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5 ENVIRONMENT ANALYSIS - RESULTS 

5.1 Overview 

This chapter discuss examples of the results achieved from specific methods selected in the 

study. It explains the environments and compares results of different methods for the 

different environments. 

The results are based on the implementation of Solomon‟s cost and constraint function. This 

implementation is sufficient to prove other implementations on the adaptive object model. 

The next paragraph defines our implementation method for the Solomon cost functions. 

5.2 Solomon Functions 

Solomon generated six sets of problems.  Their design highlights several factors that affect 

the behaviour of routing and scheduling algorithms.  They are: geographical data; the number 

of customers serviced by a vehicle; percent of time-constrained customers; and tightness and 

positioning of the time windows.  

The geographical data are randomly generated in problem sets R1 and R2, clustered in 

problem sets C1 and C2, and a mix of random and clustered structures in problem sets by 

RC1 and RC2. Problem sets R1, C1 and RC1 have a short scheduling horizon and allow only 

a few customers per route (approximately 5 to 10). In contrast, the sets R2, C2 and RC2 have 

a long scheduling horizon permitting many customers (more than 30) to be serviced by the 

same vehicle.  

The customer coordinates are identical for all problems within one type (i.e., R,  C and RC).  

The problems differ with respect to the width of the time windows.  Some have very tight 

time windows, while others have time windows, which are hardly constraining.  In terms of 

time window density, that is, the percentage of customers with time windows, he created 

problems with 25, 50, 75 and 100 % time windows.  

The larger problems are 100 customer Euclidean problems where travel times equal the 

corresponding distances.  For each such problem, smaller problems have been created by 

considering only the first 25 or 50 customers.  
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The implementation requires us to define the domain model as well as the cost and constraint 

functions for Solomon. Solomon implements a basic VRPTW problem. The following 

diagram represents the implemented stop class used in the solution.  

-ID : int

-x : double

-y : double

-VisitTimeWindows : TimeWindow

-ServiceTime : double

-Demand : double

«implementation class»

Solomon::SolomonStopData

 

Figure 38: Solomon Domain Instance 

Solomon constraints include the following checks: 

 Time Windows – each stop has an open and close time window in which the stop 

must be services. Time windows create a wait time that must be considered in the cost. 

 Volume – there exist a capacity constraint on each vehicle used in the solution. The 

volume creates a service time at a stop which can be considered at the cost function. 

Distance in Solomon does not have a constraint, but to improve cost calculation, distance 

changes can be updated during a constraint check as constraints are called with a special 

instruction. Each routestop implements an abstract of the RouteStopData class which acts as 

special container for specific implementations. The Solomon implementation can be defined 

as follows: 

-VisitTime : TimeWindow

-WaitTime : double

-Load : double

-Distance : double

-Cost : double

«implementation class»

Solomon::SolomonRouteStopData

 

Figure 39: Solomon RouteStopData 
implementation 
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This adaptive implementation class extends the algorithm memory which contributes to 

efficiency. The effect of the implementation depends on the implementer‟s knowledge of the 

problem domain. The attributes of this Solomon implementation class is as follows: 

 Visit Time – the arrival and departure time of the vehicle at the specific route stop for 

the specified route. 

 Wait Time – the time a vehicle is too early and has to wait for the closest forward 

opening time to occur. 

 Load – the total load on the vehicle for the route to the specific stop. 

 Distance – the total distance travelled for the route to the specific stop. 

 Cost – the total cost incurred for the route to the specific stop. 

The efficiency of the adaptive model can now be explored. These structures allow the 

operator to implement effective methods for calculating cost and checking constraints. The 

knowledge the operator has of the problem environment can assist in implementing another 

level of meta heuristic. The basic rules followed in this thesis for Solomon is as follows: 

1. Changes to a route on the stop list impacts only attributes of route stops after the 

stop. 

2. Solomon use Euclidean distance and time which comply to the triangular rule:  

𝑑𝑖𝑗 ≤ 𝑑𝑖𝑘 + 𝑑𝑘𝑗 . 
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5.3 Probability matrix 

The probability matrix is an important memory structure which guides the algorithm. The 

analysis of the environment is used to assist in the evaluation of the surface chart shape of 

possible neighbouring solutions. Constraints such as time windows contribute to the shape of 

possible solutions. The results display some common patterns that exist in the benchmark 

problems. 

 Depot Stop 1 Stop 2 Stop 3 Stop 4 Stop 5 Stop 6 Stop 7 Stop 8 

# Neighbours 
from stop 100 3 9 97 15 98 29 75 68 

Sum of cost 2885 76 226 3109 368 3106 874 2443 2295 

𝒎𝒊𝒏 𝑷(𝒙𝒊𝒋) 11% 88% 83% 13% 78% 12% 67% 31% 36% 

𝒎𝒂𝒙 𝑷(𝒙𝒊𝒋) 90% 90% 90% 90% 90% 90% 90% 90% 90% 

 
         # Neighbours 

to stop 100 93 88 15 80 2 76 21 32 

Sum of cost 2885 3133 3061 410 2749 20 2622 620 1018 

𝒎𝒊𝒏 𝑷(𝒙𝒊𝒋) 54% 40% 38% 42% 40% 70% 39% 42% 40% 

𝒎𝒂𝒙 𝑷(𝒙𝒊𝒋) 120% 90% 90% 90% 90% 90% 90% 89% 90% 

Table 5: C105 Statistic summary extract 

The first column indicates that each stop is reachable from the depot. If this was not true, we 

were faced with an infeasible solution space. The average cost per stop can be used as 

benchmark for other stops. The rest of the columns represent the statistics per stop. The 

extract in Table 5 is only for stop 1 to 8 in Solomon‟s C105 problem. The summary provides 

an indication of the influence of constraints on the problem and it can be clearly deducted 

that constraints effect varies from stop to stop.  

