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3 ADAPTIVE OBJECT MODELING 

3.1 Overview 

The study formulates a new angle on an already challenging problem to solve. It exploits 

methods available to approach the problem as well as incorporating traditionally used 

methods. This chapter provides the detail of the design for the adaptive object model. It 

introduces mechanisms using adaptive objects and data structures to achieve the composition 

of the problem formulated. 

This part of the thesis is important for the deployment of the problem that can benefit the 

industry. The design of an Information Technology System should focus on the following key 

performance indicators (Schulman, August 2002):  

 Efficiency - accomplishment of or ability to accomplish a job with a minimum expenditure of 

time and effort 

 Effectiveness - adequate to accomplish a purpose; producing the intended or 

expected result 

 Alignment - a state of agreement or cooperation among persons, groups, nations, etc., 

with a common cause or viewpoint 

 Agility - the power of moving quickly and easily 

 Integration - an act or instance of combining into an integral whole. 

Current study on the VRP focuses mostly on the first two indicators because it does not 

consider the problem as part of an enterprise system. The aim of this study requires us to 

view the reverse order of these indicators.  

Integration, both within and among cooperating enterprises, now comes first and is most 

important, providing the highest value. Dynamic integration creates the ability for many 

enterprises to participate within IT solution. Agility, the ability to react quickly, comes second. 

Alignment contribute to the linking of IT and business goals. Effectiveness and efficiency are 

important, but “good enough” gets us to where we need to go now, and getting to business 

goals quickly is better than perfection.  
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Also, although creating solutions that are durable is important, it is more important to put 

agility and “evergreening” features into architectures that make them easy to change as new 

business requirements come along. Creating a design for business change will end up being 

more important than creating the perfect solution. So, although we are not jettisoning 

effectiveness and efficiency as KPIs, we are increasing the others‟ priority and putting them a 

bit “on the back burner” and shaking up our viewpoint. 

To achieve this goal on the micro level, we implement an adaptive object approach, which 

separate the problem environment. This includes the objective function and constraints from 

the actual optimization algorithm. It requires a clear communication structure between the 

discrete components. These components must be well-defined regarding functions, 

properties and results. 

 

Figure 8: From modelling to solution 

Existing solution approaches rely heavily on knowledge of the problem environment to 

improve efficiency of the algorithm. This research cannot exploit the lessons learned from 

previous research on problem types as the objective is to solve a problem for any 

environment. Joubert (2006) apply a method of evaluation first and then selecting an 

appropriate heuristic. This research is a step in the right direction. The shortfall is in the 

provision of all types of environments. The approach followed by Joubert relies on the 

knowledge of a specific problem type, and evaluates only the geographical and time window 

compatibility.  

We will take the first steps towards and adaptive object model solution approach. The 

proposed method uncovers a new area of defining the VRP. Previous solutions were done on 

an object-oriented basis (Moolman, 2004). Adaptive software is an extension of object-
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oriented software where relationships between functions and data are left flexible, that is, 

where functions and data are loosely coupled through navigation specifications. Adaptive 

means that the software heuristically changes itself to handle an interesting class of 

requirements changes related to changing the object structure. 

Adaptive software is a natural evolution of object-oriented software since every object 

oriented program is essentially an adaptive program. In many cases however, the adaptiveness 

of the object-oriented program can be significantly improved. Although object-oriented 

programs are easier to reuse than programs that are not written in an object-oriented style, 

object-oriented programs are still very rigid and hard to evolve. Our experience shows that 

for most application domains, object-oriented programs can be made significantly more 

general and extensible by expressing them as adaptive programs. An adaptive program allows 

us to express the intention of a program without being side-tracked by the details of the 

object structure (Lieberherr, 1996). 

Object-oriented programming is a promising technology that has been developed over the 

last twenty years. One important advantage of object-oriented programming is that it reduces 

the semantic gap between a program and the world it models because the world consists of 

physical and abstract objects that are represented naturally by software objects in an object-

oriented program. However, object-oriented design and programming has several 

disadvantages, the most significant of which is that it binds functions and data too tightly.  

A loose binding between functions and data allows very generic software where data structure 

information in the functions or procedures is only used to constrain the applicable data 

structures. Before a program can be run, we select one of the applicable data structures, 

which in turn usually determine the structure of the input objects. The goal when writing the 

functions is to minimize the assumptions we make about the data structures. This technique 

could be called data-structure-shy programming, and it leads to generic software that can be 

flexibly customized later. One data-structure-shy program potentially describes an infinite 

collection of object-oriented programs. 

In the following paragraphs the domain data is discussed from a generic point of view. The 

structure of the data is fixed on the domain level. 
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3.2 Supply chain domain 

The VRP form part of a supply chain and should be integrated into the planning solutions for 

a supply chain. Supply chain management is among the most complex and difficult activities 

in today's environment of shorter lead times, tighter delivery schedules, and dramatically 

increased product variety. It is also among the most important. We view the usage of the 

logistics optimization on three levels: 

 Strategic – This level represents the plan of action intended to accomplish a specific 

goal. Strategic Supply Chain Management explores the knowledge, techniques, and 

strategies necessary to create value and achieve competitive advantage from your 

supply chain. 

 Tactical – This level represents a manoeuvre for achieving a goal. Tactical supply 

chain decisions focus on adopting measures that will produce cost benefits for a 

company. Tactical decisions are made within the constraints of the overarching 

strategic supply chain decisions made by company management. It contains more 

definite information for scenarios. 

 Operational – This level implements a series of actions for achieving a result. 

Operational supply chain decisions are made hundreds of times each day in a 

company. These are the decisions that are made at business locations that affect how 

products are developed, sold, moved and manufactured. Operational decisions are 

made with awareness of the strategic and tactical decisions that have been adopted 

within a company. The day to day operational supply chain decisions ensure that the 

products efficiently move along the supply chain achieving the maximum cost benefit. 

A number of examples of operational decisions can be identified in manufacturing, 

supplier relationships and logistics. 

This study acknowledges the usage of the VRP on all the levels. On the higher level 

implementation, input parameters are manipulated by scenario generating tools. This chapter 

will clearly specify the interfaces to the outside supply chain processes to allow for seamless 

integration and maximum use.  

It is important to understand the link to the supply chain objects. The adaptive object model 

will feed from a base domain environment. For the VRP, we define that environment as the 

supply chain logistics.  The supply chain objects are described as follows: 
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Entity Description 

Commodity 

Commodity is a product or service for which there exists 

demand. In the supply chain logistics context, we are interested 

in specific properties such as weight, volume and certain 

constraints pertaining to the distribution of the commodity.  

Solving the VRP for multiple commodities can be handled in 

the proposed framework if the commodities use the same unit 

of measurement, e.g. weight or volume or when they are 

mapped as a multi-objective function.  

This study does not implement a multi-objective scenario. 

Additional requirements can be enforced through constraints 

functions, e.g. fresh and frozen product that is not allowed to 

share a resource. 

Contract 

A contract is an agreement between two or more parties for the 

doing or not doing of something specified. Contracts provide 

clients which have locations and are used for the routing. 

Contracts assist with the management of when a client is not 

valid to serve anymore. 

Contract Line 

The contract line represents the detail regarding the contract on 

a specific commodity. A contract can contain more than one 

commodity. A contract line indicates the activity required, e.g. 

supply, demand, returns, etc. The input into the algorithm 

considers only one activity type per solution. The contract line 

specifies the location of the activity required. The location 

should relate to a distribution centre either through manual 

allocation or through a pre-process algorithm before the 

algorithm start. The algorithm will handle only one distribution 

centre as input on the lowest level. 

The contract line contains a link to quantities required per 

occurrence. An occurrence is the date when the activity must be 
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done for the contract line and is calculated from a schedule. The 

occurrence contains the time windows for the service of the 

location. 

Schedule 

A schedule represents the date for which a contract line is active 

as well as the frequency of visits for the specific contract line, 

e.g. for the period March to June service the location only 

Mondays and Fridays. 

Units of measurement 

A unit of measurement is a standardized quantity of a physical 

property, used as a factor to express occurring quantities of that 

property. The scenarios in this research assume that the defined 

comparison constraints do not require a unit conversion. The 

commodity demand is specified in the unit of measurement. 

Locations 

In geography, location is a position or point in physical space 

that something occupies on Earths' surface. A real location can 

often be designated using a specific pairing of latitude and 

longitude, a Cartesian coordinate grid (e.g., State Plane 

Coordinate System), a spherical coordinate system, or an 

ellipsoid-based system (e.g., World Geodetic System). 

A location may be described as either absolute location, meaning 

the exact location of an object, or relative location, meaning the 

location of one object relative to another and another or in a 

general area. There are two types of location, relative & absolute. 

Relative deals with the relative spot of something on Earth. 

