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ABSTRACT 

Title: Design of a Selective Parallel Heuristic Algorithm for the Vehicle Routing Problem on an 

Adaptive Object Model. 

Author: Alwyn Jakobus Moolman 

Promoter: Professor VSS Yadavalli 

Department: Industrial and Systems Engineering 

University: University of Pretoria 

Degree: Doctor of Philosophy (Industrial Systems) 
 
The Vehicle Routing Problem has been around for more than 50 years and has been of major 

interest to the operations research community. The VRP pose a complex problem with major 

benefits for the industry. In every supply chain transportation occurs between customers and 

suppliers. 

In this thesis, we analyze the use of a multiple pheromone trial in using Ant Systems to solve the 

VRP. The goal is to find a reasonable solution for data environments of derivatives of the basic 

VRP. An adaptive object model approach is followed to allow for additional constraints and 

customizable cost functions. A parallel method is used to improve speed and traversing the 

solution space. The Ant System is applied to the local search operations as well as the data objects. 

The Tabu Search method is used in the local search part of the solution. 

The study succeeds in allowing for all of the key performance indicators, i.e. efficiency, 

effectiveness, alignment, agility and integration for an IT system, where the traditional research on a 

VRP algorithm only focuses on the first two. 

Key words: Vehicle Routing Problem; Meta-heuristics, Hyper-heuristics, Memetic Algorithm, Ant 

System, Tabu Search; Multiple constraints; Multiple Time Windows;  Supply Chain Management; 

Compatibility Matrix, Parallel 
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1 INRODUCTION 

1.1 Overview 

Supply Chain Management could be defined as the practice of analyzing all aspects of 

acquiring, storing, moving, and delivering materials from the time they are acquired through 

any conversion or production processes through to the time final products are used or sold. 

A company‟s supply chain may consists of geographically dispersed facilities where raw 

materials, intermediate products, or finished products are acquired, transformed, stored, or 

sold, and transportation links connecting the facilities along which products flow.  

Logistics management is that part of the supply chain which plans, implements and controls 

the efficient, effective forward and reverse flow and storage of goods, services and related 

information between the point of origin and the point of consumption in order to meet 

customers' requirements. Depending on the industry sector, supply chain logistics costs 

account from 5% to 50% of a product‟s total landed cost. The Vehicle Routing Problem 

(VRP) is an important problem occurring in many distribution systems. 

Many companies are faced with problems regarding the transportation of people, goods or 

information. This is commonly denoted as routing problems. Indeed they not only model the 

problems of collection and delivery of goods, but, more generally, appear as a key ingredient 

in many transportation systems, such as those for solid waste collection, street cleaning, bus 

routing, dial-a-ride systems, routing of maintenance units, transports for handicapped. 

Another area in which very similar problems play a relevant role is modern 

telecommunication networks, even if here we find "routing" and not "vehicle routing" 

problems. As the world economy turns more and more global, transportation is becoming 

more important. And with the current energy and economic crisis, conserving resources is at 

the utmost priority. 

Environmental Accounts published by the Office for National Statistics in the UK show that, 

on a UK resident‟s basis, greenhouse gas emissions fell 1.4 per cent between 2005 and 2006 

to 724.5 million tonnes of CO2 equivalent(Office of National Statistics, News Release, 2006). 

Between 2005 and 2006 greenhouse gas emissions from the non-household sector decreased 

 
 
 



 
2 

 

by 1.1 per cent to 572.8 million tonnes of CO2 equivalent. This was largely driven by a fall in 

emissions from the transport and communications sector due to changes in the structure of 

the UK shipping industry. If shipping industry emissions are removed from the data the year 

on year change in emissions from the non-household sector rose 0.2 per cent.  

 

Figure 1 Greenhouse gas emissions in UK 

Greenhouse gas emissions from the non-household sector accounted for 79.1 percent of all 

emissions in 2006. The transport and communications industries were one of the most 

significant non-household contributors to greenhouse gas emissions in 2006, responsible for 

15.7 per cent (113.8 million tonnes of CO2 equivalent) and 13.3 per cent (96.3 million tonnes 

of CO2 equivalent) respectively. Emissions from the road transport industry show a small 

year on year increase of 0.4 per cent but at 190.9 million tonnes of CO2 equivalent this is 17.9 

per cent above the 1990 level. 

In practice, vehicle routing may be the single biggest success story in operations research. For 

example, each day 103,500 drivers at UPS follow computer-generated routes. The drivers visit 

7.9 million customers and handle an average of 15.6 million packages. 

Solving different kinds of the Vehicle Routing Problem is an important area of Operations 

Research. Achieving improvement of only a small percentage may result in large savings and 

reduce the strain on the environment caused by pollution and noise. The cost of 
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implementing a solution requires analysts and developers who understand the specific 

problem for the company. This initial cost of implementation is still a major drawback for 

companies to take the step towards implementing a solution. It is also viewed that the 

business is dynamic and parameters might change, which would render the current 

implementation inefficient. This will cause the company to reinvest into a new solution again.  

Smaller companies are not even in the position to consider such an investment. Smaller 

companies also tend to be more flexible in their service, which let to their problems not 

being, tied a specific type of method for the solution. The approach of good-enough results in 

better solutions than currently implemented for these types of problems. 

We consider the Vehicle Routing Problem in which a fleet of vehicles must service known 

customer demands for a single commodity from a common depot at minimum cost. This 

difficult combinatorial problem contains the Travelling Salesman Problem as special case.  

The problem can consist of multiple constraints such as heterogeneous fleet, multiple time 

windows and peak and off-peak travel times. In a pure routing problem there is only a 

geographic component, which can be represented by a graph on a two dimensional space. In 

more realistic routing problems, scheduling plays a major role. Scheduling is represented by 

the time component. 

This study will create a solution for the VRP and some variants with the help of evolutionary 

algorithms implemented in parallel and build on an adaptive object model approach. The 

challenge is to combine these methods into one method to find a good-enough solution in 

acceptable time. The problems in research are often more simplistic than real-life problems. 

This research model the approach of flexible methods which would let to an adaptive 

implementation. A number of important basic models exist and is used as representative 

problem to assist in the investigation. 

The rest of this chapter will discuss the some background of these methods in more detail. 

1.2 Background on VRP 

One of the most significant problems of supply chain management is the distribution of 

products between locations, most known as the Vehicle Routing Problem (VRP). The vehicle 

routing problem is one of the most challenging problems in the field of combinatorial 
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optimization. Dantzig and Ramser first introduced the VRP in 1959. In a short paper 

published in Management Science in October 1959 they wrote: 

This paper is concerned with the optimum routing of a fleet of gasoline delivery trucks between a bulk terminal 

and a large number of service stations supplied by the terminal. (Omitted)  A procedure based on a linear 

programming formulation is given for obtaining a near optimal solution. The calculations may be readily 

performed by hand or by an automatic digital computing machine. No practical applications of the method have 

been made as yet. A number of trial problems have been calculated, however. (Dantzig and Ramser, 1959) 

They proposed the first mathematical programming formulation.  

There has been since then a steady evolution in the design of solution methodologies, both 

exact and approximate, for this problem. In 1964 Clarke and Wright proposed an effective 

greedy heuristic that improved Dantzig and Ramser approach. Since then, hundreds of 

models and algorithms were proposed for the optimal and approximate solution of the 

different versions of the VRP. Vehicle Routing Problems are amongst the most important 

Combinatorial Optimization problems, because of their difficulty as well as their practical 

relevance. Yet, no known exact algorithm is capable of consistently solving to optimality 

instances involving more than 50 customers and often requires relative few side constraints. 

Since the Dantzig and Ramser paper appeared, work in the field has exploded dramatically. 

Today, Google Scholar search of the words „Vehicle Routing Problem‟ yields more than 

24,800 entries. The June 2006 issue of OR/MS Today provided a survey of 17 vendors of 

commercial routing software, whose packages are capable of solving average-size problems 

with 1,000 stops, 50 routes, and two-hour hard-time windows in an execution time of 2 to 10 

minutes. (Golden, Raghavan and Wasil, 2008) 

While much has been documented about the VRP in major studies that have appeared from 

1971 (starting with Distribution Management by Eilon, Watson-Gandy, and Christofides) to 2002 

(ending with The Vehicle Routing Problem by Toth and Vigo), there are important advances 

and new challenges that has been raised in the last 5 years or so due to technological 

innovations such as Global Positioning Systems (GPS), Radio Frequency Identification (RF 

ID), and parallel computing. The portfolio of techniques for modelling and solving the 

standard, capacitated VRP and its many variants has advanced significantly. Researchers and 
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practitioners have developed faster, more accurate solution algorithms and better models that 

give them the ability to solve large-scale problems. 

There are several main survey papers on the subject of VRP‟s (Toth and Vigo, 2001). A 

classification scheme was given by Desrochers, Lenstra and Savelsbergh (1990). Valle et al 

(2009) implements an Integer Programming Formulation, a Branch-and-cut method and a 

Local Branching to solve a non-capacitated Vehicle Routing Problem. Kallehauge (2008) 

review the exact algorithms proposed in the last three decades for the solution of the vehicle 

routing problem with time windows (VRPTW). The exact algorithms for the VRPTW are in 

many aspects inherited from work on the travelling salesman problem (TSP). 

Yeun et al (2008) provides an overview of the methods used in solving the classical VRP, the 

Capacitated VRP, the VRP with Time Windows and the VRP with Pickup and Delivery. 

From his study, it is clear the methods used as old as 1995 is still valid in solving the problem 

today. 

Besides being one of the most important problems of operations research in practical terms, 

the vehicle routing problem is also one of the most difficult problems to solve. The problem 

is to design routes for the vehicles so as to meet the given constraints and objectives 

minimizing a given objective function. VRP is a generalization of the travelling salesman 

problem (TSP), therefore is NP-Hard. The VRP has a finite number of feasible solutions. The 

VRP solution space increase exponentially as the number of customers increases. The 

travelling salesman problem is the VRP with one vehicle with no limits, no depot (or any 

depot), customers with no demand. 

In the m-TSP problem, m salesmen have to cover the cities given. Each city must be visited 

by exactly one salesman. All salesmen start from the same city (the depot) and must end their 

journey in this city again. We now want to minimize the sum of distances of the routes. The 

VRP is the m-TSP where a demand is associated with each city, and each salesmen/vehicles 

has a certain capacity (not necessarily identical). The sum of demands on a route cannot 

exceed the capacity of the vehicle assigned to this route. As in the m-TSP we want to 

minimize the sum of distances of the routes. Note that the VRP is not purely geographic 

since the demand may be constraining.  
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1.2.1 VRP variants 

There exist a number of VRP generalizations.  

 CVRP – Capacitated Vehicle Routing Problem: The vehicles have limited carrying 

capacity of the goods that must be delivered. 

 VRPTW - Vehicle Routing Problem with Time Windows: The delivery locations have 

time windows within which the deliveries (or visits) must be made. 

 VRPLC - Vehicle Routing Problem Length Constraint: The routes are limited to a 

specific length. 

 VRPBTW - Vehicle Routing Problem with Backhauling and Time Windows: 

Backhauling is part of the problem.  

 MCVRPTW – Multi Compartment Vehicle Routing Problem with Time Windows: 

Multiple commodities allowed on the vehicle. 

 MDVRPTW – Multi Depot Vehicle Routing Problem with Time Windows: Stops 

served from more than one depot. 

 VRPPD - Vehicle Routing Problem with Pickup and Delivery: A number of goods 

need to be moved from certain pickup locations to other delivery locations. The goal 

is to find optimal routes for a fleet of vehicles to visit the pickup and drop-off 

locations. 

 Vehicle Routing Problem with LIFO: In this context LIFO stands for Last In First 

Out. Similar to the VRPPD, except an additional restriction is placed on the loading 

of the vehicles: at any delivery location, the item being delivered must be the item 

most recently picked up. This scheme reduces the loading and unloading times at 

delivery locations because there is never any need to temporarily unload items to get 

to the items needing to be dropped off.  

This study will focus on handling several variations of the vehicle routing problem through 

the implementation of constraint functions in the adaptive object model framework. The 

purpose is to provide an adaptive solution that is good enough for most variations. The current 

computer processor ability allows the research to implement new methods that was 

previously deemed as too slow.  
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1.3 Input Data 

Solving the vehicle routing problem is a complex task which results in time consuming 

algorithms. Knowledge of the problem environment can assist in developing more effective 

algorithms. The problem environment consists of the constraints imposed on the problem, 

the input data and the objective function to minimize with. In the field of information 

systems it is customary to distinguish between data, information, and knowledge. 

 Data. The term data refers to numeric (or alphanumeric) strings that by themselves do 

not have a meaning. They can be facts of figures to be processed. 

 Information. Information is data organized so that it is meaningful to the person 

receiving it. 

 Knowledge. Knowledge has several definitions. For example, according to the 

Webster‟s New Dictionary of the American Language, Knowledge is: a clear and certain 

perception of something, understanding, learning, all that has been perceived or grasped by the mind, 

practical experience, skill, acquaintance or familiarity, organized information applicable to problem 

solving. 

Data, information, and knowledge can be classified by their degree of abstraction and by their 

quantity. Knowledge is the most abstract and exists in smallest quantity. 

Another definition of knowledge is that given by John F Sowa (Sowa, 2000): “Knowledge 

encompasses the implicit and explicit restrictions, placed upon objects (entities), operations, 

and relationships along with general and specific heuristics and inference procedures involved 

in the situation being modelled.” 

The Solomon datasets has been used as benchmark for algorithms since it has been published 

in 1987.  Solomon generated six sets of problems.  Their design highlights several factors that 

affect the behaviour of routing and scheduling algorithms.  They are:  

 Cost relation between customers represented by the geographical location;  

 the number of customers serviced by a vehicle;  

 percent of time-constrained customers;  

 tightness and positioning of the time windows.  
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Solomon‟s geographical data are  

 randomly generated 

 clustered 

 mix of random and clustered structures. 

Some problem sets have a short scheduling horizon and allow only a few customers per route 

(approximately 5 to 10). In contrast, other sets have long scheduling horizons permitting 

many customers (more than 30) to be serviced by the same vehicle.  

Current solutions for the VRP use the Solomon datasets for benchmark only. It then 

concludes that the algorithm was effective on certain problem types. These solutions do not 

attempt to utilize knowledge of the problem environment to improve results, either for speed 

of convergence or quality of the answer. 

The other approach is to develop an algorithm to solve a specific problem type only. This 

method can be seen as utilizing knowledge of the problem environment in a static way. These 

algorithms are generally quick and effective. We are looking for the same efficiency, without 

the restriction of knowledge on the type of problem build into the algorithm. Methods have 

been proposed to identify the environment and then select the appropriate algorithm to solve 

the specific problem. Fuzzy clustering is a preferred way of identifying the problem space. 

This research will use a similar approach and will utilize the knowledge extensively. 

The research will also monitor the behaviour of the operations on the data environment to 

implement more efficient improvement move combinations. This must be done dynamically, 

as the aim is still to provide one algorithm that can adapt to the problem environment. 

1.4 Algorithms 

The optimization of VRP type problems requires us to obtain the least of some measure, 

namely cost. The problem is so complex that exact algorithms do not have the power to 

provide high quality solutions to these types of problems. Heuristic methods will be used to 

assist in solving the problem. 
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1.4.1 Artificial Intelligence 

This past few years have witnessed an increased interest in applied AI. The topic is enjoying 

tremendous publicity under multiple titles. Many major periodicals have published cover 

stories on AI or have dedicated special issues to it. Dozens of books on AI have appeared on 

the market. Many AI newsletters are being published regularly, and conferences and 

conventions on this topic are being held worldwide. To a certain extent, AI has become a 

sensation. 

The commercial applications of AI are projected to reach several billion dollars annually. 

Major management consulting firms are deeply involved in applied AI. Many contribute in AI 

research projects. 

These developments may have a significant impact on many organizations, both private and 

public, and on the manner in which organizations are being managed. 

Artificial intelligence is a term that encompassed many definitions. Most experts agree that AI 

is concerned with two basic ideas. First, it involves studying the thought processes of humans 

(to understand what intelligence is); second, it deals with representing those processes via 

machines (computers, robots, etc.) 

One well-publicized definition of AI is as follows: Artificial intelligence is behaviour by a 

machine that, if performed by a human being, would be called intelligent. A thought-

provoking definition is provided by Elaine Rich (1983): “Artificial Intelligence is the study of 

how to make computers do things at which, at the moment, people are better.” Mark Fox of 

Carnegie-Mellon University often says that AI is basically a theory of how the human mind 

works (Turban and Aronson, 2001). Winston and Prendergast (1984) list three objectives of 

artificial intelligence:  

 Make machines smarter (primary goal)  

 Understand what intelligence is ( the Noble laureate  purpose) 

 Make machines more useful (the entrepreneurial purpose) 

Let us explore the meaning of the term intelligent behaviour. Several abilities are considered 

signs of intelligence: 
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 Learn or understand from experience 

 Make sense out of ambiguous or contradictory messages 

 Respond quickly and successfully to a new situation (different responses, flexibility) 

 Use reason in solving problems and directing conduct effectively 

 Deal with perplexing situations 

 Understand and infer in ordinary, rational ways 

 Apply knowledge to manipulate the environment  

 Acquire and apply knowledge 

 Think and reason 

 Recognize the relative importance of different elements in a situation  

Although AI‟s ultimate goal is to build machines that will mimic human intelligence, the 

capabilities of current commercial AI products are far from exhibiting any significant success 

when compared with the abilities just listed. Nevertheless, AI programs are getting better all 

the time, any they are currently useful in conducting several tasks that require some human 

intelligence. 

An interesting test designed to determine if a computer exhibits intelligent behaviour was 

designed by Alan Turing (1950) and is called the Turing Test. According to this test, a 

computer could be considered to be smart only when a human interviewer, conversing with 

both an unseen human being and an unseen computer, could not determine which is which.  

The potential value of artificial intelligence can be better understood by contrasting it with 

natural, or human, intelligence. According to Kaplan (1984), AI has several important 

commercial advantages: 

 AI is more permanent. Natural intelligence is perishable from a commercial 

standpoint in that workers can change their place of employment or forget 

information. AI, however, is permanent as long as the computer systems and 

programs remain unchanged. 
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 AI offers ease of duplication and dissemination. Transferring a body of knowledge 

from one person to another usually requires a lengthy process of apprenticeship; even 

so, expertise can never be duplicated completely. However, when knowledge is 

embodied in a computer system, it can be copied from that computer and easily 

moved to another computer, sometimes across the globe. 

 AI can be less expensive than natural intelligence. There are many circumstances in 

which buying computer services costs less than having corresponding  human power 

carry out the same tasks (over the long run) 

 AI being a computer technology is consistent and thorough. Natural intelligence is 

erratic because people are erratic; they do not perform consistently. 

 AI can be documented. Decisions made by a computer can be easily documented by 

tracing the activities of the system. Natural intelligence is difficult to reproduce; for 

example, a person may reach a conclusion but at some later date may be unable to re-

create the reasoning process that led to that conclusion or to even recall the 

assumptions that were a part of the decision. 

Natural intelligence does have several advantages over AI: 

 Natural intelligence is creative, whereas AI is rather uninspired. The ability to acquire 

knowledge is inherent in human beings, but with AI, tailored knowledge must be built 

into a carefully constructed system. 

 Natural intelligence enables people to benefit from and use sensory experience 

directly, whereas most AI systems must work with symbolic input. 

 Perhaps most important, human reasoning is able to make use at all times of a wide 

context of experience and bring that to bear on individual problems; in contrast, AI 

systems typically gain their power by having a very narrow focus. 

The advantages of natural intelligence over AI result in the many limitations of expert 

systems. 

The definitions of AI presented to this point concentrated on the notion of intelligence. The 

following definitions and characteristics of AI focus on decision making and problem solving. 
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1.4.1.1 Symbolic Processing 

When human experts solve problems, particularly the type that are considered appropriate for 

AI, they do not do it by solving sets of equations or performing other laborious mathematical 

computations. Instead, they choose symbols to represent the problem concepts and apply 

various strategies and rules to manipulate these concepts. According to Waterman, the AI 

approach represents knowledge as sets of symbols that stand for problem concepts. In AI 

jargon a symbol is a string of characters that stands for some real-world concept.  

1.4.1.2 Heuristics 

Heuristics (rules of thumb) are included as a key element of AI in the following definition: 

“Artificial intelligence is the branch of computer science that deals with ways of representing 

knowledge using symbols rather than numbers and with rules-of-thumb, or heuristics, 

methods for processing information” (Encyclopaedia Britannica) 

People frequently use heuristics, consciously or otherwise, to make decisions. By using 

heuristics one does not have to rethink completely what to do every time a similar problem is 

encountered. The topic of heuristics will be revisited. 

1.4.1.3 Inferencing 

Artificial intelligence involves an attempt by machines to exhibit reasoning capabilities. The 

reasoning consists of inferencing from facts and rules using heuristics of other search 

approaches. Artificial intelligence is unique in that it makes inferences by employing the 

pattern-matching (or recognition) approach. 

1.4.1.4 Pattern Matching 

The following definition of AI focuses on pattern-matching techniques: Artificial intelligence 

works with pattern-matching methods which attempt to describe objects, events, or processes 

in terms of their qualitative features and logical and computational relationships. 

1.4.2 Heuristic 

A heuristic is a replicable method or approach for directing one's attention in learning, 

discovery, or problem-solving. It is originally derived from the Greek "heurisko" (εὑρίσκω), 

which means "I find". (A form of the same verb is found in Archimedes' famous exclamation 
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"eureka!" – "I have found [it]!") The term was introduced in the 4th century AD by Pappus of 

Alexandria. 

Heuristics is the development of methods and rules for the construction of theories and 

theorems on a non-deductive basis (as opposed to algorithms which provide deductive 

foundations for such constructions).  The heuristic method may be understood as a special 

case of the trial and error method, i.e. random attempts until a solution is found. There is no 

secure way. When a solution is found it may, however, be tested with scientific rigor and its 

truth or falsity may be established. 

The heuristic method is different from the deductive method in its application of 

assumptions, analogies, working hypothesis, and different kinds of models. Heuristics is 

different from "trial and error" by not using arbitrary assumptions but apply a qualified basis 

from concepts, models and hypotheses.   

Meta-heuristics provided a way of considerably improving the performance of simple 

heuristic procedures, such as those based on hill climbing. The search strategies proposed by 

meta-heuristic methodologies result in iterative procedures with the ability to escape local 

optimal points. Meta-heuristics have been developed to solve complex optimization problems 

in many areas, with combinatorial optimization being one of the most fruitful. Generally, the 

best procedures achieve their efficiencies by relying on context information. The solution 

method can be viewed as the result of adapting meta-heuristic strategies to specific 

optimization problems. 

The term meta-heuristic (also written metaheuristic) was coined by Fred Glover in 1986 

(Glover, 1986) and has come to be widely applied in the literature, both in the titles of 

comparative studies and in the titles of volumes of collected research papers. Meta (from 

Greek: μετά = "after", "beyond", "with", "adjacent"), is a prefix used in English in order to 

indicate a concept which is an abstraction from another concept, used to complete or add to 

the latter. In epistemology, the prefix meta- is used to mean about (its own category). For 

example, metadata are data about data (who has produced them, when, what format the data 

are in and so on).   

A meta-heuristic refers to a master strategy that guides and modifies other heuristics to 

produce solutions beyond those that are normally generated in a quest for local optimality. 
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The heuristics guided by such a meta-strategy may be high level procedures or may embody 

nothing more than a description of available moves for transforming one solution into 

another, together with an associated evaluation rule. 

The evolution of meta-heuristics during the past ten years has taken an explosive upturn. 

Meta-heuristics in their modern forms are based on a variety of interpretations of what 

constitutes “intelligent” search. These interpretations lead to design choices that in turn can 

be used for classification purposes. However, a rigorous classification of different meta-

heuristics is a difficult and risky enterprise, because the leading advocates of alternative 

methods often differ among themselves about the essential nature of the methods they 

espouse. 

This thesis will implement a specific design meta-heuristic algorithm to improve solutions in 

the current solution space. It will be adapted to perform efficiently in a parallel environment.  

1.5 Parallel Algorithms 

In computer science, a parallel algorithm, as opposed to a traditional serial algorithm, is one 

which can be executed a piece at a time on many different processing devices, and then put 

back together again at the end to get the correct result. Parallel programming was once the 

sole concern of extreme programmers worried about huge supercomputing problems. With 

the emergence of multi-core processors for mainstream applications, however, parallel 

programming is well poised to become a technique every professional software developer 

must know and master. 

Parallel algorithms are valuable because it is faster to perform large computing tasks via a 

parallel algorithm than it is via a serial (non-parallel) algorithm, because of the way modern 

processors work. It is far more difficult to construct a computer with a single fast processor 

than one with many slow processors with the same throughput. There are also certain 

theoretical limits to the potential speed of serial processors. On the other hand, every parallel 

algorithm has a serial part and so parallel algorithms have a saturation point (see Amdahl's 

law). After that point adding more processors does not yield any more throughput but only 

increases the overhead and cost. 

The cost or complexity of serial algorithms is estimated in terms of the space (memory) and 

time (processor cycles) that they take. Parallel algorithms need to optimize one more resource, 
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the communication between different processors. Two ways parallel processors communicate 

is shared memory or message passing. 

A multi-agent system (MAS) is a system composed of multiple interacting intelligent agents. 

Multi-agent systems can be used to solve problems which are difficult or impossible for an 

individual agent or monolithic system to solve. An intelligent agent (IA) is an autonomous 

entity which observes and acts upon an environment (i.e. it is an agent) and directs its activity 

towards achieving goals (i.e. it is rational). Intelligent agents may also learn or use knowledge 

to achieve their goals. The evolutionary approach through Ant Systems relate to a multi-agent 

system.  

The agents in a multi-agent system have several important characteristics: 

 Autonomy: the agents are at least partially autonomous 

 Local views: no agent has a full global view of the system, or the system is too 

complex for an agent to make practical use of such knowledge 

 Decentralization: there is no designated controlling agent (or the system is effectively 

reduced to a monolithic system) 

Multi-agent systems can manifest self-organization and complex behaviours even when the 

individual strategies of all their agents are simple. The relation of this multi-agent system 

approach to the parallel computing resides in the inter-communication between the agents.  

Parallel algorithm design is an interesting and challenging area of computer science which 

requires a combination of creative and analytical skills. It is important to add the discussion to 

the study, to assure that there exists at least a limited design for parallel implementation. This 

ease the adaption of the solution for more advanced implementations in the future. 

1.6 Adaptive Object Modelling 

An adaptive object model is effectively a software factory with an interpretive run time, 

instead of code generation. It is an object model where the domain representation is 

interpreted at runtime and can be altered or changed with immediate effect. The adaptive 

model defines mechanisms to describe entities, attributes and relationships, as well as 

mechanisms to interpret the domain model and execute business rules. In an ever-changing 
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business environment, business models and rules have migrated from compiled source code 

to external metadata. This paradigm empowers domain experts to take control over 

application implementations, and allows them to change an application‟s business model as 

the business evolves. 

Data themselves become more universal and reusable when they are accompanied by 

descriptions of themselves that let other programs make sense of them. They can become 

even more independent when they are accompanied in their travels by code.  

As this evolutionary process unfolds, and the architecture of a system matures, knowledge 

about the domain becomes embodied more and more by the relationships among the objects 

that model the domain, and less and less by logic hardwired into the code. Objects in such an 

active object-model are subject to runtime configuration and manipulation like any other data. 

Changes to this runtime constellation of objects constitute changes to the model, and to the 

operations that traverse or interpret it.  

Data that describe other data, rather than aspects of the application domain itself, are called 

metadata. Metadata is when you know something is going to vary in a predictable way and 

you store the descriptions of the variation in a database so that it is easy to change. The key is 

to define the problem domain, and then developing both design time and run time variables 

for that domain to facilitate the development, deployment, execution, operation and 

maintenance of solutions. 

We will implement the concept of adaptive object modelling in describing the problem 

objects in metadata, as well as interpreting the object model at run-time for assisting the 

heuristic algorithm in having domain knowledge. We implement the solution through the 

Expandable Software Infrastructure (ESI) developed by E-Logics (Pty) Ltd: The ESI‟s goal is 

to realize runtime configurability, adaptability, extendibility and intuitive configuration 

requirements through the use of metadata and can be briefly described as a metadata-driven 

component based framework. 
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1.7 Summary 

Researching the VRP provides an excellent basis to implement new methodologies on various 

levels. The purpose of this research is to extend the circle of research objectives by proposing 

a not so traditional objective in the VRP. The problem definition includes additional 

intentions to be solved. 

The design of a solution for the defined problem environment requires a combination of 

different approaches on different levels. The methods discussed in this thesis are by no mean 

exhausted, but define the selected methods which this study will utilize. Current solutions rely 

mostly on heuristics to solve the complex Vehicle Routing Problem and only a few instances 

utilized the power of parallel algorithms. 

Building the solution on an adaptive object model emphasize the importance to structure the 

problem in more than one dimension. This study focus mainly in providing a solution which 

is capable of handling adaptive objects. The remaining parts of the thesis formulate the 

problem, discuss some of the history of the problem and design an approach required to 

solve the proposed problem. 
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2 VRP: AN OVERVIEW 

2.1 Introduction 

This chapter outlines some of the related work that was done on the VRP during the past 

years. It will also focus on the specific methods used to solve the VRP in its different formats 

and data environments.  

The vehicle routing problem is one of the most challenging problems in the field of 

combinatorial optimization. Dantzig and Ramser first introduced the VRP in 1959 (Dantzig 

and Ramser, 1959). The VRP originated from the Travelling Salesman Problem (TSP). The 

majority of OR oriented minds had been presented with the TSP or variations of, for a very 

considerable time (Cummings, 2000).  

Both the VRP and the TSP are concerned with determination of routes in a graph such that a 

certain cost associated between nodes is minimized. In fact, if there is only one vehicle with 

infinite capacity, the consequent VRP can be seen as a simple TSP. 

2.2 Travelling Salesman Problem 

Mathematical problems related to the travelling salesman problem were treated in the 1800s 

by the Irish mathematician Sir William Rowan Hamilton and by the British mathematician 

Thomas Penyngton Kirkman (History of the TSP, 2007).  Hamilton created the Icosian game 

in which the player must find paths and circuits on the dodecahedral graph, satisfying certain 

conditions. e.g., adjacency conditions, etc. The rights were sold for £25 to a wholesaler dealer 

in games and puzzles. 

The general form of the TSP appears to be have been first studied by mathematicians starting 

in the 1930s by Karl Menger in Vienna and Harvard. In 1932 Menger published “Das 

botenproblem”, in Ergebnisse eines Mathematischen Kolloquiums (Cummings, 2000). 

