et oJ 19£):)] or 

changes in outputs due to perturbations in input parameters [Engelbrecht et a11998. 

Engelbrecht et al1999a, Engelbrecht et alI999c]. Pattern selection has lwen the fo­

cus of many researeh. Infact, aetive learning has been called various names Hlleh as 

query learning, incremental learning, selective learning and dynamic pattern selec­

tion. All these terms refer to the same basic concept of selecting a subset of tlH' most 

informative patterns from the candidate training set, Active learning algoritlulls aim 

at: 

Improving, or at least maintaining the generalization ability of the network. 

Reducing the cost of training the network in terms of the number of patterns 

needed for training. But selecting these patterns should not exceed the gain in 

computational cost reduction achieved by reducing the training set size. 

Improving the speed of convergence. Convergence is the abilit," to achi(,H~ cer­

tain generalization levels. Active learning aims at increasing tlH' probahility 

that the network will converge to given generalization levels, and doillg so ill as 

less time as possible. 

Section 3.2.1 presents an overview of different approaches to active learning. 

3.2.1 Overview on Active Learning 

Plutowski and \Vhite used error in prediction as their selectioll criterion 

[Plutowski et alI993]. The integrated squared bias (ISB) is used as the ('nor ter­

m. Patterns that maximize the decrement in the ISB of the network resulting from 
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adding such patterns to the training subset are selected for training. Ac1ditiollill pat­

terns are selected when the training error on the current training subs(~t is sllfficinltly 

small. While Plutowski and \\ihite used the bias term of the MSE as tIl(' s('l('('tioll 

criterion, Cohn used the variance term of the MSE [Cohn 1994]. In this cns(" the 

most informative patterns are those that maximize the change in variance of tlw net­

work resulting from adding these patterns to the network. The learner (N::\) sdects 

an additional training pattern at each time step, or epoch. In Mackay'S algorithm, 

information theory was used to select patterns for training [Mackay 1992]. Howpwr, 

Mackay applied his active algorithm within bayesian framework. Fukumizll select­

ed patterns that minimize the estimation error i.e. the expected value of til!' :VISE 

[Fukumizu 1996] for training. Sung et al also used the error function as their selec­

tion criterion, but they considered both the bias and variance term [Sung et al 1996]. 

Patterns that minimize the expected misfit, i.e. the total output uncertaint? JlPt,veen 

the target and the estimated target function are selected for training. Seung d al 

developed an active learning algorithm which they called Query by Comrnitt(~t' (QB­

S) [Seung et aI1992]. In QBC, the degree of disagreement among the COllllllitt(~e of 

learners (students) serves as an estimate of information value. The query r.hilt, has 

the maximum disagreement among the committee of learners is chosen for traiuing. 

That is, QBC selects an input classified as positive by half of the committef' amI neg­

ative by the other half. Freund et al presented a more complete and general analysis 

of QBC using the batch training algorithm [Freund et aI1997]. Hara et al applied an 

active learning algorithm to pattern classification problems [Hara et al 1988]. Pat­

terns selected for training are those patterns that are close to the bouudary of the 

pattern classes. Cohn et al combined active learning with statistical models (gaussian 

and weighted regression) [Cohn et al1996] Patterns that give the Imvest (~xppcted 

model variance are selected for training. 
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Similar to Plutowski et al, Sung and Cohn, Zhang used the error in prcciictioll as s<'1c('­

tion criterion [Zhang 1994J. Patterns whose addition cause the maximum approxima­

tion error to the network, are selected for training. However, the relative val11(, rather 

than the absolute value of the error term is used. Robel used the same enol' criterion 

as Zhang in selecting the most informative patterns for training[Robpl 1994aj. Riibel 

and Zhangs' algorithms only differ in the criterion that triggers the subset sekctioll. 

Training on the current subset continues until some criteria are triggered (n~fel' to 

section 3.4). 

The change in outputs due to perturbations in input parameters C<Lll also 11sed 

as selection criterion. Engelbrecht proposed an active learning algorithlll vdlere 

patterns with the highest influence on the outputs are selected for training 

[Engelbrecht et a11999aJ. First order derivatives of the output units with n~spect 

to the input units are used to quantify the influence a pattern has on the omputs. 

Another active learning algorithm that uses output perturbation as selectioll criteri­

on is the selective learning algorithm (SLA) [Engelbrecht et al 1999c]. dpvel()]J(~d in 

this thesis. Patterns that influence the output most are selected mol'(" for trailling 

than patterns that have little influence on the output. The influellce OIl the 01ltput 

is reflected in the next-time-change in output values. Thus, patterns that haH' the 

large next-time-change in output values are selected more into the curreut training 

set than patterns with small-time-change in output. 

This thesis selects four active learning algorithms based on their seledion (']'i1,eria 

for comparison. Two of these algorithms uses the error in prediction as sd('('tioll 

criterion while the other two algorithms uses changes in output as t.heir sel(~<:tioll 

criteria. The algorithms selected are: 

1. 	 error based criterion 

Accelerated learning using active learning, developed by Zhang 

[Zhang 1994J. 


Dynamic pattern selection (DPS), developed by Robel [R()b(~l 1994a]. 


 
 
 



CHAPTER 3. ACTIVE LEARNING G1 

2. output based criterion 

Sensitivity analysis incremental learning (SAIL.L\), d(~vploped In- Ellgel­

brecht [Engelbrecht et al1999a]_ 

Selective learning algorithm (SLA), developed in this thefiis. 

vVhile Cohn, Plutowski et al and Sung et al based their selection criteria OIl iuforma­

tion theory, Zhang has shown that their approach is similar to selection of pattprns 

using the prediction error as selection criterion [Zhang 1994]. Selectioll of p;lttf'rns 

using the largest error is computationally less expensive than using iufonnatioll the­

oretic approaches. For these reasons, this thesis chose the algorithms dewloppd bv 

Robel [Robel 1994a] and Zhang [Zhang 1994] in its comparison inst<~ad of tIl(' infor­

mation theoretic approach. The next section presents a general algorithm for active 

learning. 

3.3 General Algorithm for Active Learning 

This section presents a general algorithm for active learning and then disCUSSt~S the 

algorithm design issues. Let Dr be the current training set, which has all t.he p<ltterns 

selected for training, Dc be the candidate training set, which containfi all r.lH' £\yailable 

patterns and Dv be the validation set, \vhich contains patterns not 11s('d as part of 

training and is used to test for overfitting. 

A general algorithm for active learning is summarized below: 

1. Initialize weights randomly as in conventional back propagation. 

2. Select the most informative pattern(s) into training set DT from Dc 

- for incremental learning, add the selected pattern(s) into DT and remove 

them from Dc, 
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-	 for selective learning, select patterns into DT . 

3. 	 Train the network for a training interval (i.e. adjust the weights) usiug DT . 

4. 	 If the network has reached the desired accuracy or has reached tIl(' lllilximum 

number of epochs, stop training. 

5. 	 If a subset selection criteria triggers, repeat from step (2) 


otherwise repeat from step (3). 


A training interval maybe one epoch for online training or f epoch!'> if 1 latch training 

met,hod is used. 