Absolute deals with the exact spot of something on Earth. 

Locations has played an important role in interpreting a VRP 

problem, but must be seen as source data for visual presentation 

and possible input to cost or constraint functions. 

Resource Types A resource is any physical or virtual entity of limited availability, 

or anything used to help one earn a living (solve the problem). It 
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is important to note the possibility of different resource types 

for future studies. This thesis will consider only one resource 

type. Vehicles are the typical resource type for the VRP. 

Table 2: Supply Chain Entities 

The supply chain problem spans over a period of time and can depend on forecasts, seasonal 

trends, weather patterns, etc. The proposed VRP solution is for a single instance of routing to 

be done from a depot. The implementation of the solution requires the domain expert to 

prepare the data for the solution. 

3.3 Components 

The previous paragraph described the typical domain environment on top of which the 

solution will be implemented. We can now revisit the component model as explained in 

chapter 2. This paragraph discusses the objective of the components and the required 

interfaces on a high level. It indicates the level of adaptiveness and object-oriented design of 

each component.  

 

Figure 9: Solution component breakdown 
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Adaptiveness is achieved by expressing programs as loosely coupled, cooperating fragments, 

and each one describing only the concerns of one context. The loose coupling is achieved 

with novel means such as concise object navigation specifications. The loose coupling of the 

fragments leads to adaptiveness since many changes in one fragment preserve the intent of 

the other cooperating fragments, which then adjust automatically to the changed fragment. 

Adaptive software works with partial knowledge about class structures that directly supports 

an iterative software life-cycle. Figure 9 displays the different loosely coupled components 

that implements a combination of object oriented structure and adaptive modelling. The 

components depict the basic building block hierarchy and dependency.  

This study will create some of the components as new methods for solving any VRP related 

problem. It will provide a guide of how to create other components to ensure that the 

solution is still effective in time to solve. And it will indicate which components are not in the 

control of the implementer. The components‟ services can be described as follows: 

Service Description 

Data Source 

The physical storage of the data can reside in different formats. 

The data source provides the interface to the required 

information. 

Object Layer 

The object layer interprets the data from the data source into the 

required domain objects. It applies filters on the data which 

result in the subset of data required for the problem instance. 

Base Classes 

The base classes represent the data objects and additional 

structures used by the algorithm. These objects are data light 

because of their access to the domain specific object layer. 

Cost Functions 

The cost and constraint functions reside in objects that are 

accessible by the algorithm and have access to all underlying 

data models. These objects encapsulate the complexity of the 

calculations required. They expose a limited set of function calls 

that is aligned with the domain model. 
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Optimisation Algorithm 
The algorithm utilise the base classes and cost functions to 

optimise an unknown VRP type problem. 

Process Monitoring and 

Measurement 

All processes are monitored to ensure efficiency of the system 

and allow for future areas of enhancements.  

Table 3: Component blocks 

Adhering to the principle of service-oriented architecture, all components are loosely coupled, 

using well-defined interface protocols, preferably message-oriented. This criterion has the 

following desirable design qualities which contribute to a lower cost to the implementer. 

 Each component can be designed, implemented and tested independently of the 

other systems based on the agreed interface protocols. Knowledge of the internal 

design of other systems, such as implementation language, choice of RDBMS etc. is 

not required. 

 Support for effective end-to-end testing. 

 Any system that supports the interface protocols may be updated or replaced. 

 High cohesion - The structure of the components that form part of the overall 

architecture is focused on well-defined areas. The responsibility split between 

components is clear and logical, and it is always clear which component is 

functioning. This design criterion reduces system complexity. 

 Strong encapsulation - Encapsulation hides the details of a system but offers a well-

defined interface for exchanging information. Like high cohesion, this design criterion 

reduces overall complexity but also allows changes to the internal design without 

impacting on the other systems. Encapsulation also shields the internal data from 

external tampering. 

 Determinism ensures that given a defined component state and a determined 

sequence of events, the end result is always the same, and thus able to be reproduced 

in a test environment. This allows effective end-to-end testing and contributes to a 

reliable system. 
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The system will be implemented according to the following logical architecture. The diagram 

shows the interface relations of the building blocks ranging from the raw data to the 

algorithm.  

Data Source

Cost and Constraint 

Function
Route Data Instance

Solution Workspace

Domain Extraction

Ant System for 

Adaptive Objects

ASAO

 

Figure 10: System logical overview 

3.3.1 Data source 

This component encapsulates the physical data and is provided by the client. A typical 

example consists of a database that stores all the required data. A more complex scenario is 

where different information is stored in different places, e.g. forecast data is used to 

determine the volumes and is stored in the financial system, while customer information is 

stored in the CRM and is used for location of clients.  
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The solution is built on the Expandable Software Infrastructure (ESI) framework, which 

implements an adaptive data model through meta-data. The ESI maps the functional 

attributes to the physical fields and takes care of the underlying physical structure.  

The data source layer provides an abstraction of the physical data for the object layer and the 

cost functions. The domain implementation on the data source guarantees a base model, but 

is extendible on attributes. These additional attributes is not known at the design time of the 

algorithm. This situation is an important factor in designing the optimization algorithm.  

The data source component implements the interfaces from the external data providers and 

presents an interface that is used by the domain objects, as well as the cost and constraint 

function component. 

3.3.2 Domain Objects 

The domain object component represents the source data in a managed, structured and 

accessible way, i.e. the data can be accessed in code as an object with properties, methods and 

relations to other objects. The identified objects forms the base of our problem space and are 

accordingly stored in a known problem space environment. The objects are designed 

specifically for the VRP environment. Further research can extent the objects to fit into a 

general optimization structure. There exists only one problem space in our solution.  

The main purpose of the problem space is to be a placeholder for all the original data and to 

implement the raw data from the data source into a conceptual structured way that models 

the intent of the problem, i.e. the VRP. 

An additional benefit of the object layer as placeholder is to provide better memory 

management, because most of the calculated result classes can now only reference to an entry 

in the problem space. The design allow for the problem space to be utilize in any kind of 

solution, e.g. the same problem space can be used to calculate activity based costing, or cluster 

stops as we‟ve used as an environment evaluating step. This step achieves our goal to keep 

the design flexible and extendible. 

The second purpose of implementing a conceptual model is important in the use of objects in 

further steps. As described a previous paragraph, the data source is build on a framework that 

allows for meta-data driven classes. The level of abstraction allows the user to implement 
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anything in the detail of the base structure. The framework also allow for the definition of a 

domain model. It is that domain model that comes into play during the object layer 

implementation. 

The first step in defining a domain model is to define what is required in our implementation 

of the object layer. This requirement is set by the base classes defined in detail later in this 

chapter. Chapter 2 describes the complete VRP problem. According to Barbarosoglu and 

Ozgur (1999) the VRP can be described as the problem of designing optimal delivery or 

collection of routes from one or several depots to a number of customers subject to side 

constraints. Thus, the basic VRP can be described as vehicles that depart from the depot, visit 

one or more customers and return to the depot. The requirement of a solution for the VRP 

indicates clearly that the following objects should exist: depot, customers and vehicles.  

According to our supply chain domain model, there exist a number of classes that represents 

the supply chain model. We should now super impose the VRP requirement onto the supply 

chain domain. It is clear that the VRP requires a simpler model for implementation. Thus the 

implementation requires a mapping and filter mechanism between the two models. Because 

the two models are well defined, the mapping can be seen as consistent across solutions. Note 

that the mapping is focused on the domain model and does not restrict the flexibility of the 

classes involved. The mapping considered here is only applicable to the final VRP routing 

algorithm and it is assumed that all required allocations and calculations have been done. 

-Name : string

-Depot : Depot

-Stops : Stop

-Vehicles : Vehicle

VRP Base Data::ProblemSpace

 

Figure 11: Problem Space Class 

From the representative problem formulation, we define the base objects that are required as 

 a list of stops,  

 a depot,  

 a list of vehicles (resources) 
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Vehicles do not form part of the original description according to Barbarosoglu and Ozgur 

(1999), but was identified as a critical enough side constraint input to be part of the base 

object model. The problem is to define an interface for the objects that is complete and 

sufficient enough to be used in the algorithm.  

According to the component model, the base classes and cost functions have interfaces to the 

data objects, but the algorithm not. This extra level of abstraction insures that the algorithm 

operates on a known base that shifts the focus for the algorithm to the methods use and not 

data integration. The purpose of the base class component layer is to act as the interface 

between the data and the algorithm and provide addition storage structures required by the 

algorithm to execute efficiently.  

3.3.3 Base classes (Solution Workspace) 

The input data is loaded into data objects and then used through the problem space object. It 

consists of static data with all properties available that can assist in solving the problem. This 

optimization algorithm requires a known interface to work with. We define the base classes as 

interface for the data to the algorithm as well as algorithm specific storage area for specific 

algorithmic approaches. 

