
Chapter 3 

ACTIVE LEARNING 

One of the goals when designing and training a neural network is to rnaximiz(' or to 

improve generalization, which is, the ability to give accurate response to datil that 

the NN has not seen as part of the training process. In conventional backpropagatioll 

learning, all the available data are presented to the network for training. Leamiug on 

all the training data can be quite problematic especially when there are Iwlnndallt 

data in the training set. The computational cost of training t.he net\vork ill terms of 

training time can become high, especially if these redundant data are incl1lded in the 

training set. 

Studies have shown that selecting the most informative data for tl'aiuillg rather 

than presenting all the available data to the network improves, or at least main­

tains the generalization performance. Selecting data for training also Iwluces 

training time and the data needed for training [Zhang 1994, Plutowski d 0.11993. 

Engelbrecht et al1998, Engelbrecht et al1999a. Robel 1994a]. 

This chapter discusses the concept and advantages of using of actiw jpa.millg. The 

objective of this chapter is to present a new selective learning algorithm and also 

to compare this new algorithm with three additional active learning algorit.hllls with 

reference to their respective generalization performance, overfit.ting chantcleristics. 
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computational complexity and convergence characteristics. 

3.1 Introduction 

There have been vanous research efforts on improving the learning of 

BPl\l\s. These research efforts include finding optimal weight initialization 

[Rumelhart et a/1986]' optimal learning rate and momentum [Plant d al1986 , 

Weir 1990, Yu et aI1997], finding the optimal architectures [Le C1111 1990. 

Kamin 1990, Hirose et a11991, Pelillo et a11993, Engelbrecht ret o,l19961: llsing sec­

ond order optimization techniques [Becker et a11988], adaptive activatiolJ fnnc­

tions [Zurada 1992a, Engelbrecht et o,l1995, Fletcher et o,l1998] and active learn­

ing [Zhang 1994, Engelbrecht et a11999a, Engelbrecht et al1998, Robel 1994<1]. This 

chapter concentrat.es on active learning as an approach to improve perforlu<lnee of 

NNs. Active learning is a technique in which patterns t.hat have the highest iutillPnce 

on weight changes are dynamically selected by the NN learner from a candidatp set of 

training patterns. The network utilizes current attained knowledge about the tasks 

to be learned as encapsulated in the current weights to seleet the most iuformative 

training patterns. There are two main approaches to aetive learning: 

- Incremental learning, where patterns are seleeted and removed from a can­

didate training set. The seleeted patterns are added or injeeted into the actual 

training set. The effect is that the actual training set grows as trai11ing pro­

gresses, while the candidate training set. is pruned. 

Selective learning, where a subset of the training patterns that sarisf? a 

selection criterion is selected from a candidat.e training set and used for training. 

Unlike the incremental learning, the candidate training set is not prlllH'<i. At 

each pattern selection interval, all the patterns in the candidate set haw' a 
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chance to be selected. The candidate set remain fixed while the SlZ(' of the 

actual training set varies from time to time. 

A brief outline of this chapter is as follows: Section 3.2 discusses tlw cOlJ('ept of 

active learning and section 3.3 presents a general algorithm for act.ive leaming. A 

new selective learning strategy for time series problems is presented ami cOlllpared 

with three other active learning algorithms in section 3.4. Section 3.5 presentt-i l'<'t-iults 

obtained from the different learning algorithms. Finally, section 3.6 highlightt-i the 

conclusions, comments and observations. 

3.2 Concept of Active Learning 

Active learning has emerged as an efficient alternative to improve tIlE' performance of 

multilayer layer NNs. Active learning refers to the selection of a subset of til(' Hyail­

able training data dynamically during training, where the subset cont.ains tIl(' lllost 

informative data. The objective of active learning algorithms is to identih·. <\lH 1train 

on the most informative patterns in a candidate training set. Active leamiug effi­

ciently selects optimal training patterns from available training patterns for training 

the network. Efficiency refers to the complexity of the pattern selection mechanism 

which should be minimized. Optimal patterns are patterns that haw Ut-idlll infor­

mation about the current state of the network and such patterns bring the uptwork 

closer to the target funct.ion. The network plays an active role in data t-ieiPctiOll. 

Rather than being a passive learner, the network utilizes information bat-ied 011 its 

current state to gather useful information for further training. 

Active learning addresses two fundamental questions: 

\Vhich of the patterns should be selected for training from the candidat(' S(·t? 
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When should an additional set of patterns be selected? 

Answers to these questions have resulted in the design of diflerent approach­

es to active learning. These approaches mainly use the error in prediction as 

selection criterion [Cohn 1994, Robel 1994a, Zhang 1994, Plutowski et oJ 19£):)] or 

changes in outputs due to perturbations in input parameters [Engelbrecht et a11998. 

Engelbrecht et al1999a, Engelbrecht et alI999c]. Pattern selection has lwen the fo­

cus of many researeh. Infact, aetive learning has been called various names Hlleh as 

query learning, incremental learning, selective learning and dynamic pattern selec­

tion. All these terms refer to the same basic concept of selecting a subset of tlH' most 

informative patterns from the candidate training set, Active learning algoritlulls aim 

at: 

Improving, or at least maintaining the generalization ability of the network. 

Reducing the cost of training the network in terms of the number of patterns 

needed for training. But selecting these patterns should not exceed the gain in 

computational cost reduction achieved by reducing the training set size. 

Improving the speed of convergence. Convergence is the abilit," to achi(,H~ cer­

tain generalization levels. Active learning aims at increasing tlH' probahility 

that the network will converge to given generalization levels, and doillg so ill as 

less time as possible. 

Section 3.2.1 presents an overview of different approaches to active learning. 

3.2.1 Overview on Active Learning 

Plutowski and \Vhite used error in prediction as their selectioll criterion 

[Plutowski et alI993]. The integrated squared bias (ISB) is used as the ('nor ter­

m. Patterns that maximize the decrement in the ISB of the network resulting from 
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adding such patterns to the training subset are selected for training. Ac1ditiollill pat­

terns are selected when the training error on the current training subs(~t is sllfficinltly 

small. While Plutowski and \\ihite used the bias term of the MSE as tIl(' s('l('('tioll 

criterion, Cohn used the variance term of the MSE [Cohn 1994]. In this cns(" the 

most informative patterns are those that maximize the change in variance of tlw net­

work resulting from adding these patterns to the network. The learner (N::\) sdects 

an additional training pattern at each time step, or epoch. In Mackay'S algorithm, 

information theory was used to select patterns for training [Mackay 1992]. Howpwr, 

Mackay applied his active algorithm within bayesian framework. Fukumizll select­

ed patterns that minimize the estimation error i.e. the expected value of til!' :VISE 

[Fukumizu 1996] for training. Sung et al also used the error function as their selec­

tion criterion, but they considered both the bias and variance term [Sung et al 1996]. 