Design issues in active learning algorithm 

\Vhen designing and implementing an active learning algorithm. some i!'>sm~s lww to 

be taken into consideration. One of these design issues is the number of patterns 

to select at each selection interval, referred to as the subset size. Although there 

is no heuristic to determine the size of the training subset. there are guiddines. 

For incremental learning, it is advisable to train with a small subset size hecause 

the subset grows during training. Selecting a small subset means patterus will be 

selected more often and thus increase the complexity of the network due to tlil' cost of 

selecting the patterns. But, selecting a large number of patterns during training mav 

defeat the aim of active learning, which is to reduce the number of pattems llPecied 

for training. Therefore, good selection criteria are desirable in selecting pattpI"lls 

that have useful information about the network. For selective learning, the sllbs(~t 

size depends on the selection criteria. Therefore, selection criteria an~ impmlant to 

ensure that the most informative patterns are selected for training. 

Another important issue to consider is when to select additional patterns. (hlP or 

more subsetselection criteria can be used. These subsetselection criteria !'>holllcl ('lmure 

that the NN does not train too long on a training subset because the network may 

overfit the training subset. The network should also train long enough to (lcquire 

maximum information on the current training subset. Different algorithms have 
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different subsetselection criteria. Patterns call be selected at each trailling epoch 

[Cohn 1994, Engelbrecht et al1999c]. This criterion can have high COll1plltfltiollal 

cost because the subset selection function is applied at each epoch. All altenl<ltive 

is to select at each (epochs. A reduction in computational cost will 1)(' a("hipn~d 

since the number of pattern selections is fewer. However, if the selection interyal E. is 

too large, overfitting of the training subset may occur. Patterns can also be sd(~cted 

using the error on the training and the validation set. New patterns are selpctpd into 

DT as soon as the error on the training or validation set reduces to a sppcifipd le,'P} 

[Zhang 1994, Engelbrecht et al1999a]. 

Another criterion is to select new patterns as soon as the network overfits tlw training 

subset [Engelbrecht et al1999a, Robel 1994a]. Different algorithms use <1. (Tit(~rion 

or combination of criteria to decide when to select additional patterns. The differ­

ent subsetselection criteria used for the four selected active learning algorithms are 

discussed in more details in section 3.4. 

3.4 A Comparative Study of Four Selected Active 

Learning Algorithms 

The objective of this thesis is to compare selected active learning algorithms with 

reference to generalization performance and computational complexity. For this pur­

pose, a new selective learning algorithm for time series problems developed ill this 

thesis, sensitivity analysis for incremental learning [Engelbrecht et al1999a]. d~'na­

mic pattern selection of Robel [Robel 1994a] and accelerated learning using active 

example selection of Zhang [Zhang 1994]' are compared with one another. This sec­

tion presents an overview and critique of these algorithms. 
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3.4.1 A New Selective Learning Algorithm 

Kohara presented an algorithm that performs pre-processing of the traiuilll!, set for 

time series problems [Kohara 1995]. Kohara's algorithm divides the tl'aiuilll!, fiet 

into two sets. The one set contains all training patterns that reflect larg<'-lwxt-time 

changes in the time series, while the other contains patterns that reflect slllall-llext­

time changes. Kohara's algorithm assumes one output unit and also assullled rl time 

ordering among the training patterns. Kohara uses target values to deterlllill!' IlPxt­

time changes. The next-time-change Y~) for output k is defined as 

Y (p) - t(p+l) - t(p)
k - k 'k 

The two training sets remain fixed during training. During training, patterns are 

more frequently selected from the large-next-time changes set than from tIl(' small­

next-time changes set. Therefore, Kohara's algorithm is not considered as all ac­

tive learning algorithm, because the neural network plays no role ill tlw selection 

of patterns. Kohara's approach is rather referred to as a training set lllalliplllation 

technique. 

A new output based selective learning algorithm is proposed in this thesis ]mspd on 

Kohara's algorithm. Instead of using the target values to COIlStruct the two training 

subsets, the actual outputs of the network are used. Therefore, next-time-change 

wr) for output k is defined as 

wr) can only be computed for the first Pc 1 patterns, where Pc is thf' Humber 

of patterns in the candidate training set Dc. The division of the original training 

set into large- and small-next-time changes sets is done after each selectioll illtprvaL 

which is one epoch. 
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More patterns (80%) from the large-next-time changes set are randomlv :..;(~Je('ted 

than from the small-next-time changes (20%) into the current training :";111>:..;('( Dr. 

In doing this, the two subsets reflect the current knowledge of the leanwr. ill that 

the set reflects what the learner perceives as large and small changes. lVloH' piltt.erns 

are selected from the large-next-day changes set, since these patterns ("olltaill thp 

most information about the characteristics of the time series. A large change in the 

output values, causes a large change in the the weights and a large challgp ill \n~ights 

means more information is gained in bringing the network's output do:..;pr to the 

target function (refer to weight update equations (2.13) and (2.16)). 

Active learning is introduced by calculating the next-tirne-changes based 011 Ihe ac­

tual output of the network and not on the target output values. ~;\t each e.poch. thp 

current training subset is discarded and a new subset DT is selected with training 

patterns. The training set DT is then used for training. 

The algorithm for SLA is summarized below: 

1. 	 Initialize weights, learning rate and momentum. 

2. 	 Calculate the output o~) of the network for each pattern p. The.IL calculate 

next-time-changes as 

'T'(P) - O(p+l) _ o(p) wED 
~ Ie - Ie Ie' vp C 

3. 	 Separate patterns into a small-time and a large-time-change set: 

calculate the average next-time-changes: 

L:Pc - 1 \]I(p)
\]I 	= --,p,-=_l___ 

P 1 

divide the candidate patterns into the two training subsets: 

Add all patterns p for which \}!~) > \]I to the large-change set 

and all other patterns into the small-change set. 

4. 	 Select the actual training set DT to consist of 
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80% of the large-change set, randomly selected 

20% of the small-change set, randomly selected. 

5. 	 Train the network for one epoch using DT 

6. 	 Repeat steps (2 - 5) until the number of epochs exceeds the maximulIl Illllllber 

of epochs allowed. 

The subset size depends mainly on the size of the large-next-time changes set. The 

performance of the proposed algorithm is compared to the other algorithms ilUel the 

results are discussed in the section 3.5 

3.4.2 Sensitivity Analysis Incremental Learning Algorithm 

The second algorithm to be studied is an incremental learning approach to active 

learning which uses an output based selection criterion. referred to as sellsitivity 

analysis incremental learning algorithm (SAILA). SAILA is developed by Engelbrecht 

[Engelbrecht et al1999a]. In SAILA, the most informative patterns are perceived as 

those patterns that maximally influence the output of the NN in thp presellCP of small 

input perturbations. First order derivatives of the output units with respect t.o the 

input units are used to compute the influence the pattern has on the output valne 

of the function approximated by the network. Patterns with the highest sensitivity 

cause the largest change in weights (large change in weights achieve maximulll gain 

in bringing the approximation closer to the true function). These pattpI'lls lip ill 

the region of the peaks' derivatives. Thus, the partial derivatives is calculated 

for each input and output for each pattern. Training on such patterns yi(~ld l)ptter 

generalization and faster convergence [Engelbrecht et al1999a]. The sellsitivit~' of 

each pattern is determined by computing the informativeness of the pattern. as 

<]?(p) = max{S(PJ} 	 ( ?,,). '))
-' -o.k 
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where 

5(1')
o,k 

-
-

~( OOk

iSl oz~p) 
)') (3.;3) 

The larger the value of <1>(1'), the more informative that patteI'll is. Pattern(:-,) with 

the largest absolute value of <1>(1') are selected into D T . 

