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Chapter 3

ACTIVE LEARNING

One of the goals when designing and training a neural network is to maximize or to
improve generalization, which is, the ability to give accurate response to data that
the NN has not seen as part of the training process. In conventional backpropagation
learning, all the available data are presented to the network for training. Learning on
all the training data can be quite problematic especially when there are redundant
data in the training set. The computational cost of training the network in terius of
training time can become high, especially if these redundant data arc included in the

training set.

Studies have shown that selecting the most informative data for training rather
than presenting all the available data to the network improves, or at least main-
tains the generalization performance. Selecting data for training also reduces
training time and the data needed for training [Zhang 1994, Plutowski et «l 1993.
Engelbrecht et al 1998, Engelbrecht et al 1999a, Robel 1994a).

This chapter discusses the concept and advantages of using of active learning. The
objective of this chapter is to present a new selective learning algorithm aud also
to compare this new algorithm with three additional active learning algorithins with

reference to their respective generalization performance, overfitting characteristics.
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computational complexity and convergence characteristics.

3.1 Introduction

There have been various research efforts on improving the learning of
BPNNs.  These research efforts include finding optimal weight initialization
[Rumelhart et af 1986], optimal learning rate and momentum [Plaut et al 1986 |
Weir 1990, Yu ef ol 1997]. finding the optimal architectures [Le Cun 1990.
Karnin 1990, Hirose et al 1991, Pelillo et al 1993, Engelbrecht et al 1996]. usiug sec-
ond order optimization techniques [Becker et al 1988], adaptive activation func-
tions [Zurada 1992a, Engelbrecht et al 1995, Fletcher et al 1998] and active learn-
ing [Zhang 1994, Engelbrecht et al 1999a, Engelbrecht et al 1998, Robel 1994a). This
chapter concentrates on active learning as an approach to improve performance of
NNs. Active learning is a technique in which patterns that have the highest influence
on weight changes are dynamically selected by the NN learner from a candidate set of
training patterns. The network utilizes current attained knowledge about the tasks
to be learned as encapsulated in the current weights to select the most informative

training patterns. There are two main approaches to active learning:

~ Incremental learning, where patterns are selected and removed from a can-
didate training set. The selected patterns are added or injected into the actual
training set. The effect is that the actual training set grows as training pro-

gresses, while the candidate training set is pruned.

— Selective learning, where a subset of the training patterns that satisfv a
selection criterion is selected from a candidate training set and used for training.
Unlike the incremental learning, the candidate training set is not pruncd. At

each pattern selection interval, all the patterns in the candidate set have a
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chance to be selected. The candidate set remain fixed while the size of the

actual training set varies from time to time.

A brief outline of this chapter is as follows: Section 3.2 discusses the concept of
active learning and section 3.3 presents a general algorithm for active learning. A
new selective learning strategy for time series problems is presented and compared
with three other active learning algorithms in section 3.4. Section 3.5 presents results
obtained from the different learning algorithms. Finally, section 3.6 highlights the

conclusions, comments and observations.

3.2 Concept of Active Learning

Active learning has emerged as an efficient alternative to improve the performance of
multilayer layer NNs. Active learning refers to the selection of a subset of the avail-
able training data dynamically during training, where the subset contains the most
informative data. The objective of active learning algorithms is to identify. and train
on the most informative patterns in a candidate training set. Active learning effi-
ciently selects optimal training patterns from available training patterns for training
the network. Efficiency refers to the complexity of the pattern selection meclianism
which should be minimized. Optimal patterns are patterns that have useful infor-
mation about the current state of the network and such patterns bring the network
closer to the target function. The network plays an active role in data selection.
Rather than being a passive learner, the network utilizes information hased on its

current state to gather useful information for further training.

Active learning addresses two fundamental questions:

— Which of the patterns should be selected for training from the candidate set?
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— When should an additional set of patterns be selected?

Answers to these questions have resulted in the design of different approach-
es to active learning. These approaches mainly use the error in prediction as
selection criterion [Cohn 1994, Rébel 1994a, Zhang 1994, Plutowski et al 1993] or
changes in outputs due to perturbations in input parameters [Engelbrecht ef al 1998.
Engelbrecht et al 1999a, Engelbrecht et al 1999c]. Pattern selection has been tle fo-
cus of many research. Infact, active learning has been called various names such as
query learning, incremental learning, selective learning and dvnamic pattern selec-
tion. All these terms refer to the same basic concept of selecting a subset, of the most
informative patterns from the candidate training set. Active learning algorithins aim

at:
— Improving, or at least maintaining the generalization ability of the network.

— Reducing the cost of training the network in terms of the number of patterns
needed for training. But selecting these patterns should not exceed the gain in

computational cost reduction achieved by reducing the training set size.

— Improving the speed of convergence. Convergence is the ability to achieve cer-
tain generalization levels. Active learning aims at increasing the probability
that the network will converge to given generalization levels, aud doing so in as

less time as possible.

Section 3.2.1 presents an overview of different approaches to active learning.