Patterns that minimize the expected misfit, i.e. the total output uncertaint? JlPt,veen 

the target and the estimated target function are selected for training. Seung d al 

developed an active learning algorithm which they called Query by Comrnitt(~t' (QB­

S) [Seung et aI1992]. In QBC, the degree of disagreement among the COllllllitt(~e of 

learners (students) serves as an estimate of information value. The query r.hilt, has 

the maximum disagreement among the committee of learners is chosen for traiuing. 

That is, QBC selects an input classified as positive by half of the committef' amI neg­

ative by the other half. Freund et al presented a more complete and general analysis 

of QBC using the batch training algorithm [Freund et aI1997]. Hara et al applied an 

active learning algorithm to pattern classification problems [Hara et al 1988]. Pat­

terns selected for training are those patterns that are close to the bouudary of the 

pattern classes. Cohn et al combined active learning with statistical models (gaussian 

and weighted regression) [Cohn et al1996] Patterns that give the Imvest (~xppcted 

model variance are selected for training. 
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Similar to Plutowski et al, Sung and Cohn, Zhang used the error in prcciictioll as s<'1c('­

tion criterion [Zhang 1994J. Patterns whose addition cause the maximum approxima­

tion error to the network, are selected for training. However, the relative val11(, rather 

than the absolute value of the error term is used. Robel used the same enol' criterion 

as Zhang in selecting the most informative patterns for training[Robpl 1994aj. Riibel 

and Zhangs' algorithms only differ in the criterion that triggers the subset sekctioll. 

Training on the current subset continues until some criteria are triggered (n~fel' to 

section 3.4). 

The change in outputs due to perturbations in input parameters C<Lll also 11sed 

as selection criterion. Engelbrecht proposed an active learning algorithlll vdlere 

patterns with the highest influence on the outputs are selected for training 

[Engelbrecht et a11999aJ. First order derivatives of the output units with n~spect 

to the input units are used to quantify the influence a pattern has on the omputs. 

Another active learning algorithm that uses output perturbation as selectioll criteri­

on is the selective learning algorithm (SLA) [Engelbrecht et al 1999c]. dpvel()]J(~d in 

this thesis. Patterns that influence the output most are selected mol'(" for trailling 

than patterns that have little influence on the output. The influellce OIl the 01ltput 

is reflected in the next-time-change in output values. Thus, patterns that haH' the 

large next-time-change in output values are selected more into the curreut training 

set than patterns with small-time-change in output. 

This thesis selects four active learning algorithms based on their seledion (']'i1,eria 

for comparison. Two of these algorithms uses the error in prediction as sd('('tioll 

criterion while the other two algorithms uses changes in output as t.heir sel(~<:tioll 

criteria. The algorithms selected are: 

1. 	 error based criterion 

Accelerated learning using active learning, developed by Zhang 

[Zhang 1994J. 


Dynamic pattern selection (DPS), developed by Robel [R()b(~l 1994a]. 
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2. output based criterion 

Sensitivity analysis incremental learning (SAIL.L\), d(~vploped In- Ellgel­

brecht [Engelbrecht et al1999a]_ 

Selective learning algorithm (SLA), developed in this thefiis. 

vVhile Cohn, Plutowski et al and Sung et al based their selection criteria OIl iuforma­

tion theory, Zhang has shown that their approach is similar to selection of pattprns 

using the prediction error as selection criterion [Zhang 1994]. Selectioll of p;lttf'rns 

using the largest error is computationally less expensive than using iufonnatioll the­

oretic approaches. For these reasons, this thesis chose the algorithms dewloppd bv 

Robel [Robel 1994a] and Zhang [Zhang 1994] in its comparison inst<~ad of tIl(' infor­

mation theoretic approach. The next section presents a general algorithm for active 

learning. 

3.3 General Algorithm for Active Learning 

This section presents a general algorithm for active learning and then disCUSSt~S the 

algorithm design issues. Let Dr be the current training set, which has all t.he p<ltterns 

selected for training, Dc be the candidate training set, which containfi all r.lH' £\yailable 

patterns and Dv be the validation set, \vhich contains patterns not 11s('d as part of 

training and is used to test for overfitting. 

A general algorithm for active learning is summarized below: 

1. Initialize weights randomly as in conventional back propagation. 

2. Select the most informative pattern(s) into training set DT from Dc 

- for incremental learning, add the selected pattern(s) into DT and remove 

them from Dc, 
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-	 for selective learning, select patterns into DT . 

3. 	 Train the network for a training interval (i.e. adjust the weights) usiug DT . 

4. 	 If the network has reached the desired accuracy or has reached tIl(' lllilximum 

number of epochs, stop training. 

5. 	 If a subset selection criteria triggers, repeat from step (2) 


otherwise repeat from step (3). 


A training interval maybe one epoch for online training or f epoch!'> if 1 latch training 

met,hod is used. 

Design issues in active learning algorithm 

\Vhen designing and implementing an active learning algorithm. some i!'>sm~s lww to 

be taken into consideration. One of these design issues is the number of patterns 

to select at each selection interval, referred to as the subset size. Although there 

is no heuristic to determine the size of the training subset. there are guiddines. 

For incremental learning, it is advisable to train with a small subset size hecause 

the subset grows during training. Selecting a small subset means patterus will be 

selected more often and thus increase the complexity of the network due to tlil' cost of 

selecting the patterns. But, selecting a large number of patterns during training mav 

defeat the aim of active learning, which is to reduce the number of pattems llPecied 

for training. Therefore, good selection criteria are desirable in selecting pattpI"lls 

that have useful information about the network. For selective learning, the sllbs(~t 

size depends on the selection criteria. Therefore, selection criteria an~ impmlant to 

ensure that the most informative patterns are selected for training. 