SAILA continues training on the training subset to achieve maximum gaiu frum the 

patterns before selecting additional patterns. At the same time, the net\vork must 

not be allowed to memorize the training subset. The network should t.herefor~' not 

spend too much time on the current training set. SAILA uses the followillg suhset 

selection criteria: 

1. 	 The algorithm limits the number of training epochs on the current sllbs<'t. The 

criterion ensures that the NN does not train indefinitely on the subset. Engel­

brecht limited the number to 100 in his implementation. 

2. 	 If the error on DT , or the validation set. Dv , decreases sufficiently. a llew subset 

is selected for training. The criterion ellsures that the NN achieves sufficient 

gain on the current training subset before selecting additional pattf'l'lls. In 

Engelbrecht's implementation, an additional pattern is selected into Dr as soon 

as the error on the DT or D" decreases by 80%. 

3. 	 A new subset is also selected if the average decrease in error all DT and D" 

since training started on the current subset is small. The criterion will pn~vent 

the learner from training on DT with achieving too little gain. 

4. 	 If the error £v on the validation set increases t.oo much, a ne'w subset is selected. 

The subset selection criterion prevents the NN from memorizing t.he ('lll'rent 

training subset by triggering a new subset selection as SOOll as overfittillg of DT 

is observed. 

The sensitivit.y analysis incremental learning algorithm IS summarized below 

[Engelbrecht et aI1999a]: 
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1. Initialize \veights, momentum and learning rate. Initialize the subset siz('. p s., , 

i.e the number of patterns selected from the candidate set Dc. COllstrnct the 

initial training subset Dso C Dc. Let DT f-- Dso be the current trailliul!, set. 

2. Repeat 

- Repeat 

Train the NN on training set DT 

until a termination criterion on DT is triggered (as discussed aboY('). 

Compute the new training subset Dss 

* For each p E Dc, compute the sensitivity matrix S~~:ki for sigmoid ac­

tivation functions: 

J 
s(p) . = ,.(p)1 "" 'U'k .j(P)' V 

oz,kz . Ok L...- 'J Y.i JZ 
j=l 

* Compute the output sensitivity vector §~p2 for each p E Dc:, 

!}p) = IIS(p)11
D.k DZ 

* Compute the informativeness <I>(p) of each pattern p E D(, llsing 

* Find the subset Dss of the PSs most informative patterns as 

Ds f-- {p E Dcl(j)(p) = max {(j)(q)}'\fq E Dc not ypt s('ler-tcd} 
S • 00 q=I .....Pc 00' ., , 

where Pc is the number of patterns remaining in Dc. TheIl. kl DT f-­

DT U Dss and Dc f-- Dc Dss 

until convergence is reached. 

In Engelbrecht's implementation, SAILA started training with one patt0,rn. and s­

elects only one new pattern at each subsetselection interval. Althoug;h the SIl b8('t 
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selection criteria implemented by SAILA considers overfitting effect amI gelH'raliza­

tion of the network, the cost of selecting patterns in SAILA. could be high. D<'('clllse 

SAILA has more criteria to implement when selecting new patterns for trailliug. Rp­

suIts of SAILI\. when applied to function approximation and time series prohlpllls nn~ 

presented in the section 3.5. 

3.4.3 Dynamic Pattern Selection 

The third active learning algorithm studied is Robel's dynamic pattpfIl selection 

technique (DPS). Unlike SAILA and SLA, DPS uses the error indication as selection 

criterion. DPS is an example of incremental learning , where informativPlwss of pach 

pattern is measured using the prediction error. The prediction error is computed as 

(t~) - o~)( Patterns with the largest prediction error are the most informative and 

are selected for training. 

Training continues on the current training subset until the subset starts to nn~rfit. 

To measure overfitting, Robel defined the generalization factor p as 

p=---­

where Ev , ET and Ec are the error functions on the validation set. training suhset 

and the candidate training set respectively. By requiring that p :So 1.(1. owrfitting is 

prevented. A value of p greater than one means that the validation error is larger 

than the training the training error, hence bad generalization. New pattc~rus are 

therefore selected into DT when p grows beyond one. However, Ri)]wl dis('()vpred 

that each pattern selected for training deereases the value of p to a minimulll value 

before p slowly increases again and therefore takes a long time to reach th(~ \'1\lu(' of 

one. This means that the network will train too long on the current training subset 

if only the selection criterion of p > 1.0 is implemented. Thus, new pattems are 

also selected as soon as p reaches a minimum threshold value. For these purposP. a 
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threshold <Pp is defined as 

where ~ is the current training epoch, pand (Jp are the average and standard deviation 

of the generalization factor for ;vl preceding epochs respectively. Robel llsed 100 for 

the value of lvl. The DPS algorithm selects new patterns whenever p(O > (/)(1(0; 

p(~) is the generalization factor for the current training epoch. 

The algorithm for DPS is summarized below: 

1. 	 Initialize the weights and set threshold rPp(O to one with ~ = 1. 

2. 	 For each pattern p in Dc, calculate the SSE as E(p) = 'L"=1 (tiP) o;,P)( 

3. 	 Select pattern(s) with the highest error E{p) into DT and remove tlw sdpcted 

pattern(s) from Dc. 

4. 	 Train the network. 

5. 	 If the number of epochs exceeds the maximum number of epochs or the· (>ITor 

limit has been reached, stop training. 

6. 	 Calculate the generalization factor p = (E:J.~cJ 

7. 	 if p is greater than <pp(O, then set <pp(~ + 1) = min(p(O, 1.0) and l'CPPHt from 

step (2), otherwise set <pp(~ + 1) = min{ <pp((), p+ (Jp, 1.0} and repeat frOlll step 

(4). 

Robel used a subset size of one pattern and selects a pattern when the snbsetsf'ledioll 

criterion is triggered. The online cross validation technique is used to dH~ck fO}' the 

generalization. That is, a separate data is used compute the validatioll error of the 

network. Additional overhead is incurred in DPS for implementing the cross valida­

tion technique. If the training data is limited, having a separate set for validation 

may not be feasible. 
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While the selection criterion is easy to compute, performance degrades if the training 

data have outliers and noise. Outliers will be selected as the most informatiw pat­

terns, since these patterns have the maximum prediction errors. The Iletwork is then 

biased towards the outliers. Consequently, the ahility of the IH~twork to g<'ll('ralizp 

deteriorates. Results of DPS when implemented are discussed in section :3.,). 