The optimisation algorithm utilizes advance memory structures. The complexity of the base 

classes is dependent on the algorithm and will be discussed in the algorithm definition. The 

most important base class that is used is the SolutionWorkspace, which extends the 

ProblemSpace. The SolutionWorkspace implements RoutableStops and RoutableVehicles. 

These objects contain additional placeholders to allow for adaptiveness required by the cost 

and constraint functions. The solution workspace contains memory structures used in the 

algorithm. 
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-RoutableStops : RoutableStop

-RoutableVehicles : RoutableVehicle

-CostFunctions : CostMeasures

-ConstraintFunction : ConstraintChecks

-ProbabilityMatrix : double

VRP Workspace::SolutionWorkspace

-Name : string

-Depot : Depot

-Stops : Stop

-Vehicles : Vehicle

VRP Base Data::ProblemSpace

 

Figure 12: Solution Workspace 

Any module using this VRP solution that implements the defined interfaces can provide data 

to the resulting algorithm. 

3.3.4 Cost and constraint functions 

This component represents the user defined objective functions as well as constraint 

functions. The implementation view a constraint function as checking if a solution is valid, while 

the cost function is the driver toward a good solution.  

Implementing a crude cost function for any improvement heuristic will consist of calculating 

the compliance of the new solution to the constraints and then calculating the cost of the 

solution if no constraints have been violated. The solution provide for generic StopData per 

RouteStop to provide the cost function the ability to work from a cached solution base. See the 

Solomon implementation example cost function for a typical use of environment knowledge. 
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+ViolatesFinalConstraints(in route : Route) : bool

+ViolatesFinalConstraints(in route : Route, in pos : int) : bool

+ViolatesFinalConstraints(in solution : Solution) : bool

+ViolatesIntermediateConstraints(in route : Route) : bool

+ViolatesIntermediateConstraints(in route : Route, in pos : int) : bool

«interface»

VRP Base Data::ConstraintChecks

+Cost(in fromStop : RouteStop, in toStop : RouteStop) : double

+Cost(in route : Route) : double

+Cost(in vehicle : RouteVehicle) : double

+Cost(in solution : Solution) : double

+CreateStopData() : IRouteStopData

«interface»

VRP Base Data::CostMeasures

 

Figure 13: Cost and Constraint Interfaces 

These interfaces allow the algorithm to call the appropriate cost or constraint function at the 

applicable time. The component design allows the cost function access to both the structured 

data objects as well as the data source. The interface to the data object is necessary for the 

cost function to obtain information required to calculate the result, e.g. in Solomon the cost 

function is a distance based function that requires the location of the stops to calculate the 

distance in Euclidian space. The Solomon implemented constraint function requires the time 

window of a stop to check the compatibility.  

Both these functions required properties that relates directly to the base objects identified. 

This approach is sufficient for most VRP implementations. The interface to the data source 

implies access for the cost function to any data that is available in the system.  

3.3.5 Optimization algorithm 

The objective function of the problem is to minimize cost while adhering to all constraints. 

An adaptive object implementation allows for a higher level of abstraction of these functions, 

i.e. the „user‟ of the algorithm has the ability to provide the cost and constraint functions.  The 

design of the algorithm makes use of these external functions to guide the solution to a 

minimum.  

The optimization algorithm has the base classes and cost functions as input. The base classes 

are well defined, but the cost functions are unknown for the purpose of this study. The goal is 

to solve the problem with this limited knowledge. 
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This paper will not discuss the multi-objective cost function, but the resulting solution should 

be easy to adapt to incorporate such cost drivers. 

3.4 Implementation 

The solution was developed on Visual Studio 2008, in the C# language. C# has the ability to 

implement interfaces, as do many other languages. The design is aimed to be acceptable in 

other languages such as C++ and Java as well. The use of interfaces is acceptable practice. It 

also utilizes the idea of delegates or function pointers. The use of delegates adds complexity 

to the code if it is not defined clearly. 

An interface defines the communication boundary between two entities, such as a piece of 

software, a hardware device, or a user. It generally refers to an abstraction that an entity 

provides of itself to the outside. This separates the methods of external communication from 

internal operation, and allows it to be internally modified without affecting the way outside 

entities interact with it, as well as provide multiple abstractions of it. It may also provide a 

means of translation between entities which do not speak the same language, such as between 

a human and a computer. Because interfaces are a form of indirection, some additional 

overhead is incurred versus direct communication. 

We utilize this concept to define methods outside of the algorithm to manipulate actions 

inside the algorithm.  It is important to define the interfaces at the appropriate level. The 

„user‟ has no knowledge of implementing an optimization algorithm, but determines the 

objective as well as constraints for the algorithm. The goal is to abstract these two elements of 

the algorithm to be easily controlled by the „user‟. These interfaces rely also on the base 

classes. 

3.4.1 Constraints 

The VRP, as in many real-world optimization problems, are solved subject to set of 

constraints. Constraints placed restrictions on the search space, specifying the regions of the 

space that are infeasible. Optimization algorithms have to find solutions that do not lie in 

infeasible regions. That is, solutions have to satisfy all specified constraints. The following 

types of constraints can be found: 
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 Boundary constraints, which basically define the borders of the search space. Upper 

and lower bounds on each dimension of the search space define the hypercube in 

which solutions must be found. 

 Equality constraints specified that the function of the variables of the problem must 

be equal to a constant. 

 Inequality constraints specified at the function of the variables must be less than or 

equal to a constant. 

Feasible solutions can be compared by comparing the objective function value. Infeasible 

solutions are not that easy to compare. If the algorithm allows for an infeasible solution, it 

should be reflected in the cost function. The general notion is that an infeasible solution is 

much more expensive than a feasible solution. The allocation of cost to infeasible elements in 

the infeasible solution can however allow for tactical planning, where it might be better to 

remove the stop from the solution then servicing the stop at a high cost. 

The proposed solution in this thesis requires the operator to implement its own cost and 

constraint functions. Investigation of more complex VRP problems resulted in similarity of 

constraint types. The aim is to provide the operator with guidelines on writing cost and 

constraint functions that integrates with the algorithm on a seamless manner. We identify 

constraints in the following areas: 

 Relational constraints – this type of constraint depends on a relation between two 

objects. If split deliveries are not allowed, there must be a one to one relation between 

a vehicle and a stop.  In the meta design, the user can indicate the cardinality of 

objects to enforce the constraint.  The optimization algorithm can check these 

constraints whenever it is effective. 

 Comparison  constraint – this type of constraint depends on the aggregation of a 

property compared to a value.  The value can belong to a relational object or it can be 

constant.   

o Relational object – Sum(Route.Stop.Volume) <= Vehicle.Volume 

o Constant – Count(Route.Stop) <= Solution.MaxStopPerRoute 

 External constraint – we have to provide the user with the ability to add any type of 

constraint that cannot be modelled in our structure. This ensures 100% flexibility, 
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while the structured approach will be sufficient most of the time. The next paragraph 

discusses the use of interfaces for this kind of implementation. 

3.4.2 Interfaces 

We define a constraint function interface as a boolean function that tests the validity of the 

input object according to the defined constraint. The interface implements the constraint for 

all base objects as input parameter. This allows the optimization algorithm to call constraint 

checks whenever the appropriate input parameter has been changed and require a validity 

check. It also provides the user the ability to determine the granularity of checks, i.e. a route 

can be checked for validity, or a solution can be checked for validity by checking all elements. 

Using this level will cause the algorithm to be slow, but it will be an accepted method. This 

underline the ability of the methodology to solve „any‟ problem, but emphasize the 

importance of providing clear guidelines on writing interfaces to ensure most efficient 

implementation of cost and constraint functions. 

We define a cost function interface as a function that returns a value between zero and 

infinity. The algorithm will use this value as indication of the quality of the solution. The VRP 

solution is the minimization of the cost function. 

3.5 Base classes 

The previous paragraph emphasizes the definition of the base classes as tool in the solution. 

From the problem formulation it is clear that the base classes interface to the data objects, the 

cost functions and the optimization algorithm. The subsequent paragraphs offer an overview 

of how these interfaced layers influence the design of the base classes. 

This research is also done to initiate a different thought process around the VRP and its 

approach. Base classes consist of more abstract meaning. This will allow further research in 

applying the solution in similar problems by mapping the implementation to the abstract 

concepts. 

A typical implementation for Solomon problems can be defined as follows: 
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Stop

Depot

Vehicle

TimeWindow

RouteStop

Route

-Has

1

0..*

RouteVehicle

-Has1

*

-Has a 1

1..*

Solution

-Belongs to

1

*

 

Figure 14: Basic domain class relations 

 

3.6 Data objects 

The data objects is defined as the user‟s objects that comprise of information available for the 

problem space. Our object approach is based on the ESI implementation which maps 

physical data to objects through an object service. This service is controlled through meta-

data. 
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Figure 15: Meta mapping, functional to physical 

This implementation is too flexible as it allows the user to define any class of any type. We 

introduce a domain structure into the ESI that functions similar to an abstract class layer.  

