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Chapter 2

MULTILAYER NEURAL
NETWORK LEARNING

This chapter discusses learning in multilayer neural networks (MNNs). MNNs arc by far
the most common applications of artificial neural networks {ANNs). The chapter covers
fundamental issues such as the different types of MNNs and available learning algorithms.
Performance aspects of the different learning algorithms are discussed, as well as difhiculties

encountered in the learning process.

2.1 Introduction

An artificial neural network (ANN) is a model of the biological neural system of human
beings, modeling one of the most important features of the brain - the ability to learn. This

feature shows parallel to the intellectual development of human beings. As human beings,
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we learn how to write, read, understand speech, recognize and distinguish pattern - all hy
learning from examples. In the same way, ANNs are trained, rather than progranuned.
ANNSs develop solutions to problems unlike conventional data processing technigues which

require complex programming.

An artificial neural network consists of processing units, organized in lavers of units {also
referred to as artificial neurons). Training of an ANN is done using a training algorithm,
which is an adaptive way by which a network of processing units organizes themselves to
implement the desired behavior: When a network is presented with information to learn
(consisting of input attributes and corresponding desired output values). the connection
links in between, referred to as the weights, are adjusted to produce a response cousistent
to the desired output. This learning algorithm is a closed loop of presentation of patterns
or examples and of corrections to the network according to a learning rule. An optimization
algorithm such as gradient descent, conjugate gradient or second order derivatives tech-
niques, is used to adjust the weights of the network [Becker et al 1988]. There are different

classes of training algorithms and different topologies of artificial neural networks.

The rest of this chapter is organized as follows: The parallelism between Diological and
artificial neural networks is discussed in section 2.2 to show how ANNs were inspired from
the biological counterpart. A taxonomy of different neural network training algorithims is
given in section 2.3. Section 2.4 discusses the training of multilaver neural networks using
gradient descent. The learning equations are derived in this section. Section 2.5 discusses

problems of learning by gradient descent.

2.2 Biological Neural Networks

The basic building block of biological neural systems is the neuron. A neuron is a cell which

communicates information to and from the various parts of the human bodyv. Fipure 2.1
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shows a simplified representation of a neuron. A neuron consists of a cell body referred to
as soma, several spline-like extensions of the cell body referred to as dendrites and o single
nerve fiber referred to as an azon. An axon branches out from the soma and conneets to

many other neurons.

nucleus

dendries

Figure 2.1: A simplified representation of a biological neuron

Dendrites extend from the cell body to other neurons where the dendrites receive signals
at a connection point referred to as a synapse. These signals serve as inputs which are
conducted to the soma (cell body). In the nucleus, these received inputs are smnmed up.
If the cumulative excitation in the nucleus exceeds a threshold, the neuron fires. sending
signals down the axon to other neurons. While the biological neural svstem is extremely
complex, an ANN is an attempt at modeling the information processing capabilitics of the

biological neural system.
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An artificial neuron was designed to mimic simple characteristics of the hiological nenron.
An artificial neuron receives input signals from the environment. or from other artificial
neurons. These inputs signals are weighted with a value which models the svuaptic strength
of the corresponding connection. The weighted sum of the input signals is used to detevmine
the activation level of the neuron. The activation of an artificial neuron is modeled using
an activation (or transfer) function. The different activation functions are discussed in

section 2.3.2.

Figure 2.2 illustrates a general representation of an artificial neuron. 1In the rest of this
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Figure 2.2: An artificial neuron

thesis, the term neural network (NN) is used instead of artificial neural network (ANN).

Several key features of the processing elements of a neural network are suggested by the

properties of the biological neuron, namely that,
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e a processing unit (neuron) receives many signals from other neurons or the environ-

ment;
e these signals may be modified by a weight:

e the processing units sum the weighted inputs which is transformed to an output

signal using a squashing function to simulate firing;
e the neuron transmits this single output to other neurons. or to the envirommnent: and

e the output from a particular neuron may be transmitted to manyv other nenrons.

One important characteristic an ANN shares with biological neural svstemns (BNS) is fault
tolerance. A BNS is fault tolerant in two ways: Firstly, human beings are able to vecognize
many input signals that are somewhat different from any signals they have seen hefore.
Secondly, a BNS can tolerate damage to itself. Human beings are born with as manyv as
100 billion neurons. Most of these neurons are located in the brain and arc not replaced
when neurons die [Fausett 1994]. Despite the loss of these neurons. human heings still
continue to learn. Even in cases of traumatic neural loss. other neurons can sonietinies he
trained to take over the function of the damaged cells [Fausett 1994]. In a similar maunner.
ann ANN can be designed to be insensitive to small damage to the network and the network

can be retrained in cases of significant damage.

The number of layers, and the way in which neurons are interconnected. resulted i the
design of various ANN topologies. Section 2.3.1 survevs different ANN topologics and also

discusses the different classes of training available.

2.3 A Taxonomy Of Training

One of the interesting features of neural networks is their ability to learn. which inplies

that the NN has to be trained. How s this done?
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The objective of training a NN is to produce desired (or at least consistent) outpnt when
a set of inputs is applied to the network. A neural network is trained by applving an iuput
vector to neurons while adjusting the weights according to a predeteriined procedure in
order to bring the NN’s learned concept closer to the desired output. During training,
weights gradually converge to values such that each set of input patterus produces a close

approximation to the desired output patterns. There are two maiu training paradigius:

1. Supervised training, which is perhaps the most frequently used training method.
For training purposes, a training pattern is required whicli cousists of a vecror of
input values and a vector of associated target/desired output values. Patterns can be
provided by external teachers or by the system which containg the network. in which
case the network is self supervised. The network is usually trained by presenting
an input vector to the NN, the actual output of the NN is calculated and coupared
to the corresponding desired (target) output. Training patterns are grouped nto a
training set. Each patteru in the training set is presented to the uetwork. and the
prediction error used to adjust weights. Patterns in the training set are repeatedly
presented to the network until an acceptable error is achieved over the entire training

set.

Supervised learning is analogous to a lesson in school where the teacher applies the
correct answer for each problem. Different approaches to supervised learning have

been developed.

o Error correction learning which adjusts the connection weights hetween pro-
cessing units, in proportion to the difference between the desired and compured

values of each neuron in the output layer [Simpson 1990].

e Reinforcement learning which is similar to error-correction learning in that
weights are reinforced for properly performed actions and punished for poor-

ly performed actions [Simpson 1990].

The difference between error correction and reinforcement learning. is that. crror
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correction learning requires an error value for each output unit while reinforcement

learning requires only a state to describe the output laver's perforimance,

o

Unsupervised training, also referred to as self-organization learuing. requires no
target or desired outputs. Hence, no comparisou to predetenuined respouses are
needed. Training sets consist solely of input patterns. The task of the NN is ro learn
to group together patterns that are similar and also to find common threads in a
mass of data. The NN is supposed to discover statisticallv salient features of input
patterns and develop its own representation of these patterns. Unsupervised learning

is used for tasks such as clustering [Fausett. 1994].

For the purpose of this thesis, only supervised training is considered.

2.3.1 Topology of Neural Networks

In addition to the classes of neural network training algorithms, another distinguishing
characteristic of the different neural networks is topologv. Topology refers to the avchitec-

ture of neurons, including the interconnection scheme within the network.