3.2.1 Overview on Active Learning

Plutowski and White used error in prediction as their selection «criterion
[Plutowski et al 1993]. The integrated squared bias (ISB) is used as the error ter-

m. Patterns that maximize the decrement in the ISB of the network resulting from
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adding such patterns to the training subset are selected for training. Additional pat-
terns are selected when the training error on the current training subset is sufficiently
small. While Plutowski and White used the bias term of the MSE as the sclection
criterion, Cohn used the variance term of the MSE [Cohn 1994]. In this casc, the
most informative patterns are those that maximize the change in variance of the net-
work resulting from adding these patterns to the network. The learner (NN) selects
an additional training pattern at each time step, or epoch. In Mackay’s algorithm,
information theory was used to select patterns for training [Mackay 1992]. However,
Mackay applied his active algorithm within bayesian framework. Fukumizu select-
ed patterns that minimize the estimation error i.e. the expected value of the MSE
[Fukumizu 1996] for training. Sung et al also used the error function as their selec-
tion criterion, but they considered both the bias and variance term [Sung et al 1996].
Patterns that minimize the expected misfit, i.e. the total output uncertainty between
the target and the estimated target function are selected for training. Seung et al
developed an active learning algorithm which they called Query by Committee ((QB-
S) [Seung et al 1992]. In QBC, the degree of disagreement among the connuittee of
learners (students) serves as an estimate of information value. The querv that has
the maximum disagreement among the committee of learners is cliosen for training.
That is, QBC selects an input classified as positive by half of the committee and neg-
ative by the other half. Freund et al presented a more complete and general analysis
of QBC using the batch training algorithm [Freund et al 1997]. Hara et al applied an
active learning algorithm to pattern classification problems [Hara et al 1988]. Pat-
terns selected for training are those patterns that are close to the bouudary of the
pattern classes. Cohn et al combined active learning with statistical models (gaussian
and weighted regression) [Cohn et al 1996]. Patterns that give the lowest expected

model variance are selected for training.
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Similar to Plutowski et al, Sung and Cohn, Zhang used the error in prediction as selec-
tion criterion [Zhang 1994]. Patterns whose addition cause the maximum approxima-
tion error to the network, are selected for training. However, the relative value rather
than the absolute value of the error term is used. Robel used the same error criterion
as Zhang in selecting the most informative patterns for training{Robel 1994a]. Robel
and Zhangs’ algorithms only differ in the criterion that triggers the subset selection.
Training on the current subset continues until some criteria are triggered (refer to

section 3.4).

The change in outputs due to perturbations in input parameters can also used
as selection criterion. Engelbrecht proposed an active learning algorithm where
patterns with the highest influence on the outputs are selected for training
[Engelbrecht et al 1999a]. First order derivatives of the output units with respect
to the input units are used to quantify the influence a pattern has on the outputs.
Another active learning algorithm that uses output perturbation as selection criteri-
on is the selective learning algorithm (SLA) [Engelbrecht et al 1999¢]. developed in
this thesis. Patterns that influence the output most are selected more for training
than patterns that have little influence on the output. The influence on the output,
is reflected in the next-time-change in output values. Thus. patterns that have the
large next-time-change in output values are selected more into the current training

set. than patterns with small-time-change in output.

This thesis selects four active learning algorithms based on their selection criteria
for comparison. Two of these algorithms uses the error in prediction as selection
criterion while the other two algorithms uses changes in output as their selection

criteria. The algorithms selected are:

1. error based criterion

— Accelerated learning using active learning, developed by Zhang
[Zhang 1994].
— Dynamic pattern selection (DPS), developed by Rébel [Rébel 1994a).
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2. output based criterion

— Sensitivity analysis incremental learning (SAILA), developed by Engel-
brecht [Engelbrecht et al 1999a].

— Selective learning algorithm (SLA), developed in this thesis.

While Cohn, Plutowski et al and Sung et al based their selection criteria on informa-
tion theory, Zhang has shown that their approach is similar to selection of patterns
using the prediction error as selection criterion [Zhang 1994]. Selection of patterns
using the largest error is computationally less expensive than using information the-
oretic approaches. For these reasons, this thesis chose the algorithms developed by
Rébel [Robel 1994a] and Zhang [Zhang 1994] in its comparison instead of the infor-
mation theoretic approach. The next section presents a general algorithm for active

learning.

3.3 General Algorithm for Active Learning

This section presents a general algorithm for active learning and then discusses the
algorithm design issues. Let Dy be the current training set, which has all the patterns
selected for training, D¢ be the candidate training set, which contains all the available
patterns and Dy be the validation set, which contains patterns not used as part of

training and is used to test for overfitting.

A general algorithm for active learning is summarized below:

1. Initialize weights randomly as in conventional back propagation.
2. Select the most informative pattern(s) into training set Dy from D¢

— for incremental learning, add the selected pattern(s) into Dy and remove

them from Dg,
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— for selective learning, select patterns into Dr.
3. Train the network for a training interval (i.e. adjust the weights) nusing Dy

4. If the network has reached the desired accuracy or has reached the maximumn

number of epochs, stop training.

5. If a subset selection criteria triggers, repeat from step (2)

otherwise repeat from step (3).

A training interval maybe one epoch for online training or € epochs if hatch training

method is used.

Design issues in active learning algorithm

When designing and implementing an active learning algorithm, some issues have to
be taken into consideration. One of these design issues is the number of patterns
to select at each selection interval, referred to as the subset size. Although there
is no heuristic to determine the size of the training subset. there are guidelines.
For incremental learning, it is advisable to train with a small subset size hecause
the subset grows during training. Selecting a small subset means patterus will be
selected more often and thus increase the complexity of the network due to the cost of
selecting the patterns. But, selecting a large number of patterns during training may
defeat the aim of active learning, which is to reduce the number of patterus needed
for training. Therefore, good selection criteria are desirable in selecting patterns
that have useful information about the network. For selective learning. the subset
size depends on the selection criteria. Therefore, selection criteria are important to

ensure that the most informative patterns are selected for training.