The ultimate goal is not to solve benchmark problems, but to apply the algorithm in the real 

world. The data objects represent the real word objects in a supply chain implementation. The 

following objects are identified in the supply chain configuration: 

3.7 Cost and constraint functions 

The base classes provide feedback from the algorithm to the cost function. The algorithm 

store information in the base class structure and any request for a cost calculation is 

instantiate through a base class. This emphasizes the importance of the base class definition 

to support a scaled approach when calling a cost function to minimize processing power. The 

aim is to enable calculation to be done on partial knowledge through calculating the change in 

value, for example, if two stops are swapped between routes, we would like to know the net 

effect on the current solution by just calculation the affected routes. 

3.7.1.1 Solomon Function 

The Solomon benchmark problems implement a stop with a cost function as the Euclidian 

distance of the routes that comply with the constraint functions. Solomon constraints consist 
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of one time window and a vehicle capacity determined by the homogeneous fleet. The 

Solomon cost and constraint functions can be implemented as follows: 

 Capacity – the addition or removal of a stop influence the capacity of a route. The 

action is not sensitive on the position in the route. 

 Calculate time – the time constraint check calculates the validity from the previous 

stop and influence all subsequent stops‟ validity.  

 Distance – the addition or removal of a stop influence the distance of the route, but 

can be re-calculated through the previous and next stop  

From the above properties we can define the following optimization rules: 

 Decide on the order of calculation of constraints. An easier and quicker calculation 

that can violate the constraint should be done first to prevent unnecessary use of 

processing power. 

 The storage of calculated data should be planned and maintained to assist in reducing 

processing. 

3.7.1.2 Peak and off-peak travel times 

Adapting the basic Solomon problem to allow for peak and off-peak travel times can be 

isolated to the cost and constraint component. Since the cost function has access to the data 

source, the implementation consists of a multi-dimensional matrix with origin to destination 

travel times per time of day. 

The implementation of the optimisation algorithm for the benchmark Solomon problems can 

rely on a consistent cost between two consecutive stops as distance and time travelled will 

always be the same. The implementation of peak and off-peak time matrices results in sudden 

change of cost, depending on the position of two consecutive stops in a route. We can 

identify the following three scenarios as possible results of the peak and off-peak travel-time:  

1. The cost is too high for the ideal solution in both peak and off-peak time, which will 

result in the combination of stops not evaluated in the algorithm. 

2. The cost is low enough for the ideal solution in both peak and off-peak time, which 

will result in the combination of stops being evaluated in the algorithm. 
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3. The cost is low in off-peak and too high in the peak time, which results in the stops 

being favourable in some routes and not in other similar looking routes. 

Since the cost and optimisation algorithm is removed from each other, the algorithm had no 

domain knowledge to work on from the start, but rely on analysis of the environment and 

feedback from the results achieved. The pheromone trial will indicate that the combination is 

low in scenario 1, high in 2 and high in 3 because the low cost part of the peak and off-peak 

time is part of the possible best solution. 

3.8 Optimization algorithm 

The optimization algorithm require as much as possible information to assist in making 

efficient moves. In our approach, the algorithm does not communicate with the object data. 

All it can see it is the defined base classes and functions. The base classes must therefore be 

designed to assist the algorithm.  

The algorithm depends on the base classes to make sense of the state of the structure and 

keep track of combinations of stops and vehicles. The structures that serve as input for the 

algorithm and is fixed. The object model defined additional structures for the use of the 

algorithm. These structures include information that allows the AMP (adaptive memory 

programming) to be implemented as part of the algorithm. 

The rest of the thesis will focus on the design of the algorithm that employs the structures to 

assist in effective execution. 
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3.9 Summary 

Integration of systems between cooperating enterprises or between different departments is 

most important because it provides highest value. Providing a theoretical sound solution that 

has the agility to adapt to business needs is within reach through the use an adaptive object 

model. 

 Deploying a data shy algorithm in the complex VRP environment is no small task. This 

chapter defines the base structures necessary to implement the supply chain domain. It 

describes the different components and their relationships in the building blocks towards an 

integrated solution.  

Academic collaboration with science-based industry provides an occasion to consider 

underlying differences between academic and industrial science when only their ends, theories 

vs. products, distinguish them. Industry‟s relative indifference to theory nudges academic 

collaborators toward speculation. Industry entices academics to know less about more. The 

industry requirement should not derail the scientific effort applied in this thesis. 

The next step is to design the algorithm that can deal with all the requirements, which still 

include the traditional optimisation goals. 
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4 ANT SYSTEM ON ADAPTIVE OBJECTS ALGORITHM 

4.1 Approach 

Solving the vehicle routing problem in its basic format is already an NP-hard problem. Exact 

methods have proved to be inefficient and time-consuming in trying to solve this problem. 

Previous attempts on solving the VRP have indicated that heuristic methods result in the best 

feasible solution in an acceptable time. When we add additional constraints to the basic VRP, 

we increase the difficulty of the solution exponentially. We must also consider the size of the 

data set that needs to be optimized. 

Heuristic methods search only parts of the solution space. This result in the quicker results of 

the algorithm, but does not guarantee a best solution. Previous results have shown that 

heuristic methods can achieve optimal or near optimal results repeatedly. The meta-heuristic 

method has a guidance procedure of some sort to help it traversing through the solution 

space.  

The guidance procedure is dependent on the type of heuristic selected for the solution, as well 

as additional knowledge from the problems space implemented by the algorithm. This 

additional information about the problem beforehand can assist the algorithm in more 

effective search paths. A meta-heuristic is the implementation of a heuristic method with a 

guidance procedure. 

A hyper-heuristic is a heuristic search method that seeks to automate, often by the 

incorporation of machine learning techniques, the process of selecting, combining, generating 

or adapting several simpler heuristics (or components of such heuristics) to efficiently solve 

computational search problems. Hyper-heuristics can be thought of as “heuristics to choose 

heuristics”. One of the motivations for studying hyper-heuristics is to build systems which 

can handle classes of problems rather than solving just one problem. 

The fundamental difference between meta-heuristics and hyper-heuristics is that most 

implementations of meta-heuristics search within a search space of problem solutions, 

whereas hyper-heuristics always search within a search space of heuristics. Thus, when using 

hyper-heuristics, we are attempting to find the right method or sequence of heuristics in a 
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given situation rather than trying to solve a problem directly. Moreover, we are searching for a 

generally applicable methodology rather than solving a single problem instance. 

Memetic Algorithms (MA) is used as a synergy of evolutionary or any population-based 

approach with separate individual learning or local improvement procedures for problem 

search. The concept of a meme (a unit of ideas that can be transmitted from one item to 

another) relates to the pheromone values that can be copied between ants. The combination 

with a meta-heuristic creates powerful decision making ability that can guide the algorithm 

through the solution space. 

 

Figure 16: Solution Space 

Figure 16 explains the methodology of heuristic methods for solving the particular problem. 

The solution space consists of all possible solutions for the specific problem. Theoretically we 

can develop an algorithm that has the ability to generate all of the possible solutions such as 

branch and bound methods. As we have already seen, this method will take an eternity on the 

complex problem that we are trying to solve. A meta-heuristic can search effectively through 

the solution space. The algorithm can allow invalid solutions which might lead to better valid 

solutions. The algorithm might not reach the best solution in the allowed time.  

Let S be a set of solutions to a particular problem, and let f be a cost function that measures 

the quality of each solution in S. The neighbourhood N(s) of a solution s in S is defined as the 
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set of solutions which can be obtained from s by performing simple modifications. Roughly 

speaking, a local search algorithm starts off with an initial solution in S and then continually 

tries to find better solutions by searching neighbourhoods. A local search process can be 

viewed as a walk in a directed graph G=(S,A) where the vertex set S is the set of solutions and 

there is an arc (s,s') in A if and only if s' is in N(s). By considering the cost function as an 

altitude, one gets a topology on G=(S,A).  

 

Figure 17: Solution Neighbourhood 

The efficiency of a local search method depends mostly on the modelling. A fine-tuning of 

parameters will never balance a bad definition of the solution set, of the neighbourhood, or of 

the cost function. 

The topology induced by the cost function on G=(S,A) should not be too flat. The cost 

function can be considered as an altitude, and it therefore induces a topology on G=(S,A) 

with mountains, valleys and plateaus. It is difficult for a local search to escape from large 

plateaus since any solution that is not in the boarder of such a plateau has the same cost value 

as its neighbours, and it is therefore impossible to guide the search towards an optimal 

solution. A common way to avoid this kind of topology on G=(S,A) is to add a component 

to the cost function which discriminates between solutions having the same value according 

to the original cost function. 