Neurons are arranged in one or more than one laver. Neurons within the same layer usually
have the same activation function, and are fully connected to the neurons in the next laver.
A NN can consist of just a single layer of fully interconnected units, or can liave au input
and an output layer with zero or more hidden units, referred to as a multilaver neural
network (MLNN). Figure 2.3 illustrates a MLNN with a hidden layver. The figure lias three
units in the input layer with a single output unit. The input layer consists of units that
receive input signals from the environment and distributes the signals to the other lavers in
the network. The output laver returns signals to the environment. Hidden lavers are those
layers in between the input and output lavers. The hidden units provide nonlineariries for

the network.
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Figure 2.3: A multilayver neural network with a hidden laver

Each neuron produces an activation value (output signal} which usnallv is a function of
the weighted sum of the input signals. The activation value represents tlie activation level

for the neuron. Section 2.3.2 discusses activation functions that can be used 11 a NN,

2.3.2 Activation Functions

The basic operation of an artificial neuron (unit) involves summing the neuron’s weighted
input signal and to produce an output signal through application of an activation funcrion
to the net input signal. Activation functions map a neuron’s domain, which is the mput.
to a prespecified range - the output. Figure 2.2 illustrated the basic building block of a

NN. In figure 2.2 net is the weighted input signal. The output signal o is calculated as

o= f(net) (2.1)
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Various mathematical functions liave been used as activation functions. There are functions
that squashes the net input signal into a finite range. These functions can be discrete
functions, such as the ramp and step functions, or continuous functious. for example the
arctangent, sigmoid, sine or gaussian (radial basis). Linear functions cau also he nsed
as activation functions, in which case the input signal is not mapped into a finite rauge.

Figure 2.4 illustrates the different activation functions that can be used.

One of the major reasons why earlier work on NNs came to a halt. was that the learn-
ing rule could not be substantially improved for multilaver NNs using the discrere and
linear activation functions [Maren et al 1990]. Linear and discrete functions could only
solve problems that are linearly separable, and being linearly separable limits the NN to
problems (classification) in which the sets of points (corresponding to input values) can be
separated geometrically. Hence, the network used then (perceptron) could not solve the

XOR problem.

A new learning rule (backpropagation) was developed to handle linearlv inseparable fume-
tions. However, backpropagation requires continuous, monotonic increasing activation
functions, since these functions need to be differentiated when the gradient of the error

surface is calculated during the weight update process.

The sigmoid function, given in equation (2.2), is widely used as activation function aud
is a continuous function bounded in the range (0,1). The sigmoid function is cxpressed

mathematically as:
1

flnet) = PR
The sigmoid function is desirable because of its simple derivative. The sigmoid function has
the advantage of providing a form of automatic gain control. That is, for small signals (net
near zero), the slope is steep producing high gain in the magnitude of the network’s output
and as the magnitude of net increases, the gain in the magnitude of the network's output

decreases. In this way. large input signals can be accommodated by the network withont

saturation, while small signals are allowed to pass through without excessive atrennation.

| 1670 2252
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Figure 2.4: Activation functions

2.3.3 Neural Network Types

Based on the different network topologies and training approaches, different tvpes of NNs

have been developed. A summary of the different NN types are presented below:

1. Recurrent neural network (RNIN): A RNN] also referred to as a feedback neural
network, employs feedback connections in order to learn temporal characteristics of
data presented for learning. The feedback connections thus allow the network to pro-
duce complex time varying outputs in response to simple static input [Carling 1992].
RNNs exhibit properties very similar to short term memory in human beings. There

are different types of RNNs, e.g. Jordan and Elman RNNs.

In Jordan RNNs, the state of the output layer is fed back to state units in the input

layer (see figure 2.5(a)), while the state of the hidden laver is copied into coutext
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(a) Jordan RNN (b) Ehnann RNN
Figure 2.5: Recurrent Neural Networks (RNNs)

units in the input layer for Elman RNNs (see figure 2.5(b)). Hybrid networks can
also be built by combining Jordan and Elman networks. Also, any number of previous
time steps can be incorporated by simply having additional state units (for Jordan

RNN) and context units (for Elman RNN) for each time step [Carling 1992].

2. Functional link neural network (FLNN): In a FLNN, the input layer is expanded
to a layer of functional units, which consists of higher order combinations of the input
units [Zurada 1992b, Hussain et al 1997]. Each functional unit is fullv connected
to the next layer. The addition of higher order combinations of inputs artificially
increases the dimension of the input space. Figure 2.6 shows an illustration of a

functional link neural network.

3. Product unit neural network (PUNN): PUNNs allow learning of higher-order
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output layer

hidden layer

funcdonal layer

Figure 2.6: A functional link neural network (FLNN)

input terms, by using product units instead of summation units to compute the net

signal to a neuron [Durbin et al 1989].

A weighted product
1
1=
=1

is therefore used instead of the usual weighted sum
1
> #ili
=1

where z; is the input signal to neuron j, v;; is the weight between neuron 7 in the
previous layer and unit j. Durbin and Rumelhart proposed two PUNN architectures

(refer to figure 2.7):

(a) In the first architecture, a set of product units is added to the current summation

units in the hidden layer (refer to figure 2.7(a)).

(b) In the second arrangement, layers of product units alternate with lavers of sum-

mation units (refer to figure 2.7(b))

The main reason for using PUNNSs, is to learn to represent generalized polvuomial
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(a) The first arrangement

(b) The second arrangement

Figure 2.7: Product Unit Neural Networks
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2.3.3 Neural Network Types

Based on the different network topologies and training approaches, different tvpes of NNs
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have been developed. A summary of the different NN types are presented bhelow:

1. Recurrent neural network (RNN): A RNN, also referred to as a feedback neural
network, employs feedback connections in order to learn temporal characteristics of
data presented for learning. The feedback connections thus allow the network to pro-
duce complex time varying outputs in response to simple static input [Carling 1992].
RNNSs exhibit properties very similar to short term memory in human beings. There

are different types of RNNs, e.g. Jordan and Elman RNNs.

In Jordan RNNs, the state of the output layer is fed back to state units in the input

layer (see figure 2.5(a)), while the state of the hidden laver is copied into coutext
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terms in the input and hence a better representation of data iu cases where high-
er order combinations of inputs are significant [Leerink et al 1995]. Adjusting the
weights is, however, computational expensive since derivatives of these product units

are complex due to an exponential term and the occurrence of complex mnnbers.

4. Feedforward neural network (FFNN): In a FFNN data flows strictly from the
input layer to the output layer. A FFNN has no memory and the output is solely
determined by the current input and weights values. A feedforward neural nctwork
consists of one or more layers of usually non-linear processing units (caun use linear
activation functions as well). The output of each laver serves as input to the next
layer. This thesis concentrates on FFNNs, and studies network learning using FFNNs

as well as problems associated with learning in FFNNs.

Apart from the neural network types mentioned above, there are other NN tvpes: for
example the single layer Hopfield NN (HNN) [Hopfield 1982, Fausett 1994]. aud cluster-
ing NNs, for example the self organizing map (SOM), which use unsupervised learning

[Simpson 1990].

Section 2.3.4 discusses optimization algorithms that can be used to adjust the weights of

feedforward neural networks.