Another important issue to consider is when to select additional patterns. Oune or
more subsetselection criteria can be used. These subsetselection criteria should ensure
that the NN does not train too long on a training subset because the network may
overfit the training subset. The network should also train long enough to acquire

maximum information on the current training subset. Different algoritluns have
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different subsetselection criteria. Patterns can be selected at each training epoch
[Cohn 1994, Engelbrecht et al 1999¢c]. This criterion can lLave high computational
cost because the subset selection function is applied at each epoch. An alternative
is to select at each £ epochs. A reduction in computational cost will he achieved
since the number of pattern selections is fewer. However, if the selection interval £ is
too large, overfitting of the training subset may occur. Patterns can also be selected
using the error on the training and the validation set. New patterns are selected into
D7 as soon as the error on the training or validation set reduces to a specified level

[Zhang 1994, Engelbrecht et al 1999a.

Another criterion is to select new patterns as soon as the network overfits the training
subset [Engelbrecht et al 1999a, Robel 1994a]. Different algorithms use a criterion
or combination of criteria to decide when to select additional patterns. The differ-
ent subsetselection criteria used for the four selected active learning algorithins are

discussed in more details in section 3.4.

3.4 A Comparative Study of Four Selected Active

Learning Algorithms

The objective of this thesis is to compare selected active learning algorithms with
reference to generalization performance and computational complexity. For this pur-
pose, a new selective learning algorithm for time series problems developed in this
thesis, sensitivity analysis for incremental learning [Engelbrecht et al 1999a]. dvna-
mic pattern selection of Rébel [Robel 1994a] and accelerated learning using active

example selection of Zhang [Zhang 1994|, are compared with one another. This sec-

tion presents an overview and critique of these algorithms.
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3.4.1 A New Selective Learning Algorithm

Kohara presented an algorithm that performs pre-processing of the training set for
time series problems [Kohara 1995]. Kohara’s algorithm divides the training set
into two sets. The one set contains all training patterns that reflect large-next-time
changes in the time series, while the other contains patterns that reflect suall-next-
time changes. Kohara’s algorithm assumes one output unit and also assumed a time
ordering among the training patterns. Kohara uses target values to determine next-
time changes. The next-time-change Tgf ! for output k is defined as

Tgﬂ) — éipﬂ) — tip)
The two training sets remain fixed during training. During training, patterns are
more frequently selected from the large-next-time changes set than from the small-
next-time changes set. Therefore, Kohara’s algorithm is not considered as an ac-
tive learning algorithm, because the neural network plavs no role in the selection
of patterns. Kohara’s approach is rather referred to as a training set manipulation

technique.

A new output based selective learning algorithm is proposed in this thesis based on
Kohara’s algorithm. Instead of using the target values to construct the two training
subsets, the actual outputs of the network are used. Therefore, next-time-change

") for output & is defined as

P = pr T ) (3.1)

\Ifﬁf’ ) can only be computed for the first Po — 1 patterns, where Po is the unmber
of patterns in the candidate training set D¢. The division of the original training
set into large- and small-next-time changes sets is done after each selection interval,

which is one epoch.
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More patterns (80%) from the large-next-time changes set are randomly sclected
than from the small-next-time changes (20%) into the current training subsct Dy
In doing this, the two subsets reflect the current knowledge of the learner. in that
the set reflects what the learner perceives as large and small changes. More patterns
are selected from the large-next-day changes set, since these patterns contain the
most information about the characteristics of the time series. A large change in the
output values, causes a large change in the the weights and a large change in weights
means more information is gained in bringing the network’s output closer to the

target function (refer to weight update equations (2.13) and (2.16)).

Active learning is introduced by calculating the next-time-changes based on rhe ac-
tual output of the network and not on the target output values. At each epoch. the
current training subset is discarded and a new subset Dy is selected with training

patterns. The training set Dy is then used for training.

The algorithm for SLA is summarized below:

1. Initialize weights, learning rate and momentum.
2. Calculate the output og’ ) of the network for each pattern p. Then. calculate
next-time-changes as

\Ifim = 02})4»1) e Oi}:‘) s Vp € DC

3. Separate patterns into a small-time and a large-time-change set:

— calculate the average next-time-changes:

N

V="p7

— divide the candidate patterns into the two training subsets:
Add all patterns p for which \1153’ ) > T to the large-change set

and all other patterns into the small-change set.

4. Select the actual training set Dy to consist of
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— 80% of the large-change set, randomly selected
— 20% of the small-change set, randomly selected.
5. Train the network for one epoch using Dr

6. Repeat steps (2 - 5) until the number of epochs exceeds the maximum nmunber

of epochs allowed.

The subset size depends mainly on the size of the large-next-time changes set. The
performance of the proposed algorithm is compared to the other algorithins aud the

results are discussed in the section 3.5

3.4.2 Sensitivity Analysis Incremental Learning Algorithm

The second algorithm to be studied is an incremental learning approach to active
learning which uses an output based selection criterion. referred to as sensitivity
analysis incremental learning algorithm (SAILA). SAILA is developed by Engelbrecht,
[Engelbrecht et al 1999a]. In SAILA, the most informative patterns are perceived as
those patterns that maximally influence the output of the NN in the presence of simall
input perturbations. First order derivatives of the output units with respect to the
input units are used to compute the influence the pattern has on the output value
of the function approximated by the network. Patterns with the highest sensitivity
cause the largest change in weights (large change in weights achieve maximum gain

in bringing the approximation closer to the true functionj. These patterns lie in

i’(}/,
oz

is calendated

the region of the peaks’ derivatives. Thus, the partial derivatives
for each input and output for each pattern. Training on such patterns vield Dhetter
generalization and faster convergence [Engelbrecht et al 1999a]. The sensitivity of

each pattern is determined by computing the informativeness of the pattern. as

o = max{S((f,g (3.

