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Abstract

Backpropagation (BP) has played a vital role in the resurgence of interest in artificial
neural networks (ANNs). Eversince, a lot of research effort concentrated on finding ways
to improve its performance. Active learning has emerged as an efficient alternative to
improve the performance of multilayer feedforward neural networks. The learner is given
active control over the information to include in the training set, and in doing so. the
generalization accuracy is improved and the computational cost and complexity of the

network are reduced compared to training on a fixed set of data.

While many research effort has been invested in designing new learning approaches. an
elaborate comparison of active learning approaches is still lacking. The objective of this
research study is to compare and critisize active learning approaches and also to propose

a new selective learning algorithm.

This thesis presents a comparison of four selected active learning algorithms. The thesis

concentrates on one type of application, namely function and time series approximation.

111



e

W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
o

YUNIBESITHI YA PRETORIA

Opsomming

Terugwaartspropagering neurale netwerke het 'u belangrike rol gespeel in die oplewing
van die belangstelling in kunsmatige neurale netwerke. Verskeie navorsingsstudies kousen-
treer op die verbetering van die prestasie van neurale netwerke, Aktiewe leer het getoon
om ’'n effektiewe alternatief te wees om die prestasie van multi-vlak vorentoe-voer nenrale
netwerke te verbeter. Die leerder word aktiewe beheer gegee oor die inligting wat in die
leerversameling ingesluit word. Sodoende word veralgemening verbeter, en die hereken-
ingskoste en -kompleksiteit van die netwerk verlaag in vergeleke met afrigting op u vaste

leerversameling.

Terwyl vele navorsing gedoen is in die ontwikkeling van nuwe leerstrategicé. is daar n
tekort aan 'n uitgebreide vergelykende studie van aktiewe leer. Die doelwit van hierdie
studie is om aktiewe leer strategieé te vergelvk en te kritiseer. 'n Nuwe selekticwe leer

algoritme word ook aangebied.

Hierdie tesis bied 'n vergelyking van vier aktiewe leer algoritmes aan. Die tesis kouscentreer

op die benadering van funksies en tydreekse.
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Chapter 1

INTRODUCTION

The study of neural networks (NN) is one of the most rapidly expanding fields attracting
people from a wide variety of disciplines. The study of neural networks is a field which
cuts across many disciplines like philosophy, biology, psvchology, mathematics. statistics.
neuroscience, physics, engineering and even linguistics [Wasserman 1989]. These interwo-
ven disciplines have made the study of neural networks unique. Neural networks bring

together various subjects and disciplines in building intelligent systems.

1.1 What is a Neural Network?

The term neural network (NN) in this thesis refers to artificial neural network (ANN)

which mimics biological neural systems.

There are several definitions as to what a neural network means: Maren defines neural
networks as computational systems, either hardware or software, which mimic the compu-
tational abilities of biological svstems by using simple interconnected artificial neurons

[Maren et al 1990].
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CHAPTER 1. INTRODUCTION 2

Hecht-Nielsen gives a rigorous definition of a neural network as "a parallel distributed
information processing structure consisting of processing elements which can possess a local
memory and carry out localized information processing operations, interconnected togetlier
with unidirectional signal channels called connections. Each processing element las a single
output connection which branches (fans out) into as many collateral connections as ¢lesired
(each carrving the same signal - the processing element output signal). The processing
element output signal can be of any mathematical type desired. All of the processing
that goes on within each processing element must be completelyv local, i.e. must depend
only upon the current values of the input signal arriving at the processing elemcut via
impinging connections and upon values stored in the processing element’s local memory ~

[Hecht-Nielsen 1989].

A simpler definition of a neural network, given by Fausett, is that, a NN is an information
processing system that has certain performance characteristics, such as adaptive learn-
ing, and parallel processing of information, in common with biological neural networks

[Fausett 1994].

Haykins defines a neural network as a massively parallel distributed processor that has a
natural propensity for storing experiential knowledge and making the knowledge available

for use [Haykins, 1994].

A neural network can also be defined as a distributed computational svstem composed of
a number of individual processing elements operating largely in parallel. interconnccted
according to some specific topology (architecture) and having the capability to self modifv

connection strengths and processing elements parameters [Rogas 1996].

From Miiller and Reinhardt’s view, a neural network model is defined as an algorith for
cognitive tasks, such as learning and optimization, which are in a loose sense based on

concepts derived from research into the nature of the brain [Miller et ol 1990].

From all these definitions, it can be deduced that
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e A neural network is inspired by studies of the brain. Though. it would be wrong to say
that a neural network duplicates brain functions, because tlie brain is highlv complex
and the actual intelligence exhibited by the most sophisticated neural network is well

below the level of intelligence of any animal [Wasserman 1989].

e A neural network is made of several interconnected units similar to the nenvous in

the brain.
e A NN is an information processing system that operates in parallel.

e Signals are passed between units over connection links and each link has an associated

weight.

e Artificial neurons are simple emulations of biological neurons. Artificial neurons
receive information from other artificial neurons or the environmeunt. perform a simple
operation by applying functions on these input signals and pass the result to other

neurons or the environment.

e Each unit applies an activation function (usually nonlinear) to the net input and

determines the unit’s output signal.

1.1.1 Characteristics Of A Neural Network?

A neural network is characterized by

o the architecture of the NN, which refers to the number of lavers in the nerwork,
the number of neurons in the layer, and how these neurons are interconnect-
ed. Neural network types include single layer networks such as the Hopficld NN
[Maren et al 1990], multilayer feedforward neural networks (MLNNs) such as hack-

propagation [Wasserman 1989]and recurrent NNs (RNNs) [Simpson 1990)].
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CHAPTER 1. INTRODUCTION 1

e The method of adjusting weights for each connection, referred to as the learnig algo-
rithm. Learning algorithms are divided into two main categories, namely supervised
and unsupervised learning. Learning in supervised mode is done by compariug the
network’s output to the desired output, which is provided by the svstemn or external
teachers [Simpson 1990]. Learning in unsupervised mode, on the other hand. is by
self organization. There is no target or desired output and hence no comparison to

predetermined responses [Simpson 1990].

e The activation function used which can be linear, discrete functions such as the ramp

function or continuous functions such as the sigmoid function.

The advantages of, and reasons for using neural networks rather than conventional methods

of optimization, regression, classification and clustering are discussed in section 1.2.

1.2 Why Neural Networks?

The interest in neural networks is motivated by the desire to understand the brain. i.e. the
principles on which the human brain works, to emulate some of the brain’s strength and
the wish to build machines that are capable of performing complex tasks for which the

sequentially operating programmable computers are not well suited for.

Everyday observation shows that the brains of even animals of lower intelligence can per-
form tasks that are far beyond the range of even the largest and the fastest modern elec-
tronic computers. For example, dogs bark at human beings that are strangers while they
are quite relaxed with human friends. Dogs can distinguish between foes and friend-
s. No present day electronic computer has sufficient computational power to match this
similar accomplishment. This accomplishment involves some need for the recognition of

complex optical or acoustical patterns which are not determined bv simple logical rules
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-

[Miiller et al 1990].

Neural networks are also used when data, on which conclusions are to based. s fuzzv.
When the influential or informative patterns are subtle or hidden, a NN has the ability to
discover patterns which are not clear, or unknown to the human researcher or standard
statistical methods. An example is credit worthiness of loan applicants based on spending
and payment history [Masters 1993]. NNs have been applied to data that exhibits signif-
icant unpredictable nonlinearity [Fausett 1994]. NNs have been adapted to predict future
values not based on strictly defined models, and offer possibilities for solving problems
that require pattern recognition, pattern mapping, dealing with noisy data and pattern

completion [Masters 1993].

The advantages of NNs are summarized below:

1. A NN has the ability to learn.
2. Neural networks are robust to noise.
3. Neural networks work excellently for nonlinear data.

4. Because NN can learn to discriminate patterns based on examples and training. an
elaborate a priori model is not needed neither is the probability function needed to

be specified. The statistical distribution of the data used for training is not needed.

Specific areas where NNs have been applied include: pattern recognition and classification,
adaptive control applications, financial analysis such as forecasting and credit assessient.
database mining, function approximation and clustering [Fausett 1994. Masters 1993,

Wasserman 1989, Towell et al 1993].
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1.2.1 Features of Neural Networks

A very important feature of a neural network is an ability to adapt to changing cnviron-
ments, where learning is by examples. That is, the NN learns how to perform certain tasks
by undergoing training with illustrative examples. Once trained. a NN cau perfori tasks
without any external help, even if presented with distorted patterns [Beale ef ol 1990].
This feature makes NNs very appealing especially in application problems where little or
no understanding of the problem is known, but where training data which reflects the char-
acteristics of the problem is available. Neural networks can learn various things such as
distinguishing a straight line from a convex curved line. The NN can discriminate hetween
the lines once trained, even when the lines are shifted up or down. or even if the data is

noisy.

Another feature of neural networks is the parallel architecture, which allows faster com-
putation of some problems when the network is implemented on parallel digital compurers.
or when the network simulates parallelism. Electronic computers are designed to carry out
one instruction after the other, extremely rapid whlereas the brain work with slower units.
A computer is a high speed, serial machine compared to the highly parallel nature of the
brain. Computers therefore manage tasks such as counting (an essentiallv serial activi-
ty) which suit its design well, making the computer superior to the brain in such rasks.
However, for highly parallel tasks such as vision or speech, computers perform badly. The
brain is able to operate in parallel easily and thus is much faster thian the computer in

performing these tasks.

The approach of NNs in various applications is to capture the guiding principle that un-
derlines the way the human brain solve problems and apply these principles to computer

systems.
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1.3  Background to Neural Networks

Neural networks have been motivated right from their inception by the fact that the hrain
computes in an entirely different way from the conventional von Neumann machines (com-
puters) [Hassoun, 1995]. The brain is a highly complex, nonlinear and parallel information
processing system. The brain has the capability of organizing neurons to perform certain
tasks such as pattern recognition, speech recognition, pattern classification many rines

faster than the fastest digital computer in existence today.

The understanding of this neurobiology has allowed researchers to simulate neural hehavior.
This idea of simulating neural behavior dates back to the early 40’s when one of the abstract
models of a neuron was introduced by McCulloch and Pitts. Thev proposed a general
theory of information processing based on networks of binary switches called neurons.
These neurons were much simpler than their real biological counterparts. McCulloch and
Pitts demonstrated that even simple types of neural networks could in principle. compute

any arithmetic or logical function [Hecht-Nielsen 1989].

In 1949, Donalds Hebb proposed a learning rule that explained how a network of neurons
learned. He used the learning rule to build a qualitative explanation of some experimental
results. This bold step served to inspire many other researchers to pursue the same theme.

which further laid the ground work for the advent of neural networks [Hecht-Nielsen 1989).

Rosenblatt invented the perceptron and its learning algorithm in 1958. The perceptron
in its simplest form consists of two separate layers of neurons representing the input and
output layers. An iterative algorithm for constructing svnaptic coupling such that a specific
input pattern is transformed into the desired output pattern was introduced. However. the
perceptron had a serious shortcoming: it was only capable of solving classification problemns
that are linearly separable at the output layer [Fu 1994]. At the same time. Widrow and
Hoff developed an important variation of perceptron learning known as the Widrow-Hoff

rule [Fu 1994].
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In the late 60’s, Minsky and Papert caused research in NNs to be terminated witl their
results published‘ in their landmark book called Peceptron [Hecht-Nielsen 1989]. Minsky
and Papert pointed out the theoretical limitations of single layer neural network models.
They proved that the perceptron cannot implement the exclusive or (XOR) logical function.
The perceptron also had difficulty in learning other binary predicate functions. The implicit
conclusion from their book was that essentially all neural networks suffer the same fatal
flaw as the perceptron and they left the impression that neural network research was a dead
end [Hecht-Nielsen 1989]. Due to this pessimistic work, research on neural network lapsed

into an eclipse (a dark age for neural network research) for nearly two decades [Fu [994]

Despite this, a few faithful researchers still continued their work on NNs and produced
meaningful results during this period. For example, Anderson and Grossberg did impor-
tant work on the psychological models [Hecht-Nielsen 1989]. Kohonen invented the self

organising map (SOM), an associative memory model [Fu 1994].

In the early 80s, after two decades of obscurity, there was a renewed enthusiasin in the
neural network field. A notable researcher who increased the visibility and respect for NN
study is Hopfield. In 1982, Hopfield introduced the idea of energy minimization in phvsics

to neural networks [Hopfield 1982, Fu 1994].

In the mid 80s, Rumelhart, Hinton and Williams developed a learning algorithm for mul-
tilayer networks called the backpropagation algorithm (BP) [Wasserman 1989]. Thix algo-
rithm offered a powerful solution to training a multilaver neural network and hence connters
the implicit conclusion of Minsky and Papert. Their development of multilaver feedforward
networks was not restricted to linearly separable training sets. Along with a reasonably
effective training algorithm for NNs, Rumelhart ef al demonstrated that neural nerwork-
s can provide real solutions to practical problems [Rumelhart et al 1986. Masters 1993].
Problems such as the XOR and lack of a general method of training a multilaver neural

network, which had originally contributed to the demise of neural networks in the 60s.

were overcome using the backpropagation algorithm and other techniques which followed
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[Wasserman 1989]. It is interesting to note that Werbos had developed the idea of hack-

propagation in 1974 and also Parker in 1982 independently [Maren ¢t al 1990).

A spectacular success of backpropagation is demonstrated by the NETTALK system
developed by Sejnowski and Rosenberg in 1987. NETTALK is a svstem that con-
verts English text into highly intelligible speech [Wasserman 1989]. The backpropa-
gation algorithm is probably the most well known and widely used training algorith-
m [Maren et al 1990]. Much research effort was expended to improve backpropaga-
tion. The objective of this study is to further study methods to improve BI”. Ap-
proaches and specific research to improve the performance of NNs using BP include
finding optimal weight initialization [Wessels et al 1992], optimal learning rate wud wmo-
mentum [Yu et al 1997, Weir 1990], finding optimal architectures [Engelbrecht ef «f 1996.
Hassibi et al 1994, Le Cun 1990, Karnin 1990, Sietsma et al 1988], using second order opti-
mization techniques [Becker et al 1988], adaptive activation functions [Fletcher et al 1994,
Engelbrecht et al 1995, Zurada 1992a] and active learning [Roébel 1994a, Zliang 1994,
Engelbrecht et al 1999a].

A large number of neural networks are trained using the gradient descent optimization
method in the supervised mode. In order to train the network successfullv. the output of the
network is made to approach the desired output by continually reducing the error herween
the network’s output and the desired output. Training a NN is achieved by presenting the
network with information to learn, which consists of a fixed set of input attributes and
corresponding target outputs. The weights between the layers are then adjusted using an
optimization algorithm, usually the gradient descent optimization, the error is computed
and backpropagated from one layer to the previous layer. But presenting all the available
data to the network can be problematic, especially when there are redundant data in the
training set. The computational expense in terms of training time and the complexity can

be unnecessarily high if all the data are used for training.

Studies have shown that selecting the most informative data, rather than training on
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all the available data, improves, or at least maintains the generalization performance. as
well as reduces the training cost, and the data needed for training [Engelbrechit of al 1998.
Engelbrecht et al 1999a, Robel 1994a, Zhang 1994]. Active learning refers to such sclection
of a subset of the available training data containing the most informative patterns for
training. The concept of active learning is to efficiently select high utility patterns from
available data for training the network. There are two approaches to active learning.

namely incremental and selective learning.

This thesis focuses on the study of active learning as a method of improving performance
of NNs on function approximation and time series problems. Section 1.4 discusses the

objectives of this study.

1.4 Objective and Justification

The backpropagation learning algorithm played a vital role in the resurgence of interest in
neural networks. Eversince, a lot of research effort has been concentrated on finding wavs
to improve the performance of backpropagation learning. Research has concentrared on
finding the optimal size of networks, to make optimal use of training data. to optinvize

initial weights and learning parameters.