Menger called it the “Messenger Problem” a problem encountered by postal messengers, as 

well as by many travellers. He went on to define the problem as: “the task of finding, for a 

finite number of points whose pair wise distances are known, the shortest path connecting 
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the points. The rule, that one should first go from the starting point to the point nearest, etc., 

does not in general result in the shortest path.” 

During the 1950s a number of solutions appeared from the likes of George B. Dantzig, 

Fulkerson, and Johnson (1954). Their approach remains the only known tool for solving 

nontrivial TSP instances with more than several hundred cities; over the years, it has evolved 

further through the work of M.Grtschel, S. Hong, M. Jnger, P. Miliotis, D. Naddef, M. 

Padberg, W.R. Pulleyblank, G. Reinelt, and G. Rinaldi. George B. Dantzig is generally 

regarded as one of the three founders of linear programming, along with von Neumann and 

Kantorovich. (Cummings, 2000) 

In 1959 George.B. Dantzig, D.R. Fulkerson, and S.M. Johnson published “On a linear-

programming, combinatorial approach to the travelling-salesman problem”, Operations 

Research 7, 59-66 (Dantzig, Fulkerson and Johnson, 1959). This provided a step-by-step 

application of the Dantzig-Fulkerson-Johnson for a ten city example. This was the same year 

that Dantzig and Ramser published their first article about the VRP. 

2.3 Background on VRP 

In the past four decades, a tremendous amount of work in the field of vehicle routing and 

scheduling problems has been published. They are summarized in recent books and surveys,  

see Bramel and Simchi-Levi (1997), Braysy et al. (2004),  Choi and Tcha (2007), Crainic and 

Laporte (1998), Desrosiers et al. (1995),  Fisher (1995), Laporte (1992) and Nagy and Salhi 

(2007) (Yeun et al., 2008). Some research efforts were oriented towards the development and 

analysis of approximate heuristic techniques capable of solving real-size VRP problems. 

Bowerman, Calamiand and Brent Hall (1994) classified the heuristic approaches to the VRP 

into five classes:  

1. cluster-first/route-second,  

2. route-first/cluster-second,  

3. savings/insertion,  

4. improvement/exchange and  

simpler mathematical programming representations through relaxing some constraints.  
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From the two clustering procedures, the cluster-first/route-second looks more effective. This 

algorithm first groups the nodes into clusters, assigns each cluster to a different vehicle and, 

finally, finds the vehicle tour by solving the corresponding travelling salesman problem (TSP). 

Heuristic methods 3 and 4 permit to construct an initial solution or improve the current set of 

tours by either inserting customers or exchanging arcs. Some approximate approaches called 

meta-heuristics, including simulated annealing, tabu search and genetic algorithms, have 

recently become very popular (Gendrau, Laporte and Potvin, 1997).  

On the other hand, effective optimal approaches for VRPTW problems of smaller size have 

also been reported. Exact approaches can be categorized according to the underlying 

methodology into: (a) dynamic programming techniques (Kolen, Rinnooy and Trienekens, 

1987), which are extensions of the state-space relaxation method of Christofides, Mingozzi 

and Toth (1981); (b) Lagrangian relaxation methods which are currently capable of optimally 

solving some 100-customer VRPTW problems, (Desrosiers, Sauve and Soumis, 1988) (Halse, 

1992) (Jornsten, Madsen and Sorensen, 1986); (c) column generation algorithms that are 

based on a combination of linear programming relaxed set covering and column generation 

(Desrochers, Desrosiers and Solomon, 1992), and (d) K-tree approaches that extended the 

classical 1-tree method for the TSP to the case with vehicle capacity and time window 

constraints (Fisher, 1994)(Fisher, Jornsten and Madsen, 1997). The first three exact 

approaches rely on the solution of a shortest path problem with time windows and vehicle 

capacity constraints either as part of a Lagrangian relaxation or to generate new columns. 

(Dondo and Cerdá, 2006)  

The past years, quite good results have been achieved for the Vehicle Routing Problem with 

Time Windows (VRPTW), in both the classes of exact methods and meta-heuristics. Surveys 

can be found in Toth and Vigo (2001: Chapter 7) and Yeun et al. (2008). Bräysy and 

Gendreau (2005) give an excellent overview over meta-heuristics for the VRPTW. All of 

these considered traditionally vehicle routing for which each customer is visited exactly once. 

The VRP is an important combinatorial optimization problem. It also occupies a central place 

in distribution management. Toth and Vigo (2001) report that the use of computerized 

methods in distribution processes often results in savings ranging from 5% to 20% in 

transportation costs. Baker and Ayechew (2003) and Laporte (2007) describe several case 

studies where the application of VRP algorithms has led to substantial cost savings.  
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The VRP was introduced by Dantzig and Ramser (1959) more than five decades ago. There 

has been since then a steady evolution in the design of solution methodologies, both exact 

and approximate, for this problem. Yet, no known exact algorithm is capable of consistently 

solving to optimality instances involving more than 50 customers (Golden et al., 1998).  

Heuristics are usually used in practice. Heuristics include constructive heuristics e.g., Clarke 

and Wright (1964), which gradually build a feasible solution while attempting to keep solution 

cost as low as possible, two-phase heuristics on which customers are first clustered into 

feasible routes and actual routes are then constructed e.g. Fisher and Jaikumar (1981); Gillett 

and Miller (1974), and improvement methods which either act on single routes by application 

of a Travelling Salesman Problem (TSP) heuristic, or on several routes by performing 

customer reallocations or exchanges e.g. Kinderwater and Savelsbergh (1997), Thompson and 

Psaraftis (1993). 

As reported by Laporte and Semet (2002), classical heuristics usually have a low execution 

speed but often produce solutions having a large gap with respect to the best known (typically 

between 3% and 7%). In the last fifteen years, several meta-heuristics have been put forward 

for the solution of the VRP. These typically perform a thorough exploration of the solution 

space, allowing deteriorating and even infeasible intermediate solutions.  

A number of methods maintain a pool of good solutions which are recombined to produce 

even better ones. There exist many families of meta-heuristics for the VRP: simulated 

annealing, deterministic annealing, tabu search, genetic algorithms, ant systems, and neural 

networks. While the success of any particular method is related to its implementation features, 

it is fair to say that tabu search (TS) is most favoured in the approaches. Extensive 

computational experiments independently conducted by several researchers corroborate that 

Tabu Search outperforms most of the competitors on a regular basis. For comparative 

computational results over the Christofides, Mingozzi, and Toth (CMT) fourteen benchmark 

instances, see Gendreau, Laporte, and Potvin (Cordeau and Laporte, 2002). 
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Due to its wide applicability in practical settings, the VRPTW has been an area of intense 

research during the last ten years. Generally speaking, the methodologies for solving this 

problem can be classified as:  

 Exact algorithms. 

 Route construction heuristics. 

 Route improvement heuristics. 

 Composite heuristics that include both route construction and route improvement 

procedures. 

 Meta-heuristics - like tabu search, simulated annealing, genetic algorithms, 

evolutionary algorithms and hybrids 

 Hyper-heuristics 

 Memetic Algorithms 

2.3.1 Evolutionary algorithms 

Genetic algorithms are adaptive heuristic search methods that mimic evolution through 

natural selection. They work by combining selection, recombination and mutation operations. 

The selection pressure drives the population toward better solutions while recombination 

uses genes of selected parents to produce offspring that will form the next generation. 

Mutation is used to escape from local minima.  

Blanton and Wainwright (1993) were the first to apply a genetic algorithm to VRPTW. They 

hybridized a genetic algorithm with a greedy heuristic. Under this scheme, the genetic 

algorithm searches for a good ordering of customers, while the construction of the feasible 

solution is handled by the greedy heuristic.  

Thangiah et al. (1994) test the same approach to solve vehicle routing problems with time 

deadlines. In the algorithm proposed by Potvin and Bengio (1996), new offspring are created 

by connecting two route segments from two parent solutions or by replacing the route of the 

second parent-solution by the route of the first parent-solution. Mutation is then used to 

reduce the number of routes and to locally optimize the solution. Berger, Salois and Begin 
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(1998) present a hybrid genetic algorithm based on removing certain customers from their 

routes and then rescheduling them with well-known route-construction heuristics.  

The mutation operators are aimed at reducing the number of routes by rescheduling some 

customers and at locally reordering customers. Further studies built on the word of Berger 

through creating new crossover and mutation operators. Berger and Barkaoui (2003) continue 

to use the genetic algorithm as a base and a scheme was proposed that relies on the concept 

of simultaneous evolution of two populations pursuing different objectives subject to partial 

constraint relaxation. The first population evolves individuals to minimize total travelled 

distance while the second focuses on minimizing temporal constraint violation to generate a 

feasible solution, both subject to a fixed number of tours. 

Homberger and Gehring (1999) propose two evolutionary meta-heuristics based on the class 

of evolutionary algorithms called Evolution Strategies and three well-known route 

improvement procedures Or-opt (Or, 1976), λ-interchanges (Osman, 1993) and 2-opt  

(Potvin and Rousseau, 1995). Gehring and Homberger(2000) use a similar approach with 

parallel tabu search implementation.  

Bräysy, Berger and Barkaoui (2000) hybridize a genetic algorithm with an evolutionary 

algorithm consisting of several route construction and improvement heuristics. The genetic 

algorithm by Tan, Lee and Ou (2001) is based on Solomon‟s (Solomon, 1987) insertion 

heuristic, λ-interchanges and the well-known PMX-crossover operator. Other studies on 

various meta-heuristics for VRPTW can be found in Bianchessi and Righini (2007), Berger, 

Barkaoui and Bräysy (2002) and Yeun et al. (2008) 

2.3.2 Initial Solutions 

Finding a feasible and integrated initial solution to a hard problem is that the first step in 

addressing the scheduling issue. Heuristics typically use a greedy approach to obtain a good 

initial solution in an efficient manner and then incrementally improve the solution by 

neighbourhood exchange or local searches. 

Research illustrates that high quality initial solutions allow meta-heuristics to achieve higher 

quality solutions more quickly. Marius Solomon was one of the first researchers to consider 

the VRPTW.  He designed and analysed a number of algorithms to find initial feasible 

 
 
 



 
24 

 

solutions for the VRPTW (Solomon, 1987).  His sequential insertion heuristic (SIH) gave very 

good results in most environments, and most current heuristic methods make use of this 

heuristic (or a variation thereof) to effectively find a feasible starting solution. It has been used 

frequently: e.g. VRPTW with backhauls, routing heterogeneous vehicles, routing with 

multiple time windows per customer, dynamic VRPTW, on-line routing, dynamic routing for 

airport shuttles. (Dullaert and Bräysy, 2003) 

Dullaert and Bräysy (2003) introduced a push backward modification on Solomon‟s SIH. This 

method recalculates the departure time at the depot when a stop is inserted between the 

depot and the first stop. 

Bianchi and Mastrolilli (2004) argue that because of the close relationship between the VRP 

and TSP, the fast algorithms for the TSP can be applied in the same manner to solve the 

VRP. However, the addition of a constraint on the capacity of a vehicle avoids its direct 

usage. Therefore, when the vehicle‟s capacity is too low, an optimal TSP tour cannot be 

anymore optimal for this problem. If the capacity is not so extremely low when compared 

with the existing demand, an optimal TSP tour can be a good starting solution for applying a 

heuristic-based algorithm for solving the VRP.  

In the case of the VRP with stochastic demand, they observed a higher performance of the 

meta-heuristics using search strategies typical for solving the TSP, i.e. minimizing total travel 

distance. This could mean that, due to the stochasticity of the demand, the minimization of 

constraint violations considering the capacity of the vehicle becomes less important than 

minimizing its total distance. 

Joubert and Claasen (2006) address the shortcomings of Solomon's SIH in that it considers all 

un-routed nodes when calculating the insertion and selection criteria for each iteration. This 

method makes it computationally expensive. They introduce a compatibility matrix for 

identifying and eliminating the obvious infeasible nodes. This results in a more effective and 

robust route construction heuristic. 
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2.3.3 VRP and Clustering 

The philosophy of cluster first route second has been implemented in various shapes and 

formats. Clusters of nodes are first defined, then such clusters are assigned to vehicles and 

sequenced on the related tours and finally the routing and scheduling for each individual tour 

in terms of the original nodes is separately found. 

Dondo and Cerda (2006) published a paper on a cluster-based optimisation approach for the 

multi-depot heterogeneous fleet vehicle routing problem with time windows. They presented 

a three phased heuristic algorithm approach: phase 1 identified a set of cost-effective feasible 

clusters, phase two assigns clusters to vehicles and sequences them on each tour by using the 

cluster-based formulation, phase 3 orders nodes within clusters and scheduling vehicle arrival 

times at customer locations for each tour.  

The solution implements exact elimination rules, which are used to reduce the problem size 

and thus enhancing the efficiency of the solution algorithm. As in most solutions, these 

elimination rules are subject to the specific problem environment. Finding a good set of 

clusters, each one comprising of several customer sites, without relying on routing 

information is quite a difficult task. This paper introduced a time window-based heuristic 

algorithm that efficiently assembles customer nodes into a rather low number of feasible 

clusters.  

The heuristic clustering procedures leads to a compact version of the VRPTW. The number 

of binary variables for a problem with 200 nodes, 10 vehicles and 15 clusters drops from 21 

910 to 265, i.e. almost a two order of magnitude reduction. Numerical results indicate that the 

cluster based optimisation method proved to be quite successful on a variety of Solomon's 

single depot homogeneous fleet benchmark problems.  

2.3.4 Tabu Search 

Tabu Search is a memory-based search strategy, originally proposed by Glover (1986), to 

guide the local search method to continue its search beyond a local optimum. One way of 

achieving this is to keep track of recent moves or solutions made in the past. Several survey 

papers and books have been written on Tabu Search (Cordeau and Laporte, 2002). 
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It was Osman (1993) who proposed the concept of λ-interchanges. In his implementation he 

uses λ = 2, thus allowing a mix of single and double vertex moves, and single and double 

vertex swaps between vehicle routes. Osman tested two strategies for selecting a neighbour 

solution. In the first, called best admissible (BA), the best non-tabu solution is selected. In the 

second, called first best admissible (FBA), the first admissible improving solution is selected if 

one exists; otherwise the best admissible solution is retained. Osman shows through empirical 

testing that with the same stopping criterion FBA produces slightly better solutions, but this 

variant is much slower than BA. Osman's Tabu Search implementation uses fixed tabu 

tenures, no long-term memory mechanism and no intensification schemes.   

In Taburoute neighbour solutions are obtained by moving a vertex from its current route r to 

another route s containing one of its closest neighbours. Insertion into route s is performed 

concurrently with a local reoptimization. This may result in creating a new route or deleting 

one. To limit the neighbourhood size, only a randomly selected subset of vertices is 

considered for reinsertion in other routes. 

The Adaptive Memory Procedure (AMP) of Rochat and Taillard (1995) was presented under 

the title “Probabilistic Diversification and Intensification”. If applied periodically during the 

search process, it provides a diversification process by allowing new high quality solutions to 

emerge. If applied as a post-optimizer, it is best seen as an intensification procedure. The 

method should not be regarded as a VRP heuristic per se, but rather as a general procedure 

applicable to several contexts and in conjunction with several heuristic schemes. For example, 

it was applied by Bozkaya, Erkut and Laporte (2003) to post optimize political districts 

obtained by means of a Tabu Search heuristic.  

Xu and Kelly (1996) introduced a network flow model as a general local search strategy to 

solve the VRP. They used a straightforward model by relaxing the hard side constraints and 

introducing a dynamic penalty system, and efficiently update and frequently solve the network 

flow model to find the best customers to insert into new routes without the use of the 

generalized assignment problem. The penalty parameters are changed such that the feasibility 

of the search is controlled. 

Garcia, Potvin and Rousseau (1994) describe a tabu search heuristic where the 

neighbourhood is restricted to the exchange of arcs that are close in distance. The initial 

solution is created using Solomon‟s I1 insertion heuristic, and the algorithm oscillates between 
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2-opt (Potvin and Rousseau, 1995) and Or-opt (Or, 1976) exchanges. When one has not 

made any improvement for a certain number of iterations, the other improvement operator is 

used and vice versa.  

In order to minimize the number of routes, the algorithm tries to move customers from 

routes with a few customers into other routes using Or-opt exchanges. The parallel 

implementation is performed by partitioning the neighbourhood among slave processors. The 

master processor is then used to guide the tabu search. After exploration of the 

neighbourhood, the best move from each processor is sent to the master.  

The granularity concept proposed by Toth and Vigo (1998) does not only apply to the VRP 

or to Tabu Search algorithms, but to discrete optimization on the whole. Like AMP, it is a 

highly portable mechanism. The idea is to permanently remove from consideration long 

edges that have only a small likelihood of belonging to an optimal solution.  

More specifically, a threshold is defined and the search is performed on the restricted edge 

set 𝐸 𝑣 =   𝑣𝑖 , 𝑣𝑗  ∈ 𝐸 ∶  𝑐𝑖𝑗 ≤ 𝑣  ∪ 𝐼, where I is a set of important edges defined as that 

incident to the depot. The value of 𝑣 is set equal to 𝛽𝑐 , where 𝛽 is called a sparsification 

parameter, and 𝑐  is the average edge cost in a good feasible solution quickly obtained, for 

example, by the Clarke and Wright (1964) algorithm. In practice, selecting 𝛽 in the interval 

[1.0; 2.0] results in the elimination of 80% to 90% of all edges. Toth and Vigo have applied 

this idea in conjunction with Taburoute (Gendreau, Hertz and Laporte, 1994).  These 

approaches is viewed as forced learning and relate closely to the probability matrix used in 

this study. 

Badeau et al. (1997) study the problem using a 2-level parallel implementation that combines 

the so-called master-slave scheme with an allocation of each sub problem to a different 

processor. In this master-slave scheme, the master process manages the adaptive memory and 

generates solutions from it; these solutions are then transmitted to slave processes that 

improve them by performing tabu search and return the best solutions found to the master. 

Results on benchmark problems show that parallelization of the original sequential approach 

does not degrade solution quality, for the same amount of computation, while providing 

substantial speed-ups. This parallel implementation creates independent operating agents and 

utilise the processing power available. It does not contribute to the meta-heuristic, or memory 

control of the Tabu Search. 
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Carlton (1995) describes a reactive tabu search that dynamically adjusts its parameter values 

based on the current search status. More precisely, the size of the tabu list is managed by 

increasing the tabu list size if identical solutions occur too often and reducing it if no feasible 

solution can be found. This approach is applied to several types of problems with time 

windows. Its robustness comes from a simple neighbourhood structure, which can be easily 

adapted to different problems. Namely, each customer is removed and reinserted at some 

other location in the current solution. 

Schulze and Fahle (1999) propose a tabu search performing several search threads in parallel. 

Each thread is started with a different initial solution and a neighbouring solution is generated 

by performing a sequence of simple customer shifts (ejection chain). All routes generated by 

the tabu search heuristic are collected in a pool. At the termination of local optimization 

steps, the worst solution is replaced by a new one created by solving the set covering problem 

on the routes in the pool with Lagrangian relaxation based heuristic.  

With this new set of solutions, the whole process is restarted until a certain stopping criterion 

is fulfilled. In addition, the proposed method tries to eliminate routes having at most three 

customers by trying to move these customers into other routes. The routing of customers 

supplied by the same vehicle is improved by performing Or-opt exchanges within the route 

and the search is diversified by penalizing frequently performed customer shifts.  

To generate an appropriate number of initial solutions, three different heuristics are used, 

namely Solomon‟s (Solomon, 1987) I1 insertion heuristic, the parallel route building heuristic 

of Potvin and Rousseau (1993) and a modified version of the Savings heuristic of Clarke and 

Wright (1964). In the parallel implementation, each processor handles a set of solutions 

instead of just one and solves also the set covering problem separately on these solutions to 

avoid idle times. Each time a processor terminates its local optimization process, the routes of 

the optimized solutions are sent to all other processors to enable sharing of knowledge. 

Gehring and Homberger (2000) study a two-phase approach, where the tabu search is 

combined with evolutionary algorithm ES1. In this evolutionary algorithm the search is 

mainly driven by mutation based on Or-opt, 2-opt* and λ–interchange moves with λ = 1. In 

addition a special Or-opt based operator is used to reduce the number of routes.  
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The individuals of a starting population are generated by means of a stochastic approach that 

is based on the savings algorithm of Clarke and Wright (1964). The evolutionary algorithm is 

used in the first phase to minimize the number of routes. In the second phase, the total 

distance is minimized using a tabu search algorithm utilizing the same local search operators. 

The approach is parallelized using the concept of cooperative autonomy, i.e., several 

autonomous sequential solution procedures cooperate through the exchange of solutions. 

The cooperating slave processes are configured in different ways using different seeds for 

random number generators to create diversity in the search. (Gendreau and Bräysy, 2001) 

Potvin and Naud  (2009) presented a variant on the classical vehicle routing problem, where a 

customer request for a transportation company can be serviced either by its private fleet of 

vehicles or assigned to an external common carrier. A tabu search heuristic with a 

neighbourhood structure based on ejection chains is used to solve the problem. The 

implementation is based on the computation of a least-cost ejection path in a graph structure. 

This method allows multiple displacements of customers on vehicles of different types which 

make it effective on large heterogeneous instances. 

Moccia, Cordeau and Laporte (2010) describe an incremental neighbourhood tabu search 

(ITS) heuristic for the generalized vehicle routing problem with time windows. The purpose 

of this work is to offer a general tool that can successfully be applied to a large variety of 

specific problems. The algorithm builds upon a previously developed tabu search heuristic by 

replacing its neighbourhood structure. The new neighbourhood is exponential in size, but the 

proposed evaluation procedure has polynomial complexity. It uses a shortest path calculation 

which can be computed by the so-called reaching algorithm in an acyclic graph. The 

computations are speed up by taking advantage of the shortest paths computed at previous 

steps of the algorithm.  

2.3.5 Ant Optimisation 

The Ant System approach, originally proposed by Colorni, Dorigo and Maniezzo (1991) is 

based on the behaviour of real ants searching for food. Real ants communicate with each 

other using an aromatic essence called pheromone, which they leave on the paths they 

traverse. In the absence of pheromone trails ants more or less perform a random walk. 
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Bullnheimer, Hartl and Strauss (1997) use the Ant System to solve the VRP in its basic form, 

i.e. with capacity and distance restrictions, one central depot and identical vehicles. A „hybrid‟ 

Ant System is used with specific information for improvement. To solve the VRP, the 

artificial ants construct vehicle routes by successively choosing cities to visit, until each city 

has been visited.  

Whenever the choice of a city would lead to infeasible solution for reasons of the constraints, 

the depot is chosen and a new tour started. For the selection of a yet not visited city, two 

aspects are taken into account: how good was the choice of that city, information stored in 

the pheromone trial, and how promising is the choice of the city, a measure of desirability.  

It was found that the number of ants to start with should be the same as the number of cities 

in the problem space to allow each ant to start from another city. After initializing the basic 

ant system algorithm, the two steps, construction of vehicle routes and trial update, are 

repeated for a given number of iterations.  

The 2-opt heuristic for the TSP is used to ensure that each tour is a 2-optimal tour, i.e. there 

is no possibility to shorten the tour by exchanging 2 arcs. A savings value measures the 

favourability of combining two cities and calculates their relative location to each other as well 

as to the depot. Capacity utilization is also measured as a factor to determine the probability 

of the next city. Although good results were obtained, a tabu search heuristic still outperforms 

their approach. 

Mailleux, Deneubourg and Detrain (2000) compared the behaviour of Lasius niger scouts at 

sucrose droplets of different volumes, and empirically identified the criterion used by each 

scout to assess the amount of food available as well as the rules governing its decision to lay a 

recruitment trail. When scouts discovered food volumes exceeding the capacity of their crop, 

90% immediately returned to the nest laying a recruitment trail.  

In contrast, when smaller food droplets were offered, several scouts stayed on the foraging 

area, presumably exploring it for additional food. If unsuccessful, they returned to the nest 

without laying a trail. The droplet volume determined the percentage of trail-laying ants but 

had no influence on the intensity of marking when this was initiated. The key criterion that 

regulated the recruiting behaviour of scouts was their ability to ingest their own desired 

volume.  
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This volume acted as a threshold triggering the trail-laying response of foragers. Collective 

regulation of foraging according to food size resulted from the interplay between the 

distribution of these desired volume thresholds among colony members and the food volume 

available. We borrow from the behaviour and note that even the ants have mechanisms to 

balance between diversification and intensification of the improvement part. 

Gambardella, Taillard and Agazzi (1999) presented an Ant Colony Optimization which is 

organized with a hierarchy of artificial ant colonies designed to successively optimize a 

multiple objective function: the first colony minimizes the number of vehicles while the 

second colony minimizes the travelled distances. Cooperation between colonies is performed 

by exchanging information through pheromone updating. The basic ACO idea is that a large 

number of simple artificial agents are able to build good solutions to hard combinatorial 

optimization problems via low-level based communications. 

Montemanni et al. (2003) developed a new algorithm for dynamic VRP base on Ant Colony 

System. The ACS-DVRP algorithm they propose for the DVRP is based on three main 

elements. First, there is an event manager, which collects new orders and keeps trace of the 

already served orders and of the current position of each vehicle. The event manager uses this 

information to construct a sequence of static VRP-like instances, which are solved 

heuristically by an ACS (Ant Colony System) algorithm, the second element of our 

architecture.  

The third element, the pheromone conservation procedure, is strictly connected with the ACS 

algorithm. It is used to pass information about characteristics of good solutions from a static 

VRP to the following one. The Ant Colony System (ACS) algorithm is an element of the Ant 

Colony Optimization (ACO) family of algorithms. The main underlying idea was to parallelize 

search over several constructive computational threads. A dynamic memory structure, which 

incorporates information on the effectiveness of previously obtained results, guides the 

construction process of each thread. The behaviour of each single agent is inspired by the 

behaviour of real ants. 

Gambardella et al. (2003) present a modular approach to ALS (advanced logistics systems) 

design and implementation, driven by the user needs. They show how different algorithms 

and modules can be implemented in an ALS and how tailor-made solutions can be integrated 

into traditional supply chain management software. An always increasing number of large and 
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medium-large distribution companies have already adopted ALS to manage their whole 

supply chain.  

The basic information processing infrastructure is in place and many supply chain 

management suites already provide optimization modules for some components. The 

objective of their AntRoute software component is to integrate a state-of-the-art optimization 

algorithm within an existing supply chain management structure. AntRoute has been 

implemented in C++ and it has been deployed as windows DLL, but its code can be 

recompiled under most operating systems. The algorithm has been modelled after MACS-

VRPTW (Gambardella, Taillard and Agazzi, 1999) 

Reimann, Doemer and Hartl (2003) have developed a generalized Ant System. Generally, the 

Ant System algorithm consists of the iteration of three steps: Generation of solutions by ants 

according to private and pheromone information, application of a local search to the ants‟ 

solutions and update of the pheromone information. They use an Insertion algorithm derived 

from the I1 insertion algorithm proposed by Solomon for the VRPTW. The algorithm is 

adapted to allow for a probabilistic choice in each decision step. This is done by choosing 

seed customers probabilistically according to their distance from the depot.  

Inserting further customers on the current tour is done using a roulette wheel selection 

overall un-routed customers with positive evaluation function 𝜅𝑖 . The chosen customer i is 

then inserted into the current route at its best feasible insertion position. To compute the 

evaluation function  𝜅𝑖  for inserting an unrouted customer i at its best insertion position on 

the current tour we first determine for each un-routed customer i the attractiveness of 

insertion at any feasible insertion position on the current tour.  

Given the attractiveness they then compute the evaluation function of the best insertion 

position for each customer i on the current tour. After all ants have constructed their 

solutions, the pheromone trails are updated on the basis of the solutions found by the ants. 

Bianchi and Mastrolilli (2004) carried out research which focuses on the Vehicle Routing 

Problem with stochastic demand, a variation of deterministic classical routing problems, 

where each customer demand is assumed to follow a given probability distribution, instead of 

having a single known value. The ACO meta-heuristic is implemented for the deterministic 

problem in the research.  
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The stigmergic information is stored in the form of a matrix and at the beginning of the 

algorithm these values are initialized to a parameter 𝜏0, except for those elements that belong 

to the starting solution, generated by the farthest insertion heuristic, who receive a 

„reinforcement‟ equal to r iterations of global update rule. After each construction step, a local 

update rule is applied to the element of the matrix corresponding to the chosen customer 

pairs.  

For the VRP with stochastic demand, the ACO was implemented as two algorithms as 

follows: ACS-0 where after the a-priori solution is constructed, the OrOpt-0 local search is 

applied, and ACS-tsp where the OrOpt-tsp local search is used instead of OrOpt-0. The 

OrOpt-0 and OrOpt-tsp differ in the way the neighbouring solutions are evaluated. The first 

version exploits the VRP with stochastic demand‟s objective function, while the second 

version exploits the TSP objective function. Results show not a significant difference from 

using the Ant Colony algorithms from other methods for the VRP with stochastic demand. 

Despite the common principles of intensification and diversification, meta-heuristics can be 

profoundly different and also their applicability to a given problem can produce varied results 

(Rizzoli et al., 2004).  Moreover, it was also remarked by Martin, Otto, and Felten that meta-

heuristics tend to perform very well when hybridized with local search methods, combining 

specific problem knowledge in the improvement of the solutions. ACO is particularly apt for 

hybridization, since it is rarely able to build a solution that is good enough, but on the other 

hand it produces good candidate solutions which can be further improved using various local 

search techniques.  

In their conclusion, after more than ten years of research, ACO has proven to be one of the 

most successful meta-heuristics and its application to real world problems demonstrates that 

it has now become a fundamental tool in applied Operational Research and Management 

Science. 

2.3.6 Hyper-Heuristics 

A hyper-heuristic is a heuristic search method that seeks to automate, often by the 

incorporation of machine learning techniques, the process of selecting, combining, generating 

or adapting several simpler heuristics (or components of such heuristics) to efficiently solve 

computational search problems. Hyper-heuristics can be thought of as “heuristics to choose 
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heuristics”. One of the motivations for studying hyper-heuristics is to build systems which 

can handle classes of problems rather than solving just one problem. 

The fundamental difference between meta-heuristics and hyper-heuristics is that most 

implementations of meta-heuristics search within a search space of problem solutions, 

whereas hyper-heuristics always search within a search space of heuristics. One of the 

motivations of hyper-heuristic research is to investigate the development of adaptive decision 

support systems that can be applied to a range of different problems and different problem 

instances. One possible approach is to dynamically adjust the preferences of a set of simple 

low-level heuristics (or neighbourhood operators) during the search. 