L
(A
S
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where

(3.3)

The larger the value of ®, the more informative that pattern is. Patteru(s) with

the largest absolute value of ®® are selected into Dy.

SAILA continues training on the training subset to achieve maximum gain from the
patterns before selecting additional patterns. At the same time, the network must
not be allowed to memorize the training subset. The network should therefore not
spend too much time on the current training set. SAILA uses the following subset

selection criteria:

1. The algorithm limits the number of training epochs on the current subset. The
criterion ensures that the NN does not train indefinitely on the subset. Eungel-

brecht limited the number to 100 in his implementation.

2. If the error on Dp, or the validation set Dy, decreases sufficientlv, a new subset
is selected for training. The criterion ensures that the NN achieves sufficient
gain on the current training subset before selecting additional patterns. In
Engelbrecht’s implementation, an additional pattern is selected into Dy as soon

as the error on the Dy or Dy decreases by 80%.

3. A new subset is also selected if the average decrease in error on Dy aud Dy
since training started on the current subset is small. The criterion will prevent

the learner from training on Dy with achieving too little gain.

4. If the error £y on the validation set increases too much, a new subset is selected.
The subset selection criterion prevents the NN from memorizing the current
training subset by triggering a new subset selection as sooun as overfitting of Dy

is observed.

The sensitivity analysis incremental learning algorithm is summarized below

[Engelbrecht et al 1999a:
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1. Initialize weights, momentum and learning rate. Initialize the subset size. Pg .
i.e the number of patterns selected from the candidate set Dq. Coustruct the

initial training subset Dg C D¢. Let Dy ¢ Dg, be the current training set.
2. Repeat
— Repeat
Train the NN on training set Dy
until a termination criterion on Dy is triggered (as discussed above).
— Compute the new training subset Dg,
*x For each p € D¢, compute the sensitivity matrix S(ZI L e for sigmoid ac-

tivation functions:

S

oz&z—f Z kfp)U_jz

* Compute the output sensitivity vector S(p ) for each p € D¢

b= lSl

+ Compute the informativeness ®) of each pattern p € D¢ using

p) — (p)
P = max {|S;%[}

* Find the subset Dg, of the Ps, most informative patterns as

Dg, + {p € Dc|0® = qzlzl%k;jc{q)i?};‘v’q € Deynot yet sclected)

where Pe is the number of patterns remaining in De. Theu. let Dy

DT U DSS and DC ham DC‘ - DSS

until convergence is reached.

In Engelbrecht’s implementation, SAILA started training with one pattern. and s-

elects only one new pattern at each subsetselection interval. Although the subset
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selection criteria implemented by SAILA considers overfitting effect and generaliza-
tion of the network, the cost of selecting patterns in SAILA could be high. Because
SAILA has more criteria to implement when selecting new patterns for training. Re-
sults of SAILA when applied to function approximation and time series problems are

presented in the section 3.5.

3.4.3 Dynamic Pattern Selection

The third active learning algorithm studied is Robel’s dvnamic pattern sclection
technique (DPS). Unlike SAILA and SLA, DPS uses the error indication as selection
criterion. DPS is an example of incremental learning , where informativeness ol eacl
pattern is measured using the prediction error. The prediction error is computed as
(tgf ) _ ogf ))2. Patterns with the largest prediction error are the most informative and

are selected for training.

Training continues on the current training subset until the subset starts to overfit.
To measure overfitting, Robel defined the generalization factor p as

Ey

p= (Er + E¢)

where Eyv, Fr and E¢ are the error functions on the validation set. training subset
and the candidate training set respectively. By requiring that p < 1.0. overfitting is
prevented. A value of p greater than one means that the validation error is larger
than the training the training error, hence bad generalization. New patterus are
therefore selected into Dy when p grows bevond one. However, Robel discovered
that each pattern selected for training decreases the value of p to a minimun value
before p slowly increases again and therefore takes a long time to reach the value of
one. This means that the network will train too long on the current training subset
if only the selection criterion of p > 1.0 is implemented. Thus, new patterns are

also selected as soon as p reaches a minimum threshold value. For these purpose. a
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threshold ¢, is defined as

@5,3(6) - nlin{(‘bp(f - 1),-{5 + O-{M 10}

where £ is the current training epoch, p and o, are the average and standard deviation
of the generalization factor for M preceding epochs respectively. Robel used 100 for
the value of A/. The DPS algorithm selects new patterns whenever p(&) > &,(£):

p(€) is the generalization factor for the current training epoch.

The algorithm for DPS is summarized below:

1. Initialize the weights and set threshold ¢,(£) to one with £ = 1.

.3
2

2. For each pattern p in D¢, calculate the SSE as E®) = 8 (+7) — oy

3. Select pattern(s) with the highest error E®) into Dy and remove the selected

pattern(s) from De.
4. Train the network.

5. If the number of epochs exceeds the maximum number of epochs or the error

limit has been reached, stop training.
6. Calculate the generalization factor p = "%

7. if p is greater than ¢,(&), then set ¢,(& + 1) = min(p(£), 1.0) and repeat from
step (2), otherwise set ¢,(§ + 1) = min{¢,(£), 7+ 0, 1.0} and repeat from step
(4).

Roébel used a subset size of one pattern and selects a pattern when the subsetselection
criterion is triggered. The online cross validation technique is used to check for the
generalization. That is, a separate data is used compute the validation error of the
network. Additional overhead is incurred in DPS for implementing the cross valida-
tion technique. If the training data is limited, having a separate set for validation

may not be feasible.
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While the selection criterion is easy to compute, performance degrades if the training
data have outliers and noise. Outliers will be selected as the most informative pat-
terns, since these patterns have the maximum prediction errors. The network is then
biased towards the outliers. Consequently, the ability of the network to geueralize

deteriorates. Results of DPS when implemented are discussed in section 3.5.