This thesis concentrates on methods to optimize the use of training data, i.c. active learning.
A new selective algorithm for time series problems is proposed and is used as one of the
selected active learning algorithms to be compared. A comparative studyv is carried out on
three additional active learning algorithms. While many research efforts have concentrated
on designing new active learning approaches, as well as other learning algorithms. an
elaborate comparison of these approaches is still lacking and hence the motivation for
this study. The four selected active learning algorithms are compared to cach otlier with

reference to their respective performances in terms of accuracy, computational complexity
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and convergence characteristics.

Accuracy of a learning algorithm is how well a function is approximated bv the uetwork
using the algorithm. The mean squared error (MSE) on the training set aud the test set
are used as the measure of accuracy. The training error is the error computed over all
the patterns or data presented to a network for training, while the generalization error
is the error computed over a set of patterns not used for training a network i.e. test set.
A low generalization and training error is an indication of good approximation of the
problem and a good performance of the network. However, a low training error and a large
generalization error is an indication that the training set is overfitted. A MSE value close
to zero shows a small error between the target and the output function. Computational
complexity measures the cost of training the network. The cost is measured by the munber
of calculations made during training. The number of patterns selected for training is (uite
important because of the proportional relationship between computational cost and the
number of patterns. The more patterns selected for training, the more calculations are
made during training and thus, a higher training cost. Based on these criteria, a critique

of the different algorithms as well as suggested future work are discussed.

The scope of this thesis is multilayer feedforward neural networks, focusing on function
approximation and time series problems. Gradient descent is used as optimization method
and sigmoid activation functions are used. A three layver neural network with one input

layer, one hidden layer, and one output layer is used.

1.5 Outline

The rest of this thesis is organized as follows:
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e Chapter 2 deals with learning in multilaver neural networks. A general introdwction
and a background study of multilayer neural networks are given. The architectures.
learning algorithms and weight updating methods are discussed. The difficulties
of training multilayer neural networks, as well as solutions to these dithculties are

discussed.

e Active learning is discussed in chapter 3. The concept and the basis for active learning
are examined. Results and simulations of the four selected active learning algorithms

are presented.

e Chapter 4 concludes this thesis with observations and suggestions for future research.
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Chapter 2

MULTILAYER NEURAL
NETWORK LEARNING

This chapter discusses learning in multilayer neural networks (MNNs). MNNs arc by far
the most common applications of artificial neural networks {ANNs). The chapter covers
fundamental issues such as the different types of MNNs and available learning algorithms.
Performance aspects of the different learning algorithms are discussed, as well as difhiculties

encountered in the learning process.

2.1 Introduction

An artificial neural network (ANN) is a model of the biological neural system of human
beings, modeling one of the most important features of the brain - the ability to learn. This

feature shows parallel to the intellectual development of human beings. As human beings,

13
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CHAPTER 2. MULTILAYER NEURAL NETWORK LEARNING 14

we learn how to write, read, understand speech, recognize and distinguish pattern - all hy
learning from examples. In the same way, ANNs are trained, rather than progranuned.
ANNSs develop solutions to problems unlike conventional data processing technigues which

require complex programming.

An artificial neural network consists of processing units, organized in lavers of units {also
referred to as artificial neurons). Training of an ANN is done using a training algorithm,
which is an adaptive way by which a network of processing units organizes themselves to
implement the desired behavior: When a network is presented with information to learn
(consisting of input attributes and corresponding desired output values). the connection
links in between, referred to as the weights, are adjusted to produce a response cousistent
to the desired output. This learning algorithm is a closed loop of presentation of patterns
or examples and of corrections to the network according to a learning rule. An optimization
algorithm such as gradient descent, conjugate gradient or second order derivatives tech-
niques, is used to adjust the weights of the network [Becker et al 1988]. There are different

classes of training algorithms and different topologies of artificial neural networks.

The rest of this chapter is organized as follows: The parallelism between Diological and
artificial neural networks is discussed in section 2.2 to show how ANNs were inspired from
the biological counterpart. A taxonomy of different neural network training algorithims is
given in section 2.3. Section 2.4 discusses the training of multilaver neural networks using
gradient descent. The learning equations are derived in this section. Section 2.5 discusses

problems of learning by gradient descent.

2.2 Biological Neural Networks

The basic building block of biological neural systems is the neuron. A neuron is a cell which

communicates information to and from the various parts of the human bodyv. Fipure 2.1
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shows a simplified representation of a neuron. A neuron consists of a cell body referred to
as soma, several spline-like extensions of the cell body referred to as dendrites and o single
nerve fiber referred to as an azon. An axon branches out from the soma and conneets to

many other neurons.

nucleus

dendries

Figure 2.1: A simplified representation of a biological neuron

Dendrites extend from the cell body to other neurons where the dendrites receive signals
at a connection point referred to as a synapse. These signals serve as inputs which are
conducted to the soma (cell body). In the nucleus, these received inputs are smnmed up.
If the cumulative excitation in the nucleus exceeds a threshold, the neuron fires. sending
signals down the axon to other neurons. While the biological neural svstem is extremely
complex, an ANN is an attempt at modeling the information processing capabilitics of the

biological neural system.
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An artificial neuron was designed to mimic simple characteristics of the hiological nenron.
An artificial neuron receives input signals from the environment. or from other artificial
neurons. These inputs signals are weighted with a value which models the svuaptic strength
of the corresponding connection. The weighted sum of the input signals is used to detevmine
the activation level of the neuron. The activation of an artificial neuron is modeled using
an activation (or transfer) function. The different activation functions are discussed in

section 2.3.2.

Figure 2.2 illustrates a general representation of an artificial neuron. 1In the rest of this

W

b
BN IEN

;
//

output = finet)

Y

net XW

Figure 2.2: An artificial neuron

thesis, the term neural network (NN) is used instead of artificial neural network (ANN).

Several key features of the processing elements of a neural network are suggested by the

properties of the biological neuron, namely that,
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e a processing unit (neuron) receives many signals from other neurons or the environ-

ment;
e these signals may be modified by a weight:

e the processing units sum the weighted inputs which is transformed to an output

signal using a squashing function to simulate firing;
e the neuron transmits this single output to other neurons. or to the envirommnent: and

e the output from a particular neuron may be transmitted to manyv other nenrons.

One important characteristic an ANN shares with biological neural svstemns (BNS) is fault
tolerance. A BNS is fault tolerant in two ways: Firstly, human beings are able to vecognize
many input signals that are somewhat different from any signals they have seen hefore.
Secondly, a BNS can tolerate damage to itself. Human beings are born with as manyv as
100 billion neurons. Most of these neurons are located in the brain and arc not replaced
when neurons die [Fausett 1994]. Despite the loss of these neurons. human heings still
continue to learn. Even in cases of traumatic neural loss. other neurons can sonietinies he
trained to take over the function of the damaged cells [Fausett 1994]. In a similar maunner.
ann ANN can be designed to be insensitive to small damage to the network and the network

can be retrained in cases of significant damage.

The number of layers, and the way in which neurons are interconnected. resulted i the
design of various ANN topologies. Section 2.3.1 survevs different ANN topologics and also

discusses the different classes of training available.

2.3 A Taxonomy Of Training

One of the interesting features of neural networks is their ability to learn. which inplies

that the NN has to be trained. How s this done?
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The objective of training a NN is to produce desired (or at least consistent) outpnt when
a set of inputs is applied to the network. A neural network is trained by applving an iuput
vector to neurons while adjusting the weights according to a predeteriined procedure in
order to bring the NN’s learned concept closer to the desired output. During training,
weights gradually converge to values such that each set of input patterus produces a close

approximation to the desired output patterns. There are two maiu training paradigius:

1. Supervised training, which is perhaps the most frequently used training method.
For training purposes, a training pattern is required whicli cousists of a vecror of
input values and a vector of associated target/desired output values. Patterns can be
provided by external teachers or by the system which containg the network. in which
case the network is self supervised. The network is usually trained by presenting
an input vector to the NN, the actual output of the NN is calculated and coupared
to the corresponding desired (target) output. Training patterns are grouped nto a
training set. Each patteru in the training set is presented to the uetwork. and the
prediction error used to adjust weights. Patterns in the training set are repeatedly
presented to the network until an acceptable error is achieved over the entire training

set.

Supervised learning is analogous to a lesson in school where the teacher applies the
correct answer for each problem. Different approaches to supervised learning have

been developed.

o Error correction learning which adjusts the connection weights hetween pro-
cessing units, in proportion to the difference between the desired and compured

values of each neuron in the output layer [Simpson 1990].

e Reinforcement learning which is similar to error-correction learning in that
weights are reinforced for properly performed actions and punished for poor-

ly performed actions [Simpson 1990].

The difference between error correction and reinforcement learning. is that. crror
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correction learning requires an error value for each output unit while reinforcement

learning requires only a state to describe the output laver's perforimance,

o

Unsupervised training, also referred to as self-organization learuing. requires no
target or desired outputs. Hence, no comparisou to predetenuined respouses are
needed. Training sets consist solely of input patterns. The task of the NN is ro learn
to group together patterns that are similar and also to find common threads in a
mass of data. The NN is supposed to discover statisticallv salient features of input
patterns and develop its own representation of these patterns. Unsupervised learning

is used for tasks such as clustering [Fausett. 1994].

For the purpose of this thesis, only supervised training is considered.

2.3.1 Topology of Neural Networks

In addition to the classes of neural network training algorithms, another distinguishing
characteristic of the different neural networks is topologv. Topology refers to the avchitec-

ture of neurons, including the interconnection scheme within the network.

Neurons are arranged in one or more than one laver. Neurons within the same layer usually
have the same activation function, and are fully connected to the neurons in the next laver.
A NN can consist of just a single layer of fully interconnected units, or can liave au input
and an output layer with zero or more hidden units, referred to as a multilaver neural
network (MLNN). Figure 2.3 illustrates a MLNN with a hidden layver. The figure lias three
units in the input layer with a single output unit. The input layer consists of units that
receive input signals from the environment and distributes the signals to the other lavers in
the network. The output laver returns signals to the environment. Hidden lavers are those
layers in between the input and output lavers. The hidden units provide nonlineariries for

the network.
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Figure 2.3: A multilayver neural network with a hidden laver

Each neuron produces an activation value (output signal} which usnallv is a function of
the weighted sum of the input signals. The activation value represents tlie activation level

for the neuron. Section 2.3.2 discusses activation functions that can be used 11 a NN,

2.3.2 Activation Functions

The basic operation of an artificial neuron (unit) involves summing the neuron’s weighted
input signal and to produce an output signal through application of an activation funcrion
to the net input signal. Activation functions map a neuron’s domain, which is the mput.
to a prespecified range - the output. Figure 2.2 illustrated the basic building block of a

NN. In figure 2.2 net is the weighted input signal. The output signal o is calculated as

o= f(net) (2.1)
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Various mathematical functions liave been used as activation functions. There are functions
that squashes the net input signal into a finite range. These functions can be discrete
functions, such as the ramp and step functions, or continuous functious. for example the
arctangent, sigmoid, sine or gaussian (radial basis). Linear functions cau also he nsed
as activation functions, in which case the input signal is not mapped into a finite rauge.

Figure 2.4 illustrates the different activation functions that can be used.

One of the major reasons why earlier work on NNs came to a halt. was that the learn-
ing rule could not be substantially improved for multilaver NNs using the discrere and
linear activation functions [Maren et al 1990]. Linear and discrete functions could only
solve problems that are linearly separable, and being linearly separable limits the NN to
problems (classification) in which the sets of points (corresponding to input values) can be
separated geometrically. Hence, the network used then (perceptron) could not solve the

XOR problem.

A new learning rule (backpropagation) was developed to handle linearlv inseparable fume-
tions. However, backpropagation requires continuous, monotonic increasing activation
functions, since these functions need to be differentiated when the gradient of the error

surface is calculated during the weight update process.

The sigmoid function, given in equation (2.2), is widely used as activation function aud
is a continuous function bounded in the range (0,1). The sigmoid function is cxpressed

mathematically as:
1

flnet) = PR
The sigmoid function is desirable because of its simple derivative. The sigmoid function has
the advantage of providing a form of automatic gain control. That is, for small signals (net
near zero), the slope is steep producing high gain in the magnitude of the network’s output
and as the magnitude of net increases, the gain in the magnitude of the network's output

decreases. In this way. large input signals can be accommodated by the network withont

saturation, while small signals are allowed to pass through without excessive atrennation.

| 1670 2252
10559—! 675
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Figure 2.4: Activation functions

2.3.3 Neural Network Types

Based on the different network topologies and training approaches, different tvpes of NNs

have been developed. A summary of the different NN types are presented below:

1. Recurrent neural network (RNIN): A RNN] also referred to as a feedback neural
network, employs feedback connections in order to learn temporal characteristics of
data presented for learning. The feedback connections thus allow the network to pro-
duce complex time varying outputs in response to simple static input [Carling 1992].
RNNs exhibit properties very similar to short term memory in human beings. There

are different types of RNNs, e.g. Jordan and Elman RNNs.

In Jordan RNNs, the state of the output layer is fed back to state units in the input

layer (see figure 2.5(a)), while the state of the hidden laver is copied into coutext
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(a) Jordan RNN (b) Ehnann RNN
Figure 2.5: Recurrent Neural Networks (RNNs)

units in the input layer for Elman RNNs (see figure 2.5(b)). Hybrid networks can
also be built by combining Jordan and Elman networks. Also, any number of previous
time steps can be incorporated by simply having additional state units (for Jordan

RNN) and context units (for Elman RNN) for each time step [Carling 1992].

2. Functional link neural network (FLNN): In a FLNN, the input layer is expanded
to a layer of functional units, which consists of higher order combinations of the input
units [Zurada 1992b, Hussain et al 1997]. Each functional unit is fullv connected
to the next layer. The addition of higher order combinations of inputs artificially
increases the dimension of the input space. Figure 2.6 shows an illustration of a

functional link neural network.

3. Product unit neural network (PUNN): PUNNs allow learning of higher-order
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output layer

hidden layer

funcdonal layer

Figure 2.6: A functional link neural network (FLNN)

input terms, by using product units instead of summation units to compute the net

signal to a neuron [Durbin et al 1989].

A weighted product
1
1=
=1

is therefore used instead of the usual weighted sum
1
> #ili
=1

where z; is the input signal to neuron j, v;; is the weight between neuron 7 in the
previous layer and unit j. Durbin and Rumelhart proposed two PUNN architectures

(refer to figure 2.7):

(a) In the first architecture, a set of product units is added to the current summation

units in the hidden layer (refer to figure 2.7(a)).

(b) In the second arrangement, layers of product units alternate with lavers of sum-

mation units (refer to figure 2.7(b))

The main reason for using PUNNSs, is to learn to represent generalized polvuomial
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(a) The first arrangement

(b) The second arrangement

Figure 2.7: Product Unit Neural Networks
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2.3.3 Neural Network Types

Based on the different network topologies and training approaches, different tvpes of NNs

sigmid
hperbolie

Hnear
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have been developed. A summary of the different NN types are presented bhelow:

1. Recurrent neural network (RNN): A RNN, also referred to as a feedback neural
network, employs feedback connections in order to learn temporal characteristics of
data presented for learning. The feedback connections thus allow the network to pro-
duce complex time varying outputs in response to simple static input [Carling 1992].
RNNSs exhibit properties very similar to short term memory in human beings. There

are different types of RNNs, e.g. Jordan and Elman RNNs.

In Jordan RNNs, the state of the output layer is fed back to state units in the input

layer (see figure 2.5(a)), while the state of the hidden laver is copied into coutext

o
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terms in the input and hence a better representation of data iu cases where high-
er order combinations of inputs are significant [Leerink et al 1995]. Adjusting the
weights is, however, computational expensive since derivatives of these product units

are complex due to an exponential term and the occurrence of complex mnnbers.

4. Feedforward neural network (FFNN): In a FFNN data flows strictly from the
input layer to the output layer. A FFNN has no memory and the output is solely
determined by the current input and weights values. A feedforward neural nctwork
consists of one or more layers of usually non-linear processing units (caun use linear
activation functions as well). The output of each laver serves as input to the next
layer. This thesis concentrates on FFNNs, and studies network learning using FFNNs

as well as problems associated with learning in FFNNs.

Apart from the neural network types mentioned above, there are other NN tvpes: for
example the single layer Hopfield NN (HNN) [Hopfield 1982, Fausett 1994]. aud cluster-
ing NNs, for example the self organizing map (SOM), which use unsupervised learning

[Simpson 1990].