2.3.4 Optimization Algorithms

Training a neural network involves finding optimal values for the weights of the network
through numerical optimization of a nonlinear objective function. The objective function
is usually the sum squared error, computed from the actual network output and the desired
output of the NN to be trained. Different optimization algorithms can be applied ro NN
learning. The algorithm chosen is usually based on the characteristics of the problem to

be solved.
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1. Gradient descent optimization is by far the most common technique used for
weight optimization. In training the network, a gradient descent is performed ou the
error function, which is a function of the weights of the neural network. Weight-
s are adjusted to move towards the negative gradient of the objective finction
[Masters 1993, Becker et al 1988]. Gradient optimization is discussed in more de-

tails in the next section.

2. Newton optimization uses a better approximation of the error function than the
gradient descent technique. The newton technique uses second derivatives and gradi-
ent information of the error function to determine the next step direction. This helps
in reducing the number of steps taken to reach a minimum, thus achieving faster
convergence. However, Newton optimization has the disadvantage of being compu-
tationally expensive because the inverse of the Hessian matrix needs to he caleulated
at each training step. Newton’s optimization should preferablv be used with ueural
networks with a few number of weights due to the cost of computing the inverse of

the Hessian matrix[Darken et al 1992, Becker et al 1988].

3. Pseudo newton optimization is an adaptation of Newton’s method. Pscudo new-
ton optimization computes an approximation to the inverse Hessian matrix. and is
therefore more computationally efficient than Newton’s optimization. Pseudo newton
optimization should be preferably used for neural networks with a moderate number

of weights due to the cost of approximating the Hessian matrix [Darken et af 1992].

4. Conjugate gradient optimization is used for large optimization problems. since
it does not require the computation and storage of the Hessian matrix. Conjugate
gradient uses only gradient information. The objective of conjugate gradient is to
minimize both the weight vector and a direction vector. Conjugate gradient is related
to gradient descent optimization using momentum, because the weight scarch in
conjugate gradient optimization combines the new gradient direction and the previous

gradient direction. Each step involves computing a conjugate direction followed by
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a line search, to get an approximate minimum in the conjugate direction. (‘onjugate
gradient optimization increases speed of training and the convergence of the network

[Becker et al 1988, Moller 1993].

5. Simulated Annealing can be used where the objective function (the crror func-
tion in neural network training) is not differentiable. Optimization is performed
by randomly perturbing the independent variables (inputs in this case) and keeping
track of the best (lowest error) function value for each randomized set of variables.
Simulated annealing can be combined together with other optimization algorithms
such as conjugate gradient, where simulated annealing is used to find a good ini-
tial weight vector, after which conjugate gradient is used to find the local minimum

[Masters 1993, Desai et al 1996].

2.3.5 Why Neural Networks?

Neural network applications emphasize areas where NNs appear to offer a more appro-
priate approach than traditional computing has. NNs can be used when data. on which

conclusions are to be based, is noisy.

When the influential or informative patterns are subtle or hidden, a neural network has
the ability to discover patterns which are not clear, or unknown, to the human researcher
or standard statistical methods. For example, to determine the credit worthiness of a loan
applicant, the information needed is hidden within data on the spending and the pavinent
history of loan applicants. NNs have shown to provide decisions superior to those made by
human beings [Masters 1993]. Neural networks have also been applied to data that exhibits
significant unpredictable nonlinearity [Masters 1993]. NNs adapt to predict future values
not based on strictly defined models, and offer possibilities for solving problems that require

pattern recognition, pattern mapping, dealing with noisy data. pattern classification and
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function approximation.

Specific areas where NNs have been applied include, amongst others:

e Neural networks have excelled in pattern recognition. NNs deal with the complex-
ities inherent in many applications such as recognizing patterns in speech. radar and
seismic readings. A real world application is the NETTALK, a neural network de-
signed by Sejnowski and Rosenberg to produce phonetic strings which in turn specify

pronunciation for written texts [Dayhoff 1990].

¢ NNs are used for pattern classification. Input patterns of a network are mapped
into one or more classes. That is, each pattern belongs to one of the classes
[Fausett 1994]. For example, NNs are used for medical diagnosis to identifv diseases
of the heart from electrocardiograms. NNs can also be used in plant classification to

determine crop types from satellite photographs [Masters 1993).

e NNs have also been used in adaptive control applications such as in robots and
automatic vehicles. Neural networks are used to control robots in the mdustry

[Dayhoff 1990].

e Neural networks are used in financial analysis problems such as credit assessment
and financial forecasting. NNs have also find application in optimization, scheduling
and routing problems. A practical application is in optimizing resources for airlines

[Dayhoff 1990}.

e NNs are used in function approximation problems. A NN can learn a given
function or time series problem when presented with training patterns representing
that function or time series. This application has found its usefulness in forecasting,

such as weather and in the stock exchange market.

e Neural networks are used for database mining. A major problem which surfaced

in information retrieval is that explicit information can easilv be retrieved while
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implicit information can not. Implicit information is distributed across the patterns
stored in the database and is difficult to extract by human experts. NNs arve one
of the most promising technologies available to extract such implicit information - a

process referred to as data mining. [Towell et al 1993, Fu 1994].

2.4 Gradient Descent Optimization

Multilayer neural networks (MLNNs) perform excellently in most applications. especially
in classification problems because of the inclusion of one or more hidden laver. Training
a MLNN is not as straight forward, nor as easy, as training a single layver network. This
section discusses training of MLNNs using gradient descent. Complete derivation®s of the

learning equations are given and problems with gradient descent optimization are discussed.

2.4.1 Introduction

NNs that are trained using GD are referred to as backpropagation neural networks
(BPNNs). In order to train the network successfully, the output of the network is made
to approach the desired output by continually reducing the error between the netrwork’s
output and the desired output. This is achieved by adjusting the weights between lavers:
by calculating the approximation error and backpropagating this error from the final laver
to the first layer. The weights are then adjusted in such a way to reduce the approxima-
tion error. The approximation error is minimized using the gradient descent optimmization

technique [Rogas 1996).

The gradient descent technique searches for the minimum of the error function in the weight
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space. The combination of weights which minimizes the error function is considered to he
the solution to the learning problemn. When an input pattern is presented to the network.
the network produces an output Oﬁf) for output unit o, which is different from the target

value ¢,

The objective of training is then to minimize the error arising from these two values over
the entire training set. The error function is defined as the sum squared error function
(SSE):

FE =

[ SR

P K 7
Y3 (8 o) (2.3)
p=1k=1

where P is the total number of patterns in the training set, K is the total muuber of

t(p)

output units, ¢, is the target value for kth output unit for pattern p, and o;‘f’" 1s the

output value for the k-th output unit for pattern p.

The gradient for the error function is computed and is used to adjust the weights. Weiglht

adjustment can be done in two ways:

e Batch training which adjusts and updates the weights after presenting a number
of training patterns. Weight changes are accumulated and applied once only. Batch

training is also referred to as offline training.

¢ Online Training where the weights are adjusted after each pattern presentation.
Online training has the advantage of not needing a separate memorv to store the

derivatives of patterns as is needed by the offline training.

Training using GD involves two passes:

1. The forward pass: During the forward phase, each input unit 2z

;T recelves an
input signal and distribute this signal to the hidden units y, for all j = 1.....J.
Each hidden unit then computes its activation and sends the activation signal to

each output unit at the output layer or to hidden units in the next hidden laver if
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there are more than one hidden layer. As there are no connections within a laver. all
the units in that layer can have their output computed in parallel, while the lavers
are dealt with in sequential order. The output layer provides the response of the

network for a given input pattern.