3.4.4 Accelerated Learning by Active Example Selection 

The last algorithm to be studied is accelerated learning by active example sdpction 

(AL) proposed by Zhang [Zhang 1994J. AL is an incremental learning approach. 

AL selects as the most informative patterns, those patterns that have the lllilximum 

predictioIl error, where the prediction error is computed as (tip) 

New patterns are selected for training when the error on the training subset is reduced 

to a specified performance level K, where K is computed as 

J(I + K)
K = --'-__.Co.. 

T 

T is the allowable error per connection. Zhang suggested a value of T E [100. :?()OJ. 

Zhang motivates the selection criterion on the fact that the learning capacit\' of 11 NN 

is proportional to the total number of adjustable connections in the network. which 

is J(I + K) [Zhang 1994]. 

The algorithm for Zhang'S accelerated learning is 

1. Initialize weights to small random values. 

2. For each pattern p in Dc, compute the SSE as 

E(p) L
1\' 

(t~) o~))) 2 

k::::l 

3. Select pattern(s) with the highest error into DT and remove from Dc" 
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4. 	 Train the netvmrk. 

5. 	 If the maximum number of epochs is exceeded or if the error limit has been 

reached, stop training. 

. - J(I<+1) d SSE D.' E _ ""p ""r, (p) (1'))26. Compute fl. - an on T as T - L."p=l L."k=l tA' - OJ,. • .T 

7. 	 If fit. S; ET then repeat from step (2), 


otherwise repeat from step (4). 


Even though AUs subset termination criterion is less complex and eas~' to (·Olllpute. 

AL does not test for generalization of the network. Overfitting may therefoH' still 

occur. The subselection termination criterion depends on the an:hit.ect1ll'P of t.he 

network being trained. If the wrong architecture is selected (either undersized or 

oversized) this criterion may not perform well. Due to the selection of patterns with 

the largest prediction error, the performance of AL may deteriorate in the prpscm:e 

of outliers and or noise. 

The results and performance of AL are discussed in section 3.5. 

3.5 Experimental Results 

Four approximation and times series problems of varying complexitT \vere llsed to 

test the performance of SLA, SAILA, DPS and AL. These problems difh'I' ill input 

dimensions and the number of hidden units needed to train the network. Til hh~ :3.1 

shows a summary of the NN architecture used for these problems. III t.ahlp :Ll. the 

architecture of a NI\ is referred to as I-J-K where I is the number of input llnits~ .J 

is the number of hidden units and K is the number of output unit i.e. til<' llotation 

2-5-1 means two input, five hidden and one output units are used. 

All the available data was split into three sets: the candidate training set D( '. vali­

dation set Dv and generalization set Dc. The three sets were randomly cr('at(~d sHch 
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Problem II Equation! PC-PG-Pv I Ar'chitectun~ 
F1 (3.3) 600 -200-200 2-5-1 
TS1 (3.4) 600-200-200 1-5-1 
TS2 (3.5) 600-200-200 2-5-1 
TS3 (3.6) 140-60-60 10-10-1 
TS4 600-200-200 2-5-1 
TS5 600-200-200 2-7-1 

Table 3.1: Summary of the functions and time series used 

that 

DcnDv = 0 

Dc n DG 0 

DGn Dv 0 

Let Pc be the number of training patterns in Dc, Pv the number of training patterns 

in Dv and PG the number of patterns in test set D G . Table 3.1 shows the size of 

these sets for each problem. Dc is the candidate training set from which training 

patterns are selected. Dv contains data used to determine the generalizatioll factor 

during training. DG contains data llsed to determine the generalization perfonnance 

of the network. 

The performance of the active learning algorithms was tested on dean and nOISY 

data, as well as data containing outliers. Section 3.5.1 explains the exp('rillH~ntal 

procedure, including a discussion of the performance criteria used to COlnpare the 

learning algorithms. The results are compared in section 3.5.2. 

The characteristics of the functions and time series used for experirnentati()ll an.) 

discussed next. The following functions and time series were used: 

1. Function F1 is defined as (see figure 3.1(a)) 

(:3.4) 
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where Z1, Z2 U( -1,1). All target values were scaled to the range [O,lJ.rv 

2. 	 Time series TS1 is a sine function defined as (see figure 3.1 (b)) 1 


TS1: F(z) sin(27Tz)e(-z) +( 


where z rv U( -1,1) and ( N(O, 0.1). Target values were scaled to 111<\ rangerv 

[0,1]. 

3. Time series TS2 is the henon-map function defined as (refer to figure 3.1 (c)), 

TS2 : Ot Zt 

Zt 1 + 0.3zt - 2 + 1.4zt 
2 
_ 1 

where ZI, Z2 U( -1,1). The target values were scaled to the range (iLl].rv 

4. 	 Time series TS3 is a difficult time series, having 10 input parameters of yrhich 

7 are irrelevant (see figure 3.2(c)). 

TS3:o t Zt 

2 ~. 
Zt 0.3zt - 6 0.6zt - 4 + 0.5zt- 1 + 0.3zt _ G - 0.2zt _ + (f (3.7)4 

for 	t = 1"",10, where Z4, Z6, Z9 U( 1,1) and (t lV(O, 0.05). All t.arget rv 	 rv 

values were scaled to the 	range [0,1]. 

5. 	 Time series TS4 is a convolution of two discrete functions with outliers. Fig­

ure 3.2(a) shows an illustration of this function. 

6. 	 Time series TS5 is the sine function TSI with 5% of the candidate traiuing set 

consisting of outliers (see figure 3.2(b)). 

3.5.1 Experimental Procedure 

In order to obtain statistically valid assertions in comparing experimental I'(~s1l1ts of 

the four learning algorithms, thirty simulations were performed for each prohlern. 

 
 
 



65 CHAPTER 3. ACTIVE LEARNING 
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Figure 3.1: Function and Time series problems to be approximated 
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Online training was used for the active learning algorithms. The initial sllhs{~t size 

for incremental learning algorithms consisted of one pattern and a suhsrlectiol1 size 

of one pattern was used. Each simulations was executed for 2000 epochs. A learning 

rate 0.1 and momentum 0.9 were used for all the approximation probh~lns . n(~sults 

reported are averages over the 30 simulations together with 95%) confidence illl<TVals 

as obtained from the t-distribution. 

The selective learning algorithm was not applied to F1, since F1 is not a tinH' series 

problem. The 7 value used in the subset selection criterion for AL \va.s adjusted 

for each problem using a trial and error approach. For TS3, a high 7 \vas used 

(7 = 1000), a value of 100 was used for TS1: TS4 and TS5 while a valu{~ of It)O was 

used for TS2 and Fl. 

Performance measures 

To evaluate the performance of each learning algorithm, the following perfonnance 

criteria were used: 

1. 	 The mean squared error (:rvlSE) ,vas used as a measure of accuracy. Th<' lVISE 

measures how well a function is approximated by the network, and is (lefiuecl as 

2 
,"",I\: (t(p) - o{p))
L.."k=l k kli1SE 

21( P 

A MSE value close to zero shows a small error between the target and the 

output function. The MSE over the three sets Dv , Dc and De were COluput­

ed. The MSE over Dc, denoted by Ec provides an unbiased estirnate of the 

generalization error since the patterns in Dc were not used for training. 