Another important issue to consider is when to select additional patterns. (hlP or 

more subsetselection criteria can be used. These subsetselection criteria !'>holllcl ('lmure 

that the NN does not train too long on a training subset because the network may 

overfit the training subset. The network should also train long enough to (lcquire 

maximum information on the current training subset. Different algorithms have 

 
 
 



CHA.PTER 3. ACTIVE LEARNING 

different subsetselection criteria. Patterns call be selected at each trailling epoch 

[Cohn 1994, Engelbrecht et al1999c]. This criterion can have high COll1plltfltiollal 

cost because the subset selection function is applied at each epoch. All altenl<ltive 

is to select at each (epochs. A reduction in computational cost will 1)(' a("hipn~d 

since the number of pattern selections is fewer. However, if the selection interyal E. is 

too large, overfitting of the training subset may occur. Patterns can also be sd(~cted 

using the error on the training and the validation set. New patterns are selpctpd into 

DT as soon as the error on the training or validation set reduces to a sppcifipd le,'P} 

[Zhang 1994, Engelbrecht et al1999a]. 

Another criterion is to select new patterns as soon as the network overfits tlw training 

subset [Engelbrecht et al1999a, Robel 1994a]. Different algorithms use <1. (Tit(~rion 

or combination of criteria to decide when to select additional patterns. The differ­

ent subsetselection criteria used for the four selected active learning algorithms are 

discussed in more details in section 3.4. 

3.4 A Comparative Study of Four Selected Active 

Learning Algorithms 

The objective of this thesis is to compare selected active learning algorithms with 

reference to generalization performance and computational complexity. For this pur­

pose, a new selective learning algorithm for time series problems developed ill this 

thesis, sensitivity analysis for incremental learning [Engelbrecht et al1999a]. d~'na­

mic pattern selection of Robel [Robel 1994a] and accelerated learning using active 

example selection of Zhang [Zhang 1994]' are compared with one another. This sec­

tion presents an overview and critique of these algorithms. 
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3.4.1 A New Selective Learning Algorithm 

Kohara presented an algorithm that performs pre-processing of the traiuilll!, set for 

time series problems [Kohara 1995]. Kohara's algorithm divides the tl'aiuilll!, fiet 

into two sets. The one set contains all training patterns that reflect larg<'-lwxt-time 

changes in the time series, while the other contains patterns that reflect slllall-llext­

time changes. Kohara's algorithm assumes one output unit and also assullled rl time 

ordering among the training patterns. Kohara uses target values to deterlllill!' IlPxt­

time changes. The next-time-change Y~) for output k is defined as 

Y (p) - t(p+l) - t(p)
k - k 'k 

The two training sets remain fixed during training. During training, patterns are 

more frequently selected from the large-next-time changes set than from tIl(' small­

next-time changes set. Therefore, Kohara's algorithm is not considered as all ac­

tive learning algorithm, because the neural network plays no role ill tlw selection 

of patterns. Kohara's approach is rather referred to as a training set lllalliplllation 

technique. 

A new output based selective learning algorithm is proposed in this thesis ]mspd on 

Kohara's algorithm. Instead of using the target values to COIlStruct the two training 

subsets, the actual outputs of the network are used. Therefore, next-time-change 

wr) for output k is defined as 

wr) can only be computed for the first Pc 1 patterns, where Pc is thf' Humber 

of patterns in the candidate training set Dc. The division of the original training 

set into large- and small-next-time changes sets is done after each selectioll illtprvaL 

which is one epoch. 
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More patterns (80%) from the large-next-time changes set are randomlv :..;(~Je('ted 

than from the small-next-time changes (20%) into the current training :";111>:..;('( Dr. 

In doing this, the two subsets reflect the current knowledge of the leanwr. ill that 

the set reflects what the learner perceives as large and small changes. lVloH' piltt.erns 

are selected from the large-next-day changes set, since these patterns ("olltaill thp 

most information about the characteristics of the time series. A large change in the 

output values, causes a large change in the the weights and a large challgp ill \n~ights 

means more information is gained in bringing the network's output do:..;pr to the 

target function (refer to weight update equations (2.13) and (2.16)). 

Active learning is introduced by calculating the next-tirne-changes based 011 Ihe ac­

tual output of the network and not on the target output values. ~;\t each e.poch. thp 

current training subset is discarded and a new subset DT is selected with training 

patterns. The training set DT is then used for training. 

The algorithm for SLA is summarized below: 

1. 	 Initialize weights, learning rate and momentum. 

2. 	 Calculate the output o~) of the network for each pattern p. The.IL calculate 

next-time-changes as 

'T'(P) - O(p+l) _ o(p) wED 
~ Ie - Ie Ie' vp C 

3. 	 Separate patterns into a small-time and a large-time-change set: 

calculate the average next-time-changes: 

L:Pc - 1 \]I(p)
\]I 	= --,p,-=_l___ 

P 1 

divide the candidate patterns into the two training subsets: 

Add all patterns p for which \}!~) > \]I to the large-change set 

and all other patterns into the small-change set. 

4. 	 Select the actual training set DT to consist of 
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80% of the large-change set, randomly selected 

20% of the small-change set, randomly selected. 

5. 	 Train the network for one epoch using DT 

6. 	 Repeat steps (2 - 5) until the number of epochs exceeds the maximulIl Illllllber 

of epochs allowed. 

The subset size depends mainly on the size of the large-next-time changes set. The 

performance of the proposed algorithm is compared to the other algorithms ilUel the 

results are discussed in the section 3.5 

3.4.2 Sensitivity Analysis Incremental Learning Algorithm 

The second algorithm to be studied is an incremental learning approach to active 

learning which uses an output based selection criterion. referred to as sellsitivity 

analysis incremental learning algorithm (SAILA). SAILA is developed by Engelbrecht 

[Engelbrecht et al1999a]. In SAILA, the most informative patterns are perceived as 

those patterns that maximally influence the output of the NN in thp presellCP of small 

input perturbations. First order derivatives of the output units with respect t.o the 

input units are used to compute the influence the pattern has on the output valne 

of the function approximated by the network. Patterns with the highest sensitivity 

cause the largest change in weights (large change in weights achieve maximulll gain 

in bringing the approximation closer to the true function). These pattpI'lls lip ill 

the region of the peaks' derivatives. Thus, the partial derivatives is calculated 

for each input and output for each pattern. Training on such patterns yi(~ld l)ptter 

generalization and faster convergence [Engelbrecht et al1999a]. The sellsitivit~' of 

each pattern is determined by computing the informativeness of the pattern. as 

<]?(p) = max{S(PJ} 	 ( ?,,). '))
-' -o.k 
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where 

5(1')
o,k 

-
-

~( OOk

iSl oz~p) 
)') (3.;3) 

The larger the value of <1>(1'), the more informative that patteI'll is. Pattern(:-,) with 

the largest absolute value of <1>(1') are selected into D T . 