3.4.4 Accelerated Learning by Active Example Selection

The last algorithm to be studied is accelerated learning by active example selection
(AL) proposed by Zhang [Zhang 1994]. AL is an incremental learning approach.
AL selects as the most informative patterns, those patterns that have the maximumn
2

prediction error, where the prediction error is computed as (¢ — o)

New patterns are selected for training when the error on the training subset is reduced

to a specified performance level k, where & is computed as

I+ K)
T

7 is the allowable error per connection. Zhang suggested a value of 7 € [100. 200]

Zhang motivates the selection criterion on the fact that the learning capacity of a NN
is proportional to the total number of adjustable connections in the network. which

is J(I + K) [Zhang 1994].

The algorithm for Zhang’s accelerated learning is

1. Initialize weights to small random values.

2. For each pattern p in D¢, compute the SSE as

K

N2

E® = Z (,}Ef} _ Ofc;))
k=1

3. Select pattern(s) with the highest error into Dy and remove from D,



UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

&
W UNIVERSITEIT VAN PRETORIA
Qe

CHAPTER 3. ACTIVE LEARNING 62

4. Train the network.

5. If the maximum number of epochs is exceeded or if the error limit Las heen

reached, stop training.
. 2
6. Compute 5 = 5 and SSE on Dy as Er = SR Iy (1P — oy,

7. If k < Er then repeat from step (2),

otherwise repeat from step (4).

Even though AL’s subset termination criterion is less complex and easyv to compute.
AL does not test for generalization of the network. Overfitting mayv therefore still
oceur. The subselection termination criterion depends on the architecture of the
network being trained. If the wrong architecture is selected (either undersized or
oversized) this criterion may not perform well. Due to the selection of patterus with
the largest prediction error, the performance of AL may deteriorate in the presence

of outliers and or noise.

The results and performance of AL are discussed in section 3.5.

3.5 Experimental Results

Four approximation and times series problems of varying complexity were used to
test the performance of SLA, SAILA, DPS and AL. These problems differ in input
dimensions and the number of hidden units needed to train the network. Table 3.1
shows a summary of the NN architecture used for these problems. In table 3.1. the
architecture of a NN is referred to as [-J-K where [ is the number of input units, .J
is the number of hidden units and K is the number of output unit i.e. the notation

2-5-1 means two input, five hidden and one output units are used.

All the available data was split into three sets: the candidate training set Dg.. vali-

dation set Dy and generalization set Dg. The three sets were randomly created such
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Problem H Equation | Po-Pg-Py l Architecture

F1 (3.3) 600 -200-200 | 2-5-1
TS1 (3.4) 600-200-200 | 1-5-1
TS2 (3.5) 600-200-200 | 2-5-1
TS3 (3.6) 140-60-60 10-10-1
TS4 600-200-200 | 2-5-1
TS5 600-200-200 | 2-7-1

Table 3.1: Summary of the functions and time series used

that

DecnDy =

DecNDg =

=2 s =

DN Dy =

Let Pc be the number of training patterns in D¢, Py the number of training patterns
in Dy and P; the number of patterns in test set Dg. Table 3.1 shows the size of
these sets for each problem. D¢ is the candidate training set from which training
patterns are selected. Dy contains data used to determine the generalization factor
during training. Dg contains data used to determine the generalization perforimance

of the network.

The performance of the active learning algorithms was tested on clean and noisy
data, as well as data containing outliers. Section 3.5.1 explains the experimental
procedure, including a discussion of the performance criteria used to compare the

learning algorithms. The results are compared in section 3.5.2.

The characteristics of the functions and time series used for experimentation are

discussed next. The following functions and time series were used:

1. Function F'1 is defined as (see figure 3.1(a))

1, . .
F1:F(z,2) = E(zf + 23)

.
(]
i

—’
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o

where z;, 29 ~ U(—1,1). All target values were scaled to the range [0.1.
Time series TSI is a sine function defined as (see figure 3.1(b)),

TS1: F(z) = sin(212)el =% + ¢ (3.5)
where z ~ U(—1,1) and ( ~ N(0,0.1). Target values were scaled to the range
[0,1].

Time series TS2 is the henon-map function defined as (refer to figure 3.1(c¢)),

TSQIOt = Z

Zt

Il

1+0.32-0 + 1.4z (3.6)

where 21,2 ~ U(=1,1). The target values were scaled to the range [0.1].

. Time series TS3 is a difficult time series, having 10 input parameters of which

7 are irrelevant (see figure 3.2(c)).
TS53: Oy — Z
z = 03z.6—06z_4+05z_,+0327 4 —0.222 , +( (3.7)

for t = 1,---,10, where 24, z,20 ~ U(—1,1) aud {; ~ N(0,0.05). All target

values were scaled to the range [0,1].

. Time series TS4 is a convolution of two discrete functions with outliers. Fig-

ure 3.2(a) shows an illustration of this function.

. Time series TS5 is the sine function TS1 with 5% of the candidate training set

consisting of outliers (see figure 3.2(b)).

3.5.1 Experimental Procedure

In order to obtain statistically valid assertions in comparing experimental results of

the four learning algorithms, thirty simulations were performed for each problem.
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Figure 3.1: Function and Time series problems to be approximated
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Online training was used for the active learning algorithms. The initial subset size
for incremental learning algorithms consisted of one pattern and a subselection size
of one pattern was used. Each simulations was executed for 2000 epochs. A learning
rate 0.1 and momentum 0.9 were used for all the approximation problems . Results
reported are averages over the 30 simulations together with 95% confidence inrervals

as obtained from the t-distribution.