Bai et al. (2007) research a simulated annealing hyper-heuristic technique in order to 

investigate how the algorithm can intelligently choose between different neighbourhood 

operators (heuristics) according to the different problems. They consider two of the most 

popular variants of vehicle routing problems (capacitated VRP and VRP with time windows) 

and investigate the adaptation of the heuristic-selection mechanism across these variants and 

at different stages of the search.  

Specifically, they investigate: 1). How the hyper-heuristic adapts to these two types of vehicle 

routing problems by changing preferences of low-level heuristics and whether the hyper-

heuristic can automatically identify heuristics that are particularly good for a given type of 

vehicle routing problem? 2). How the hyper-heuristic adapts its selection decision during 

different stages of the search when solving a particular problem instance? Their hypothesis is 

that the hyper-heuristic algorithm will produce good quality solutions across a range of 

problem instances, without having to resort to tuning parameters for each instance. 

Cuesta-Cañada, Garrido and Terashima-Marín (2005) use the idea behind hyper-heuristics 

which is to find some combination of simple heuristics to solve a problem instead than 

solving it directly. In this paper they introduce the first attempt to combine hyper-heuristics 

with an ACO algorithm. The resulting algorithm was applied to the two-dimensional bin 

packing problem, and encouraging results were obtained when solving classic instances taken 

from the literature. The performance of our approach is always equal or better than that of 

any of the simple heuristics studied, and comparable to the best meta-heuristics known. 

 
 
 



 
35 

 

2.3.7 Memetic Algorithms 

Memetic Algorithms (MA) is used as a synergy of evolutionary or any population-based 

approach with separate individual learning or local improvement procedures for problem 

search. Cultural evolution, including the evolution of knowledge, can be modelled through 

the same basic principles of variation and selection that underlie biological evolution. This 

implies a shift from genes as units of biological information to a new type of units of cultural 

information: memes. 

A meme is a cognitive or behavioural pattern that can be transmitted from one individual to 

another one. Since the individual who transmitted the meme will continue to carry it, the 

transmission can be interpreted as a replication: a copy of the meme is made in the memory 

of another individual, making him or her into a carrier of the meme. (Dawkins, 1976) 

Berger and Barkaoui (2002) involves parallel co-evolution of two populations to solve the 

VRPTW. The first population evolves individuals to minimize total travelled distance while 

the second focuses on minimizing temporal constraint violation to generate a feasible 

solution. New genetic operators have been designed to incorporate key concepts emerging 

from promising techniques such as insertion heuristics, large neighbourhood search and ant 

colony systems to further diversify and intensify the search.  

The parallel version of the method is based on a master-slave message-passing paradigm. The 

master controls the execution of the algorithm, synchronizes atomic genetic operations and 

handles parent selection while the slaves concurrently execute genetic operations. Results 

from a computational experiment show that the serial version of the proposed technique 

matches or outperforms the best-known heuristic routing procedures. Alternatively, 

simulation results obtained for the parallel version show a significant improvement over the 

serial algorithm, matching or even improving solution quality. The parallel algorithm shows a 

speed-up of five in computing solution having near similar quality. 

Prins and Bouchenoua (2002) present a memetic algorithm for solving a new vehicle routing 

problem that generalizes two classics, the VRP and the CARP. An extended model is 

introduced: the NEARP (Node, Edge and Arc Routing Problem). It is defined on a mixed 

graph with required nodes, edges and arcs and contains the VRP and the CARP as particular 

cases. A common data structure shared by all algorithms is proposed for coding NEARP 
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instances. The first algorithms developed are three simple heuristics that are used to initialize 

the initial population of the MA. The third heuristic, a tour splitting method, plays also a key-

role in chromosome evaluation.  

A memetic algorithm for the NEARP is developed. It manipulates chromosomes 

corresponding to sequences of tasks, without trip delimiters, allowing adaptations of simple 

crossovers like OX or LOX. The tour splitting technique designed for the third heuristic is 

used to split the chromosomes into trips 

Mendoza et al. (2010) presents a Multi-Compartment Vehicle Routing Problem (MC-VRP) 

which consists of designing transportation routes to satisfy the demands of a set of 

consumers for several products that because of incompatibility constraints must be loaded on 

independent vehicle compartments. Memetic algorithms are evolutionary algorithms that use 

local search procedures to intensify the genetic search. The proposed MA shares some of the 

elements that have been proven effective on the distance-constrained VRP. Starting from an 

initial population 𝒫(0) comprised of P individuals, the algorithm runs for T generations. 

At every generation t, crossover, mutation, and local search operators are applied with 

probabilities 𝑝𝑐 , 𝑝𝑚  and 𝑝𝑙𝑠 , respectively. The offspring produced by the operators join the 

current population to form an expanded population ℰ(𝑡), from which the best P individuals 

are selected to become part of the next generation, namely 𝒫(𝑡 + 1). Clones, which are 

individuals sharing the same value of the objective function, are completely forbidden in the 

population to foster diversification in the objective space. 

2.4 Problem Overview 

There exist ample research and methods to solve the VRP. Solutions can be summarized on 

two levels: the methodology to follow, e.g. meta-heuristic methods and the strategy 

implemented e.g. local knowledge of the problem. Almost all research focus on solving a 

specific case of the VRP in a known environment. The problem in this thesis is unique and 

existing research provides a toolset to work out an answer for the problem. 

It is argued that in order to tackle a complex problem domain, the first thing to do is to 

construct a well-structured problem formulation, i.e. a "representation". This requires 

identifying a problem by specifying the undesirable and problematic state currently occupied, 
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the resources currently available to move away from that problematic state, particularly the 

available courses of actions, the combinatorial constraints on using them, etc., and the criteria 

that need to be satisfied to say that a problem no longer exists or is solved.  

Problem formulation is the creative and probably the more important step towards 

overcoming a problematic state than problem-solving. A good definition of what the problem 

is, is believed to be more than half of the way towards its eventual elimination. (Krippendorff) 

The remainder of this chapter identifies and formulates the problem domain as well as the 

resources used in solving the problem. It first presents the basic interpretation of the Vehicle 

Routing Problem, followed by an overview of some of the variants. The final sections of the 

chapter are devoted to methods and scenarios that influence the ease of solving the complex 

problem. The chapter conclude with the actual problem aimed to be solved. 

2.5 Formulation:  Vehicle Routing Problem  

Logistics can be defined as the provision of goods and services from a supply point to various 

demand points. The transportation of raw materials from the suppliers to the factory, from 

the factory to the depots, and the distribution to customers can be described as a complete 

logistic system. With an effective logistic system, cost can be reduced due to fewer penalties 

for late delivery, lowered trucking cost, shorter distances and effective use of capacity of the 

vehicle. One of the most significant measures of a logistic system is effective vehicle routing. 

Optimizing of routes is the basis of vehicle routing problems. 

The VRP originated from the Travelling Salesmen Problem (TSP). According to Winston 

(Winston, 1994) the TSP can be define as a problem where a salesperson must visit each of 

ten cities once before returning to his home. The cities need to be selected to minimize the 

total distance the salesmen travels. 

According to Barbarosoglu and Ozgur (1999) the VRP can be described as the problem of 

designing optimal delivery or collection of routes from one or several depots to a number of 

customers subject to side constraints. Thus, the basic VRP can be described as vehicles that 

depart from the depot, visit one or more customers and return to the depot. 
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The VRP has a finite number of feasible solutions. The solution space increase exponentially 

as the number of customers increases. Thus the VRP is known as a non-polynomial hard 

(NP-hard) problem. 

The basic VRP is today no more than a classical problem. The advance of science has 

prompted the industry to ask for more real life solutions. The basic VRP is given by a set of 

identical vehicles, a depot, a set of customers to be visited and a directed network connecting 

the depot and customers. Let us assume there are K vehicles, V = {0,1,2,3,…K-1}, and N+1 

customers, C = {0,1,2,3,…N}. We denote the depot as customer 0, or C0. Each arc in the 

network corresponds to a connection between two nodes. A route is defined as starting from 

the depot, going through a number of customers and ending at the depot. A cost cij and a 

travel time tij are associated with each arc of the network. 

The problem is to find tours for the vehicles in such a way that: 

 The objective function is minimized. The objective function can be the total travel 

distance, the number of vehicles used, or any cost related function. 

Several constraints must be applied on the basic VRP: 

 Only one vehicle handles the deliveries for a given customer. We will not split 

deliveries across multiple vehicles. A customer can only be visited once a day. 

 The number of vehicles is equal to the number of routes, meaning that a vehicle can 

only complete one route per day. 

 The demand of the customers on every route is known with certainty. The demand of 

the customers in total on one route cannot exceed the capacity of the specific vehicle 

that will cover that route. 

 The travelling distance between customer i and j are the same as the travel distance 

between j and i. 

 The vehicles have the same capacity with the same fixed and variable cost, thus a 

homogeneous fleet is assumed. 

 The vehicles must complete their route within a maximum length of time, usually the 

time the depot is open. 
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 The vehicle returns to the depot at the end of the route. 

The VRP can be formulated as follows: 

 A set of identical vehicles V  

 A special node called the depot, 

 A set of customers C to be visited 

 A directed network connecting the depot and the customers 

Let us assume there are  

 K vehicles, V = {0, 1, 2,…,  K – 1}, and N + 1 customers, C = {0, 1, 2, … , N}.   

For simplicity, we denote the depot as customer 0.  

 Each arc in the network corresponds to a connection between two nodes.    

 A route is defined as starting from the depot, going to any number of customers and 

ending at the depot.  

 The number of routes in the traffic network is equal to the number of vehicles used, 

K. Therefore, exactly K directed arcs leave the depot and K arcs return to the depot.  

 A cost cij and a travel time tij are associated with each arc of the network.  

 Every customer in the network must be visited only once by one of the vehicles.  

 Since each vehicle has a limited capacity qk, and each customer has a varying demand 

mi, qk must be greater than or equal to the summation of all demands on the route 

travelled by vehicle k.  

 Vehicles are also supposed to complete their individual routes within a total route 

time, which is essentially the time window of the depot. 

There are two types of decision variables in a VRP.  

 The decision variable 
, ( , 0,1,2.. ; 0,1,2.. ; )ijkx i j N k K i j    is 1 if vehicle k travels 

from node i to node j, and 0 otherwise.  
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 The decision variable ti denotes the time a vehicle starts service at node i. The 

triangular inequality, i.e. 
ij ih hjc c c   and , ,ij ih hjt t t h i j N     need not apply.   

The objective is to design a set of cost-minimizing routes that service all the customers while 

all the constraints stated above are satisfied. The model can be mathematically stated as 

follows: 

Notation: 

K = total number of vehicles. N = total number of customers. 

ci    = customer i, where i =  1, 2, … ,N. c0 = the depot. 

cij  = cost incurred on arc from node i to j. tij  = travel time between node i and j. 

mi  = demand at node i. qk  = capacity of vehicle k. 

ei = open time at node i. li = close time at node i 

ti  = arrival time at node i. fi  = service time at node i. 

rk  = maximum route time allowed for vehicle k. pi  = polar coordinate angle of ci. 

Rk  = vehicle route k. Ok  = total overload for vehicle k. 

Tk  = total tardiness for vehicle k. Dk  = total travel distance for vehicle k. 

Wk  = total travel time for vehicle k. C(Rk) = cost of the route Rk based on cost 

function. 

C(S) = sum total cost of individual routes C(Rk).  

Table 1: Notation 
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Principle decision variable: {0,1}ijkx  :  0 if there is no arc between node i and j and 1 

otherwise. 
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 The objective function of the problem is given in (1).   

 Constraint (2) specifies that there are exactly K routes going out of the depot.  

 The third constraint (3) makes sure that each route leaves the depot and return to the 

depot  

 Constraints (4) and (5) make sure exactly one vehicle goes to and leaves a customer. 
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 Constraint (6) ensures that there are no sub-tours in the solution.  A sub-tour is a 

route that does not pass through the depot.   

 (7) is the capacity constraint.  

 Maximum travel time for each vehicle is assured in Eq. (8).  

This paragraph describes the elements of the basic VRP. These basic principles will be 

altered to fit into the generic framework designed. The next paragraph investigates some 

variants on the VRP and the impact on the basic VRP. 

2.6 VRP variants 

The model described in this section is a standard mathematical model for a basic VRP 

problem.  When additional constraints are needed, they must be added to the existing 

constraints in the model or some of the existing constraints must be relaxed.   

The industry requires additional constraints on the basic VRP. Additional constraints that can 

be included consist of the following: 

 The limitation of the length, duration or cost of each individual tour. This restricts a 

route for running too long, which can result in overtime costs, insufficient fuel, etc. 

 The addition of a variable service time for each customer. The volume of the stock to 

be delivered can have an influence on the service time at a customer. The delivery 

time will have an influence on the total route time and must be taken into account. 

 The addition of time windows during which the customers have to be visited. The 

problem we will discuss is the use of multiple time windows, i.e. the customer can 

specify more than one time period available for delivery. 

 The vehicle can return to the depot and have enough time for another route before 

the maximum allowed time is up. This will allow double scheduling, which will result 

in a cost saving, as the second route utilize the same vehicle and reduce the number of 

vehicles required to service all the customers. 

 The travel time can vary between customers depending on the time of day. This 

implies peak and off-peak travel times. 
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 The fleet is not necessarily homogeneous, i.e. vehicles can differ in capacity and cost. 

This might result in a good solution to use the vehicles with a large capacity to pick up 

customers that is far away from the depot.  

 A vehicle can have a specified available time. This allows for certain vehicles to be out 

in the field longer to cater for long routes. The implementation will add time window 

constraints to a vehicle. 

Implementation of these variants requires a redefinition of the mathematical model for our 

problem, for example if we allow double scheduling: 

 Constraint (2) is now invalid and will be replace by  

 

 
1

0; 0, 1
N

ijk k

j

x p for i k K


   
 (2) 

where pk is the maximum number of routes allowed for vehicle k. 

The number of routes going out of the depot for a specific vehicle is constrained to a 

maximum of pk , which implies that a vehicle can now have multiple routes done in a day. 

 If we impose time windows at a stop 

 t0 = 0 (9) 

 
   ( ) , 1, ; ; 0, 1i ijk ij i i jt x t f w t i j N i j k K       

 (10) 

 i i ie t l 
 (11) 

 If we redefine the service time at each stop as 

 fi = Fixed Time + ( Variable Time * mi ) 

 If we redefine the meaning of travel time 

 tij = Travel Time at (ti + fi + wi)  

which calculates the travel time from i to j depending on the departure time at i. 
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 We just make a note that qk  is not necessarily the same for each vehicle. 

 The monetary cost of a route can be calculated as follows 
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where the first term is the fixed cost of the vehicle divided into the number of routes 

and the second term is the  distance of the route multiplied by the running cost of the 

vehicle. 

2.6.1 Multiple Depots 

Solving the Vehicle Routing Problem is a complex task. Allowing multiple depots into the 

problem formulation increase the number of solutions in the problem space exponentially. 

For this reason, VRP problems are generally viewed form a single depot problem. 

The multiple depot concept is important to consider in the context of this study. It provides 

information on the construction of the problem from the raw input data. The method of 

handling multiple depots contributes to the approach to handle different groups of 

customers. The simplistic methodology used, as well as the variables considered, assists with 

designing the complete solution in this problem environment. 

The study follows a divide and conquers approach. The generally accepted method for 

solving the multiple depots problem utilise the same principle. The first step towards solving 

the multiple depots VRP is to break it up in solvable problem spaces. Stops are allocated to 

depots using the following procedure: 

 Create a formula that results in a discrete value per stop per depot, e.g. the distance or 

cost between the stop and the depot. 

 Apply this formula on a stop for each depot. 

 Get the minimum result and allocate the stop to the depot associated. 

This study classifies this allocation method as inefficient if the discrete function does not 

contain other solution parameters such as neighbouring stops and vehicles. The solution is 

not dependent on discrete stop information, but is the result of stops interacting with others 
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stops and vehicles, etc. The formula should result in a discrete value for a stop, but should 

not only depend on the explicit relations to a depot.  

The allocation of a stop to a depot can influence the overall optimization, and careful 

consideration should be applied in the selection of the formula. The figure below depicts a 

simple scenario where the allocation of stops has a major impact on the solution. 

1

B

A

 
 

Figure 2: Stop allocation to depot 

In the figure above we can see that: 

 Stop number 1 is closer to depot B than depot A, and thus allocated to depot B with 

the simple distance based allocation formula. 

 All the neighbouring stops will be serviced by depot A, because of their distance to A.  

 The relation of stop 1 with other stops allocated to depot B is much weaker than its 

relation with the stops from A. 

This solution will result in stop 1 being serviced by a vehicle that has to travel an unnecessary 

additional distance, just to service stop 1. The problem is that the optimization will not be 

able to do something about it, and the stop might even end as an orphan. The influence of 

neighbouring stops should be considered. 
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To comply with these requirements, we implement a clustering algorithm to assist in the 

allocation logic. This leads to a new problem; which clustering algorithm to use. There are 

many clustering algorithms because the notion of a „cluster‟ cannot be precisely defined. What 

constitutes a cluster, or a good clustering, has biases because of the application. The domain 

knowledge is what constitutes the belief that there are subgroups among a bulk of data about 

objects. Such beliefs mould the structures used to represent those groups. 

Clustering generates concepts, provides generalization, data summarization and is an 

inductive process. Given a data set, any clustering (produced by an algorithm or a human) is a 

hypothesis to suggest (or explain) groupings in the data. 

What discriminates one hypothesis over another given the same data set? This criterion is 

what we refer to as the mathematical formulation of the inductive principle. It has also 

received the name clustering criterion. The logic of applying clustering to the multiple depot 

problem, instigates the advantage of using clustering on other levels of the problem. 

We have formulated a sub problem in our problem space, which will assist in solving the 

complex problem. The next chapter will discuss the implementation of the clustering 

algorithm for use of classification of stops to improve knowledge of the problem 

environment. 

2.7 Problem Statement 

This study will create a solution for the VRP and some variants with the help of evolutionary 

algorithms implemented in parallel and build on an adaptive object model approach.  

The Ant Colony Optimization technique will be the base algorithm used in this study. The 

aim is to solve „any‟ VRP without utilising previous knowledge of the data environment, 

constraints and size.  

The approach utilise adaptive objects to allow flexibility of implementing problem specific 

constraints, clustering to assist in quicker analysis of data environment and evolutionary 

algorithms to adapt during run-time. 
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2.8 Adaptive Objects 

A number of forces shape the way in which software evolves. One is a desire to make 

programs as reusable as possible. Another is to push configuration decisions out into the data. 

Yet another is to push such decisions out onto the users. Still another is to defer such these 

decisions until runtime. 

Achieving such an implementation is an evolutionary process. First, the problem is solved for 

a specific instance of a problem.  Later, we may broaden the utility by adding options and 

parameters.  After a while, the domain or business objects come to constitute a program of 

sorts, which can be dynamically constructed and manipulated by users themselves. During 

this evolutionary process, descriptions of the data, such as maps of the layouts of data objects, 

and references to methods or code, are needed to permit these heretofore anonymous 

capabilities to be accessible during runtime. 

Our problem or goal is to design an application that has adaptability. As an object-oriented 

application evolves, the elements of an object-oriented framework emerge. Where raw, 

undifferentiated, white-box code once was dynamically pluggable black-box components 

begin to appear. Internal structure, which was once haphazard becomes better differentiated, 

and more refined. As such a framework evolves, these elements themselves, together with the 

protocols and interfaces they expose, come to constitute a domain specific language for the 

framework's target domain. 

The following aspects should be considered: 

 Efficiency: Highly dynamic systems can be inimical to efficiency. However, efficiency 

is often a false idol. For instance, the cost of referencing an object in a remote 

database may be several orders of magnitude more expensive than accessing a local 

object, and such overhead may overwhelm secondary concerns, such as the cost of 

assessors vs. direct variable references. 

 Complexity: Complex data structures and code are hard to debug and comprehend. 

Alas, many programmers are better at creating complexity than simplicity.  

 Resources: Dynamic strategies can be costly in terms of space, processing time, 

secondary storage, etc. 
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 Flexibility: A program should be versatile, and usable in a variety of contexts. This, in 

turn enhances: 

 Reusability: A versatile, flexible application, or, for that matter, a code-level artefact, 

should be as reusable as possible. The reuse of such code avoids duplicated effort, 

eases the learning and comprehension burden of new programmers, and makes 

maintenance easier, since multiple, redundant copies of essentially the same code need 

not be maintained. 

 Adaptability: It is essential that an artefact be flexible enough so as to confront and 

address changing requirements. We distinguish several "shades" of adaptability. 

 Maintainability: It is important that an artefact be maintainable enough to as to 

confront and address changing requirements. Code that can't be worked on will lapse 

into stagnation. 

 Tailorability: One size does not fit all. Often, an artefact will not fit the needs of a 

particular user "off the rack", but can be tailored to do so when certain "alterations" 

can be made. 

 Customizability: Just an artefact can be tailored to a particular user or users; it can be 

customized to adapt it better for a particular task. This may seem at first to be a lot 

like tailorability, but we find that distinguishing between forces for change than 

emanate from individual users and those that arise from taking on different tasks 

useful. 

The problem will be solved on the adaptive object model principle. The advantage of this 

model should be clear, without compromising the efficiency of the algorithm too much. The 

framework will be clearly defined for the end user to understand. We approach the 

implementation of this model in the following areas:  

 
 
 



 
49 

 

 

Figure 3: Object Layers 

2.8.1 Data source 

This layer provides access to the raw data and is the responsibility of the implementer. The 

method of access is not be part of the research and does not influence the solution. It is 

important that the data is available to load into the objects and can be accessed for any 

function. The data should also be complete regarding all entities required by the object layer 

and the cost layer.  

The generic component used in this study, the ESI (Expandable Software Infrastructure) 

utilizes metadata to map the physical data to the data source, which ease the implementation 

on top of different databases.  

2.8.2 Object layer 

The object layer represents the source data in a managed and structured way, i.e. the data can 

be accesses as an object with properties and methods. All the objects are stored in the 

problem space to be available for usage through the solution. The object layer implements the 

business entities of the problem instance. A typical problem space in the VRPTW 

representative problem consist of the following objects and properties, depending on the 

constraints applied on the problem type: 

 Stop – Volume, location, time windows. 
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 Depot – Time windows, location 

 Vehicle – capacity 

The object layer can differ from solution to solution and we therefore require a more 

dependable interface to the algorithm. 

2.8.3 Base classes 

The input data is loaded into objects and used as the problem space consists of static data 

with all properties available that is used to solve the problem. The optimization algorithm 

requires a known interface to work with. From the representative problem formulation, we 

define the base objects that are required as a list of stops, a depot, a list of vehicles 

(resources), a list of routes and a solution object. Detail description and explanation follows 

later in the thesis. 

Vehicles do not form part of the original description according to Barbarosoglu and Ozgur 

(1999), but was identified as a critical enough side constraint input to be part of the base 

object model. This study re-evaluates the classification of a vehicle as a base class and 

proposes the classification as an object required to feed a constraint or cost function. The 

concept formulated stipulates the notion that a route cannot exist without a resource 

available. This study will utilise a vehicle as the resource, but in an abstraction, a resource can 

be defined as an entity that must exist before a route can exist.  

The problem is to define an interface for the objects that is complete and sufficient enough to 

be used in the algorithm without limiting the implementer to a fix structure. Any module 

using this VRP solution that implements the defined interfaces can provide data to the 

resulting algorithm. 

2.8.4 Cost functions 

This layer represents the user defined objective cost functions as well as constraint functions. 

The implementation view a constraint function as checking if a solution is valid, while the 

cost function is the driver toward a good solution. Combined with a meta-heuristic approach, 

the cost function is used by the heuristic to determine the quality of the solution and the 

constraint function to determine the validity of the solution. In the adaptive object model 
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approach, these two types of functions are the main drivers that support the meta guidance. It 

is important to remember that these functions are not known beforehand. 

2.8.5 Optimization algorithm 

The objective function of the problem is to minimize cost while adhering to all constraints. 

An adaptive object implementation allows for a higher level of abstraction of these functions, 

i.e. the „user‟ of the algorithm has the ability to provide the cost and constraint functions.  The 

design of the algorithm makes use of these external functions to guide the solution to a 

minimum.  

The optimization algorithm has the base classes and cost functions as input. The base class 

structures are well defined, but the cost function behaviours are unknown for the purpose of 

this study. The goal is to design an algorithm that can solve the problem with this limited 

knowledge. The algorithm must build up a knowledge base while executing. 

This paper will not discuss the multi-objective cost function, but the resulting solution should 

be easy to adapt to incorporate such cost drivers. All the underlying layers result in known 

structures as input for the algorithm. 

2.9 Algorithm 

In mathematics, computing, linguistics and related subjects, an algorithm is a sequence of 

finite instructions, often used for calculation and data processing. It is formally a type of 

effective method in which a list of well-defined instructions for completing a task will, when 

given an initial state, proceed through a well-defined series of successive states, eventually 

terminating in an end-state. The transition from one state to the next is not necessarily 

deterministic; some algorithms, known as probabilistic algorithms, incorporate randomness. 

A randomized algorithm or probabilistic algorithm is an algorithm which employs a degree of 

randomness as part of its logic. In common practice, this means that the machine 

implementing the algorithm has access to a pseudorandom number generator. The algorithm 

typically uses the random bits as an auxiliary input to guide its behaviour, in the hope of 

achieving good performance in the "average case". Formally, the algorithm's performance will 

be a random variable determined by the random bits, with (hopefully) good expected value; 
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this expected value is called the expected running time. The "worst case" is typically so 

unlikely to occur that it can be ignored. 

In computer science, a heuristic algorithm or simply a heuristic is an algorithm that ignores 

whether the solution to the problem can be proven to be correct, but which usually produces 

a good solution or solves a simpler problem that contains or intersects with the solution of 

the more complex problem. Heuristics are typically used when there is no known way to find 

an optimal solution, or when it is desirable to give up finding the optimal solution for an 

improvement in run time. 

Two fundamental goals in computer science are finding algorithms with provably good run 

times and with provably good or optimal solution quality. A heuristic is an algorithm that 

abandons one or both of these goals; for example, it usually finds pretty good solutions, but 

there is no proof the solutions could not get arbitrarily bad; or it usually runs reasonably 

quickly, but there is no argument that this will always be the case. 

Many problems in AI can be solved in theory by intelligently searching through many possible 

solutions:(Artificial Intelligence, 2008) Reasoning can be reduced to performing a search. For 

example, logical proof can be viewed as searching for a path that leads from premises to 

conclusions, where each step is the application of an inference rule (Albus, 2002). Planning 

algorithms search through trees of goals and sub goals, attempting to find a path to a target 

goal, a process called means-ends analysis. Robotics algorithms for moving limbs and 

grasping objects use local searches in configuration space. Many learning algorithms use 

search algorithms based on optimization. 

Simple exhaustive searches are rarely sufficient for most real world problems: the search 

space (the number of places to search) quickly grows to astronomical numbers. The result is a 

search that is too slow or never completes. The solution, for many problems, is to use 

"heuristics" or "rules of thumb" that eliminate choices that are unlikely to lead to the goal 

(called "pruning the search tree"). Heuristics supply the program with a "best guess" for what 

path the solution lies on. 

A very different kind of search came to prominence in the 1990s, based on the mathematical 

theory of optimization. For many problems, it is possible to begin the search with some form 

of a guess and then refine the guess incrementally until no more refinements can be made. 
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These algorithms can be visualized as blind hill climbing: we begin the search at a random 

point on the landscape, and then, by jumps or steps, we keep moving our guess uphill, until 

we reach the top. Other optimization algorithms are simulated annealing, beam search and 

random optimization 

Evolutionary computation uses a form of optimization search. For example, they may begin 

with a population of organisms (the guesses) and then allow them to mutate and recombine, 

selecting only the fittest to survive each generation (refining the guesses). Forms of 

evolutionary computation include swarm intelligence algorithms (such as ant colony or 

particle swarm optimization) and evolutionary algorithms (such as genetic algorithms and 

genetic programming).  

This thesis will focus on ant colony optimization techniques. The ant colony optimization 

algorithm (ACO) is a probabilistic technique for solving computational problems which can 

be reduced to finding good paths through graphs and is a member of swarm intelligence 

methods, and it constitutes some meta-heuristic optimizations. 

2.9.1 Initial Solution 

The general two-phased approach in solving a problem through heuristic methods consists of 

an initial solution, followed by an improvement stage. High quality initial heuristics often 

allow local searches and meta-heuristics to achieve better solutions more quickly. The applied 

solution uses a similar approach and this paragraph formulates the initial solution part of the 

problem. 

Current initial solutions focus on providing quality through minimizing the cost function. 

Marius Solomon was one of the first researchers to consider the VRPTW.  He designed and 

analyzed a number of algorithms to find initial feasible solutions for the VRPTW (Solomon, 

1987).  His sequential insertion heuristic (SIH) gave very good results in most environments, 

and most current heuristic methods make use of this heuristic (or a variation thereof) to 

effectively find a feasible starting solution. 

There exist a number of route construction heuristics. Joubert and Claasen (2006) discuss 

some of the most prominent improvements on the SIH. All these improvements is related to 

a specific aspect of the VRP type solved for that instance of the problem, for example, using 
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the Time Window Compatibility (TWC) depends on the problem to include time windows as 

a constraint. This research interprets the improvement of the initial solution algorithm as the 

calculated move of a constraint to this part of the algorithm. Implementing the TWC 

improvement on the initial solution is born out of the time window constraint.  

This research implements an initial solution that utilizes the defined constraints as 

improvement on the initial solution. The aim is to reduce the number of unnecessary 

calculations while generating a high quality solution. 

The purpose of the initial solution is to provide the improvement stage with a start. We 

consider the definition of a high quality solution as a solution that is aligned with the 

improvement stage. This is identified as having a solution that allows quicker convergence. 

We argue that using the knowledge gained during the initial stage can benefit the 

improvement stage.  

The approach is now to define the outcome of an initial solution as the solution, as well as 

additional information gained. This interface to the improvement stage is flexible to include 

scenarios where the user just needs the improvement stage, for example, when a legacy 

system contains existing routes. The legacy solution can be implemented as the initial solution 

without any additional information. 

2.9.2 Meta-Heuristics 

The implementation of an algorithm that can efficiently and in reasonable time solve the 

aforementioned problem has not been successfully implemented before. To embark on a 

journey to find a sufficient algorithm requires investigation of existing problems and solutions 

as well as inventing new methods. Several papers have been presented that solve the VRP 

with additional side constraints. They mainly focus on solving the basic VRP with one or two 

additional side constraints. Some of the most popular problems include the VRP with time 

windows and the VRP with pickup and delivery.  

Heuristic methods play an important role in solving problems with this complexity. Most 

solutions include a heuristic method, or a hybrid of heuristic methods at the heart of the 

solution. In the next section, we will discuss some of the more popular heuristic methods. 
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Meta-heuristics, or global optimization heuristics, have a common feature: they guide a 

subordinate heuristic in accordance with a concept derived from artificial intelligence, biology, 

nature or physics to improve their performance.  