SAILA continues training on the training subset to achieve maximum gaiu frum the 

patterns before selecting additional patterns. At the same time, the net\vork must 

not be allowed to memorize the training subset. The network should t.herefor~' not 

spend too much time on the current training set. SAILA uses the followillg suhset 

selection criteria: 

1. 	 The algorithm limits the number of training epochs on the current sllbs<'t. The 

criterion ensures that the NN does not train indefinitely on the subset. Engel­

brecht limited the number to 100 in his implementation. 

2. 	 If the error on DT , or the validation set. Dv , decreases sufficiently. a llew subset 

is selected for training. The criterion ellsures that the NN achieves sufficient 

gain on the current training subset before selecting additional pattf'l'lls. In 

Engelbrecht's implementation, an additional pattern is selected into Dr as soon 

as the error on the DT or D" decreases by 80%. 

3. 	 A new subset is also selected if the average decrease in error all DT and D" 

since training started on the current subset is small. The criterion will pn~vent 

the learner from training on DT with achieving too little gain. 

4. 	 If the error £v on the validation set increases t.oo much, a ne'w subset is selected. 

The subset selection criterion prevents the NN from memorizing t.he ('lll'rent 

training subset by triggering a new subset selection as SOOll as overfittillg of DT 

is observed. 

The sensitivit.y analysis incremental learning algorithm IS summarized below 

[Engelbrecht et aI1999a]: 
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1. Initialize \veights, momentum and learning rate. Initialize the subset siz('. p s., , 

i.e the number of patterns selected from the candidate set Dc. COllstrnct the 

initial training subset Dso C Dc. Let DT f-- Dso be the current trailliul!, set. 

2. Repeat 

- Repeat 

Train the NN on training set DT 

until a termination criterion on DT is triggered (as discussed aboY('). 

Compute the new training subset Dss 

* For each p E Dc, compute the sensitivity matrix S~~:ki for sigmoid ac­

tivation functions: 

J 
s(p) . = ,.(p)1 "" 'U'k .j(P)' V 

oz,kz . Ok L...- 'J Y.i JZ 
j=l 

* Compute the output sensitivity vector §~p2 for each p E Dc:, 

!}p) = IIS(p)11
D.k DZ 

* Compute the informativeness <I>(p) of each pattern p E D(, llsing 

* Find the subset Dss of the PSs most informative patterns as 

Ds f-- {p E Dcl(j)(p) = max {(j)(q)}'\fq E Dc not ypt s('ler-tcd} 
S • 00 q=I .....Pc 00' ., , 

where Pc is the number of patterns remaining in Dc. TheIl. kl DT f-­

DT U Dss and Dc f-- Dc Dss 

until convergence is reached. 

In Engelbrecht's implementation, SAILA started training with one patt0,rn. and s­

elects only one new pattern at each subsetselection interval. Althoug;h the SIl b8('t 
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selection criteria implemented by SAILA considers overfitting effect amI gelH'raliza­

tion of the network, the cost of selecting patterns in SAILA. could be high. D<'('clllse 

SAILA has more criteria to implement when selecting new patterns for trailliug. Rp­

suIts of SAILI\. when applied to function approximation and time series prohlpllls nn~ 

presented in the section 3.5. 

3.4.3 Dynamic Pattern Selection 

The third active learning algorithm studied is Robel's dynamic pattpfIl selection 

technique (DPS). Unlike SAILA and SLA, DPS uses the error indication as selection 

criterion. DPS is an example of incremental learning , where informativPlwss of pach 

pattern is measured using the prediction error. The prediction error is computed as 

(t~) - o~)( Patterns with the largest prediction error are the most informative and 

are selected for training. 

Training continues on the current training subset until the subset starts to nn~rfit. 

To measure overfitting, Robel defined the generalization factor p as 

p=---­

where Ev , ET and Ec are the error functions on the validation set. training suhset 

and the candidate training set respectively. By requiring that p :So 1.(1. owrfitting is 

prevented. A value of p greater than one means that the validation error is larger 

than the training the training error, hence bad generalization. New pattc~rus are 

therefore selected into DT when p grows beyond one. However, Ri)]wl dis('()vpred 

that each pattern selected for training deereases the value of p to a minimulll value 

before p slowly increases again and therefore takes a long time to reach th(~ \'1\lu(' of 

one. This means that the network will train too long on the current training subset 

if only the selection criterion of p > 1.0 is implemented. Thus, new pattems are 

also selected as soon as p reaches a minimum threshold value. For these purposP. a 
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threshold <Pp is defined as 

where ~ is the current training epoch, pand (Jp are the average and standard deviation 

of the generalization factor for ;vl preceding epochs respectively. Robel llsed 100 for 

the value of lvl. The DPS algorithm selects new patterns whenever p(O > (/)(1(0; 

p(~) is the generalization factor for the current training epoch. 

The algorithm for DPS is summarized below: 

1. 	 Initialize the weights and set threshold rPp(O to one with ~ = 1. 

2. 	 For each pattern p in Dc, calculate the SSE as E(p) = 'L"=1 (tiP) o;,P)( 

3. 	 Select pattern(s) with the highest error E{p) into DT and remove tlw sdpcted 

pattern(s) from Dc. 

4. 	 Train the network. 

5. 	 If the number of epochs exceeds the maximum number of epochs or the· (>ITor 

limit has been reached, stop training. 

6. 	 Calculate the generalization factor p = (E:J.~cJ 

7. 	 if p is greater than <pp(O, then set <pp(~ + 1) = min(p(O, 1.0) and l'CPPHt from 

step (2), otherwise set <pp(~ + 1) = min{ <pp((), p+ (Jp, 1.0} and repeat frOlll step 

(4). 

