

Active Learning Algorithms for Multilayer Feedforward Neural Networks

By

Adebola Adebisi Adejumo

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in the Faculty of Science

AT

University of Pretoria

Pretoria

2 December 1999

© University of Pretoria

To God Almighty who hath been my Tower of Refuge and Strenght

۲.

Abstract

Backpropagation (BP) has played a vital role in the resurgence of interest in artificial neural networks (ANNs). Eversince, a lot of research effort concentrated on finding ways to improve its performance. Active learning has emerged as an efficient alternative to improve the performance of multilayer feedforward neural networks. The learner is given active control over the information to include in the training set, and in doing so, the generalization accuracy is improved and the computational cost and complexity of the network are reduced compared to training on a fixed set of data.

While many research effort has been invested in designing new learning approaches, an elaborate comparison of active learning approaches is still lacking. The objective of this research study is to compare and critisize active learning approaches and also to propose a new selective learning algorithm.

This thesis presents a comparison of four selected active learning algorithms. The thesis concentrates on one type of application, namely function and time series approximation.

Opsomming

Terugwaartspropagering neurale netwerke het 'n belangrike rol gespeel in die oplewing van die belangstelling in kunsmatige neurale netwerke. Verskeie navorsingsstudies konsentreer op die verbetering van die prestasie van neurale netwerke. Aktiewe leer het getoon om 'n effektiewe alternatief te wees om die prestasie van multi-vlak vorentoe-voer neurale netwerke te verbeter. Die leerder word aktiewe beheer gegee oor die inligting wat in die leerversameling ingesluit word. Sodoende word veralgemening verbeter, en die berekeningskoste en -kompleksiteit van die netwerk verlaag in vergeleke met afrigting op 'n vaste leerversameling.

Terwyl vele navorsing gedoen is in die ontwikkeling van nuwe leerstrategieë, is daar 'n tekort aan 'n uitgebreide vergelykende studie van aktiewe leer. Die doelwit van hierdie studie is om aktiewe leer strategieë te vergelyk en te kritiseer. 'n Nuwe selektiewe leer algoritme word ook aangebied.

Hierdie tesis bied 'n vergelyking van vier aktiewe leer algoritmes aan. Die tesis konsentreer op die benadering van funksies en tydreekse.

Acknowledgements

I came, I saw and I conquered

I thank God Almighty for my stay and experience in South Africa, and most especially for His wisdom and guidance when I plunged my self into the unknown ocean of Neural Networks.

I deeply express my thanks to the following people:

- My supervisor, A.P Engelbrecht, for his time and advice.
- My sister and her hubby Dr and Dr Ogunleye for making my postgraduate study a reality.
- My Uncle and his family Uncle Akin, for his support and encouragement.
- My family at home especially my mother- For your prayers and encouragement.
- My Daddy Late Prof J.A Adejumo, you inspired me, taught me the values of education, and that with power of knowledge, all men are equal.
- My Husband Boye Aderogba, for waiting for me and being there when I needed you, thanks.

Contents

1	INT	TRODUCTION		
	1.1	What is a Neural Network?	1	
		1.1.1 Characteristics Of A Neural Network?	3	
	1.2	Why Neural Networks?	4	
		1.2.1 Features of Neural Networks	6	
	1.3	Background to Neural Networks	7	
	1.4	Objective and Justification	10	
	1.5	Outline	11	
2	MULTILAYER NEURAL NETWORK LEARNING			
	2.1	Introduction	13	
	2.2	Biological Neural Networks	14	
	2.3	A Taxonomy Of Training	17	
		2.3.1 Topology of Neural Networks	19	
		2.3.2 Activation Functions	20	

		2.3.3	Neural Network Types	22
		2.3.4	Optimization Algorithms	26
		2.3.5	Why Neural Networks?	28
	2.4	Gradi	ent Descent Optimization	30
		2.4.1	Introduction	30
		2.4.2	Gradient descent training algorithm	32
		2.4.3	Additional Features To The Training Algorithm	36
	2.5	Learn	ng Difficulties With Gradient Descent Optimization	37
		2.5.1	Solutions to these learning difficulties	39
	2.6	CONC	CLUSION	-1-1
3	\mathbf{AC}'	TIVE	LEARNING	45
3	AC ' 3.1		LEARNING uction	45 46
3		Introd		
3	3.1	Introd	uction \ldots	46
3	3.1 3.2	Introd Conc 3.2.1	uction	46 47
3	3.1 3.2	Introd Conc 3.2.1 Gener	uction	46 47 48
3	3.13.23.3	Introd Conc 3.2.1 Gener	uction	46 47 48 51
3	3.13.23.3	Introd Conc 3.2.1 Gener A Co	uction	46 47 48 51 53
3	3.13.23.3	Introd Conc 3.2.1 Gener A Co 3.4.1	uction	46 47 48 51 53 54

3.5	Experimental Results	62
	3.5.1 Experimental Procedure	64
	3.5.2 Results	70
3.6	Conclusion	83
4 CC	ONCLUSION	86
4.1	Future of Active Learning in Neural Networks	88
Bibliography		
A Symbols and Notations		
B De	finitions	100

List of Tables

.

۲

3.1	Summary of the functions and time series used	63
3.2	Comparison results over 2000 epochs for times series problems	72
3.3	Comparison results over 2000 epochs for problems F1 and times series with	
	noise and outliers	73

ï

List of Figures

2.1	A simplified representation of a biological neuron	15
2.2	An artificial neuron	16
2.3	A multilayer neural network with a hidden layer \ldots \ldots \ldots \ldots	20
2.4	Activation functions	22
2.5	Recurrent Neural Networks (RNNs)	23
2.6	A functional link neural network (FLNN)	24
2.7	Product Unit Neural Networks	25
2.8	An illustration of local and global minimum	38
3.1	Function and Time series problems to be approximated	65
3.2	Time series problems to be approximated	66
3.3	Average generalization error vs epoch	74
3.4	Average generalization error vs epoch	75
3.5	Average generalization factor vs pattern presentations	78
3.6	Average generalization factor vs pattern presentations	79
3.7	Average number of patterns used per epoch	80

3.8	Average number of patterns used per epoch	81
3.9	Average computational cost per epoch	82
3.10	Average computational cost per epoch	83
3.11	Percentage simulations that converged	84
3.12	Percentage simulations that converged	85

.