Stop 1 has the definite ability to only go to 3 other stops, while 93 other stops can have stop 1 

as a subsequent neighbour. The probability distribution between the 3 possible subsequent 

stops is between 88% and 90%, which can be seen as high enough to know that the 

likelihood of all of the 3 stops to be the neighbour in the final result. These values are used in 

the pheromone trial. The statistic can immediately be applied on the initial pheromone trial. 

The significant difference between from and to stop statistics indicate on a reduced number 

of good solutions that exist. It supports the intuition that a good or even best solution can be 
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reach through a limited number of moves. The statistics does not reveal anything clear on 

groups of stops, and is used in guiding the improvement stage. 

 Depot Stop 1 Stop 2 Stop 3 Stop 4 Stop 5 Stop 6 Stop 7 Stop 8 

# Neighbours 
from stop 100 31 99 56 34 99 70 86 75 

Sum of cost 2495 849 2919 1696 1078 2920 1834 2618 2549 

𝒎𝒊𝒏 𝑷(𝒙𝒊𝒋) 11% 65% 12% 46% 63% 12% 35% 22% 31% 

𝒎𝒂𝒙 𝑷(𝒙𝒊𝒋) 90% 90% 90% 90% 90% 90% 90% 90% 90% 

 
         # Neighbours 

to stop 100 99 48 84 99 38 77 66 73 

Sum of cost 2495 2832 1407 2774 3433 1065 1993 1959 2347 

𝒎𝒊𝒏 𝑷(𝒙𝒊𝒋) 52% 45% 37% 34% 30% 36% 42% 38% 31% 

𝒎𝒂𝒙 𝑷(𝒙𝒊𝒋) 93% 90% 87% 90% 89% 87% 90% 89% 90% 

Table 6: R205 Statistic summary extract 

The statistics predicts what we already know from the domain environment of the R205 

problem. The number of stops from and stops to as neighbours are much more evenly 

spaced, which indicates more options of combinations and thus a bit more difficult to deduct 

an optimal solution from limited moves. The difference between the minimum and maximum 

probability does however indicate that quality of combination can be used to influence 

decision making on moves. The pheromone trial can immediately reflect these properties. 

 Depot Stop 1 Stop 2 Stop 3 Stop 4 Stop 5 Stop 6 Stop 7 Stop 8 

# Neighbours 
from stop 75 74 74 74 74 74 74 74 74 

Sum of cost 1815 2343 1933 2242 1830 2325 1856 2118 2140 

𝒎𝒊𝒏 𝑷(𝒙𝒊𝒋) 11% 12% 12% 12% 12% 12% 12% 12% 12% 

𝒎𝒂𝒙 𝑷(𝒙𝒊𝒋) 90% 90% 90% 90% 90% 90% 90% 90% 90% 

 
         # Neighbours 

to stop 75 74 74 74 74 74 74 74 74 

Sum of cost 1815 2343 1933 2242 1830 2325 1856 2118 2140 

𝒎𝒊𝒏 𝑷(𝒙𝒊𝒋) 53% 31% 43% 37% 49% 31% 49% 38% 37% 

𝒎𝒂𝒙 𝑷(𝒙𝒊𝒋) 93% 89% 90% 90% 88% 89% 90% 90% 90% 

Table 7: P n76 k4 Statistic summary extract 

The statistics in Table 7 indicate a problem space where constraints do not play any role in 

the preliminary evaluation of the environment. This can be seen from the equal number of 

possible from and to stops. The extract only show up to stop 8, but all stops showed equal 
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result for number of possible from and to stops. A stop is the neighbour of every stop in the 

problem space, except itself. If we look at the domain definition of this problem, it consists of 

75 stops and can be optimally solved with 4 vehicles. There is no time constraint on the 

problem and therefore all combinations of stops are possible. Capacity constraints‟ impact 

can only be seen when building a route. 

Our first step in solving the problem proved to indicate some trends in the environment. We 

compared the computed results with the common domain knowledge, and the indication 

provided by the results is clear enough to use as guidance for the algorithm. We can now add 

more information through other methods. 

5.4 Density cluster results 

The following section explains the advantage of density clustering on certain problem 

environments. Density clustering assists in environments where natural groups exist. In a real-

life environment, locations can be grouped in residential areas that are split by commercial 

properties, nature, roads, etc. Clustering data can assist to generate good solutions quick and 

effective. 

 

Figure 40: C105 SIH on density cluster 
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Problem class C1 is specifically designed to benchmark solution algorithms against clustered 

solutions. The image in Figure 40 is the result of the best initial solution from the algorithm. 

It is clear that the density clusters forced the initial algorithm into a near optimal solution. The 

red polygon areas indicate the clusters build from the probability matrix that was constructed 

in the solution preparation phase. One of the aims for this study is also to provide alternative 

solutions which might not be theoretical the best, but can indicate to the logistic manager 

what other possibilities exist. This initial result indicates that alternative solutions that have to 

be dissimilar will be tough to achieve. 

 

Figure 41: C105 initial pheromone trial 

The initial solution algorithms consist of more than just the clustered approach. To ensure 

that anomalies are also catered for in extreme cases, the pheromone trial is still build up from 

other results as well. Figure 41 represents the initial pheromone trial before the improvement 

phase starts. It is clear from comparing with Figure 40 that the clustered stop segments have 

been given a significant higher probability.  
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Density clustering is a very effective method for specific cases. Because the method relies on 

specific criteria to generate a cluster, some environments can result in none or few clusters. 

Although it still assists in guiding the pheromone trial, we continue to apply additional 

methods in searching for guidance. 