Robel used a subset size of one pattern and selects a pattern when the snbsetsf'ledioll 

criterion is triggered. The online cross validation technique is used to dH~ck fO}' the 

generalization. That is, a separate data is used compute the validatioll error of the 

network. Additional overhead is incurred in DPS for implementing the cross valida­

tion technique. If the training data is limited, having a separate set for validation 

may not be feasible. 
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While the selection criterion is easy to compute, performance degrades if the training 

data have outliers and noise. Outliers will be selected as the most informatiw pat­

terns, since these patterns have the maximum prediction errors. The Iletwork is then 

biased towards the outliers. Consequently, the ahility of the IH~twork to g<'ll('ralizp 

deteriorates. Results of DPS when implemented are discussed in section :3.,). 

3.4.4 Accelerated Learning by Active Example Selection 

The last algorithm to be studied is accelerated learning by active example sdpction 

(AL) proposed by Zhang [Zhang 1994J. AL is an incremental learning approach. 

AL selects as the most informative patterns, those patterns that have the lllilximum 

predictioIl error, where the prediction error is computed as (tip) 

New patterns are selected for training when the error on the training subset is reduced 

to a specified performance level K, where K is computed as 

J(I + K)
K = --'-__.Co.. 

T 

T is the allowable error per connection. Zhang suggested a value of T E [100. :?()OJ. 

Zhang motivates the selection criterion on the fact that the learning capacit\' of 11 NN 

is proportional to the total number of adjustable connections in the network. which 

is J(I + K) [Zhang 1994]. 

The algorithm for Zhang'S accelerated learning is 

1. Initialize weights to small random values. 

2. For each pattern p in Dc, compute the SSE as 

E(p) L
1\' 

(t~) o~))) 2 

k::::l 

3. Select pattern(s) with the highest error into DT and remove from Dc" 
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4. 	 Train the netvmrk. 

5. 	 If the maximum number of epochs is exceeded or if the error limit has been 

reached, stop training. 

. - J(I<+1) d SSE D.' E _ ""p ""r, (p) (1'))26. Compute fl. - an on T as T - L."p=l L."k=l tA' - OJ,. • .T 

7. 	 If fit. S; ET then repeat from step (2), 


otherwise repeat from step (4). 


Even though AUs subset termination criterion is less complex and eas~' to (·Olllpute. 

AL does not test for generalization of the network. Overfitting may therefoH' still 

occur. The subselection termination criterion depends on the an:hit.ect1ll'P of t.he 

network being trained. If the wrong architecture is selected (either undersized or 

oversized) this criterion may not perform well. Due to the selection of patterns with 

the largest prediction error, the performance of AL may deteriorate in the prpscm:e 

of outliers and or noise. 

The results and performance of AL are discussed in section 3.5. 

3.5 Experimental Results 

Four approximation and times series problems of varying complexitT \vere llsed to 

test the performance of SLA, SAILA, DPS and AL. These problems difh'I' ill input 

dimensions and the number of hidden units needed to train the network. Til hh~ :3.1 

shows a summary of the NN architecture used for these problems. III t.ahlp :Ll. the 

architecture of a NI\ is referred to as I-J-K where I is the number of input llnits~ .J 

is the number of hidden units and K is the number of output unit i.e. til<' llotation 

2-5-1 means two input, five hidden and one output units are used. 

All the available data was split into three sets: the candidate training set D( '. vali­

dation set Dv and generalization set Dc. The three sets were randomly cr('at(~d sHch 
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Problem II Equation! PC-PG-Pv I Ar'chitectun~ 
F1 (3.3) 600 -200-200 2-5-1 
TS1 (3.4) 600-200-200 1-5-1 
TS2 (3.5) 600-200-200 2-5-1 
TS3 (3.6) 140-60-60 10-10-1 
TS4 600-200-200 2-5-1 
TS5 600-200-200 2-7-1 

Table 3.1: Summary of the functions and time series used 

that 

DcnDv = 0 

Dc n DG 0 

DGn Dv 0 

Let Pc be the number of training patterns in Dc, Pv the number of training patterns 

in Dv and PG the number of patterns in test set D G . Table 3.1 shows the size of 

these sets for each problem. Dc is the candidate training set from which training 

patterns are selected. Dv contains data used to determine the generalizatioll factor 

during training. DG contains data llsed to determine the generalization perfonnance 

of the network. 

The performance of the active learning algorithms was tested on dean and nOISY 

data, as well as data containing outliers. Section 3.5.1 explains the exp('rillH~ntal 

procedure, including a discussion of the performance criteria used to COlnpare the 

learning algorithms. The results are compared in section 3.5.2. 

The characteristics of the functions and time series used for experirnentati()ll an.) 

discussed next. The following functions and time series were used: 

1. Function F1 is defined as (see figure 3.1(a)) 

(:3.4) 
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where Z1, Z2 U( -1,1). All target values were scaled to the range [O,lJ.rv 

2. 	 Time series TS1 is a sine function defined as (see figure 3.1 (b)) 1 


TS1: F(z) sin(27Tz)e(-z) +( 


where z rv U( -1,1) and ( N(O, 0.1). Target values were scaled to 111<\ rangerv 

[0,1]. 

3. Time series TS2 is the henon-map function defined as (refer to figure 3.1 (c)), 

TS2 : Ot Zt 

Zt 1 + 0.3zt - 2 + 1.4zt 
2 
_ 1 

where ZI, Z2 U( -1,1). The target values were scaled to the range (iLl].rv 

4. 	 Time series TS3 is a difficult time series, having 10 input parameters of yrhich 

7 are irrelevant (see figure 3.2(c)). 

TS3:o t Zt 

2 ~. 
Zt 0.3zt - 6 0.6zt - 4 + 0.5zt- 1 + 0.3zt _ G - 0.2zt _ + (f (3.7)4 

for 	t = 1"",10, where Z4, Z6, Z9 U( 1,1) and (t lV(O, 0.05). All t.arget rv 	 rv 

values were scaled to the 	range [0,1]. 

5. 	 Time series TS4 is a convolution of two discrete functions with outliers. Fig­

ure 3.2(a) shows an illustration of this function. 

6. 	 Time series TS5 is the sine function TSI with 5% of the candidate traiuing set 

consisting of outliers (see figure 3.2(b)). 