Meta-heuristics succeed in leaving the local optimum by temporarily accepting exchanges that 

decrease the objective function value. Meta-heuristics use information of the problem 

environment and the nature of the objective function to direct the search process to regions 

that promise better solutions. It is possible that the meta-heuristic will return to the local 

optimum without finding a better solution. This is called cycling and can be avoided by 

adjusting the heuristic‟s settings to allow more degrading moves for longer. 

The concept of a heuristic being trapped at a local optimum can be demonstrated in Figure 4. 

If a heuristic finds a solution S, with objective function F(S), where S is close to point C, then 

it will only improve until it gets to local optimum C. No further improvements in the 

objective function will be achievable, because all moves will reduce the objective function. 

However, if a meta-heuristic finds a solution close to point B, degrading moves will be 

allowed that may direct the search to the global optimum, point A. 

 

Figure 4: Global and Local Optima 
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Meta-heuristics will be successful on a given optimization problem if it can provide a balance 

between the exploitation of the accumulated search experience and the exploration of the 

search space to identify regions with high quality solutions in a problem specific, near optimal 

way. The various meta-heuristics are classified according to the following criteria: 

 Trajectory methods vs. discontinuous methods: Trajectory methods like 

Simulated Annealing (SA) and Tabu Search (TS) follow one single search trajectory 

corresponding to a closed walk on the neighbourhood graph. Discontinuous methods 

allows larger jump in the neighbourhood graph. 

 Populated-based vs. single-point search: In single-point search only one single 

solution is manipulated at each iteration of the algorithm. TS and SA are single-point 

search methods. Genetic and ant colony algorithms are population-based. 

 Memory usage vs. memoryless methods: Meta-heuristics with memory are the TS, 

GA and ant systems. According to Taillard et al.(2001) these meta-heuristics with 

memory can be viewed as adaptive memory programming (AMP) heuristics. The term 

“memory” was used explicitly for TS, but other meta-heuristics use mechanisms that 

can be considered as memories. There are meta-heuristics that cannot be entered into 

the AMP methods, such as SA. However they may be included in the improvement 

procedure of AMP. 

 One vs. various neighbourhood structures: SA and TS algorithms are based on 

one single neighbourhood structure. Other algorithms such as Iterated Local Search 

typically use at least two different neighbourhood structures. 

 Dynamic vs. static objective function: Some algorithms modify the evaluation of 

the single search states during the run of the algorithm. In the use of a dynamic 

objective function penalties for the inclusion of certain solution attributes that modify 

the objective function are introduced. TS may be interpreted as using dynamic 

objective function, as some point in the search is forbidden, corresponding to 

infinitely high objective function values. The other algorithms use static objective 

functions. 

Evaluation of heuristic methods consists of comparing criteria such as running time, quality 

of solution, ease of implementation, flexibility and robustness. For the purpose of our 

algorithm, flexibility is an important consideration. The algorithm should be able to handle 
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changes in the data patterns, side constraints and objective function, as each client has his 

own specific requirement. We are not working on a predetermined set of data with a specified 

objective function. Working in such an environment makes it possible to find a method that 

is effective for that specific environment by making use of the knowledge about the problem.  

Because the heuristic methods are non deterministic, i.e. we cannot predict the result even if 

we apply the same algorithm on the same data with the same number of iterations, the 

algorithm should not perform poorly on any instance, as well as being able to produce a good 

solution each time it is applied to the same instance. 

We will also try to validate the applicability of the method on our problem by discussing the 

design of the method is well as what we see as its advantages and disadvantages. With this 

approach we will filter out certain methods. Comparisons discussed in this paper are from 

existing papers, which mainly present the best results found for the method. Comparison is 

also made difficult because solutions were not all implemented on the same computer 

(running time), and have not all use the same number of iterations. Existing methods is also 

not designed for our specific problem and thus we cannot really compare methods outright to 

decide on a method to implement for our problem. 

Using only the best results of a non-deterministic heuristic, as is often done in the literature, 

may create a false picture of its real performance. We considered average results based on 

multiple executions on each problem an important basis for the comparison of non-

deterministic methods. Furthermore, it would also be important to report the worst-case 

performance. 

Moreover, an algorithm should be able to produce good solutions every time it is applied to a 

given instance. This is to be highlighted since any heuristics are non-deterministic, and 

contain some random components such as randomly chosen parameter values. The output of 

separate executions of these non-deterministic methods on the same problem is in practice 

never the same. This makes it difficult to analyze and compare results. 

The meta-heuristic method has a guidance procedure of some sort to help it traversing 

through the solution space. A meta-heuristic is the implementation of a heuristic method with 

a guidance procedure. 
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2.9.3 Tabu Search 

Tabu Search was proposed by Glover (1986) and has quickly become one of the best and 

most widespread local search methods for combinatorial optimization. The method performs 

an exploration of the solution space by moving from a solution 𝑥𝑡  identified at iteration t to 

the best solution 𝑥𝑡+1 in a subset of the neighbourhood 𝑁(𝑥𝑡) of 𝑥𝑡 . Since 𝑥𝑡+1 does not 

necessarily improve upon 𝑥𝑡 , a tabu mechanism is put in place to prevent the process from 

cycling over a sequence of solutions.  

A naïve way to prevent cycles is to forbid the process from going back to previously 

encountered solutions, but doing so would typically require excessive bookkeeping. Instead, 

some attributes of past solutions are registered and any solution possessing these attributes 

may not be considered for µ iterations. This mechanism is often referred to as short term 

memory. Other features such as diversification and intensification are often implemented. 

The purpose of diversification is to ensure that the search process will not be restricted to a 

limited portion of the solution space. It keeps track of past solutions and penalizes frequently 

performed moves. This is often called long term memory. Intensification consists of 

performing an accentuated search around the best known solutions.  

There are two main ways to define neighbourhood structures in Tabu Search algorithms for 

the VRP. The first, termed λ-interchanges by Osman (Osman, 1993) consist of exchanging up 

to λ customers between two routes. The second, called ejection chains typically acts on more 

than two routes at the same time. 

To prevent cycling, it is common to prohibit reverse moves for µ iterations. Thus a customer 

moved from route r to route s at iteration t may be prohibited from being reinserted in route r 

until iteration t + µ, or it may not leave route s until iteration t + µ. Taillard (1999) suggests 

randomly selecting µ in an interval [µ; µ], according to a discrete uniform distribution, but 

some algorithms use a fixed value of µ. It is also common to use an aspiration criterion to 

revoke the tabu status of a move if this causes no risk of cycling, for example if this yields a 

better overall incumbent feasible solution, or a better incumbent among the set of solutions 

possessing a certain attribute.   
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To diversify the search, most Tabu Search implementations penalize frequently performed 

moves. This is done by adding to the routing cost 𝑐(𝑥𝑡+1) of 𝑥𝑡+1 a penalty term equal to the 

product of three factors:  

1. a factor measuring the past frequency of the move;  

2. a factor measuring instance size (such as  𝑛);  

3. a user-controlled scaling factor.  

In practice, implementing such a mechanism is both effective and computationally 

inexpensive. 

Intensification consists of accentuating the search in promising regions. Periodic route 

improvements by means of TSP algorithms may be classified as intensification techniques. 

Another way of performing intensification is to conduct a search using a wider 

neighbourhood structure around some of the best known solutions.  

An adaptive memory is a population of good solutions encountered during the search 

procedure. Similar to what is done in genetic algorithms; the idea is to combine solution 

elements from the population to construct new solutions. If their value is less than those of 

some solutions in the population, they are retained and the worst solutions are discarded from 

the population.  

In the VRP context, a new solution is initialized from a number of non-overlapping routes 

extracted from good solutions. Typically these routes do not cover all vertices for otherwise 

there would be overlaps. The search is then initiated from the selected routes and the un-

routed vertices. 

2.9.4 Ant Algorithms. 

Ants appeared on earth some 100 million years ago, and have a current total population 

estimated at 1016 individuals. Most of these ants are social insects, living in colonies of 30 to 

millions of individuals. The complex behaviours that emerge from colonies of ants have 

intrigued humans, and there have been many studies of ant colonies aimed at a better 

understanding of these collective behaviours. Collective ant behaviours that have been 
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studied include the foraging behaviour, division of labour cemetery organization and brood 

care, and construction of nests. (Engelbrecht, 2007) 

The South African, Eugene Marais (1871-1936) was one of the first to study termite colonies. 

In 1910, Marais abandoned his law practice and retreated to the remote Waterberge – the 

mountain area north-west of Pretoria. Here he studied two creatures - termites and baboons 

which, on the face of it, had nothing in common. Both fascinated him, as did all wild 

creatures. (Marais, n.d.) 

He published his conclusions about termites as a series of speculative articles, written entirely 

in Afrikaans and appearing only in local newspapers, as The Soul of the White Ant. While 

observing the natural behaviour of these creatures, he noticed that firstly, the whole 

termitarium had to be considered as a single organism whose organs work like those of a 

human being. The queen was the brain and the womb; the workers were mouthparts and 

tissue builders; the soldiers‟ white blood cells and the humus gardens were the stomach. And 

secondly that the actions within the termitarium were completely instinctive.  

Marais began writing Soul of the Ape in 1916, but never finished it. It was published 

posthumously years later. His theory was that, unlike termites, baboons – and by extension all 

primates – had the ability to memorize the relationship between cause and effect. They could 

therefore vary their behaviour voluntarily. While termites were instinctive, the mind of 

baboons was based on “causal memory”.  

The reason for this difference, according to Marais, was natural selection. According to him, 

natural selection was not, like Darwin had insisted, the survival of the fittest, but rather the 

line of least resistance. Those species best able to adapt to their specific environment 

survived, while those not able to, would become extinct. Natural selection, therefore, had the 

tendency to both localize and specialize species.  

These conclusions to which he came were new and radical and might well have had an 

influence in Europe. But Marais was half a hemisphere away, half a century too soon and 

writing in a language no one could understand. The Soul of the White Ant was brought under 

the attention of the world only by being seemingly plagiarized by a Belgian Nobel prize 

winner, Maurice Maeterlinck. The Soul of the Ape was incomplete and originally only 

published in South Africa. 
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While most research effort concentrated on developing algorithmic models of foraging 

behaviour, models have been developed for other behaviours, including division of labour, 

cooperative support, self-assembly, cemetery organization and even traffic flow. These 

complex behaviours emerge from the collective behaviour of much unsophisticated 

individuals.  

In the context of collective behaviour, social insects are basically stimulus-response agents. 

Based on information perceived from the local environment, an individual performs a simple, 

basic action. These simple actions appear to have a large random component. Despite this 

simplicity in individual behaviour, social insects form a highly structured social organism.  

One of the most surprising behavioural patterns exhibited by ants is the ability of certain ant 

species to find the shortest path (Dorigo and Stutzle, 2004). Biologists have shown 

experimentally that this is possible by exploiting communication based only on pheromones. 

It is these behavioural patterns that inspire the development of optimization algorithms based 

on the ant behaviour. The first attempts in this direction appeared in the early „90s and can be 

considered as rather “toy” demonstrations. Since then these and similar ideas have attracted 

more research which let to Ant Colony Optimization (ACO) algorithms. 

How do ants find the shortest path between their nest and food source, without any visible, 

central, active coordination mechanisms? Studies of the foraging behaviour of several species 

of real ants revealed an initial random or chaotic activity pattern in the search for food. As 

soon as a food source is located, activity patterns become more organized with more and 

more ants following the same path to the food source. “Auto-magically”, soon all ants follow 

the same shortest path.  

This emergent behaviour is a result of a recruitment mechanism whereby ants that have 

located a food source influence other ants towards the food source. The recruitment 

mechanism differs for different species, and can either be in the form of direct contact, or 

indirect “communication”. Most ant species use the latter form of recruitment, where 

communication is via pheromone trails. When an ant locates a food source, is carries a food 

item to the nest and lays pheromone along the trail.  

Forager ants decide which path to follow based on the pheromone concentrations on the 

different paths. Paths with a lager pheromone concentration have a higher probability of 
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being selected. As more ants follow a specific trail, the desirability of that path is reinforced by 

more pheromone being deposited by the foragers, which attracts more ants to follow that 

path. The collective behaviour that results is a form of autocatalytic behaviour, where positive 

feedback about a food path causes that path to be followed by more and more ants. The 

indirect communication where ants modify their environment (by laying of pheromones) to 

influence the behaviour of other ants is referred to as stigmergy. 

Deneubourg et al (1990) studied the foraging behaviour of the Argentine ant species 

Iridomyrmex humilis in order to develop a formal model to describe its behaviour. In the double 

bridge experiment, a nest of a colony of Argentine ants is connected to a food source by two 

bridges. The ants can reach the food source and get back to the nest using any of the two 

bridges. The goal of the experiment is to observe the resulting behaviour of the colony. What 

is observed is that if the two bridges have the same length, the ants tend to converge towards 

the use of one of the two bridges.  

If the experiment is repeated a number of times, it is observed that each of the two bridges is 

used in about 50% of the cases. These results can be explained by the fact that, while moving, 

ants deposit pheromone on the ground; and whenever they must choose which path to 

follow, their choice is biased by pheromone: the higher the pheromone concentration found 

on a particular path, the higher is the probability to follow that path.  

 

Nest Food

Path A

Path B

 

Figure 5: Binary Bridge Experiment 

From this experiment, (illustrated in Figure 5), a simple formal model was developed to 

characterize the path section process. For this purpose, it is assumed that ants deposit the 

same amount of pheromone and that pheromone does not evaporate. Let 𝑛𝐴(𝑡) and  𝑛𝐵(𝑡) 
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denote the number of ants on paths A and B respectively at time step t. Pasteels, Deneubourg 

and Goss (1987) found empirically that the probability of the next ant to choose path A at 

time step t +1 is given as, 

𝑃𝐴 𝑡 + 1 =
 𝑐 + 𝑛𝐴(𝑡) 𝛼

 𝑐 + 𝑛𝐴(𝑡) 𝛼 +  𝑐 + 𝑛𝐵 𝛼
= 1 − 𝑃𝐵(𝑡 + 1) 

Equation 1: Binary Bridge Probability Equation 

Where c quantifies the degree of attraction of an unexplored branch, and α is the bias to using 

pheromone deposits in the decision process. The larger the value of α, the higher the 

probability that the next ant will follow the path with a higher pheromone concentration – 

even if that branch has only slightly more pheromone deposits. The larger the value of c, the 

more pheromone deposits is required to make the choice of path non-random. It was found 

empirically that 𝛼 ≈ 2 and 𝑐 ≈ 20 provides a best fit to the experimentally observed 

behavior. 

Using the probability defined in Equation 1, the decision rule of an ant that arrives at the 

binary bridge is expressed as follows: 𝑖𝑓 𝑈 0,1 ≤ 𝑃𝐴 𝑡 + 1  𝑡ℎ𝑒𝑛 follow path A otherwise 

follow path B. 
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Figure 6: Percentage of all passages per unit time 
as a function of time. 

The winning branch in time. Figure was not favoured by the initial fluctuations, which 

indicates that these fluctuations were not strong enough to promote exploitation of the other 

branch in the beginning (Bonabeau, Dorigo and Theraulaz, 1999) . 

Goss et al (1989) extended the binary bridge experiment, where one of the branches of the 

bridge was longer than the other, as illustrated in Figure 7. Dots in this figure indicate ants. 

Initially, paths are chosen randomly with approximately the same number of ants following 

both paths (as illustrated in Figure 7 on the left). Over time, more and more ants follow the 

shorter path as illustrated in Figure 7 on the right. Selection is biased towards the shortest 

path, since ants that follow the shortest path returns to the earlier than ants on the longer 

path. The pheromone on the shorter path is therefore reinforced sooner than that on the 

longer path.  
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Figure 7: Shortest Path Selection by Forager Ants 

Goss et al found that the probability of selecting the shorter path increases with the length 

ratio between the two paths.  

Although an ant colony exhibits complex adaptive behaviour, a single ant follows very simple 

behaviours. An ant can be seen as a stimulus-response agent (Nilsson, 1998): the ant observes 

pheromone concentrations and produces an action based on the pheromone-stimulus. An ant 

can therefore abstractly be considered as a simple computational agent. An artificial ant 

algorithmically models this simple behaviour of real ants. The logic implemented is a simple 

production system with a set of production rules as illustrated in Algorithm 1. This algorithm 

is executed at each point where the ant needs to make a decision. 

Let r ~ U(0,1); 

For each potential path A do  

Calculate 𝑃𝐴 using e.g. Equation 1; 

If 𝑟 ≤  𝑃𝐴 then 

Follow path A; 

Break; 

End  

End 

Algorithm 1: Artificial Ant Decision Process 
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While Algorithm 1 implements a simple random selection mechanism, any other probabilistic 

selection mechanism can be used, for example, roulette wheel selection. The implementation 

of an Ant solution on the VRP necessitate a more complex method as the cost function that 

drives the probability depends on more combinations. 

These experimental observations form a basic set of tasks any model needs to explore. The 

following results were obtained using a few different species of ants in the bridge experiment. 

1. When ants are exposed to two paths of unequal length the ants will choose the 

shortest path. 

2. If a shorter path is offered after the ants have chosen, they are unable to switch to the 

new path. 

3. The ants will break symmetry and chose one path, even when both paths are equal. 

4. If ants are offered two unequal food sources they will usually choose the richest 

source. 

5. If a richer food source is offered after the ants have chosen, some species can switch 

to this new source, and others are unable to. 

In line with the ideas proposed above, the most important modelling constraint in what 

follows is the principle of locality. In the models we will use, the behaviour of the individual 

organisms will be determined solely by local influences. This means that the individual 

organisms will not have any memory, non-local navigational skills, or any type of behaviour 

that involves storage of internal information. Any information flow must then be a product of 

the collective behaviour. 

2.9.5 Memetic Algorithms 

Memetic Algorithms (MA) are used as a synergy of evolutionary or any population-based 

approach with separate individual learning or local improvement procedures for problem 

search. Cultural evolution, including the evolution of knowledge, can be modelled through 

the same basic principles of variation and selection that underlie biological evolution. This 

implies a shift from genes as units of biological information to a new type of units of cultural 

information: memes. 
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A meme is a cognitive or behavioural pattern that can be transmitted from one individual to 

another one. Since the individual who transmitted the meme will continue to carry it, the 

transmission can be interpreted as a replication: a copy of the meme is made in the memory 

of another individual, making him or her into a carrier of the meme. (Dawkins, 1976) 

Memetic Algorithms denote a family of meta-heuristics that have as central theme the 

hybridization of different algorithmic approaches for a given problem. Special emphasis was 

given to the use of a population-based approach in which a set of cooperating and competing 

agents were engaged in periods of individual improvement of the solutions while they 

sporadically interact. Another main theme was to introduce problem and instance-dependent 

knowledge as a way of speeding-up the search process. MAs exploit problem-knowledge by 

incorporating pre-existing heuristics, pre-processing data reduction rules, approximation and 

fixed-parameter tractable algorithms, local search techniques, specialized recombination 

operators, truncated exact methods, etc. Also, an important factor is the use of adequate 

representations of the problem being tackled. (Moscato and Cotta, 2005)  

2.10 Parallel  

Searching the solution space for the best solution can be improved through a parallel 

implementation. The algorithm goal is to increase the diversification of the probable solutions 

as well as increase efficiency. Local searches tend to get stuck in a local minimum. With a 

parallel method, this negative aspect can be utilized. We would like the solution to reach a 

local minimum as soon as possible, in as many as possible places. 

The evaluation of different solutions provides some new challenges. The goal is to provide 

solutions that are diverse in the solution space. This requires a method to compare the 

diversity measure of solutions. If successfully applied, the method accomplishes a dual goal: 

assisting with guiding the algorithm into other areas to explore, and providing the end result 

with alternative solutions for the problem. 

The diversification comparison assist the parallel algorithm not to pursue venues 

simultaneously that will ultimately end up in the same solution. It also provides the meta 

control mechanism powerful information regarding the tightness of the problem. If there 

exist a number of solutions that qualify as different from each other, it indicates that the 

solution space contains multiple possibilities of valid solutions. If not, the problem space is 
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tight and more emphasis should be put on the local search which finds the most optimal 

solution for that particular stream. 

 Providing the user with a diverse set of solutions that can be viewed as close to each other in 

the total cost, allows the user to execute a selection based on non-tangible variables that was 

not considered in the algorithm. These variables can range from a biting dog to a possible 

new customer to join a route. It can also assist in strategic planning by highlighting master 

routes through execution of different scenarios. 

This thesis aim to design a parallel model for algorithm to solve various instances of the VRP 

on various data environment scenarios. This parallel design is an extension of the proposed 

adaptive algorithm. The focus is mainly on performance and efficiency, but discussion will 

include possible future implementation. The parallel solution assists in generating a number 

of diverse feasible solutions, which provide a choice for the user. 

The programming style used is a synchronous master/workers paradigm on multiple levels. 

The master implements a central memory through which passes selective communication to 

share between the diverse solutions, and that captures the global knowledge acquired during 

the search. The worker implements the search process. The parallel algorithm continues from 

the initial setup which creates more than one initial solution through various methods.  

The pheromone matrix and the best found solutions will be managed by the master. At 

specified iterations, the master consolidates the pheromone matrix from all the workers and 

then broadcast the pheromone matrix to all the workers. Each worker handles an ant process. 

He receives the pheromone matrix, constructs a complete solution, applies a tabu search for 

this solution and sends the solution found to the master. When the master receives all the 

solutions, he updates the pheromone matrix and the best solutions found, and then the 

process is iterated. 

2.11 Summary 

This thesis identifies the problem of solving the VRP with variants through applying an 

adaptive solution which has no predefined knowledge of the problem environment. The 

environment is defined as the geographical distribution of the stops, the constraints applied 

on the solution and the objective cost functions to minimize.  
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The current focus on solving VRP is to identify the type of problem beforehand and 

implement as solution for the specific type. Better computer processing power allows the 

introduction of alternative methods into the solution. This research utilizes concepts such as 

clustering, adaptive object modelling, meta-heuristics and adaptive object modelling to 

improve the quality of the solution. Parallel implementation is considered throughout to 

improve speed.  

Success is measured if an answer is good enough in a reasonable time for a problem where the user 

define the constraint and cost model. 
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3 ADAPTIVE OBJECT MODELING 

3.1 Overview 

The study formulates a new angle on an already challenging problem to solve. It exploits 

methods available to approach the problem as well as incorporating traditionally used 

methods. This chapter provides the detail of the design for the adaptive object model. It 

introduces mechanisms using adaptive objects and data structures to achieve the composition 

of the problem formulated. 

This part of the thesis is important for the deployment of the problem that can benefit the 

industry. The design of an Information Technology System should focus on the following key 

performance indicators (Schulman, August 2002):  

 Efficiency - accomplishment of or ability to accomplish a job with a minimum expenditure of 

time and effort 

 Effectiveness - adequate to accomplish a purpose; producing the intended or 

expected result 

 Alignment - a state of agreement or cooperation among persons, groups, nations, etc., 

with a common cause or viewpoint 

 Agility - the power of moving quickly and easily 

 Integration - an act or instance of combining into an integral whole. 

Current study on the VRP focuses mostly on the first two indicators because it does not 

consider the problem as part of an enterprise system. The aim of this study requires us to 

view the reverse order of these indicators.  

Integration, both within and among cooperating enterprises, now comes first and is most 

important, providing the highest value. Dynamic integration creates the ability for many 

enterprises to participate within IT solution. Agility, the ability to react quickly, comes second. 

Alignment contribute to the linking of IT and business goals. Effectiveness and efficiency are 

important, but “good enough” gets us to where we need to go now, and getting to business 

goals quickly is better than perfection.  
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Also, although creating solutions that are durable is important, it is more important to put 

agility and “evergreening” features into architectures that make them easy to change as new 

business requirements come along. Creating a design for business change will end up being 

more important than creating the perfect solution. So, although we are not jettisoning 

effectiveness and efficiency as KPIs, we are increasing the others‟ priority and putting them a 

bit “on the back burner” and shaking up our viewpoint. 

To achieve this goal on the micro level, we implement an adaptive object approach, which 

separate the problem environment. This includes the objective function and constraints from 

the actual optimization algorithm. It requires a clear communication structure between the 

discrete components. These components must be well-defined regarding functions, 

properties and results. 

 

Figure 8: From modelling to solution 

Existing solution approaches rely heavily on knowledge of the problem environment to 

improve efficiency of the algorithm. This research cannot exploit the lessons learned from 

previous research on problem types as the objective is to solve a problem for any 

environment. Joubert (2006) apply a method of evaluation first and then selecting an 

appropriate heuristic. This research is a step in the right direction. The shortfall is in the 

provision of all types of environments. The approach followed by Joubert relies on the 

knowledge of a specific problem type, and evaluates only the geographical and time window 

compatibility.  

We will take the first steps towards and adaptive object model solution approach. The 

proposed method uncovers a new area of defining the VRP. Previous solutions were done on 

an object-oriented basis (Moolman, 2004). Adaptive software is an extension of object-
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oriented software where relationships between functions and data are left flexible, that is, 

where functions and data are loosely coupled through navigation specifications. Adaptive 

means that the software heuristically changes itself to handle an interesting class of 

requirements changes related to changing the object structure. 

Adaptive software is a natural evolution of object-oriented software since every object 

oriented program is essentially an adaptive program. In many cases however, the adaptiveness 

of the object-oriented program can be significantly improved. Although object-oriented 

programs are easier to reuse than programs that are not written in an object-oriented style, 

object-oriented programs are still very rigid and hard to evolve. Our experience shows that 

for most application domains, object-oriented programs can be made significantly more 

general and extensible by expressing them as adaptive programs. An adaptive program allows 

us to express the intention of a program without being side-tracked by the details of the 

object structure (Lieberherr, 1996). 

Object-oriented programming is a promising technology that has been developed over the 

last twenty years. One important advantage of object-oriented programming is that it reduces 

the semantic gap between a program and the world it models because the world consists of 

physical and abstract objects that are represented naturally by software objects in an object-

oriented program. However, object-oriented design and programming has several 

disadvantages, the most significant of which is that it binds functions and data too tightly.  

A loose binding between functions and data allows very generic software where data structure 

information in the functions or procedures is only used to constrain the applicable data 

structures. Before a program can be run, we select one of the applicable data structures, 

which in turn usually determine the structure of the input objects. The goal when writing the 

functions is to minimize the assumptions we make about the data structures. This technique 

could be called data-structure-shy programming, and it leads to generic software that can be 

flexibly customized later. One data-structure-shy program potentially describes an infinite 

collection of object-oriented programs. 

In the following paragraphs the domain data is discussed from a generic point of view. The 

structure of the data is fixed on the domain level. 
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3.2 Supply chain domain 

The VRP form part of a supply chain and should be integrated into the planning solutions for 

a supply chain. Supply chain management is among the most complex and difficult activities 

in today's environment of shorter lead times, tighter delivery schedules, and dramatically 

increased product variety. It is also among the most important. We view the usage of the 

logistics optimization on three levels: 

 Strategic – This level represents the plan of action intended to accomplish a specific 

goal. Strategic Supply Chain Management explores the knowledge, techniques, and 

strategies necessary to create value and achieve competitive advantage from your 

supply chain. 

 Tactical – This level represents a manoeuvre for achieving a goal. Tactical supply 

chain decisions focus on adopting measures that will produce cost benefits for a 

company. Tactical decisions are made within the constraints of the overarching 

strategic supply chain decisions made by company management. It contains more 

definite information for scenarios. 

 Operational – This level implements a series of actions for achieving a result. 

Operational supply chain decisions are made hundreds of times each day in a 

company. These are the decisions that are made at business locations that affect how 

products are developed, sold, moved and manufactured. Operational decisions are 

made with awareness of the strategic and tactical decisions that have been adopted 

within a company. The day to day operational supply chain decisions ensure that the 

products efficiently move along the supply chain achieving the maximum cost benefit. 

A number of examples of operational decisions can be identified in manufacturing, 

supplier relationships and logistics. 

This study acknowledges the usage of the VRP on all the levels. On the higher level 

implementation, input parameters are manipulated by scenario generating tools. This chapter 

will clearly specify the interfaces to the outside supply chain processes to allow for seamless 

integration and maximum use.  

It is important to understand the link to the supply chain objects. The adaptive object model 

will feed from a base domain environment. For the VRP, we define that environment as the 

supply chain logistics.  The supply chain objects are described as follows: 
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Entity Description 

Commodity 

Commodity is a product or service for which there exists 

demand. In the supply chain logistics context, we are interested 

in specific properties such as weight, volume and certain 

constraints pertaining to the distribution of the commodity.  

Solving the VRP for multiple commodities can be handled in 

the proposed framework if the commodities use the same unit 

of measurement, e.g. weight or volume or when they are 

mapped as a multi-objective function.  

This study does not implement a multi-objective scenario. 

Additional requirements can be enforced through constraints 

functions, e.g. fresh and frozen product that is not allowed to 

share a resource. 

Contract 

A contract is an agreement between two or more parties for the 

doing or not doing of something specified. Contracts provide 

clients which have locations and are used for the routing. 

Contracts assist with the management of when a client is not 

valid to serve anymore. 

Contract Line 

The contract line represents the detail regarding the contract on 

a specific commodity. A contract can contain more than one 

commodity. A contract line indicates the activity required, e.g. 

supply, demand, returns, etc. The input into the algorithm 

considers only one activity type per solution. The contract line 

specifies the location of the activity required. The location 

should relate to a distribution centre either through manual 

allocation or through a pre-process algorithm before the 

algorithm start. The algorithm will handle only one distribution 

centre as input on the lowest level. 

The contract line contains a link to quantities required per 

occurrence. An occurrence is the date when the activity must be 
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done for the contract line and is calculated from a schedule. The 

occurrence contains the time windows for the service of the 

location. 

Schedule 

A schedule represents the date for which a contract line is active 

as well as the frequency of visits for the specific contract line, 

e.g. for the period March to June service the location only 

Mondays and Fridays. 

Units of measurement 

A unit of measurement is a standardized quantity of a physical 

property, used as a factor to express occurring quantities of that 

property. The scenarios in this research assume that the defined 

comparison constraints do not require a unit conversion. The 

commodity demand is specified in the unit of measurement. 

Locations 

In geography, location is a position or point in physical space 

that something occupies on Earths' surface. A real location can 

often be designated using a specific pairing of latitude and 

longitude, a Cartesian coordinate grid (e.g., State Plane 

Coordinate System), a spherical coordinate system, or an 

ellipsoid-based system (e.g., World Geodetic System). 

A location may be described as either absolute location, meaning 

the exact location of an object, or relative location, meaning the 

location of one object relative to another and another or in a 

general area. There are two types of location, relative & absolute. 