5.5 Partition cluster results 

Clusters generated by a partition algorithm do not necessarily reflect a strong binding between 

the elements as with density clusters. Partition clustering is therefore only used when no or a 

small number of density clusters exist. The partition cluster method requires a predefined 

number of clusters to be generated and does not guarantee the same result if the algorithm is 

executed again.  

The use of partition cluster is to accelerate the convergence to a good feasible solution. The 

number of clusters is not defined as the expected final number of routes, but rather large 

enough to generate chains to work with. 

 

Figure 42: R108 Partition cluster 
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The R108 Solomon benchmark problem is a random generated environment with a short 

scheduling horizon. The partition clustering method is non-deterministic algorithm which 

allows multiple outcomes. Clustering still reflects something from the environment. 

 

Figure 43: R108 Initial pheromone trial 

From the pheromone trial in Figure 43, it is clear that the partition clustering did not affect 

the initial trial as much as the density method. This is due to the contribution of other factors 

that did not correlate with all the cluster chains. 

5.6 Benchmark Results 

This paragraph lists the execution results on some benchmark problems. The main focus is 

on Solomon‟s problems. Other examples use the same cost calculation method of Solomon. 

Executing the algorithm on Solomon‟s benchmark problems returned very good results.   

The best results are from Sintef‟s website (Solomon-benchmark, 100-customers, 2010) . The 

tables represent the  
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 Problem – e.g. C101, RC104, etc. 

 Initial Solution – according to a PBIH (Number of vehicles and distance travelled, 

Moolman (2004)) 

 Tabu improvement applied (Number of vehicles and distance travelled, Moolman 

(2004)) 

 Initial Solution – according this multi-start method (Number of vehicles and distance 

travelled) 

 Improvement applied (Number of vehicles and distance travelled) 

 Best published (Number of vehicles, distance travelled and % difference of the 

study‟s best ) – from Sintef website (Solomon-benchmark, 100-customers, 2010) 

5.6.1 C1 

The following diagram (Figure 44) display the solution of Solomon‟s C101 problem. The left 

diagram is the final routes and the right diagram is the final pheromone trail. The total route 

distance for the solution is 828.94, which match the best published solution. The clear 

pheromone trial indicates that alternatives to these routes are not feasible to consider.  

 

Figure 44: Solomon C101 Solution 

The following diagram (Figure 45) display the overlay of the initial clusters overlaid with the 

solution. The red polygon and same colour stops indicate a cluster. Although the C101 is a 
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simple solution, it indicates that the cluster should influence the initial pheromone trail as well 

as Tabu List. 

 

Figure 45: Solomon C101 Cluster overlay 

The following diagram (Figure 46) display the solution of Solomon‟s C109 problem. The total 

route distance for the solution is 828.94, which match the best published solution. 
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Figure 46: Solomon C109 solution 

Table 8 represents the solutions compared to a plain Tabu solution, the best initial solution, 

the adaptive object algorithm and the best published solution. 

      Tabu New   

Prob Initial Solution Improvement Initial Solution Improvement Best Published 

C101 10 880.47 10     828.94  11     860.58  10      828.94  3.7% 10     828.94  0.0% 

C102 10 997.74 10     871.32  16   1,144.04  10      828.94  27.5% 10     828.94  0.0% 

C103 10 1081.56 10     916.83  16   1,237.34  10      853.72  31.0% 10     828.06  3.1% 

C104 10 1059.59 10     911.85  12     975.23  10      836.84  14.2% 10     824.78  1.5% 

C105 10 878.78 10     827.55  11     860.58  10      828.94  3.7% 10     828.94  0.0% 

C106 10 968.58 10     840.19  13     976.02  10      834.23  14.5% 10     828.94  0.6% 

C107 10 928.74 10     827.55  11     860.58  10      834.23  3.1% 10     828.94  0.6% 

C108 10 871.57 10     827.55  12     910.35  10      828.94  8.9% 10     828.94  0.0% 

C109 10 910.28 10     829.74  13     979.95  10      850.26  13.2% 10     828.94  2.6% 

Table 8: C1 Solutions 

5.6.2 C2 

The setup of the cost functions in the adaptive object model in this contains no cost for the 

usage of an extra vehicle. This can already be seen by the result of the best initial solution 

from the multi-start approach. It is assumed that the traditional SIH best solution is contained 

in the set of initial solutions, but is not reflected as the best. That is evident by comparing the 
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original initial solution with the new multi-start result. The new algorithm did fairly well on 

the optimisation for C2 type problems. 

      Tabu New   

Prob Initial Solution Improvement Initial Solution Improvement Best Published 

C201 3 826.15 3     588.88  5     673.69  3      591.56  12.2% 3     591.56  0.0% 

C202 3 1180.34 3     623.46  6     720.65  4      619.44  14.0% 3     591.56  4.7% 

C203 3 1173.25 3     625.46  4     838.94  4      617.20  26.4% 3     591.17  4.4% 

C204 3 1235.70 3     685.10  5     870.92  3      646.54  25.8% 3     590.60  9.5% 

C205 3 789.79 3     617.45  4     777.30  3      589.72  24.1% 3     588.88  0.1% 

C206 3 934.87 3     629.63  5     875.20  3      591.35  32.4% 3     588.49  0.5% 

C207 3 884.44 3     587.89  5     869.49  3      601.92  30.8% 3     588.29  2.3% 

C208 3 815.97 3     592.93  5     759.59  3      594.73  21.7% 3     588.32  1.1% 

Table 9: C2 Solutions 

5.6.3 R1 

The effect of the randomly distributed stops in the R1 environment result in the inefficient 

use of the clustering approach for the initial solution. The optimisation produced good results 

and we can argue that the grouping during the initial solution assisted to guide the meta-

heuristic in the correct areas. The greedy nature of the initial solutions resulted in unordered 

stops, but the heuristic‟s swap moves improved the result with a low computing cost. 