Section 2.3.4 discusses optimization algorithms that can be used to adjust the weights of

feedforward neural networks.

2.3.4 Optimization Algorithms

Training a neural network involves finding optimal values for the weights of the network
through numerical optimization of a nonlinear objective function. The objective function
is usually the sum squared error, computed from the actual network output and the desired
output of the NN to be trained. Different optimization algorithms can be applied ro NN
learning. The algorithm chosen is usually based on the characteristics of the problem to

be solved.
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1. Gradient descent optimization is by far the most common technique used for
weight optimization. In training the network, a gradient descent is performed ou the
error function, which is a function of the weights of the neural network. Weight-
s are adjusted to move towards the negative gradient of the objective finction
[Masters 1993, Becker et al 1988]. Gradient optimization is discussed in more de-

tails in the next section.

2. Newton optimization uses a better approximation of the error function than the
gradient descent technique. The newton technique uses second derivatives and gradi-
ent information of the error function to determine the next step direction. This helps
in reducing the number of steps taken to reach a minimum, thus achieving faster
convergence. However, Newton optimization has the disadvantage of being compu-
tationally expensive because the inverse of the Hessian matrix needs to he caleulated
at each training step. Newton’s optimization should preferablv be used with ueural
networks with a few number of weights due to the cost of computing the inverse of

the Hessian matrix[Darken et al 1992, Becker et al 1988].

3. Pseudo newton optimization is an adaptation of Newton’s method. Pscudo new-
ton optimization computes an approximation to the inverse Hessian matrix. and is
therefore more computationally efficient than Newton’s optimization. Pseudo newton
optimization should be preferably used for neural networks with a moderate number

of weights due to the cost of approximating the Hessian matrix [Darken et af 1992].

4. Conjugate gradient optimization is used for large optimization problems. since
it does not require the computation and storage of the Hessian matrix. Conjugate
gradient uses only gradient information. The objective of conjugate gradient is to
minimize both the weight vector and a direction vector. Conjugate gradient is related
to gradient descent optimization using momentum, because the weight scarch in
conjugate gradient optimization combines the new gradient direction and the previous

gradient direction. Each step involves computing a conjugate direction followed by
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a line search, to get an approximate minimum in the conjugate direction. (‘onjugate
gradient optimization increases speed of training and the convergence of the network

[Becker et al 1988, Moller 1993].

5. Simulated Annealing can be used where the objective function (the crror func-
tion in neural network training) is not differentiable. Optimization is performed
by randomly perturbing the independent variables (inputs in this case) and keeping
track of the best (lowest error) function value for each randomized set of variables.
Simulated annealing can be combined together with other optimization algorithms
such as conjugate gradient, where simulated annealing is used to find a good ini-
tial weight vector, after which conjugate gradient is used to find the local minimum

[Masters 1993, Desai et al 1996].

2.3.5 Why Neural Networks?

Neural network applications emphasize areas where NNs appear to offer a more appro-
priate approach than traditional computing has. NNs can be used when data. on which

conclusions are to be based, is noisy.

When the influential or informative patterns are subtle or hidden, a neural network has
the ability to discover patterns which are not clear, or unknown, to the human researcher
or standard statistical methods. For example, to determine the credit worthiness of a loan
applicant, the information needed is hidden within data on the spending and the pavinent
history of loan applicants. NNs have shown to provide decisions superior to those made by
human beings [Masters 1993]. Neural networks have also been applied to data that exhibits
significant unpredictable nonlinearity [Masters 1993]. NNs adapt to predict future values
not based on strictly defined models, and offer possibilities for solving problems that require

pattern recognition, pattern mapping, dealing with noisy data. pattern classification and
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function approximation.

Specific areas where NNs have been applied include, amongst others:

e Neural networks have excelled in pattern recognition. NNs deal with the complex-
ities inherent in many applications such as recognizing patterns in speech. radar and
seismic readings. A real world application is the NETTALK, a neural network de-
signed by Sejnowski and Rosenberg to produce phonetic strings which in turn specify

pronunciation for written texts [Dayhoff 1990].

¢ NNs are used for pattern classification. Input patterns of a network are mapped
into one or more classes. That is, each pattern belongs to one of the classes
[Fausett 1994]. For example, NNs are used for medical diagnosis to identifv diseases
of the heart from electrocardiograms. NNs can also be used in plant classification to

determine crop types from satellite photographs [Masters 1993).

e NNs have also been used in adaptive control applications such as in robots and
automatic vehicles. Neural networks are used to control robots in the mdustry

[Dayhoff 1990].

e Neural networks are used in financial analysis problems such as credit assessment
and financial forecasting. NNs have also find application in optimization, scheduling
and routing problems. A practical application is in optimizing resources for airlines

[Dayhoff 1990}.

e NNs are used in function approximation problems. A NN can learn a given
function or time series problem when presented with training patterns representing
that function or time series. This application has found its usefulness in forecasting,

such as weather and in the stock exchange market.

e Neural networks are used for database mining. A major problem which surfaced

in information retrieval is that explicit information can easilv be retrieved while
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implicit information can not. Implicit information is distributed across the patterns
stored in the database and is difficult to extract by human experts. NNs arve one
of the most promising technologies available to extract such implicit information - a

process referred to as data mining. [Towell et al 1993, Fu 1994].

2.4 Gradient Descent Optimization

Multilayer neural networks (MLNNs) perform excellently in most applications. especially
in classification problems because of the inclusion of one or more hidden laver. Training
a MLNN is not as straight forward, nor as easy, as training a single layver network. This
section discusses training of MLNNs using gradient descent. Complete derivation®s of the

learning equations are given and problems with gradient descent optimization are discussed.

2.4.1 Introduction

NNs that are trained using GD are referred to as backpropagation neural networks
(BPNNs). In order to train the network successfully, the output of the network is made
to approach the desired output by continually reducing the error between the netrwork’s
output and the desired output. This is achieved by adjusting the weights between lavers:
by calculating the approximation error and backpropagating this error from the final laver
to the first layer. The weights are then adjusted in such a way to reduce the approxima-
tion error. The approximation error is minimized using the gradient descent optimmization

technique [Rogas 1996).

The gradient descent technique searches for the minimum of the error function in the weight
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space. The combination of weights which minimizes the error function is considered to he
the solution to the learning problemn. When an input pattern is presented to the network.
the network produces an output Oﬁf) for output unit o, which is different from the target

value ¢,

The objective of training is then to minimize the error arising from these two values over
the entire training set. The error function is defined as the sum squared error function
(SSE):

FE =

[ SR

P K 7
Y3 (8 o) (2.3)
p=1k=1

where P is the total number of patterns in the training set, K is the total muuber of

t(p)

output units, ¢, is the target value for kth output unit for pattern p, and o;‘f’" 1s the

output value for the k-th output unit for pattern p.

The gradient for the error function is computed and is used to adjust the weights. Weiglht

adjustment can be done in two ways:

e Batch training which adjusts and updates the weights after presenting a number
of training patterns. Weight changes are accumulated and applied once only. Batch

training is also referred to as offline training.

¢ Online Training where the weights are adjusted after each pattern presentation.
Online training has the advantage of not needing a separate memorv to store the

derivatives of patterns as is needed by the offline training.

Training using GD involves two passes:

1. The forward pass: During the forward phase, each input unit 2z

;T recelves an
input signal and distribute this signal to the hidden units y, for all j = 1.....J.
Each hidden unit then computes its activation and sends the activation signal to

each output unit at the output layer or to hidden units in the next hidden laver if
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there are more than one hidden layer. As there are no connections within a laver. all
the units in that layer can have their output computed in parallel, while the lavers
are dealt with in sequential order. The output layer provides the response of the

network for a given input pattern.

2. The backward pass: Each output unit compares its computed activation o}’ with
its target value tgf’ ) to determine the associated error for that pattern. The crror is
backpropagated to all units in the previous layver and is used to update the weights
between the output and hidden layvers. The accumulated error at each hidden unit
is then calculated, and backpropagated to adjust the weights between the input and
hidden layers. The error value associated with each processing unit reflects the error
of that unit. A larger error value indicates that a larger correction will be made to

the corresponding weights.

2.4.2 Gradient descent training algorithm

Certain aspects have to be addressed before commencing training of multilaver networks.
One important aspect is the activation function used in the hidden and output lavers.
GD requires the activation function to be continuous, differentiable and monotounically
increasing. For the purposes of this thesis the logistic (sigmoid) function is assmned.
Another issue is the data set: the output value of logistic function is always in the range
(0,1), thus requiring scaling of the desired output (target) before training to fit into this
range. Though it is not required to scale inputs, it is advisable to scale the inputs to
[-1,1] if logistic function is used. The input values will then lie within the active range of
the sigmoid function. The number of hidden layers also has to be considered. Although
gradient descent can be applied to any number of layers, it has been shown that a single

layer of hidden units is sufficient to approximate any function with many discontinuities to
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arbitrary precision provided that the activation function is non-linear [Krose ef af 1993].

This thesis assumes a single hidden layer.

The training algorithm is summarized below:

1. Weight initialization: Set all weights to small random values. Let vj; be the weight
between the j-th hidden unit and i-th input unit, and wy; the weight between the

k-th output unit and j-th hidden unit.

2. Calculate the activation of the units in the network, layer-byv-laver, starting from the

input layer.

e The activation leve] of each input is the value of the training pattern applied to

the input.

e The activation of each hidden and output unit is calculated as:

I
’!/ﬁp) = SO vz = ug) (2.4)
10=1 .
{p) !
Okp = fcgf)(zwkjyj — Wkp) (2.5)
=1
where yj(-p Jis the activation of the 7-th hidden unit, and 02’ Jis the activation

of the k-th output unit for pattern p. K is the total number of output units,
I is the total number of input units and .J is the total number of hidden
units. vjg is the weight connected to the bias unit in the input layer. while wy
is the weight connected to the bias unit in the hidden laver. The term bias is

discussed in the section 2.4.3.
3. Weight adjustment

e Start at the output units and recursively propagate error signals to the input

layer.
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e Calculate the weight adjustments:
The output oEf Vs compared with the corresponding target value r}j‘” over the

entire training set using the function

>

EW = %; P ()}f’))g (2.6)
to express the error in the network’s approximation of the target function.
Minimization of E® by GD requires the partial derivative of E®) with respect to
each weight in the network to be computed. The change in weight is proportional

to the corresponding derivative:

QEW® /
a’Uﬁ :
OE® »

Awgi{t+1) = —p + aAwy,;(t) {2.8)
a‘wkj

where: 7 is the learning rate which is in the step length in the negative gradient
direction. The value of 7 is usually between 0 and 1. The last term is a mo-
mentum term which is a function of the previous weight change. The concept
of momentum is discussed in the section 2.4.3.

For notational convenience, the (p) superscript is dropped in the remainder of
this section. The reader should keep in mind that the equations helow are for a

single pattern.

The partial derivative of E with respect to wy; is computed as

OFE  OF oy
= — (2.9)
8u}kj 50;(T (?wkj
The term gfc— in equation (2.9) is calculated as

OF o 1 & [
50—}: ‘é‘oz [‘2‘ Z (te — 0&)2]

k=1
= —(tk — o) (2.10)
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and
8()k :
= A1 — oLy, 211
awkj Oy, ( O, ) Yy { )

From equations (2.10) and (2.11)

ok
S —{tx — ox)or(1 = or)y; (2.12)
Wi
Therefore,
A’wkj == ’Q{tk - Ok)()k(l e Ok)yj (213)

The contribution of hidden umits to the output error is not readily known.
However, the error measure can be written as a function of the error contribution

over all output units.

OE _ - OF dox 0y,
8‘Uji k=1 6();C Byj 8’{)3'27
Jy; K OF 8oy
duji j=; 0ok By;

dy;
- J?. Z ~(tx — ox)or (1 — Ok)itlg"wk:j (2.14)
It k=)

The partial derivative 5% is computed as
E

dy; )
5{?.;: = y](l - y]‘)Zi (210)
Therefore,
K
Avi; =0 D (te — ox)or(l — ok)yjwisy; (1 — ;)2 (2.16)

k=1
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4. Update the weights:
wii(t+1) = wi(t) + Awgy(t + 1) (2.17)
vilt +1) = w(t) + Avye(t + 1) (2.18)

where t represents the current time step, Av;; and Awg; are the weight adjustnents

from equations (2.13) and (2.16).

5. Test for convergence, for example if an acceptable MSE has been reached. or the
maximum number of epochs has been exceeded. Go to step (2) and repeat until
convergence in terms of selected stopping criteria.

An iteration, which is referred to as an epoch. is one pass through the training set
which includes presenting training patterns, calculating the activation values. and

modifying the weights.
2.4.3 Additional Features To The Training Algorithm

Some features have been incorporated into the GD training algorithm to improve neural

network learning.

e Addition of neuron bias: The addition of a bias to the neural networks is to offset
the origin of the activation function. This allows more rapid convergence of the

training process [Masters 1993, Wasserman 1989, Fausett 1994]

i

By adding a bias
unit with a constant activation value of —1. The weight between the bias unit and a
unit in the next layer serves as bias to that unit. These bias weights are trained in

the same way as the other weights. Therefore, for hidden units
I

y; = FQ vz (2.19)

=0
and for output units

J
o = fO_ wisy; (2.20)
=0
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with zg = —1 and yo = —1. v;o is the weight to the bias unit z; in the input laver

and wyp is the weight to the bias unit yy in the hidden layer.

e Another prominent feature that can be added to improve the performance of the
network is to add a momentum term. The addition of a momentum term helps
to avoid oscillations in weight adjustments [Beale et al 1990]. Momentum is propor-
tional to the magnitude of previous weight changes. Weight changes are then in
the direction that is a combination of the current gradient and the previous gradi-
ent. Momentum allows the network to make reasonably large weight adjustinents,
as long as corrections are in the same direction for several patterns, while using a
smaller learning rate. Momentum also reduces the chances of getting stuck in a local
minimum [Wasserman 1989, Dayhoff 1990] - a problem of learning with the gradient
descent technique which is discussed in the next section. In effect, momentum tries to
find the global minimum of the error surface by repeatedly jumping in the downhill
direction. Momentum is typically implemented by multiplying a numeric parame-
ter between zero and one with the previous weight change (refer to equations (2.7)

and (2.8)).

2.5 Learning Difficulties With Gradient Descent

Optimization

Despite gradient descent’s usefulness in training multilaver neural networks. there
are difficulties associated with learning using gradient descent. Problems with GD

include network paralysis, local minima and slow convergence.

One of the problems that occurs when GD is used is network paralysis. Network paral-

ysis occurs when the weights are adjusted to very large values during training. Large
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Local Mimimum

Global Manimum

Figure 2.8: An illustration of local and global minimum

weights can force most of the units to operate at extreme values, in a region where
the derivative of the activation function is very small. Since the error backpropagated
is proportional to the derivative of the activation function (refer to equations (2.9)

and (2.14), the training process can come to a stand still [Wasserman 1989].

A prominent problem with training using GD is the occurrence of local 1minima
[Rumelhart et al 1986]. The network finds a combination of weights that that rep-
resents a local and not a global minimum. The gradient descent techunique follows
the slope of the error surface downward, constantly adjusting the weiglits towards
the minimum. The error surface could be highly complex: full of hills. vallevs. folds
and gullies in high dimensional space. The network may therefore, get trapped in
a local minimum (shallow valley), while there is a much deeper minimum nearby or

elsewhere. Figure 2.8 illustrates the concept of local minimum and global minimum.

There is also the problem of slow convergence: A multilayer neural network requires
many repeated presentations of the input patterns, for which the weights need to

be adjusted before the network is able to settle down into an optimal solution. The
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method of gradient descent could be verv slow to converge for a complex problem

due to the complexity of the error surface [Wasserman 1989).