The selective learning algorithm was not applied to F1, since F1 is not a tine series
problem. The 7 value used 1n the subset selection criterion for AL was adjusted
for each problem using a trial and error approach. For TS3, a high 7 was used
(7 = 1000), a value of 100 was used for TS1, TS4 and TS5 while a value of 180) was
used for TS2 and F1.

Performance measures
To evaluate the performance of each learning algorithm, the following performance

criteria were used:

1. The mean squared error (MSE) was used as a measure of accuracy. The MSE
measures how well a function is approximated by the network, and is defined as

P «K ) (2
2op=1 Dok=1 (tgf) - in))

A e
15E 2K P

A MSE value close to zero shows a small error between the target and the
output function. The MSE over the three sets Dy, Dg and D¢ were comput-
ed. The MSE over D¢, denoted by Eg provides an unbiased estimate of the
generalization error since the patterns in Dg were not used for training.

2. Robel’s generalization factor p was used to measure overfitting etfects. The

generalization factor was computed as p = %‘C— where FE. is the MSE over

candidate training set Do and Ey is the MSE over the validation set Dy-. A

network overfits when the value of p increases substantially above 1.
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3. The computational complexity of learning algorithms was also used as perfor-
mance criterion. For the purpose of this thesis, computational cost is measured
as the number of calculations needed to train the network. Calculations include
subtraction, multiplication, addition and division.

At any epoch &, the cost Cy. of training a NN on a training set, is expressed as
Cfc = (CV -+ Cw) * Pr

where Cy is the cost of updating weights between input and hidden units and
Cw is the cost of updating weights between hidden and output units. 7 is the
number of patterns in the training subset Dp. For conventional backpropagation
with fixed set learning, Pr = Pr. Thus the cost of training Cyy is computed as

Cfst = (CV + CW) * Pc.

The costs of updating the weights are calculated as

CV = CU*UV\/)
Cw = Cyx (NW)

where C, is the cost of updating a single weight between the input and hidden
layers, C, is the cost of updating a single weight between the hidden and output
layers. Cy is the total cost of updating the weight connections hetween the
input and the hidden layers, and Cy is the total cost of updating the weight
connections between the hidden and output layer. Ny is the total nummber of
connections between the input and hidden layers and Ny is the total number

of connections between the hidden and output layers.

The total number of connections Ny and Ny are expressed as

1\7‘/ = (I + 1) * (J + 1)

Ny = (J + 1) * (1’()

and
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C, =11

Therefore,

Cy = 1B3x({I+1)x(J+1)
Cw = 11x(J+1)xK (3.8)

The cost of training a network using any active learning algorithm includes C'...
the cost of selecting patterns for training and the cost of computing the subset
termination criterion. Therefore, at any epoch &, the cost of training a network

using SLA, SAILA, DPS and AL are:

Csr = Cre+Cyox Po
CDP = Cfc + Cdps * (PC - PT) + (05(1,,5 * PT)
Car, = Ci+Cqyx*(Pc— Pr)+(Cs, * Pr)

Csa = Cfc+Csai*(PC_PT)+(CS '*PT)

sat

For all the incremental learning algorithms, the subset selection criteria are
tested on the remaining patterns in the candidate set D which is equal to Pp—
Pr. Also, for incremental learning algorithms, an additional cost of selecting
pattern is incurred when a pattern is selected.

Csp, Csa, Car, and Cpp are the cost of training a network using SLA, SAILA.
AL and DPS respectively. Cy, = 15 is the cost of computing the subset selection
criteria for SLA, Cy,s = 11 is the cost of computing the subset selection criteria
for DPS, Cy = 4 is the cost of computing the subset selection criteria for AL

and C,,; = 18 is the cost of computing the subset selection criteria for SAILA.

Cs,,e =2, Cs,, = 2 and Cs,.. = T are the cost of selecting patterns into Dy for

sal

DPS, AL and SAILA respectively.

Therefore,

Csp = Cfc+15PC
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Cpp = Cfc*i-ll(Pc“"PT)*’rZPT
CAL = Cfg+4(P(;—PT)+2PT

Csa = CyoxPr+18(Pc— Pr)+7Pr (3.9)

From equation (3.9), the cost of training is directly proportional to the number
of patterns selected for training. The more patterns are selected for training. the
higher the computational cost. Initially, Pr for SLA is greater than the other
algorithms because DPS, AL and SAILA are incremental learning algorithm
and a small initial trainig set and subset size is used in the simulations. Thus,
Csp is expected to be greater than Cy4r, Cpps and Cgy initiallv. SAILA is
computationally more expensive in selection criteria than the other algorithms
because SAILA has more subset selection criteria to implement than the other

algorithms.

Section 3.5.2 illustrates the costs for the different algorithms.

3.5.2 Results

This section presents the results of the simulations carried out on the active learning

algorithms.
Training error

In order to compare the performance of the four active learning algorithms. the
MSE over the candidate set Do was computed for the simulations and the average
calculated. Tables (3.2) and ( 3.3) show the result over 2000 epochs for c¢lean data

and data with noise and outliers.

For TS1, DPS had a very low error with the lowest variance which means that all
the errors of the simulations for DPS were all closer to the average error of 0.0003.
Although, SLA had a low error as well. However SLA had a large variance when

compared to DPS. AL had the largest error with a very large variance.
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DPS achieved the smallest error for TS2, having a small variance. For TS3. all the
algorithms had very low errors but SAILA had a high variance. DPS Lad the sinallest

error for F1 with a very small variance.