Relative deals with the relative spot of something on Earth. 

Absolute deals with the exact spot of something on Earth. 

Locations has played an important role in interpreting a VRP 

problem, but must be seen as source data for visual presentation 

and possible input to cost or constraint functions. 

Resource Types A resource is any physical or virtual entity of limited availability, 

or anything used to help one earn a living (solve the problem). It 
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is important to note the possibility of different resource types 

for future studies. This thesis will consider only one resource 

type. Vehicles are the typical resource type for the VRP. 

Table 2: Supply Chain Entities 

The supply chain problem spans over a period of time and can depend on forecasts, seasonal 

trends, weather patterns, etc. The proposed VRP solution is for a single instance of routing to 

be done from a depot. The implementation of the solution requires the domain expert to 

prepare the data for the solution. 

3.3 Components 

The previous paragraph described the typical domain environment on top of which the 

solution will be implemented. We can now revisit the component model as explained in 

chapter 2. This paragraph discusses the objective of the components and the required 

interfaces on a high level. It indicates the level of adaptiveness and object-oriented design of 

each component.  

 

Figure 9: Solution component breakdown 
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Adaptiveness is achieved by expressing programs as loosely coupled, cooperating fragments, 

and each one describing only the concerns of one context. The loose coupling is achieved 

with novel means such as concise object navigation specifications. The loose coupling of the 

fragments leads to adaptiveness since many changes in one fragment preserve the intent of 

the other cooperating fragments, which then adjust automatically to the changed fragment. 

Adaptive software works with partial knowledge about class structures that directly supports 

an iterative software life-cycle. Figure 9 displays the different loosely coupled components 

that implements a combination of object oriented structure and adaptive modelling. The 

components depict the basic building block hierarchy and dependency.  

This study will create some of the components as new methods for solving any VRP related 

problem. It will provide a guide of how to create other components to ensure that the 

solution is still effective in time to solve. And it will indicate which components are not in the 

control of the implementer. The components‟ services can be described as follows: 

Service Description 

Data Source 

The physical storage of the data can reside in different formats. 

The data source provides the interface to the required 

information. 

Object Layer 

The object layer interprets the data from the data source into the 

required domain objects. It applies filters on the data which 

result in the subset of data required for the problem instance. 

Base Classes 

The base classes represent the data objects and additional 

structures used by the algorithm. These objects are data light 

because of their access to the domain specific object layer. 

Cost Functions 

The cost and constraint functions reside in objects that are 

accessible by the algorithm and have access to all underlying 

data models. These objects encapsulate the complexity of the 

calculations required. They expose a limited set of function calls 

that is aligned with the domain model. 
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Optimisation Algorithm 
The algorithm utilise the base classes and cost functions to 

optimise an unknown VRP type problem. 

Process Monitoring and 

Measurement 

All processes are monitored to ensure efficiency of the system 

and allow for future areas of enhancements.  

Table 3: Component blocks 

Adhering to the principle of service-oriented architecture, all components are loosely coupled, 

using well-defined interface protocols, preferably message-oriented. This criterion has the 

following desirable design qualities which contribute to a lower cost to the implementer. 

 Each component can be designed, implemented and tested independently of the 

other systems based on the agreed interface protocols. Knowledge of the internal 

design of other systems, such as implementation language, choice of RDBMS etc. is 

not required. 

 Support for effective end-to-end testing. 

 Any system that supports the interface protocols may be updated or replaced. 

 High cohesion - The structure of the components that form part of the overall 

architecture is focused on well-defined areas. The responsibility split between 

components is clear and logical, and it is always clear which component is 

functioning. This design criterion reduces system complexity. 

 Strong encapsulation - Encapsulation hides the details of a system but offers a well-

defined interface for exchanging information. Like high cohesion, this design criterion 

reduces overall complexity but also allows changes to the internal design without 

impacting on the other systems. Encapsulation also shields the internal data from 

external tampering. 

 Determinism ensures that given a defined component state and a determined 

sequence of events, the end result is always the same, and thus able to be reproduced 

in a test environment. This allows effective end-to-end testing and contributes to a 

reliable system. 
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The system will be implemented according to the following logical architecture. The diagram 

shows the interface relations of the building blocks ranging from the raw data to the 

algorithm.  

Data Source

Cost and Constraint 

Function
Route Data Instance

Solution Workspace

Domain Extraction

Ant System for 

Adaptive Objects

ASAO

 

Figure 10: System logical overview 

3.3.1 Data source 

This component encapsulates the physical data and is provided by the client. A typical 

example consists of a database that stores all the required data. A more complex scenario is 

where different information is stored in different places, e.g. forecast data is used to 

determine the volumes and is stored in the financial system, while customer information is 

stored in the CRM and is used for location of clients.  
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The solution is built on the Expandable Software Infrastructure (ESI) framework, which 

implements an adaptive data model through meta-data. The ESI maps the functional 

attributes to the physical fields and takes care of the underlying physical structure.  

The data source layer provides an abstraction of the physical data for the object layer and the 

cost functions. The domain implementation on the data source guarantees a base model, but 

is extendible on attributes. These additional attributes is not known at the design time of the 

algorithm. This situation is an important factor in designing the optimization algorithm.  

The data source component implements the interfaces from the external data providers and 

presents an interface that is used by the domain objects, as well as the cost and constraint 

function component. 

3.3.2 Domain Objects 

The domain object component represents the source data in a managed, structured and 

accessible way, i.e. the data can be accessed in code as an object with properties, methods and 

relations to other objects. The identified objects forms the base of our problem space and are 

accordingly stored in a known problem space environment. The objects are designed 

specifically for the VRP environment. Further research can extent the objects to fit into a 

general optimization structure. There exists only one problem space in our solution.  

The main purpose of the problem space is to be a placeholder for all the original data and to 

implement the raw data from the data source into a conceptual structured way that models 

the intent of the problem, i.e. the VRP. 

An additional benefit of the object layer as placeholder is to provide better memory 

management, because most of the calculated result classes can now only reference to an entry 

in the problem space. The design allow for the problem space to be utilize in any kind of 

solution, e.g. the same problem space can be used to calculate activity based costing, or cluster 

stops as we‟ve used as an environment evaluating step. This step achieves our goal to keep 

the design flexible and extendible. 

The second purpose of implementing a conceptual model is important in the use of objects in 

further steps. As described a previous paragraph, the data source is build on a framework that 

allows for meta-data driven classes. The level of abstraction allows the user to implement 
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anything in the detail of the base structure. The framework also allow for the definition of a 

domain model. It is that domain model that comes into play during the object layer 

implementation. 

The first step in defining a domain model is to define what is required in our implementation 

of the object layer. This requirement is set by the base classes defined in detail later in this 

chapter. Chapter 2 describes the complete VRP problem. According to Barbarosoglu and 

Ozgur (1999) the VRP can be described as the problem of designing optimal delivery or 

collection of routes from one or several depots to a number of customers subject to side 

constraints. Thus, the basic VRP can be described as vehicles that depart from the depot, visit 

one or more customers and return to the depot. The requirement of a solution for the VRP 

indicates clearly that the following objects should exist: depot, customers and vehicles.  

According to our supply chain domain model, there exist a number of classes that represents 

the supply chain model. We should now super impose the VRP requirement onto the supply 

chain domain. It is clear that the VRP requires a simpler model for implementation. Thus the 

implementation requires a mapping and filter mechanism between the two models. Because 

the two models are well defined, the mapping can be seen as consistent across solutions. Note 

that the mapping is focused on the domain model and does not restrict the flexibility of the 

classes involved. The mapping considered here is only applicable to the final VRP routing 

algorithm and it is assumed that all required allocations and calculations have been done. 

-Name : string

-Depot : Depot

-Stops : Stop

-Vehicles : Vehicle

VRP Base Data::ProblemSpace

 

Figure 11: Problem Space Class 

From the representative problem formulation, we define the base objects that are required as 

 a list of stops,  

 a depot,  

 a list of vehicles (resources) 
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Vehicles do not form part of the original description according to Barbarosoglu and Ozgur 

(1999), but was identified as a critical enough side constraint input to be part of the base 

object model. The problem is to define an interface for the objects that is complete and 

sufficient enough to be used in the algorithm.  

According to the component model, the base classes and cost functions have interfaces to the 

data objects, but the algorithm not. This extra level of abstraction insures that the algorithm 

operates on a known base that shifts the focus for the algorithm to the methods use and not 

data integration. The purpose of the base class component layer is to act as the interface 

between the data and the algorithm and provide addition storage structures required by the 

algorithm to execute efficiently.  

3.3.3 Base classes (Solution Workspace) 

The input data is loaded into data objects and then used through the problem space object. It 

consists of static data with all properties available that can assist in solving the problem. This 

optimization algorithm requires a known interface to work with. We define the base classes as 

interface for the data to the algorithm as well as algorithm specific storage area for specific 

algorithmic approaches. 

The optimisation algorithm utilizes advance memory structures. The complexity of the base 

classes is dependent on the algorithm and will be discussed in the algorithm definition. The 

most important base class that is used is the SolutionWorkspace, which extends the 

ProblemSpace. The SolutionWorkspace implements RoutableStops and RoutableVehicles. 

These objects contain additional placeholders to allow for adaptiveness required by the cost 

and constraint functions. The solution workspace contains memory structures used in the 

algorithm. 
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-RoutableStops : RoutableStop

-RoutableVehicles : RoutableVehicle

-CostFunctions : CostMeasures

-ConstraintFunction : ConstraintChecks

-ProbabilityMatrix : double

VRP Workspace::SolutionWorkspace

-Name : string

-Depot : Depot

-Stops : Stop

-Vehicles : Vehicle

VRP Base Data::ProblemSpace

 

Figure 12: Solution Workspace 

Any module using this VRP solution that implements the defined interfaces can provide data 

to the resulting algorithm. 

3.3.4 Cost and constraint functions 

This component represents the user defined objective functions as well as constraint 

functions. The implementation view a constraint function as checking if a solution is valid, while 

the cost function is the driver toward a good solution.  

Implementing a crude cost function for any improvement heuristic will consist of calculating 

the compliance of the new solution to the constraints and then calculating the cost of the 

solution if no constraints have been violated. The solution provide for generic StopData per 

RouteStop to provide the cost function the ability to work from a cached solution base. See the 

Solomon implementation example cost function for a typical use of environment knowledge. 
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+ViolatesFinalConstraints(in route : Route) : bool

+ViolatesFinalConstraints(in route : Route, in pos : int) : bool

+ViolatesFinalConstraints(in solution : Solution) : bool

+ViolatesIntermediateConstraints(in route : Route) : bool

+ViolatesIntermediateConstraints(in route : Route, in pos : int) : bool

«interface»

VRP Base Data::ConstraintChecks

+Cost(in fromStop : RouteStop, in toStop : RouteStop) : double

+Cost(in route : Route) : double

+Cost(in vehicle : RouteVehicle) : double

+Cost(in solution : Solution) : double

+CreateStopData() : IRouteStopData

«interface»

VRP Base Data::CostMeasures

 

Figure 13: Cost and Constraint Interfaces 

These interfaces allow the algorithm to call the appropriate cost or constraint function at the 

applicable time. The component design allows the cost function access to both the structured 

data objects as well as the data source. The interface to the data object is necessary for the 

cost function to obtain information required to calculate the result, e.g. in Solomon the cost 

function is a distance based function that requires the location of the stops to calculate the 

distance in Euclidian space. The Solomon implemented constraint function requires the time 

window of a stop to check the compatibility.  

Both these functions required properties that relates directly to the base objects identified. 

This approach is sufficient for most VRP implementations. The interface to the data source 

implies access for the cost function to any data that is available in the system.  

3.3.5 Optimization algorithm 

The objective function of the problem is to minimize cost while adhering to all constraints. 

An adaptive object implementation allows for a higher level of abstraction of these functions, 

i.e. the „user‟ of the algorithm has the ability to provide the cost and constraint functions.  The 

design of the algorithm makes use of these external functions to guide the solution to a 

minimum.  

The optimization algorithm has the base classes and cost functions as input. The base classes 

are well defined, but the cost functions are unknown for the purpose of this study. The goal is 

to solve the problem with this limited knowledge. 
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This paper will not discuss the multi-objective cost function, but the resulting solution should 

be easy to adapt to incorporate such cost drivers. 

3.4 Implementation 

The solution was developed on Visual Studio 2008, in the C# language. C# has the ability to 

implement interfaces, as do many other languages. The design is aimed to be acceptable in 

other languages such as C++ and Java as well. The use of interfaces is acceptable practice. It 

also utilizes the idea of delegates or function pointers. The use of delegates adds complexity 

to the code if it is not defined clearly. 

An interface defines the communication boundary between two entities, such as a piece of 

software, a hardware device, or a user. It generally refers to an abstraction that an entity 

provides of itself to the outside. This separates the methods of external communication from 

internal operation, and allows it to be internally modified without affecting the way outside 

entities interact with it, as well as provide multiple abstractions of it. It may also provide a 

means of translation between entities which do not speak the same language, such as between 

a human and a computer. Because interfaces are a form of indirection, some additional 

overhead is incurred versus direct communication. 

We utilize this concept to define methods outside of the algorithm to manipulate actions 

inside the algorithm.  It is important to define the interfaces at the appropriate level. The 

„user‟ has no knowledge of implementing an optimization algorithm, but determines the 

objective as well as constraints for the algorithm. The goal is to abstract these two elements of 

the algorithm to be easily controlled by the „user‟. These interfaces rely also on the base 

classes. 

3.4.1 Constraints 

The VRP, as in many real-world optimization problems, are solved subject to set of 

constraints. Constraints placed restrictions on the search space, specifying the regions of the 

space that are infeasible. Optimization algorithms have to find solutions that do not lie in 

infeasible regions. That is, solutions have to satisfy all specified constraints. The following 

types of constraints can be found: 
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 Boundary constraints, which basically define the borders of the search space. Upper 

and lower bounds on each dimension of the search space define the hypercube in 

which solutions must be found. 

 Equality constraints specified that the function of the variables of the problem must 

be equal to a constant. 

 Inequality constraints specified at the function of the variables must be less than or 

equal to a constant. 

Feasible solutions can be compared by comparing the objective function value. Infeasible 

solutions are not that easy to compare. If the algorithm allows for an infeasible solution, it 

should be reflected in the cost function. The general notion is that an infeasible solution is 

much more expensive than a feasible solution. The allocation of cost to infeasible elements in 

the infeasible solution can however allow for tactical planning, where it might be better to 

remove the stop from the solution then servicing the stop at a high cost. 

The proposed solution in this thesis requires the operator to implement its own cost and 

constraint functions. Investigation of more complex VRP problems resulted in similarity of 

constraint types. The aim is to provide the operator with guidelines on writing cost and 

constraint functions that integrates with the algorithm on a seamless manner. We identify 

constraints in the following areas: 

 Relational constraints – this type of constraint depends on a relation between two 

objects. If split deliveries are not allowed, there must be a one to one relation between 

a vehicle and a stop.  In the meta design, the user can indicate the cardinality of 

objects to enforce the constraint.  The optimization algorithm can check these 

constraints whenever it is effective. 

 Comparison  constraint – this type of constraint depends on the aggregation of a 

property compared to a value.  The value can belong to a relational object or it can be 

constant.   

o Relational object – Sum(Route.Stop.Volume) <= Vehicle.Volume 

o Constant – Count(Route.Stop) <= Solution.MaxStopPerRoute 

 External constraint – we have to provide the user with the ability to add any type of 

constraint that cannot be modelled in our structure. This ensures 100% flexibility, 
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while the structured approach will be sufficient most of the time. The next paragraph 

discusses the use of interfaces for this kind of implementation. 

3.4.2 Interfaces 

We define a constraint function interface as a boolean function that tests the validity of the 

input object according to the defined constraint. The interface implements the constraint for 

all base objects as input parameter. This allows the optimization algorithm to call constraint 

checks whenever the appropriate input parameter has been changed and require a validity 

check. It also provides the user the ability to determine the granularity of checks, i.e. a route 

can be checked for validity, or a solution can be checked for validity by checking all elements. 

Using this level will cause the algorithm to be slow, but it will be an accepted method. This 

underline the ability of the methodology to solve „any‟ problem, but emphasize the 

importance of providing clear guidelines on writing interfaces to ensure most efficient 

implementation of cost and constraint functions. 

We define a cost function interface as a function that returns a value between zero and 

infinity. The algorithm will use this value as indication of the quality of the solution. The VRP 

solution is the minimization of the cost function. 

3.5 Base classes 

The previous paragraph emphasizes the definition of the base classes as tool in the solution. 

From the problem formulation it is clear that the base classes interface to the data objects, the 

cost functions and the optimization algorithm. The subsequent paragraphs offer an overview 

of how these interfaced layers influence the design of the base classes. 

This research is also done to initiate a different thought process around the VRP and its 

approach. Base classes consist of more abstract meaning. This will allow further research in 

applying the solution in similar problems by mapping the implementation to the abstract 

concepts. 

A typical implementation for Solomon problems can be defined as follows: 
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Stop

Depot

Vehicle

TimeWindow

RouteStop

Route

-Has

1

0..*

RouteVehicle

-Has1

*

-Has a 1

1..*

Solution

-Belongs to

1

*

 

Figure 14: Basic domain class relations 

 

3.6 Data objects 

The data objects is defined as the user‟s objects that comprise of information available for the 

problem space. Our object approach is based on the ESI implementation which maps 

physical data to objects through an object service. This service is controlled through meta-

data. 
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Figure 15: Meta mapping, functional to physical 

This implementation is too flexible as it allows the user to define any class of any type. We 

introduce a domain structure into the ESI that functions similar to an abstract class layer.  

The ultimate goal is not to solve benchmark problems, but to apply the algorithm in the real 

world. The data objects represent the real word objects in a supply chain implementation. The 

following objects are identified in the supply chain configuration: 

3.7 Cost and constraint functions 

The base classes provide feedback from the algorithm to the cost function. The algorithm 

store information in the base class structure and any request for a cost calculation is 

instantiate through a base class. This emphasizes the importance of the base class definition 

to support a scaled approach when calling a cost function to minimize processing power. The 

aim is to enable calculation to be done on partial knowledge through calculating the change in 

value, for example, if two stops are swapped between routes, we would like to know the net 

effect on the current solution by just calculation the affected routes. 

3.7.1.1 Solomon Function 

The Solomon benchmark problems implement a stop with a cost function as the Euclidian 

distance of the routes that comply with the constraint functions. Solomon constraints consist 
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of one time window and a vehicle capacity determined by the homogeneous fleet. The 

Solomon cost and constraint functions can be implemented as follows: 

 Capacity – the addition or removal of a stop influence the capacity of a route. The 

action is not sensitive on the position in the route. 

 Calculate time – the time constraint check calculates the validity from the previous 

stop and influence all subsequent stops‟ validity.  

 Distance – the addition or removal of a stop influence the distance of the route, but 

can be re-calculated through the previous and next stop  

From the above properties we can define the following optimization rules: 

 Decide on the order of calculation of constraints. An easier and quicker calculation 

that can violate the constraint should be done first to prevent unnecessary use of 

processing power. 

 The storage of calculated data should be planned and maintained to assist in reducing 

processing. 

3.7.1.2 Peak and off-peak travel times 

Adapting the basic Solomon problem to allow for peak and off-peak travel times can be 

isolated to the cost and constraint component. Since the cost function has access to the data 

source, the implementation consists of a multi-dimensional matrix with origin to destination 

travel times per time of day. 

The implementation of the optimisation algorithm for the benchmark Solomon problems can 

rely on a consistent cost between two consecutive stops as distance and time travelled will 

always be the same. The implementation of peak and off-peak time matrices results in sudden 

change of cost, depending on the position of two consecutive stops in a route. We can 

identify the following three scenarios as possible results of the peak and off-peak travel-time:  

1. The cost is too high for the ideal solution in both peak and off-peak time, which will 

result in the combination of stops not evaluated in the algorithm. 

2. The cost is low enough for the ideal solution in both peak and off-peak time, which 

will result in the combination of stops being evaluated in the algorithm. 
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3. The cost is low in off-peak and too high in the peak time, which results in the stops 

being favourable in some routes and not in other similar looking routes. 

Since the cost and optimisation algorithm is removed from each other, the algorithm had no 

domain knowledge to work on from the start, but rely on analysis of the environment and 

feedback from the results achieved. The pheromone trial will indicate that the combination is 

low in scenario 1, high in 2 and high in 3 because the low cost part of the peak and off-peak 

time is part of the possible best solution. 

3.8 Optimization algorithm 

The optimization algorithm require as much as possible information to assist in making 

efficient moves. In our approach, the algorithm does not communicate with the object data. 

All it can see it is the defined base classes and functions. The base classes must therefore be 

designed to assist the algorithm.  

The algorithm depends on the base classes to make sense of the state of the structure and 

keep track of combinations of stops and vehicles. The structures that serve as input for the 

algorithm and is fixed. The object model defined additional structures for the use of the 

algorithm. These structures include information that allows the AMP (adaptive memory 

programming) to be implemented as part of the algorithm. 

The rest of the thesis will focus on the design of the algorithm that employs the structures to 

assist in effective execution. 
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3.9 Summary 

Integration of systems between cooperating enterprises or between different departments is 

most important because it provides highest value. Providing a theoretical sound solution that 

has the agility to adapt to business needs is within reach through the use an adaptive object 

model. 

 Deploying a data shy algorithm in the complex VRP environment is no small task. This 

chapter defines the base structures necessary to implement the supply chain domain. It 

describes the different components and their relationships in the building blocks towards an 

integrated solution.  

Academic collaboration with science-based industry provides an occasion to consider 

underlying differences between academic and industrial science when only their ends, theories 

vs. products, distinguish them. Industry‟s relative indifference to theory nudges academic 

collaborators toward speculation. Industry entices academics to know less about more. The 

industry requirement should not derail the scientific effort applied in this thesis. 

The next step is to design the algorithm that can deal with all the requirements, which still 

include the traditional optimisation goals. 
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4 ANT SYSTEM ON ADAPTIVE OBJECTS ALGORITHM 

4.1 Approach 

Solving the vehicle routing problem in its basic format is already an NP-hard problem. Exact 

methods have proved to be inefficient and time-consuming in trying to solve this problem. 

Previous attempts on solving the VRP have indicated that heuristic methods result in the best 

feasible solution in an acceptable time. When we add additional constraints to the basic VRP, 

we increase the difficulty of the solution exponentially. We must also consider the size of the 

data set that needs to be optimized. 

Heuristic methods search only parts of the solution space. This result in the quicker results of 

the algorithm, but does not guarantee a best solution. Previous results have shown that 

heuristic methods can achieve optimal or near optimal results repeatedly. The meta-heuristic 

method has a guidance procedure of some sort to help it traversing through the solution 

space.  

The guidance procedure is dependent on the type of heuristic selected for the solution, as well 

as additional knowledge from the problems space implemented by the algorithm. This 

additional information about the problem beforehand can assist the algorithm in more 

effective search paths. A meta-heuristic is the implementation of a heuristic method with a 

guidance procedure. 

A hyper-heuristic is a heuristic search method that seeks to automate, often by the 

incorporation of machine learning techniques, the process of selecting, combining, generating 

or adapting several simpler heuristics (or components of such heuristics) to efficiently solve 

computational search problems. Hyper-heuristics can be thought of as “heuristics to choose 

heuristics”. One of the motivations for studying hyper-heuristics is to build systems which 

can handle classes of problems rather than solving just one problem. 

The fundamental difference between meta-heuristics and hyper-heuristics is that most 

implementations of meta-heuristics search within a search space of problem solutions, 

whereas hyper-heuristics always search within a search space of heuristics. Thus, when using 

hyper-heuristics, we are attempting to find the right method or sequence of heuristics in a 
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given situation rather than trying to solve a problem directly. Moreover, we are searching for a 

generally applicable methodology rather than solving a single problem instance. 

Memetic Algorithms (MA) is used as a synergy of evolutionary or any population-based 

approach with separate individual learning or local improvement procedures for problem 

search. The concept of a meme (a unit of ideas that can be transmitted from one item to 

another) relates to the pheromone values that can be copied between ants. The combination 

with a meta-heuristic creates powerful decision making ability that can guide the algorithm 

through the solution space. 

 

Figure 16: Solution Space 

Figure 16 explains the methodology of heuristic methods for solving the particular problem. 

The solution space consists of all possible solutions for the specific problem. Theoretically we 

can develop an algorithm that has the ability to generate all of the possible solutions such as 

branch and bound methods. As we have already seen, this method will take an eternity on the 

complex problem that we are trying to solve. A meta-heuristic can search effectively through 

the solution space. The algorithm can allow invalid solutions which might lead to better valid 

solutions. The algorithm might not reach the best solution in the allowed time.  

Let S be a set of solutions to a particular problem, and let f be a cost function that measures 

the quality of each solution in S. The neighbourhood N(s) of a solution s in S is defined as the 
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set of solutions which can be obtained from s by performing simple modifications. Roughly 

speaking, a local search algorithm starts off with an initial solution in S and then continually 

tries to find better solutions by searching neighbourhoods. A local search process can be 

viewed as a walk in a directed graph G=(S,A) where the vertex set S is the set of solutions and 

there is an arc (s,s') in A if and only if s' is in N(s). By considering the cost function as an 

altitude, one gets a topology on G=(S,A).  

 

Figure 17: Solution Neighbourhood 

The efficiency of a local search method depends mostly on the modelling. A fine-tuning of 

parameters will never balance a bad definition of the solution set, of the neighbourhood, or of 

the cost function. 

The topology induced by the cost function on G=(S,A) should not be too flat. The cost 

function can be considered as an altitude, and it therefore induces a topology on G=(S,A) 

with mountains, valleys and plateaus. It is difficult for a local search to escape from large 

plateaus since any solution that is not in the boarder of such a plateau has the same cost value 

as its neighbours, and it is therefore impossible to guide the search towards an optimal 

solution. A common way to avoid this kind of topology on G=(S,A) is to add a component 

to the cost function which discriminates between solutions having the same value according 

to the original cost function. 

When the problem is known beforehand, we can predict the surface of the graph, and adapt 

the algorithm accordingly. The problem definition in this study has a basic knowledge of the 
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class of problems, i.e. VRP. The cost and constraint functions determine the surface of the 

chart, but are not known at all at the start of the algorithm. This leads to an evolutionary 

process to detect the surface type during the execution of the algorithm. 

Our evolutionary meta-heuristic makes use of the well-known two-stage and multi-start local 

search (MLS) frameworks. In two-stage framework the initial solution created in the first 

stage is subsequently improved in the second one. Because the environment is unknown, the 

multi-start construction heuristics assist in an immediate evaluation of the environment. 

In the first stage we generate an initial solution with the help of a construction heuristic. 

There exist several methods and we make use of the sequential insertion heuristic (SIH), 

random-best selection for constructive ant path and best accept for constructive ant path. 

These methods result in solutions that are feasible but not necessarily the best. The feasibility 

of the solution ensures that it existing our solution space (see the initial solution in Figure 16).  

The initial evaluation includes statistical analyses of the best-case cost between nodes. 

Memory structures are initialised with knowledge gained from the initial solution in 

combination with the analysis. The methods used in the improvement stage are fixed and we 

can claim to already know how the improvement heuristic works. Now we aim to align the 

information and actions in the construction phase to provide a result that will assist in quicker 

convergence.  

 
 
 



 
97 

 

Cluster

Pheromone 
Trial

Tabu List

Intensify

Ant

History

 

Figure 18: Solution approach overview 

The improvement stage traverses from the current solution to a neighbour solution. The 

move generates a new solution which might have been created previously from other 

combinations of moves on other solutions. This can result in cycles in our search path, which 

leads to revisiting existing solutions and result in unnecessary computational time. One of the 

objectives will be to prevent such cycling. After a specified number of iterations the algorithm 

has visited a number of solutions from which the best solution is kept. The solution is not 

necessarily the best solution for the problem, but represents the best-visited solution. Our 

goal is to guide the search path in such a way that we cover as wide as possible area of the 

solution space. 

From Figure 16 we can see that the path to the best solution might have to go through a „not 

so good solution‟ or even an invalid solution before the best solution is reached. Operations 

applied on a solution can result in a not feasible solution. We can consider this as a stepping-

stone towards the next solution, or it can be seen as a waste of computational time. 

 
 
 



 
98 

 

The improvement phase implementation is based on an Ant Colony System and a local Tabu 

Search Method. Tabu search has a rationale that is transparent and natural: its goal is to 

emulate intelligent uses of memory, particularly for exploiting structure. Since we are creatures 

of memory ourselves, who use a variety of memory functions to help thread our way through 

a maze of problem-solving considerations, it would seem reasonable to try to endow our 

solution methods with similar capabilities.  

The Ant Colony System (ACS) algorithm is based on a computational paradigm inspired by 

the way real ant colonies function. The medium used by ants to communicate information 

regarding shortest paths to food, consists of pheromone trails. A moving ant lays some 

pheromone on the ground, thus making a path by a trail of this substance. While an isolated 

ant moves practically at random, an ant encountering a previously laid trail can detect it and 

decide, with high probability, to follow it, thus reinforcing the trail with its own pheromone.  

The collective behaviour that emerges is a form of autocatalytic process where the more the 

ants follow a trail, the more attractive that trail becomes to be followed. The process is thus 

characterized by a positive feedback loop, where the probability with which an ant chooses a 

path increases with the number of ants that previously chose the same path. The ACS 

paradigm is inspired by this process. In this traditional each ant generates a solution 

probabilistically or pseudo-probabilistically based on the current pheromone trail. Each 

iteration constructs a new solution utilizing the information in the pheromone trial. To 

prevent cycles and improve efficiency, the study introduces several new memory mechanisms 

which will guide the ants. 
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The following sections discuss the specific methods used to traverse through the solution 

space in more detail. It will also point out where knowledge about the problem beforehand 

can have an effect on the implementation of the solution. The algorithm consists of the 

following steps: 

Evaluate the environment.  

Construct a cost and compatibility matrix. 

Build clusters. 

Construct initial solutions 

Deduct information from first round optimizations. 

Setup memory structures for improvement phase 

Apply the algorithm. 

Run thread for each solution. 

Determine state of solution and algorithm to morph to next phase. 

Update global memory structures. 

Algorithm 2: High Level Approach 

The following paragraphs will discuss the building blocks separate and then conclude with the 

system. 

4.2 Compatibility and Cost Matrices. 

The construction of initial environment evaluation structures requires some knowledge of the 

constraint and costs that is applicable on the problem. The purpose of the compatibility and 

cost matrices is to provide a structure with a known access time which ensures that the initial 

setup can be done in a determined time. The behaviour of the cost and constraints is not 

known to the algorithm, and we assume a best case scenario at this stage. A definite result 

from this calculation is that any incompatible combination will never be compatible, but a 

compatible combination does not necessarily ensure the compatibility.  