3.5.1 Experimental Procedure 

In order to obtain statistically valid assertions in comparing experimental I'(~s1l1ts of 

the four learning algorithms, thirty simulations were performed for each prohlern. 
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0.'-,-.'-'-'.a::---:-'."'-.6-..t........:'"".""'''-:"".2--'----'O.-2--'-----'".-"_-'-----l 


(a) FI (b) TSI 

Henon Map 

zIt) 

(c) TS2 

Figure 3.1: Function and Time series problems to be approximated 
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Online training was used for the active learning algorithms. The initial sllhs{~t size 

for incremental learning algorithms consisted of one pattern and a suhsrlectiol1 size 

of one pattern was used. Each simulations was executed for 2000 epochs. A learning 

rate 0.1 and momentum 0.9 were used for all the approximation probh~lns . n(~sults 

reported are averages over the 30 simulations together with 95%) confidence illl<TVals 

as obtained from the t-distribution. 

The selective learning algorithm was not applied to F1, since F1 is not a tinH' series 

problem. The 7 value used in the subset selection criterion for AL \va.s adjusted 

for each problem using a trial and error approach. For TS3, a high 7 \vas used 

(7 = 1000), a value of 100 was used for TS1: TS4 and TS5 while a valu{~ of It)O was 

used for TS2 and Fl. 

Performance measures 

To evaluate the performance of each learning algorithm, the following perfonnance 

criteria were used: 

1. 	 The mean squared error (:rvlSE) ,vas used as a measure of accuracy. Th<' lVISE 

measures how well a function is approximated by the network, and is (lefiuecl as 

2 
,"",I\: (t(p) - o{p))
L.."k=l k kli1SE 

21( P 

A MSE value close to zero shows a small error between the target and the 

output function. The MSE over the three sets Dv , Dc and De were COluput­

ed. The MSE over Dc, denoted by Ec provides an unbiased estirnate of the 

generalization error since the patterns in Dc were not used for training. 

2. 	 Robel's generalization factor p was used to measure overfitting effects. The 

generalization factor was computed as p , where Ee is the l'vISE over 

candidate training set Dc and Ev is the MSE over the validation set 1),·. A 

network overfits when the value of p increases substantially above 1. 
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3. 	 The computational complexity of learning algorithms ,vas also llspd as perfor­

mance criterion. For the purpose of this thesis, eomputational cost is llH'(\sun~d 

as the number of calculations needed to train the network. Calculatiolls illdude 

subtraction, multiplication, addition and division. 

At 	any epoch ~, the cost C fe of training a NN on a training set, is pxpl'Pssed as 

Cfc=(CV+CW)*PT 

where C\I is the cost of updating weights between input and hidden llnits and 

Cw is the cost of updating \veights between hidden and output units. PI' is thp 

number of patterns in the training subset DT . For conventional backpropagation 

with fixed set learning, PT Pc. Thus the cost of training C fsl is cornpnted as 

C fsl (Cv + Cw ) * Pc. 

The costs of updating the weights are calculated as 

Cv Cv * (Nv ) 

Cw Cw * (NHr) 

where Cv is the cost of updating a single weight between the input and hidden 

layers, Cw is the cost of updating a single weight between the hidden and output 

layers. Cv is the total cost of updating the \veight connections betW('('ll the 

input and the hidden layers, and C\v is the total cost of updating the weight 

connections between the hidden and output layer. ~Nv is the total llUluber of 

connections between the input and hidden layers and Nw is the total llurnber 

of connections between the hidden and output layers. 

The total number of connections Nv and N w are expressed as 

JVv = (1 + 1) * (J + 1) 

lvw=(J+l)*(1{) 

and 

Cli = 13 
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Therefore, 

Cw 11 * (J + 1) * I{ (:3.8) 

The cost of training a network using any active learning algorithm includes Cf(:~ 

the cost of selecting patterns for training and the cost of cornputing the subset 

termination criterion. Therefore, at any epoch ~, the cost of training a IlPtwork 

using SLA, SAILA, DPS and AL are: 

C SL C fe + Csia * Fe 

C DP C fe + C dps * (Fc - Fr) + (CSclPS * Fr) 

CAL C fe + Cal * (Fe Fr) + (CSal * Fr) 

CSA C fe + C sai * (Fc Fr) + (CSsai * Fr) 

For all the incremental learning algorithms, the subset selection criteria are 


tested on the remaining patterns in the candidate set Dc which is equal to Pc ­

Fr- Also, for incremental learning algorithms, an additional cost of s(\lecting 


pattern is incurred when a pattern is selected. 


C SL , CSA, CAL and C DP are the cost of training a network using SLA, SAILA. 


AL and DPS respectively. Csla = 15 is the cost of computing the subset s(~lp<:tion 


criteria for SLA, Cdps = 11 is the cost of computing the subset selection criteria 


for DPS, Cal = 4 is the cost of computing the subset selection criteria for AL 


and Csai 18 is the cost of computing the subset selection criteria for SAILA. 


CSdps 2, CSal = 2 and CSsai = 7 are the cost of selecting patterns into DT for 


DPS, AL and SAILA respectively. 


Therefore, 


CSL Cfe + 15Fc 
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CDP 	 Gfc + 11(Fc FT) + 2FT 

Gfc + 4(Fc FT) + 2FT 

G1c * FT + 18(Fc - FT) + 7FT (:3.9) 

From equation (3.9), the cost of training is directly proportional to tIl{' lllllubpr 

of patterns selected for training. The more patterns are selected for tl'aillillg. the 

higher the computational cost. Initially, FT for SLA is greater than the other 

algorithms because DPS, AL and SAILA are incremental learning algorithrn 

and a small initial trainig set and subset size is used in the siInulations. Thus, 

G SL is expected to be greater than GAL, G DPS and CSA illitiall~T. SAlLA is 

computationally more expensive in selection criteria than the other algorithms 

because SAILA has more subset selection criteria to implement than tIl(' other 

algorithms. 

Section 3.5.2 illustrates the costs for the different algorithms. 

3.5.2 	 Results 

This section presents the results of the simulations carried out 011 the active l<'arlling 

algorithms. 

Training 	error 

In order to compare the performance of the four active learning algorithnls. the 

MSE over the candidate set Dc was computed for the simulations and the ,rvcrage 

calculated. Tables (3.2) and ( 3.3) show the result over 2000 epochs for clPHU data 

and data with noise and outliers. 

For TSl, DPS had a very low error with the lowest variance which nleans that all 

the errors of the simulations for DPS were all closer to the average error of 0.0003. 

