
Chapter 2 

MULTILAYER NEURAL 


NETWORK LEARNING 


This chapter discusses learning in multilayer neural networks (MNNs). MNl\s an' b:v far 

the most common applications of artificial neural networks (ANNs). The chapter ('OWl'S 

fundamental issues such as the different types of MNNs and available learnillg algorithms. 

Performance aspects of the different learning algorithms are discussed, as well as difficulties 

encountered in the learning process. 

2 .1 Introduction 

An artificial neural network (ANN) is a model of the biological neural system of human 

beings, modeling one of the most important features of the brain - the ability to lenni.. This 

feature shows parallel to the intellectual development of human beings. As humall I willgs, 
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CHAPTER 2. MULTILAYER NEURAL NETiVORK LEARNING 14 

we learn how to write, read, understand speech, recognize and distinguish pattern - cll1 hy 

learning from examples. In the same way, ANNs are trained, rather than progl"mllllH'rl. 

ANN's develop solutions to problems unlike conventional data processing techlliqlH'S \yhich 

require complex programming. 

An artificial neural network consists of processing units, organized in lavers of units (also 

referred to as artificial neurons). Training of an ANN is done using a training algorithm. 

which is an adaptive way by which a network of processing units organizes thplllseh'("s to 

implement the desired behavior: \Vhen a network is presented with informatioll to k'arn 

(consisting of input attributes and corresponding desired output values). the COlllH'ction 

links in between, referred to as the weights, are adjusted to produce a response COllsistent 

to the desired output. This learning algorithm is a closed loop of presentation of p;\tterns 

or examples and of corrections to the network according to a learning rule. An optilllization 

algorithm such as gradient descent, conjugate gradient or second order deriyatiws tech­

niques, is used to adjust the weights of the network [Becker et al1988J. Then' are ditf('n~l1t 

classes of training algorithms and different topologies of artificial neural lwtworks. 

The rest of this chapter is organized as follows: The parallelism between lliologica.l and 

artificial neural networks is discussed in section 2.2 to show hm" ANNs were inspired from 

the biological counterpart. A taxonomy of different neural network trainillg algorir hms is 

given in section 2.3. Section 2.4 discusses the training of multilayer m~ural networks using 

gradient descent. The learning equations are derived in this section. Section 2.0 dis('llsses 

problems of learning by gradient descent. 

2.2 Biological Neural Networks 

The basic building block of biological neural systems is the neuron. A Hemon is a ('(,11 which 

communicates information to and from the various parts of the human bod\'. Figure 2.1 

 
 
 



15 CHAPTER 2. AIULTILAYER NEURAL NET1l'ORl{ LEAR1VING 

shuws a simplified representation of a neuron. A neuron consists of a cell l)()(l~' l"('f('lTPd to 

as 8om,a, several spline-like extensions of the cell bod~r ref(~rred to as dnuin:tr:s dll< I il single 

nerve fiber referred to as an axon. An axon branches out frOlll the sonla and COllll<'ds to 

rnany other neurons. 

----~C> axon 

soma 

nucleus 

----------=;::(>dendlites 

Figure 2.1: A simplified representation of a biological neuron 

Dendrites extend from the cell body to other neurons where the dendrites n~(:(-'iY(, signals 

at a connection point referred to as a synapse. These signals serve as inpnts \yhich are 

conducted to the soma (cell body). In the nucleus, these received inputs are 811111111('d up. 

If the cumulative excitation in the nucleus exceeds a threshold, the neuron fires. s(,]Hlillg 

signals down the axon to other neurons. While the biological neural systeIll is ('xrn'lnel~T 

complex, an ANN is an attempt at modeling the infonnation processillg capabilities of the 

biological neural system. 
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An artificial neuron was designed to 11lilnic sirnple characteristics of tlw hiolog-icallH'l1l'Oll. 

An artificial neuron receives input signals frol11 the enVirOllIl1pnt. or froll! oth(\l' (\ rt ificial 

neurons. These inputs signals are weighted with a value which Illodels the s~rlla pti(' STT('l1gth 

of the corresponding connection. The \veighted sum of the input signals is used to <1('1 ('1'l11iw' 

the activation level of the neuron. The activation of an artificial neuron is lliodel('</ llsing 

an activation (or transfer) function. The different activation functions are disc1lssed in 

section 2.3.2. 

Figure 2.2 illustrates a general representation of an artificial neuron. III the 1'('s1 of this 

w 

n output =f(netl 

net=~ 
i=1 

Figure 2.2: All artificial neuron 

thesis, the term neural network (NN) is used instead of artificial neural network (A~'\). 

Several key features of the processing elements of a neural network are suggested 1)~. the 

properties of the biological neuron, namely that, 
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• 	 a processing unit (neuron) receives many signals from oth(~r lWllI'0I1S or tIl(' ('JlyirOll­

ment; 

• 	 these signals may be modified by a weight: 

• 	 the processing units sum the weighted inputs which IS transformed to illl ()Iltput 

signal using a squashing function to simulate firing; 

• 	 the neuron transmits this single output to other neurons. or to the ellvirolllllCllt: ;mQ 

• 	 the output from a particular neuron may be transmitted to many othl'r 11(,11ro118. 

One important characteristic an ANN shares vvith biological neural s~'stems (BNS) is fault 

tolerance. A BNS is fault tolerant in two ways: Firstly, human beings are ahh-' to n'('o12,"nizt' 

many input signals that are somewhat different from any signals they hav(c seell I)('fore. 

Secondly, a BNS can tolerate damage to itself. Human beings are born \vith as lWlll\, as 

100 billion neurons. Most of these neurons are located in the brain and arc llot replaced 

when neurons die [Fausett 1994]. Despite the loss of these neurons. human l)('ill~S still 

continue to learn. Even in cases of traumatic neural loss. other neurons ('all SOllH't iw('s he 

trained to take over the function of the damaged cells [Fausett 1994]. In a silllilar llIiUlllf'I'. 

an ANN can be designed to be insensitive to small damage to the uetwork and tIl(' ll<'twork 

can be retrained in cases of significant damage. 

The number of layers, and the way in which neurons arcc interconIleded. l<'slllt('d ill thcc 

design of various ANN topologies. Section 2.3.1 surveys different ANK topolo),!;ic8 ilwl also 

discusses the different classes of training available. 

2.3 A Taxonomy Of Training 

One of the interesting features of neural networks is their abilitv to learn. whi(·1t implies 

that the NN has to be trained. How is this done:C 

 
 
 



18 CHAPTER 2. MULTILAl rER NEURAL NETiVORK LEARNING 

The objective of training a NN is to produce desif(~cl (or at lc'ast cOllsistent) 01ltPilt ,,"hc'll 

a set of inputs is applied to the network. A Hemal network is trailH~d ])," apph'illg (111 iU]Jnt 

vector to neurons while adjusting the wc~ights according to a pn~dpt.C)nllillpd ]ll(w('(illn' ill 

order to bring the l'l"N's learned concept closer to t.he d(~sirecl outpnt. Duril1g Trrtiuillg, 

\veights gradually converge to values such that each set of input pattpl'lls prodnct's rt dosp 

approximation to the desired output patterns. There are two main traiuing paradigills: 

1. 	 Supervised training, which is perhaps the most freqlH~ntl\' used training lIH'thod. 

For training purposes, a training patter'n is required whiclt COllsists of H \"('('lor of 

input values and a vector of associated target/desired output values. Patt('llls ('<Ill 1)(' 

provided by external teachers or by the system which contains the network. ill \\"hich 

case the network is self supervised. The network is usuall~' traiued hv pn'st'llting 

an input vector to the NN, the actual output of the NN is calculated awl cOl1lpared 

to the corresponding desired (target) output. Training patterns are grouj)(>d into a 

training set. Each pattern in the training set is presented to t.he lH:twmk. ,HId the 

prediction error used to adjust weights. Patterns ill tlw training spt an' n'1)(',li<'dlv 

presented to the network until an acceptablt> error is achieved OV('l" the entire 1r<lillillg 

set. 

Supervised learning is analogous to a lesson in school where the teadH~l' ilppli<'s tlw 

correct answer for each problem. Different approaches to Supf~l'vised l('aming have 

been developed . 

• 	 ErToT correction learning which adjusts the ("omH~etioll wc:ights I H'tm'<'ll JllO­

cessing units, in proportion to the difference between t.he d(~sin~d alHl ("(jIll) n!Ted 

values of each neuron in the output layer [Simpson 1990]. 

• 	 Reinforcement learning which is similar to error-correction kal'llillg ill 1hat 

weights are reinforced for properly performed actions and pll11ish('d fOJ poor­

ly performed actions [Simpson 1990]. 