4.2.1 The cost matrix 

Cost is the most important calculation in the optimization of the VRP.  The goal of the study 

is to minimize cost, which requires each visited solution to calculate the cost for comparison. 

The adaptive object model approach hides the knowledge about the cost function from the 

algorithm and thus we cannot predict the factors that contribute to the cost of a solution. A 
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nested memory approach is followed where we try and exclude unnecessary solutions, moves, 

etc.  

Predicting the running time of the algorithm is complicated by the encapsulation of the cost 

function due to the adaptive approach. The cost function has access to all information from 

the base data as well as the current solution on route and total solution level. The calculation 

can become quite complex when additional attributes make up the information at a stop and 

is used in the function. The cost matrix hides the complexity to assist in a determined cost 

function time for an intermediate level of solution. This intermediate level presents an 

approximation of the surface of the chart shown in Figure 17. 

To assist in this approach, we implement a best-case cost matrix that is used on a high level to 

guide the algorithm away from very poor solutions. It also gives the advantage of getting the 

algorithm quick out of the blocks with a memory structure already setup. The cost matrix is 

calculated as the lowest possible cost between two stops, which represent the best situation 

the stops can be in relation to each other. The resulted cost matrix is used as input for the 

initial solution clustering as well as the compatibility matrix. Costs range from 0 to infinity and 

cannot be negative. 

4.2.2 The compatibility matrix 

The compatibility matrix acts on the cost between nodes and will be carried over to the 

improvement stage as a permanent tabu list that is build up from environment knowledge as 

well as basic calculations. The matrix is maintained through the iterations per specific 

solution.  

The values range from 0 to 1. The 0 value represents no possibility; whilst 1 represent a good 

probability. A 0 value should represent no possibility ever and will be carried over to other 

compatibility matrices for other solutions. The information is used in calculating the 

probability of a move to create new routes. The compatibility matrix reduces the number of 

calculation possible for a move evaluation and thus allows for more possible moves in the 

finite iterations. One of the well known contributors to the matrix is the Time Window 

Compatibility which is described in detail in the next section. 
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The number of impossible combinations between stops assists to reveal the distribution of 

solutions in the solution space. This information form a basis of where possible mountains 

exist on the surface of the graph G(S,A). The compatibility matrix values are deducted from 

cost which is normalized on the global worst and best cost. The probability of the decision 

variable 𝑥𝑖𝑗  is defined by the linear position between the minimum and maximum cost from 

the stop. The probability is then factored to the number of possible neighbours from and to 

the stop.  

𝑃 𝑥𝑖𝑗  = 1 −  
max 𝑐𝑖𝑘 , 𝑐𝑘𝑖 − 𝑐𝑖𝑗

max 𝑐𝑖𝑘 , 𝑐𝑘𝑖 −min 𝑐𝑖𝑘 , 𝑐𝑘𝑖 
 × 

 𝑥𝑖𝑘 +𝑛
0  𝑥𝑘𝑖

𝑛
0

2𝑛
 

Equation 2: Probability of neighbouring stops on 
environment 

The values of the probability are proportional to the cost when there are no constraints in the 

problem. If a stop has only a few possible neighbours in relation to the total number of stops, 

the probability will be reduce because of the last term in the formula. The purpose is to 

reduce the overall probability of the stop, i.e. the algorithm does not need to include the stop 

in decisions regularly because the likelihood that the best stop has already been selected is 

quite high. The probability matrix assists in improving computational time.  

The following paragraph explains the influence of time windows on the probability matrix 

and it is clear to see that it has a major computational cost saving effect. The reader must 

keep in mind that the sample is an extract of a known domain, whilst the algorithm in this 

study will never know about such domain specific information. The cost function between 

two stops will reflect the information and that is deemed to be sufficient for building the 

memory structure discussed. 

4.2.2.1 Time Window Compatibility 

Time Window Compatibility (TWC) refers to the compatibility of the time window(s) of one 

stop with regards to another.  A good TWC figure indicates that the two nodes are likely to 

be inserted in sequence on the same route.  In many cases two customers can be located next 

to each other, but their time windows are not compatible.  The trade-off between distance 

(i.e. cost) and time (i.e. customer delight) is an inherent part of the problem.  
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Insertion of stops in a heuristic fashion requires a selection process that result in a possible 

next stop. The TWC can assist us in ruling out infeasible stops from the start. If we know that 

a stop is not a neighbour of the current stop, we do not even waste time of trying to 

implement that stop as a next stop. The neighbours of a stop are made up of all the time 

window compatible stops. We utilise the TWC principle as proposed by Van Schalkwyk 

(2002) to explain the function of the probability matrix. 

The figure below illustrates a scenario where we evaluate the time adjacency of node i and 

node j.  This scenario assumes that there will be a definite overlap in time windows between 

the two nodes.  Other scenarios will subsequently be discussed.  

06:00 11:00 18:0008:00

time

scheduling period

15:00

ei

e j

li

l j

s ti ij TWCij

node

node i

j
a j

ei

a j

li

 

Figure 19: The basic TWC calculation - Scenario 0 

Scenario 0: 𝑖𝑓 𝑎
𝑗

𝑒𝑗 >  𝑒𝑗  𝑎𝑛𝑑 𝑎𝑗
𝑙𝑖 < 𝑙𝑗    

Customer i  specified a time window  ii le ,  between 8:00 and 12:00, and customer j  

requires service between 9:00 and 16:00  
jj le , .  If serviced started at node i  at ie  (the 

earliest feasible time), its arrival at j  would be: 

 ijii

e

j tsea i 
 

In this scenario equal 11:00. 

Similarly, al would be the arrival at j if service started at node i at the latest possible time ( il ): 
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 ijii

l

j tsla i 
 

In this scenario equal 15:00. 

The difference between ie

ja and il

ja will yield the amount of time overlap between i  and j : 

 
ii e

j

l

jij aaTWC 
 

In this scenario it equals 4 hours.  The significance of this value is that the bigger the overlap, 

the better we can insert the two nodes in a sequence.  This also ensures that the customer 

with a big overlap has higher probability and can be used during the optimisation phase more 

regularly because of the better possibility of a fit.  

A number of different scenarios will be illustrated in the following figures. 

Scenario 1:  If  𝑎𝑗
𝑙𝑖 > 𝑙𝑗         

If the earliest arrival time at node j is inside the acceptable time window, but the latest arrival 

time is outside of the acceptable time window of node j, the two customers only partly 

overlap.  The 
ijTWC  is then calculated by the following equation: 

 
ie

jjij alTWC 
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Figure 20: Scenario 1 TWC calculation 
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Scenario 2:  If  𝑎𝑗
𝑒𝑖 < 𝑒𝑗    

If the vehicle arrives at the earliest feasible time and this is before the acceptable time window 

of node j , and the arrival of the latest feasible time at node j is inside the acceptable time 

window, the two customers only partly overlap.  The vehicle has to wait to service customer 

j .  The 
ijTWC  is then calculated by the following equation: 

 j

l

jij eaTWC i 
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e j
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l j
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a j

ei

a j

li

 

Figure 21: Scenario 2 TWC calculation 

Scenario 3:  If  𝑎𝑗
𝑒𝑖 < 𝑒𝑗    and  𝑎𝑗

𝑙𝑖 < 𝑒𝑗     

If the latest arrival time at node j is earlier than the start of the acceptable time window at 

node j, the vehicle always waits at node j , irrespective of the arrival time at node i .  The 

arrival at j  is always before its acceptable start time.  This value will be negative, and 

calculated as follows: 
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Figure 22: Scenario 3 TWC calculation 

Scenario 4:  If  𝑎𝑒 > 𝑙𝑗     and 𝑎𝑙 > 𝑙𝑗       

If the arrival time at j  is always bigger than the latest acceptable time at j , the node-

combination is infeasible.  The nodes forming part of this combination will typically be 

eliminated before starting the algorithm, as they can obviously not be included in the current 

route under construction. 
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Figure 23: Scenario 4 - infeasible combination 
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4.3 Clustering assistance in probability 

The problem formulation in Chapter 2 has referred to clustering as tool in assisting solving 

the complex problem. Cluster analysis has been identified as a core task in data mining. The 

VRP problem has much less entities to cluster than normal data mining problems. Clustering 

can be used to the benefit of the solution, without adding too much calculation overhead. 

Finding a good set of clusters, each one comprising several customer sites, without relying on 

routing information is a quite difficult task. 

The top-down view regards clustering as the segmentation of a heterogeneous population 

into a number of more homogeneous subgroups. A bottom-up view defines clustering as 

finding groups in a data set „by some natural criterion of similarity‟. There are others who 

believe that the fundamental question is if two items are not in the same cluster. Defining the 

similarity between stops depend on the combination of possible routes in the solution, which 

is dependent on cost relation between the stops as well as constraints on the combinations. 

The number and the extent of the clusters built by a clustering algorithm generally depend on 

a set of parameters that can be tuned in one way or another. But this possibility is implicitly 

limited by the similarity measure used for comparing the elements to cluster. We require a 

cost function between entities to indicate the similarity measure. We also consider several 

methods of clustering and argue that the computational time is deterministic ant thus 

measureable to ensure that the computational effort is worth it. 

4.3.1 Review of clustering methods 

Clustering is the process of grouping the data into classes or clusters so that objects within a 

cluster have high similarity in comparison to one another, but are very dissimilar to objects in 

other cluster. Also, the process of grouping a set of physical or abstract objects into classes of 

similar objects is another definition. Clustering can be used to gain knowledge of a data set or 

used as a pre-processing technique for classification. This is the primary goal for the 

algorithm in this study to align with the adaptive object model approach. 

4.3.1.1 Partitioning methods 

This is the most simple of the clustering methods. This categorization could be too broad 

because Clustering is equivalent to Partitioning. The best known method is k-means. It is a 

 
 
 



 
107 

 

basic clustering algorithm that creates circular clusters in 2D and spherical clusters in 3D. It 

creates k clusters centred on a centroid. The centroid is almost always an artificial point. This 

algorithm is extremely sensitive to outliers that are a significant distance away from an actually 

perceived cluster. 

4.3.1.2 Hierarchical Method 

Hierarchical methods group data into a tree of clusters. There are two basic varieties of 

Hierarchical algorithms; agglomerative and divisive. Agglomerative clustering is a bottom up 

strategy where we start at individual data object each in its own group. Then we combine the 

nearest pair of object into a new group. This process of combining closest groups continues 

until we have all the objects in one cluster. Divisive clustering proceeds in the same way 

except that we start out with all data object in one cluster and then we end with all objects in 

separate clusters.   

4.3.1.3 Density Methods 

Density clustering methods are very useful of accurately finding clusters of any shape giving 

the correct (yet hard to determine parameters). Density is obviously determined by how many 

data object are contained within a certain space of the dataset. This means that we need to 

map the data to some sort of graph. 

4.3.1.4 Model Methods 

Conceptual clustering is a form of clustering in AI that given a set of unlabeled objects, 

produces a classification scheme over those objects. Really only works on a specific kind of 

data and a model is formed to cluster that kind of data. 

4.3.2 Clusters and data environment 

Dondo and Cerdá (2006) use a three-phase heuristic algorithmic approach for the multi-depot 

routing problem. The proposed clustering algorithm that exploits time-window constraints to 

generate feasible clusters seems to work well even for R-class problems. The three-phase 

hybrid approach is as robust as the optimization methods and capable of solving problems 

with 100 nodes at reasonable solution time. Numerical results indicate that the cluster-based 

optimization method proved to be quite successful on a variety of Solomon‟s single depot 

homogeneous-fleet benchmark problems and new multi-depot heterogeneous fleet VRPTW 
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instances introduced in their paper. Optimal or near optimal solutions were obtained for a 

significant number of C-class problems of different sizes. For RC and R-class problems, the 

sub-optimal gap increases but it remains within acceptable limits. 

This research follows a similar approach. The aim is to gather enough information that does 

not limit the improvement algorithm in making decision and also contain aggregated 

information to reduce variables and improve speed.  

The two cluster techniques used is partitioning and density clustering. The subsequent 

paragraphs describe the use of specific methods. 

4.3.3 Cluster Methods 

4.3.3.1 DBSCAN  

The key idea of the DBSCAN (Moreira, Santos and Carneiro, 2005) algorithm is that, for 

each point of a cluster, the neighbourhood of a given radius has to contain at least a 

minimum number of points, that is, the density in the neighbourhood has to exceed some 

predefined threshold. This algorithm needs three input parameters: 

- k, the neighbour list size; 

- Eps, the radius that delimitate the neighbourhood area of a point 

(Epsneighbourhood); 

- MinPts, the minimum number of points that must exist in the Eps-

neighbourhood. 

The clustering process is based on the classification of the points in the dataset as core 

points, border points and noise points, and on the use of density relations between points 

(directly density-reachable, density-reachable, density-connected [Ester1996]) to form the 

clusters. 

For each stop, calc all neighbours and sort 

Calculate the average distance between a stop and its closest 

neighbour 

Identify the Directly Density-Reachable (DDR) points, i.e. points 

closer than the threshold Epsilon. 

Create clusters for DDR Points 
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Algorithm 3: DBSCAN 

We replace the concept of distance to that of cost. The DBSCAN algorithm depends on the 

calculation of a centroid for a cluster. This is traditionally calculated as the average x and y in a 

Euclidian space. The concept of location exist in the VRP, but the addition of constraints and 

cost functions complicates the relationship between stops and thus cannot be deemed as 

efficient parameter to use as input for the clustering algorithm. The Shared Nearest 

Neighbour algorithm does not depend on a centroid for a cluster. 

4.3.3.2 Shared Nearest Neighbour algorithm 

The SNN algorithm (Ertöz, Steinbach and Kumar, 2003), as DBSCAN, is a density-based 

clustering algorithm. The main difference between this algorithm and DBSCAN is that it 

defines the similarity between points by looking at the number of nearest neighbours that two 

points share. Using this similarity measure in the SNN algorithm, the density is defined as the 

sum of the similarities of the nearest neighbours of a point. Points with high density become 

core points, while points with low density represent noise points. All remainder points that 

are strongly similar to a specific core points will represent a new clusters. 

The SNN algorithm needs three inputs parameters: 

- K, the neighbours‟ list size; 

- Eps, the threshold density; 

- MinPts, the threshold that define the core points. 

After defining the input parameters, the SNN algorithm first finds the K nearest neighbours 

of each point of the dataset. Then the similarity between pairs of points is calculated in terms 

of how many nearest neighbours the two points share. Using this similarity measure, the 

density of each point can be calculated as being the numbers of neighbours with which the 

number of shared neighbours is equal or greater than Eps (density threshold). Next, the 

points are classified as being core points, if the density of the point is equal or greater than 

MinPts (core point threshold). At this point, the algorithm has all the information needed to 

start to build the clusters. Those start to be constructed around the core points. However, 

these clusters do not contain all points. They contain only points that come from regions of 

relatively uniform density. The points that are not classified into any cluster are classified as 

noise points. 
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Identify the k nearest neighbours for each point 

Calculate SNN similarity between points 

Calculate SNN density of each point 

Detect core points 

Form cluster from core points 

Identify noise points 

Assign the remainder points to the cluster that contains the most 

similar core point 

Algorithm 4: SNN 

4.3.3.3 k-Means 

k-Means is a basic partitioning clustering algorithm that creates circular clusters in 2D and 

spherical clusters in 3D. It creates k clusters centred on a centroid. This centroid is almost 

always an artificial point. This algorithm is extremely sensitive to outliers that are a significant 

distance away from an actually perceived cluster. 

4.3.3.4 k-Medoids 

The k-Medoids algorithm (Park, Lee and Jun, n.d.) is very similar to k-Means with the small 

exception of instead of creating an artificial point to recalculate the mean point, k-Medoids 

recalculates from the nearest actual point in a data set. The reason for this is that it is not 

acceptable to outliers that are extremely far away from it. A very large problem of k-Medoids 

is that it doesn‟t scale very well at all. It does however fit in well with the use of the 

encapsulated cost function in our adaptive approach. K-medoid clustering algorithm is as 

follows: 

The algorithm begins with arbitrary selection of the k objects as 

medoid points out of n data points (n>k) 

After selection of the k medoid points, associate each data object 

in the given data set to most similar medoid. The similarity here 

is defined using distance measure that can be Euclidean distance, 

Manhattan distance or minkowski distance. We translate distance as 

a cost function. 

Randomly select nonmedoid object O’ 

compute total cost , S of swapping initial medoid object to O’ 

If S<0, then swap initial medoid with the new one ( if S<0 then 

there will be new set of medoids) 

repeat steps 2 to 5 until there is no change in the medoid. 

Algorithm 5: k-Medoid 
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4.3.4 Cluster implementation 

Data mining in general is the search for hidden patterns that may exist in large databases. To 

the data environment preparation task at hand, the attractiveness of cluster analysis is its 

ability to find structures. Using the described clustering methods on an unknown data 

environment is insufficient if viewed in isolation. The density clustering methods of 

DBSCAN and SNN is possible in a clustered or random cluster environment. In a random 

environment, all points are either seen as noise, or the result is one cluster. Partitioning 

methods such as K-means and K-medoids will always provide the same number of clusters. 

The challenge is to determine k for the problem environment. 

The SNN method uses the neighbour count to determine cluster density. This method is easy 

to convert to work with the abstract cost functions. It can also handle clusters of different 

densities in one problem environment. This can be applicable to scenarios where stops have a 

high density close to the depot, and a lower density further away. DBSCAN would not be 

able to cluster the lower density areas. 

The subsequent paragraphs provide a brief overview of typical results in the density clustering 

environment. The study approaches the density clustering as the most significant method. We 

argue that if a sufficient cluster solution is found through this method, the initial solution can 

produce a close to final solution combination of stops and the selection of subsequent 

improvement operations can be set to focus on segment combinations instead of stop 

relations.  

The Solomon C class problems are good examples and are discussed in the results section to 

show the effect. The results also indicate the positive effect for other types of problems, even 

on random dispersed problem spaces. 
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Figure 24: DBSCAN cluster 

Figure 24 indicates the result of DBSCAN algorithm on a benchmark set op points. Cluster 4 

can also be viewed as 2 clusters. Because of the definition of DBSCAN and the density 

setting, cluster 4 is seen as one cluster. The density was set low enough to incorporate cluster 

2. The SNN method can be seen as determining its own local cluster density. We can see the 

7 clusters with different densities. 
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Figure 25: SNN cluster 

We reason that the density cluster method an indication is on the type of environment. 

Setting the parameters according to the average „cost‟, we deduce that if all points belong to a 

cluster, then we work with a clustered environment. If the percentage of noise is not too big, 

it is probably a random clustered environment. If we reduce the minimum points required, we 

hope to identify chains that are used in the stop neighbour list. 

4.4  Construction Heuristic 

The initial solution builds a first round set of routes that is normally used in the improvement 

stage. Initial solutions tend to follow a greedy algorithm approach which enables them to 

reach a feasible solution. The execution time is a fraction of the solution time. 

The initial solution influences the improvement stage drastically. It is shown that good initial 

solution can assist in achieving a quicker convergence. We identify three goals for our initial 

solution: 
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 High quality – this does not necessarily mean the cost of the solution should be low. 

The focus is on the initial solution‟s result that is taken into the improvement stage. 

The better the combinations, the faster the improvement. 

 Initialize parameters – the improvement phase is sensitive to parameters required. 

The initial solution must assist in accurately set the required decision parameters 

depending on the information gained.   

 Setup memory structures – the information gained during the initial solution stage 

contains valuable hints that must be utilised by the improvement phase.  

The initial solution can be aligned by the developer with the environment by adjusting 

selection criteria from information available in the problem domain. This thesis is not build 

on a known environment or for a specific problem type.  

Marius Solomon was one of the first researchers to consider the VRPTW.  He designed and 

analysed a number of algorithms to find initial feasible solutions for the VRPTW (Solomon, 

1987).  His sequential insertion heuristic (SIH) gave very good results in most environments, 

and most current heuristic methods make use of this heuristic (or a variation thereof) to 

effectively find a feasible starting solution. 

Each customer i has a known demand qi to be serviced (either for pickup or delivery) at time 

bi chosen by the carrier. Because time windows are hard, bi is chosen within a time window, 

starting at the earliest time ei and ending at the latest time li that customer i permits the start of 

service. A vehicle arriving too early at customer j, has to wait until ei. If tij represents the direct 

travel time from customers i to customer j, and si the service time add customer i, then the 

moment at which service begins at customer j, bj, equals max{ei, bi + si + tij } and the waiting 

time wi is equal to max{0, ej – (bi + si + tij) }. 

After initialising the route, the insertion criterion c1 (i, u, j) determines the cheapest insertion 

place for all remaining, un-routed customers between two adjacent customers i and j in the 

current partial route (i0, i1, …, im). Each route is assumed to start and end at the depot i0 = im. 

The indices p = 1, … ,m are used to denote a customer‟s position in the route. The insertion 

cost is a weighted average of the additional distance and time needed to insert the customer in 

the route.  
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Inserting customer u between i and j increases the length of the route by the distance 

insertion, diu + duj - mdij. After inserting a customer u between the adjacent customers i and j, a 

push forward can be calculated for each consecutive node k, 

 PFk = bk
new - bk 

in which bk (bk
new) denotes the beginning of service at customer k in the route before (after) 

inserting customer u. The value of PFk is maximal for the direct successor k = j of u. The 

sequential insertion heuristic uses the maximal push forward to measure the time needed to 

insert customer u in the route, the so called time insertion. 

The next step of the sequential insertion heuristic decides on which customer to insert the 

route. The selection criterion c2 (i, u, j) selects the customer for which the cost difference 

between insertion in the current or a new route is the largest. This customer is inserted in its 

cheapest insertion position in the current route. If all remaining un-routed customers have no 

feasible insertion positions, a new route is initialised and identified as the current route. 

We extend the Solomon criteria by utilising the neighbour stop information in testing for a 

suitable stop to add to the route. Using only stops that have a feasible probability value reduce 

the number insertion positions to test for each stop. When testing for the insertion position 

in the current route fails because of the probability, inserting customer u between adjacent 

nodes for the rest of the route will fail as well. This method will increase the speed of the 

construction heuristic without diminish the quality of the result. 

The algorithm is extended in a bi-directional manner. The criterion c1 (i, u, j) is extended to 

criterion c1 (k, u, i) which represents the insertion of a possible neighbour before stop i. The 

set from which  u is selected is based on the probability order and improvement direction of 

the result, 𝑢 ∈ 𝑁(𝑥𝑖). The algorithm tests the best possible candidates first and then 

monitors the effect of the subsequent candidates that is ordered from best to worst. If no 

improvement was achieved in a certain number of iterations, the algorithm terminates the 

cycle of testing c1 and continues to the next step. 

We also extend the criteria by a Push Backward if a customer is inserted  between the depot 

and the first customer as proposed by Dullaert and Bräysy (2003). If customer u is inserted 
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between the depot i0 = i and the first customer i1 = j, a push backward is introduced in the 

schedule.  

Since all vehicles are assumed to leave the depot at the earliest possible time ei, and travelling 

from i to j takes tij units of time, a waiting time of max{0, ej – tij } is generated at j = i1. Unlike 

the waiting time at all other customers ,ri p r m   in the route, it is fictitious. After 

finishing the route, it can be eliminated by adjusting the depot departure time.  

High waiting times stored at customers that used to be scheduled at the first position during 

the solution construction, cannot be removed this easily. By assuming all vehicles leave the 

depot at e0 and by equalling the time insertion to the maximum push forward, the time needed 

to insert a customer before i1 = j can be underestimated. It may even be wrongly equalled to 

zero. 

Select seed node, most expensive from depot 

While n < 5 

For each stop i in route 

 Select neighbour n of stop i on the list 

 Insert after stop i 

 If cost > bestcost then set bestcost 

end for 

n++ 

end while 

if calculated cost of new stop on own route > delta cost 

 insert stop on route 

Algorithm 6: Adapted PFSIH 

Algorithm 6 highlights the internal workings of the adapted push forward sequential insertion 

heuristic. The general technique for implementing a SIH algorithm selects a non-routed stop 

and tests the stop on each position on the route. This adaption visits each position in the 

route, but alters the stop being tested to be inserted. The sequence of stops being tested after 

a specific route stop is determined from an ordered list of non-visited neighbours. 
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Figure 26: Adapted PFSIH 

From Figure 26 we can construct the following table: 

Stop Neigh 1 Neigh 2 Neigh 3 Neigh 4 

1 A C B D 

2 D C B A 

Depot A D C B 

Table 4: Adapted PFSIH Example 

If we assume stop 1 and 2 has already been added to the route, the algorithm will test (1,A), 

(2,D), (Depot,A), (1,C), (2,C), (Depot, D) etc. until the best level found is less than the 

current threshold minus a constant c. If c = 3 in this scenario, we can see that the algorithm 

will not test neighbours in column 4. 

Although this method is used to setup an initial solution, it can also be adjusted to depend on 

the probability matrix that was influenced by other operations. The initial solution is build 

after the probability matrix has been constructed and the environment analysis has been done. 

The ordered neighbour list that is used for testing can be done on the probability and not the 

cost. 

This greedy approach that also relies on some environmental info provides us with an initial 

solution that is aligned for improvement as well as indicative of trends. The simplicity of the 

algorithm ensures a fast execution time.  
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4.5 Tabu Search 

The Tabu Search method is used as a local search technique. A distinguishing feature of Tabu 

search is its exploitation of adaptive forms of memory, which equips it to penetrate 

complexities that often confound alternative approaches. The rich potential of adaptive 

memory strategies is only beginning to be tapped, and the discoveries that lie ahead promise 

to be as important and exciting as those made to date. Principles that have emerged from the 

Tabu Search framework give a foundation to create practical systems whose capabilities 

markedly exceed those available earlier. Conspicuous features of Tabu search are its dynamic 

growth and evolving character, which are benefiting from important contributions by many 

researchers. 

Tabu search provides a range of strategic options, involving various levels of short term and 

long-term memory. Consequently, it can be implemented in corresponding levels ranging 

from the simpler to the more advanced. Generally, the more advanced versions exhibit the 

greatest problem solving power, though simple ones often afford good results as well. The 

convenience of building additional levels in a modular design, allowing a Tabu Search 

procedure to be evolved from the "ground up," is a feature that also provides a way to see 

and understand the relevant contributions of different memory based strategies. 

Implementing a specific strategy for the specified problem is complicated by the fact that we 

cannot or should not rely on the manner of the problem. As mentioned in the introduction, 

input data can vary from long haul to short haul, long time windows or short multiple time 

windows, heterogeneous fleet of similar fleet. To solve the VRP with all its side constraints 

and unpredictable input data, we implement new operations and add some statistical selection 

method in the guidance algorithm. 

4.5.1 Move Operators 

Some meta-heuristics maintain at any instant a single current state, and replace that state by a 

new one. This basic step is sometimes called a state transition or move. The move is uphill or 

downhill depending on whether the objective function value increases or decreases. The new 

state may be constructed from scratch by a user-given generator procedure. Alternatively, the 

new state be derived from the current state by a user-given mutator procedure; in this case the 

new state is called a neighbour of the current one. Generators and mutators are often 
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probabilistic procedures. The set of new states that can be produced by the mutator is the 

neighbourhood of the current state. 

4.5.1.1 Insert Operator 

The insert operator tries to insert an orphan stop into an existing route. The method loops 

through the orphan list of the current solution and calculates a best insertion position. The 

orphan stop‟s neighbours are tested for insertion cost. This is done by selecting a neighbour, 

determining the route the neighbour belongs to and calculates the cost of inserting the 

orphan stop after the neighbour. If the neighbour is an orphan itself, the test is not done.   

The method locates a set of closest geographic neighbours from the stop and tests the validity 

of the insertion of the orphan stop after the neighbour stop. The move is accepted if the 

insertion is valid. 

 

S1 E1

Unrouted Stops

 

Figure 27: Insert Operation 

4.5.1.2 Tour depletion operator 

The purpose of this move is to reduce the number of vehicles required to serve all the stops. 

If it is possible to remove a vehicle, the probability that total distance will decrease is high. It 

might not be the result in some situations, but the heuristic also depends on diversification. 

The procedure looks for the vehicle that contains the least number of stops allocated to 

routes for the vehicle and is not Tabu. We qualify the routes of a vehicle for removal if the 

number of stops is less than a percentage of the average number of stops in all the vehicle 

routes. This is done on the assumption that stops and vehicles have similar characteristics. 

The difference between stops in terms of volume is assumed to be in a reasonable tolerance.  

The first step is to select a tour for depletion according to the criteria specified. 
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Figure 28: Tour Depletion Step 1 

The tour is removed from the solution and the stops belonging to the tour is added to the 

orphan list. 

  

Figure 29: Tour Depletion Step 2 

The insert operator is executed to insert the newly created orphans into existing routes. 
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Figure 30: Tour Depletion Step 3 

An additional criterion for the tour depletion operator to execute is the non-existence of 

orphans in the solution. We implement the logic before we even start with actions on the 

operator, as we assume that if an orphan exists, the current solution is already in such a state 

that the current route vehicles cannot service all the stops. The meta-heuristic guidance 

algorithm must execute other operations to optimise the solution that tour depletion is 

possible. 

4.5.1.3 Relocate operator 

The relocate operator (Or-opt) removes one stop from a route and inserts it into another 

route. The implementation group routes to a vehicle and therefore we randomly select a 

vehicle to add a stop to. Next we randomly select one of the vehicle routes. For each stop on 

the current vehicle route, an attempt is made to insert a neighbour of the current stop on the 

current vehicle route. The neighbour is relocated from its route to the current route. 

The relocate operator can relocate a stop from the same route to another position. 

 

S
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Figure 31: Relocate on same route 
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Or relocate a stop from one route to another. 
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Figure 32: Relocate between routes 

4.5.1.4 Exchange Operator 

The exchange operator randomly selects a vehicle and corresponding route. The neighbours 

of the selected route‟s stops are tested for exchange between the corresponding routes. The 

operator acts on single stops from different or same routes only. 

 

S

E  

Figure 33: Exchange on single route 

The exchange from one route to another simulates a relocate from the one route to the other 

and vice versa. 
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Figure 34: Exchange between routes 
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4.5.1.5 Cross operator 

This operator cuts two routes at a position and swaps the second part of the routes. This is 

done by selecting a source vehicle and a source route randomly. Each stop in the source route 

is tested for the move. The stop‟s neighbours are tested for validity by checking if the stop is 

not on the same route. If not, the source route consisting of the stops up to the selected stop 

is combined with the target route consisting of the stops from the neighbour stop to the end 

to form a new route. The second new route consist of the target route from the beginning to 

the stop before the neighbour stop and the source route from the stops after the selected stop 

to the end. If the swap is valid in the current Tabu environment, it will be accepted. 
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Figure 35: Cross operation 

4.5.1.6 Vehicle Fit 

This operator exchange vehicles on routes. The operation is added to handle the 

heterogeneous fleet optimization problem. A vehicle can be swapped between routes if the 

capacity and time windows allow for the routes qualify. 