      Tabu New   

Prob Initial Solution Improvement Initial Solution Improvement Best Published 

R101 20 1857.93 20  1,670.13  25 2264.223 21 1673.5645 26.1% 19  1,645.79  1.7% 

R102 19 1792.59 19  1,576.81  23 2141.259 19 1491.2923 30.4% 17  1,486.12  0.3% 

R103 15 1553.58 15  1,316.31  16 1651.6 15 1245.2884 24.6% 13  1,292.68  -3.7% 

R104 12 1283.22 11  1,061.90  14 1419.203 12 1027.7393 27.6% 9  1,007.24  2.0% 

R105 15 1534.40 15  1,455.08  22 1844.607 16 1401.7127 24.0% 14  1,377.11  1.8% 

R106 15 1457.51 14  1,292.28  17 1767.745 14 1280.718 27.6% 12  1,251.98  2.3% 

R107 13 1336.79 12  1,174.00  15 1584.442 12 1130.3644 28.7% 10  1,104.66  2.3% 

R108 10 1174.06 9  1,030.87  12 1313.324 12 1006.2199 23.4% 9     960.88  4.7% 

R109 14 1423.01 13  1,284.32  19 1714.363 14 1189.11 30.6% 11  1,194.73  -0.5% 

R110 12 1332.66 13  1,205.48  17 1562.29 13 1136.9781 27.2% 10  1,118.59  1.6% 

R111 13 1344.17 13  1,239.26  14 1604.695 13 1112.9772 30.6% 10  1,096.72  1.5% 

R112 11 1167.79 11  1,059.78  12 1302.659 11 1001.0385 23.2% 9     982.14  1.9% 

Table 10: R1 Solutions 
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5.6.4 R2 

The environment in R2 which consist of a combination of random stops and low capacity 

constraint effect, resulted in better results through the use of more vehicles. The initial 

solution also display the trend to use more vehicles to get a shorter distance travelled. 

      Tabu New   

Prob Initial Solution Improvement Initial Solution Improvement Best Published 

R201 5 1633.98 4  1,335.55  8   1,535.61  8   1,172.01  23.7% 4  1,252.37  -6.4% 

R202 5 1570.04 4  1,200.26  8   1,363.80  8   1,102.86  19.1% 3  1,191.70  -7.5% 

R203 4 1325.15 3     972.59  7   1,280.42  7      934.83  27.0% 3     939.54  -0.5% 

R204 3 1054.39 3     842.54  6   1,075.00  5      771.54  28.2% 2     825.52  -6.5% 

R205 4 1461.61 3  1,133.02  5   1,396.79  7   1,023.90  26.7% 3     994.42  3.0% 

R206 3 1358.68 3     985.94  6   1,221.69  5      974.70  20.2% 3     906.14  7.6% 

R207 3 1205.44 3     948.50  6   1,117.92  5      839.83  24.9% 2     893.33  -6.0% 

R208 3 908.49 2     845.94  6     973.85  4      845.47  13.2% 2     726.75  16.3% 

R209 4 1260.75 4     930.43  6   1,160.23  6      909.86  21.6% 3     909.16  0.1% 

R210 4 1384.77 3  1,019.45  6   1,220.80  7      948.19  22.3% 3     939.34  0.9% 

R211 3 1080.89 3     862.42  5   1,133.56  5      838.96  26.0% 2     892.71  -6.0% 

Table 11: R2 Solutions 

5.6.5 RC1 

The RC problems might be the closest representation to real world environments. It 

represents an environment that is not predictable and that contains areas with patterns in the 

environment. The algorithm will benefit from the clustered areas and the pheromone trail 

that is influenced for used during improvement will assist in a balanced diversification 

strategy. Results with the cost function utilised more vehicles in certain problems which 

produced better results. 

      Tabu New   

Prob Initial Solution Improvement Initial Solution Improvement Best Published 

RC101 16 1929.02 16  1,742.62  23   2,159.95  17   1,704.72  21.1% 14  1,696.94  0.5% 

RC102 15 1789.29 15  1,625.30  23   1,985.22  15   1,535.30  22.7% 12  1,554.75  -1.3% 

RC103 13 1613.99 13  1,403.99  18   1,790.02  12   1,327.32  25.8% 11  1,261.67  5.2% 

RC104 12 1363.74 12  1,212.92  15   1,506.09  12   1,212.79  19.5% 10  1,135.48  6.8% 

RC105 16 1805.33 16  1,706.53  21   2,040.03  17   1,576.19  22.7% 13  1,629.44  -3.3% 

RC106 14 1581.39 14  1,502.00  17   1,873.54  14   1,483.42  20.8% 11  1,424.73  4.1% 

RC107 13 1607.96 12  1,318.22  15   1,728.79  12   1,300.15  24.8% 11  1,230.48  5.7% 

RC108 12 1340.10 12  1,240.27  13   1,438.51  11   1,164.81  19.0% 10  1,139.82  2.2% 

Table 12: RC1 Solutions 
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5.6.6 RC2 

The RC2 problems display the same trend as with the R2 problem, mainly because of the use 

of more vehicles. The multi-start initial approach allows best solutions to use more vehicles 

than the best registered initial solution. Most of the solution results display better than 

published because of the use of the vehicles. 