When the problem is known beforehand, we can predict the surface of the graph, and adapt 

the algorithm accordingly. The problem definition in this study has a basic knowledge of the 
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class of problems, i.e. VRP. The cost and constraint functions determine the surface of the 

chart, but are not known at all at the start of the algorithm. This leads to an evolutionary 

process to detect the surface type during the execution of the algorithm. 

Our evolutionary meta-heuristic makes use of the well-known two-stage and multi-start local 

search (MLS) frameworks. In two-stage framework the initial solution created in the first 

stage is subsequently improved in the second one. Because the environment is unknown, the 

multi-start construction heuristics assist in an immediate evaluation of the environment. 

In the first stage we generate an initial solution with the help of a construction heuristic. 

There exist several methods and we make use of the sequential insertion heuristic (SIH), 

random-best selection for constructive ant path and best accept for constructive ant path. 

These methods result in solutions that are feasible but not necessarily the best. The feasibility 

of the solution ensures that it existing our solution space (see the initial solution in Figure 16).  

The initial evaluation includes statistical analyses of the best-case cost between nodes. 

Memory structures are initialised with knowledge gained from the initial solution in 

combination with the analysis. The methods used in the improvement stage are fixed and we 

can claim to already know how the improvement heuristic works. Now we aim to align the 

information and actions in the construction phase to provide a result that will assist in quicker 

convergence.  
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Figure 18: Solution approach overview 

The improvement stage traverses from the current solution to a neighbour solution. The 

move generates a new solution which might have been created previously from other 

combinations of moves on other solutions. This can result in cycles in our search path, which 

leads to revisiting existing solutions and result in unnecessary computational time. One of the 

objectives will be to prevent such cycling. After a specified number of iterations the algorithm 

has visited a number of solutions from which the best solution is kept. The solution is not 

necessarily the best solution for the problem, but represents the best-visited solution. Our 

goal is to guide the search path in such a way that we cover as wide as possible area of the 

solution space. 

From Figure 16 we can see that the path to the best solution might have to go through a „not 

so good solution‟ or even an invalid solution before the best solution is reached. Operations 

applied on a solution can result in a not feasible solution. We can consider this as a stepping-

stone towards the next solution, or it can be seen as a waste of computational time. 
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The improvement phase implementation is based on an Ant Colony System and a local Tabu 

Search Method. Tabu search has a rationale that is transparent and natural: its goal is to 

emulate intelligent uses of memory, particularly for exploiting structure. Since we are creatures 

of memory ourselves, who use a variety of memory functions to help thread our way through 

a maze of problem-solving considerations, it would seem reasonable to try to endow our 

solution methods with similar capabilities.  

The Ant Colony System (ACS) algorithm is based on a computational paradigm inspired by 

the way real ant colonies function. The medium used by ants to communicate information 

regarding shortest paths to food, consists of pheromone trails. A moving ant lays some 

pheromone on the ground, thus making a path by a trail of this substance. While an isolated 

ant moves practically at random, an ant encountering a previously laid trail can detect it and 

decide, with high probability, to follow it, thus reinforcing the trail with its own pheromone.  

The collective behaviour that emerges is a form of autocatalytic process where the more the 

ants follow a trail, the more attractive that trail becomes to be followed. The process is thus 

characterized by a positive feedback loop, where the probability with which an ant chooses a 

path increases with the number of ants that previously chose the same path. The ACS 

paradigm is inspired by this process. In this traditional each ant generates a solution 

probabilistically or pseudo-probabilistically based on the current pheromone trail. Each 

iteration constructs a new solution utilizing the information in the pheromone trial. To 

prevent cycles and improve efficiency, the study introduces several new memory mechanisms 

which will guide the ants. 
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The following sections discuss the specific methods used to traverse through the solution 

space in more detail. It will also point out where knowledge about the problem beforehand 

can have an effect on the implementation of the solution. The algorithm consists of the 

following steps: 

Evaluate the environment.  

Construct a cost and compatibility matrix. 

Build clusters. 

Construct initial solutions 

Deduct information from first round optimizations. 

Setup memory structures for improvement phase 

Apply the algorithm. 

Run thread for each solution. 

Determine state of solution and algorithm to morph to next phase. 

Update global memory structures. 

Algorithm 2: High Level Approach 

The following paragraphs will discuss the building blocks separate and then conclude with the 

system. 

4.2 Compatibility and Cost Matrices. 

The construction of initial environment evaluation structures requires some knowledge of the 

constraint and costs that is applicable on the problem. The purpose of the compatibility and 

cost matrices is to provide a structure with a known access time which ensures that the initial 

setup can be done in a determined time. The behaviour of the cost and constraints is not 

known to the algorithm, and we assume a best case scenario at this stage. A definite result 

from this calculation is that any incompatible combination will never be compatible, but a 

compatible combination does not necessarily ensure the compatibility.  

4.2.1 The cost matrix 

Cost is the most important calculation in the optimization of the VRP.  The goal of the study 

is to minimize cost, which requires each visited solution to calculate the cost for comparison. 

The adaptive object model approach hides the knowledge about the cost function from the 

algorithm and thus we cannot predict the factors that contribute to the cost of a solution. A 
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nested memory approach is followed where we try and exclude unnecessary solutions, moves, 

etc.  

Predicting the running time of the algorithm is complicated by the encapsulation of the cost 

function due to the adaptive approach. The cost function has access to all information from 

the base data as well as the current solution on route and total solution level. The calculation 

can become quite complex when additional attributes make up the information at a stop and 

is used in the function. The cost matrix hides the complexity to assist in a determined cost 

function time for an intermediate level of solution. This intermediate level presents an 

approximation of the surface of the chart shown in Figure 17. 

To assist in this approach, we implement a best-case cost matrix that is used on a high level to 

guide the algorithm away from very poor solutions. It also gives the advantage of getting the 

algorithm quick out of the blocks with a memory structure already setup. The cost matrix is 

calculated as the lowest possible cost between two stops, which represent the best situation 

the stops can be in relation to each other. The resulted cost matrix is used as input for the 

initial solution clustering as well as the compatibility matrix. Costs range from 0 to infinity and 

cannot be negative. 

4.2.2 The compatibility matrix 

The compatibility matrix acts on the cost between nodes and will be carried over to the 

improvement stage as a permanent tabu list that is build up from environment knowledge as 

well as basic calculations. The matrix is maintained through the iterations per specific 

solution.  

The values range from 0 to 1. The 0 value represents no possibility; whilst 1 represent a good 

probability. A 0 value should represent no possibility ever and will be carried over to other 

compatibility matrices for other solutions. The information is used in calculating the 

probability of a move to create new routes. The compatibility matrix reduces the number of 

calculation possible for a move evaluation and thus allows for more possible moves in the 

finite iterations. One of the well known contributors to the matrix is the Time Window 

Compatibility which is described in detail in the next section. 
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The number of impossible combinations between stops assists to reveal the distribution of 

solutions in the solution space. This information form a basis of where possible mountains 

exist on the surface of the graph G(S,A). The compatibility matrix values are deducted from 

cost which is normalized on the global worst and best cost. The probability of the decision 

variable 𝑥𝑖𝑗  is defined by the linear position between the minimum and maximum cost from 

the stop. The probability is then factored to the number of possible neighbours from and to 

the stop.  

𝑃 𝑥𝑖𝑗  = 1 −  
max 𝑐𝑖𝑘 , 𝑐𝑘𝑖 − 𝑐𝑖𝑗

max 𝑐𝑖𝑘 , 𝑐𝑘𝑖 −min 𝑐𝑖𝑘 , 𝑐𝑘𝑖 
 × 

 𝑥𝑖𝑘 +𝑛
0  𝑥𝑘𝑖

𝑛
0

2𝑛
 

Equation 2: Probability of neighbouring stops on 
environment 

The values of the probability are proportional to the cost when there are no constraints in the 

problem. If a stop has only a few possible neighbours in relation to the total number of stops, 

the probability will be reduce because of the last term in the formula. The purpose is to 

reduce the overall probability of the stop, i.e. the algorithm does not need to include the stop 

in decisions regularly because the likelihood that the best stop has already been selected is 

quite high. The probability matrix assists in improving computational time.  

The following paragraph explains the influence of time windows on the probability matrix 

and it is clear to see that it has a major computational cost saving effect. The reader must 

keep in mind that the sample is an extract of a known domain, whilst the algorithm in this 

study will never know about such domain specific information. The cost function between 

two stops will reflect the information and that is deemed to be sufficient for building the 

memory structure discussed. 