If there exists vehicles that have not been used, the vehicles can be tested on existing routes 

to result in better optimization. Tour depletion can result in a more effective vehicle to 

become available, and the vehicle fit operator will reinsert an available vehicle in the solution. 

4.5.1.7 Operator probability 

The standard Tabu heuristic is extended with a meta control system on the selected 

operations. On start of the algorithm, each operator is assigned a weight. All operators start 

out as equal in the Tabu only solution. In this study, it can differ because of the knowledge 

gained from the pre-analysis as well as construction heuristic result.  

The specific move‟s probability increases by a constant factor after each successful iteration. 

The probability is set not to exceed a specific upper bound and because the initial probability 
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is never reduced, a specific operator will always have likelihood to execute. This memory 

structure adds an additional dimension to the control of the algorithm. It reacts purely on the 

output from the move and the decision for the increase is localised to the operation itself. 

The controlling algorithm which has the ability to select the operation for the next move can 

use the probability distribution as indicator. 

4.6 Simulated Annealing 

Simulated Annealing searches the solution space by simulating the annealing process in 

metallurgy (Qili, 1999). The algorithm jumps to distant location in the search space initially. 

The size of the jumps reduces as time goes on or as the temperature “cools” down. 

Eventually the process will turn into local search descent method. 

One of its characteristics is that for very high temperatures, each state has almost equal 

change to be the current state. At low temperatures only states with low energy have a high 

probability of being the current state. These probabilities are derived for a never ending 

executing of the metropolis loop.   

In the modified version of SA, the algorithm starts with a relatively good solution resulting 

from a construction heuristic. Initial temperature is set at TS = 100, and is slowly decreased by 

  1 1( ) /(1 )k k kT T T  
 

Equation 3: Cool down tempo 

Where Tk is the current temperature at iteration k and t is a small time constant. The square 

root of Tk is introduced in the denominator to speed up the cool process. Here we use a 

simple monotonously decreasing function to replace the 1/log k scheme. It is found that the 

scheme, gives fairly good results in much less time. The algorithm attempts solutions in the 

neighbourhood of the current solution randomly or systematically and calculates the 

probability of moving to those solutions according to: 

( / )
( ) kT

P accepting amove e


  

Equation 4: Solution acceptance probability 
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This is a modified version of the annealing equation, where = C‟(S) - C(S), C(S) is the cost 

of the current solution and C‟(S) is the cost of the new solution. If 0   the move is always 

warranted. One can see that as the temperature cools, the probability of accepting a non-cost-

saving move is getting exponentially smaller. When the temperature has gone to the final 

temperature T = 0.001 or there is no more feasible moves in the neighbourhood, we reset the 

temperature to 

max( / 2, )r s bT T T
 

Equation 5: Reset temperature 

where Tr is the reset temperature, and was originally set to Ts, and Tb is the temperature at 

which the best current solution was found. Final temperature is not set at zero because as 

temperature decreases to infinitesimally close to zero, there is virtually zero probability of 

accepting a non-improving move. Thus a final temperature not equal but close to zero is 

more realistic.  

4.7 Ant Algorithms 

Observations on real ants searching for food were the inspiration to imitate the behaviour of 

ant colonies for solving combinatorial optimization problems. Real ants are able to 

communicate information concerning food sources via an aromatic essence, called 

pheromone. They mark the path they walk on by laying down pheromone in a quantity that 

depends on the length (cost) of the path and the quality of the discovered food source. Other 

ants can observe the pheromone trail and are attracted to follow it. Thus the path will be 

marked again and will therefore attract more ants. The pheromone trail on paths leading to 

rich food sources close to the nest will be more frequented and will therefore grow faster. 

The described behaviour of real ant colonies can be used to solve combinatorial optimization 

problems by simulation: artificial ants searching the solution space simulate real ants searching 

there environment, the objective values correspond to the quality of the food sources and an 

adaptive memory corresponds to the pheromone trails. In addition, the artificial are equipped 

with a local heuristic function to guide their search through the set of feasible solutions. 
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It is useful to list some broad behavioural categories which might be classified as collective 

intelligence, or swarm intelligence (Millonas, 1992). These may be thought of as evolutionary 

principles of selection, and are not intended to be definitive.  

 The first is the proximity principle. The group should be able to do elementary space 

and time computations. Since space and time translate into energy expenditure. 

 Second is the quality principle. The group should be able to respond not only to time 

and space considerations, but to quality factors, for instance, to the quality of 

foodstuffs or safety of location. 

 Third is the principle of diverse response. The group should not allocate all of its 

resource along excessively narrow lines. It should seek to distribute its resources along 

many modes as insurance against the sudden change in any one of them due to 

environmental fluctuations. 

 Fourth is the principle of stability. The group should not shift its behaviour from one 

mode to another upon every fluctuation of the environment, since such changes take 

energy, and may not produce a worthwhile return for the investment. 

In this thesis we utilize the concept of the ant system to solve the VRP. In the traditional way to 

solve the VRP, the artificial ants construct vehicle routes by successively choosing cities to 

visit, until each city has been visited. Whenever the choice of another city would lead to an 

infeasible solution for reasons such as vehicle capacity or total route length, the depot is 

chosen and a new tour is started. For the selection of a (not yet visited) city, two aspects are 

taken into account: how good was the choice of that city, information that is stored in the 

pheromone trails 𝜏𝑖,𝑗  associated with each arc (𝑣𝑖 , 𝑣𝑗 ), and how promising is the choice of 

that city. This latter measure of desirability, called visibility and denoted by 𝜂𝑖𝑗 , is influenced 

by factors calculated from previously discussed tools. In the case of the VRP on Solomon‟s 

benchmark, the desirability is defined as the reciprocal of the distance, i.e. 𝜂𝑖𝑗 = 1/𝑑𝑖𝑗 .  

With Ω =   𝑣𝑗 ∈ 𝑉 ∶  𝑣𝑗  𝑖𝑠 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑡𝑜 𝑏𝑒 𝑣𝑖𝑠𝑖𝑡𝑒𝑑  ∪  𝑣0 , stop 𝑣𝑗  is selected to be 

visited after stop 𝑣𝑖according to a random-proportional rule in that can be stated as follows: 
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𝑝𝑖𝑗 =  
[𝜏𝑖𝑗 ]𝛼 [𝜂 𝑖𝑗 ]𝛽

 [𝜏𝑖𝑗 ]𝛼 [𝜂 𝑖𝑗 ]𝛽ℎ∈Ω
  if  𝑣𝑗  ∈  Ω, 0 otherwise 

Equation 6: Random-proportional rule 

This probability distribution is biased by the parameters α and β that determine the relative 

influence of the trails and the visibility, respectively. 

After an artificial ant k has constructed the feasible solution, the pheromone trails are laid 

depending on the objective value 𝐿𝑘 . For each arc  𝑣𝑖 , 𝑣𝑗   that was used by the ant k, the 

pheromone trail is increased by ∆𝜏𝑖𝑗
𝑘 = 1/𝐿𝑘 . In addition to that, all arcs belong to the so far 

best solution (objective value 𝐿∗ ) are emphasised as if σ ants, so called elitist ants had used 

them. One elitist ant increases the trail intensity by an amount ∆𝜏𝑖𝑗
∗  that is equal to 1/𝐿∗ if arc 

 𝑣𝑖 , 𝑣𝑗   belongs to the so far best solution, and zero otherwise. Furthermore, part of the 

existing pheromone trails evaporates (𝜌 is the trail persistence). Thus, the trail intensity is on 

update according to the following formula, where m is the number of artificial ants: 

𝜏𝑖𝑗
𝑛𝑒𝑤 =  𝜌𝜏𝑖𝑗

𝑜𝑙𝑑 +   ∆𝜏𝑖𝑗
𝑘  

𝑚

𝑘=1

+  𝜎∆𝜏𝑖𝑗
∗  

Equation 7: Pheromone intensity update 

The constructive method of building the routes, forces the initial placement of ants at each 

stop. The implication for the implementation of this Ant System on the VRP is that as many 

ants are used as there are customers in the VRP, and that one ant is placed at each customer 

at the beginning of iteration. After initialising the basic ant system algorithm, the two steps 

construction of vehicle routes and trail update, are repeated for a given number of iterations. 

This solution might be sufficient for the travelling salesman problem, but is no where 

efficient enough for a complex VRP problem. 

This constructive methodology does not support an efficient heuristic approach. The side 

constraints of the VRP contribute to the complexity of valid stop selection in the latter part 

of the route. The combinations of selected stops do not necessarily result in a good solution 

because of the structure of the environment. In a low constraint impact scenario, i.e. where a 
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stop has a number of possible neighbours, the constructive method can result in good and 

even good enough solutions, because of the possible combinations still left at the latter part 

of the route. On the other end of the spectrum, where constraints are strict, the method can 

also result in good solutions because of the limited number of combinations that exist in any 

case across the entire solution. 

The methodology of using ants to build routes has to be extended to allow for a feasible 

methodology. Let us consider the analogous between the first research of termites by Eugene 

Marais and the level of implementation achieved. While observing the natural behaviour of 

these creatures, he noticed that firstly, the whole termitarium had to be considered as a single 

organism whose organs work like those of a human being. The queen was the brain and the 

womb; the workers were mouthparts and tissue builders; the soldiers were the white blood 

cells and the humus gardens were the stomach. Then secondly, he noticed that the actions 

within the termitarium were completely instinctive. 

Compared to this, the current ant approach is just half a brain and mouthparts. This study 

improves on the implementation approach, and not just on the formulas used to calculate the 

pheromone trial, which determine the selection criteria. The consideration of the problem 

environment, as well as the creative construction methods build up the new body. 

It is important to realise that the real world ant problem has the major advantage to ignore 

poor trials. This can be translated in the VRP to the generation of orphans when the stops are 

just too costly. The idea seems lucrative in defining business on a strategic level. This study 

does not allow orphans as part of the solution. The design of such a solution has an impact 

on the objective function that can be handled by this solution approach, but the impact on 

the search algorithm is not considered in this study. It can be investigated in further studies. 

Studies of the foraging behaviour of several species of real ants revealed an initial random or 

chaotic activity pattern in the search for food. Traditional two stage approach in the VRP 

suggests that the initial solution should be as good as possible. In this study we revert back to 

the scientists‟ suggestion and emphasised the importance of the initial preparation. A „good‟ 

initial solution is redefined from the traditional value based evaluation.  The convergence to a 

good solution is dependent on the common iteration between the various ants. The 

recruitment mechanism differs for different species, although the most common use is the 

pheromone trial. 
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Hybridisation in general means combining ideas of several different methods in one 

approach. Such proceeding is common practice for hard combinatorial optimisation 

problems and has been successfully applied to other problems. We define the hybridisation as 

different functions by different body parts in the ant system. The environment influences the 

brain to use certain parts of the body more than other, or in combination with other.  

Mapping our solution to the human body analogy of Marais, the following ants with their 

associated memory structures are defined in the system: 

 Queen – The queen is the brains of the operation. This ant is represented by the Ant 

System Class and is responsible for controlling all actions. 

o Simulated Annealing – the queen utilise the adapted SA approach as described 

in a previous paragraph to guide the goals of the scouts and workers. 

o Probability – the queen control the overall probability matrix gained from all 

ants. The probability value is based on an extended formula on the traditional 

pheromone calculation. 

o Environment – the queen deduces the environment from statistical data and 

scout ants. 

o Parallel – the queen controls the parallel processing of all ants. 

 Scouts – Scouts are defined as ants that do a random chaotic search, to ensure that 

divergence is achieved. Scouts do have a certain level of intelligence and can control 

subordinates from their knowledge gained. 

o Initial solution – the scout‟s main function is to construct an initial solution 

base to work form. 

o Clusters – the scouts use the clusters as indication of areas of similarity. 

o Inverse pheromone – the scouts use the provided pheromone trial as tabu 

area to ensure convergence. 

 Soldiers – Soldiers are responsible for the optimisation of the current operations. 

Soldiers are also equipped with some specific level of intelligence which is used to 

guide the workers. 
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o Local heuristic – the soldiers use the Tabu search heuristic to improve on the 

solutions. 

 Workers – Workers are responsible to build the empirical proof of the solution. The 

aim is that they do not have intelligence over a group, but is focussed on their 

immediate environment. 

o Pheromone trial – the workers build routes through a traditional pheromone 

trial. 

o Memory – the workers react on memory set by themselves as well as fed 

down from their controlling ant. 

The subsequent diagram in Figure 36 depicts the relation between the entities. It can be 

viewed as a hierarchal system. 

 

Figure 36: Ant type relations 

The aim of the ant solution is the principle of locality. The behaviour of the individual 

organisms will be determined solely by local influences. This means that the individual 

organisms will not have any memory, non-local navigational skills, or any type of behaviour 

that involves storage of internal information. Any information flow must then be a product of 

the collective behaviour. The communication between the different types of ants is to 

influence the local stored information. 
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4.8 Solution Algorithm 

This section summarise the algorithm designed in this study. Literature has shown that 

methods like Tabu are still superior to new agent-based approaches. Results will show that the 

intelligent implementation of agents and controlling the relations between them can both 

utilise proven local methods, but also increase the time to find a good solution in real-world 

applications. The Solomon benchmark problems are used as a base, and several other 

problem spaces are solved to show the flexibility of the algorithm.  

The difference between an agent based approach and typical Tabu searches is not that clear 

cut. We argue that the agent based approach is a conceptual structure that assists with the 

management of the typical adaptive memory. The agent based approach also add another 

dimension, the inter agent communication layer. This approach assists in the component 

orientated design approach and compliments the use of adaptive objects. 

The principle of locality is tricky to implement. The approach is to ensure that an intelligent 

ant is well defined, i.e. it is familiar with all parameters available to use and how to react. The 

inter ant communication can influence the local parameters. We reason that a too simplistic 

implementation of a pheromone trial will not suffice as a practical approach to our problem. 

Creating a more complex structure is necessary, but it can be done on a different layer to 

ensure the problem complexity is still manageable.   

Read problem space from adaptive provider. 

Create solution space from problem space 

 Calculate a best possible cost matrix 

 Deduct a probability matrix from cost matrix 

Evaluate environment 

 Count number of possible neighbours per stop 

 Calculate average, best and worst cost per stop 

 Compare values with neighbour and overall stops 

Apply environment result on probability matrix 

 Decrease probability on unlikely stops 

Solve 

 Initial solution 

 Improvement solution 

Algorithm 7: Solution Approach 
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Algorithm 7: Solution Approach defines the outline of our Ant System on Adaptive Objects 

(ASAO) algorithm. It is important to keep in mind that the algorithm is build on top of an 

adaptive object model. It has to provide the guideline to the problem space elements on how 

it could be used optimally, i.e. when are the function calls to the object cost functions. 

 

Figure 37: Ant System on Adaptive Objects - 
ASAO 

Algorithm 8 represent a pseudo version on high-level for the ASAO algorithm. 
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Step 1. Build solution workspace from problem space. 

a. Build best cost matrix 

b. Build initial probability matrix 

c. Create routable stops and vehicles 

d. Build environment summary 

Step 2. Initialise ASAO  

Step 3. Send out scouts 

a. Constructive ant best accept 

b. Constructive ant second best accept 

c. Constructive ant random accept 

d. Constructive ant adapted neighbour insertion 

Step 4. Evaluate results and update memory structures 

Step 5. Apply selective soldiers on selective solutions 

Step 6. Evaluate best solutions, if improvement deemed 

possible, go to 4 

Step 7. If improvement stabilize, go to 3 

Step 8. Update possible final solution list 

Step 9. If number of iterations < max number go to 3. 

Step 10. Return final solution list. 

 

Algorithm 8: ASAO 

The final result consists of a list of possible solutions that represent a dissimilar solution. 
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4.9 Summary 

The solution algorithm depends on the collaboration between several existing techniques. 

The agent based approached, build on an ant colony optimisation technique, assist in 

mimicking a multi-agent approach that has strong ties to physical examples which can be 

empirically proofed.  

Solving an already complex problem is an unknown environment requires a hybrid of more 

than one approach. The multi-start initial solution approach provides a good starting point 

for the improvement phase. It also influence the memory structure used in the improvement 

phase, which kick start the improvement phase with knowledge gained. 

The combination of an ant pheromone trial and tabu list results in a dual contradictory 

memory list. The pheromone indicates the better moves, but the tabu control the overall use 

of these combinations. The implementation of both these lists allows the control mechanism 

to determine convergence and diversification without explicit events set.  

The methods used in this solution consist of well known understood approaches. The 

powerful use of memory structures to guide the algorithm in an unknown domain is what 

makes this solution successful. 
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5 ENVIRONMENT ANALYSIS - RESULTS 

5.1 Overview 

This chapter discuss examples of the results achieved from specific methods selected in the 

study. It explains the environments and compares results of different methods for the 

different environments. 

The results are based on the implementation of Solomon‟s cost and constraint function. This 

implementation is sufficient to prove other implementations on the adaptive object model. 

The next paragraph defines our implementation method for the Solomon cost functions. 

5.2 Solomon Functions 

Solomon generated six sets of problems.  Their design highlights several factors that affect 

the behaviour of routing and scheduling algorithms.  They are: geographical data; the number 

of customers serviced by a vehicle; percent of time-constrained customers; and tightness and 

positioning of the time windows.  

The geographical data are randomly generated in problem sets R1 and R2, clustered in 

problem sets C1 and C2, and a mix of random and clustered structures in problem sets by 

RC1 and RC2. Problem sets R1, C1 and RC1 have a short scheduling horizon and allow only 

a few customers per route (approximately 5 to 10). In contrast, the sets R2, C2 and RC2 have 

a long scheduling horizon permitting many customers (more than 30) to be serviced by the 

same vehicle.  

The customer coordinates are identical for all problems within one type (i.e., R,  C and RC).  

The problems differ with respect to the width of the time windows.  Some have very tight 

time windows, while others have time windows, which are hardly constraining.  In terms of 

time window density, that is, the percentage of customers with time windows, he created 

problems with 25, 50, 75 and 100 % time windows.  

The larger problems are 100 customer Euclidean problems where travel times equal the 

corresponding distances.  For each such problem, smaller problems have been created by 

considering only the first 25 or 50 customers.  
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The implementation requires us to define the domain model as well as the cost and constraint 

functions for Solomon. Solomon implements a basic VRPTW problem. The following 

diagram represents the implemented stop class used in the solution.  

-ID : int

-x : double

-y : double

-VisitTimeWindows : TimeWindow

-ServiceTime : double

-Demand : double

«implementation class»

Solomon::SolomonStopData

 

Figure 38: Solomon Domain Instance 

Solomon constraints include the following checks: 

 Time Windows – each stop has an open and close time window in which the stop 

must be services. Time windows create a wait time that must be considered in the cost. 

 Volume – there exist a capacity constraint on each vehicle used in the solution. The 

volume creates a service time at a stop which can be considered at the cost function. 

Distance in Solomon does not have a constraint, but to improve cost calculation, distance 

changes can be updated during a constraint check as constraints are called with a special 

instruction. Each routestop implements an abstract of the RouteStopData class which acts as 

special container for specific implementations. The Solomon implementation can be defined 

as follows: 

-VisitTime : TimeWindow

-WaitTime : double

-Load : double

-Distance : double

-Cost : double

«implementation class»

Solomon::SolomonRouteStopData

 

Figure 39: Solomon RouteStopData 
implementation 

 
 
 



 
137 

 

This adaptive implementation class extends the algorithm memory which contributes to 

efficiency. The effect of the implementation depends on the implementer‟s knowledge of the 

problem domain. The attributes of this Solomon implementation class is as follows: 

 Visit Time – the arrival and departure time of the vehicle at the specific route stop for 

the specified route. 

 Wait Time – the time a vehicle is too early and has to wait for the closest forward 

opening time to occur. 

 Load – the total load on the vehicle for the route to the specific stop. 

 Distance – the total distance travelled for the route to the specific stop. 

 Cost – the total cost incurred for the route to the specific stop. 

The efficiency of the adaptive model can now be explored. These structures allow the 

operator to implement effective methods for calculating cost and checking constraints. The 

knowledge the operator has of the problem environment can assist in implementing another 

level of meta heuristic. The basic rules followed in this thesis for Solomon is as follows: 

1. Changes to a route on the stop list impacts only attributes of route stops after the 

stop. 

2. Solomon use Euclidean distance and time which comply to the triangular rule:  

𝑑𝑖𝑗 ≤ 𝑑𝑖𝑘 + 𝑑𝑘𝑗 . 
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5.3 Probability matrix 

The probability matrix is an important memory structure which guides the algorithm. The 

analysis of the environment is used to assist in the evaluation of the surface chart shape of 

possible neighbouring solutions. Constraints such as time windows contribute to the shape of 

possible solutions. The results display some common patterns that exist in the benchmark 

problems. 

 Depot Stop 1 Stop 2 Stop 3 Stop 4 Stop 5 Stop 6 Stop 7 Stop 8 

# Neighbours 
from stop 100 3 9 97 15 98 29 75 68 

Sum of cost 2885 76 226 3109 368 3106 874 2443 2295 

𝒎𝒊𝒏 𝑷(𝒙𝒊𝒋) 11% 88% 83% 13% 78% 12% 67% 31% 36% 

𝒎𝒂𝒙 𝑷(𝒙𝒊𝒋) 90% 90% 90% 90% 90% 90% 90% 90% 90% 

 
         # Neighbours 

to stop 100 93 88 15 80 2 76 21 32 

Sum of cost 2885 3133 3061 410 2749 20 2622 620 1018 

𝒎𝒊𝒏 𝑷(𝒙𝒊𝒋) 54% 40% 38% 42% 40% 70% 39% 42% 40% 

𝒎𝒂𝒙 𝑷(𝒙𝒊𝒋) 120% 90% 90% 90% 90% 90% 90% 89% 90% 

Table 5: C105 Statistic summary extract 

The first column indicates that each stop is reachable from the depot. If this was not true, we 

were faced with an infeasible solution space. The average cost per stop can be used as 

benchmark for other stops. The rest of the columns represent the statistics per stop. The 

extract in Table 5 is only for stop 1 to 8 in Solomon‟s C105 problem. The summary provides 

an indication of the influence of constraints on the problem and it can be clearly deducted 

that constraints effect varies from stop to stop.  

Stop 1 has the definite ability to only go to 3 other stops, while 93 other stops can have stop 1 

as a subsequent neighbour. The probability distribution between the 3 possible subsequent 

stops is between 88% and 90%, which can be seen as high enough to know that the 

likelihood of all of the 3 stops to be the neighbour in the final result. These values are used in 

the pheromone trial. The statistic can immediately be applied on the initial pheromone trial. 

The significant difference between from and to stop statistics indicate on a reduced number 

of good solutions that exist. It supports the intuition that a good or even best solution can be 

 
 
 



 
139 

 

reach through a limited number of moves. The statistics does not reveal anything clear on 

groups of stops, and is used in guiding the improvement stage. 

 Depot Stop 1 Stop 2 Stop 3 Stop 4 Stop 5 Stop 6 Stop 7 Stop 8 

# Neighbours 
from stop 100 31 99 56 34 99 70 86 75 

Sum of cost 2495 849 2919 1696 1078 2920 1834 2618 2549 

𝒎𝒊𝒏 𝑷(𝒙𝒊𝒋) 11% 65% 12% 46% 63% 12% 35% 22% 31% 

𝒎𝒂𝒙 𝑷(𝒙𝒊𝒋) 90% 90% 90% 90% 90% 90% 90% 90% 90% 

 
         # Neighbours 

to stop 100 99 48 84 99 38 77 66 73 

Sum of cost 2495 2832 1407 2774 3433 1065 1993 1959 2347 

𝒎𝒊𝒏 𝑷(𝒙𝒊𝒋) 52% 45% 37% 34% 30% 36% 42% 38% 31% 

𝒎𝒂𝒙 𝑷(𝒙𝒊𝒋) 93% 90% 87% 90% 89% 87% 90% 89% 90% 

Table 6: R205 Statistic summary extract 

The statistics predicts what we already know from the domain environment of the R205 

problem. The number of stops from and stops to as neighbours are much more evenly 

spaced, which indicates more options of combinations and thus a bit more difficult to deduct 

an optimal solution from limited moves. The difference between the minimum and maximum 

probability does however indicate that quality of combination can be used to influence 

decision making on moves. The pheromone trial can immediately reflect these properties. 

 Depot Stop 1 Stop 2 Stop 3 Stop 4 Stop 5 Stop 6 Stop 7 Stop 8 

# Neighbours 
from stop 75 74 74 74 74 74 74 74 74 

Sum of cost 1815 2343 1933 2242 1830 2325 1856 2118 2140 

𝒎𝒊𝒏 𝑷(𝒙𝒊𝒋) 11% 12% 12% 12% 12% 12% 12% 12% 12% 

𝒎𝒂𝒙 𝑷(𝒙𝒊𝒋) 90% 90% 90% 90% 90% 90% 90% 90% 90% 

 
         # Neighbours 

to stop 75 74 74 74 74 74 74 74 74 

Sum of cost 1815 2343 1933 2242 1830 2325 1856 2118 2140 

𝒎𝒊𝒏 𝑷(𝒙𝒊𝒋) 53% 31% 43% 37% 49% 31% 49% 38% 37% 

𝒎𝒂𝒙 𝑷(𝒙𝒊𝒋) 93% 89% 90% 90% 88% 89% 90% 90% 90% 

Table 7: P n76 k4 Statistic summary extract 

The statistics in Table 7 indicate a problem space where constraints do not play any role in 

the preliminary evaluation of the environment. This can be seen from the equal number of 

possible from and to stops. The extract only show up to stop 8, but all stops showed equal 
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result for number of possible from and to stops. A stop is the neighbour of every stop in the 

problem space, except itself. If we look at the domain definition of this problem, it consists of 

75 stops and can be optimally solved with 4 vehicles. There is no time constraint on the 

problem and therefore all combinations of stops are possible. Capacity constraints‟ impact 

can only be seen when building a route. 

Our first step in solving the problem proved to indicate some trends in the environment. We 

compared the computed results with the common domain knowledge, and the indication 

provided by the results is clear enough to use as guidance for the algorithm. We can now add 

more information through other methods. 

5.4 Density cluster results 

The following section explains the advantage of density clustering on certain problem 

environments. Density clustering assists in environments where natural groups exist. In a real-

life environment, locations can be grouped in residential areas that are split by commercial 

properties, nature, roads, etc. Clustering data can assist to generate good solutions quick and 

effective. 

 

Figure 40: C105 SIH on density cluster 
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Problem class C1 is specifically designed to benchmark solution algorithms against clustered 

solutions. The image in Figure 40 is the result of the best initial solution from the algorithm. 

It is clear that the density clusters forced the initial algorithm into a near optimal solution. The 

red polygon areas indicate the clusters build from the probability matrix that was constructed 

in the solution preparation phase. One of the aims for this study is also to provide alternative 

solutions which might not be theoretical the best, but can indicate to the logistic manager 

what other possibilities exist. This initial result indicates that alternative solutions that have to 

be dissimilar will be tough to achieve. 

 

Figure 41: C105 initial pheromone trial 

The initial solution algorithms consist of more than just the clustered approach. To ensure 

that anomalies are also catered for in extreme cases, the pheromone trial is still build up from 

other results as well. Figure 41 represents the initial pheromone trial before the improvement 

phase starts. It is clear from comparing with Figure 40 that the clustered stop segments have 

been given a significant higher probability.  
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Density clustering is a very effective method for specific cases. Because the method relies on 

specific criteria to generate a cluster, some environments can result in none or few clusters. 

Although it still assists in guiding the pheromone trial, we continue to apply additional 

methods in searching for guidance. 

5.5 Partition cluster results 

Clusters generated by a partition algorithm do not necessarily reflect a strong binding between 

the elements as with density clusters. Partition clustering is therefore only used when no or a 

small number of density clusters exist. The partition cluster method requires a predefined 

number of clusters to be generated and does not guarantee the same result if the algorithm is 

executed again.  

The use of partition cluster is to accelerate the convergence to a good feasible solution. The 

number of clusters is not defined as the expected final number of routes, but rather large 

enough to generate chains to work with. 

 

Figure 42: R108 Partition cluster 
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The R108 Solomon benchmark problem is a random generated environment with a short 

scheduling horizon. The partition clustering method is non-deterministic algorithm which 

allows multiple outcomes. Clustering still reflects something from the environment. 

 

Figure 43: R108 Initial pheromone trial 

From the pheromone trial in Figure 43, it is clear that the partition clustering did not affect 

the initial trial as much as the density method. This is due to the contribution of other factors 

that did not correlate with all the cluster chains. 

5.6 Benchmark Results 

This paragraph lists the execution results on some benchmark problems. The main focus is 

on Solomon‟s problems. Other examples use the same cost calculation method of Solomon. 

Executing the algorithm on Solomon‟s benchmark problems returned very good results.   

The best results are from Sintef‟s website (Solomon-benchmark, 100-customers, 2010) . The 

tables represent the  
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 Problem – e.g. C101, RC104, etc. 

 Initial Solution – according to a PBIH (Number of vehicles and distance travelled, 

Moolman (2004)) 

 Tabu improvement applied (Number of vehicles and distance travelled, Moolman 

(2004)) 

 Initial Solution – according this multi-start method (Number of vehicles and distance 

travelled) 

 Improvement applied (Number of vehicles and distance travelled) 

 Best published (Number of vehicles, distance travelled and % difference of the 

study‟s best ) – from Sintef website (Solomon-benchmark, 100-customers, 2010) 

5.6.1 C1 

The following diagram (Figure 44) display the solution of Solomon‟s C101 problem. The left 

diagram is the final routes and the right diagram is the final pheromone trail. The total route 

distance for the solution is 828.94, which match the best published solution. The clear 

pheromone trial indicates that alternatives to these routes are not feasible to consider.  

 

Figure 44: Solomon C101 Solution 

The following diagram (Figure 45) display the overlay of the initial clusters overlaid with the 

solution. The red polygon and same colour stops indicate a cluster. Although the C101 is a 
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simple solution, it indicates that the cluster should influence the initial pheromone trail as well 

as Tabu List. 

 

Figure 45: Solomon C101 Cluster overlay 

The following diagram (Figure 46) display the solution of Solomon‟s C109 problem. The total 

route distance for the solution is 828.94, which match the best published solution. 
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Figure 46: Solomon C109 solution 

Table 8 represents the solutions compared to a plain Tabu solution, the best initial solution, 

the adaptive object algorithm and the best published solution. 