2. The backward pass: Each output unit compares its computed activation o}’ with
its target value tgf’ ) to determine the associated error for that pattern. The crror is
backpropagated to all units in the previous layver and is used to update the weights
between the output and hidden layvers. The accumulated error at each hidden unit
is then calculated, and backpropagated to adjust the weights between the input and
hidden layers. The error value associated with each processing unit reflects the error
of that unit. A larger error value indicates that a larger correction will be made to

the corresponding weights.

2.4.2 Gradient descent training algorithm

Certain aspects have to be addressed before commencing training of multilaver networks.
One important aspect is the activation function used in the hidden and output lavers.
GD requires the activation function to be continuous, differentiable and monotounically
increasing. For the purposes of this thesis the logistic (sigmoid) function is assmned.
Another issue is the data set: the output value of logistic function is always in the range
(0,1), thus requiring scaling of the desired output (target) before training to fit into this
range. Though it is not required to scale inputs, it is advisable to scale the inputs to
[-1,1] if logistic function is used. The input values will then lie within the active range of
the sigmoid function. The number of hidden layers also has to be considered. Although
gradient descent can be applied to any number of layers, it has been shown that a single

layer of hidden units is sufficient to approximate any function with many discontinuities to
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arbitrary precision provided that the activation function is non-linear [Krose ef af 1993].

This thesis assumes a single hidden layer.

The training algorithm is summarized below:

1. Weight initialization: Set all weights to small random values. Let vj; be the weight
between the j-th hidden unit and i-th input unit, and wy; the weight between the

k-th output unit and j-th hidden unit.

2. Calculate the activation of the units in the network, layer-byv-laver, starting from the

input layer.

e The activation leve] of each input is the value of the training pattern applied to

the input.

e The activation of each hidden and output unit is calculated as:

I
’!/ﬁp) = SO vz = ug) (2.4)
10=1 .
{p) !
Okp = fcgf)(zwkjyj — Wkp) (2.5)
=1
where yj(-p Jis the activation of the 7-th hidden unit, and 02’ Jis the activation

of the k-th output unit for pattern p. K is the total number of output units,
I is the total number of input units and .J is the total number of hidden
units. vjg is the weight connected to the bias unit in the input layer. while wy
is the weight connected to the bias unit in the hidden laver. The term bias is

discussed in the section 2.4.3.
3. Weight adjustment

e Start at the output units and recursively propagate error signals to the input

layer.
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e Calculate the weight adjustments:
The output oEf Vs compared with the corresponding target value r}j‘” over the

entire training set using the function

>

EW = %; P ()}f’))g (2.6)
to express the error in the network’s approximation of the target function.
Minimization of E® by GD requires the partial derivative of E®) with respect to
each weight in the network to be computed. The change in weight is proportional

to the corresponding derivative:

QEW® /
a’Uﬁ :
OE® »

Awgi{t+1) = —p + aAwy,;(t) {2.8)
a‘wkj

where: 7 is the learning rate which is in the step length in the negative gradient
direction. The value of 7 is usually between 0 and 1. The last term is a mo-
mentum term which is a function of the previous weight change. The concept
of momentum is discussed in the section 2.4.3.

For notational convenience, the (p) superscript is dropped in the remainder of
this section. The reader should keep in mind that the equations helow are for a

single pattern.

The partial derivative of E with respect to wy; is computed as

OFE  OF oy
= — (2.9)
8u}kj 50;(T (?wkj
The term gfc— in equation (2.9) is calculated as

OF o 1 & [
50—}: ‘é‘oz [‘2‘ Z (te — 0&)2]

k=1
= —(tk — o) (2.10)



&
o

W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
QW VYUNIBESITHI YA PRETORIA

CHAPTER 2. MULTILAYER NEURAL NETWORK LEARNING 35
and
8()k :
= A1 — oLy, 211
awkj Oy, ( O, ) Yy { )

From equations (2.10) and (2.11)

ok
S —{tx — ox)or(1 = or)y; (2.12)
Wi
Therefore,
A’wkj == ’Q{tk - Ok)()k(l e Ok)yj (213)

The contribution of hidden umits to the output error is not readily known.
However, the error measure can be written as a function of the error contribution

over all output units.

OE _ - OF dox 0y,
8‘Uji k=1 6();C Byj 8’{)3'27
Jy; K OF 8oy
duji j=; 0ok By;

dy;
- J?. Z ~(tx — ox)or (1 — Ok)itlg"wk:j (2.14)
It k=)

The partial derivative 5% is computed as
E

dy; )
5{?.;: = y](l - y]‘)Zi (210)
Therefore,
K
Avi; =0 D (te — ox)or(l — ok)yjwisy; (1 — ;)2 (2.16)

k=1
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4. Update the weights:
wii(t+1) = wi(t) + Awgy(t + 1) (2.17)
vilt +1) = w(t) + Avye(t + 1) (2.18)

where t represents the current time step, Av;; and Awg; are the weight adjustnents

from equations (2.13) and (2.16).

5. Test for convergence, for example if an acceptable MSE has been reached. or the
maximum number of epochs has been exceeded. Go to step (2) and repeat until
convergence in terms of selected stopping criteria.

An iteration, which is referred to as an epoch. is one pass through the training set
which includes presenting training patterns, calculating the activation values. and

modifying the weights.
2.4.3 Additional Features To The Training Algorithm

Some features have been incorporated into the GD training algorithm to improve neural

network learning.

e Addition of neuron bias: The addition of a bias to the neural networks is to offset
the origin of the activation function. This allows more rapid convergence of the

training process [Masters 1993, Wasserman 1989, Fausett 1994]

i

By adding a bias
unit with a constant activation value of —1. The weight between the bias unit and a
unit in the next layer serves as bias to that unit. These bias weights are trained in

the same way as the other weights. Therefore, for hidden units
I

y; = FQ vz (2.19)

=0
and for output units

J
o = fO_ wisy; (2.20)
=0
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with zg = —1 and yo = —1. v;o is the weight to the bias unit z; in the input laver

and wyp is the weight to the bias unit yy in the hidden layer.

e Another prominent feature that can be added to improve the performance of the
network is to add a momentum term. The addition of a momentum term helps
to avoid oscillations in weight adjustments [Beale et al 1990]. Momentum is propor-
tional to the magnitude of previous weight changes. Weight changes are then in
the direction that is a combination of the current gradient and the previous gradi-
ent. Momentum allows the network to make reasonably large weight adjustinents,
as long as corrections are in the same direction for several patterns, while using a
smaller learning rate. Momentum also reduces the chances of getting stuck in a local
minimum [Wasserman 1989, Dayhoff 1990] - a problem of learning with the gradient
descent technique which is discussed in the next section. In effect, momentum tries to
find the global minimum of the error surface by repeatedly jumping in the downhill
direction. Momentum is typically implemented by multiplying a numeric parame-
ter between zero and one with the previous weight change (refer to equations (2.7)

and (2.8)).

2.5 Learning Difficulties With Gradient Descent

Optimization

Despite gradient descent’s usefulness in training multilaver neural networks. there
are difficulties associated with learning using gradient descent. Problems with GD

include network paralysis, local minima and slow convergence.