Querfitting and underfitting are not unique problems of GD but general problem-
s of any learning or regression algorithm. Overfitting occurs when a network has
too many training units (an oversized architecture), causing the network to pro-
duce good results with the training data, but performing badly with data not
seen during training. Rather than learning the basic structure of the data. the
network learns the irrelevant details, for example noise in the training patterns
[Sarle 1995, Schittenkopf et al 1997]. A low training error therefore does not alwavs
imply a good performance of the network. A network can also be underfitted. which
occurs when the number of training units in a network is too few, i.e. an undersized
architecture. Thus the network fails to approximate the true form of the relationship

between inputs and targets.

2.5.1 Solutions to these learning difficulties

Many research efforts have been invested in the study of how to improve the learning
of multilayer neural networks. Approaches to improve performance range from finding
the optimal learning rate to finding the optimal network architecture. Some of the

most promising approaches are discussed below:

1. Adaptive learning rate and momentum factor: Rather than using a fixed
learning rate in training, the learning rate and momentum can be adjusted
dynamically during training [Weir 1990, Fausett 1994]. Decreased training time
and improved convergence have been achieved using adaptive learning rate and
momentum. A careful selection of the learning rate is often necessary to cnsure
smooth convergence. A large learning rate can cause network paralvsis and a

small learning rate causes slow convergence. An advantage of a large learning
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rate is to accelerate learning when a plateau is reached in the weight space. A
small learning rate, on the other hand, is helpful in slowing down learning when
a valley is approach in the search space [Yu et al 1997)].

A momentum factor is used to smooth error oscillation. Plaut ¢t al have shown
that low momentum is good to maintain movement along a particular direction
in the error surface, but should be increased when the learning procedure has
settled in a stable direction of movement [Plaut et al 1986 ]. The learniug rate
and momentum should therefore be varied according to the region where the
weight adjustment is. An optimal learning rate for a learning problemn can also

be found [Weir 1990]. However, the optimal learning rate is problem dependent.

. Random weight initialization: The choice of initial weight values influences
whether the network converges quickly or not [Fausett 1994]. The weight up-
date between two units depends on both the derivative of the objective {error)
function with respect to weights, as well as the activation value of units. Initial
weights must not be too large, to ensure that the initial input signal of the a
hidden unit or output unit does not fall in the region where the derivative of
the sigmoid function is very small. If the derivative is small, the net mput of
the hidden or the output unit will be close to zero and will cause extremely
slow learning due to small weight updates. Weights are initialized randoinly to
break symmetry [Rumelhart et ol 1986]. Syvminetry occurs when all weights are
initialized to the same value. Consequently, the hidden units are assigned iden-
tical error values. All weights in the network are then adjusted in an ideutical
manner, and thus prevent the error function from being reduced. Weiglits are

usually initialized randomly to small values [Rumelhart et al 198G].

. Optimal network architecture selection: The achievement of good perfor-
mance in a trained network is through careful selection of the network size. An

oversized network can lead to overfitting of the data but on the other hand, a
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small sized (simple) network can lead to underfitting [Le Cun 1990].

Optimal architecture selection is adaptive in the sense that adjusting ncural
network size is incorporated into the network training. Research into opti-
mal architecture selection is split into three areas: growing the network dur-
ing training by adding more parameters to the network [Hirose et al 1991,
Jutten et ol 1995}, pruning the network by removing redundant parameter-
s during training [Sietsma et al 1988, Engelbrecht et al 1996. Le Cun 1990]
or regularization through penalty terms added to the objective function

[Weigend et al 1991, Kamimura et af 1994, Karayiannis et al 1993].

— Network pruning involves training an oversized network and removing re-
dundant and irrelevant network parameters, including units and / or weight-
s. Starting with an oversized network rather than a small or undersized
network, the network is guaranteed to learn the desired input and output
mapping [Le Cun 1990]. Once a network has learn a solution to a prohlem,
the network can then be pruned to the minimum size [Sietsma et ol 1988].
Pruning aims at solving the problem of the overfitting as well as reducing
the computational cost of training and applying the network [Le Cun 1990].
Selecting the parameters to remove is the main focus of pruning method-
s and is based on different criteria proposed by different researchers. Le
Cun et ol introduced the concept of network pruning through their work
on optimal brain damage (OBD) [Le Cun 1990]. Le Cun et al cmpivical-
ly showed that by removing unimportant weights from a network. several
improvements could be achieved. These improvements include hetter gen-
eralization, fewer training examples and improved speed of learning. OOBD
reduces the size of a network by selectively deleting weights. The goal of
OBD is to find a set of parameters, that when deleted would cause the
least increase in the error function. To find such set of parameters. Le

Cun et al defined the saliency of parameter as the change in error caused
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by deleting that parameter. The parameter with least saliency is deleted.
The second derivative information is used to calculate this saliency and
therefore is computationally complex due to calculation of Hessian matrix.
Hassibi et al extended OBD to remove the required retraining after prun-
ing [Hassibi et al 1994]. Their approach, referred to as OBS. automatically
computes the adjustments needed to the remaining weights due to the prun-
ing of weights. Engelbrecht et al developed a pruning algorithm where the
sensitivity of the output of the network to small parameter perturbations is
used to identify irrelevant parameters [Engelbrecht et al 1996]. This algo-
rithm prunes both input and hidden layvers of feedforward neural networks.
Units that have the least statistical influence on all units in the succeed-
ing layers are pruned. An adaptation to this pruning algorithm was also
proposed by Engelbrecht et al [Engelbrecht et al 1999b]. A uew pruning
heuristic based on variance analysis of sensitivity information is used to
find irrelevant parameters.

Network growing involves growing the network during training. Hidden
units are added to the network when needed. Network growing reduces com-
putational cost and complexity of the trained network [Jutten et al 1995].
A reduction in computational cost is achieved because the optimal archi-
tecture needed to train a network is problem dependent. A small network
architechure have fewer weights than a large network and thus needs a few
weight adjustments. Once the optimal solution for a probleni is obtained,
the resulting network has an optimal architecture [Jutten et ol 1995]. Hi-
rose et al also used network growing to solve the problem of local minima
[Hirose et al 1991]. In their research, Hirose et ol added more hidden units
to a network being trained as soon as the network starts overfitting. The

error function was used to detect local minima.

Regularization, where all weights are penalized. Regularization
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is achieved by adding a penalty term to the objective function
[Weigend et al 1991]. In doing so, network complexity is penalized. The
effect is that redundant weights are driven to zero, while active weights re-
tain their importance [Kamimura et al 1994, Karnin 19901, Weight decay

is one form of regularization [Fu 1994].

4. Training with jitter: Jitter is artificial noise deliberately added to iuputs
during training. Training with jitter is a form of regularization. such as weight
decay. An advantage of jitter is that the NN can be brought out of a local
minimum [Beale et al 1990]. Injecting artificial noise into mputs during training
is very effective in improving generalization performance when small training
sets are used. Noise injected into inputs is assumed to have zero mean and a

small variance in order not to change the distribution of the given training data.

5. Adaptive learning function: Activation functions can be adapted and
trained just like the weights of a NN. This adaptation improves learning
in terms of faster convergence and more accurate results [Zurada 1992a.
Engelbrecht et al 1995, Fletcher et al 1994]. Zurada [Zurada 1992a) and Fletch-
er et al [Fletcher et al 1994] proposed a learning rule where the steepuess or
slope of the activation function used for learning is trained alougside with the
weights. The learning rule produced better solutions and a faster convergence
to problems when compared to conventional error backpropagation. Another
research on adaptive learning functions is the gamma learning proposed by En-
gelbrecht et al [Engelbrecht et al 1995]. Gamma learning extends the lamnda rule
of Zurada, by dynamically adjusting the output range of the sigmoid activation

function, thereby performing automatic scaling.

6. Active learning involves making optimal use of the training da-
ta.  Much research has been done in developing active learning mod-

els |[Engelbrecht et al 1998, Engelbrecht et al 1999a, Engelbrecht et al 1999¢.
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Zhang 1994, Robel 1994a, Plutowski et al 1993. Cohn et al 1996]. Active learn-
ing refers to the selection of a subset of the available training data dvnamically
during training, where the subset contains the most informative data. Active
learning has been found to save computational cost and reduce training time
[Cohn et al 1996, Plutowski et al 1993, Rébel 1994a, Engelbrecht et al 1999a.
This thesis presents a survey and comparison of active learning algorithins for
function approximation and time series problems. The next chapter claborates

on active learning.

2.6 CONCLUSION

This chapter discussed the training of the neural networks. A background intro-
duction into multilayer neural networks was given. The chapter focused on training

feedforward MLNNs using gradient descent optimization.

The learning equations were derived and the problems of training a NN using gradient

descent as well as the solutions to these problems were discussed.

The next chapter discusses one of the methods to improve learning with gradient

descent technique, i.e. active learning.
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Problem H Equation | Po-Pg-Py l Architecture

F1 (3.3) 600 -200-200 | 2-5-1
TS1 (3.4) 600-200-200 | 1-5-1
TS2 (3.5) 600-200-200 | 2-5-1
TS3 (3.6) 140-60-60 10-10-1
T54 600-200-200 | 2-5-1
TS5 600-200-200 | 2-7-1

Table 3.1: Summary of the functions and time series used

that

DN Dy =

DcNDg =

=2 s =

DN Dy =

Let Pc be the number of training patterns in D¢, Py the number of training patterns
in Dy and P; the number of patterns in test set Dg. Table 3.1 shows the size of
these sets for each problem. D¢ is the candidate training set from which training
patterns are selected. Dy contains data used to determine the generalization factor
during training. Dg contains data used to determine the generalization perforimance

of the network.

The performance of the active learning algorithms was tested on clean and noisy
data, as well as data containing outliers. Section 3.5.1 explains the experimental
procedure, including a discussion of the performance criteria used to compare the

learning algorithms. The results are compared in section 3.5.2.

The characteristics of the functions and time series used for experimentation are

discussed next. The following functions and time series were used:

1. Function F'1 is defined as (see figure 3.1(a))

1 . {
F1:F(z,2) = E(zf + 23)

.
(]
i

—’
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o

where z;, 29 ~ U(—1,1). All target values were scaled to the range [0.1.
Time series TS1 is a sine function defined as (see figure 3.1(h)),

TS1: F(z) = sin(212)el =% + ¢ (3.5)
where z ~ U(—1,1) and ( ~ N(0,0.1). Target values were scaled to the range
[0,1].

Time series TS2 is the henon-map function defined as (refer to figure 3.1(c¢)),

TSQIOt = Z

Zt

Il

1+0.32-0 + 1.4z (3.6)

where 21,2 ~ U(=1,1). The target values were scaled to the range [0.1].

. Time series TS3 is a difficult time series, having 10 input parameters of which

7 are irrelevant (see figure 3.2(c)).
TS53: Oy — Z
z = 03z.6—06z_4+05z_,+0327 4 —0.222 , +( (3.7)

for t = 1,---,10, where z4, 2,29 ~ U(—1,1) and {; ~ N(0,0.05). All target

values were scaled to the range [0,1].

. Time series TS4 is a convolution of two discrete functions with outliers. Fig-

ure 3.2(a) shows an illustration of this function.

. Time series TS5 is the sine function TS1 with 5% of the candidate training set

consisting of outliers (see figure 3.2(b)).

3.5.1 Experimental Procedure

In order to obtain statistically valid assertions in comparing experimental results of

the four learning algorithms, thirty simulations were performed for each problem.
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Online training was used for the active learning algorithms. The initial subset size
for incremental learning algorithms consisted of one pattern and a subselection size
of one pattern was used. Each simulations was executed for 2000 epochs. A learning
rate 0.1 and momentum 0.9 were used for all the approximation problems . Results
reported are averages over the 30 simulations together with 95% confidence intervals

as obtained from the t-distribution.

The selective learning algorithm was not applied to F1, since F1 is not a tine series
problem. The 7 value used 1n the subset selection criterion for AL was adjusted
for each problem using a trial and error approach. For TS3, a high 7 was used
(7 = 1000), a value of 100 was used for TS1, TS4 and TS5 while a value of 180) was
used for TS2 and F1.

Performance measures
To evaluate the performance of each learning algorithm, the following performance

criteria were used:

1. The mean squared error (MSE) was used as a measure of accuracy. The MSE
measures how well a function is approximated by the network, and is defined as

P «K ) (2
2op=1 Dok=1 (tgf) - in))

A e
15E 2K P

A MSE value close to zero shows a small error between the target and the
output function. The MSE over the three sets Dy, Dg and D¢ were comput-
ed. The MSE over D¢, denoted by Eg provides an unbiased estimate of the
generalization error since the patterns in Dg were not used for training.

2. Robel’s generalization factor p was used to measure overfitting etfects. The

generalization factor was computed as p = %‘C— where FE. is the MSE over

candidate training set Do and Ey is the MSE over the validation set Dy-. A

network overfits when the value of p increases substantially above 1.
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3. The computational complexity of learning algorithms was also used as perfor-
mance criterion. For the purpose of this thesis, computational cost is measured
as the number of calculations needed to train the network. Calculations include

subtraction, multiplication, addition and division.

At any epoch &, the cost Cy. of training a NN on a training set, is expressed as
Cfc = (CV -+ Cw) * Pr

where Cy is the cost of updating weights between input and hidden units and
Cw is the cost of updating weights between hidden and output units. 7 is the
number of patterns in the training subset Dp. For conventional backpropagation
with fixed set learning, Pr = Pr. Thus the cost of training Cyy is computed as

Cfst = (CV + CW) * Pc.

The costs of updating the weights are calculated as

CV == Cb * (]V\/)
Cw = Cy*(Nw)

where C, is the cost of updating a single weight between the input and hidden
layers, C, is the cost of updating a single weight between the hidden and output
layers. Cy is the total cost of updating the weight connections hetween the
input and the hidden layers, and Cy is the total cost of updating the weight
connections between the hidden and output layer. Ny is the total nummber of
connections between the input and hidden layers and Ny is the total number

of connections between the hidden and output layers.

The total number of connections Ny and Ny are expressed as

1\7‘/ = (] + 1) * (J + 1)
Ny = (J + 1) * ([’()

and
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C, =11

Therefore,

Cy = 1B3x({I+1)x(J+1)
Cw = 11x(J+1)xK (3.8)

The cost of training a network using any active learning algorithm includes C'...
the cost of selecting patterns for training and the cost of computing the subset
termination criterion. Therefore, at any epoch &, the cost of training a network

using SLA, SAILA, DPS and AL are:

Csr = Cre+Cyox Po
CDP = Cfc + Cdps * (PC - PT) + (05(1,,5 * PT)
Car, = Ci+Cqyx*(Pc— Pr)+(Cs, * Pr)

Csa = Cfc+Csai*(PC_PT)+(CS '*PT)

sat

For all the incremental learning algorithms, the subset selection criteria are
tested on the remaining patterns in the candidate set D which is equal to Pp—
Pr. Also, for incremental learning algorithms, an additional cost of selecting
pattern is incurred when a pattern is selected.

Csp, Csa, Car, and Cpp are the cost of training a network using SLA, SAILA.
AL and DPS respectively. Cy, = 15 is the cost of computing the subset selection
criteria for SLA, Cy,s = 11 is the cost of computing the subset selection criteria
for DPS, Cy = 4 is the cost of computing the subset selection criteria for AL

and C,,; = 18 is the cost of computing the subset selection criteria for SAILA.

Cg s = 25 Cs,, =2 and Cg,,, = 7 are the cost of selecting patterns into Dy for

sal

DPS, AL and SAILA respectively.

Therefore,

Csp = Cfc + 15P¢
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Cpp = Cfc*i-ll(Pc“"PT)"rQPT
Car = Cfa+4(P(f—PT)+2PT

Csa = CyoxPr+18(Pc— Pr)+7Pr (3.9)

From equation (3.9), the cost of training is directly proportional to the number
of patterns selected for training. The more patterns are selected for training. the
higher the computational cost. Initially, Pr for SLA is greater than the other
algorithms because DPS, AL and SAILA are incremental learning algorithm
and a small initial trainig set and subset size is used in the simulations. Thus,
Csp is expected to be greater than Cy4r, Cpps and Cgy initiallv. SAILA is
computationally more expensive in selection criteria than the other algorithms
because SAILA has more subset selection criteria to implement than the other

algorithms.

Section 3.5.2 illustrates the costs for the different algorithms.