2. 	 Robel's generalization factor p was used to measure overfitting effects. The 

generalization factor was computed as p , where Ee is the l'vISE over 

candidate training set Dc and Ev is the MSE over the validation set 1),·. A 

network overfits when the value of p increases substantially above 1. 

 
 
 



CHAPTER 3. ACTIVE LEAR~NI1VG 	 G8 

3. 	 The computational complexity of learning algorithms ,vas also llspd as perfor­

mance criterion. For the purpose of this thesis, eomputational cost is llH'(\sun~d 

as the number of calculations needed to train the network. Calculatiolls illdude 

subtraction, multiplication, addition and division. 

At 	any epoch ~, the cost C fe of training a NN on a training set, is pxpl'Pssed as 

Cfc=(CV+CW)*PT 

where C\I is the cost of updating weights between input and hidden llnits and 

Cw is the cost of updating \veights between hidden and output units. PI' is thp 

number of patterns in the training subset DT . For conventional backpropagation 

with fixed set learning, PT Pc. Thus the cost of training C fsl is cornpnted as 

C fsl (Cv + Cw ) * Pc. 

The costs of updating the weights are calculated as 

Cv Cv * (Nv ) 

Cw Cw * (NHr) 

where Cv is the cost of updating a single weight between the input and hidden 

layers, Cw is the cost of updating a single weight between the hidden and output 

layers. Cv is the total cost of updating the \veight connections betW('('ll the 

input and the hidden layers, and C\v is the total cost of updating the weight 

connections between the hidden and output layer. ~Nv is the total llUluber of 

connections between the input and hidden layers and Nw is the total llurnber 

of connections between the hidden and output layers. 

The total number of connections Nv and N w are expressed as 

JVv = (1 + 1) * (J + 1) 

lvw=(J+l)*(1{) 

and 

Cli = 13 
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Therefore, 

Cw 11 * (J + 1) * I{ (:3.8) 

The cost of training a network using any active learning algorithm includes Cf(:~ 

the cost of selecting patterns for training and the cost of cornputing the subset 

termination criterion. Therefore, at any epoch ~, the cost of training a IlPtwork 

using SLA, SAILA, DPS and AL are: 

C SL C fe + Csia * Fe 

C DP C fe + C dps * (Fc - Fr) + (CSclPS * Fr) 

CAL C fe + Cal * (Fe Fr) + (CSal * Fr) 

CSA C fe + C sai * (Fc Fr) + (CSsai * Fr) 

For all the incremental learning algorithms, the subset selection criteria are 


tested on the remaining patterns in the candidate set Dc which is equal to Pc ­

Fr- Also, for incremental learning algorithms, an additional cost of s(\lecting 


pattern is incurred when a pattern is selected. 


C SL , CSA, CAL and C DP are the cost of training a network using SLA, SAILA. 


AL and DPS respectively. Csla = 15 is the cost of computing the subset s(~lp<:tion 


criteria for SLA, Cdps = 11 is the cost of computing the subset selection criteria 


for DPS, Cal = 4 is the cost of computing the subset selection criteria for AL 


and Csai 18 is the cost of computing the subset selection criteria for SAILA. 


CSdps 2, CSal = 2 and CSsai = 7 are the cost of selecting patterns into DT for 


DPS, AL and SAILA respectively. 


Therefore, 


CSL Cfe + 15Fc 
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CDP 	 Gfc + 11(Fc FT) + 2FT 

Gfc + 4(Fc FT) + 2FT 

G1c * FT + 18(Fc - FT) + 7FT (:3.9) 

From equation (3.9), the cost of training is directly proportional to tIl{' lllllubpr 

of patterns selected for training. The more patterns are selected for tl'aillillg. the 

higher the computational cost. Initially, FT for SLA is greater than the other 

algorithms because DPS, AL and SAILA are incremental learning algorithrn 

and a small initial trainig set and subset size is used in the siInulations. Thus, 

G SL is expected to be greater than GAL, G DPS and CSA illitiall~T. SAlLA is 

computationally more expensive in selection criteria than the other algorithms 

because SAILA has more subset selection criteria to implement than tIl(' other 

algorithms. 

Section 3.5.2 illustrates the costs for the different algorithms. 

3.5.2 	 Results 

This section presents the results of the simulations carried out 011 the active l<'arlling 

algorithms. 

Training 	error 

In order to compare the performance of the four active learning algorithnls. the 

MSE over the candidate set Dc was computed for the simulations and the ,rvcrage 

calculated. Tables (3.2) and ( 3.3) show the result over 2000 epochs for clPHU data 

and data with noise and outliers. 

For TSl, DPS had a very low error with the lowest variance which nleans that all 

the errors of the simulations for DPS were all closer to the average error of 0.0003. 

Although, SLA had a low error as well. However SLA had a large variance vvhen 

compared to DPS. AL had the largest error with a very large variance. 
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DPS achieved the smallest error for TS2, having a small variance. For TS~3. all the 

algorithms had very low errors but SAlLA had a high variance. DPS had tll(' :-1111allest 

error for Fl with a very small variance. 

For TS4 and TS5, SLA achieved the smallest error with the lowest variallcP. AL had 

the largest error for TS4 and TS5. This is because AL selected and trailwd ()Il just 

a single pattern for TS4 and an average of 4 patterns for TS5. Thus AL. had high 

errors for TS4 and TS5. 

The training errors for all the problems with noise and outliers were larger ( x 1(2 
) 

than for problems with dean data. DPS had the lowest average error for d(lClU data 

while SLA had the lowest error for noisy data. 

Generalization error 

To compare the generalization ability of the four active learning algorithrns, tlw .'vISE 

over the generalization set, Ee, was computed and the average over the :30 sirnulations 

was plotted as a function of number of epochs. Figures 3.3 and :3.4 illustrates the 

trend of the generalization errors for the entire training period. 

DPS achieved a very low average error faster than the other algorithrns for FI (refer 

to figure 3.3(a)). However, both SAlLA and AL achieved a comparable n-':-1111t to 

DPS at epoch 1000. From table 3.3, DPS had the lowest error with the a ver~' srnall 

variance (5.07 E - 05) which means all errors of the simulations are doser to the 

average. 

For TSl, SAlLA initially had the highest generalization error but decreased to a low 

level of error (see figure 3.3(b)). SLA initially had the lowest average error. which 

can be explained by the fact that SLA used more patterns initially than the other 

algorithms (refer to figure 3.7(b)). Although SLA and DPS had slnall errors. DPS 

had the smallest variance and thus DPS achieved the smallest error. AL bad the 

largest error after 2000 epocbs with a large confidence interval. 