4.2.2.1 Time Window Compatibility 

Time Window Compatibility (TWC) refers to the compatibility of the time window(s) of one 

stop with regards to another.  A good TWC figure indicates that the two nodes are likely to 

be inserted in sequence on the same route.  In many cases two customers can be located next 

to each other, but their time windows are not compatible.  The trade-off between distance 

(i.e. cost) and time (i.e. customer delight) is an inherent part of the problem.  
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Insertion of stops in a heuristic fashion requires a selection process that result in a possible 

next stop. The TWC can assist us in ruling out infeasible stops from the start. If we know that 

a stop is not a neighbour of the current stop, we do not even waste time of trying to 

implement that stop as a next stop. The neighbours of a stop are made up of all the time 

window compatible stops. We utilise the TWC principle as proposed by Van Schalkwyk 

(2002) to explain the function of the probability matrix. 

The figure below illustrates a scenario where we evaluate the time adjacency of node i and 

node j.  This scenario assumes that there will be a definite overlap in time windows between 

the two nodes.  Other scenarios will subsequently be discussed.  

06:00 11:00 18:0008:00

time

scheduling period

15:00

ei

e j

li

l j

s ti ij TWCij

node
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j
a j

ei

a j

li

 

Figure 19: The basic TWC calculation - Scenario 0 

Scenario 0: 𝑖𝑓 𝑎
𝑗

𝑒𝑗 >  𝑒𝑗  𝑎𝑛𝑑 𝑎𝑗
𝑙𝑖 < 𝑙𝑗    

Customer i  specified a time window  ii le ,  between 8:00 and 12:00, and customer j  

requires service between 9:00 and 16:00  
jj le , .  If serviced started at node i  at ie  (the 

earliest feasible time), its arrival at j  would be: 

 ijii

e

j tsea i 
 

In this scenario equal 11:00. 

Similarly, al would be the arrival at j if service started at node i at the latest possible time ( il ): 
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 ijii

l

j tsla i 
 

In this scenario equal 15:00. 

The difference between ie

ja and il

ja will yield the amount of time overlap between i  and j : 

 
ii e

j

l

jij aaTWC 
 

In this scenario it equals 4 hours.  The significance of this value is that the bigger the overlap, 

the better we can insert the two nodes in a sequence.  This also ensures that the customer 

with a big overlap has higher probability and can be used during the optimisation phase more 

regularly because of the better possibility of a fit.  

A number of different scenarios will be illustrated in the following figures. 

Scenario 1:  If  𝑎𝑗
𝑙𝑖 > 𝑙𝑗         

If the earliest arrival time at node j is inside the acceptable time window, but the latest arrival 

time is outside of the acceptable time window of node j, the two customers only partly 

overlap.  The 
ijTWC  is then calculated by the following equation: 

 
ie

jjij alTWC 
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Figure 20: Scenario 1 TWC calculation 
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Scenario 2:  If  𝑎𝑗
𝑒𝑖 < 𝑒𝑗    

If the vehicle arrives at the earliest feasible time and this is before the acceptable time window 

of node j , and the arrival of the latest feasible time at node j is inside the acceptable time 

window, the two customers only partly overlap.  The vehicle has to wait to service customer 

j .  The 
ijTWC  is then calculated by the following equation: 

 j

l

jij eaTWC i 
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Figure 21: Scenario 2 TWC calculation 

Scenario 3:  If  𝑎𝑗
𝑒𝑖 < 𝑒𝑗    and  𝑎𝑗

𝑙𝑖 < 𝑒𝑗     

If the latest arrival time at node j is earlier than the start of the acceptable time window at 

node j, the vehicle always waits at node j , irrespective of the arrival time at node i .  The 

arrival at j  is always before its acceptable start time.  This value will be negative, and 

calculated as follows: 
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Figure 22: Scenario 3 TWC calculation 

Scenario 4:  If  𝑎𝑒 > 𝑙𝑗     and 𝑎𝑙 > 𝑙𝑗       

If the arrival time at j  is always bigger than the latest acceptable time at j , the node-

combination is infeasible.  The nodes forming part of this combination will typically be 

eliminated before starting the algorithm, as they can obviously not be included in the current 

route under construction. 
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Figure 23: Scenario 4 - infeasible combination 
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4.3 Clustering assistance in probability 

The problem formulation in Chapter 2 has referred to clustering as tool in assisting solving 

the complex problem. Cluster analysis has been identified as a core task in data mining. The 

VRP problem has much less entities to cluster than normal data mining problems. Clustering 

can be used to the benefit of the solution, without adding too much calculation overhead. 

Finding a good set of clusters, each one comprising several customer sites, without relying on 

routing information is a quite difficult task. 

The top-down view regards clustering as the segmentation of a heterogeneous population 

into a number of more homogeneous subgroups. A bottom-up view defines clustering as 

finding groups in a data set „by some natural criterion of similarity‟. There are others who 

believe that the fundamental question is if two items are not in the same cluster. Defining the 

similarity between stops depend on the combination of possible routes in the solution, which 

is dependent on cost relation between the stops as well as constraints on the combinations. 

The number and the extent of the clusters built by a clustering algorithm generally depend on 

a set of parameters that can be tuned in one way or another. But this possibility is implicitly 

limited by the similarity measure used for comparing the elements to cluster. We require a 

cost function between entities to indicate the similarity measure. We also consider several 

methods of clustering and argue that the computational time is deterministic ant thus 

measureable to ensure that the computational effort is worth it. 

4.3.1 Review of clustering methods 

Clustering is the process of grouping the data into classes or clusters so that objects within a 

cluster have high similarity in comparison to one another, but are very dissimilar to objects in 

other cluster. Also, the process of grouping a set of physical or abstract objects into classes of 

similar objects is another definition. Clustering can be used to gain knowledge of a data set or 

used as a pre-processing technique for classification. This is the primary goal for the 

algorithm in this study to align with the adaptive object model approach. 

4.3.1.1 Partitioning methods 

This is the most simple of the clustering methods. This categorization could be too broad 

because Clustering is equivalent to Partitioning. The best known method is k-means. It is a 
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basic clustering algorithm that creates circular clusters in 2D and spherical clusters in 3D. It 

creates k clusters centred on a centroid. The centroid is almost always an artificial point. This 

algorithm is extremely sensitive to outliers that are a significant distance away from an actually 

perceived cluster. 

4.3.1.2 Hierarchical Method 

Hierarchical methods group data into a tree of clusters. There are two basic varieties of 

Hierarchical algorithms; agglomerative and divisive. Agglomerative clustering is a bottom up 

strategy where we start at individual data object each in its own group. Then we combine the 

nearest pair of object into a new group. This process of combining closest groups continues 

until we have all the objects in one cluster. Divisive clustering proceeds in the same way 

except that we start out with all data object in one cluster and then we end with all objects in 

separate clusters.   

4.3.1.3 Density Methods 

Density clustering methods are very useful of accurately finding clusters of any shape giving 

the correct (yet hard to determine parameters). Density is obviously determined by how many 

data object are contained within a certain space of the dataset. This means that we need to 

map the data to some sort of graph. 

4.3.1.4 Model Methods 

Conceptual clustering is a form of clustering in AI that given a set of unlabeled objects, 

produces a classification scheme over those objects. Really only works on a specific kind of 

data and a model is formed to cluster that kind of data. 

4.3.2 Clusters and data environment 

Dondo and Cerdá (2006) use a three-phase heuristic algorithmic approach for the multi-depot 

routing problem. The proposed clustering algorithm that exploits time-window constraints to 

generate feasible clusters seems to work well even for R-class problems. The three-phase 

hybrid approach is as robust as the optimization methods and capable of solving problems 

with 100 nodes at reasonable solution time. Numerical results indicate that the cluster-based 

optimization method proved to be quite successful on a variety of Solomon‟s single depot 

homogeneous-fleet benchmark problems and new multi-depot heterogeneous fleet VRPTW 
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instances introduced in their paper. Optimal or near optimal solutions were obtained for a 

significant number of C-class problems of different sizes. For RC and R-class problems, the 

sub-optimal gap increases but it remains within acceptable limits. 

This research follows a similar approach. The aim is to gather enough information that does 

not limit the improvement algorithm in making decision and also contain aggregated 

information to reduce variables and improve speed.  

The two cluster techniques used is partitioning and density clustering. The subsequent 

paragraphs describe the use of specific methods. 

4.3.3 Cluster Methods 

4.3.3.1 DBSCAN  

The key idea of the DBSCAN (Moreira, Santos and Carneiro, 2005) algorithm is that, for 

each point of a cluster, the neighbourhood of a given radius has to contain at least a 

minimum number of points, that is, the density in the neighbourhood has to exceed some 

predefined threshold. This algorithm needs three input parameters: 

- k, the neighbour list size; 

- Eps, the radius that delimitate the neighbourhood area of a point 

(Epsneighbourhood); 

- MinPts, the minimum number of points that must exist in the Eps-

neighbourhood. 