      Tabu New   

Prob Initial Solution Improvement Initial Solution Improvement Best Published 

RC201 5 2131.14 4  1,474.86  9   1,856.60  8   1,317.55  29.0% 4  1,406.91  -6.4% 

RC202 5 1943.42 4  1,298.28  10   1,700.06  8   1,148.13  32.5% 3  1,367.09  -16% 

RC203 4 1595.85 3  1,081.34  8   1,534.76  7      985.91  35.8% 3  1,049.62  -6.1% 

RC204 3 1184.48 3     883.53  5   1,107.90  5      829.57  25.1% 3     798.41  3.9% 

RC205 6 1940.44 5  1,311.93  8   1,766.76  9   1,180.35  33.2% 4  1,297.19  -9.0% 

RC206 4 1595.74 4  1,162.03  8   1,480.07  7   1,121.70  24.2% 3  1,146.32  -2.1% 

RC207 4 1491.13 4  1,106.24  6   1,607.20  6   1,054.30  34.4% 3  1,061.14  -0.6% 

RC208 3 1275.21 3     920.17  5   1,106.80  4      858.56  22.4% 3     828.14  3.7% 

Table 13: RC2 Solutions 

5.7 Summary 

The result indicates that the algorithm is giving consistent results across all the different 

problems. The implementation of the Solomon cost function depends solely on the distance, 

which resulted in answers that has beaten the best published. 

The number of vehicles used is more in these instances. The function has been left in this 

state to indicate the sensitivity of the algorithm on the adaptive object model. i.e. the 

implementation of the cost and constraint classes by the implementer. This flexibility cannot 

be achieved in a domain orientated implementation. 

The flexibility of the solution can now be exploited and by altering only the cost function to 

incorporate the cost of the use of another vehicle. 
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6 PARALLEL IMPLEMENTATION 

6.1 Overview 

This chapter provides a brief overview of the adaption of the ASAO algorithm for parallel 

use. The objective is mainly to gain speed improvement with the least complexity in the 

adaption. The initiation of the approach will assist in alternatives for future expansion.  

The design of a parallel algorithm can be viewed as consisting of four stages - Partitioning, 

Communication Analysis, Granularity Control and Mapping. The following simple example 

illustrates some of the issues involved in each of the stages.  

Consider the scenario: n answer-scripts have to be marked, each of which contains the 

answers to m questions. The scripts could be viewed as the data, and the marking process 

itself as the computation to be performed on it.  

In order to design a parallel solution to this problem, it must first be decomposed into smaller 

tasks which can be executed simultaneously. This is referred to as the partitioning stage.  

This can be done in one of two ways. Each script could be marked by a different marker - 

this would require n markers. Alternatively, marking each question could be viewed as a task. 

This would result in m such tasks, each of which could be tackled by a separate marker, 

implying that every script passes through every marker.  

In the first approach, the data (scripts) is first decomposed and then the computation 

(marking) is associated with it. This technique is called domain decomposition.  

In the second approach, the computation to be performed (marking) is first decomposed and 

then the data (scripts) is associated with it. This technique is called functional decomposition. 

The partitioning technique that will be chosen often depends on the nature of the problem.  

Suppose one needs to compute the average mark of the n scripts. If domain decomposition 

was chosen, then the marks from each of the markers would be required. If the markers are at 

different physical locations, then some form of communication is needed, in order to obtain 

the sum of the marks.  

 
 
 



 
151 

 

The nature of the information flow is specified in the communication analysis stage of the 

design. In this case, each marker can proceed independently and communicate the marks at 

the end. However, other situations would require communication between two concurrent 

tasks before computation can proceed.  

It may be the case that the time to communicate the marks between two markers is much 

greater than the time to mark a question. In which case, it is more efficient to reduce the 

number of markers and have a marker work on a number of scripts, thereby decreasing the 

amount of communication.  

Effectively, several small tasks are combined to produce larger ones, which results in a more 

efficient solution. This is called granularity control. For example, k markers could mark n/k 

scripts each. The problem here is to determine the best value of k.  

The mapping stage specifies where each task is to execute. In this example, all tasks are of 

equal size and the communication is uniform, so any task can be mapped to any marker. 

However, in more complex situations, mapping strategies may not be obvious, requiring the 

use of more sophisticated techniques.  

6.2 Single thread environment 

The implementation of the ASAO algorithm was done from basic principles in the C# 

language. A standard off the shelf desktop was used to do the development and testing. The 

most basic desktops contain multiple processors. This machine runs two independent 

processor cores in one physical package at the same frequency. 

With the introduction of the multi-processors, and Hyper-Threading Technology for the 

desktop, threading is no longer within the exclusive domain of Server application developers. 

In a single-core or traditional processor the CPU is fed strings of instructions it must order, 

execute, then selectively store in its cache for quick retrieval. When data outside the cache is 

required, it is retrieved through the system bus from random access memory (RAM) or from 

storage devices. Accessing these slows down performance to the maximum speed the bus, 

RAM or storage device will allow, which is far slower than the speed of the CPU. The 

situation is compounded when multi-tasking. In this case the processor must switch back and 

forth between two or more sets of data streams and programs. CPU resources are depleted 

and performance suffers. 
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In a dual core processor each core handles incoming data strings simultaneously to improve 

efficiency. Just as two heads are better than one, so are two hands. Now when one is 

executing the other can be accessing the system bus or executing its own code.  

To utilize a dual core processor, the operating system must be able to recognize multi-

threading and the software must have simultaneous multi-threading technology (SMT) written 

into its code. SMT enables parallel multi-threading wherein the cores are served multi-

threaded instructions in parallel. Without SMT the software will only recognize one core. The 

CPU usage in Figure 47 displays the normal implementation of the ASAO algorithm in a 

Windows environment. 

 

Figure 47: Desktop CPU usage single thread 

The usage is clearly showing that the operating system does not balance processing across the 

two processors. The responsibility to implement a parallel solution is that of the developer. 

The following paragraphs step through the thinking of implementing the parallel ASAO. 

6.3 Partitioning 

Decomposing the algorithm into smaller tasks require an evaluation of the steps followed. We 

investigate the steps from a high level. 