The difference between error correction and reinforcement learning. IS Thi) 1. ('lTOl" 
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correction learning requires an error value for each output unit while H'illf()J('('IlH'ut 

learning requires only a state to deseril)(' tlu~ output la~'(~l"S p('rfonWlllct', 

2. 	 Unsupervised training, also referred to as sdf-orgallizat.ion kaming. u'qllin's uo 

target or desired outputs. Hence, no comparison to predetf'nnillC'd 1'('SP011S('S an' 

needed. Training sets consist solely of input. patterns. The task of the ~:\' is I() jpam 

to group together patterns that are similar and also to find common thn~nds ill a 

mass of data. The NN is supposed to discover statistically salient f{:atmcs of iu]>nt 

patterns and develop its own repres(~nt.ation of these patt.erns. Cwmpenised l('iuuiug 

is used for tasks such as dustering [Fausett 1994]. 

For the purpose of this thesis, only supervised training is considered. 

2.3.1 Topology of Neural Networks 

In addition to the classes of neural uetwork training algorithms, another distingllishing 

characteristic of the different neural networks is t.opology. Topology H'fers to til<' architec­

ture of neurons, including the interconnection scheme within the uetwork. 

Neurons are arranged in one or more than one layer. Neurons within the sam(' la,w1' llsllalh· 

have the same activation function, and are fully connected to the neurons ill tl!p 11('xl !em'L 

A NN can consist of just a single layer of full:,,' interconnected units, or can haw i\ Il illput 

and an output layer with zero or more hidden units, referred to as a multilnV('\ IH'11U1.1 

network (MLI\'N). Figure 2.3 illustrates a MLNN ,,,ith a hidden layer. The figure has thre(, 

units in the input layer with a single output unit. The input layer consists of lluit s that 

receive input signals from the environment and distributes the signals to thl' ot.her layers III 

the network. The output layer returns signals to the environment. Hidden lav(~rs iln' thosp 

layers in between the input and output layers. The hidden units provide nOlllilwilli I ips for 

the netvmrk. 
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Z J 

Z 2 

Z 3 

Figure 2.3: A multilayer neural network with a hidden lav(·'r 

Each neuron produces an activation value (output signal) \vhich usnallv is (1 flluctioll of 

the weighted sum of the input signals. The activation value represents the actinltiou l<~\'pl 

for the neuron. Section 2.3.2 discusses activation functions that can be used iu a :\:\. 

2.3.2 Activation Functions 

The basic operation of an artificial neuron (unit) involves summing the neurou's w('ight(~d 

input signal and to produce an output signal through application of all attiv(\tioll fll11ctioll 

to the net input signal. Activation functions map a neuron's domain. which is tIl(' illpnt. 

to a prespecified range the output. Figure 2.2 illustrated the basic huildiuf.!, hlock of a 

NN. In figure 2.2 net is the weighted input signal. The output signal () is (,llkulat('d as 

0= f(net) (2.1 ) 
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Various mathematical functions have been used as activation fuuctiollS. Tlwl'(' me flllWriolls 

that squashes the Het input signal into a finite range. These fUllctions CClll 1)(, d is<Tct<, 

functions, snch as the ramp and step functions, or continuous functions. for ('Xalllj ll(' tIl<' 

arctangent, sigmoid, sine or gaussian (radial basis). Linear functions call ;ds() j H' llsed 

as activation functions, in which case the input signal is not mapped iIlto a nuit!' raugf'. 

Figure 2.4 illustrates the different activation functions that cau be used. 

One of the major reasons why earlier work on NNs came to a halt. was thar TIll' 1('iHll­

iug rule could not be substantially improved for multilayer l\Ns llsillg th!' diS<T(,t(' H11(l 

linear acti·vation functions [Maren et o,l1990J. Linear and discrete functions ('onl<1 only 

solve problems that are linearly separable, and being linearly separable limits t IH' .:\:\ to 

problems (classification) in \vhich the sets of points (corresponding to input valm's) Cilll be 

separated geometrically. Hence, the network used then (perceptron) could Hot solw rh(J 

XOR problem. 

A new learning rule (backpropagation) was developed to handle linearlv ins(~pHraJ)k fllll(,­

tions. However, backpropagation requires continuous, monotonic illcn~asillg ilctiYat.iou 

functions, since these functions need to be differentiated when the gradient of t he' (~rror 

surface is calculated during the weight update process. 

The sigmoid function, given in equation (2.2), is widely 1lsed as actiyatiou fllllctioll aud 

is a continuous function bounded in the range (0,1). The sigmoid fUIlction is ('x])1'('s5(>([ 

mathematically as: 
1

f(net) = --­ (:2.2 ) 
I + e~HeI 

The sigmoid function is desirable because of its simple derivative. The sigmoid fnllc1ioll has 

the advantage of providing a form of automatic gain control. That is, for slIlall sigwds (net 

near zero), the slope is steep producing high gain in the magnitude of the uet,\york's olltput 

and as the magnitude of net increases, the gain in the magnitude of the network's output 

decreases. In this way. large input signals can be accommodated by the lH~twork wirho1l1 

saturation, while small signals arc allowed to pass through without excessive atrPlllliltioll. 

\ t Cf//to ?-S2-x.. 

b i 5 "-I :r;.G:, 7 5 
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IlIll'droutput 
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~lcll 

net 

I 
Figure 2.4: Actiyation functions 

2.3.3 Neural Network Types 

Based on the different network topologies and training approaches, different types of NNs 

have been developed. A surnmary of the different NN types are presented belo\v: 

1. 	 Recurrent neural network (RNN): A RNN, also referred to as a feedback IH'ural 

network, employs feedback connections in order to learn teInporal characteristics of 

data presented for learning. The feedback connections thus allo\\' the network to pro­

duce cOlnplex tirne varying outputs in response to silnple static input [Carlillg 1992]. 

RNNs exhibit properties very similar to short term menlory in human beings. There 

are different types of RNNs, e.g. Jordan and Elman RNNs. 

In Jordan RNNs, the state of the output layer is fed back to state units ill tIl<' illput 

layer (see figure 2.5( a)): while the state of the hidden layer is copied illto context 
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INPUT 
LAYER HIDDEN LAYER 

STATE UNIT 

(a) Jordall RNN 	 (b) Elmanll RNN 

Figure 2.5: Recurrent Neural Networks (RNNs) 

units in the input layer for Elman RNNs (see figure 2.5(b)). H:vbrid lletvvorks can 

also be built by combining Jordan and Elman networks. Also, any nurnlwr of previous 

time steps can be incorporated by simply having additional state units (for .1ordan 

RNN) and context units (for Elman RNN) for each tirne step [Carling 10021. 

2. 	 Functional link neural network (FLNN): In a FLNN~ the input layer is 0X])Clllded 

to a layer of functional units, which consists of higher order combinations of tlH\ input 

units [Zurada 1992b, Hussain et al1997]. Each functional unit is full:v' COlllH'cted 

to the next layer. The addition of higher order combinations of inputs al'tihciall? 

increases the dimension of the input space. Figure 2.6 shows an illustratioll of a 

functional link neural network. 

3. 	 Product unit neural network (PUNN): PUNNs allow learning of higher-order 
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----·-"1 
output laY""1 

YJ 
hidden layc,'functional layer 

Figure 2.6: A functional link neural network (FLNN) 

input terms, by using product units instead of summation units to cornpntp tllP net 

signal to a neuron [Durbin et al1989]. 

A weighted product 
I 

IT 
i=l 

is therefore used instead of the usual weighted sum 

I 

L 
i=l 

where Zi is the input signal to neuron j, 'Uji is the weight betlveen nellrOll i ill the 

previous layer and unit j. Durbin and Rumelhart proposed two PUNN archit('ctllres 

(refer to figure 2.7): 

(a) 	 In the first architecture, a set of product units is added to the current sllllllnation 

units in the hidden layer (refer to figure 2.7(a)). 

(b) 	 In the second arrangement, layers of product units alternate with layers of Slllll ­

mation units (refer to figure 2.7(b)) 

The 	main reason for using PUNNs, is to learn to represent generalized pol~'ll()lnial 
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(a) The first arrangement 

(b) The second arrangement 


Figure 2.7: Product Unit Neural Networks 
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h\'p~rb()lIc 

lined!output 
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" 
, , 

net 

Figure 2.4: Activation functions 

2.3.3 Neural Network Types 

Based on the different network topologies and training approachetl, different types of ;\iNs 

have been developed. A summary of the different NN types are presented helm'\': 

L 	 Recurrent neural network (RNN): A RNN, also referred t.o as a feedback lH~mal 

network, employs feedback connections in order to learn temporal characr,!~ristin; of 

data presented for learning. The feedback connections thus allow the network to pro­

duce complex time varying outputs in response to simple static input [Carliu!!, 1992]. 

RNNs exhibit properties very similar to short term memory in human lwin!!,;.;. Tlwre 

are different types of RNNs, e.g. Jordan and Elman R!'L\'tl. 

In Jordan RNNs, the state of the output layer is fed back to state units in till' illPut 

layer (see figure 2.5(a)), while the state of the hidden layer is copied into context 
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terms in the input and hence a better representation of data in cases wlwl'<' high­

er order combinations of inputs are significant [Leerink et al1995]. Adjllsrillg thc' 

weights is, however, computational expensive since derivatives of these prodUd nnits 

are complex due to an exponential term and the occurrence of complf'x lllllllil('l's. 