The clustering process is based on the classification of the points in the dataset as core 

points, border points and noise points, and on the use of density relations between points 

(directly density-reachable, density-reachable, density-connected [Ester1996]) to form the 

clusters. 

For each stop, calc all neighbours and sort 

Calculate the average distance between a stop and its closest 

neighbour 

Identify the Directly Density-Reachable (DDR) points, i.e. points 

closer than the threshold Epsilon. 

Create clusters for DDR Points 
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Algorithm 3: DBSCAN 

We replace the concept of distance to that of cost. The DBSCAN algorithm depends on the 

calculation of a centroid for a cluster. This is traditionally calculated as the average x and y in a 

Euclidian space. The concept of location exist in the VRP, but the addition of constraints and 

cost functions complicates the relationship between stops and thus cannot be deemed as 

efficient parameter to use as input for the clustering algorithm. The Shared Nearest 

Neighbour algorithm does not depend on a centroid for a cluster. 

4.3.3.2 Shared Nearest Neighbour algorithm 

The SNN algorithm (Ertöz, Steinbach and Kumar, 2003), as DBSCAN, is a density-based 

clustering algorithm. The main difference between this algorithm and DBSCAN is that it 

defines the similarity between points by looking at the number of nearest neighbours that two 

points share. Using this similarity measure in the SNN algorithm, the density is defined as the 

sum of the similarities of the nearest neighbours of a point. Points with high density become 

core points, while points with low density represent noise points. All remainder points that 

are strongly similar to a specific core points will represent a new clusters. 

The SNN algorithm needs three inputs parameters: 

- K, the neighbours‟ list size; 

- Eps, the threshold density; 

- MinPts, the threshold that define the core points. 

After defining the input parameters, the SNN algorithm first finds the K nearest neighbours 

of each point of the dataset. Then the similarity between pairs of points is calculated in terms 

of how many nearest neighbours the two points share. Using this similarity measure, the 

density of each point can be calculated as being the numbers of neighbours with which the 

number of shared neighbours is equal or greater than Eps (density threshold). Next, the 

points are classified as being core points, if the density of the point is equal or greater than 

MinPts (core point threshold). At this point, the algorithm has all the information needed to 

start to build the clusters. Those start to be constructed around the core points. However, 

these clusters do not contain all points. They contain only points that come from regions of 

relatively uniform density. The points that are not classified into any cluster are classified as 

noise points. 

 
 
 



 
110 

 

Identify the k nearest neighbours for each point 

Calculate SNN similarity between points 

Calculate SNN density of each point 

Detect core points 

Form cluster from core points 

Identify noise points 

Assign the remainder points to the cluster that contains the most 

similar core point 

Algorithm 4: SNN 

4.3.3.3 k-Means 

k-Means is a basic partitioning clustering algorithm that creates circular clusters in 2D and 

spherical clusters in 3D. It creates k clusters centred on a centroid. This centroid is almost 

always an artificial point. This algorithm is extremely sensitive to outliers that are a significant 

distance away from an actually perceived cluster. 

4.3.3.4 k-Medoids 

The k-Medoids algorithm (Park, Lee and Jun, n.d.) is very similar to k-Means with the small 

exception of instead of creating an artificial point to recalculate the mean point, k-Medoids 

recalculates from the nearest actual point in a data set. The reason for this is that it is not 

acceptable to outliers that are extremely far away from it. A very large problem of k-Medoids 

is that it doesn‟t scale very well at all. It does however fit in well with the use of the 

encapsulated cost function in our adaptive approach. K-medoid clustering algorithm is as 

follows: 

The algorithm begins with arbitrary selection of the k objects as 

medoid points out of n data points (n>k) 

After selection of the k medoid points, associate each data object 

in the given data set to most similar medoid. The similarity here 

is defined using distance measure that can be Euclidean distance, 

Manhattan distance or minkowski distance. We translate distance as 

a cost function. 

Randomly select nonmedoid object O’ 

compute total cost , S of swapping initial medoid object to O’ 

If S<0, then swap initial medoid with the new one ( if S<0 then 

there will be new set of medoids) 

repeat steps 2 to 5 until there is no change in the medoid. 

Algorithm 5: k-Medoid 
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4.3.4 Cluster implementation 

Data mining in general is the search for hidden patterns that may exist in large databases. To 

the data environment preparation task at hand, the attractiveness of cluster analysis is its 

ability to find structures. Using the described clustering methods on an unknown data 

environment is insufficient if viewed in isolation. The density clustering methods of 

DBSCAN and SNN is possible in a clustered or random cluster environment. In a random 

environment, all points are either seen as noise, or the result is one cluster. Partitioning 

methods such as K-means and K-medoids will always provide the same number of clusters. 

The challenge is to determine k for the problem environment. 

The SNN method uses the neighbour count to determine cluster density. This method is easy 

to convert to work with the abstract cost functions. It can also handle clusters of different 

densities in one problem environment. This can be applicable to scenarios where stops have a 

high density close to the depot, and a lower density further away. DBSCAN would not be 

able to cluster the lower density areas. 

The subsequent paragraphs provide a brief overview of typical results in the density clustering 

environment. The study approaches the density clustering as the most significant method. We 

argue that if a sufficient cluster solution is found through this method, the initial solution can 

produce a close to final solution combination of stops and the selection of subsequent 

improvement operations can be set to focus on segment combinations instead of stop 

relations.  

The Solomon C class problems are good examples and are discussed in the results section to 

show the effect. The results also indicate the positive effect for other types of problems, even 

on random dispersed problem spaces. 
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Figure 24: DBSCAN cluster 

Figure 24 indicates the result of DBSCAN algorithm on a benchmark set op points. Cluster 4 

can also be viewed as 2 clusters. Because of the definition of DBSCAN and the density 

setting, cluster 4 is seen as one cluster. The density was set low enough to incorporate cluster 

2. The SNN method can be seen as determining its own local cluster density. We can see the 

7 clusters with different densities. 
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Figure 25: SNN cluster 

We reason that the density cluster method an indication is on the type of environment. 

Setting the parameters according to the average „cost‟, we deduce that if all points belong to a 

cluster, then we work with a clustered environment. If the percentage of noise is not too big, 

it is probably a random clustered environment. If we reduce the minimum points required, we 

hope to identify chains that are used in the stop neighbour list. 

4.4  Construction Heuristic 

The initial solution builds a first round set of routes that is normally used in the improvement 

stage. Initial solutions tend to follow a greedy algorithm approach which enables them to 

reach a feasible solution. The execution time is a fraction of the solution time. 

The initial solution influences the improvement stage drastically. It is shown that good initial 

solution can assist in achieving a quicker convergence. We identify three goals for our initial 

solution: 
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 High quality – this does not necessarily mean the cost of the solution should be low. 

The focus is on the initial solution‟s result that is taken into the improvement stage. 

The better the combinations, the faster the improvement. 

 Initialize parameters – the improvement phase is sensitive to parameters required. 

The initial solution must assist in accurately set the required decision parameters 

depending on the information gained.   

 Setup memory structures – the information gained during the initial solution stage 

contains valuable hints that must be utilised by the improvement phase.  

The initial solution can be aligned by the developer with the environment by adjusting 

selection criteria from information available in the problem domain. This thesis is not build 

on a known environment or for a specific problem type.  

Marius Solomon was one of the first researchers to consider the VRPTW.  He designed and 

analysed a number of algorithms to find initial feasible solutions for the VRPTW (Solomon, 

1987).  His sequential insertion heuristic (SIH) gave very good results in most environments, 

and most current heuristic methods make use of this heuristic (or a variation thereof) to 

effectively find a feasible starting solution. 

Each customer i has a known demand qi to be serviced (either for pickup or delivery) at time 

bi chosen by the carrier. Because time windows are hard, bi is chosen within a time window, 

starting at the earliest time ei and ending at the latest time li that customer i permits the start of 

service. A vehicle arriving too early at customer j, has to wait until ei. If tij represents the direct 

travel time from customers i to customer j, and si the service time add customer i, then the 

moment at which service begins at customer j, bj, equals max{ei, bi + si + tij } and the waiting 

time wi is equal to max{0, ej – (bi + si + tij) }. 

After initialising the route, the insertion criterion c1 (i, u, j) determines the cheapest insertion 

place for all remaining, un-routed customers between two adjacent customers i and j in the 

current partial route (i0, i1, …, im). Each route is assumed to start and end at the depot i0 = im. 