3.5.2 Results

This section presents the results of the simulations carried out on the active learning

algorithms.
Training error

In order to compare the performance of the four active learning algorithms. the
MSE over the candidate set D¢ was computed for the simulations and the average
calculated. Tables (3.2) and ( 3.3) show the result over 2000 epochs for clean data

and data with noise and outliers.

For TS1, DPS had a very low error with the lowest variance which means that all
the errors of the simulations for DPS were all closer to the average error of 0.0003.
Although, SLA had a low error as well. However SLA had a large variance when

compared to DPS. AL had the largest error with a very large variance.



CHAPTER 3. ACTIVE LEARNING 71

DPS achieved the smallest error for TS2, having a small variance. For TS3. all the
algorithms had very low errors but SAILA had a high variance. DPS Lad the sinallest

error for F1 with a very small variance.

For TS4 and TS5, SLA achieved the smallest error with the lowest variance. AL Lad
the largest error for TS4 and TS5. This is because AL selected and trained on just
a single pattern for TS4 and an average of 4 patterns for T'S5. Thus AL. had high
errors for TS4 and TS5.

The training errors for all the problems with noise and outliers were larger ( x10?)
than for problems with clean data. DPS had the lowest average error for clean data

while SLA had the lowest error for noisy data.
Generalization error

To compare the generalization ability of the four active learning algorithms. the MSE
over the generalization set, E, was computed and the average over the 30 simulations
was plotted as a function of number of epochs. Figures 3.3 and 3.4 illustrates the

trend of the generalization errors for the entire training period.

DPS achieved a very low average error faster than the other algorithms for F1 (refer
to figure 3.3(a)). However, both SAILA and AL achieved a comparable result to
DPS at epoch 1000. From table 3.3, DPS had the lowest error with the a verv small
variance (5.07F — 05) which means all errors of the simulations are closer to the

average.

For TS1, SAILA initially had the highest generalization error but decreased to a low
level of error (see figure 3.3(b)). SLA initially had the lowest average error. which
can be explained by the fact that SLA used more patterns initially than the other
algorithms (refer to figure 3.7(b)). Although SLA and DPS had small errors. DPS
had the smallest variance and thus DPS achieved the smallest error. AL had the

largest error after 2000 epochs with a large confidence interval.

For TS2, DPS, AL and SLA achieved a very low average error before epoch 500.
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-1
[N]

Selective | Sensitivity

Function Robel Zhang | Learning | Analysis

TS1

Training Error | 0.00036 0.02172 | 0.00045 0.00346
+ + + +

0.00017 0.04186 | 0.00035 0.00712
Generalization (| 0.00039 0.02241 | 0.00047 0.0035

+ + + *
0.0002 0.04191 | 0.00040 0.00737
Used Patterns || 485.43 4.73 270.93 071.67
+ + + +
234.79 0.92 3.48 88.91
TS2
Training Error || 0.00014 0.00023 | 0.00029 0.00126
+ + + +

0.00011 0.00021 | 0.00038 0.00163
Generalization || 0.00012 0.00022 | 0.00029 0.00129

+ + + +
0.25FE — 05 | 0.00019 | 0.00037 0.00169
Used Patterns | 411.77 174.63 | 272.57 522.57
* + £ +
215.87 61.48 7.61 173.37
TS3
Training Error || 0.00039 0.00044 | 0.00050 0.00068
+ + + +

0.00086 0.00091 | 0.00085 0.00146
Generalization | 0.00275 0.00253 | 0.00302 0.00225

+ + + +

0.00155 0.00133 | 0.00138 0.00174
Used Patterns || 180 180 78.17 180

+ + + *+

0 0 1.53 0

Table 3.2: Comparison results over 2000 epochs for times series problems
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Selective | Sensitivity
Function Robel Zhang | Learning | Analysis
F1
Training Error || 0.000226 0.000412 0.000791
+ + +
5.07F — 05 | 0.000366 1 0.001852
Generalization || 0.000221 0.000392 0.000764
+ + +
5.2FE — 05 | 0.000347 0.001624
Used Patterns || 320.2 82.8 445.1333
+ + +
167.6698 32.37935 121.476
TS4
Training Error || 0.01141 0.19935 | 0.00516 0.02828
+ + |+ +
0.00573 0.03093 | 0.00393 0.09522
Generalization || 0.01077 0.19051 | 0.00478 0.02739
+ + + +
0.00534 0.02169 | 0.00349 0.09170
Used Patterns | 493.03 1 245.23 597.03
+ + + +
193.37 0 7.89 27.41
TS5
Training Error || 0.00683 0.10278 | 0.00155 00.005662
+ + + +
0.00468 0.08731 | 0.00158 0.00768
Generalization || 0.00714 0.09904 | 0.00158 0.00595
+ + + +
0.00489 0.08932 | 0.00142 0.00842
Used Patterns || 103.5 4.67 269.13 584
+ + + +
20.14 1.35 | 9.89 93.4

Table 3.3: Comparison results over 2000 epochs for problems F1 and times series with
noise and outliers
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SAILA was slower to achieve a comparable low error but SAILA had a low error by
the end of training. From the table 3.2, DPS had the smallest error with a verv small
variance after 2000 epochs, implying that all errors of the simulations are closer to

the average.

For TS3, the generalization error for all the algorithms increased as the nnmber of

epochs increased except SAILA (see figure 3.3(c)).

From the table 3.3, SLA had the lowest generalization errors for TS4 and TS5. While
AL had the largest error for TS4 and TS5. AL did not learn the functions (refer to
figure 3.4(a)). AL selected a few patterns for training, thus had little information

about the time series to be approximated and therefore AL had a bad generalization.

DPS had the lowest generalization errors for functions with clean data while SLA had
the lowest generalization errors for functions with noise and outliers. Although DPS
had better generalization with clean functions than SLA, DPS used more patterns
than SLA to achieve the low generalization error in all the problems. AL had very

large generalization errors for TS1, TS4 and TS5. This bad generalization can be
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attributed to the extremely small training set sizes used by AL which is an indication
of an inferior subset selection criterion. The subset selection criterion depends on
the number of connections in the network. Redundant or irrelevant weights in the
network will make the value of the performance level x verv large which can cause
the network to train on the current training subset Dp too long without selecting
additional patterns. Thus the network selects a few patterns, hence having insutticient
information to train the network. On the other hand, too few weights in the network
can make « small. Thus, the network selects patterns more often than are needed

for training.
Overfitting effects

The average generalization factor p for all the problems were computed over the 30
simulations. Figures 3.5 and 3.6 show the charts for the average generalization factors.
The average generalization factors were plotted as function of pattern presentations.

A pattern presentation represents one weight update.

TS3 was the only function for which all the algorithms except SAILA. overfitted.
SAILA had an average generalization factor of less than one, while the other algo-
rithms had high generalization factors. For the entire training period for TS4. AL
had a generalization factor constantly larger than 1, indicating that AL overfitted
TS4. For the other functions, the average generalization factor values Huctuated.
The flunctuation is due to the overfitting of a training subset until new patterns are
selected for training. When new patterns are selected, the overfitting of the training
subset is reduced. The average generalization factor for all the algorithms (except

TS3) were slightly over one, and indicating a mild case of overfitting.

Computational costs

The computational costs for AL, DPS, SLA and SAILA were computed using e-
quation (3.9) for specified epochs. The costs are plotted as a function of epochs as

illustrated in figures (3.9) and (3.10).
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SAILA has the most expensive and AL has the least expensive subset selection cri-
teria. However, AL performed badly (refer to tables 3.2 and 3.3). For all the ap-
proximation problems, DPS, AL and SAILA had increasing costs because thev are
incremental learning algorithms. More patterns were used as training progressed

(refer to figures (3.7) and (3.8)).

For F1 and TS2, AL had the smallest cost (see figure 3.9(a) and (b)). Thesc small
costs can be attributed to the cheap cost of the subset selection criterion as well as

the fact that AL used the smallest number of patterns for training.

Despite the fact that AL has the cheapest subset selection criterion and a simple
selection criterion, AL had the highest cost for TS3. This is because AL selected all
the patterns in D¢ within a short training interval (by epoch 400). SLA initiallv had
the highest cost (first 350 epochs). However, at epoch 1000, the cost was half of the

other algorithms.

For all the functions approximated, SLA initially had a higher training cost than the

other algorithms - almost four times the training cost of other algorithms. because
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SLA is a selective approach (see figure (3.9) and (3.10)).

From tables (3.2) and (3.2), SLA used less number of patterns after 2000 epochs

than the other algorithms, thus SLA was computationally less expensive.

Convergence

The convergence performance of the four active learning algorithms are compared in
figures 3.11 and 3.12. These figures plot the percentage of simulations that rcached

specific generalization errors.

For F1, DPS had the best convergence, all the simulations converged to a very low
error of 0.0004. AL also had a good convergence, more than half of the simulations

converged to 0.0004 (refer to figure 3.11(a)).

None of AL’s simulations converged to the specified error level for TS2. SLA and DPS
achieved good convergence for T'S2, as more than half of their simulations couverged

to a low error (refer to figure 3.11(b)).

For TS2, DPS had the best generalization, most of all the simulations converged to a
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very low error (0.0002). SLA and AL also had good convergence (see figure 3.11(c)).

While the other algorithms had few converged simulations at 0.002. almost hLalf of

SAILA’s simulations converged to this error (refer 3.11(d)).

AL had bad generalization for TS4 and TS5. None of AL’s simulations couverged to

the specified error levels for TS4 while only a few converged for TS5.

SLA had the best generalization for TS4, with all the simulations converging to a
low error of 0.004 (refer to figure 3.12(a)). SAILA had a good convergence with 40%
of the simulations converging to this error of 0.004. Only a few of DPS’s simulation

and none of AL’s simulation converged at this point.

SLA also had the best generalization for TS5. Almost all the simulations (74%)
converged to a error level of 0.005 while only a few of the other algorithis simulations

converged to this error level (see figure 3.12(b)).

SLA had the best convergence for data with outliers and noise. DPS had the best con-

vergence for clean data, although SLA had good convergence for clean data. SAILA
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had a good convergence for TS3. For all the sine functions (TS1. TS4 and TS5). AL
had bad convergence, none of its simulations converged to the specified error level-
s. The errors specified for data with outliers and noise were larger than the errors
specified for clean data. This is because the performance of all the algorithis were

degraded in the presence of noise and outliers.

3.6 Conclusion

The objectives of the chapter were to present a new learning algorithm (SLA) aud also
to compare four active learning algorithms with respect to their accuracy, convergence
and the complexity on both clean and noisy data as well as overfitting effects for the

problems were also examined.

The results presented showed that AL was unstable, producing good results for the
henon-map and F1 only. The bad training behavior can be attributed to the extreme-
ly small training set sizes used by AL, which is an indication of an inferior subset

selection trigger.

DPS and SLA performed very similar on the clean data, while SLA outperformed all
the other algorithms on the noisy and outliers training data. The sensitivitv analvsis
approach (SAILA) performed well under the occurrence of outliers and noisy time
series, and very well for the complex function TS3. SAILA performed hetter than
AL in TS1, TS4 and TS5, but worse than SLA and DPS. SAILA is computationally

more expensive, requiring larger training subsets than the other algorithms.

As is expected, the performance of the error selection approaches degraded nnder
the occurrence of outliers and noise. The degradation is due to the early selection of

outliers, since outliers result in the largest prediction errors.

The comparison above showed that SLA had the best generalization performance. and

lowest complexity. The selective learning approach (SLA) produced better accuracy
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than the other approaches, and showed to be more robust in the occurrence of outliers

and noise.
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Chapter 3

ACTIVE LEARNING

One of the goals when designing and training a neural network is to maximize or to
improve generalization, which is, the ability to give accurate response to data that
the NN has not seen as part of the training process. In conventional backpropagation
learning, all the available data are presented to the network for training. Learning on
all the training data can be quite problematic especially when there are redundant
data in the training set. The computational cost of training the network in terius of
training time can become high, especially if these redundant data arc included in the

training set.

Studies have shown that selecting the most informative data for training rather
than presenting all the available data to the network improves, or at least main-
tains the generalization performance. Selecting data for training also reduces
training time and the data needed for training [Zhang 1994, Plutowski et «l 1993.
Engelbrecht et al 1998, Engelbrecht et al 1999a, Robel 1994a).

This chapter discusses the concept and advantages of using of active learning. The
objective of this chapter is to present a new selective learning algorithm aud also
to compare this new algorithm with three additional active learning algorithins with

reference to their respective generalization performance, overfitting characteristics.
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computational complexity and convergence characteristics.

3.1 Introduction

There have been various research efforts on improving the learning of
BPNNs.  These research efforts include finding optimal weight initialization
[Rumelhart et af 1986], optimal learning rate and momentum [Plaut et al 1986 |
Weir 1990, Yu ef ol 1997]. finding the optimal architectures [Le Cun 1990.
Karnin 1990, Hirose et al 1991, Pelillo et al 1993, Engelbrecht et al 1996]. usiug sec-
ond order optimization techniques [Becker et al 1988], adaptive activation func-
tions [Zurada 1992a, Engelbrecht et al 1995, Fletcher et al 1998] and active learn-
ing [Zhang 1994, Engelbrecht et al 1999a, Engelbrecht et al 1998, Robel 1994a). This
chapter concentrates on active learning as an approach to improve performance of
NNs. Active learning is a technique in which patterns that have the highest influence
on weight changes are dynamically selected by the NN learner from a candidate set of
training patterns. The network utilizes current attained knowledge about the tasks
to be learned as encapsulated in the current weights to select the most informative

training patterns. There are two main approaches to active learning:

~ Incremental learning, where patterns are selected and removed from a can-
didate training set. The selected patterns are added or injected into the actual
training set. The effect is that the actual training set grows as training pro-

gresses, while the candidate training set is pruned.

— Selective learning, where a subset of the training patterns that satisfv a
selection criterion is selected from a candidate training set and used for training.
Unlike the incremental learning, the candidate training set is not pruncd. At

each pattern selection interval, all the patterns in the candidate set have a
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chance to be selected. The candidate set remain fixed while the size of the

actual training set varies from time to time.

A brief outline of this chapter is as follows: Section 3.2 discusses the concept of
active learning and section 3.3 presents a general algorithm for active learning. A
new selective learning strategy for time series problems is presented and compared
with three other active learning algorithms in section 3.4. Section 3.5 presents results
obtained from the different learning algorithms. Finally, section 3.6 highlights the

conclusions, comments and observations.

3.2 Concept of Active Learning

Active learning has emerged as an efficient alternative to improve the performance of
multilayer layer NNs. Active learning refers to the selection of a subset of the avail-
able training data dynamically during training, where the subset contains the most
informative data. The objective of active learning algorithms is to identify. and train
on the most informative patterns in a candidate training set. Active learning effi-
ciently selects optimal training patterns from available training patterns for training
the network. Efficiency refers to the complexity of the pattern selection meclianism
which should be minimized. Optimal patterns are patterns that have useful infor-
mation about the current state of the network and such patterns bring the network
closer to the target function. The network plays an active role in data selection.
Rather than being a passive learner, the network utilizes information hased on its

current state to gather useful information for further training.

Active learning addresses two fundamental questions:

— Which of the patterns should be selected for training from the candidate set?
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— When should an additional set of patterns be selected?

Answers to these questions have resulted in the design of different approach-
es to active learning. These approaches mainly use the error in prediction as
selection criterion [Cohn 1994, Rébel 1994a, Zhang 1994, Plutowski et al 1993] or
changes in outputs due to perturbations in input parameters [Engelbrecht ef al 1998.
Engelbrecht et al 1999a, Engelbrecht et al 1999c]. Pattern selection has been tle fo-
cus of many research. Infact, active learning has been called various names such as
query learning, incremental learning, selective learning and dvnamic pattern selec-
tion. All these terms refer to the same basic concept of selecting a subset, of the most
informative patterns from the candidate training set. Active learning algorithins aim

at:
— Improving, or at least maintaining the generalization ability of the network.

— Reducing the cost of training the network in terms of the number of patterns
needed for training. But selecting these patterns should not exceed the gain in

computational cost reduction achieved by reducing the training set size.

— Improving the speed of convergence. Convergence is the ability to achieve cer-
tain generalization levels. Active learning aims at increasing the probability
that the network will converge to given generalization levels, aud doing so in as

less time as possible.