One of the problems that occurs when GD is used is network paralysis. Network paral-

ysis occurs when the weights are adjusted to very large values during training. Large



<&

W UNIVERSITEIT VAN PRET
0 UNIVERSITY OF PRET
Q=

YUNIBESITHI YA PRET

(==
0 0 =

CHAPTER 2. MULTILAYER NEURAL NETWORK LEARNING 38

Local Mimimum

Global Manimum

Figure 2.8: An illustration of local and global minimum

weights can force most of the units to operate at extreme values, in a region where
the derivative of the activation function is very small. Since the error backpropagated
is proportional to the derivative of the activation function (refer to equations (2.9)

and (2.14), the training process can come to a stand still [Wasserman 1989].

A prominent problem with training using GD is the occurrence of local 1minima
[Rumelhart et al 1986]. The network finds a combination of weights that that rep-
resents a local and not a global minimum. The gradient descent techunique follows
the slope of the error surface downward, constantly adjusting the weiglits towards
the minimum. The error surface could be highly complex: full of hills. vallevs. folds
and gullies in high dimensional space. The network may therefore, get trapped in
a local minimum (shallow valley), while there is a much deeper minimum nearby or

elsewhere. Figure 2.8 illustrates the concept of local minimum and global minimum.

There is also the problem of slow convergence: A multilayer neural network requires
many repeated presentations of the input patterns, for which the weights need to

be adjusted before the network is able to settle down into an optimal solution. The
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method of gradient descent could be verv slow to converge for a complex problem

due to the complexity of the error surface [Wasserman 1989).

Querfitting and underfitting are not unique problems of GD but general problem-
s of any learning or regression algorithm. Overfitting occurs when a network has
too many training units (an oversized architecture), causing the network to pro-
duce good results with the training data, but performing badly with data not
seen during training. Rather than learning the basic structure of the data. the
network learns the irrelevant details, for example noise in the training patterns
[Sarle 1995, Schittenkopf et al 1997]. A low training error therefore does not alwavs
imply a good performance of the network. A network can also be underfitted. which
occurs when the number of training units in a network is too few, i.e. an undersized
architecture. Thus the network fails to approximate the true form of the relationship

between inputs and targets.

2.5.1 Solutions to these learning difficulties

Many research efforts have been invested in the study of how to improve the learning
of multilayer neural networks. Approaches to improve performance range from finding
the optimal learning rate to finding the optimal network architecture. Some of the

most promising approaches are discussed below:

1. Adaptive learning rate and momentum factor: Rather than using a fixed
learning rate in training, the learning rate and momentum can be adjusted
dynamically during training [Weir 1990, Fausett 1994]. Decreased training time
and improved convergence have been achieved using adaptive learning rate and
momentum. A careful selection of the learning rate is often necessary to cnsure
smooth convergence. A large learning rate can cause network paralvsis and a

small learning rate causes slow convergence. An advantage of a large learning
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rate is to accelerate learning when a plateau is reached in the weight space. A
small learning rate, on the other hand, is helpful in slowing down learning when
a valley is approach in the search space [Yu et al 1997)].

A momentum factor is used to smooth error oscillation. Plaut ¢t al have shown
that low momentum is good to maintain movement along a particular direction
in the error surface, but should be increased when the learning procedure has
settled in a stable direction of movement [Plaut et al 1986 ]. The learniug rate
and momentum should therefore be varied according to the region where the
weight adjustment is. An optimal learning rate for a learning problemn can also

be found [Weir 1990]. However, the optimal learning rate is problem dependent.

. Random weight initialization: The choice of initial weight values influences
whether the network converges quickly or not [Fausett 1994]. The weight up-
date between two units depends on both the derivative of the objective {error)
function with respect to weights, as well as the activation value of units. Initial
weights must not be too large, to ensure that the initial input signal of the a
hidden unit or output unit does not fall in the region where the derivative of
the sigmoid function is very small. If the derivative is small, the net mput of
the hidden or the output unit will be close to zero and will cause extremely
slow learning due to small weight updates. Weights are initialized randoinly to
break symmetry [Rumelhart et ol 1986]. Syvminetry occurs when all weights are
initialized to the same value. Consequently, the hidden units are assigned iden-
tical error values. All weights in the network are then adjusted in an ideutical
manner, and thus prevent the error function from being reduced. Weiglits are

usually initialized randomly to small values [Rumelhart et al 198G].

. Optimal network architecture selection: The achievement of good perfor-
mance in a trained network is through careful selection of the network size. An

oversized network can lead to overfitting of the data but on the other hand, a
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small sized (simple) network can lead to underfitting [Le Cun 1990].

Optimal architecture selection is adaptive in the sense that adjusting ncural
network size is incorporated into the network training. Research into opti-
mal architecture selection is split into three areas: growing the network dur-
ing training by adding more parameters to the network [Hirose et al 1991,
Jutten et ol 1995}, pruning the network by removing redundant parameter-
s during training [Sietsma et al 1988, Engelbrecht et al 1996. Le Cun 1990]
or regularization through penalty terms added to the objective function

[Weigend et al 1991, Kamimura et af 1994, Karayiannis et al 1993].

— Network pruning involves training an oversized network and removing re-
dundant and irrelevant network parameters, including units and / or weight-
s. Starting with an oversized network rather than a small or undersized
network, the network is guaranteed to learn the desired input and output
mapping [Le Cun 1990]. Once a network has learn a solution to a prohlem,
the network can then be pruned to the minimum size [Sietsma et ol 1988].
Pruning aims at solving the problem of the overfitting as well as reducing
the computational cost of training and applying the network [Le Cun 1990].
Selecting the parameters to remove is the main focus of pruning method-
s and is based on different criteria proposed by different researchers. Le
Cun et ol introduced the concept of network pruning through their work
on optimal brain damage (OBD) [Le Cun 1990]. Le Cun et al cmpivical-
ly showed that by removing unimportant weights from a network. several
improvements could be achieved. These improvements include hetter gen-
eralization, fewer training examples and improved speed of learning. OOBD
reduces the size of a network by selectively deleting weights. The goal of
OBD is to find a set of parameters, that when deleted would cause the
least increase in the error function. To find such set of parameters. Le

Cun et al defined the saliency of parameter as the change in error caused
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by deleting that parameter. The parameter with least saliency is deleted.
The second derivative information is used to calculate this saliency and
therefore is computationally complex due to calculation of Hessian matrix.
Hassibi et al extended OBD to remove the required retraining after prun-
ing [Hassibi et al 1994]. Their approach, referred to as OBS. automatically
computes the adjustments needed to the remaining weights due to the prun-
ing of weights. Engelbrecht et al developed a pruning algorithm where the
sensitivity of the output of the network to small parameter perturbations is
used to identify irrelevant parameters [Engelbrecht et al 1996]. This algo-
rithm prunes both input and hidden layvers of feedforward neural networks.
Units that have the least statistical influence on all units in the succeed-
ing layers are pruned. An adaptation to this pruning algorithm was also
proposed by Engelbrecht et al [Engelbrecht et al 1999b]. A uew pruning
heuristic based on variance analysis of sensitivity information is used to
find irrelevant parameters.

Network growing involves growing the network during training. Hidden
units are added to the network when needed. Network growing reduces com-
putational cost and complexity of the trained network [Jutten et al 1995].
A reduction in computational cost is achieved because the optimal archi-
tecture needed to train a network is problem dependent. A small network
architechure have fewer weights than a large network and thus needs a few
weight adjustments. Once the optimal solution for a probleni is obtained,
the resulting network has an optimal architecture [Jutten et ol 1995]. Hi-
rose et al also used network growing to solve the problem of local minima
[Hirose et al 1991]. In their research, Hirose et ol added more hidden units
to a network being trained as soon as the network starts overfitting. The

error function was used to detect local minima.