For TS2, DPS, AL and SLA achieved a very low average error before epodl 500. 
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Selective Sensitivity 
Function Zhang LearningRobel Analysis 
TSI 

0.02172Training Error 0.00036 0.00045 0.00346 
± ± ± ± 
0.00017 0.04186 0.00035 0.00712 

Generalization 0.022410.00039 0.00047 0.0035 
± ± ± 

0.041910.0002 0.00040 0.00737 
used Patterns 4.73485.43 270.93 571.67 

± ± ± ± 
234.79 0.92 3.48 88.91 

TS2 
Training Error 0.00014 0.00023 0.00029 0.00126 

± ± ± ± 
0.00011 0.00021 0.00038 0.00163 

Generalization 0.00012 0.00022 0.00029 0.00129 
± ± ± ± 
0.25E - 05 0.00019 0.00037 0.00169 

U sed Patterns 411.77 174.63 272.57 522.57 
± ± ± ± 
215.87 61.48 7.61 173.37 

I 

TS3 
Training Error 0.00039 0.00044 0.00050 0.00068 

± ± ± ± 
0.00086 0.00091 0.00085 0.00146 

Generalization 0.00275 0.00253 0.00302 0.00225 
± ± ± ± 
0.00155 0.00133 0.00138 0.00174 

Used Patterns 180 78.17180 180 
± ± ± ± 

0 1.530 0 

Table 3.2: Comparison results over 2000 epochs for times series problerlls 

 
 
 



73 CHAPTER 3. ACTIVE LEARtvING 

Selective I Sensitivity 
Function I Robel Zhang Learning Analysis 

FI 
Training Error 0.000226 0.000412 0.000791 

± ± ± 
5.07E 05 0.000366 0.001852 

Generalization 0.000221 0.000392 0.000754 
± ± ± 
5.2E ­ 05 0.000347 0.001624 

U sed Patterns 320.2 82.8 445.1333 
± ± ± 
167.6698 32.37935 121.476 

TS4 
Training Error 0.01141 0.19935 0.00516 0.02828 

± ± ± ± 
0.00573 0.03093 0.00393 0.09522 

Generalization 0.01077 0.19051 0.00478 0.02739 
± ± ± ± 
0.00534 ! 0.02169 0.00349 0.09170 

U sed Patterns 493.03 1 245.23 597.03 
± ± ± ± 
193.37 0 7.89 27.41 

TS5 
Training Error 0.00683 0.10278 0.00155 0.00562 

± ± ± ± 
0.00468 . 0.08731 0.00158 0.00768 

I 

Generalization 0.00714 0.09904 0.00158 0.00595 
± ± ± ± 
0.00489 0.08932 0.00142 0.00842 

Used Patterns 103.5 4.67 269.13 584 
± ± ± ± 

:120.14 1.35 9.89 93.4 

Table 3.3: Comparison results over 2000 epochs for problems Fl and tinl(~s spries \vith 
noise and outliers 
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Figure 3.3: Average generalization error vs epoch 
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Figure 3.4: Average generalization error vs epoch 

SAILA was slower to achieve a comparable low error but SAILA had a low (-'rror by 

the end of training. From the table 3.2, DPS had the smallest error with a vel'." slllall 

variance after 2000 epochs, iIIlplying that all errors of the silllulations an' cl()s(~r to 

the average. 

For TS3, the generalization error for all the algorithIIls increased as the lllllllh(-'r of 

epochs increased except SAILA (see figure 3.3(c)). 

From the table 3.3, SLA had the lowest generalization errors for TS4 and TS5. \Vhile 

AL had the largest error for TS4 and TS5. AL did not learn the functions (refer to 

figure 3.4(a)). AL selected a few patterns for training, thus had littlc~ infonllation 

about the time series to be approximated and therefore AL had a bad ~(-'rwra.lization. 

DPS had the lowest generalization errors for functions with clean data \\'hilp SLA had 

the lowest generalization errors for functions with noise and outliers. Although DPS 

had better generalization with clean functions than SLA, DPS used 1110re patterns 

than SLA to achieve the low generalization error in all the problellls. AL had very 

large generalization errors for TSl, TS4 and TS5. This bad generalizatioll call be 
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attributed to the extremely small training set sizes used by AL which is an illdi('ation 


of an inferior subset selection criterion. The subset selection criterioll dep<'llds 011 


the number of connections in the network. Redundant or irrelevant w(~ights ill the 


network will make the value of the perforrnance level f£ very large which call ('ause 


the network to train on the current training subset DT too long without selecting 


additional patterns. Thus the network selects a few patterns, hence having insufficient 


information to train the network. On the other hand, too few weights in the lwtwork 


can make K, small. Thus, the network selects patterns rnore often than an' u('C'ded 


for training. 


Overfitting effects 


The average generalization factor p for all the problems were com.putect OV('l' the 30 


simulations. Figures 3.5 and 3.6 show the charts for the average generalizatioll factors. 


The average generalization factors were plotted as function of pattern presentations. 


A pattern presentation represents one weight update. 


TS3 was the only function for which all the algorithms except SAILA~ overfitted. 


SAIL A had an average generalization factor of less than one, w hiIe the other algo­


rithms had high generalization factors. For the entire training period for TS4. AL 


had a generalization factor constantly larger than L indicating that .-\L oy<,rfitted 


TS4. For the other functions, the average generalization factor ,-a111<'s fluctnated. 


The fiunctuation is due to the overfitting of a training subset until 11<'\" pattenls are 


selected for training. When new patterns are selected, the overfitting of tIl(-' training 


subset is reduced. The average generalization factor for all the algoritlnIls (<,xcept 


TS3) were slightly over one, and indicating a mild case of overfitting. 


Computational costs 


The computational costs for AL, DPS, SLA and SAILA were cornputed llS111g e­


quation (3.9) for specified epochs. The costs are plotted as a function of (~po<:hs as 


illustrated in figures (3.9) and (3.10). 
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Figure 3.6: Average generalization factor vs pattern presentations 

SAILA has the most expensive and AL has the least expensive subset selpctioll cri­

teria. However, AL performed badly (refer to tables 3.2 and 3.3). For all the ap­

proximation problems, DPS, AL and SAILA had increasing costs because tlH)~' are 

incremental learning algorithms. i\1ore patterns \vere used as training progrpssed 

(refer to figures (3.7) and (3.8)). 

For F1 and TS2, AL had the smallest cost (see figure 3.9( a) and (b)). These srnall 

costs can be attributed to the cheap cost of the subset selection criterioll as wpll as 

the fact that AL used the smallest number of patterns for training. 

Despite the fact that AL has the cheapest subset selection criterion alld a sirnple 

selection criterion, AL had the highest cost for TS3. This is because AL seh~('tpd all 

the patterns in Dc within a short training interval (by epoch 400). SLA initiall~T had 

the highest cost (first 350 epochs). However, at epoch 1000, the cost was half of the 

other algorithms. 

For all the functions approximated, SLA initially had a higher training cost thaIl the 

other algorithms - aln10st four times the training cost of other algorithrlls. l)(~<:ause 
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Figure 3.8: Average number of patterns used per epoch 

SLA is a selective approach (see figure (3.9) and (3.10)). 

From tables (3.2) and (3.2), SLA used less number of patterns after 2000 epochs 

than the other algorithms, thus SLA was computationally less expensive. 

Convergence 

The convergence performance of the four active learning algorithnls are cOlnpared in 

figures 3.11 and 3.12. These figures plot the percentage of simulations that reached 

specific generalization errors. 