4. 	 Feedforward neural network (FFNN): In a FFNN data flows strictly from the 

input layer to the output layer. A FFNN has no memory and the output is solely 

determined by the current input and weights values. A feedforward neural ll('fw01'k 

consists of one or more layers of usually non-linear processing units (call 11S(' linear 

activation functions as well). The output of each layer serves as input to tIl(' llext 

layer. This thesis concentrates on FFNNs, and studies network learning using FFXNs 

as well as problems associated with learning in FFNNs. 

Apart from the neural network types mentioned above, there are other NN t:vp<,s: for 

example the single layer Hopfield NN (HNN) [Hopfield 1982, Fausett 1994]. awl cluster­

ing NNs, for example the self organizing map (SO~1). which use unsuperviHed l(~aruing 

[Simpson 1990J. 

Section 2.3.4 discusses optimization algorithms that can be used to adjust thp weights of 

feed forward neural networks. 

2.3.4 Optimization Algorithms 

Training a neural network involves finding optimal values for the weights of the lH'twork 

through numerical optimization of a nonlinear objective function. The objectiw flludion 

is usually the sum squared error, computed from the actual network output and tIl(' (ksinxl 

output of the NN to be trained. Different optimization algorithms can be applied to NN 

learning. The algorithm chosen is usually based on the characteristics of tIl(' prohlc'Hl to 

be solved. 
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1. 	 Gradient descent optimization is by far the most common techniq1l(~ lls('d for 

weight optimization. In training the network, a gradient descent is perf(JrnH~d OIl the 

error function, which is a function of the weights of the neural network. \Yeight­

s are adjusted to move towards the negative gradient of the objective fllllCtion 

[Masters 1993, Becker et al1988]. Gradient optimization is discussed ill 11101(' de­

tails in the next section. 

2. 	 Newton optimization uses a better approximation of the error function than the 

gradient descent technique. The newton technique uses second derivatives and gracli­

ent information of the error function to determine the next step direction. This helps 

in reducing the number of steps taken to reach a minimum, thus aehieving faster 

convergence. However, Newton optimization has the disadvantage of being compu­

tationally expensive because the inverse of the Hessian matrix needs to 1)(' caklllatecl 

at each training step. Newton's optimization should preferably be used with Hemal 

networks with a few number of weights due to the cost of computing the illn~rse of 

the Hessian matrix(Darken et ai1992, Becker et al1988J. 

3. 	 Pseudo newton optimization is an adaptation of Newton's method. PSC'lld(J Hew­

ton optimization computes an approximation to the inverse Hessian matrix. and is 

therefore more computationally efficient than Newton's optimization. Pseudo lH'\vton 

optimization should be preferably used for neural networks with a moderat<' llulllber 

of weights due to the cost of approximating the Hessian matrix (Darken cot at 1992]. 

4. 	 Conjugate gradient optimization is used for large optimization probl<"IllS. since 

it does not require the computation and storage of the Hessian matrix. COlljllgate 

gradient uses only gradient information. The objective of conjugate gradient is to 

minimize both the weight vector and a direction vector. Conjugate gradiellt is r!'iated 

to gradient descent optimization using momentum, because the weight s(,;IITh in 

conjugate gradient optimization combines the new gradient direction and thp pn~violls 

gradient direction. Each step involves computing a conjugate direction followed b~' 
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a line search, to get an approximate minimum in the conjugate din'ctioll. C()lJjllgatP 

gradient optimization increases speed of training aud the convergencp of the Iwtwork 

[Becker et a11988, ~1011er 1993]. 

5. 	 Simulated Annealing can be used where the objective function (the (~IT01 fuuc­

tion in neural network training) is not differentiable. Optimizatioll is 1)()rf()nlH~d 

by randomly perturbing the independent variables (inputs in this c(k')e) amI k(~(-'ping 

track of the best (lowest error) function value for each randomized set of variHhl(~s. 

Simulated annealing can be combined together with other optimizatioll algorithms 

such as conjugate gradient,where simulated annealing is used to find a good ini­

tial weight vector, after which conjugate gradient is used to find the local lllillirnum 

[Masters 1993, Desai et aI1996]. 

2.3.5 Why Neural Networks? 

Neural network applications emphasize areas where NNs appear to offer a mon~ appro­

priate approach than traditional computing has. ;'\Ns can be used when data. Oil which 

conclusions are to be based, is noisy. 

\\Then the influential or informative patterns are subtle or hidden, a neural lletwork has 

the ability to discover patterns which are not clear, or unknown, to the human resf'archer 

or standard statistical methods. For example, to determine the credit worthiness of a loan 

applicant, the information needed is hidden within data OIl the spending and the' panllellt 

history of loan applicants. NNs have shown to provide decisions superior to those' wade hv 

human beings [Masters 1993]. Neural networks have also been applied to data that ('xhibits 

significant unpredictable nonlinearity [Masters 1993]. :'-JNs adapt to predict futul"(' values 

not based on strictly defined models, and offer possibilities for solving problems that j'('quire 

pattern recognition, pattern mapping, dealing with noisy data, pattern classificatiolJ and 
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function approximation. 


Specific areas where NNs have been applied include, amongst others: 


• 	 Neural networks have excelled in pattern recognition. NNs deal with thp cOlllplex­

ities inherent in many applications such as recognizing patterns in speech. radar and 

seismic readings. A real world application is the NETTALK, a Beural lletwork de­

signed by Sejnowski and Rosenberg to produce phonetic strings which in tum sp(~cify 

pronunciation for written texts [Dayhoff 1990]. 

• 	 ~Ns are used for pattern classification. Input patterns of a network are mapped 

into one or more classes. That is, each pattern belongs to Olle of thp classes 

[Fausett 1994]. For example, NNs are used for medical diagnosis to identify diseases 

of the heart from electrocardiograms. NNs can also be used in plaut classificatioll to 

determine crop types from satellite photographs [Ma.'3ters 1993]. 

• 	 NNs have also been used in adaptive control applications s11ch as in robots and 

automatic vehicles. Neural networks are used to control robots in the iudllstr)' 

[Dayhoff 1990]. 

• 	 Neural networks are used in financial analysis problems such as credit assessment 

and financial forecasting. NNs have also find application in optimizatioll. sdH'duling 

and routing problems. A practical application is in optimizing resources for airlines 

[Dayhoff 1990J. 

• 	 NNs are used in function approximation problems. A NN can learn 1\ !2,lV(~ll 

function or time series problem when presented with training patterns l'Ppn's(>lltin!2, 

that function or time series. This application has found its usefulness in forpulsting, 

such as weather and in the stock exchange market. 

• 	 Neural networks are used for database mining. A major problem which surfaced 

in information retrieval is that explicit information can easily be n~tripypd ,vhilp 
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implicit information can not. Implicit information is distributed across tltt' patterns 

stored in the database and is difficult to extract by human experts. \'?\s (ll'(' Olle 

of the most promising technologies available to extract such implicit iuforllwrioll - a 

process referred to as data mining. [Towell et al1993, Fu 1994]. 

2.4 Gradient Descent Optimization 

Multilayer neural networks (MLNNs) perform excellently in most applications. ~~sl)('("iall~! 

in classification problems because of the inclusion of one or more hidden laver. Trainillg 

a MLNN is not as straight forward, nor as easy, as training a single layer m~twOlk. This 

section discusses training of MLNNs using gradient descent. Complete derivatiou<ps of the 

learning equations are given and problems with gradient descent optimization are discussed. 

2.4.1 Introduction 

NNs that are trained usmg GD are referred to as backpropagation Heural lH'1-works 

(BPNNs). In order to train the network successfully, the output of the network is lllade 

to approach the desired output by continually reducing the error between tlw Iletwork's 

output and the desired output. This is achieved by adjusting the weights betweell la~reTs: 

by calculating the approximation error and backpropagating this error from th(~ fillal layer 

to the first layer. The weights are then adjusted in such a way to reduce the approxima­

tion error. The approximation error is minimized using the gradient descent optimization 

technique [Rogas 1996J. 

The gradient descent technique searches for the minimum of the error function in the \v('ight 
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space. The combination of weights which minimizes the error function is cOIH:,ich'red to lw 

the solution to the learning problem. \Vhen an input pattern is presented to the lWliYork. 

the network produces an output or) for output unit Ok which is different from tIl(' targpt 

value tr). 

The objective of training is then to minimize the error arising from these two val1ws OWl' 

the entire training set. The error function is defined as the S11m squared error function 

(SSE): 

(:2.:3) 

where P is the total number of patterns in the training set. J{ is the total lllllUl)('1' of 

output units, t't) is the target value for kth output unit for pattern p, alld O;.'1i is dw 

output value for the k-th output unit for pattern p. 

The gradient for the error function is computed and is used to adjust the weights. \\'eight 

adjustment can be done in two ways: 

• 	 Batch training which adjusts and updates the ,,,,eights after presenting a 11ll111ber 

of training patterns. \Veight changes are accumulated and applied once Ollh-. Batch 

training is also referred to as offline training . 