For TS4 and TS5, SLA achieved the smallest error with the lowest variance. AL Lad
the largest error for TS4 and TS5. This is because AL selected and trained on just
a single pattern for TS4 and an average of 4 patterns for T'S5. Thus AL. had high
errors for TS4 and TS5.

The training errors for all the problems with noise and outliers were larger ( x10?)
than for problems with clean data. DPS had the lowest average error for clean data

while SLA had the lowest error for noisy data.
Generalization error

To compare the generalization ability of the four active learning algorithms. the MSE
over the generalization set, E, was computed and the average over the 30 simulations
was plotted as a function of number of epochs. Figures 3.3 and 3.4 illustrates the

trend of the generalization errors for the entire training period.

DPS achieved a very low average error faster than the other algorithms for F1 (refer
to figure 3.3(a)). However, both SAILA and AL achieved a comparable result to
DPS at epoch 1000. From table 3.3, DPS had the lowest error with the a verv small
variance (5.07F — 05) which means all errors of the simulations are closer to the

average.

For TS1, SAILA initially had the highest generalization error but decreased to a low
level of error (see figure 3.3(b)). SLA initially had the lowest average error. which
can be explained by the fact that SLA used more patterns initially than the other
algorithms (refer to figure 3.7(b)). Although SLA and DPS had small errors. DPS
had the smallest variance and thus DPS achieved the smallest error. AL had the

largest error after 2000 epochs with a large confidence interval.

For TS2, DPS, AL and SLA achieved a very low average error before epoch 500.
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-1
[N]

Selective | Sensitivity

Function Robel Zhang | Learning | Analysis

TS1

Training Error | 0.00036 0.02172 | 0.00045 0.00346
+ + + +

0.00017 0.04186 | 0.00035 0.00712
Generalization (| 0.00039 0.02241 | 0.00047 0.0035

+ + + *
0.0002 0.04191 | 0.00040 0.00737
Used Patterns || 485.43 4.73 270.93 071.67
+ + + +
234.79 0.92 3.48 88.91
TS2
Training Error || 0.00014 0.00023 | 0.00029 0.00126
+ + + +

0.00011 0.00021 | 0.00038 0.00163
Generalization || 0.00012 0.00022 | 0.00029 0.00129

+ + + +
0.25FE — 05 | 0.00019 | 0.00037 0.00169
Used Patterns | 411.77 174.63 | 272.57 522.57
* + £ +
215.87 61.48 7.61 173.37
TS3
Training Error || 0.00039 0.00044 | 0.00050 0.00068
+ + + +

0.00086 0.00091 | 0.00085 0.00146
Generalization || 0.00275 0.00253 | 0.00302 0.00225

+ + + +

0.00155 0.00133 | 0.00138 0.00174
Used Patterns || 180 180 78.17 180

+ + + *+

0 0 1.53 0

Table 3.2: Comparison results over 2000 epochs for times series problems
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Selective | Sensitivity
Function Robel Zhang | Learning | Analysis
F1
Training Error || 0.000226 0.000412 0.000791
+ + +
5.07F — 05 | 0.000366 0.001852
Generalization || 0.000221 0.000392 0.000764
+ + +
5.2FE — 05 | 0.000347 0.001624
Used Patterns || 320.2 82.8 445.1333
+ + +
167.6698 32.37935 121.476
TS4
Training Error || 0.01141 0.19935 | 0.00516 0.02828
+ + |+ +
0.00573 0.03093 | 0.00393 0.09522
Generalization || 0.01077 0.19051 | 0.00478 0.02739
+ + + +
0.00534 0.02169 | 0.00349 0.09170
Used Patterns | 493.03 1 245.23 597.03
+ + + +
193.37 0 7.89 27.41
TS5
Training Error || 0.00683 0.10278 | 0.00155 00.005662
+ + + +
0.00468 0.08731 | 0.00158 0.00768
Generalization || 0.00714 0.09904 | 0.00158 0.00595
+ + + +
0.00489 0.08932 | 0.00142 0.00842
Used Patterns || 103.5 4.67 269.13 584
+ + + +
20.14 1.35 | 9.89 93.4

Table 3.3: Comparison results over 2000 epochs for problems F1 and times series with
noise and outliers
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Figure 3.4: Average generalization error vs epoch

SAILA was slower to achieve a comparable low error but SAILA had a low error by
the end of training. From the table 3.2, DPS had the smallest error with a verv small
variance after 2000 epochs, implying that all errors of the simulations are closer to

the average.

For TS3, the generalization error for all the algorithms increased as the nnmber of

epochs increased except SAILA (see figure 3.3(c)).

From the table 3.3, SLA had the lowest generalization errors for TS4 and TS5. While
AL had the largest error for TS4 and TS5. AL did not learn the functions (refer to
figure 3.4(a)). AL selected a few patterns for training, thus had little information

about the time series to be approximated and therefore AL had a bad generalization.

DPS had the lowest generalization errors for functions with clean data while SLA had
the lowest generalization errors for functions with noise and outliers. Although DPS
had better generalization with clean functions than SLA, DPS used more patterns
than SLA to achieve the low generalization error in all the problems. AL had very

large generalization errors for TS1, TS4 and TS5. This bad generalization can be
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attributed to the extremely small training set sizes used by AL which is an indication
of an inferior subset selection criterion. The subset selection criterion depends on
the number of connections in the network. Redundant or irrelevant weights in the
network will make the value of the performance level x verv large which can cause
the network to train on the current training subset Dp too long without selecting
additional patterns. Thus the network selects a few patterns, hence having insutticient
information to train the network. On the other hand, too few weights in the network
can make « small. Thus, the network selects patterns more often than are needed

for training.
Overfitting effects

The average generalization factor p for all the problems were computed over the 30
simulations. Figures 3.5 and 3.6 show the charts for the average generalization factors.
The average generalization factors were plotted as function of pattern presentations.