Section 3.2.1 presents an overview of different approaches to active learning.

3.2.1 Overview on Active Learning

Plutowski and White used error in prediction as their selection «criterion
[Plutowski et al 1993]. The integrated squared bias (ISB) is used as the error ter-

m. Patterns that maximize the decrement in the ISB of the network resulting from
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adding such patterns to the training subset are selected for training. Additional pat-
terns are selected when the training error on the current training subset is sufficiently
small. While Plutowski and White used the bias term of the MSE as the sclection
criterion, Cohn used the variance term of the MSE [Cohn 1994]. In this casc, the
most informative patterns are those that maximize the change in variance of the net-
work resulting from adding these patterns to the network. The learner (NN) selects
an additional training pattern at each time step, or epoch. In Mackay’s algorithm,
information theory was used to select patterns for training [Mackay 1992]. However,
Mackay applied his active algorithm within bayesian framework. Fukumizu select-
ed patterns that minimize the estimation error i.e. the expected value of the MSE
[Fukumizu 1996] for training. Sung et al also used the error function as their selec-
tion criterion, but they considered both the bias and variance term [Sung et al 1996].
Patterns that minimize the expected misfit, i.e. the total output uncertainty between
the target and the estimated target function are selected for training. Seung et al
developed an active learning algorithm which they called Query by Committee ((QB-
S) [Seung et al 1992]. In QBC, the degree of disagreement among the connuittee of
learners (students) serves as an estimate of information value. The querv that has
the maximum disagreement among the committee of learners is cliosen for training.
That is, QBC selects an input classified as positive by half of the committee and neg-
ative by the other half. Freund et al presented a more complete and general analysis
of QBC using the batch training algorithm [Freund et al 1997]. Hara et al applied an
active learning algorithm to pattern classification problems [Hara et al 1988]. Pat-
terns selected for training are those patterns that are close to the bouudary of the
pattern classes. Cohn et al combined active learning with statistical models (gaussian
and weighted regression) [Cohn et al 1996]. Patterns that give the lowest expected

model variance are selected for training.
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Similar to Plutowski et al, Sung and Cohn, Zhang used the error in prediction as selec-
tion criterion [Zhang 1994]. Patterns whose addition cause the maximum approxima-
tion error to the network, are selected for training. However, the relative value rather
than the absolute value of the error term is used. Robel used the same error criterion
as Zhang in selecting the most informative patterns for training{Robel 1994a]. Robel
and Zhangs’ algorithms only differ in the criterion that triggers the subset selection.
Training on the current subset continues until some criteria are triggered (refer to

section 3.4).

The change in outputs due to perturbations in input parameters can also used
as selection criterion. Engelbrecht proposed an active learning algorithm where
patterns with the highest influence on the outputs are selected for training
[Engelbrecht et al 1999a]. First order derivatives of the output units with respect
to the input units are used to quantify the influence a pattern has on the outputs.
Another active learning algorithm that uses output perturbation as selection criteri-
on is the selective learning algorithm (SLA) [Engelbrecht et al 1999¢]. developed in
this thesis. Patterns that influence the output most are selected more for training
than patterns that have little influence on the output. The influence on the output,
is reflected in the next-time-change in output values. Thus. patterns that have the
large next-time-change in output values are selected more into the current training

set. than patterns with small-time-change in output.

This thesis selects four active learning algorithms based on their selection criteria
for comparison. Two of these algorithms uses the error in prediction as selection
criterion while the other two algorithms uses changes in output as their selection

criteria. The algorithms selected are:

1. error based criterion

— Accelerated learning using active learning, developed by Zhang
[Zhang 1994].
— Dynamic pattern selection (DPS), developed by Rébel [Rébel 1994a).
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2. output based criterion

— Sensitivity analysis incremental learning (SAILA), developed by Engel-
brecht [Engelbrecht et al 1999a].

— Selective learning algorithm (SLA), developed in this thesis.

While Cohn, Plutowski et al and Sung et al based their selection criteria on informa-
tion theory, Zhang has shown that their approach is similar to selection of patterns
using the prediction error as selection criterion [Zhang 1994]. Selection of patterns
using the largest error is computationally less expensive than using information the-
oretic approaches. For these reasons, this thesis chose the algorithms developed by
Rébel [Robel 1994a] and Zhang [Zhang 1994] in its comparison instead of the infor-
mation theoretic approach. The next section presents a general algorithm for active

learning.

3.3 General Algorithm for Active Learning

This section presents a general algorithm for active learning and then discusses the
algorithm design issues. Let Dy be the current training set, which has all the patterns
selected for training, D¢ be the candidate training set, which contains all the available
patterns and Dy be the validation set, which contains patterns not used as part of

training and is used to test for overfitting.

A general algorithm for active learning is summarized below:

1. Initialize weights randomly as in conventional back propagation.
2. Select the most informative pattern(s) into training set Dy from D¢

— for incremental learning, add the selected pattern(s) into Dy and remove

them from Dg,



4

ﬂ UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
Qe

YUNIBESITHI YA PRETORIA

foig ¢
o

CHAPTER 3. ACTIVE LEARNING

— for selective learning, select patterns into Dr.
3. Train the network for a training interval (i.e. adjust the weights) nusing Dy

4. If the network has reached the desired accuracy or has reached the maximumn

number of epochs, stop training.

5. If a subset selection criteria triggers, repeat from step (2)

otherwise repeat from step (3).

A training interval maybe one epoch for online training or € epochs if hatch training

method is used.

Design issues in active learning algorithm

When designing and implementing an active learning algorithm, some issues have to
be taken into consideration. One of these design issues is the number of patterns
to select at each selection interval, referred to as the subset size. Although there
is no heuristic to determine the size of the training subset. there are guidelines.
For incremental learning, it is advisable to train with a small subset size hecause
the subset grows during training. Selecting a small subset means patterus will be
selected more often and thus increase the complexity of the network due to the cost of
selecting the patterns. But, selecting a large number of patterns during training may
defeat the aim of active learning, which is to reduce the number of patterus needed
for training. Therefore, good selection criteria are desirable in selecting patterns
that have useful information about the network. For selective learning. the subset
size depends on the selection criteria. Therefore, selection criteria are important to

ensure that the most informative patterns are selected for training.

Another important issue to consider is when to select additional patterns. Oune or
more subsetselection criteria can be used. These subsetselection criteria should ensure
that the NN does not train too long on a training subset because the network may
overfit the training subset. The network should also train long enough to acquire

maximum information on the current training subset. Different algoritluns have
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different subsetselection criteria. Patterns can be selected at each training epoch
[Cohn 1994, Engelbrecht et al 1999¢c]. This criterion can lLave high computational
cost because the subset selection function is applied at each epoch. An alternative
is to select at each £ epochs. A reduction in computational cost will he achieved
since the number of pattern selections is fewer. However, if the selection interval £ is
too large, overfitting of the training subset may occur. Patterns can also be selected
using the error on the training and the validation set. New patterns are selected into
D7 as soon as the error on the training or validation set reduces to a specified level

[Zhang 1994, Engelbrecht et al 1999a.

Another criterion is to select new patterns as soon as the network overfits the training
subset [Engelbrecht et al 1999a, Robel 1994a]. Different algorithms use a criterion
or combination of criteria to decide when to select additional patterns. The differ-
ent subsetselection criteria used for the four selected active learning algorithins are

discussed in more details in section 3.4.

3.4 A Comparative Study of Four Selected Active

Learning Algorithms

The objective of this thesis is to compare selected active learning algorithms with
reference to generalization performance and computational complexity. For this pur-
pose, a new selective learning algorithm for time series problems developed in this
thesis, sensitivity analysis for incremental learning [Engelbrecht et al 1999a]. dvna-
mic pattern selection of Rébel [Robel 1994a] and accelerated learning using active

example selection of Zhang [Zhang 1994|, are compared with one another. This sec-

tion presents an overview and critique of these algorithms.
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3.4.1 A New Selective Learning Algorithm

Kohara presented an algorithm that performs pre-processing of the training set for
time series problems [Kohara 1995]. Kohara’s algorithm divides the training set
into two sets. The one set contains all training patterns that reflect large-next-time
changes in the time series, while the other contains patterns that reflect suall-next-
time changes. Kohara’s algorithm assumes one output unit and also assumed a time
ordering among the training patterns. Kohara uses target values to determine next-
time changes. The next-time-change Tgf ! for output k is defined as

Tgﬂ) — éipﬂ) — tip)
The two training sets remain fixed during training. During training, patterns are
more frequently selected from the large-next-time changes set than from the small-
next-time changes set. Therefore, Kohara’s algorithm is not considered as an ac-
tive learning algorithm, because the neural network plavs no role in the selection
of patterns. Kohara’s approach is rather referred to as a training set manipulation

technique.

A new output based selective learning algorithm is proposed in this thesis based on
Kohara’s algorithm. Instead of using the target values to construct the two training
subsets, the actual outputs of the network are used. Therefore, next-time-change

") for output & is defined as

P = pr T ) (3.1)

\Ifﬁf’ ) can only be computed for the first Po — 1 patterns, where Po is the unmber
of patterns in the candidate training set D¢. The division of the original training
set into large- and small-next-time changes sets is done after each selection interval,

which is one epoch.
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More patterns (80%) from the large-next-time changes set are randomly sclected
than from the small-next-time changes (20%) into the current training subsct Dy
In doing this, the two subsets reflect the current knowledge of the learner. in that
the set reflects what the learner perceives as large and small changes. More patterns
are selected from the large-next-day changes set, since these patterns contain the
most information about the characteristics of the time series. A large change in the
output values, causes a large change in the the weights and a large change in weights
means more information is gained in bringing the network’s output closer to the

target function (refer to weight update equations (2.13) and (2.16)).

Active learning is introduced by calculating the next-time-changes based on rhe ac-
tual output of the network and not on the target output values. At each epoch. the
current training subset is discarded and a new subset Dy is selected with training

patterns. The training set Dy is then used for training.

The algorithm for SLA is summarized below:

1. Initialize weights, learning rate and momentum.
2. Calculate the output og’ ) of the network for each pattern p. Then. calculate
next-time-changes as

\Ifim = 02})4»1) e Oi}:‘) s Vp € DC

3. Separate patterns into a small-time and a large-time-change set:

— calculate the average next-time-changes:

N

V="p7

— divide the candidate patterns into the two training subsets:
Add all patterns p for which \1153’ ) > T to the large-change set

and all other patterns into the small-change set.

4. Select the actual training set Dy to consist of
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— 80% of the large-change set, randomly selected
— 20% of the small-change set, randomly selected.
5. Train the network for one epoch using Dr

6. Repeat steps (2 - 5) until the number of epochs exceeds the maximum nmunber

of epochs allowed.

The subset size depends mainly on the size of the large-next-time changes set. The
performance of the proposed algorithm is compared to the other algorithins aud the

results are discussed in the section 3.5

3.4.2 Sensitivity Analysis Incremental Learning Algorithm

The second algorithm to be studied is an incremental learning approach to active
learning which uses an output based selection criterion. referred to as sensitivity
analysis incremental learning algorithm (SAILA). SAILA is developed by Engelbrecht,
[Engelbrecht et al 1999a]. In SAILA, the most informative patterns are perceived as
those patterns that maximally influence the output of the NN in the presence of simall
input perturbations. First order derivatives of the output units with respect to the
input units are used to compute the influence the pattern has on the output value
of the function approximated by the network. Patterns with the highest sensitivity
cause the largest change in weights (large change in weights achieve maximum gain

in bringing the approximation closer to the true functionj. These patterns lie in

i’(}/,
oz

is calendated

the region of the peaks’ derivatives. Thus, the partial derivatives
for each input and output for each pattern. Training on such patterns vield Dhetter
generalization and faster convergence [Engelbrecht et al 1999a]. The sensitivity of

each pattern is determined by computing the informativeness of the pattern. as

o = max{S((f,g (3.

L
(A
S
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where

(3.3)

The larger the value of ®, the more informative that pattern is. Patteru(s) with

the largest absolute value of ®® are selected into Dy.

SAILA continues training on the training subset to achieve maximum gain from the
patterns before selecting additional patterns. At the same time, the network must
not be allowed to memorize the training subset. The network should therefore not
spend too much time on the current training set. SAILA uses the following subset

selection criteria:

1. The algorithm limits the number of training epochs on the current subset. The
criterion ensures that the NN does not train indefinitely on the subset. Eungel-

brecht limited the number to 100 in his implementation.

2. If the error on Dp, or the validation set Dy, decreases sufficientlv, a new subset
is selected for training. The criterion ensures that the NN achieves sufficient
gain on the current training subset before selecting additional patterns. In
Engelbrecht’s implementation, an additional pattern is selected into Dy as soon

as the error on the Dy or Dy decreases by 80%.

3. A new subset is also selected if the average decrease in error on Dy aud Dy
since training started on the current subset is small. The criterion will prevent

the learner from training on Dy with achieving too little gain.

4. If the error £y on the validation set increases too much, a new subset is selected.
The subset selection criterion prevents the NN from memorizing the current
training subset by triggering a new subset selection as sooun as overfitting of Dy

is observed.

The sensitivity analysis incremental learning algorithm is summarized below

[Engelbrecht et al 1999a:
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1. Initialize weights, momentum and learning rate. Initialize the subset size. Pg .
i.e the number of patterns selected from the candidate set Dq. Coustruct the

initial training subset Dg C D¢. Let Dy ¢ Dg, be the current training set.
2. Repeat
— Repeat
Train the NN on training set Dy
until a termination criterion on Dy is triggered (as discussed above).
— Compute the new training subset Dg,
*x For each p € D¢, compute the sensitivity matrix S(ZI L e for sigmoid ac-

tivation functions:

S

oz&z—f Z kfp)U_jz

* Compute the output sensitivity vector S(p ) for each p € D¢

b= lSl

+ Compute the informativeness ®) of each pattern p € D¢ using

p) — (p)
P = max {|S;%[}

* Find the subset Dg, of the Ps, most informative patterns as

Dg, + {p € Dc|0® = qzlzl%k;jc{q)i?};‘v’q € Deynot yet sclected)

where Pe is the number of patterns remaining in De. Theu. let Dy

DT U DSS and DC ham DC‘ - DSS

until convergence is reached.

In Engelbrecht’s implementation, SAILA started training with one pattern. and s-

elects only one new pattern at each subsetselection interval. Although the subset
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selection criteria implemented by SAILA considers overfitting effect and generaliza-
tion of the network, the cost of selecting patterns in SAILA could be high. Because
SAILA has more criteria to implement when selecting new patterns for training. Re-
sults of SAILA when applied to function approximation and time series problems are

presented in the section 3.5.

3.4.3 Dynamic Pattern Selection

The third active learning algorithm studied is Robel’s dvnamic pattern sclection
technique (DPS). Unlike SAILA and SLA, DPS uses the error indication as selection
criterion. DPS is an example of incremental learning , where informativeness ol eacl
pattern is measured using the prediction error. The prediction error is computed as
(tgf ) _ ogf ))2. Patterns with the largest prediction error are the most informative and

are selected for training.

Training continues on the current training subset until the subset starts to overfit.
To measure overfitting, Robel defined the generalization factor p as

Ey

p= (Er + E¢)

where Eyv, Fr and E¢ are the error functions on the validation set. training subset
and the candidate training set respectively. By requiring that p < 1.0. overfitting is
prevented. A value of p greater than one means that the validation error is larger
than the training the training error, hence bad generalization. New patterus are
therefore selected into Dy when p grows bevond one. However, Robel discovered
that each pattern selected for training decreases the value of p to a minimun value
before p slowly increases again and therefore takes a long time to reach the value of
one. This means that the network will train too long on the current training subset
if only the selection criterion of p > 1.0 is implemented. Thus, new patterns are

also selected as soon as p reaches a minimum threshold value. For these purpose. a
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threshold ¢, is defined as

@5,3(6) - nlin{(‘bp(f - 1),-{5 + O-{M 10}

where £ is the current training epoch, p and o, are the average and standard deviation
of the generalization factor for M preceding epochs respectively. Robel used 100 for
the value of A/. The DPS algorithm selects new patterns whenever p(&) > &,(£):

p(€) is the generalization factor for the current training epoch.