• 	 Online Training where the weights are adjusted after each pattf'nl pn~s(,lltatioll. 

Online training has the advantage of not needing a separate rnemoI'\- to store 1,11(' 

derivatives of patterns as is needed by the offline training. 

Training using G D involves two passes: 

1. 	 The forward pass: During the forward phase, each input unit zlP 
) an[,('('(,I\'('S 

input signal and distribute this signal to the hidden units 'Uj for all j = 1. .... J. 

Each hidden unit then computes its activation and sends the activatioIl signal to 

each output unit at the output layer or to hidden units in the next hidd(~ll laV(~r if 
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there are more than one hidden layer. As there are no connections \vithin a 1;\\,('1'. all 

the units in that layer can have their output computed in parallel, whUp the lawrs 

are dealt with in sequential order. The output layer provides the respOIlSP of the 

network for a given input pattern. 

2. 	 The backward pass: Each output unit compares its computed activation O)I}) with 

its target value t~) to determine the associated error for that pattern. The ('ITor is 

backpropagated to all units in the previous layer and is used to update the weights 

between the output and hidden layers. The accumulated error at each hidd('ll unit 

is then calculated, and backpropagated to adjust the weights between tlJ(-' inpllt and 

hidden layers. The error value associated with each processing unit reflects the ('ITor 

of that unit. A larger error value indicates that a larger correction will lw lllade to 

the corresponding weights. 

2.4.2 Gradient descent training algorithm 

Certain aspects have to be addressed before commencing training of multilayer lWl\Yorks. 

One important aspect is the activation function used in the hidden and outpnt lavers. 

GD requires the activation function to be continuous, differentiable and mOl1otollicallv 

increasing. For the purposes of this thesis the logistic (sigmoid) function is assumed. 

Another issue is the data set: the output value of logistic function is always ill the range 

(O,l)~ thus requiring scaling of the desired output (target) before training to fit iuto tllis 

range. Though it is not required to scale inputs, it is advisable to scale the inpnts to 

[-1,1] if logistic function is used. The input values will then lie within the actiw~ 1'a11/2;(-' of 

the sigmoid fUIlction. The number of hidden layers also has to be c:onsidered. Al1hough 

gradient descent can be applied to any number of layers, it has been shown that H single 

layer of hidden units is sufficient to approximate any fUIlction with IIlany discontinllitips to 
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arbitrary precision provided that the activation function is nOll-linear [1<ros(' d (1/1<)93]. 

This thesis assumes a single hidden layer. 

The training algorithm is summarized below: 

1. 	 Weight initialization: Set all weights to small random values. Let 'Uji 1)(' tIl<' \H'ight 

between the j-th hidden unit and i-th input unit, and Wkj the weight lwtW('<'1l the 

k-th output unit and j-th hidden unit. 

2. 	 Calculate the activation of the units in the network, layer-by-Iayer. startill?, from the 

input layer. 

• 	 The activation level of each input is the value of the training patteI'll appli(~d to 

the input. 

• 	 The activation of each hidden and output unit is calculated as: 

I 
(p) , .(1') (' 'U ·z· - ,/). ) 	 (2.4 ) YJ • YJ L.. JZ ,[ JO 

1=1 

J 

f~~)(2= 'Wkj'!Jj - "WkO) 	 (2.S) 
J=l 

where yY) is the activation of the j-th hidden unit, and o~) is the <tctinltion 

of the k-th output unit for pattern p. f{ is the total number of outpnt units, 

I is the total number of input units and J is the total number of hidden 

units. VjO is the weight connected to the bias unit in the input lawL while WkO 

is the weight connected to the bias unit in the hidden layer. The term bias is 

discussed in the section 2.4.3. 

3. 	 'Weight adjustment 

• 	 Start at the output units and recursively propagate error signals to tll(' input 

layer. 
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• Calculate the weight adjustments: 

The output o~) is compared with the correspondinl!; targc>t value f),f'; the()n'] 

entire training set using the function 

(:2.G) 

to express the error in the network's approximation of the target fUlHtioll. 

Minimization of E(p) by GD requires the partial derivative of E(p) with U'S]wct to 

each weight in the network to be computed. The change in weight is proportional 

to the corresponding derivative: 

( ?-.1'""') 

(:2.8) 

where: Tf is the learning rate which is ill the step length in the llel!;atiw gradient 

direction. The value of T] is usually between 0 and 1. The last tpnll is ;\ lllO­

mentum term which is a fUllction of the previous \veight change. The ("()l1c<'pt 

of momentum is discussed in the section 2.4.3. 

For notational convenience, the (p) superscript is dropped in t h(' relllaiuder of 

this section. The reader should keep in mind that the equatiolls bellm' ill(' for a 

single pattern. 

The partial derivative of with respect to WkJ is computed as 

(2.9) 
aWkj aOk aWkj 

The term aaE in equation (2.9) is calculated as 
Ok 

(2.10) 
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and 

(:2.11) 

From equations (2.10) and (2.11) 

(2.12) 

Therefore, 

(1.13) 

The contribution of hidden units to the output error is not readily known. 

However, the error measure can be written as a function of the error cOlltribution 

over all output units. 

8E 

(2.14) 

The partial derivative :;;}i is computed as 

(2.IS) 

Therefore, 

J{ 

flVji = 'fJ I:(tk - odok(l - ok)y/wkJYj(1 Yj)Zi (2.16) 
k=l 
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4. 	 Update the weights: 

Wkj(t + 1) Wkj(t) + flWkj(t + 1) 	 (:2.17) 

Vji(t + 1) 'Uii(t) + 6.V,ii(t + 1) 	 (2.18) 

where t represents the current time step, 6.Vji and 6.wkj are the weight adjustments 

from equations (2.13) and (2.16). 

5. 	 Test for convergence, for example if an acceptable :tvlSE has been reached. or the 

maximum number of epochs has been exceeded. Go to step (2) and n~pe(lt ulltil 

convergence in terms of selected stopping criteria. 

An iteration, which is referred to as an epoch. is one pass through the traillillg set 

which includes presenting training patterns, calculating the activation values. and 

modifying the weights. 

2.4.3 Additional Features To The 'Training Algorithm 

Some features have been incorporated into the GD training algorithm to improw w'ural 

network learning . 

• 	 Addition of neuron bias: The addition of a bias to the neural networks is to offset 

the origin of the activation function. This allows more rapid convergeuce of the 

training process [Masters 1993, 'Wasserman 1989, Fausett 1994J. By acldiug il hias 

unit with a constant activation value of -1. The weight between the bias llllil aud a 

unit in the next layer serves as bias to that unit. These bias weights are trained ill 

the same way as the other weights. Therefore, for hidden units 

I 

Yj = f(I:. Vj'iZi (:2.19) 
i=O 

and for output units 
J 

Ok = .f(I:. Wk,iYj (2.20) 
j=O 
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with Zo = -1 and Yo 1. VjO is the weight to the bias unit "7:n ill till' iU]lll t laver 

anduJko is the weight to the bias unit Yo in the hidden layer. 

• 	 Another prominent feature that can be added to improve the perforrmnu'(' of tlw 

network is to add a momentum term. The addition of a momeuturn t('l'lll helps 

to avoid oscillations in weight adjustments [Beale et a11990j. Momentum is propor­

tional to the magnitude of previous weight changes. \Veight changes are then ill 

the direction that is a eombination of the current gradient and the previolls gradi­

ent. Momentum allows the net.work to make reasonably large >veight adj llstllH'llts, 

as long as corrections are in the same direction for several patterns, while llsing a 

smaller learning rate. Momentum also reduces the chances of getting stuck in it local 

minimum [Wasserman 1989, Dayhoff 1990J a problem of learning with 1.11(' gradient 

descent technique which is discussed in the next section. In effect, momentulll tries to 

find the global minimum of the error surface by repeatedly jumping in the downhill 

direction. Momentum is typically implemented by multiplying a numeric parame­

ter between zero and one with the previous weight change (refer to <'qua tiOllS (2. T) 

and (2.8)). 

2.5 Learning Difficulties With Gradient Descent 

Optimization 

Despite gradient descent's usefulness in training multilayer neural networks. there 

are difficulties associated with learning using gradient descent. Problems with GD 

include network paralysis. local minima and slow convergence. 

One of the problems that occurs when GD is used is network paml:l/si8. Network pand­

ysis occurs when the weights are adjusted to very large values dnring training, Large 
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Local Minimum 

Global Minimum 
Figure 2.8: An illustration of local and global minimum 

weights can force most of the units to operate at extreme values, in a region where 

the derivative of the activation function is very small. Since the error backpmpal2,ated 

is proportional to the derivative of the activation function (refer to eqnations (2.9) 

and (2.14)' the training process can come to a stand still [\Vasserman 1989]. 