Regularization, where all weights are penalized. Regularization
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is achieved by adding a penalty term to the objective function
[Weigend et al 1991]. In doing so, network complexity is penalized. The
effect is that redundant weights are driven to zero, while active weights re-
tain their importance [Kamimura et al 1994, Karnin 19901, Weight decay

is one form of regularization [Fu 1994].

4. Training with jitter: Jitter is artificial noise deliberately added to iuputs
during training. Training with jitter is a form of regularization. such as weight
decay. An advantage of jitter is that the NN can be brought out of a local
minimum [Beale et al 1990]. Injecting artificial noise into mputs during training
is very effective in improving generalization performance when small training
sets are used. Noise injected into inputs is assumed to have zero mean and a

small variance in order not to change the distribution of the given training data.

5. Adaptive learning function: Activation functions can be adapted and
trained just like the weights of a NN. This adaptation improves learning
in terms of faster convergence and more accurate results [Zurada 1992a.
Engelbrecht et al 1995, Fletcher et al 1994]. Zurada [Zurada 1992a) and Fletch-
er et al [Fletcher et al 1994] proposed a learning rule where the steepuess or
slope of the activation function used for learning is trained alougside with the
weights. The learning rule produced better solutions and a faster convergence
to problems when compared to conventional error backpropagation. Another
research on adaptive learning functions is the gamma learning proposed by En-
gelbrecht et al [Engelbrecht et al 1995]. Gamma learning extends the lamnda rule
of Zurada, by dynamically adjusting the output range of the sigmoid activation

function, thereby performing automatic scaling.

6. Active learning involves making optimal use of the training da-
ta.  Much research has been done in developing active learning mod-

els |[Engelbrecht et al 1998, Engelbrecht et al 1999a, Engelbrecht et al 1999¢.
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Zhang 1994, Robel 1994a, Plutowski et al 1993. Cohn et al 1996]. Active learn-
ing refers to the selection of a subset of the available training data dvnamically
during training, where the subset contains the most informative data. Active
learning has been found to save computational cost and reduce training time
[Cohn et al 1996, Plutowski et al 1993, Rébel 1994a, Engelbrecht et al 1999a.
This thesis presents a survey and comparison of active learning algorithins for
function approximation and time series problems. The next chapter claborates

on active learning.

2.6 CONCLUSION

This chapter discussed the training of the neural networks. A background intro-
duction into multilayer neural networks was given. The chapter focused on training

feedforward MLNNs using gradient descent optimization.

The learning equations were derived and the problems of training a NN using gradient

descent as well as the solutions to these problems were discussed.

The next chapter discusses one of the methods to improve learning with gradient

descent technique, i.e. active learning.
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Problem H Equation | Po-Pg-Py l Architecture

F1 (3.3) 600 -200-200 | 2-5-1
TS1 (3.4) 600-200-200 | 1-5-1
TS2 (3.5) 600-200-200 | 2-5-1
TS3 (3.6) 140-60-60 10-10-1
T54 600-200-200 | 2-5-1
TS5 600-200-200 | 2-7-1

Table 3.1: Summary of the functions and time series used

that

DN Dy =

DcNDg =

=2 s =

DN Dy =

Let Pc be the number of training patterns in D¢, Py the number of training patterns
in Dy and P; the number of patterns in test set Dg. Table 3.1 shows the size of
these sets for each problem. D¢ is the candidate training set from which training
patterns are selected. Dy contains data used to determine the generalization factor
during training. Dg contains data used to determine the generalization perforimance

of the network.

The performance of the active learning algorithms was tested on clean and noisy
data, as well as data containing outliers. Section 3.5.1 explains the experimental
procedure, including a discussion of the performance criteria used to compare the

learning algorithms. The results are compared in section 3.5.2.

The characteristics of the functions and time series used for experimentation are

discussed next. The following functions and time series were used:

1. Function F'1 is defined as (see figure 3.1(a))

1 . {
F1:F(z,2) = E(zf + 23)

.
(]
i

—’
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o

where z;, 29 ~ U(—1,1). All target values were scaled to the range [0.1.
Time series TS1 is a sine function defined as (see figure 3.1(h)),

TS1: F(z) = sin(212)el =% + ¢ (3.5)
where z ~ U(—1,1) and ( ~ N(0,0.1). Target values were scaled to the range
[0,1].

Time series TS2 is the henon-map function defined as (refer to figure 3.1(c¢)),

TSQIOt = Z

Zt

Il

1+0.32-0 + 1.4z (3.6)

where 21,2 ~ U(=1,1). The target values were scaled to the range [0.1].

. Time series TS3 is a difficult time series, having 10 input parameters of which

7 are irrelevant (see figure 3.2(c)).
TS53: Oy — Z
z = 03z.6—06z_4+05z_,+0327 4 —0.222 , +( (3.7)

for t = 1,---,10, where z4, 2,29 ~ U(—1,1) and {; ~ N(0,0.05). All target

values were scaled to the range [0,1].

. Time series TS4 is a convolution of two discrete functions with outliers. Fig-

ure 3.2(a) shows an illustration of this function.

. Time series TS5 is the sine function TS1 with 5% of the candidate training set

consisting of outliers (see figure 3.2(b)).

3.5.1 Experimental Procedure

In order to obtain statistically valid assertions in comparing experimental results of

the four learning algorithms, thirty simulations were performed for each problem.
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Online training was used for the active learning algorithms. The initial subset size
for incremental learning algorithms consisted of one pattern and a subselection size
of one pattern was used. Each simulations was executed for 2000 epochs. A learning
rate 0.1 and momentum 0.9 were used for all the approximation problems . Results
reported are averages over the 30 simulations together with 95% confidence intervals

as obtained from the t-distribution.

The selective learning algorithm was not applied to F1, since F1 is not a tine series
problem. The 7 value used 1n the subset selection criterion for AL was adjusted
for each problem using a trial and error approach. For TS3, a high 7 was used
(7 = 1000), a value of 100 was used for TS1, TS4 and TS5 while a value of 180) was
used for TS2 and F1.

Performance measures
To evaluate the performance of each learning algorithm, the following performance

criteria were used:

1. The mean squared error (MSE) was used as a measure of accuracy. The MSE
measures how well a function is approximated by the network, and is defined as

P «K ) (2
2op=1 Dok=1 (tgf) - in))

A e
15E 2K P

A MSE value close to zero shows a small error between the target and the
output function. The MSE over the three sets Dy, Dg and D¢ were comput-
ed. The MSE over D¢, denoted by Eg provides an unbiased estimate of the
generalization error since the patterns in Dg were not used for training.

2. Robel’s generalization factor p was used to measure overfitting etfects. The

generalization factor was computed as p = %‘C— where FE. is the MSE over

candidate training set Do and Ey is the MSE over the validation set Dy-. A

network overfits when the value of p increases substantially above 1.
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3. The computational complexity of learning algorithms was also used as perfor-
mance criterion. For the purpose of this thesis, computational cost is measured
as the number of calculations needed to train the network. Calculations include

subtraction, multiplication, addition and division.

At any epoch &, the cost Cy. of training a NN on a training set, is expressed as
Cfc = (CV -+ Cw) * Pr

where Cy is the cost of updating weights between input and hidden units and
Cw is the cost of updating weights between hidden and output units. 7 is the
number of patterns in the training subset Dp. For conventional backpropagation
with fixed set learning, Pr = Pr. Thus the cost of training Cyy is computed as

Cfst = (CV + CW) * Pc.