The first high-level step is reading the problem environment. This step requires basic 

information management and although there exist methods of improving reading data, we 

will not consider it as part of this design. 

The second step consists of pre-calculations such as the calculation of the probability matrix 

and detection of neighbours. This still not part of the core algorithm and is done as a once 

off, but can easily be done in parallel as it is two non dependent separate processes. This is 

not currently of interest for us.  
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The third step is defined as the environment evaluation. This procedure is just a statistical 

review of the environment and does not contribute to the running time of the algorithm. It 

must be noted that when moving to a dynamic environment, this step might be an important 

tool in the continuous evaluation of the environment and can contribute to the effectiveness 

of the algorithm. It is not part of this study. 

The core of the algorithm consists of two main steps, the initial solution and the 

improvement. 

The initial solution approach is designed to provide multiple starting options through the use 

of multiple methods. This assists to diversify into the problemspace which assist in adapting 

to the environment sensitivity according to a specific method. In other implementations, an 

initial solution method is chosen depending on the environment and the improvement kicks-

off from a single solution start. This lead to the initial solution being designed for the specific 

problem environment.  The initial solution has been disregarded in the overall computational 

time. The impact of the initial solution approach in this study is significant enough to 

consider parallel processing. We define the parts as each different method that is used. 

The improvement algorithm is the most complex to consider because of the impact it has on 

the computational time. The dependence on the number of ants to solve the process 

influences the efficiency of the parallel implementation. The ASAO algorithm provides a clear 

location for the partitioning, i.e. the individual ants that is responsible for the implementation 

of an improvement technique. 

The challenge is to consolidate the results on the correct times and have the impact varies 

depending on the solution overlap and solution status.   

6.4 Communication Analysis 

It is clear from the previous paragraph that we will only consider the initial and improvement 

part of the solution for parallel implementation. This paragraph analyzes the communication 

required between the defined parts of the algorithm. The functional decomposition technique 

is used because we cannot clearly define the tasks inside the computation. The heuristic 

approach is dependent on randomness.  
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The initial solution approach spawns multiple scouts into the problem space to search for 

possible solutions. Scouts act individually and do not communicate with each other during 

the search process. They communicate their findings back to the queen who has to make a 

decision on the next action. The communication from the scouts to the queen contains all the 

solutions per scout and the method of the scout. 

The queen can now evaluate the difference in quality for each scout and if necessary combine 

subparts from solutions to create new solutions. The communication required for the 

scouting does not depend on concurrent processes to share information. 

The improvement phase‟s efficiency is more susceptible to communication between the 

processes. The heuristic type algorithm depends on memory structures to assist in decision 

making. In the single thread environment, the sequence can be determined and information 

can be passed over to the next ant on termination. Although complex, the implementation of 

parallel processing can contribute in speed of execution. With intelligent design, the speed can 

even be more approved by reducing the number of iterations because of communication 

between concurrent processes. 

In the single thread environment, a process will finish before information is passed to the 

next action. If two processes based on different actions were executing concurrently, frequent 

messaging can abort the process that is either not efficient or running in the same area of the 

problem space. 
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Figure 48: Multiple search paths 

The scenario in Figure 48 depicts a high-level search pattern of the algorithm. The green line 

represents process 1 and the red line process 2. It is clear that the two processes are traversing 

in the same area of the problem space. The effort could be better spend on the area on the 

right hand side. 

This is the main reason why traditional heuristic methods include a step for diversification. 

And the solution would still be found in traditional heuristic methods, but the time waist 

could have been detected earlier. 

The proposed approach sounds simple enough, but the effort of the communication and 

comparing solutions at run-time is the major factors that will determine the success of this 

step. The environment knowledge must now play its part.  

If the environment‟s topology is flat, as described in chapter 5, we know that there exist 

multiple solutions in a neighbourhood of moves. This environment normally requires a wide 

search and intensive local optimization. One process in a specific area is sufficient for the 

convergence because the local memory structures will guide the optimization the best. 

Comparing search patterns in this environment is difficult because solutions that exist in the 
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same area can have constructed totally different route structures. All because there exist a 

number of solutions in the neighbourhood that can be reached by one move.  

If the environment topology consists of more mountains and valleys, the local optimization 

tends to converge to a locally optimal quite easily. The goal would be to terminate those 

processes that are climbing the same hill and only leave one to achieve the goal. Detecting 

these similarities should be easier in this environment, as the first few steps would quickly 

settle on a pattern of routes. 

The proposed implementation of the communication channels consist of adding an additional 

layer of communication. The queen, who is in control, should place all ants in groups 

determined from the initial solutions. Efficiency can then be compared by  

 Convergence speed – how does the algorithm climb the hill in relation to other 

processes? If the process is lacking in convergence compared to total cost, the area is 

most likely not suitable for a best solution. 

 Route overlapping – stop sequence change and individual stop exchange between 

routes are the most effective moves close to the local optimum. Routes from the 

same area would overlap with a high percentage. 

 Total cost – if the total cost of a process is not considered to be feasible, terminate. 

To add to the efficiency of the communication, the importance of the efficiency parameter 

result should depend on the global status of the solution. The hybrid implementation based 

on simulated annealing provides information on the status of the solution.  

In the initial phases of the improvement heuristic, convergence speed will be the dominant 

factor. The principle of initial solutions, that might be costly but still good because of its 

convergence in a specific area, applies. Total solution cost is always an important factor, while 

the route overlapping factor becomes dominant in the second part of the cooling down 

process. 
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6.5 Granularity Control 

Determining the granularity of the implementation is not a straight forward task. The initial 

solution approach follows a strict implementation method, while the improvement step 

requires flexibility. 

The initial solution is divided into 3 main methods: SIH on clustered chains, SIH, 

Constructive ant. These 3 methods can be executed in parallel without communication and 

speed problems. 