A prominent problem with training using GD is the occurrence of lo(:al wininw 

[Rumelhart et al1986]. The network finds a combination of weights that that rep­

resents a local and not a global minimum. The gradient descent tedllliqne follows 

the slope of the error surface downward, constantly adjusting the \veights towards 

the minimum. The error surface could be highly complex: full of hills. vali('v;,;. folds 

and gullies in high dimensional space. The network may therefore. get trap]wd in 

a local minimum (shallow valley), while there is a much deeper minimum IH'HriJy or 

elsewhere. Figure 2.8 illustrates the concept of local minimum and global rnillimum. 

There is also the problem of slow convergence: A multilayer neural m~twork IHjllires 

many repeated presentations of the input patterns, for which the weights lH'('d to 

be adjusted before the network is able to settle down into an optimal suI1ltioll. The 
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method of gradient descent could be very slow to conveq:?;e for a complex pmhl(Jlll 

due to the complexity of the error surface [\Vasserman 1989]. 

Over-fitting and under-fitting are not unique problems of GD bllt general prolJlem­

s of any learning or regression algorithm. Overfitting occurs when a network has 

too many training units (an oversized architecture), causing the net\,"ork to pro­

duce good results with the training data, but performing badly with data not 

seen during training. Rather than learning the basic structure of tlw <1;11(\ the 

network learns the irrelevant details, for example noise in tllt' training patterns 

[Sarle 1995, Schittenkopf et al1997]. A low training error therefore does not alwa,vs 

imply a good performance of the network. A network can also be 'I1:ruler:fittr:d. \\'11ieh 

occurs when the number of training units in a network is too few, Le. an undersized 

architecture. Thus the network fails to approximate the true form of the I'elatiollship 

between inputs and targets. 

2.5.1 Solutions to these learning difficulties 

Many research efforts have been invested in the study of how to improve the learning 

of multilayer neural networks. Approaches to improve performance range from finding 

the optimal learning rate to finding the optimal network architecture. SOlllP of thp 

most promising approaches are discussed below: 

1. 	 Adaptive learning rate and momentum factor: Rathpr than lltiing (l fixed 

learning rate in training, the learning rate and momentum can be ad.illst~)d 

dynamically during training [Vveir 1990, Fausett 1994]. Decreased t.raining time 

and improved convergence have been achieved using adaptive learning r<lt(' and 

momentum. A careful selection of the learning rate is often necessary to ellsure 

smooth convergence. A large learning rate can cause network paralvsis and a 

small learning rate causes slow convergence. An advantage of a larllP l(>a.ming 
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rate is to accelerate learning when a plateau is reached in the weight SP;l{"('. A 

small learning rate, on the other hand. is helpful in slowing dowlI leaming whell 

a valley is approach in the search space [Yu et 0,[1997]. 

A momentum factor is used to smooth error oscillation. Plaut ct al haY<' shm\'ll 

that low momentum is good to maintain movement along a particular direction 

in the error surface, but should be increased when the learning procedun' has 

settled in a stable direction of movement [Plaut et al1986 ]. The learning rate 

and momentum should therefore be varied according to the region where the 

weight adjustment is. An optimal learning rate for a learning problelll can also 

be found [\Veir 1990]. However, the optimal learning rate is problenl dep<'llcient. 

2. 	 Random weight initialization: The choice of initial weight vahlPs illfiuences 

whether the network converges quickly or not [Fausett 1994]. The weigllt up­

date between two units depends on both the derivative of the ohjective (error) 

function with respect to weights, as well as the activation value of nnits. Initial 

weights must not be too large, to ensure that the initial input signal of the a 

hidden unit or output unit does not fall in the region where the d(~ri\,(ltin-' of 

the sigmoid function is very small. If the derivative is small, the Bet illJlut of 

the hidden or the output unit will be close to zero and will cause extremely 

slow learning due to small weight updates. Weights are initialized !'(),u!lm/l.ly to 

break symmetry [Rumelhart et al1986J. Symmetry occurs when all w(-'ights art> 

initialized to the same value. Consequently, the hidden uIlits are assiglH'( I idell­

tical error values. All weights in the network are then adjusted ill an idplltital 

manner, and thus prevent the error function from being reduced. vVeights are 

usually initialized randomly to small values [Rumelhart et al198GJ. 

3. 	 Optimal network architecture selection: The aehievernent of good perfor­

mance in a trained network is through careful selection of the n(~t'work size'. An 

oversized network can lead to overfitting of the data but on the ot.lH~r hmld. a 
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small sized (simple) network can lead to llnderfitting [Le Cun 1990]. 

Optimal architecture selection is adaptive in the sense that acijnstinp: lwmal 

network size is incorporated into the network training. R(~search iuto opti­

mal architecture selection is split into three areas: growing tht' lletwOl'k dm­

ing training by adding more parameters to the network [Hirose d 1/.1 1991, 

Jutten et al1995], J?runing the network by removing redundant parameter­

S during training [Sietsma et al1988, Engelbrecht et o,l1996. Lp CnlJ 1990] 

or regularization through penalty terms added to the ob.iecti\'(~ fUllction 

[Weigend et al1991, Kamimura et al1994, Karayiannis ef, al1g93j. 

Network pruning involves training an oversized network and removiug re­

dundant and irrelevant network parameters, including units and / or Wi'ight­

s. Starting with an oversized network rather than a small or uudersized 

network, the network is guaranteed to learn the desired input and ontput 

mapping [Le Cun 1990]. Once a network has learn a solution to a lJl'Ohlem, 

the network can then be pruned to the minimum size [Sietsma d a/ 1988]. 

Pruning aims at solving the problem of the overfitting as well as reducing 

the computational cost of training and applying the network [Le CUll 1990]. 

Selecting the parameters to remove is the main focus of pruning lllethod­

S and is based on different criteria proposed by different researdwl"s. Le 

Cun et al introduced the concept of network pruning through tlwi! work 

on optimal brain damage (OBD) [Le Cun 1990]. Le Cun et al, ('lllpirical­

ly showed that by removing unimportant weights from a network. several 

improvements could be achieved. These improvements include lwtl(T gen­

eralization, fewer training examples and improved speed of learning. (>ED 

reduces the size of a network by selectively deleting weights. The g()al of 

OBD is to find a set of parameters, that when deleted would CHnse the 

least increase in the error function. To find such set of paramH('fs. Le 

Cun et al defined the saliency of parameter as the change ill erl'OI" callsed 

 
 
 



42 CHAPTER 2. lvIULTILA. YER NEURA.L NET1VOR.K LEARNING 

by deleting that paramf'ter. The parameter with least saliPlHT is ridded. 

The second derivative information is used to calculate this saliew·.,· awl 

therefore is computationally complex due to calculation of Hessi<lu matrix. 

Hassibi et al extended OBD to remove the required H'trainillg aftn pnlll­

ing [Hassibi et al1994]. Their approach, referred to as OBS, antolllaticallv 

computes the adjustments needed to the remaining weights due to tIl<' pl'llll­

ing of weights. Engelbrecht et al developed a pruning algorithm ",·here till' 

sensitivity of t.he output of the network to small parameter ptTtmlmtiolls is 

used to identify irrelevant parameters [Engelbrecht et al199Gj. This algo­

rithm prunes both input. and hidden layers of feedforward neural lwtworks. 

Units that have the least statistical influence on all units in the slHTeed­

ing layers are pruned. An adaptation to this pruning algorithm W<lS also 

proposed by Engelbrecht et al [Engelbrecht et al 1999b]. A llew pruning 

heuristic based on variance analysis of sensitivity information is lls('d to 

find irrelevant parameters. 

Network growing involves growing the network during U"aiuing. Hidden 

units are added to the network when needed. Network growing rpduc('s com­

putational cost and complexity of the trained network [Jutteu d at 1995j. 

A reduction in computational cost is achieved becanse tIl(' optimal archi­

tecture needed to train a network is problem dependent. A small lH'twork 

architechure have fewer weights than a large network and thus lwpds i\ fe,,,, 

weight adjustments. Once the optimal solution for a problem is ohtained, 

the resulting network has an optimal architecture [Jutten et (J.l19~F)l. Hi­

rose et al also used network growing to solve the problem of local millima 

[Hirose et al1991]. In their research, Hirose et al added more hidd(~n nnits 

to a network being trained as soon as the network starts ovprfitr.ill,L',. The 

error function was used to detect local minima. 

Regularization, where all weights are penalized. 
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is achieved by adding a penalty term to the objectin> fllUctioIl 

[\Veigend et alI991]. In doing so, network complexity is penalized. TIl(' 

effect is that redundant weights are driven to zero, while active wpi~llts re­

tain their importance [Kamimura et al1994, Kamin 1990]. \Vei~hl dpccl.v 

is one form of regularization [Fu 1994]. 

4. 	 Training with jitter: Jitter is artificial noise deliberately addf~d to inputs 

during training. Training with jitter is a form of regularization, such as w(>ight 

decay. An advantage of jitter is that the NN can be brought out of a local 

minimum [Beale et al1990j. Injecting artificial noise into inputs durill~ trailling 

is very effective in improving generalization performance when small trailling 

sets are used. Noise injected into inputs is assumed to have zero meall and a 

small variance in order not to change the distribution of the given traillill~ data. 