The costs of updating the weights are calculated as

CV == Cb * (]V\/)
Cw = Cy*(Nw)

where C, is the cost of updating a single weight between the input and hidden
layers, C, is the cost of updating a single weight between the hidden and output
layers. Cy is the total cost of updating the weight connections hetween the
input and the hidden layers, and Cy is the total cost of updating the weight
connections between the hidden and output layer. Ny is the total nummber of
connections between the input and hidden layers and Ny is the total number

of connections between the hidden and output layers.

The total number of connections Ny and Ny are expressed as

1\7‘/ = (] + 1) * (J + 1)
Ny = (J + 1) * ([’()

and
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C, =11

Therefore,

Cy = 1B3x({I+1)x(J+1)
Cw = 11x(J+1)xK (3.8)

The cost of training a network using any active learning algorithm includes C'...
the cost of selecting patterns for training and the cost of computing the subset
termination criterion. Therefore, at any epoch &, the cost of training a network

using SLA, SAILA, DPS and AL are:

Csr = Cre+Cyox Po
CDP = Cfc + Cdps * (PC - PT) + (05(1,,5 * PT)
Car, = Ci+Cqyx*(Pc— Pr)+(Cs, * Pr)

Csa = Cfc+Csai*(PC_PT)+(CS '*PT)

sat

For all the incremental learning algorithms, the subset selection criteria are
tested on the remaining patterns in the candidate set D which is equal to Pp—
Pr. Also, for incremental learning algorithms, an additional cost of selecting
pattern is incurred when a pattern is selected.

Csp, Csa, Car, and Cpp are the cost of training a network using SLA, SAILA.
AL and DPS respectively. Cy, = 15 is the cost of computing the subset selection
criteria for SLA, Cy,s = 11 is the cost of computing the subset selection criteria
for DPS, Cy = 4 is the cost of computing the subset selection criteria for AL

and C,,; = 18 is the cost of computing the subset selection criteria for SAILA.

Cg s = 25 Cs,, =2 and Cg,,, = 7 are the cost of selecting patterns into Dy for

sal

DPS, AL and SAILA respectively.

Therefore,

Csp = Cfc + 15P¢
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Cpp = Cfc*i-ll(Pc“"PT)"rQPT
Car = Cfa+4(P(f—PT)+2PT

Csa = CyoxPr+18(Pc— Pr)+7Pr (3.9)

From equation (3.9), the cost of training is directly proportional to the number
of patterns selected for training. The more patterns are selected for training. the
higher the computational cost. Initially, Pr for SLA is greater than the other
algorithms because DPS, AL and SAILA are incremental learning algorithm
and a small initial trainig set and subset size is used in the simulations. Thus,
Csp is expected to be greater than Cy4r, Cpps and Cgy initiallv. SAILA is
computationally more expensive in selection criteria than the other algorithms
because SAILA has more subset selection criteria to implement than the other

algorithms.

Section 3.5.2 illustrates the costs for the different algorithms.

3.5.2 Results

This section presents the results of the simulations carried out on the active learning

algorithms.
Training error

In order to compare the performance of the four active learning algorithms. the
MSE over the candidate set D¢ was computed for the simulations and the average
calculated. Tables (3.2) and ( 3.3) show the result over 2000 epochs for clean data

and data with noise and outliers.

For TS1, DPS had a very low error with the lowest variance which means that all
the errors of the simulations for DPS were all closer to the average error of 0.0003.
Although, SLA had a low error as well. However SLA had a large variance when

compared to DPS. AL had the largest error with a very large variance.
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DPS achieved the smallest error for TS2, having a small variance. For TS3. all the
algorithms had very low errors but SAILA had a high variance. DPS Lad the sinallest

error for F1 with a very small variance.

For TS4 and TS5, SLA achieved the smallest error with the lowest variance. AL Lad
the largest error for TS4 and TS5. This is because AL selected and trained on just
a single pattern for TS4 and an average of 4 patterns for T'S5. Thus AL. had high
errors for TS4 and TS5.

The training errors for all the problems with noise and outliers were larger ( x10?)
than for problems with clean data. DPS had the lowest average error for clean data

while SLA had the lowest error for noisy data.
Generalization error

To compare the generalization ability of the four active learning algorithms. the MSE
over the generalization set, E, was computed and the average over the 30 simulations
was plotted as a function of number of epochs. Figures 3.3 and 3.4 illustrates the

trend of the generalization errors for the entire training period.

DPS achieved a very low average error faster than the other algorithms for F1 (refer
to figure 3.3(a)). However, both SAILA and AL achieved a comparable result to
DPS at epoch 1000. From table 3.3, DPS had the lowest error with the a verv small
variance (5.07F — 05) which means all errors of the simulations are closer to the

average.

For TS1, SAILA initially had the highest generalization error but decreased to a low
level of error (see figure 3.3(b)). SLA initially had the lowest average error. which
can be explained by the fact that SLA used more patterns initially than the other
algorithms (refer to figure 3.7(b)). Although SLA and DPS had small errors. DPS
had the smallest variance and thus DPS achieved the smallest error. AL had the

largest error after 2000 epochs with a large confidence interval.

For TS2, DPS, AL and SLA achieved a very low average error before epoch 500.
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-1
[N]

Selective | Sensitivity

Function Robel Zhang | Learning | Analysis

TS1

Training Error | 0.00036 0.02172 | 0.00045 0.00346
+ + + +

0.00017 0.04186 | 0.00035 0.00712
Generalization (| 0.00039 0.02241 | 0.00047 0.0035

+ + + *
0.0002 0.04191 | 0.00040 0.00737
Used Patterns || 485.43 4.73 270.93 071.67
+ + + +
234.79 0.92 3.48 88.91
TS2
Training Error || 0.00014 0.00023 | 0.00029 0.00126
+ + + +

0.00011 0.00021 | 0.00038 0.00163
Generalization || 0.00012 0.00022 | 0.00029 0.00129

+ + + +
0.25FE — 05 | 0.00019 | 0.00037 0.00169
Used Patterns | 411.77 174.63 | 272.57 522.57
* + £ +
215.87 61.48 7.61 173.37
TS3
Training Error || 0.00039 0.00044 | 0.00050 0.00068
+ + + +

0.00086 0.00091 | 0.00085 0.00146
Generalization | 0.00275 0.00253 | 0.00302 0.00225

+ + + +

0.00155 0.00133 | 0.00138 0.00174
Used Patterns || 180 180 78.17 180

+ + + *+

0 0 1.53 0

Table 3.2: Comparison results over 2000 epochs for times series problems
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Selective | Sensitivity
Function Robel Zhang | Learning | Analysis
F1
Training Error || 0.000226 0.000412 0.000791
+ + +
5.07F — 05 | 0.000366 1 0.001852
Generalization || 0.000221 0.000392 0.000764
+ + +
5.2FE — 05 | 0.000347 0.001624
Used Patterns || 320.2 82.8 445.1333
+ + +
167.6698 32.37935 121.476
TS4
Training Error || 0.01141 0.19935 | 0.00516 0.02828
+ + |+ +
0.00573 0.03093 | 0.00393 0.09522
Generalization || 0.01077 0.19051 | 0.00478 0.02739
+ + + +
0.00534 0.02169 | 0.00349 0.09170
Used Patterns | 493.03 1 245.23 597.03
+ + + +
193.37 0 7.89 27.41
TS5
Training Error || 0.00683 0.10278 | 0.00155 00.005662
+ + + +
0.00468 0.08731 | 0.00158 0.00768
Generalization || 0.00714 0.09904 | 0.00158 0.00595
+ + + +
0.00489 0.08932 | 0.00142 0.00842
Used Patterns || 103.5 4.67 269.13 584
+ + + +
20.14 1.35 | 9.89 93.4

Table 3.3: Comparison results over 2000 epochs for problems F1 and times series with
noise and outliers
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SAILA was slower to achieve a comparable low error but SAILA had a low error by
the end of training. From the table 3.2, DPS had the smallest error with a verv small
variance after 2000 epochs, implying that all errors of the simulations are closer to

the average.