The algorithm for DPS is summarized below:

1. Initialize the weights and set threshold ¢,(£) to one with £ = 1.

.3
2

2. For each pattern p in D¢, calculate the SSE as E®) = 8 (+7) — oy

3. Select pattern(s) with the highest error E®) into Dy and remove the selected

pattern(s) from De.
4. Train the network.

5. If the number of epochs exceeds the maximum number of epochs or the error

limit has been reached, stop training.
6. Calculate the generalization factor p = "%

7. if p is greater than ¢,(&), then set ¢,(& + 1) = min(p(£), 1.0) and repeat from
step (2), otherwise set ¢,(§ + 1) = min{¢,(£), 7+ 0, 1.0} and repeat from step
(4).

Roébel used a subset size of one pattern and selects a pattern when the subsetselection
criterion is triggered. The online cross validation technique is used to check for the
generalization. That is, a separate data is used compute the validation error of the
network. Additional overhead is incurred in DPS for implementing the cross valida-
tion technique. If the training data is limited, having a separate set for validation

may not be feasible.
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While the selection criterion is easy to compute, performance degrades if the training
data have outliers and noise. Outliers will be selected as the most informative pat-
terns, since these patterns have the maximum prediction errors. The network is then
biased towards the outliers. Consequently, the ability of the network to geueralize

deteriorates. Results of DPS when implemented are discussed in section 3.5.

3.4.4 Accelerated Learning by Active Example Selection

The last algorithm to be studied is accelerated learning by active example selection
(AL) proposed by Zhang [Zhang 1994]. AL is an incremental learning approach.
AL selects as the most informative patterns, those patterns that have the maximumn
2

prediction error, where the prediction error is computed as (¢ — o)

New patterns are selected for training when the error on the training subset is reduced

to a specified performance level k, where & is computed as

I+ K)
T

7 is the allowable error per connection. Zhang suggested a value of 7 € [100. 200]

Zhang motivates the selection criterion on the fact that the learning capacity of a NN
is proportional to the total number of adjustable connections in the network. which

is J(I + K) [Zhang 1994].

The algorithm for Zhang’s accelerated learning is

1. Initialize weights to small random values.

2. For each pattern p in D¢, compute the SSE as

K

N2

E® = Z (,}Ef} _ Ofc;))
k=1

3. Select pattern(s) with the highest error into Dy and remove from D,
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4. Train the network.

5. If the maximum number of epochs is exceeded or if the error limit Las heen

reached, stop training.
. 2
6. Compute 5 = 5 and SSE on Dy as Er = SR Iy (1P — oy,

7. If k < Er then repeat from step (2),

otherwise repeat from step (4).

Even though AL’s subset termination criterion is less complex and easyv to compute.
AL does not test for generalization of the network. Overfitting mayv therefore still
oceur. The subselection termination criterion depends on the architecture of the
network being trained. If the wrong architecture is selected (either undersized or
oversized) this criterion may not perform well. Due to the selection of patterus with
the largest prediction error, the performance of AL may deteriorate in the presence

of outliers and or noise.

The results and performance of AL are discussed in section 3.5.

3.5 Experimental Results

Four approximation and times series problems of varying complexity were used to
test the performance of SLA, SAILA, DPS and AL. These problems differ in input
dimensions and the number of hidden units needed to train the network. Table 3.1
shows a summary of the NN architecture used for these problems. In table 3.1. the
architecture of a NN is referred to as [-J-K where [ is the number of input units, .J
is the number of hidden units and K is the number of output unit i.e. the notation

2-5-1 means two input, five hidden and one output units are used.

All the available data was split into three sets: the candidate training set Dg.. vali-

dation set Dy and generalization set Dg. The three sets were randomly created such
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Problem H Equation | Po-Pg-Py l Architecture

F1 (3.3) 600 -200-200 | 2-5-1
TS1 (3.4) 600-200-200 | 1-5-1
TS2 (3.5) 600-200-200 | 2-5-1
TS3 (3.6) 140-60-60 10-10-1
TS4 600-200-200 | 2-5-1
TS5 600-200-200 | 2-7-1

Table 3.1: Summary of the functions and time series used

that

DecnDy =

DecNDg =

=2 s =

DN Dy =

Let Pc be the number of training patterns in D¢, Py the number of training patterns
in Dy and P; the number of patterns in test set Dg. Table 3.1 shows the size of
these sets for each problem. D¢ is the candidate training set from which training
patterns are selected. Dy contains data used to determine the generalization factor
during training. Dg contains data used to determine the generalization perforimance

of the network.

The performance of the active learning algorithms was tested on clean and noisy
data, as well as data containing outliers. Section 3.5.1 explains the experimental
procedure, including a discussion of the performance criteria used to compare the

learning algorithms. The results are compared in section 3.5.2.

The characteristics of the functions and time series used for experimentation are

discussed next. The following functions and time series were used:

1. Function F'1 is defined as (see figure 3.1(a))

1, . .
F1:F(z,2) = E(zf + 23)

.
(]
i

—’
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o

where z;, 29 ~ U(—1,1). All target values were scaled to the range [0.1.
Time series TSI is a sine function defined as (see figure 3.1(b)),

TS1: F(z) = sin(212)el =% + ¢ (3.5)
where z ~ U(—1,1) and ( ~ N(0,0.1). Target values were scaled to the range
[0,1].

Time series TS2 is the henon-map function defined as (refer to figure 3.1(c¢)),

TSQIOt = Z

Zt

Il

1+0.32-0 + 1.4z (3.6)

where 21,2 ~ U(=1,1). The target values were scaled to the range [0.1].

. Time series TS3 is a difficult time series, having 10 input parameters of which

7 are irrelevant (see figure 3.2(c)).
TS53: Oy — Z
z = 03z.6—06z_4+05z_,+0327 4 —0.222 , +( (3.7)

for t = 1,---,10, where 24, z,20 ~ U(—1,1) aud {; ~ N(0,0.05). All target

values were scaled to the range [0,1].

. Time series TS4 is a convolution of two discrete functions with outliers. Fig-

ure 3.2(a) shows an illustration of this function.

. Time series TS5 is the sine function TS1 with 5% of the candidate training set

consisting of outliers (see figure 3.2(b)).

3.5.1 Experimental Procedure

In order to obtain statistically valid assertions in comparing experimental results of

the four learning algorithms, thirty simulations were performed for each problem.
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Online training was used for the active learning algorithms. The initial subset size
for incremental learning algorithms consisted of one pattern and a subselection size
of one pattern was used. Each simulations was executed for 2000 epochs. A learning
rate 0.1 and momentum 0.9 were used for all the approximation problems . Results
reported are averages over the 30 simulations together with 95% confidence inrervals

as obtained from the t-distribution.

The selective learning algorithm was not applied to F1, since F1 is not a tine series
problem. The 7 value used 1n the subset selection criterion for AL was adjusted
for each problem using a trial and error approach. For TS3, a high 7 was used
(7 = 1000), a value of 100 was used for TS1, TS4 and TS5 while a value of 180) was
used for TS2 and F1.

Performance measures
To evaluate the performance of each learning algorithm, the following performance

criteria were used:

1. The mean squared error (MSE) was used as a measure of accuracy. The MSE
measures how well a function is approximated by the network, and is defined as

P «K ) (2
2op=1 Dok=1 (tgf) - in))

A e
15E 2K P

A MSE value close to zero shows a small error between the target and the
output function. The MSE over the three sets Dy, Dg and D¢ were comput-
ed. The MSE over D¢, denoted by Eg provides an unbiased estimate of the
generalization error since the patterns in Dg were not used for training.

2. Robel’s generalization factor p was used to measure overfitting etfects. The

generalization factor was computed as p = %‘C— where FE. is the MSE over

candidate training set Do and Ey is the MSE over the validation set Dy-. A

network overfits when the value of p increases substantially above 1.
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3. The computational complexity of learning algorithms was also used as perfor-
mance criterion. For the purpose of this thesis, computational cost is measured
as the number of calculations needed to train the network. Calculations include
subtraction, multiplication, addition and division.

At any epoch &, the cost Cy. of training a NN on a training set, is expressed as
Cfc = (CV -+ Cw) * Pr

where Cy is the cost of updating weights between input and hidden units and
Cw is the cost of updating weights between hidden and output units. 7 is the
number of patterns in the training subset Dp. For conventional backpropagation
with fixed set learning, Pr = Pr. Thus the cost of training Cyy is computed as

Cfst = (CV + CW) * Pc.

The costs of updating the weights are calculated as

CV = CU*UV\/)
Cw = Cyx (NW)

where C, is the cost of updating a single weight between the input and hidden
layers, C, is the cost of updating a single weight between the hidden and output
layers. Cy is the total cost of updating the weight connections hetween the
input and the hidden layers, and Cy is the total cost of updating the weight
connections between the hidden and output layer. Ny is the total nummber of
connections between the input and hidden layers and Ny is the total number

of connections between the hidden and output layers.

The total number of connections Ny and Ny are expressed as

1\7‘/ = (I + 1) * (J + 1)

Ny = (J + 1) * (1’()

and
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C, =11

Therefore,

Cy = 1B3x({I+1)x(J+1)
Cw = 11x(J+1)xK (3.8)

The cost of training a network using any active learning algorithm includes C'...
the cost of selecting patterns for training and the cost of computing the subset
termination criterion. Therefore, at any epoch &, the cost of training a network

using SLA, SAILA, DPS and AL are:

Csr = Cre+Cyox Po
CDP = Cfc + Cdps * (PC - PT) + (05(1,,5 * PT)
Car, = Ci+Cqyx*(Pc— Pr)+(Cs, * Pr)

Csa = Cfc+Csai*(PC_PT)+(CS '*PT)

sat

For all the incremental learning algorithms, the subset selection criteria are
tested on the remaining patterns in the candidate set D which is equal to Pp—
Pr. Also, for incremental learning algorithms, an additional cost of selecting
pattern is incurred when a pattern is selected.

Csp, Csa, Car, and Cpp are the cost of training a network using SLA, SAILA.
AL and DPS respectively. Cy, = 15 is the cost of computing the subset selection
criteria for SLA, Cy,s = 11 is the cost of computing the subset selection criteria
for DPS, Cy = 4 is the cost of computing the subset selection criteria for AL

and C,,; = 18 is the cost of computing the subset selection criteria for SAILA.

Cs,,e =2, Cs,, = 2 and Cs,.. = T are the cost of selecting patterns into Dy for

sal

DPS, AL and SAILA respectively.

Therefore,

Csp = Cfc+15PC
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Cpp = Cfc*i-ll(Pc“"PT)*’rZPT
CAL = Cfg+4(P(;—PT)+2PT

Csa = CyoxPr+18(Pc— Pr)+7Pr (3.9)

From equation (3.9), the cost of training is directly proportional to the number
of patterns selected for training. The more patterns are selected for training. the
higher the computational cost. Initially, Pr for SLA is greater than the other
algorithms because DPS, AL and SAILA are incremental learning algorithm
and a small initial trainig set and subset size is used in the simulations. Thus,
Csp is expected to be greater than Cy4r, Cpps and Cgy initiallv. SAILA is
computationally more expensive in selection criteria than the other algorithms
because SAILA has more subset selection criteria to implement than the other

algorithms.

Section 3.5.2 illustrates the costs for the different algorithms.

3.5.2 Results

This section presents the results of the simulations carried out on the active learning

algorithms.
Training error

In order to compare the performance of the four active learning algorithms. the
MSE over the candidate set Do was computed for the simulations and the average
calculated. Tables (3.2) and ( 3.3) show the result over 2000 epochs for c¢lean data

and data with noise and outliers.

For TS1, DPS had a very low error with the lowest variance which means that all
the errors of the simulations for DPS were all closer to the average error of 0.0003.
Although, SLA had a low error as well. However SLA had a large variance when

compared to DPS. AL had the largest error with a very large variance.
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DPS achieved the smallest error for TS2, having a small variance. For TS3. all the
algorithms had very low errors but SAILA had a high variance. DPS Lad the sinallest

error for F1 with a very small variance.

For TS4 and TS5, SLA achieved the smallest error with the lowest variance. AL Lad
the largest error for TS4 and TS5. This is because AL selected and trained on just
a single pattern for TS4 and an average of 4 patterns for T'S5. Thus AL. had high
errors for TS4 and TS5.

The training errors for all the problems with noise and outliers were larger ( x10?)
than for problems with clean data. DPS had the lowest average error for clean data

while SLA had the lowest error for noisy data.
Generalization error

To compare the generalization ability of the four active learning algorithms. the MSE
over the generalization set, E, was computed and the average over the 30 simulations
was plotted as a function of number of epochs. Figures 3.3 and 3.4 illustrates the

trend of the generalization errors for the entire training period.

DPS achieved a very low average error faster than the other algorithms for F1 (refer
to figure 3.3(a)). However, both SAILA and AL achieved a comparable result to
DPS at epoch 1000. From table 3.3, DPS had the lowest error with the a verv small
variance (5.07F — 05) which means all errors of the simulations are closer to the

average.

For TS1, SAILA initially had the highest generalization error but decreased to a low
level of error (see figure 3.3(b)). SLA initially had the lowest average error. which
can be explained by the fact that SLA used more patterns initially than the other
algorithms (refer to figure 3.7(b)). Although SLA and DPS had small errors. DPS
had the smallest variance and thus DPS achieved the smallest error. AL had the

largest error after 2000 epochs with a large confidence interval.

For TS2, DPS, AL and SLA achieved a very low average error before epoch 500.
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-1
[N]

Selective | Sensitivity

Function Robel Zhang | Learning | Analysis

TS1

Training Error | 0.00036 0.02172 | 0.00045 0.00346
+ + + +

0.00017 0.04186 | 0.00035 0.00712
Generalization (| 0.00039 0.02241 | 0.00047 0.0035

+ + + *
0.0002 0.04191 | 0.00040 0.00737
Used Patterns || 485.43 4.73 270.93 071.67
+ + + +
234.79 0.92 3.48 88.91
TS2
Training Error || 0.00014 0.00023 | 0.00029 0.00126
+ + + +

0.00011 0.00021 | 0.00038 0.00163
Generalization || 0.00012 0.00022 | 0.00029 0.00129

+ + + +
0.25FE — 05 | 0.00019 | 0.00037 0.00169
Used Patterns | 411.77 174.63 | 272.57 522.57
* + £ +
215.87 61.48 7.61 173.37
TS3
Training Error || 0.00039 0.00044 | 0.00050 0.00068
+ + + +

0.00086 0.00091 | 0.00085 0.00146
Generalization || 0.00275 0.00253 | 0.00302 0.00225

+ + + +

0.00155 0.00133 | 0.00138 0.00174
Used Patterns || 180 180 78.17 180

+ + + *+

0 0 1.53 0

Table 3.2: Comparison results over 2000 epochs for times series problems



@t

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

@ VYUNIBESITHI YA PRETORIA

CHAPTER 3. ACTIVE LEARNING

Selective | Sensitivity
Function Robel Zhang | Learning | Analysis
F1
Training Error || 0.000226 0.000412 0.000791
+ + +
5.07F — 05 | 0.000366 0.001852
Generalization || 0.000221 0.000392 0.000764
+ + +
5.2FE — 05 | 0.000347 0.001624
Used Patterns || 320.2 82.8 445.1333
+ + +
167.6698 32.37935 121.476
TS4
Training Error || 0.01141 0.19935 | 0.00516 0.02828
+ + |+ +
0.00573 0.03093 | 0.00393 0.09522
Generalization || 0.01077 0.19051 | 0.00478 0.02739
+ + + +
0.00534 0.02169 | 0.00349 0.09170
Used Patterns | 493.03 1 245.23 597.03
+ + + +
193.37 0 7.89 27.41
TS5
Training Error || 0.00683 0.10278 | 0.00155 00.005662
+ + + +
0.00468 0.08731 | 0.00158 0.00768
Generalization || 0.00714 0.09904 | 0.00158 0.00595
+ + + +
0.00489 0.08932 | 0.00142 0.00842
Used Patterns || 103.5 4.67 269.13 584
+ + + +
20.14 1.35 | 9.89 93.4

Table 3.3: Comparison results over 2000 epochs for problems F1 and times series with
noise and outliers
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Figure 3.4: Average generalization error vs epoch

SAILA was slower to achieve a comparable low error but SAILA had a low error by
the end of training. From the table 3.2, DPS had the smallest error with a verv small
variance after 2000 epochs, implying that all errors of the simulations are closer to

the average.