5. 	 Adaptive learning function: Activation functions can be adapted and 

trained just like the weights of a l\'N. This adaptation improves leaming 

in terms of faster convergence and more accurate results [Zurada 1992a, 

Engelbrecht et al1995, Fletcher et alI994]. Zurada [Zurada 1992a] and Fletch­

er et al [Fletcher et al1994] proposed a learning rule where t.he stpepIlPSS or 

slope of the activation function used for learning is trained alollgsirle 'wit h the 

weights. The learning rule produced better solutions and a faster COllv('r~pnce 

to problems when compared to conventional error backpropagatioll. .Allother 

research on adaptive learning functions is the gamma learning propos(·>d l)y En­

gelbrecht et al [Engelbrecht et alI995]. Gamma learning extends the lamda rule 

of Zurada, by dynamically adjusting the output range of the sigmoid acti,'atioll 

function, thereby performing automatic scaling. 

6, 	 Active learning involves making optimal use of the training da­

ta. Much research has been done in developing active leamill~ lllod­

els [Engelbrecht et al1998, Engelbrecht et al1999a, Engelbrf'cht et oJ 1999(:. 
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Zhang 1994, Robel 1994a, Plutowski et al1993. Cohn et aZ199Gj. Activ(' lC'iuH­

ing refers to the selection of a subset of the available training data d,vllilluicallv 

during training, where the subset contains the most informative elata. Activp 

learning has been found to save computational cost and reduce trainillg time 

[Cohn et al1996, Plutowski et al1993, Robel 1994a, Engelbrecht d al ]<)99<1]. 

This thesis presents a survey and comparison of active learning algoritJulls for 

function approximation and time series problems. The next chapter da] lOl'ates 

on active learning. 

2.6 CONCLUSION 

This chapter discussed the training of the neural networks. A backgroulH 1 intro­


duction into multilayer neural networks was given. The chapter focused on training 


feed forward MLNNs using gradient descent optimization. 


The learning equations were derived and the problems of training a NN llsiup; p;ra.dient 


descent as well as the solutions to these problems were discussed. 


The next chapter discusses one of the methods to improve learning with gradient 


descent technique, i.e. acUve learning. 
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Problem II Equation! PC-PG-Pv I Ar'chitectun~ 
F1 (3.3) 600 -200-200 2-5-1 
TS1 (3.4) 600-200-200 1-5-1 
TS2 (3.5) 600-200-200 2-5-1 
TS3 (3.6) 140-60-60 10-10-1 
TS4 600-200-200 2-5-1 
TS5 600-200-200 2-7-1 

Table 3.1: Summary of the functions and time series used 

that 

DcnDv = 0 

Dc n DG 0 

DGn Dv 0 

Let Pc be the number of training patterns in Dc, Pv the number of training patterns 

in Dv and PG the number of patterns in test set D G . Table 3.1 shows the size of 

these sets for each problem. Dc is the candidate training set from which training 

patterns are selected. Dv contains data used to determine the generalizatioll factor 

during training. DG contains data llsed to determine the generalization perfonnance 

of the network. 

The performance of the active learning algorithms was tested on dean and nOISY 

data, as well as data containing outliers. Section 3.5.1 explains the exp('rillH~ntal 

procedure, including a discussion of the performance criteria used to COlnpare the 

learning algorithms. The results are compared in section 3.5.2. 

The characteristics of the functions and time series used for experirnentati()ll an.) 

discussed next. The following functions and time series were used: 

1. Function F1 is defined as (see figure 3.1(a)) 

(:3.4) 
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where Z1, Z2 U( -1,1). All target values were scaled to the range [O,lJ.rv 

2. 	 Time series TS1 is a sine function defined as (see figure 3.1 (b)) 1 


TS1: F(z) sin(27Tz)e(-z) +( 


where z rv U( -1,1) and ( N(O, 0.1). Target values were scaled to 111<\ rangerv 

[0,1]. 

3. Time series TS2 is the henon-map function defined as (refer to figure 3.1 (c)), 

TS2 : Ot Zt 

Zt 1 + 0.3zt - 2 + 1.4zt 
2 
_ 1 

where ZI, Z2 U( -1,1). The target values were scaled to the range (iLl].rv 

4. 	 Time series TS3 is a difficult time series, having 10 input parameters of yrhich 

7 are irrelevant (see figure 3.2(c)). 

TS3:o t Zt 

2 ~. 
Zt 0.3zt - 6 0.6zt - 4 + 0.5zt- 1 + 0.3zt _ G - 0.2zt _ + (f (3.7)4 

for 	t = 1"",10, where Z4, Z6, Z9 U( 1,1) and (t lV(O, 0.05). All t.arget rv 	 rv 

values were scaled to the 	range [0,1]. 

5. 	 Time series TS4 is a convolution of two discrete functions with outliers. Fig­

ure 3.2(a) shows an illustration of this function. 

6. 	 Time series TS5 is the sine function TSI with 5% of the candidate traiuing set 

consisting of outliers (see figure 3.2(b)). 

3.5.1 Experimental Procedure 

In order to obtain statistically valid assertions in comparing experimental I'(~s1l1ts of 

the four learning algorithms, thirty simulations were performed for each prohlern. 
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Figure 3.1: Function and Time series problems to be approximated 
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Online training was used for the active learning algorithms. The initial sllhs{~t size 

for incremental learning algorithms consisted of one pattern and a suhsrlectiol1 size 

of one pattern was used. Each simulations was executed for 2000 epochs. A learning 

rate 0.1 and momentum 0.9 were used for all the approximation probh~lns . n(~sults 

reported are averages over the 30 simulations together with 95%) confidence illl<TVals 

as obtained from the t-distribution. 

The selective learning algorithm was not applied to F1, since F1 is not a tinH' series 

problem. The 7 value used in the subset selection criterion for AL \va.s adjusted 

for each problem using a trial and error approach. For TS3, a high 7 \vas used 

(7 = 1000), a value of 100 was used for TS1: TS4 and TS5 while a valu{~ of It)O was 

used for TS2 and Fl. 

Performance measures 

To evaluate the performance of each learning algorithm, the following perfonnance 

criteria were used: 

1. 	 The mean squared error (:rvlSE) ,vas used as a measure of accuracy. Th<' lVISE 

measures how well a function is approximated by the network, and is (lefiuecl as 

2 
,"",I\: (t(p) - o{p))
L.."k=l k kli1SE 

21( P 

A MSE value close to zero shows a small error between the target and the 

output function. The MSE over the three sets Dv , Dc and De were COluput­

ed. The MSE over Dc, denoted by Ec provides an unbiased estirnate of the 

generalization error since the patterns in Dc were not used for training. 

2. 	 Robel's generalization factor p was used to measure overfitting effects. The 

generalization factor was computed as p , where Ee is the l'vISE over 

candidate training set Dc and Ev is the MSE over the validation set 1),·. A 

network overfits when the value of p increases substantially above 1. 
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3. 	 The computational complexity of learning algorithms ,vas also llspd as perfor­

mance criterion. For the purpose of this thesis, eomputational cost is llH'(\sun~d 

as the number of calculations needed to train the network. Calculatiolls illdude 

subtraction, multiplication, addition and division. 

At 	any epoch ~, the cost C fe of training a NN on a training set, is pxpl'Pssed as 

Cfc=(CV+CW)*PT 

where C\I is the cost of updating weights between input and hidden llnits and 

Cw is the cost of updating \veights between hidden and output units. PI' is thp 

number of patterns in the training subset DT . For conventional backpropagation 

with fixed set learning, PT Pc. Thus the cost of training C fsl is cornpnted as 

C fsl (Cv + Cw ) * Pc. 

The costs of updating the weights are calculated as 

Cv Cv * (Nv ) 

Cw Cw * (NHr) 

where Cv is the cost of updating a single weight between the input and hidden 

layers, Cw is the cost of updating a single weight between the hidden and output 

layers. Cv is the total cost of updating the \veight connections betW('('ll the 

input and the hidden layers, and C\v is the total cost of updating the weight 

connections between the hidden and output layer. ~Nv is the total llUluber of 

connections between the input and hidden layers and Nw is the total llurnber 

of connections between the hidden and output layers. 

The total number of connections Nv and N w are expressed as 

JVv = (1 + 1) * (J + 1) 

lvw=(J+l)*(1{) 

and 

Cli = 13 
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Therefore, 

Cw 11 * (J + 1) * I{ (:3.8) 

The cost of training a network using any active learning algorithm includes Cf(:~ 

the cost of selecting patterns for training and the cost of cornputing the subset 

termination criterion. Therefore, at any epoch ~, the cost of training a IlPtwork 

using SLA, SAILA, DPS and AL are: 

C SL C fe + Csia * Fe 

C DP C fe + C dps * (Fc - Fr) + (CSclPS * Fr) 

CAL C fe + Cal * (Fe Fr) + (CSal * Fr) 

CSA C fe + C sai * (Fc Fr) + (CSsai * Fr) 

For all the incremental learning algorithms, the subset selection criteria are 


tested on the remaining patterns in the candidate set Dc which is equal to Pc ­

Fr- Also, for incremental learning algorithms, an additional cost of s(\lecting 


pattern is incurred when a pattern is selected. 