Although, SLA had a low error as well. However SLA had a large variance vvhen 

compared to DPS. AL had the largest error with a very large variance. 
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DPS achieved the smallest error for TS2, having a small variance. For TS~3. all the 

algorithms had very low errors but SAlLA had a high variance. DPS had tll(' :-1111allest 

error for Fl with a very small variance. 

For TS4 and TS5, SLA achieved the smallest error with the lowest variallcP. AL had 

the largest error for TS4 and TS5. This is because AL selected and trailwd ()Il just 

a single pattern for TS4 and an average of 4 patterns for TS5. Thus AL. had high 

errors for TS4 and TS5. 

The training errors for all the problems with noise and outliers were larger ( x 1(2 
) 

than for problems with dean data. DPS had the lowest average error for d(lClU data 

while SLA had the lowest error for noisy data. 

Generalization error 

To compare the generalization ability of the four active learning algorithrns, tlw .'vISE 

over the generalization set, Ee, was computed and the average over the :30 sirnulations 

was plotted as a function of number of epochs. Figures 3.3 and :3.4 illustrates the 

trend of the generalization errors for the entire training period. 

DPS achieved a very low average error faster than the other algorithrns for FI (refer 

to figure 3.3(a)). However, both SAlLA and AL achieved a comparable n-':-1111t to 

DPS at epoch 1000. From table 3.3, DPS had the lowest error with the a ver~' srnall 

variance (5.07 E - 05) which means all errors of the simulations are doser to the 

average. 

For TSl, SAlLA initially had the highest generalization error but decreased to a low 

level of error (see figure 3.3(b)). SLA initially had the lowest average error. which 

can be explained by the fact that SLA used more patterns initially than the other 

algorithms (refer to figure 3.7(b)). Although SLA and DPS had slnall errors. DPS 

had the smallest variance and thus DPS achieved the smallest error. AL bad the 

largest error after 2000 epocbs with a large confidence interval. 

For TS2, DPS, AL and SLA achieved a very low average error before epodl 500. 
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Selective Sensitivity 
Function Zhang LearningRobel Analysis 
TSI 

0.02172Training Error 0.00036 0.00045 0.00346 
± ± ± ± 
0.00017 0.04186 0.00035 0.00712 

Generalization 0.022410.00039 0.00047 0.0035 
± ± ± 

0.041910.0002 0.00040 0.00737 
used Patterns 4.73485.43 270.93 571.67 

± ± ± ± 
234.79 0.92 3.48 88.91 

TS2 
Training Error 0.00014 0.00023 0.00029 0.00126 

± ± ± ± 
0.00011 0.00021 0.00038 0.00163 

Generalization 0.00012 0.00022 0.00029 0.00129 
± ± ± ± 
0.25E - 05 0.00019 0.00037 0.00169 

U sed Patterns 411.77 174.63 272.57 522.57 
± ± ± ± 
215.87 61.48 7.61 173.37 

I 

TS3 
Training Error 0.00039 0.00044 0.00050 0.00068 

± ± ± ± 
0.00086 0.00091 0.00085 0.00146 

Generalization 0.00275 0.00253 0.00302 0.00225 
± ± ± ± 
0.00155 0.00133 0.00138 0.00174 

Used Patterns 180 78.17180 180 
± ± ± ± 

0 1.530 0 

Table 3.2: Comparison results over 2000 epochs for times series problerlls 
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Selective I Sensitivity 
Function I Robel Zhang Learning Analysis 

FI 
Training Error 0.000226 0.000412 0.000791 

± ± ± 
5.07E 05 0.000366 0.001852 

Generalization 0.000221 0.000392 0.000754 
± ± ± 
5.2E ­ 05 0.000347 0.001624 

U sed Patterns 320.2 82.8 445.1333 
± ± ± 
167.6698 32.37935 121.476 

TS4 
Training Error 0.01141 0.19935 0.00516 0.02828 

± ± ± ± 
0.00573 0.03093 0.00393 0.09522 

Generalization 0.01077 0.19051 0.00478 0.02739 
± ± ± ± 
0.00534 ! 0.02169 0.00349 0.09170 

U sed Patterns 493.03 1 245.23 597.03 
± ± ± ± 
193.37 0 7.89 27.41 

TS5 
Training Error 0.00683 0.10278 0.00155 0.00562 

± ± ± ± 
0.00468 . 0.08731 0.00158 0.00768 

I 

Generalization 0.00714 0.09904 0.00158 0.00595 
± ± ± ± 
0.00489 0.08932 0.00142 0.00842 

Used Patterns 103.5 4.67 269.13 584 
± ± ± ± 

:120.14 1.35 9.89 93.4 

Table 3.3: Comparison results over 2000 epochs for problems Fl and tinl(~s spries \vith 
noise and outliers 
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Figure 3.3: Average generalization error vs epoch 
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Figure 3.4: Average generalization error vs epoch 

SAILA was slower to achieve a comparable low error but SAILA had a low (-'rror by 

the end of training. From the table 3.2, DPS had the smallest error with a vel'." slllall 

variance after 2000 epochs, iIIlplying that all errors of the silllulations an' cl()s(~r to 

the average. 

For TS3, the generalization error for all the algorithIIls increased as the lllllllh(-'r of 

epochs increased except SAILA (see figure 3.3(c)). 

From the table 3.3, SLA had the lowest generalization errors for TS4 and TS5. \Vhile 

AL had the largest error for TS4 and TS5. AL did not learn the functions (refer to 

figure 3.4(a)). AL selected a few patterns for training, thus had littlc~ infonllation 

about the time series to be approximated and therefore AL had a bad ~(-'rwra.lization. 

DPS had the lowest generalization errors for functions with clean data \\'hilp SLA had 

the lowest generalization errors for functions with noise and outliers. Although DPS 

had better generalization with clean functions than SLA, DPS used 1110re patterns 

than SLA to achieve the low generalization error in all the problellls. AL had very 

large generalization errors for TSl, TS4 and TS5. This bad generalizatioll call be 
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attributed to the extremely small training set sizes used by AL which is an illdi('ation 


of an inferior subset selection criterion. The subset selection criterioll dep<'llds 011 


the number of connections in the network. Redundant or irrelevant w(~ights ill the 


network will make the value of the perforrnance level f£ very large which call ('ause 


the network to train on the current training subset DT too long without selecting 


additional patterns. Thus the network selects a few patterns, hence having insufficient 


information to train the network. On the other hand, too few weights in the lwtwork 


can make K, small. Thus, the network selects patterns rnore often than an' u('C'ded 


for training. 