The improvement step depends on the queen to control procedures. Part of the purpose of 

the queen is to decide the granularity, i.e. number of processes, through feedback from the 

processes running. As discussed in the previous paragraph, communication is done on 2 

levels. 

 
 
 



 
158 

 

 

Figure 49: Organization of parallel search 

The computational environment is not distributed computing where computers are 

connected with lower speed links. It is thus fine grain, closely connected architecture and the 

algorithms have been designed accordingly. The decomposition step, as illustrated in Figure 

49, has the capability to decide on the number of solutions to use, thus determining the 

granularity of the system during run-time. Although the soldier decomposes the solution in 

more solutions, the parallel implementation will not be applied on that level. 
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6.6 Mapping 

The mapping stage specifies where each task is to execute. In the initial solution stage, all 

tasks are viewed as equally important and are mapped to the same importance for process 

execution. 

In the improvement stage, a sophisticated technique can be used. We define the following 

simple starting point of process priority: 

1. Lowest cost – the solution with the lowest cost gets the primary consideration. The 

more complete initial solution method will result in a good solution for the majority 

of the time. The aim of this study to provide a feasible approach for business 

implementation, has a requirement that the algorithm to provide a solution as quick as 

possible. This priority will also set a realistic benchmark for other decisions. 

2. Other – the rest of the solutions is next. 

3. Scouts – it is important to keep scouting the area for uncharted territory. This step is 

only reached after a number of iterations, which indicates the complexity of the 

problem space. In this instance, the business will allow more iteration for a good 

solution. 

The parallelization of the algorithm has many aspects to consider. The complexity of the 

unknown domain environment is an additional aspect to consider. 

6.7 Parallel Ant System on Adaptive Objects 

The previous paragraphs describe the steps to approach the parallelization of an algorithm. 

The partitioning paragraph recommended that the study focus on the initial solution and 

improvements stage for parallelization importance. This paragraph portrays the changes on 

the ASAO algorithm introduced in chapter 5. 

The initial solution adaption is kept simple and can be interpreted in Figure 50. The algorithm 

spawns the initial solution methods in parallel. The expansion with new initial methods does 

not require a rework of the algorithm. Speed improvement on this fixed time part of the 

algorithm is notable and provides the option to reuse for diversification. 
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Figure 50: Initial PASAO 

The result from the initial solution is evaluated and clearly marked to trace the origin for 

future references. A consolidated set of solutions is then passed on for further improvement. 

The two level control structures require partitioning of same type solutions to form the 

second level.  

Figure 51 represents a high-level sequence diagram which indicates the purpose of each part 

of the system. It is important to note that once the algorithm has started, the queen spawns 

the process to the soldier. This entity continues to work until aborted by the queen.  Figure 52 

represents a more sequential flow of activities. From the diagrams, we can learn that the 

queen has a solution available at any time whilst the system is still executing. This approach 

provides flexibility which results in no adaption for each individual requirement. Best effort 

relates to the time allowed to execute. 
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Figure 51: Sequence diagram for PASAO 

The granularity of the solution is not known during design time for the improvement stage. 

The related diagrams must be interpreted accordingly. The same memory structure is used by 

the manager and the system. Each instance maintains its own structure‟s content. 

Figure 51 display the call-back from the soldier to the queen as asynchronous. This is not 

clear in Figure 52, but can be interpreted that the „join‟ action between the systems are not a 

dependency between the systems, but rather depends on the manager (queen). A „join‟ 

command in C# force the main thread to wait until the thread has executed.  

The straightforward transpose from the single threaded environment can be done in this way. 

This way, only utilization of multi-processor environment is achieved. The goal is to 
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simultaneously monitor the efficiency of the systems (soldiers) to be able to terminate where 

possible. Figure 52 must be interpreted with the asynchronous message return as described in 

Figure 51. 
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Figure 52: PASAO 
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6.8 Results 

The primary goal for the parallel implementation is to utilize the multi-processor architect 

that is even available in today‟s personal computers. The solution results are expected to be 

the same or better as in a single threaded environment.  

 

Figure 53: Desktop CPU usage multi-thread 

The CPU processing depicted in Figure 53 clearly shows the improvement from the single 

threaded usage illustrated in Figure 47. It is also apparent where the initial solutions were 

generated, before the improvement started. The initial solution use a fixed time. 

6.9 Summary 

The parallelization of the ASAO algorithm has many possible benefits. This chapter explores 

some approaches. It designs some specific, not too complex, options for implementation. 

The advantage of utilizing multi-processes has immediate impact and cannot be seen as 

optional anymore, because of the availability of dual processor architecture in the basic 

computers on the market today. 

Communication complexity between processes governs the design of the rest of the 

parallelization approach, i.e. partitioning, granularity and mapping. Combined with the 

adaptive object ambition of this study, this design should steer away from dependence on the 

domain knowledge. It was achieved by considering only what we know about the algorithm. 

As a result, each system contains the same memory structure and the queen has the decision 

on how to manipulate it. Inter process communication intervals are based on the Simulated 

Annealing methodology. The state of the cooling determines the communication required 

and the resulting actions to be taken.  

Parallelization of VRP solutions is inevitable in today‟s implementation circumstances. The 

effect of implementation has various positive effects and can be clearly seen in the results. 
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7 CONLUSION 

7.1 Overview 

Logistics management is that part of the supply chain which plans, implements and controls 

the efficient, effective forward and reverse flow and storage of goods, services and related 

information. There are many opportunities to reduce total cost in supply chains. The 

prerequisites to many categories of cost savings, including supply chain management, are 

simplification, which corresponds to the basic lesson of Industrial Engineering 101: "Simplify 

before automating or computerizing"(Anderson, 2009). 