C SL , CSA, CAL and C DP are the cost of training a network using SLA, SAILA. 


AL and DPS respectively. Csla = 15 is the cost of computing the subset s(~lp<:tion 


criteria for SLA, Cdps = 11 is the cost of computing the subset selection criteria 


for DPS, Cal = 4 is the cost of computing the subset selection criteria for AL 


and Csai 18 is the cost of computing the subset selection criteria for SAILA. 


CSdps 2, CSal = 2 and CSsai = 7 are the cost of selecting patterns into DT for 


DPS, AL and SAILA respectively. 


Therefore, 


CSL Cfe + 15Fc 
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CDP 	 Gfc + 11(Fc FT) + 2FT 

Gfc + 4(Fc FT) + 2FT 

G1c * FT + 18(Fc - FT) + 7FT (:3.9) 

From equation (3.9), the cost of training is directly proportional to tIl{' lllllubpr 

of patterns selected for training. The more patterns are selected for tl'aillillg. the 

higher the computational cost. Initially, FT for SLA is greater than the other 

algorithms because DPS, AL and SAILA are incremental learning algorithrn 

and a small initial trainig set and subset size is used in the siInulations. Thus, 

G SL is expected to be greater than GAL, G DPS and CSA illitiall~T. SAlLA is 

computationally more expensive in selection criteria than the other algorithms 

because SAILA has more subset selection criteria to implement than tIl(' other 

algorithms. 

Section 3.5.2 illustrates the costs for the different algorithms. 

3.5.2 	 Results 

This section presents the results of the simulations carried out 011 the active l<'arlling 

algorithms. 

Training 	error 

In order to compare the performance of the four active learning algorithnls. the 

MSE over the candidate set Dc was computed for the simulations and the ,rvcrage 

calculated. Tables (3.2) and ( 3.3) show the result over 2000 epochs for clPHU data 

and data with noise and outliers. 

For TSl, DPS had a very low error with the lowest variance which nleans that all 

the errors of the simulations for DPS were all closer to the average error of 0.0003. 

Although, SLA had a low error as well. However SLA had a large variance vvhen 

compared to DPS. AL had the largest error with a very large variance. 
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DPS achieved the smallest error for TS2, having a small variance. For TS~3. all the 

algorithms had very low errors but SAlLA had a high variance. DPS had tll(' :-1111allest 

error for Fl with a very small variance. 

For TS4 and TS5, SLA achieved the smallest error with the lowest variallcP. AL had 

the largest error for TS4 and TS5. This is because AL selected and trailwd ()Il just 

a single pattern for TS4 and an average of 4 patterns for TS5. Thus AL. had high 

errors for TS4 and TS5. 

The training errors for all the problems with noise and outliers were larger ( x 1(2 
) 

than for problems with dean data. DPS had the lowest average error for d(lClU data 

while SLA had the lowest error for noisy data. 

Generalization error 

To compare the generalization ability of the four active learning algorithrns, tlw .'vISE 

over the generalization set, Ee, was computed and the average over the :30 sirnulations 

was plotted as a function of number of epochs. Figures 3.3 and :3.4 illustrates the 

trend of the generalization errors for the entire training period. 

DPS achieved a very low average error faster than the other algorithrns for FI (refer 

to figure 3.3(a)). However, both SAlLA and AL achieved a comparable n-':-1111t to 

DPS at epoch 1000. From table 3.3, DPS had the lowest error with the a ver~' srnall 

variance (5.07 E - 05) which means all errors of the simulations are doser to the 

average. 

For TSl, SAlLA initially had the highest generalization error but decreased to a low 

level of error (see figure 3.3(b)). SLA initially had the lowest average error. which 

can be explained by the fact that SLA used more patterns initially than the other 

algorithms (refer to figure 3.7(b)). Although SLA and DPS had slnall errors. DPS 

had the smallest variance and thus DPS achieved the smallest error. AL bad the 

largest error after 2000 epocbs with a large confidence interval. 

For TS2, DPS, AL and SLA achieved a very low average error before epodl 500. 
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Selective Sensitivity 
Function Zhang LearningRobel Analysis 
TSI 

0.02172Training Error 0.00036 0.00045 0.00346 
± ± ± ± 
0.00017 0.04186 0.00035 0.00712 

Generalization 0.022410.00039 0.00047 0.0035 
± ± ± 

0.041910.0002 0.00040 0.00737 
used Patterns 4.73485.43 270.93 571.67 

± ± ± ± 
234.79 0.92 3.48 88.91 

TS2 
Training Error 0.00014 0.00023 0.00029 0.00126 

± ± ± ± 
0.00011 0.00021 0.00038 0.00163 

Generalization 0.00012 0.00022 0.00029 0.00129 
± ± ± ± 
0.25E - 05 0.00019 0.00037 0.00169 

U sed Patterns 411.77 174.63 272.57 522.57 
± ± ± ± 
215.87 61.48 7.61 173.37 

I 

TS3 
Training Error 0.00039 0.00044 0.00050 0.00068 

± ± ± ± 
0.00086 0.00091 0.00085 0.00146 

Generalization 0.00275 0.00253 0.00302 0.00225 
± ± ± ± 
0.00155 0.00133 0.00138 0.00174 

Used Patterns 180 78.17180 180 
± ± ± ± 

0 1.530 0 

Table 3.2: Comparison results over 2000 epochs for times series problerlls 
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Selective I Sensitivity 
Function I Robel Zhang Learning Analysis 

FI 
Training Error 0.000226 0.000412 0.000791 

± ± ± 
5.07E 05 0.000366 0.001852 

Generalization 0.000221 0.000392 0.000754 
± ± ± 
5.2E ­ 05 0.000347 0.001624 

U sed Patterns 320.2 82.8 445.1333 
± ± ± 
167.6698 32.37935 121.476 

TS4 
Training Error 0.01141 0.19935 0.00516 0.02828 

± ± ± ± 
0.00573 0.03093 0.00393 0.09522 

Generalization 0.01077 0.19051 0.00478 0.02739 
± ± ± ± 
0.00534 ! 0.02169 0.00349 0.09170 

U sed Patterns 493.03 1 245.23 597.03 
± ± ± ± 
193.37 0 7.89 27.41 

TS5 
Training Error 0.00683 0.10278 0.00155 0.00562 

± ± ± ± 
0.00468 . 0.08731 0.00158 0.00768 

I 

Generalization 0.00714 0.09904 0.00158 0.00595 
± ± ± ± 
0.00489 0.08932 0.00142 0.00842 

Used Patterns 103.5 4.67 269.13 584 
± ± ± ± 

:120.14 1.35 9.89 93.4 

Table 3.3: Comparison results over 2000 epochs for problems Fl and tinl(~s spries \vith 
noise and outliers 
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Figure 3.3: Average generalization error vs epoch 
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Figure 3.4: Average generalization error vs epoch 

SAILA was slower to achieve a comparable low error but SAILA had a low (-'rror by 

the end of training. From the table 3.2, DPS had the smallest error with a vel'." slllall 

variance after 2000 epochs, iIIlplying that all errors of the silllulations an' cl()s(~r to 

the average. 

For TS3, the generalization error for all the algorithIIls increased as the lllllllh(-'r of 

epochs increased except SAILA (see figure 3.3(c)). 

From the table 3.3, SLA had the lowest generalization errors for TS4 and TS5. \Vhile 

AL had the largest error for TS4 and TS5. AL did not learn the functions (refer to 

figure 3.4(a)). AL selected a few patterns for training, thus had littlc~ infonllation 

about the time series to be approximated and therefore AL had a bad ~(-'rwra.lization. 

DPS had the lowest generalization errors for functions with clean data \\'hilp SLA had 

the lowest generalization errors for functions with noise and outliers. Although DPS 

had better generalization with clean functions than SLA, DPS used 1110re patterns 

than SLA to achieve the low generalization error in all the problellls. AL had very 

large generalization errors for TSl, TS4 and TS5. This bad generalizatioll call be 
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attributed to the extremely small training set sizes used by AL which is an illdi('ation 


of an inferior subset selection criterion. The subset selection criterioll dep<'llds 011 


the number of connections in the network. Redundant or irrelevant w(~ights ill the 


network will make the value of the perforrnance level f£ very large which call ('ause 


the network to train on the current training subset DT too long without selecting 


additional patterns. Thus the network selects a few patterns, hence having insufficient 


information to train the network. On the other hand, too few weights in the lwtwork 


can make K, small. Thus, the network selects patterns rnore often than an' u('C'ded 


for training. 


Overfitting effects 


The average generalization factor p for all the problems were com.putect OV('l' the 30 


simulations. Figures 3.5 and 3.6 show the charts for the average generalizatioll factors. 


The average generalization factors were plotted as function of pattern presentations. 


A pattern presentation represents one weight update. 