      Tabu New   

Prob Initial Solution Improvement Initial Solution Improvement Best Published 

C101 10 880.47 10     828.94  11     860.58  10      828.94  3.7% 10     828.94  0.0% 

C102 10 997.74 10     871.32  16   1,144.04  10      828.94  27.5% 10     828.94  0.0% 

C103 10 1081.56 10     916.83  16   1,237.34  10      853.72  31.0% 10     828.06  3.1% 

C104 10 1059.59 10     911.85  12     975.23  10      836.84  14.2% 10     824.78  1.5% 

C105 10 878.78 10     827.55  11     860.58  10      828.94  3.7% 10     828.94  0.0% 

C106 10 968.58 10     840.19  13     976.02  10      834.23  14.5% 10     828.94  0.6% 

C107 10 928.74 10     827.55  11     860.58  10      834.23  3.1% 10     828.94  0.6% 

C108 10 871.57 10     827.55  12     910.35  10      828.94  8.9% 10     828.94  0.0% 

C109 10 910.28 10     829.74  13     979.95  10      850.26  13.2% 10     828.94  2.6% 

Table 8: C1 Solutions 

5.6.2 C2 

The setup of the cost functions in the adaptive object model in this contains no cost for the 

usage of an extra vehicle. This can already be seen by the result of the best initial solution 

from the multi-start approach. It is assumed that the traditional SIH best solution is contained 

in the set of initial solutions, but is not reflected as the best. That is evident by comparing the 
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original initial solution with the new multi-start result. The new algorithm did fairly well on 

the optimisation for C2 type problems. 

      Tabu New   

Prob Initial Solution Improvement Initial Solution Improvement Best Published 

C201 3 826.15 3     588.88  5     673.69  3      591.56  12.2% 3     591.56  0.0% 

C202 3 1180.34 3     623.46  6     720.65  4      619.44  14.0% 3     591.56  4.7% 

C203 3 1173.25 3     625.46  4     838.94  4      617.20  26.4% 3     591.17  4.4% 

C204 3 1235.70 3     685.10  5     870.92  3      646.54  25.8% 3     590.60  9.5% 

C205 3 789.79 3     617.45  4     777.30  3      589.72  24.1% 3     588.88  0.1% 

C206 3 934.87 3     629.63  5     875.20  3      591.35  32.4% 3     588.49  0.5% 

C207 3 884.44 3     587.89  5     869.49  3      601.92  30.8% 3     588.29  2.3% 

C208 3 815.97 3     592.93  5     759.59  3      594.73  21.7% 3     588.32  1.1% 

Table 9: C2 Solutions 

5.6.3 R1 

The effect of the randomly distributed stops in the R1 environment result in the inefficient 

use of the clustering approach for the initial solution. The optimisation produced good results 

and we can argue that the grouping during the initial solution assisted to guide the meta-

heuristic in the correct areas. The greedy nature of the initial solutions resulted in unordered 

stops, but the heuristic‟s swap moves improved the result with a low computing cost. 

      Tabu New   

Prob Initial Solution Improvement Initial Solution Improvement Best Published 

R101 20 1857.93 20  1,670.13  25 2264.223 21 1673.5645 26.1% 19  1,645.79  1.7% 

R102 19 1792.59 19  1,576.81  23 2141.259 19 1491.2923 30.4% 17  1,486.12  0.3% 

R103 15 1553.58 15  1,316.31  16 1651.6 15 1245.2884 24.6% 13  1,292.68  -3.7% 

R104 12 1283.22 11  1,061.90  14 1419.203 12 1027.7393 27.6% 9  1,007.24  2.0% 

R105 15 1534.40 15  1,455.08  22 1844.607 16 1401.7127 24.0% 14  1,377.11  1.8% 

R106 15 1457.51 14  1,292.28  17 1767.745 14 1280.718 27.6% 12  1,251.98  2.3% 

R107 13 1336.79 12  1,174.00  15 1584.442 12 1130.3644 28.7% 10  1,104.66  2.3% 

R108 10 1174.06 9  1,030.87  12 1313.324 12 1006.2199 23.4% 9     960.88  4.7% 

R109 14 1423.01 13  1,284.32  19 1714.363 14 1189.11 30.6% 11  1,194.73  -0.5% 

R110 12 1332.66 13  1,205.48  17 1562.29 13 1136.9781 27.2% 10  1,118.59  1.6% 

R111 13 1344.17 13  1,239.26  14 1604.695 13 1112.9772 30.6% 10  1,096.72  1.5% 

R112 11 1167.79 11  1,059.78  12 1302.659 11 1001.0385 23.2% 9     982.14  1.9% 

Table 10: R1 Solutions 
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5.6.4 R2 

The environment in R2 which consist of a combination of random stops and low capacity 

constraint effect, resulted in better results through the use of more vehicles. The initial 

solution also display the trend to use more vehicles to get a shorter distance travelled. 

      Tabu New   

Prob Initial Solution Improvement Initial Solution Improvement Best Published 

R201 5 1633.98 4  1,335.55  8   1,535.61  8   1,172.01  23.7% 4  1,252.37  -6.4% 

R202 5 1570.04 4  1,200.26  8   1,363.80  8   1,102.86  19.1% 3  1,191.70  -7.5% 

R203 4 1325.15 3     972.59  7   1,280.42  7      934.83  27.0% 3     939.54  -0.5% 

R204 3 1054.39 3     842.54  6   1,075.00  5      771.54  28.2% 2     825.52  -6.5% 

R205 4 1461.61 3  1,133.02  5   1,396.79  7   1,023.90  26.7% 3     994.42  3.0% 

R206 3 1358.68 3     985.94  6   1,221.69  5      974.70  20.2% 3     906.14  7.6% 

R207 3 1205.44 3     948.50  6   1,117.92  5      839.83  24.9% 2     893.33  -6.0% 

R208 3 908.49 2     845.94  6     973.85  4      845.47  13.2% 2     726.75  16.3% 

R209 4 1260.75 4     930.43  6   1,160.23  6      909.86  21.6% 3     909.16  0.1% 

R210 4 1384.77 3  1,019.45  6   1,220.80  7      948.19  22.3% 3     939.34  0.9% 

R211 3 1080.89 3     862.42  5   1,133.56  5      838.96  26.0% 2     892.71  -6.0% 

Table 11: R2 Solutions 

5.6.5 RC1 

The RC problems might be the closest representation to real world environments. It 

represents an environment that is not predictable and that contains areas with patterns in the 

environment. The algorithm will benefit from the clustered areas and the pheromone trail 

that is influenced for used during improvement will assist in a balanced diversification 

strategy. Results with the cost function utilised more vehicles in certain problems which 

produced better results. 

      Tabu New   

Prob Initial Solution Improvement Initial Solution Improvement Best Published 

RC101 16 1929.02 16  1,742.62  23   2,159.95  17   1,704.72  21.1% 14  1,696.94  0.5% 

RC102 15 1789.29 15  1,625.30  23   1,985.22  15   1,535.30  22.7% 12  1,554.75  -1.3% 

RC103 13 1613.99 13  1,403.99  18   1,790.02  12   1,327.32  25.8% 11  1,261.67  5.2% 

RC104 12 1363.74 12  1,212.92  15   1,506.09  12   1,212.79  19.5% 10  1,135.48  6.8% 

RC105 16 1805.33 16  1,706.53  21   2,040.03  17   1,576.19  22.7% 13  1,629.44  -3.3% 

RC106 14 1581.39 14  1,502.00  17   1,873.54  14   1,483.42  20.8% 11  1,424.73  4.1% 

RC107 13 1607.96 12  1,318.22  15   1,728.79  12   1,300.15  24.8% 11  1,230.48  5.7% 

RC108 12 1340.10 12  1,240.27  13   1,438.51  11   1,164.81  19.0% 10  1,139.82  2.2% 

Table 12: RC1 Solutions 
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5.6.6 RC2 

The RC2 problems display the same trend as with the R2 problem, mainly because of the use 

of more vehicles. The multi-start initial approach allows best solutions to use more vehicles 

than the best registered initial solution. Most of the solution results display better than 

published because of the use of the vehicles. 

      Tabu New   

Prob Initial Solution Improvement Initial Solution Improvement Best Published 

RC201 5 2131.14 4  1,474.86  9   1,856.60  8   1,317.55  29.0% 4  1,406.91  -6.4% 

RC202 5 1943.42 4  1,298.28  10   1,700.06  8   1,148.13  32.5% 3  1,367.09  -16% 

RC203 4 1595.85 3  1,081.34  8   1,534.76  7      985.91  35.8% 3  1,049.62  -6.1% 

RC204 3 1184.48 3     883.53  5   1,107.90  5      829.57  25.1% 3     798.41  3.9% 

RC205 6 1940.44 5  1,311.93  8   1,766.76  9   1,180.35  33.2% 4  1,297.19  -9.0% 

RC206 4 1595.74 4  1,162.03  8   1,480.07  7   1,121.70  24.2% 3  1,146.32  -2.1% 

RC207 4 1491.13 4  1,106.24  6   1,607.20  6   1,054.30  34.4% 3  1,061.14  -0.6% 

RC208 3 1275.21 3     920.17  5   1,106.80  4      858.56  22.4% 3     828.14  3.7% 

Table 13: RC2 Solutions 

5.7 Summary 

The result indicates that the algorithm is giving consistent results across all the different 

problems. The implementation of the Solomon cost function depends solely on the distance, 

which resulted in answers that has beaten the best published. 

The number of vehicles used is more in these instances. The function has been left in this 

state to indicate the sensitivity of the algorithm on the adaptive object model. i.e. the 

implementation of the cost and constraint classes by the implementer. This flexibility cannot 

be achieved in a domain orientated implementation. 

The flexibility of the solution can now be exploited and by altering only the cost function to 

incorporate the cost of the use of another vehicle. 
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6 PARALLEL IMPLEMENTATION 

6.1 Overview 

This chapter provides a brief overview of the adaption of the ASAO algorithm for parallel 

use. The objective is mainly to gain speed improvement with the least complexity in the 

adaption. The initiation of the approach will assist in alternatives for future expansion.  

The design of a parallel algorithm can be viewed as consisting of four stages - Partitioning, 

Communication Analysis, Granularity Control and Mapping. The following simple example 

illustrates some of the issues involved in each of the stages.  

Consider the scenario: n answer-scripts have to be marked, each of which contains the 

answers to m questions. The scripts could be viewed as the data, and the marking process 

itself as the computation to be performed on it.  

In order to design a parallel solution to this problem, it must first be decomposed into smaller 

tasks which can be executed simultaneously. This is referred to as the partitioning stage.  

This can be done in one of two ways. Each script could be marked by a different marker - 

this would require n markers. Alternatively, marking each question could be viewed as a task. 

This would result in m such tasks, each of which could be tackled by a separate marker, 

implying that every script passes through every marker.  

In the first approach, the data (scripts) is first decomposed and then the computation 

(marking) is associated with it. This technique is called domain decomposition.  

In the second approach, the computation to be performed (marking) is first decomposed and 

then the data (scripts) is associated with it. This technique is called functional decomposition. 

The partitioning technique that will be chosen often depends on the nature of the problem.  

Suppose one needs to compute the average mark of the n scripts. If domain decomposition 

was chosen, then the marks from each of the markers would be required. If the markers are at 

different physical locations, then some form of communication is needed, in order to obtain 

the sum of the marks.  
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The nature of the information flow is specified in the communication analysis stage of the 

design. In this case, each marker can proceed independently and communicate the marks at 

the end. However, other situations would require communication between two concurrent 

tasks before computation can proceed.  

It may be the case that the time to communicate the marks between two markers is much 

greater than the time to mark a question. In which case, it is more efficient to reduce the 

number of markers and have a marker work on a number of scripts, thereby decreasing the 

amount of communication.  

Effectively, several small tasks are combined to produce larger ones, which results in a more 

efficient solution. This is called granularity control. For example, k markers could mark n/k 

scripts each. The problem here is to determine the best value of k.  

The mapping stage specifies where each task is to execute. In this example, all tasks are of 

equal size and the communication is uniform, so any task can be mapped to any marker. 

However, in more complex situations, mapping strategies may not be obvious, requiring the 

use of more sophisticated techniques.  

6.2 Single thread environment 

The implementation of the ASAO algorithm was done from basic principles in the C# 

language. A standard off the shelf desktop was used to do the development and testing. The 

most basic desktops contain multiple processors. This machine runs two independent 

processor cores in one physical package at the same frequency. 

With the introduction of the multi-processors, and Hyper-Threading Technology for the 

desktop, threading is no longer within the exclusive domain of Server application developers. 

In a single-core or traditional processor the CPU is fed strings of instructions it must order, 

execute, then selectively store in its cache for quick retrieval. When data outside the cache is 

required, it is retrieved through the system bus from random access memory (RAM) or from 

storage devices. Accessing these slows down performance to the maximum speed the bus, 

RAM or storage device will allow, which is far slower than the speed of the CPU. The 

situation is compounded when multi-tasking. In this case the processor must switch back and 

forth between two or more sets of data streams and programs. CPU resources are depleted 

and performance suffers. 
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In a dual core processor each core handles incoming data strings simultaneously to improve 

efficiency. Just as two heads are better than one, so are two hands. Now when one is 

executing the other can be accessing the system bus or executing its own code.  

To utilize a dual core processor, the operating system must be able to recognize multi-

threading and the software must have simultaneous multi-threading technology (SMT) written 

into its code. SMT enables parallel multi-threading wherein the cores are served multi-

threaded instructions in parallel. Without SMT the software will only recognize one core. The 

CPU usage in Figure 47 displays the normal implementation of the ASAO algorithm in a 

Windows environment. 

 

Figure 47: Desktop CPU usage single thread 

The usage is clearly showing that the operating system does not balance processing across the 

two processors. The responsibility to implement a parallel solution is that of the developer. 

The following paragraphs step through the thinking of implementing the parallel ASAO. 

6.3 Partitioning 

Decomposing the algorithm into smaller tasks require an evaluation of the steps followed. We 

investigate the steps from a high level. 

The first high-level step is reading the problem environment. This step requires basic 

information management and although there exist methods of improving reading data, we 

will not consider it as part of this design. 

The second step consists of pre-calculations such as the calculation of the probability matrix 

and detection of neighbours. This still not part of the core algorithm and is done as a once 

off, but can easily be done in parallel as it is two non dependent separate processes. This is 

not currently of interest for us.  
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The third step is defined as the environment evaluation. This procedure is just a statistical 

review of the environment and does not contribute to the running time of the algorithm. It 

must be noted that when moving to a dynamic environment, this step might be an important 

tool in the continuous evaluation of the environment and can contribute to the effectiveness 

of the algorithm. It is not part of this study. 

The core of the algorithm consists of two main steps, the initial solution and the 

improvement. 

The initial solution approach is designed to provide multiple starting options through the use 

of multiple methods. This assists to diversify into the problemspace which assist in adapting 

to the environment sensitivity according to a specific method. In other implementations, an 

initial solution method is chosen depending on the environment and the improvement kicks-

off from a single solution start. This lead to the initial solution being designed for the specific 

problem environment.  The initial solution has been disregarded in the overall computational 

time. The impact of the initial solution approach in this study is significant enough to 

consider parallel processing. We define the parts as each different method that is used. 

The improvement algorithm is the most complex to consider because of the impact it has on 

the computational time. The dependence on the number of ants to solve the process 

influences the efficiency of the parallel implementation. The ASAO algorithm provides a clear 

location for the partitioning, i.e. the individual ants that is responsible for the implementation 

of an improvement technique. 

The challenge is to consolidate the results on the correct times and have the impact varies 

depending on the solution overlap and solution status.   

6.4 Communication Analysis 

It is clear from the previous paragraph that we will only consider the initial and improvement 

part of the solution for parallel implementation. This paragraph analyzes the communication 

required between the defined parts of the algorithm. The functional decomposition technique 

is used because we cannot clearly define the tasks inside the computation. The heuristic 

approach is dependent on randomness.  
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The initial solution approach spawns multiple scouts into the problem space to search for 

possible solutions. Scouts act individually and do not communicate with each other during 

the search process. They communicate their findings back to the queen who has to make a 

decision on the next action. The communication from the scouts to the queen contains all the 

solutions per scout and the method of the scout. 

The queen can now evaluate the difference in quality for each scout and if necessary combine 

subparts from solutions to create new solutions. The communication required for the 

scouting does not depend on concurrent processes to share information. 

The improvement phase‟s efficiency is more susceptible to communication between the 

processes. The heuristic type algorithm depends on memory structures to assist in decision 

making. In the single thread environment, the sequence can be determined and information 

can be passed over to the next ant on termination. Although complex, the implementation of 

parallel processing can contribute in speed of execution. With intelligent design, the speed can 

even be more approved by reducing the number of iterations because of communication 

between concurrent processes. 

In the single thread environment, a process will finish before information is passed to the 

next action. If two processes based on different actions were executing concurrently, frequent 

messaging can abort the process that is either not efficient or running in the same area of the 

problem space. 

 
 
 



 
155 

 

 

Figure 48: Multiple search paths 

The scenario in Figure 48 depicts a high-level search pattern of the algorithm. The green line 

represents process 1 and the red line process 2. It is clear that the two processes are traversing 

in the same area of the problem space. The effort could be better spend on the area on the 

right hand side. 

This is the main reason why traditional heuristic methods include a step for diversification. 

And the solution would still be found in traditional heuristic methods, but the time waist 

could have been detected earlier. 

The proposed approach sounds simple enough, but the effort of the communication and 

comparing solutions at run-time is the major factors that will determine the success of this 

step. The environment knowledge must now play its part.  

If the environment‟s topology is flat, as described in chapter 5, we know that there exist 

multiple solutions in a neighbourhood of moves. This environment normally requires a wide 

search and intensive local optimization. One process in a specific area is sufficient for the 

convergence because the local memory structures will guide the optimization the best. 

Comparing search patterns in this environment is difficult because solutions that exist in the 
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same area can have constructed totally different route structures. All because there exist a 

number of solutions in the neighbourhood that can be reached by one move.  

If the environment topology consists of more mountains and valleys, the local optimization 

tends to converge to a locally optimal quite easily. The goal would be to terminate those 

processes that are climbing the same hill and only leave one to achieve the goal. Detecting 

these similarities should be easier in this environment, as the first few steps would quickly 

settle on a pattern of routes. 

The proposed implementation of the communication channels consist of adding an additional 

layer of communication. The queen, who is in control, should place all ants in groups 

determined from the initial solutions. Efficiency can then be compared by  

 Convergence speed – how does the algorithm climb the hill in relation to other 

processes? If the process is lacking in convergence compared to total cost, the area is 

most likely not suitable for a best solution. 

 Route overlapping – stop sequence change and individual stop exchange between 

routes are the most effective moves close to the local optimum. Routes from the 

same area would overlap with a high percentage. 

 Total cost – if the total cost of a process is not considered to be feasible, terminate. 

To add to the efficiency of the communication, the importance of the efficiency parameter 

result should depend on the global status of the solution. The hybrid implementation based 

on simulated annealing provides information on the status of the solution.  

In the initial phases of the improvement heuristic, convergence speed will be the dominant 

factor. The principle of initial solutions, that might be costly but still good because of its 

convergence in a specific area, applies. Total solution cost is always an important factor, while 

the route overlapping factor becomes dominant in the second part of the cooling down 

process. 
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6.5 Granularity Control 

Determining the granularity of the implementation is not a straight forward task. The initial 

solution approach follows a strict implementation method, while the improvement step 

requires flexibility. 

The initial solution is divided into 3 main methods: SIH on clustered chains, SIH, 

Constructive ant. These 3 methods can be executed in parallel without communication and 

speed problems. 

The improvement step depends on the queen to control procedures. Part of the purpose of 

the queen is to decide the granularity, i.e. number of processes, through feedback from the 

processes running. As discussed in the previous paragraph, communication is done on 2 

levels. 
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Figure 49: Organization of parallel search 

The computational environment is not distributed computing where computers are 

connected with lower speed links. It is thus fine grain, closely connected architecture and the 

algorithms have been designed accordingly. The decomposition step, as illustrated in Figure 

49, has the capability to decide on the number of solutions to use, thus determining the 

granularity of the system during run-time. Although the soldier decomposes the solution in 

more solutions, the parallel implementation will not be applied on that level. 
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6.6 Mapping 

The mapping stage specifies where each task is to execute. In the initial solution stage, all 

tasks are viewed as equally important and are mapped to the same importance for process 

execution. 

In the improvement stage, a sophisticated technique can be used. We define the following 

simple starting point of process priority: 

1. Lowest cost – the solution with the lowest cost gets the primary consideration. The 

more complete initial solution method will result in a good solution for the majority 

of the time. The aim of this study to provide a feasible approach for business 

implementation, has a requirement that the algorithm to provide a solution as quick as 

possible. This priority will also set a realistic benchmark for other decisions. 

2. Other – the rest of the solutions is next. 

3. Scouts – it is important to keep scouting the area for uncharted territory. This step is 

only reached after a number of iterations, which indicates the complexity of the 

problem space. In this instance, the business will allow more iteration for a good 

solution. 

The parallelization of the algorithm has many aspects to consider. The complexity of the 

unknown domain environment is an additional aspect to consider. 

6.7 Parallel Ant System on Adaptive Objects 

The previous paragraphs describe the steps to approach the parallelization of an algorithm. 

The partitioning paragraph recommended that the study focus on the initial solution and 

improvements stage for parallelization importance. This paragraph portrays the changes on 

the ASAO algorithm introduced in chapter 5. 

The initial solution adaption is kept simple and can be interpreted in Figure 50. The algorithm 

spawns the initial solution methods in parallel. The expansion with new initial methods does 

not require a rework of the algorithm. Speed improvement on this fixed time part of the 

algorithm is notable and provides the option to reuse for diversification. 
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Solution Workspace

Constructive Best

Constructive 2nd Best

Probability SIH Cost SIH

Composition

Initial Solutions

 

Figure 50: Initial PASAO 

The result from the initial solution is evaluated and clearly marked to trace the origin for 

future references. A consolidated set of solutions is then passed on for further improvement. 

The two level control structures require partitioning of same type solutions to form the 

second level.  

Figure 51 represents a high-level sequence diagram which indicates the purpose of each part 

of the system. It is important to note that once the algorithm has started, the queen spawns 

the process to the soldier. This entity continues to work until aborted by the queen.  Figure 52 

represents a more sequential flow of activities. From the diagrams, we can learn that the 

queen has a solution available at any time whilst the system is still executing. This approach 

provides flexibility which results in no adaption for each individual requirement. Best effort 

relates to the time allowed to execute. 
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Figure 51: Sequence diagram for PASAO 

The granularity of the solution is not known during design time for the improvement stage. 

The related diagrams must be interpreted accordingly. The same memory structure is used by 

the manager and the system. Each instance maintains its own structure‟s content. 

Figure 51 display the call-back from the soldier to the queen as asynchronous. This is not 

clear in Figure 52, but can be interpreted that the „join‟ action between the systems are not a 

dependency between the systems, but rather depends on the manager (queen). A „join‟ 

command in C# force the main thread to wait until the thread has executed.  

The straightforward transpose from the single threaded environment can be done in this way. 

This way, only utilization of multi-processor environment is achieved. The goal is to 
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simultaneously monitor the efficiency of the systems (soldiers) to be able to terminate where 

possible. Figure 52 must be interpreted with the asynchronous message return as described in 

Figure 51. 
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Figure 52: PASAO 
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6.8 Results 

The primary goal for the parallel implementation is to utilize the multi-processor architect 

that is even available in today‟s personal computers. The solution results are expected to be 

the same or better as in a single threaded environment.  

 

Figure 53: Desktop CPU usage multi-thread 

The CPU processing depicted in Figure 53 clearly shows the improvement from the single 

threaded usage illustrated in Figure 47. It is also apparent where the initial solutions were 

generated, before the improvement started. The initial solution use a fixed time. 

6.9 Summary 

The parallelization of the ASAO algorithm has many possible benefits. This chapter explores 

some approaches. It designs some specific, not too complex, options for implementation. 

The advantage of utilizing multi-processes has immediate impact and cannot be seen as 

optional anymore, because of the availability of dual processor architecture in the basic 

computers on the market today. 

Communication complexity between processes governs the design of the rest of the 

parallelization approach, i.e. partitioning, granularity and mapping. Combined with the 

adaptive object ambition of this study, this design should steer away from dependence on the 

domain knowledge. It was achieved by considering only what we know about the algorithm. 

As a result, each system contains the same memory structure and the queen has the decision 

on how to manipulate it. Inter process communication intervals are based on the Simulated 

Annealing methodology. The state of the cooling determines the communication required 

and the resulting actions to be taken.  

Parallelization of VRP solutions is inevitable in today‟s implementation circumstances. The 

effect of implementation has various positive effects and can be clearly seen in the results. 
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7 CONLUSION 

7.1 Overview 

Logistics management is that part of the supply chain which plans, implements and controls 

the efficient, effective forward and reverse flow and storage of goods, services and related 

information. There are many opportunities to reduce total cost in supply chains. The 

prerequisites to many categories of cost savings, including supply chain management, are 

simplification, which corresponds to the basic lesson of Industrial Engineering 101: "Simplify 

before automating or computerizing"(Anderson, 2009). 

The annual State of Logistics Report in the USA issued by the Council of Supply Chain 

Management Professionals shows that businesses spent a record $1.4 trillion on logistics in 

2007. That's equal to 10.1 percent of Gross Domestic Product. It's the first time since 2000 

that figure has exceeded 10 percent. Not surprisingly, most of the increases were related to 

fuel(Shulz, 2008). Transportation costs now account for 6.2 percent of nominal GDP. But 

capacity is permanently leaving the trucking industry as firms exit the market place and sell 

their equipment, often in foreign markets. The closing of Jevic Transportation, the nation's 

71st-largest trucking company, is evidence that some truckers simply do not have adequate 

business plans in this era.  

Solving different kinds of the Vehicle Routing Problem is an important area of Operations 

Research. Achieving improvement of only a small percentage may result in large. The cost of 

implementing a solution requires analysts and developers who understand the specific 

problem domain for the company. This initial cost of implementation is still a major 

drawback for companies to take the step towards implementing a solution. 

Current study on the VRP focuses mostly on the efficiency and effectiveness indicators 

because it does not consider the problem as part of an enterprise system. This study reviews 

the importance of the indicators. Integration, both within and among cooperating enterprises, 

now comes first and is most important, providing the highest value. Dynamic integration 

creates the ability for many enterprises to participate within IT solution. Agility, the ability to 

react quickly, comes second.  
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Figure 54: Traditional problem approach 

This thesis addresses the problem of solving the VRP with variants through applying an 

adaptive solution which has no predefined knowledge of the problem environment. Current 

studies focus on solving VRP through identifying the type of problem beforehand and 

implement as solution for the specific type. Success is measured if an answer is good enough in a 

reasonable time for a problem where the user define the constraint and cost model. 

7.2 Problem approach 

The complexity of the VRP and all its variants has intrigued many OR researches. There exist 

numerous variants with numerous methods to solve them. The NP-hardness of the problem 

makes it then ideal playground for advance research. This study investigates the VRP problem 

with extraordinary requirements. 

The innate ideas of solving the VRP consist of grouping stops according their geographical 

location. The expert will know that although the geographical location has a major impact on 

most real-life problems, the location is nothing else than a source for the cost calculation. The 

study seeks to steer away from the direct relation to the physical environment and view the 
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possibilities presented by the mathematical model. The inclusion of adaptive objects reduces 

the size of the mathematical model. The best-case approach in the initial environment to 

setup a cost matrix, contributes to the reducing of computational possibilities through the 

immediate elimination of impossible links.  

The use of geographical independent clustering methods permits us to utilize traditional 

„cluster first route second‟ methodologies. In combination with the pheromone trial, the 

results of clustering do not dominate the convergence. The memory structure for move types 

ensures that adaptiveness is also transferred to the algorithm. It is similar to solving the VRP 

with more than one algorithm. 

7.3 Results 

Results clearly indicate the accomplishment of the study. It must be acknowledged that the 

writer had a disproportionate advantage. The knowledge of designing the adaptive cost and 

constraint objects is strongly related to the problem domain as well as the internal algorithm 

use. This point toward the speed of the algorithm and not the efficiency. 

The new definition on what qualifies as a good initial solution as well as the multi-start 

approach provides good coverage on the start of the algorithm. The addition of environment 

analysis influences the „cooling‟ tempo of the convergence.  

7.4 Summary 

The design of a selective parallel heuristic algorithm for the Vehicle Routing Problem on an 

adaptive object model has been accomplish through integration of multiple methods. We 

conclude by stating that such a target would be impossible to achieve without hybrid 

methods. Adding the flexibility of determining run-time where and when to emphasize 

specific methods, contribute to the success of the design. 

The study instigate numerous areas for further in-depth research of which the adaptive object 

model interface with the algorithm and the parallelization of the algorithm stands out the 

most. Both areas contain dependency on the memory structure used by the algorithm, as well 

as feedback from actions within the algorithm. 
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This study introduced an environment analysis model that has been dealt with from the static 

VRP problem viewpoint. The algorithm detects the type of environment during run-time. 

Further research on this method can assist in guiding the algorithm during the initial stage, 

which has enormous impact on the optimisation phase. A further development can include 

the re-evaluation of the environment when the optimisation memory structures have been set 

after a certain number of iterations. 

A more complex problem such as the IRP (Inventory Routing Problem) can be implemented 

into the framework. The inventory routing problem involves the integration and coordination 

of two components of the logistics value chain: inventory management and vehicle routing. 

Inventory is required to provide cover against variability in demand, supply and the 

movement of products. Inventory is generally present in supply chain to ensure product 

availability. The inventory replenishment requirement is dependent on the time of visit, which 

is determined by the VRP. 

A framework is a basic conceptual structure used to solve or address complex issues. A 

software framework is an abstraction in which common code providing generic functionality 

can be selectively overridden or specialized by user code providing specific functionality. This 

study introduces a framework for solving various types of complex VRP problems. A more 

in-depth study can be done on the differences between a framework base solution and a 

direct solution approach.  

The parallel design discussed in the previous chapter is only the beginning of an important 

field of study for the VRP. There exist numerous approaches for parallel implementation 

from a computer scientist view. The multi-level usage of memory structures can be further 

expanded to fit the parallel approach. Problem granularity consists of the decision to 

breakdown the problem in smaller problems that can each be solved on its own and in 

parallel. Dynamic decision making on the feasibility of a granular level adds to the challenge 

and possibilities of parallel algorithms. 

The methods utilised for this study can be applied on other problems and is not exclusive to 

the VRP only. The VRP provide a complex problem with multiple combinations that serves 

as a high-quality environment for research of new methods. This study steps towards an 

enterprise view for the VRP without sacrificing quality of the solution. This new approach 

opens up new possibilities. 
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