For TS3, the generalization error for all the algorithms increased as the nnmber of

epochs increased except SAILA (see figure 3.3(c)).

From the table 3.3, SLA had the lowest generalization errors for TS4 and TS5. While
AL had the largest error for TS4 and TS5. AL did not learn the functions (refer to
figure 3.4(a)). AL selected a few patterns for training, thus had little information

about the time series to be approximated and therefore AL had a bad generalization.

DPS had the lowest generalization errors for functions with clean data while SLA had
the lowest generalization errors for functions with noise and outliers. Although DPS
had better generalization with clean functions than SLA, DPS used more patterns
than SLA to achieve the low generalization error in all the problems. AL had very

large generalization errors for TS1, TS4 and TS5. This bad generalization can be
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attributed to the extremely small training set sizes used by AL which is an indication
of an inferior subset selection criterion. The subset selection criterion depends on
the number of connections in the network. Redundant or irrelevant weights in the
network will make the value of the performance level x verv large which can cause
the network to train on the current training subset Dp too long without selecting
additional patterns. Thus the network selects a few patterns, hence having insutticient
information to train the network. On the other hand, too few weights in the network
can make « small. Thus, the network selects patterns more often than are needed

for training.
Overfitting effects

The average generalization factor p for all the problems were computed over the 30
simulations. Figures 3.5 and 3.6 show the charts for the average generalization factors.
The average generalization factors were plotted as function of pattern presentations.

A pattern presentation represents one weight update.

TS3 was the only function for which all the algorithms except SAILA. overfitted.
SAILA had an average generalization factor of less than one, while the other algo-
rithms had high generalization factors. For the entire training period for TS4. AL
had a generalization factor constantly larger than 1, indicating that AL overfitted
TS4. For the other functions, the average generalization factor values Huctuated.
The flunctuation is due to the overfitting of a training subset until new patterns are
selected for training. When new patterns are selected, the overfitting of the training
subset is reduced. The average generalization factor for all the algorithms (except

TS3) were slightly over one, and indicating a mild case of overfitting.

Computational costs

The computational costs for AL, DPS, SLA and SAILA were computed using e-
quation (3.9) for specified epochs. The costs are plotted as a function of epochs as

illustrated in figures (3.9) and (3.10).
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SAILA has the most expensive and AL has the least expensive subset selection cri-
teria. However, AL performed badly (refer to tables 3.2 and 3.3). For all the ap-
proximation problems, DPS, AL and SAILA had increasing costs because thev are
incremental learning algorithms. More patterns were used as training progressed

(refer to figures (3.7) and (3.8)).

For F1 and TS2, AL had the smallest cost (see figure 3.9(a) and (b)). Thesc small
costs can be attributed to the cheap cost of the subset selection criterion as well as

the fact that AL used the smallest number of patterns for training.

Despite the fact that AL has the cheapest subset selection criterion and a simple
selection criterion, AL had the highest cost for TS3. This is because AL selected all
the patterns in D¢ within a short training interval (by epoch 400). SLA initiallv had
the highest cost (first 350 epochs). However, at epoch 1000, the cost was half of the

other algorithms.

For all the functions approximated, SLA initially had a higher training cost than the

other algorithms - almost four times the training cost of other algorithms. because
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SLA is a selective approach (see figure (3.9) and (3.10)).

From tables (3.2) and (3.2), SLA used less number of patterns after 2000 epochs

than the other algorithms, thus SLA was computationally less expensive.

Convergence

The convergence performance of the four active learning algorithms are compared in
figures 3.11 and 3.12. These figures plot the percentage of simulations that rcached

specific generalization errors.

For F1, DPS had the best convergence, all the simulations converged to a very low
error of 0.0004. AL also had a good convergence, more than half of the simulations

converged to 0.0004 (refer to figure 3.11(a)).

None of AL’s simulations converged to the specified error level for TS2. SLA and DPS
achieved good convergence for T'S2, as more than half of their simulations couverged

to a low error (refer to figure 3.11(b)).

For TS2, DPS had the best generalization, most of all the simulations converged to a
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very low error (0.0002). SLA and AL also had good convergence (see figure 3.11(c)).

While the other algorithms had few converged simulations at 0.002. almost hLalf of

SAILA’s simulations converged to this error (refer 3.11(d)).

AL had bad generalization for TS4 and TS5. None of AL’s simulations couverged to

the specified error levels for TS4 while only a few converged for TS5.

SLA had the best generalization for TS4, with all the simulations converging to a
low error of 0.004 (refer to figure 3.12(a)). SAILA had a good convergence with 40%
of the simulations converging to this error of 0.004. Only a few of DPS’s simulation

and none of AL’s simulation converged at this point.

SLA also had the best generalization for TS5. Almost all the simulations (74%)
converged to a error level of 0.005 while only a few of the other algorithis simulations

converged to this error level (see figure 3.12(b)).

SLA had the best convergence for data with outliers and noise. DPS had the best con-

vergence for clean data, although SLA had good convergence for clean data. SAILA
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had a good convergence for TS3. For all the sine functions (TS1. TS4 and TS5). AL
had bad convergence, none of its simulations converged to the specified error level-
s. The errors specified for data with outliers and noise were larger than the errors
specified for clean data. This is because the performance of all the algorithis were

degraded in the presence of noise and outliers.

3.6 Conclusion

The objectives of the chapter were to present a new learning algorithm (SLA) aud also
to compare four active learning algorithms with respect to their accuracy, convergence
and the complexity on both clean and noisy data as well as overfitting effects for the

problems were also examined.

The results presented showed that AL was unstable, producing good results for the
henon-map and F1 only. The bad training behavior can be attributed to the extreme-
ly small training set sizes used by AL, which is an indication of an inferior subset

selection trigger.

DPS and SLA performed very similar on the clean data, while SLA outperformed all
the other algorithms on the noisy and outliers training data. The sensitivitv analvsis
approach (SAILA) performed well under the occurrence of outliers and noisy time
series, and very well for the complex function TS3. SAILA performed hetter than
AL in TS1, TS4 and TS5, but worse than SLA and DPS. SAILA is computationally

more expensive, requiring larger training subsets than the other algorithms.

As is expected, the performance of the error selection approaches degraded nnder
the occurrence of outliers and noise. The degradation is due to the early selection of

outliers, since outliers result in the largest prediction errors.

The comparison above showed that SLA had the best generalization performance. and

lowest complexity. The selective learning approach (SLA) produced better accuracy
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Figure 3.11: Percentage simulations that converged
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Figure 3.12: Percentage simulations that converged

than the other approaches, and showed to be more robust in the occurrence of outliers

and noise.