The annual State of Logistics Report in the USA issued by the Council of Supply Chain 

Management Professionals shows that businesses spent a record $1.4 trillion on logistics in 

2007. That's equal to 10.1 percent of Gross Domestic Product. It's the first time since 2000 

that figure has exceeded 10 percent. Not surprisingly, most of the increases were related to 

fuel(Shulz, 2008). Transportation costs now account for 6.2 percent of nominal GDP. But 

capacity is permanently leaving the trucking industry as firms exit the market place and sell 

their equipment, often in foreign markets. The closing of Jevic Transportation, the nation's 

71st-largest trucking company, is evidence that some truckers simply do not have adequate 

business plans in this era.  

Solving different kinds of the Vehicle Routing Problem is an important area of Operations 

Research. Achieving improvement of only a small percentage may result in large. The cost of 

implementing a solution requires analysts and developers who understand the specific 

problem domain for the company. This initial cost of implementation is still a major 

drawback for companies to take the step towards implementing a solution. 

Current study on the VRP focuses mostly on the efficiency and effectiveness indicators 

because it does not consider the problem as part of an enterprise system. This study reviews 

the importance of the indicators. Integration, both within and among cooperating enterprises, 

now comes first and is most important, providing the highest value. Dynamic integration 

creates the ability for many enterprises to participate within IT solution. Agility, the ability to 

react quickly, comes second.  
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Figure 54: Traditional problem approach 

This thesis addresses the problem of solving the VRP with variants through applying an 

adaptive solution which has no predefined knowledge of the problem environment. Current 

studies focus on solving VRP through identifying the type of problem beforehand and 

implement as solution for the specific type. Success is measured if an answer is good enough in a 

reasonable time for a problem where the user define the constraint and cost model. 

7.2 Problem approach 

The complexity of the VRP and all its variants has intrigued many OR researches. There exist 

numerous variants with numerous methods to solve them. The NP-hardness of the problem 

makes it then ideal playground for advance research. This study investigates the VRP problem 

with extraordinary requirements. 

The innate ideas of solving the VRP consist of grouping stops according their geographical 

location. The expert will know that although the geographical location has a major impact on 

most real-life problems, the location is nothing else than a source for the cost calculation. The 

study seeks to steer away from the direct relation to the physical environment and view the 
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possibilities presented by the mathematical model. The inclusion of adaptive objects reduces 

the size of the mathematical model. The best-case approach in the initial environment to 

setup a cost matrix, contributes to the reducing of computational possibilities through the 

immediate elimination of impossible links.  

The use of geographical independent clustering methods permits us to utilize traditional 

„cluster first route second‟ methodologies. In combination with the pheromone trial, the 

results of clustering do not dominate the convergence. The memory structure for move types 

ensures that adaptiveness is also transferred to the algorithm. It is similar to solving the VRP 

with more than one algorithm. 

7.3 Results 

Results clearly indicate the accomplishment of the study. It must be acknowledged that the 

writer had a disproportionate advantage. The knowledge of designing the adaptive cost and 

constraint objects is strongly related to the problem domain as well as the internal algorithm 

use. This point toward the speed of the algorithm and not the efficiency. 

The new definition on what qualifies as a good initial solution as well as the multi-start 

approach provides good coverage on the start of the algorithm. The addition of environment 

analysis influences the „cooling‟ tempo of the convergence.  

7.4 Summary 

The design of a selective parallel heuristic algorithm for the Vehicle Routing Problem on an 

adaptive object model has been accomplish through integration of multiple methods. We 

conclude by stating that such a target would be impossible to achieve without hybrid 

methods. Adding the flexibility of determining run-time where and when to emphasize 

specific methods, contribute to the success of the design. 

The study instigate numerous areas for further in-depth research of which the adaptive object 

model interface with the algorithm and the parallelization of the algorithm stands out the 

most. Both areas contain dependency on the memory structure used by the algorithm, as well 

as feedback from actions within the algorithm. 
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This study introduced an environment analysis model that has been dealt with from the static 

VRP problem viewpoint. The algorithm detects the type of environment during run-time. 

Further research on this method can assist in guiding the algorithm during the initial stage, 

which has enormous impact on the optimisation phase. A further development can include 

the re-evaluation of the environment when the optimisation memory structures have been set 

after a certain number of iterations. 

A more complex problem such as the IRP (Inventory Routing Problem) can be implemented 

into the framework. The inventory routing problem involves the integration and coordination 

of two components of the logistics value chain: inventory management and vehicle routing. 

Inventory is required to provide cover against variability in demand, supply and the 

movement of products. Inventory is generally present in supply chain to ensure product 

availability. The inventory replenishment requirement is dependent on the time of visit, which 

is determined by the VRP. 

A framework is a basic conceptual structure used to solve or address complex issues. A 

software framework is an abstraction in which common code providing generic functionality 

can be selectively overridden or specialized by user code providing specific functionality. This 

study introduces a framework for solving various types of complex VRP problems. A more 

in-depth study can be done on the differences between a framework base solution and a 

direct solution approach.  

The parallel design discussed in the previous chapter is only the beginning of an important 

field of study for the VRP. There exist numerous approaches for parallel implementation 

from a computer scientist view. The multi-level usage of memory structures can be further 

expanded to fit the parallel approach. Problem granularity consists of the decision to 

breakdown the problem in smaller problems that can each be solved on its own and in 

parallel. Dynamic decision making on the feasibility of a granular level adds to the challenge 

and possibilities of parallel algorithms. 

The methods utilised for this study can be applied on other problems and is not exclusive to 

the VRP only. The VRP provide a complex problem with multiple combinations that serves 

as a high-quality environment for research of new methods. This study steps towards an 

enterprise view for the VRP without sacrificing quality of the solution. This new approach 

opens up new possibilities. 
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