For Fl, DPS had the best convergence, all the simulations converged to a vpry lo\v 

error of 0.0004. AL also had a good convergence, more than half of the sinullations 

converged to 0.0004 (refer to figure 3.11(a)). 

None of AL's simulations converged to the specified error level for TS2. SLA aud DPS 

achieved good convergence for TS2, as more than half of their simulations cOllverged 

to a low error (refer to figure 3.11 (b) ) . 

For TS2, DPS had the best generalization, most of all the simulations converg(~d to a 
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Figure 3.10: Average computational cost per epoch 

very low error (0.0002). SLA and AL also had good convergence (see figure :3.11(c)). 

While the other algorithms had few converged simulations at 0.002. ahnost half of 

SAILA's simulations converged to this error (refer 3.11 (d)). 

AL had bad generalization for TS4 and TS5. None of AL's simulations cOllverg-ed to 

the specified error levels for TS4 while only a few converged for TS5. 

SLA had the best generalization for TS4, with all the sirnulations converging to a 

low error of 0.004 (refer to figure 3.12(a)). SAILA had a good convergenct' ''''ith 40o/c) 

of the simulations converging to this error of 0.004. Only a few of DPS's siIllulation 

and none of AL's simulation converged at this point. 

SLA also had the best generalization for TS5. Almost all the sirllulations (74 o/c)) 

converged to a error level of 0.005 while only a few of the other algoritllllls siUllIlations 

converged to this error level (see figure 3.12(b)). 

SLA had the best convergence for data with outliers and noise. DPS had the l)('st COIl­

vergence for clean data, although SLA had good convergence for clean data. SAILA 
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had a good convergence for TS3. For all the sine functions (TS L TS4 and TS:)). AL 

had bad convergence, none of its sinlulations converged to the specified error level­

s. The errors specified for data with outliers and noise were larger than the e1'1'ors 

specified for clean data. This is because the performance of all the algoritluns were 

degraded in the presence of nois8 and outliers. 

3.6 Conclusion 

The objectives of the chapter were to present a new learning algorithlll (SLA) and also 

to compare four active learning algorithms with respect to their accuracy, COllV(,1'genee 

and the complexity on both clean and noisy data as well as overfitting effects for the 

problems were also examined. 

The results presented showed that AL was unstable, producing good results for the 

henon-map and PI only. The bad training behavior can be attributed to the extreme­

ly small training set sizes used by AL, which is an indication of an inferior subset 

selection trigger. 

DPS and SLA performed very similar on the clean data, while SLA outperf01'llH'd all 

the other algorithms on the noisy and outliers training data. The sensitivity analysis 

approach (SAlLA) performed well under the occurrence of outliers and llois~' tilne 

series, and very well for the complex function TS3. SAlLA performed hettP!' than 

AL in TS1, TS4 and TS5, but worse than SLA and DPS. SAlLA is cOlnputationally 

more expensive, requiring larger training subsets than the other algorithIIls. 

As is expected, the performance of the error selection approaches degraded lIIlder 

the occurrence of outliers and noise. The degradation is due to the earl~r select.ion of 

outliers, since outliers result in the largest prediction errors. 

The comparison above showed that SLA had the best generalization performance. and 

lowest complexity. The selective learning approach (SLA) produced better accuracy 
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than the other approaches, and showed to be more robust in the occurrence of ontliers 

and noise. 

 
 
 



Chapter 4 

CONCLUSION 

The first objective of this thesis was to propose a Ilew active learning algorithm using 

changes in output as selectioIl criterion. The second objective of this thesis was to 

compare the performance of selected active learning algorithms on both deilll and 

noisy data. The algorithms were compared in relation to their accurac~·. g<'lleral­

ization, convergence and computational cost. Four active learning algorithms \vere 

selected for this comparison. Two of these algorithms namely, DPS and AL 11se the 

error in prediction as selection criterion. That is, patterns are seleeted hased 011 the 

error of the patterns. Two algorithms, SLA and SAlLA, which use pmtnrl latiolls 

in output as selection criterion were also selected for comparison. Pattems which 

influence the change in output values most are selected for training, llsing tIl(' output 

selection criterion. 

Robel's algorithm (DPS) performed well with clean data (TSl. TS2 amI Fl). hav­

ing a faster convergence and better generalization than the other algorithms. This 

performance can be attributed to the selection of patterns that contribute lllost t.o 

the error of the network. Training on such patterns took into account the current 

state of the network and thus brought the output closer to the target functioll. The 

performance of DPS degraded in the presence of outliers and lloise in the training 

data, consequently the generalization ability deteriorated. 
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AL performed badly in all the functions except Fl and TS2. For the sillE' f1llH'tiollS 

(TSl, TS2, TS3), AL selected very few patterns for training which result.f'd ill VPIT 

large errors. 

SAIL A achieved a considerable good accuracy for the function with outliPJ's ilwl tlw 

complex function TS3. This is because SAILA used perturbations ill output ,·;dues. 

i.e. changes caused to the output by the input as its selection criterion, tlms avoiding 

the selection of outliers patterns. SAILA was however, slow iu learuiuf.!; IlJOst of 

the functions, even for those functions for which a lmv generalizatioll error h<ls been 

obtained. SAILA's slow learning can be attributed to the fact that SAILA oulv chose 

patterns at the highest peak of the derivative and then tries to fit the network from 

this point. A suggestion to improve training using the SAILA algorithm is to sdect 

patterns at the lowest peak also, i.e at the turning point where derivativp is zero ill 

addition to the patterns selected at the highest peak. The network will t hell fit the 

problems being solved at the two extreme points of the derivatives simultallPonsbr • A 

faster convergence and a lower training time maybe achieved compared to th(~ current 

SAILA algorithm. 

SLA achieved a good accuracy for both clean data and data with outliers and lloist'. 

SLA used much less patterns (i.e. a low computational east) than all tIl(' algorithms 

for all the problems. Thus, SLA showed to be more robust ill the (J(,('llIT('ll('(' of 

outliers and noise. SLA has demonstrated good and comparable results both ill the 

training and generalization ability of the network. 

Active learning algorithms using perturbations in output performed better with func:­

tions with noise and outliers while, algorithms using change in error as s(~l(-'ctioll 

criteria performed better with clean data. A good subset selection criterion is very 

important in any active learning algorithm. AL had a poor subset selection (TiU~rion, 

selecting too few patterns for training. Even though, DPS and AL used the same se­

lection criterion, DPS outperformed AL in all the problems. This better p(~rforll1aIlCe 

of DPS is a result of a better subset selection criterion used b~r Robel. A Jl(·twork 
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trained with too few information will generalize badly, as in the case of AL. 

For problems with clean data, DPS is preferred, though DPS us(~d more pattel'lls for 

training than SLA. However SLA is preferred with problems with outliers and Boise. 

SLA is also preferred for clean data because of low computational costs. 

4.1 Future of Active Learning in Neural Networks 

Active learning has been shown to demonstrate a better performance' thall the 

conventional backpropagation algorithm. Various research have compared these t­

wo learning paradigms and have published their results [Zhang 1994, Rdl)('} 1994<:. 
•

Engelbrecht et o.l1998]. Because of the demonstrated performance of active h~aming. 

research to improve on active learning must be continuously carried out. 