TS3 was the only function for which all the algorithms except SAILA~ overfitted. 


SAIL A had an average generalization factor of less than one, w hiIe the other algo­


rithms had high generalization factors. For the entire training period for TS4. AL 


had a generalization factor constantly larger than L indicating that .-\L oy<,rfitted 


TS4. For the other functions, the average generalization factor ,-a111<'s fluctnated. 


The fiunctuation is due to the overfitting of a training subset until 11<'\" pattenls are 


selected for training. When new patterns are selected, the overfitting of tIl(-' training 


subset is reduced. The average generalization factor for all the algoritlnIls (<,xcept 


TS3) were slightly over one, and indicating a mild case of overfitting. 


Computational costs 


The computational costs for AL, DPS, SLA and SAILA were cornputed llS111g e­


quation (3.9) for specified epochs. The costs are plotted as a function of (~po<:hs as 


illustrated in figures (3.9) and (3.10). 




CHAPTER 3. ACTIVE LEARNING 	 I I 

1.1 r---r---~--.----r--~---r---r--~--~---. 
DPS -­

SAILA 
AL 

1.06 

0.9 

j 

i 
.g 0,81.04 

<3 
0.71.02 

~ 
~ 

0.6 

0.50.98 

2000 4000 6000 6000 1!)Q00 12000 14000 1 6000 16000 20000 2000 3000 4000 5000 60{)O loon BOOO 
Number ot Pattarn Presentations 

Number 0' Pattern PresentatIons 

(a) Function Fl 	 (b) TSI 

1.1 
SLA 
DPS 

SAlLA 
AL 

1.06 

1.06 

1.04 

.tl ~ 	 JS 
4 ~ 1.02 	 ~ 

j j 
f f

3 

0.96 

0.96 

0.94 

0.92 ~__'--__"--__"--__.L-__.L-__-'--__-'--__-'--__-'-----J () L-__-'--__~__~__-L__~__~~__~__~__~__~ 

o 	 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 () 1000 200() 3000 4000 5000 cOOO 7<H)(' t;$(}{)C) ~H'(H) 1fHH)I) 

Number of Pattetn Presentations Number of Pattern PresentatIOns 

(c) TS2 	 (d) TS3 

Figure 3.5: Average generalization factor vs pattern presentations 



78 CH.APTER 3. ACTIVE LEARNING 

! 

i 
~ 

0,95 

<!> 

j 
~ 

0.9 

0.85 

(L95 

0.85 

l;j 

~ 

I 
,g 

<!> 
& 
E 

~ 

0,8 '-'--....I---L-.---'-----'_-'----'----'------'_-'----' 
500 HlOO 1500 2000 2500 3000 3500 4000 4500 SOOO o 1(}OU 20(){} 3000 4000 5000 60(1(l 7()()(} H{)(Ht D!}()fj 1(IiHHJ 

Number 01 PattSf'tl Presentations Number of Pattern Presentatloflh 

(a) TS4 (b) TS5 

Figure 3.6: Average generalization factor vs pattern presentations 

SAILA has the most expensive and AL has the least expensive subset selpctioll cri­

teria. However, AL performed badly (refer to tables 3.2 and 3.3). For all the ap­

proximation problems, DPS, AL and SAILA had increasing costs because tlH)~' are 

incremental learning algorithms. i\1ore patterns \vere used as training progrpssed 

(refer to figures (3.7) and (3.8)). 

For F1 and TS2, AL had the smallest cost (see figure 3.9( a) and (b)). These srnall 

costs can be attributed to the cheap cost of the subset selection criterioll as wpll as 

the fact that AL used the smallest number of patterns for training. 

Despite the fact that AL has the cheapest subset selection criterion alld a sirnple 

selection criterion, AL had the highest cost for TS3. This is because AL seh~('tpd all 

the patterns in Dc within a short training interval (by epoch 400). SLA initiall~T had 

the highest cost (first 350 epochs). However, at epoch 1000, the cost was half of the 

other algorithms. 

For all the functions approximated, SLA initially had a higher training cost thaIl the 

other algorithms - aln10st four times the training cost of other algorithrlls. l)(~<:ause 
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Figure 3.8: Average number of patterns used per epoch 

SLA is a selective approach (see figure (3.9) and (3.10)). 

From tables (3.2) and (3.2), SLA used less number of patterns after 2000 epochs 

than the other algorithms, thus SLA was computationally less expensive. 

Convergence 

The convergence performance of the four active learning algorithnls are cOlnpared in 

figures 3.11 and 3.12. These figures plot the percentage of simulations that reached 

specific generalization errors. 

For Fl, DPS had the best convergence, all the simulations converged to a vpry lo\v 

error of 0.0004. AL also had a good convergence, more than half of the sinullations 

converged to 0.0004 (refer to figure 3.11(a)). 

None of AL's simulations converged to the specified error level for TS2. SLA aud DPS 

achieved good convergence for TS2, as more than half of their simulations cOllverged 

to a low error (refer to figure 3.11 (b) ) . 

For TS2, DPS had the best generalization, most of all the simulations converg(~d to a 
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Figure 3.10: Average computational cost per epoch 

very low error (0.0002). SLA and AL also had good convergence (see figure :3.11(c)). 

While the other algorithms had few converged simulations at 0.002. ahnost half of 

SAILA's simulations converged to this error (refer 3.11 (d)). 

AL had bad generalization for TS4 and TS5. None of AL's simulations cOllverg-ed to 

the specified error levels for TS4 while only a few converged for TS5. 

SLA had the best generalization for TS4, with all the sirnulations converging to a 

low error of 0.004 (refer to figure 3.12(a)). SAILA had a good convergenct' ''''ith 40o/c) 

of the simulations converging to this error of 0.004. Only a few of DPS's siIllulation 

and none of AL's simulation converged at this point. 

SLA also had the best generalization for TS5. Almost all the sirllulations (74 o/c)) 

converged to a error level of 0.005 while only a few of the other algoritllllls siUllIlations 

converged to this error level (see figure 3.12(b)). 

SLA had the best convergence for data with outliers and noise. DPS had the l)('st COIl­

vergence for clean data, although SLA had good convergence for clean data. SAILA 
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had a good convergence for TS3. For all the sine functions (TS L TS4 and TS:)). AL 

had bad convergence, none of its sinlulations converged to the specified error level­

s. The errors specified for data with outliers and noise were larger than the e1'1'ors 

specified for clean data. This is because the performance of all the algoritluns were 

degraded in the presence of nois8 and outliers. 

3.6 Conclusion 

The objectives of the chapter were to present a new learning algorithlll (SLA) and also 

to compare four active learning algorithms with respect to their accuracy, COllV(,1'genee 

and the complexity on both clean and noisy data as well as overfitting effects for the 

problems were also examined. 

The results presented showed that AL was unstable, producing good results for the 

henon-map and PI only. The bad training behavior can be attributed to the extreme­

ly small training set sizes used by AL, which is an indication of an inferior subset 

selection trigger. 

DPS and SLA performed very similar on the clean data, while SLA outperf01'llH'd all 

the other algorithms on the noisy and outliers training data. The sensitivity analysis 

approach (SAlLA) performed well under the occurrence of outliers and llois~' tilne 

series, and very well for the complex function TS3. SAlLA performed hettP!' than 

AL in TS1, TS4 and TS5, but worse than SLA and DPS. SAlLA is cOlnputationally 

more expensive, requiring larger training subsets than the other algorithIIls. 

As is expected, the performance of the error selection approaches degraded lIIlder 

the occurrence of outliers and noise. The degradation is due to the earl~r select.ion of 

outliers, since outliers result in the largest prediction errors. 

The comparison above showed that SLA had the best generalization performance. and 

lowest complexity. The selective learning approach (SLA) produced better accuracy 



84 CHA.PTER 3. A.CTIVE LEARNIjVG 

100 ~---""'------,-----'-----r----, 

eo 

S 
} 

60 

§ 

~ en 

f 40 

~ 

20 

o~----~----~----~-----~----~
0.0001 00002 0.0003 0.0005 

Geoerahzalion Lavel(MSE) 

(a) Fl 

100 

80 

;; 

1i:l 

] 
E?' 

60 

.~ 

~ 
8­

j 
.Ill 

40 

20 

o~------~------~------~------~------~
0.0001 0.0002 0.0003 0.0004 o.OOOS 0.0006 

Generahzation Le'llel(MSE) 

(c) TS2 

50 

~ 
~ 
8 
§ 

v; 
! 
g, 
E 
?;< 
&' 

20 

()~---~----~------~--------~---~().()001 0.0002 

Generahzat,on Level(M:::lE) 

(b) TSI 

co 

J 60 

8 

1
v; 

j 
!!l 

20 

O~-------'-------'-____--'-_____--'___---' 
0.001 0002 0003 

GenerallzaHofl Le'lolH:I(MSE) 

(d) TS3 

Figure 3.11: Percentage simulations that converged 
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Figure 3.12: Percentage simulations that converged 

than the other approaches, and showed to be more robust in the occurrence of ontliers 

and noise. 