Overfitting effects 


The average generalization factor p for all the problems were com.putect OV('l' the 30 


simulations. Figures 3.5 and 3.6 show the charts for the average generalizatioll factors. 


The average generalization factors were plotted as function of pattern presentations. 


A pattern presentation represents one weight update. 


TS3 was the only function for which all the algorithms except SAILA~ overfitted. 


SAIL A had an average generalization factor of less than one, w hiIe the other algo­


rithms had high generalization factors. For the entire training period for TS4. AL 


had a generalization factor constantly larger than L indicating that .-\L oy<,rfitted 


TS4. For the other functions, the average generalization factor ,-a111<'s fluctnated. 


The fiunctuation is due to the overfitting of a training subset until 11<'\" pattenls are 


selected for training. When new patterns are selected, the overfitting of tIl(-' training 


subset is reduced. The average generalization factor for all the algoritlnIls (<,xcept 


TS3) were slightly over one, and indicating a mild case of overfitting. 


Computational costs 


The computational costs for AL, DPS, SLA and SAILA were cornputed llS111g e­


quation (3.9) for specified epochs. The costs are plotted as a function of (~po<:hs as 


illustrated in figures (3.9) and (3.10). 
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Figure 3.6: Average generalization factor vs pattern presentations 

SAILA has the most expensive and AL has the least expensive subset selpctioll cri­

teria. However, AL performed badly (refer to tables 3.2 and 3.3). For all the ap­

proximation problems, DPS, AL and SAILA had increasing costs because tlH)~' are 

incremental learning algorithms. i\1ore patterns \vere used as training progrpssed 

(refer to figures (3.7) and (3.8)). 

For F1 and TS2, AL had the smallest cost (see figure 3.9( a) and (b)). These srnall 

costs can be attributed to the cheap cost of the subset selection criterioll as wpll as 

the fact that AL used the smallest number of patterns for training. 

Despite the fact that AL has the cheapest subset selection criterion alld a sirnple 

selection criterion, AL had the highest cost for TS3. This is because AL seh~('tpd all 

the patterns in Dc within a short training interval (by epoch 400). SLA initiall~T had 

the highest cost (first 350 epochs). However, at epoch 1000, the cost was half of the 

other algorithms. 

For all the functions approximated, SLA initially had a higher training cost thaIl the 

other algorithms - aln10st four times the training cost of other algorithrlls. l)(~<:ause 
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Figure 3.8: Average number of patterns used per epoch 

SLA is a selective approach (see figure (3.9) and (3.10)). 

From tables (3.2) and (3.2), SLA used less number of patterns after 2000 epochs 

than the other algorithms, thus SLA was computationally less expensive. 

Convergence 

The convergence performance of the four active learning algorithnls are cOlnpared in 

figures 3.11 and 3.12. These figures plot the percentage of simulations that reached 

specific generalization errors. 

For Fl, DPS had the best convergence, all the simulations converged to a vpry lo\v 

error of 0.0004. AL also had a good convergence, more than half of the sinullations 

converged to 0.0004 (refer to figure 3.11(a)). 

None of AL's simulations converged to the specified error level for TS2. SLA aud DPS 

achieved good convergence for TS2, as more than half of their simulations cOllverged 

to a low error (refer to figure 3.11 (b) ) . 

For TS2, DPS had the best generalization, most of all the simulations converg(~d to a 
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Figure 3.9: Average computational cost per epoch 
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Figure 3.10: Average computational cost per epoch 

very low error (0.0002). SLA and AL also had good convergence (see figure :3.11(c)). 

While the other algorithms had few converged simulations at 0.002. ahnost half of 

SAILA's simulations converged to this error (refer 3.11 (d)). 

AL had bad generalization for TS4 and TS5. None of AL's simulations cOllverg-ed to 

the specified error levels for TS4 while only a few converged for TS5. 

SLA had the best generalization for TS4, with all the sirnulations converging to a 

low error of 0.004 (refer to figure 3.12(a)). SAILA had a good convergenct' ''''ith 40o/c) 

of the simulations converging to this error of 0.004. Only a few of DPS's siIllulation 

and none of AL's simulation converged at this point. 

SLA also had the best generalization for TS5. Almost all the sirllulations (74 o/c)) 

converged to a error level of 0.005 while only a few of the other algoritllllls siUllIlations 

converged to this error level (see figure 3.12(b)). 

SLA had the best convergence for data with outliers and noise. DPS had the l)('st COIl­

vergence for clean data, although SLA had good convergence for clean data. SAILA 
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had a good convergence for TS3. For all the sine functions (TS L TS4 and TS:)). AL 

had bad convergence, none of its sinlulations converged to the specified error level­

s. The errors specified for data with outliers and noise were larger than the e1'1'ors 

specified for clean data. This is because the performance of all the algoritluns were 

degraded in the presence of nois8 and outliers. 

3.6 Conclusion 

The objectives of the chapter were to present a new learning algorithlll (SLA) and also 

to compare four active learning algorithms with respect to their accuracy, COllV(,1'genee 

and the complexity on both clean and noisy data as well as overfitting effects for the 

problems were also examined. 

The results presented showed that AL was unstable, producing good results for the 

henon-map and PI only. The bad training behavior can be attributed to the extreme­

ly small training set sizes used by AL, which is an indication of an inferior subset 

selection trigger. 

DPS and SLA performed very similar on the clean data, while SLA outperf01'llH'd all 

the other algorithms on the noisy and outliers training data. The sensitivity analysis 

approach (SAlLA) performed well under the occurrence of outliers and llois~' tilne 

series, and very well for the complex function TS3. SAlLA performed hettP!' than 

AL in TS1, TS4 and TS5, but worse than SLA and DPS. SAlLA is cOlnputationally 

more expensive, requiring larger training subsets than the other algorithIIls. 

As is expected, the performance of the error selection approaches degraded lIIlder 

the occurrence of outliers and noise. The degradation is due to the earl~r select.ion of 

outliers, since outliers result in the largest prediction errors. 

The comparison above showed that SLA had the best generalization performance. and 

lowest complexity. The selective learning approach (SLA) produced better accuracy 
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Figure 3.11: Percentage simulations that converged 
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Figure 3.12: Percentage simulations that converged 

than the other approaches, and showed to be more robust in the occurrence of ontliers 

and noise. 

 
 
 