For TS3, the generalization error for all the algorithms increased as the nnmber of

epochs increased except SAILA (see figure 3.3(c)).

From the table 3.3, SLA had the lowest generalization errors for TS4 and TS5. While
AL had the largest error for TS4 and TS5. AL did not learn the functions (refer to
figure 3.4(a)). AL selected a few patterns for training, thus had little information

about the time series to be approximated and therefore AL had a bad generalization.

DPS had the lowest generalization errors for functions with clean data while SLA had
the lowest generalization errors for functions with noise and outliers. Although DPS
had better generalization with clean functions than SLA, DPS used more patterns
than SLA to achieve the low generalization error in all the problems. AL had very

large generalization errors for TS1, TS4 and TS5. This bad generalization can be
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attributed to the extremely small training set sizes used by AL which is an indication
of an inferior subset selection criterion. The subset selection criterion depends on
the number of connections in the network. Redundant or irrelevant weights in the
network will make the value of the performance level x verv large which can cause
the network to train on the current training subset Dp too long without selecting
additional patterns. Thus the network selects a few patterns, hence having insutticient
information to train the network. On the other hand, too few weights in the network
can make « small. Thus, the network selects patterns more often than are needed

for training.
Overfitting effects

The average generalization factor p for all the problems were computed over the 30
simulations. Figures 3.5 and 3.6 show the charts for the average generalization factors.
The average generalization factors were plotted as function of pattern presentations.

A pattern presentation represents one weight update.

TS3 was the only function for which all the algorithms except SAILA. overfitted.
SAILA had an average generalization factor of less than one, while the other algo-
rithms had high generalization factors. For the entire training period for TS4. AL
had a generalization factor constantly larger than 1, indicating that AL overfitted
TS4. For the other functions, the average generalization factor values Huctuated.
The flunctuation is due to the overfitting of a training subset until new patterns are
selected for training. When new patterns are selected, the overfitting of the training
subset is reduced. The average generalization factor for all the algorithms (except

TS3) were slightly over one, and indicating a mild case of overfitting.

Computational costs

The computational costs for AL, DPS, SLA and SAILA were computed using e-
quation (3.9) for specified epochs. The costs are plotted as a function of epochs as

illustrated in figures (3.9) and (3.10).
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SAILA has the most expensive and AL has the least expensive subset selection cri-
teria. However, AL performed badly (refer to tables 3.2 and 3.3). For all the ap-
proximation problems, DPS, AL and SAILA had increasing costs because thev are
incremental learning algorithms.

(refer to figures (3.7) and (3.8)).

More patterns were used as training progressed

For F1 and TS2, AL had the smallest cost (see figure 3.9(a) and (b)). Thesc small
costs can be attributed to the cheap cost of the subset selection criterion as well as

the fact that AL used the smallest number of patterns for training.

Despite the fact that AL has the cheapest subset selection criterion and a simple
selection criterion, AL had the highest cost for TS3. This is because AL selected all
the patterns in D¢ within a short training interval (by epoch 400). SLA initiallv had
the highest cost (first 350 epochs). However, at epoch 1000, the cost was half of the

other algorithms.

For all the functions approximated, SLA initially had a higher training cost than the

other algorithms - almost four times the training cost of other algorithms. because
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SLA is a selective approach (see figure (3.9) and (3.10)).

From tables (3.2) and (3.2), SLA used less number of patterns after 2000 epochs

than the other algorithms, thus SLA was computationally less expensive.

Convergence

The convergence performance of the four active learning algorithms are compared in
figures 3.11 and 3.12. These figures plot the percentage of simulations that rcached

specific generalization errors.

For F1, DPS had the best convergence, all the simulations converged to a very low
error of 0.0004. AL also had a good convergence, more than half of the simulations

converged to 0.0004 (refer to figure 3.11(a)).

None of AL’s simulations converged to the specified error level for TS2. SLA and DPS
achieved good convergence for T'S2, as more than half of their simulations couverged

to a low error (refer to figure 3.11(b)).

For TS2, DPS had the best generalization, most of all the simulations converged to a
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Figure 3.10: Average computational cost per epoch

very low error (0.0002). SLA and AL also had good convergence (see figure 3.11(c)).

While the other algorithms had few converged simulations at 0.002. almost hLalf of

SAILA’s simulations converged to this error (refer 3.11(d)).

AL had bad generalization for TS4 and TS5. None of AL’s simulations couverged to

the specified error levels for TS4 while only a few converged for TS5.

SLA had the best generalization for TS4, with all the simulations converging to a
low error of 0.004 (refer to figure 3.12(a)). SAILA had a good convergence with 40%
of the simulations converging to this error of 0.004. Only a few of DPS’s simulation

and none of AL’s simulation converged at this point.

SLA also had the best generalization for TS5. Almost all the simulations (74%)
converged to a error level of 0.005 while only a few of the other algorithis simulations

converged to this error level (see figure 3.12(b)).

SLA had the best convergence for data with outliers and noise. DPS had the best con-

vergence for clean data, although SLA had good convergence for clean data. SAILA
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had a good convergence for TS3. For all the sine functions (TS1. TS4 and TS5). AL
had bad convergence, none of its simulations converged to the specified error level-
s. The errors specified for data with outliers and noise were larger than the errors
specified for clean data. This is because the performance of all the algorithis were

degraded in the presence of noise and outliers.

3.6 Conclusion

The objectives of the chapter were to present a new learning algorithm (SLA) aud also
to compare four active learning algorithms with respect to their accuracy, convergence
and the complexity on both clean and noisy data as well as overfitting effects for the

problems were also examined.

The results presented showed that AL was unstable, producing good results for the
henon-map and F1 only. The bad training behavior can be attributed to the extreme-
ly small training set sizes used by AL, which is an indication of an inferior subset

selection trigger.

DPS and SLA performed very similar on the clean data, while SLA outperformed all
the other algorithms on the noisy and outliers training data. The sensitivitv analvsis
approach (SAILA) performed well under the occurrence of outliers and noisy time
series, and very well for the complex function TS3. SAILA performed hetter than
AL in TS1, TS4 and TS5, but worse than SLA and DPS. SAILA is computationally

more expensive, requiring larger training subsets than the other algorithms.

As is expected, the performance of the error selection approaches degraded nnder
the occurrence of outliers and noise. The degradation is due to the early selection of

outliers, since outliers result in the largest prediction errors.

The comparison above showed that SLA had the best generalization performance. and

lowest complexity. The selective learning approach (SLA) produced better accuracy
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than the other approaches, and showed to be more robust in the occurrence of outliers

and noise.
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Chapter 4

CONCLUSION

The first objective of this thesis was to propose a new active learning algorithin using
changes in output as selection criterion. The second objective of this thesis was to
compare the performance of selected active learning algorithms on both clean and
noisy data. The algorithms were compared in relation to their accuracy. general-
ization, convergence and computational cost. Four active learning algorithnis were
selected for this comparison. Two of these algorithms namely, DPS and AL use the
error in prediction as selection criterion. That is, patterns are selected based on the
error of the patterns. Two algorithms, SLA and SAILA, which use perturbations
in output as selection criterion were also selected for comparison. Patterns whiclh
influence the change in output values most are selected for training, using the output
selection criterion.

Robel’s algorithm (DPS) performed well with clean data (TS1. TS2 and F1). hav-
ing a faster convergence and better generalization than the other algorithins. This
performance can be attributed to the selection of patterns that contribute most to
the error of the network. Training on such patterns took into account the current
state of the network and thus brought the output closer to the target function. The
performance of DPS degraded in the presence of outliers and noise in the training

data, consequently the generalization ability deteriorated.

86
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AL performed badly in all the functions except F1 and TS2. For the sine functions
(TS1, TS2, TS3), AL selected very few patterns for training which resulted in very

large errors.

SAILA achieved a considerable good accuracy for the function with outliers and the
complex function TS3. This is because SAILA used perturbations in output values.
i.e. changes caused to the output by the input as its selection criterion, thus avoiding
the selection of outliers patterns. SAILA was however, slow in learuing most of
the functions, even for those functions for which a low generalization error has been
obtained. SAILA’s slow learning can be attributed to the fact that SAILA ounlv chose
patterns at the highest peak of the derivative and then tries to fit the network from
this point. A suggestion to improve training using the SAILA algorithin is to select
patterns at the lowest peak also, i.e at the turning point where derivative is zero in
addition to the patterns selected at the highest peak. The network will then fit the
problems being solved at the two extreme points of the derivatives simultaneously. A
faster convergence and a lower training time maybe achieved compared to the current

SAILA algorithm.

SLA achieved a good accuracy for both clean data and data with outliers and noise.
SLA used much less patterns (i.e. a low computational cost) than all the algorithms
for all the problems. Thus, SLA showed to be more robust in the occurrence of
outliers and noise. SLA has demonstrated good and comparable results hoth in the

training and generalization ability of the network.

Active learning algorithins using perturbations in output performed better with func-
tions with noise and outliers while, algorithms using change in error as selection
criteria performed better with clean data. A good subset selection criterion is verv
important in any active learning algorithm. AL had a poor subset selection criterion,
selecting too few patterns for training. Even though, DPS and AL used the same se-
lection criterion, DPS outperformed AL in all the problems. This better performance

of DPS is a result of a better subset selection criterion used by Robel. A network
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trained with too few information will generalize badly, as in the case of AL.

For problems with clean data, DPS is preferred, though DPS used more patterns for
training than SLA. However SLA is preferred with problems with outliers and noise.

SLA is also preferred for clean data because of low computational costs.

4.1 Future of Active Learning in Neural Networks

Active learning has been shown to demonstrate a better performance than the
conventional backpropagation algorithm. Various research have compared these t-
wo learning paradigms and have published their results [Zhang 1994, Rébel 1994c,
Engelbrecht et al ‘1998]. Because of the demonstrated performance of active learning.

research to improve on active learning must be continuously carried out.

A suggestion to further improve on active learning is to first cluster iuput patterns.
A clustering algorithm can be used to group similar patterns into clusters. where
similarity is measured as the Euclidean distance between input vectors. At each
subsetselection interval, the most informative pattern is selected from each of the
clusters. The clustering active learning approach can potentially reduce computa-

tional complexity and improve accuracy.
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Appendix A

Symbols and Notations

The notation and symbols used in this thesis assume a three layer neural network
(NN) architechure with one input layer, one hidden laver. and one outpur laver.
This appendix summarizes the symbols used throughout this thesis with reference

to the three layer architecture. The svmbols are listed alphabetically with their

interpretation.
Symbols | Interpretation
o momentum term
n learning rate
K Zhang’s notation for a specified performance level
p Rébel’s generalization factor
T Zhang’s notation for allowable error tolerance per connection
¢ Engelbrecht’s notation for pattern informativeness
U used in this thesis as the next-time-change in output
T used as the next-time-change in target for Kohara’s algorithu

98
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Symbols j]nterpretation

Cu cost of the subsetselection criteria for Zhang’s accelerated learning (AL)
Clps cost of the subsetselection criteria for Robel’s dynamic pattern selection (DPS)
Cy, cost of training a NN on a training set

Crsi cost of fixed set learning

Cy cost of selecting patterns

Clai cost of the subsetselection criteria for SAILA

Cya cost of the subselection criteria for selective learning algorithm (SLA)
Cs, cost of selecting a pattern into Dy for Zhang’s accelerated learning
Csy,, cost of selecting a pattern into Dy for Robel’s dynamic pattern selection
Cs.,.. cost of selecting a pattern into Dy for SAILA

Car cost of training a network using Zhang’s algorithin

Cpprs cost of training a network using Robel’s algorithm

Csa cost of training a network using Engelbrecht’s algorithm

Cst cost of training a network using selective learning algorithin

C, cost of updating a weight between the input and hidden layers

Cy cost of updating all weights between the input and hidden layvers

Cu cost of updating a weight between the hidden and output lavers

Cw cost of updating all weights between the hidden and output lavers

D¢ set of candidate training patterns

D¢ test set or the generalization set

Dy actual training set

Dy validation set

1 total number of input units

J total number of hidden units

K total number of output units

Ny total number of weights between input and hidden layers of a network
Nw total number of weights between hidden and output layers of a network
7] a single pattern

Pe number of patterns in the candidate set De

Pg number of patterns in the generalization set Dg

P number of patterns in a subset D,

Pr number of patterns in the training set Dy

Py number of patterns in the validation set Dy

Ok k-th output unit

off ) activation of output unit o, for pattern p

Vj; weight between j-th hidden unit and :-th input unit

W weight between k-th output unit and j-th hidden unit

Y; 7-th hidden unit

y§p ) activation of hidden unit y; for pattern p

2 i-th input unit
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Appendix B

Definitions

This appendix summarizes definitions of key terms used in this thesis. The terms are

defined in alphabetical order.

Active learning: Active learning is any form of learning in which the learning
algorithm has some deterministic control during training over what part of the

input space it receives information (page 10).

Accelerated Learning: Accelerated learning (AL) is Zhang’s algorithm for active
learning. Patterns with the highest prediction error are selected for training.
New patterns are selected as soon as the error on the training subset is reduced to
a specified performance level. AL is an incremental approach to active learning
(page 61).

Bias: A bias is a unit or neuron added to the input and hidden layers with a
constant activation value of —1. The purpose of adding a bias unit is to offset

the origin of the logistic activation function {page 36).

Dynamic Pattern Selection: Dynamic pattern selection (DPS) is Robel's algo-
rithm for active learning. The most informative patterns are the patterns with
the maximum prediction error and are selected for training. New set of patt-

erns are selected for training as soon as the network overfits the current training
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subset. DPS is an exampie of incremental learning (page 59).

Epoch: An epoch is one learning pass through the training set. One learniug pass
involves the presentation of training patterns, the calculation of the activation

of each neuron and modification of the weights (page 36).

Gradient Descent Optimization: In Gradient descent optimization (GD) the
minimum of the objective function is searched in the negative gradient of the
objective function. In NNs. the objective function is the error function which is

a function of the weights of the NN (page 27).

Incremental Learning: Incremental learning is a form of active learning. where a
subset of the training patterns that satisfies a selection criterion is selected for
training. Patterns are hov;'ever selected and removed from the candidate set D¢
into the actual training set Dr. The effect of incremental learning is that the
training set Dy is grown while the candidate set D¢ is pruned during training

(page 46).

Momentum: Momentum is a term added to weight adjustments to help avoid
oscillations in weight changes during training. This term is proportional to the

magnitude of previous weight changes (page 37).

Mean Squared Error: In the context of neural networks, the mean squared error

(MSE) is defined as the mean of the squared sum of the error between target
values t;f ) and the actual NN output values 0}3’):
o AL (1 = o)

M =
ISE PR

where P is the total number of patterns and K is the number of outpur units
(page 11).
Pattern Presentations: A pattern presentation is a single pattern presented to

the network for training. Pattern presentations are the total number of patterns

presented so far to the network at a particular epoch (page 76).
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Sensitivity Analysis for Incremental Learning: Sensitivity analvsis for iucre-
mental learning (SAILA) is Engelbrecht’s algorithm for active learning. Patterns
are selected for training using the chauges in cutput caused by perturbarious in

input parameters (page 56).

Selective Learning: Selective learning is an active learning algorith. where a
subset of the training patterns that satisfies a selection criterion is selected for
training. Unlike incremental learning, the candidate set remain fixed while the

size of the actual training set varies from time to time (page 46).

Selective Learning Algorithm: The selective learning algorithin {(SLA) is a new
active learning algorithm proposed in this thesis, which uses information ou the

next-time-changes to select patterns for training (page 54).

Subset selection Criterion: Subset selection criteria are criteria tested to deter-
mine whether a NN should select additional patterns into the current training

subset Dr (page 52).

Sum Squared Error: SSE is the sum of squared errors, defined as
1 P K

SSE =23 > (1] — oy’

p=1 k=1

(page 31).