A pattern presentation represents one weight update.

TS3 was the only function for which all the algorithms except SAILA. overfitted.
SAILA had an average generalization factor of less than one, while the other algo-
rithms had high generalization factors. For the entire training period for TS4. AL
had a generalization factor constantly larger than 1, indicating that AL overfitted
TS4. For the other functions, the average generalization factor values Huctuated.
The flunctuation is due to the overfitting of a training subset until new patterns are
selected for training. When new patterns are selected, the overfitting of the training
subset is reduced. The average generalization factor for all the algorithms (except

TS3) were slightly over one, and indicating a mild case of overfitting.

Computational costs

The computational costs for AL, DPS, SLA and SAILA were computed using e-
quation (3.9) for specified epochs. The costs are plotted as a function of epochs as

illustrated in figures (3.9) and (3.10).
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SAILA has the most expensive and AL has the least expensive subset selection cri-
teria. However, AL performed badly (refer to tables 3.2 and 3.3). For all the ap-
proximation problems, DPS, AL and SAILA had increasing costs because thev are
incremental learning algorithms.

(refer to figures (3.7) and (3.8)).

More patterns were used as training progressed

For F1 and TS2, AL had the smallest cost (see figure 3.9(a) and (b)). Thesc small
costs can be attributed to the cheap cost of the subset selection criterion as well as

the fact that AL used the smallest number of patterns for training.

Despite the fact that AL has the cheapest subset selection criterion and a simple
selection criterion, AL had the highest cost for TS3. This is because AL selected all
the patterns in D¢ within a short training interval (by epoch 400). SLA initiallv had
the highest cost (first 350 epochs). However, at epoch 1000, the cost was half of the

other algorithms.

For all the functions approximated, SLA initially had a higher training cost than the

other algorithms - almost four times the training cost of other algorithms. because
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Figure 3.8: Average number of patterns used per epoch

SLA is a selective approach (see figure (3.9) and (3.10)).

From tables (3.2) and (3.2), SLA used less number of patterns after 2000 epochs

than the other algorithms, thus SLA was computationally less expensive.

Convergence

The convergence performance of the four active learning algorithms are compared in
figures 3.11 and 3.12. These figures plot the percentage of simulations that rcached

specific generalization errors.

For F1, DPS had the best convergence, all the simulations converged to a very low
error of 0.0004. AL also had a good convergence, more than half of the simulations

converged to 0.0004 (refer to figure 3.11(a)).

None of AL’s simulations converged to the specified error level for TS2. SLA and DPS
achieved good convergence for T'S2, as more than half of their simulations couverged

to a low error (refer to figure 3.11(b)).

For TS2, DPS had the best generalization, most of all the simulations converged to a
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Figure 3.9: Average computational cost per epoch
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Figure 3.10: Average computational cost per epoch

very low error (0.0002). SLA and AL also had good convergence (see figure 3.11(c)).

While the other algorithms had few converged simulations at 0.002. almost hLalf of

SAILA’s simulations converged to this error (refer 3.11(d)).

AL had bad generalization for TS4 and TS5. None of AL’s simulations couverged to

the specified error levels for TS4 while only a few converged for TS5.

SLA had the best generalization for TS4, with all the simulations converging to a
low error of 0.004 (refer to figure 3.12(a)). SAILA had a good convergence with 40%
of the simulations converging to this error of 0.004. Only a few of DPS’s simulation

and none of AL’s simulation converged at this point.

SLA also had the best generalization for TS5. Almost all the simulations (74%)
converged to a error level of 0.005 while only a few of the other algorithis simulations

converged to this error level (see figure 3.12(b)).

SLA had the best convergence for data with outliers and noise. DPS had the best con-

vergence for clean data, although SLA had good convergence for clean data. SAILA
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had a good convergence for TS3. For all the sine functions (TS1. TS4 and TS5). AL
had bad convergence, none of its simulations converged to the specified error level-
s. The errors specified for data with outliers and noise were larger than the errors
specified for clean data. This is because the performance of all the algorithis were

degraded in the presence of noise and outliers.

3.6 Conclusion

The objectives of the chapter were to present a new learning algorithm (SLA) aud also
to compare four active learning algorithms with respect to their accuracy, convergence
and the complexity on both clean and noisy data as well as overfitting effects for the

problems were also examined.

The results presented showed that AL was unstable, producing good results for the
henon-map and F1 only. The bad training behavior can be attributed to the extreme-
ly small training set sizes used by AL, which is an indication of an inferior subset

selection trigger.

DPS and SLA performed very similar on the clean data, while SLA outperformed all
the other algorithms on the noisy and outliers training data. The sensitivitv analvsis
approach (SAILA) performed well under the occurrence of outliers and noisy time
series, and very well for the complex function TS3. SAILA performed hetter than
AL in TS1, TS4 and TS5, but worse than SLA and DPS. SAILA is computationally

more expensive, requiring larger training subsets than the other algorithms.

As is expected, the performance of the error selection approaches degraded nnder
the occurrence of outliers and noise. The degradation is due to the early selection of

outliers, since outliers result in the largest prediction errors.

The comparison above showed that SLA had the best generalization performance. and

lowest complexity. The selective learning approach (SLA) produced better accuracy
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Figure 3.11: Percentage simulations that converged
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than the other approaches, and showed to be more robust in the occurrence of outliers

and noise.