A suggestion to further improve on active learning is to first cluster illPut patterns. 

A clustering algorithm can be used to group similar patterns into dusters. -where 

similarity is measured as the Euclidean distance between input vectors. At each 

subsetselection interval, the most informative pattern is selected from each of tllf' 

clusters. The clustering active learning approach can potentially reduce COlllputa­

tional complexity and improve accuracy. 
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Appendix A 

Symbols and Notations 

The notation and symbols used in this thesis assume a three layer Heural lll'twork 

(NN) architechure with one input layer, one hidden layer, and one output laver. 

This appendix summarizes the symbols used throughout this thesis with reference 

to the three layer architecture. The symbols are listed alphabetically wit 11 their 

interpretation. 

momentum term 
learning rate 
Zhang's notation for a specified performance level 
Robel's generalization factor p 
Zhang's notation for allmvable error tolerance per connection 
Engelbrecht's notation for pattern informativeness 
used in this thesis as the next-time-change in output 

I
I 

used as the next-time-change in target for Kohara's algoritlllIl 

T 
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Symbols I Interpretation 

Cal 

Cdps 

C fe 

CIsl 

Cs 

Csai 

Csla 

CSal 

CSdPs 

CSsai 

CAL 

CDPS 

CS'A 

CSL 

Cv 

CF 

Cw 

Cw 
Dc 
DG 
Dr 
DF 
I 
J 
]( 

I'iF 
Nw 
P 
Pc 
PG 
Ps 

Pr 
PF 

Ok 

o(p) 
k 

Vii 

'Wkj 

Yi 
y;p) 

cost of the subsetselection criteria for Zhang's accelerated learning (.\L) 
cost of the subsetselection criteria for Robel's dynamic pattern seiectioll (DPS) 
cost of training a NN on a training set 
cost of fixed set learning 
cost of selecting patterns 
cost of the subsetselection criteria for SAILA. 
cost of the subselection criteria for selective learning algorithm (SLA) 
cost of selecting a pattern into DT for Zhang's accelerated learning 
cost of selecting a pattern into DT for Robel's dynamic pattern selectioll 
cost of selecting a pattern into DT for SAILA 
cost of training a network using Zhang's algorithm 
cost of training a network using Robers algorithm 
cost of training a network using Engelbrecht's algorithm 
cost of training a network using selective learning algorithm 
cost of updating a weight between the input and hidden layers 
cost of updating all weights between the input and hidden layers 
cost of updating a weight between the hidden and output layers 
cost of updating all weights between the hidden and output laven..; 
set of candidate training patterns 
test set or the generalization set 
actual training set 
validation set 
total number of input units 
total number of hidden units 
total number of output units 
total number of weights between input and hidden layers of a lletwork 
total number of weights between hidden and output layers of a llPtwork 
a single pattern 
number of patterns in the candidate set Dc 
number of patterns in the generalization set DG 
number of patterns in a subset Ds 
number of patterns in the training set DT 
number of patterns in the validation set DF 
k-th output unit 

activation of output unit Ok for pattern p 

weight between j-th hidden unit and z-th input unit 
weight between k-th output ullit and j-th hidden unit 
.i-th hidden unit 
activation of hidden unit Yi for pattern p 

i-th input unit 

 
 
 



Appendix B 

Definitions 

This appendix summarizes definitions of key terms used in this thesis. The tenus are 

defined in alphabetical order. 

Active learning: Active learning is any form of learning in which the lcaming 

algorithm has some deterministic control during training over ,,,hat pan of the 

input space it receives information (page 10). 

Accelerated Learning: Accelerated learning (AL) is Zhang's algorithm for active 

learning. Patterns with the highest prediction error are sPle('jpd for training. 

New patterns are selected as soon as the error on the training sllbs('t is l'<'dncpd to 

a specified performance level. AL is an incremental approach to active l('itruillg 

(page 61). 

Bias: A bias is a unit or neuron added to the input and hiddpll lav!'l's with a 

constant activation value of 1. The purpose of adding a bias unit is to offset 

the origin of the logistic activation function (page 36). 

Dynamic Pattern Selection: Dynamic pattern selection (DPS) is Ri)]wls algo­

rithm for active learning. The most informative patterns an' the patt('fllS \vith 

the maximum prediction error and are selected for training . .r\ew spt of patT­

erns are selected for training as soon as the network overfits tlH~ curn'llt training 
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subset. DPS is an example of incremental learning (page 59). 

Epoch: An epoch is oue learning pass through tlw training set. Ow' kal'lliug pass 

involves the presentation of training patterns, the calculation of the ;wl iYi\ tion 

of each neuron and modification of the weights (pagE~ 36). 

Gradient Descent Optimization: In Gradient descent optimizatioll (GD) the 

minimum of the objective function is searched in the negative gradient of tliP 

objective function. In NNs, the objective function is the error f1lnctioll which is 

a function of the weights of the NN (page 27). 

Incremental Learning: Inc.:rementallearning is a form of active learning. ,Yh(~n-' () 

su bset of the training patterns that satisfies a selection criterion is seie('1 ed for 

training. Patterns are however selected and removed from the candidau, S('t· Dc 

into the actual training set DT . The effect of incremental learning is that the 

training set DT is grown while the candidate set Dc is pruned dming training 

(page 46). 

Momentum: Momentum is a term added to weight adjustments to 11('lp avoid 

oscillations in weight changes during training. This term is proportional to t!tp 

magnitude of previous weight changes (page 37). 

Mean Squared Error: In the context of neural networks, the mean squan~d error 

(MSE) is defined as the mean of the squared sum of the error lwt\\'('ell tmget 

values t~) and the actual NN output values o~): 

where P is the total number of patterns and f{ is the number of outpnt llnits 

(page 11). 

Pattern Presentations: A pattern presentation is a single pattt~rn pn~s{lllu~d to 

the network for training. Pattern presentations are the totalllumber of patterns 

presented so far to the network at a particular epoch (page 76). 
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Sensitivity Analysis for Incremental Learning: Sensitivity analysis for illCl"f'­

mental learning (SAIL-\,) is Engelbrechfs algorithm for active learning. PM1 ems 

are selected for training using the changes in output caused by pertnrlmtiolls ill 

input parameters (page 56). 

Selective Learning: Selective learning is an active learning algorithm. \\"11('H' a 

subset of the training patterns that satisfies a selection criterion is seh-'("t(~d for 

training. Unlike incremental learning, the candidate set remain fixpd while the 

size of the actual training set varies from time to time (page 46). 

Selective Learning Algorithm: The selective learning algorithm (SL\) is (\ lWW 

active learning algorithm proposed in this thesis, which uses inforrnatioll OIl tht:' 

next-time-changes to select patterns for training (page 54). 

Subset selection Criterion: Subset selection criteria are criteria tested to <1('ter­

mine whether a NN should select additional patterns into the cnnellt training 

subset Dr (page 52). 

Sum Squared Error: SSE is the sum of squared errors, defiued as 

SSE 

(page 31). 

 
 
 