The indices p = 1, … ,m are used to denote a customer‟s position in the route. The insertion 

cost is a weighted average of the additional distance and time needed to insert the customer in 

the route.  
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Inserting customer u between i and j increases the length of the route by the distance 

insertion, diu + duj - mdij. After inserting a customer u between the adjacent customers i and j, a 

push forward can be calculated for each consecutive node k, 

 PFk = bk
new - bk 

in which bk (bk
new) denotes the beginning of service at customer k in the route before (after) 

inserting customer u. The value of PFk is maximal for the direct successor k = j of u. The 

sequential insertion heuristic uses the maximal push forward to measure the time needed to 

insert customer u in the route, the so called time insertion. 

The next step of the sequential insertion heuristic decides on which customer to insert the 

route. The selection criterion c2 (i, u, j) selects the customer for which the cost difference 

between insertion in the current or a new route is the largest. This customer is inserted in its 

cheapest insertion position in the current route. If all remaining un-routed customers have no 

feasible insertion positions, a new route is initialised and identified as the current route. 

We extend the Solomon criteria by utilising the neighbour stop information in testing for a 

suitable stop to add to the route. Using only stops that have a feasible probability value reduce 

the number insertion positions to test for each stop. When testing for the insertion position 

in the current route fails because of the probability, inserting customer u between adjacent 

nodes for the rest of the route will fail as well. This method will increase the speed of the 

construction heuristic without diminish the quality of the result. 

The algorithm is extended in a bi-directional manner. The criterion c1 (i, u, j) is extended to 

criterion c1 (k, u, i) which represents the insertion of a possible neighbour before stop i. The 

set from which  u is selected is based on the probability order and improvement direction of 

the result, 𝑢 ∈ 𝑁(𝑥𝑖). The algorithm tests the best possible candidates first and then 

monitors the effect of the subsequent candidates that is ordered from best to worst. If no 

improvement was achieved in a certain number of iterations, the algorithm terminates the 

cycle of testing c1 and continues to the next step. 

We also extend the criteria by a Push Backward if a customer is inserted  between the depot 

and the first customer as proposed by Dullaert and Bräysy (2003). If customer u is inserted 
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between the depot i0 = i and the first customer i1 = j, a push backward is introduced in the 

schedule.  

Since all vehicles are assumed to leave the depot at the earliest possible time ei, and travelling 

from i to j takes tij units of time, a waiting time of max{0, ej – tij } is generated at j = i1. Unlike 

the waiting time at all other customers ,ri p r m   in the route, it is fictitious. After 

finishing the route, it can be eliminated by adjusting the depot departure time.  

High waiting times stored at customers that used to be scheduled at the first position during 

the solution construction, cannot be removed this easily. By assuming all vehicles leave the 

depot at e0 and by equalling the time insertion to the maximum push forward, the time needed 

to insert a customer before i1 = j can be underestimated. It may even be wrongly equalled to 

zero. 

Select seed node, most expensive from depot 

While n < 5 

For each stop i in route 

 Select neighbour n of stop i on the list 

 Insert after stop i 

 If cost > bestcost then set bestcost 

end for 

n++ 

end while 

if calculated cost of new stop on own route > delta cost 

 insert stop on route 

Algorithm 6: Adapted PFSIH 

Algorithm 6 highlights the internal workings of the adapted push forward sequential insertion 

heuristic. The general technique for implementing a SIH algorithm selects a non-routed stop 

and tests the stop on each position on the route. This adaption visits each position in the 

route, but alters the stop being tested to be inserted. The sequence of stops being tested after 

a specific route stop is determined from an ordered list of non-visited neighbours. 
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Figure 26: Adapted PFSIH 

From Figure 26 we can construct the following table: 

Stop Neigh 1 Neigh 2 Neigh 3 Neigh 4 

1 A C B D 

2 D C B A 

Depot A D C B 

Table 4: Adapted PFSIH Example 

If we assume stop 1 and 2 has already been added to the route, the algorithm will test (1,A), 

(2,D), (Depot,A), (1,C), (2,C), (Depot, D) etc. until the best level found is less than the 

current threshold minus a constant c. If c = 3 in this scenario, we can see that the algorithm 

will not test neighbours in column 4. 

Although this method is used to setup an initial solution, it can also be adjusted to depend on 

the probability matrix that was influenced by other operations. The initial solution is build 

after the probability matrix has been constructed and the environment analysis has been done. 

The ordered neighbour list that is used for testing can be done on the probability and not the 

cost. 

This greedy approach that also relies on some environmental info provides us with an initial 

solution that is aligned for improvement as well as indicative of trends. The simplicity of the 

algorithm ensures a fast execution time.  
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4.5 Tabu Search 

The Tabu Search method is used as a local search technique. A distinguishing feature of Tabu 

search is its exploitation of adaptive forms of memory, which equips it to penetrate 

complexities that often confound alternative approaches. The rich potential of adaptive 

memory strategies is only beginning to be tapped, and the discoveries that lie ahead promise 

to be as important and exciting as those made to date. Principles that have emerged from the 

Tabu Search framework give a foundation to create practical systems whose capabilities 

markedly exceed those available earlier. Conspicuous features of Tabu search are its dynamic 

growth and evolving character, which are benefiting from important contributions by many 

researchers. 

Tabu search provides a range of strategic options, involving various levels of short term and 

long-term memory. Consequently, it can be implemented in corresponding levels ranging 

from the simpler to the more advanced. Generally, the more advanced versions exhibit the 

greatest problem solving power, though simple ones often afford good results as well. The 

convenience of building additional levels in a modular design, allowing a Tabu Search 

procedure to be evolved from the "ground up," is a feature that also provides a way to see 

and understand the relevant contributions of different memory based strategies. 

Implementing a specific strategy for the specified problem is complicated by the fact that we 

cannot or should not rely on the manner of the problem. As mentioned in the introduction, 

input data can vary from long haul to short haul, long time windows or short multiple time 

windows, heterogeneous fleet of similar fleet. To solve the VRP with all its side constraints 

and unpredictable input data, we implement new operations and add some statistical selection 

method in the guidance algorithm. 

4.5.1 Move Operators 

Some meta-heuristics maintain at any instant a single current state, and replace that state by a 

new one. This basic step is sometimes called a state transition or move. The move is uphill or 

downhill depending on whether the objective function value increases or decreases. The new 

state may be constructed from scratch by a user-given generator procedure. Alternatively, the 

new state be derived from the current state by a user-given mutator procedure; in this case the 

new state is called a neighbour of the current one. Generators and mutators are often 
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probabilistic procedures. The set of new states that can be produced by the mutator is the 

neighbourhood of the current state. 

4.5.1.1 Insert Operator 

The insert operator tries to insert an orphan stop into an existing route. The method loops 

through the orphan list of the current solution and calculates a best insertion position. The 

orphan stop‟s neighbours are tested for insertion cost. This is done by selecting a neighbour, 

determining the route the neighbour belongs to and calculates the cost of inserting the 

orphan stop after the neighbour. If the neighbour is an orphan itself, the test is not done.   

The method locates a set of closest geographic neighbours from the stop and tests the validity 

of the insertion of the orphan stop after the neighbour stop. The move is accepted if the 

insertion is valid. 

 

S1 E1

Unrouted Stops

 

Figure 27: Insert Operation 

4.5.1.2 Tour depletion operator 

The purpose of this move is to reduce the number of vehicles required to serve all the stops. 

If it is possible to remove a vehicle, the probability that total distance will decrease is high. It 

might not be the result in some situations, but the heuristic also depends on diversification. 

The procedure looks for the vehicle that contains the least number of stops allocated to 

routes for the vehicle and is not Tabu. We qualify the routes of a vehicle for removal if the 

number of stops is less than a percentage of the average number of stops in all the vehicle 

routes. This is done on the assumption that stops and vehicles have similar characteristics. 

The difference between stops in terms of volume is assumed to be in a reasonable tolerance.  

The first step is to select a tour for depletion according to the criteria specified. 
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Figure 28: Tour Depletion Step 1 

The tour is removed from the solution and the stops belonging to the tour is added to the 

orphan list. 

  

Figure 29: Tour Depletion Step 2 

The insert operator is executed to insert the newly created orphans into existing routes. 
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Figure 30: Tour Depletion Step 3 

An additional criterion for the tour depletion operator to execute is the non-existence of 

orphans in the solution. We implement the logic before we even start with actions on the 

operator, as we assume that if an orphan exists, the current solution is already in such a state 

that the current route vehicles cannot service all the stops. The meta-heuristic guidance 

algorithm must execute other operations to optimise the solution that tour depletion is 

possible. 

4.5.1.3 Relocate operator 

The relocate operator (Or-opt) removes one stop from a route and inserts it into another 

route. The implementation group routes to a vehicle and therefore we randomly select a 

vehicle to add a stop to. Next we randomly select one of the vehicle routes. For each stop on 

the current vehicle route, an attempt is made to insert a neighbour of the current stop on the 

current vehicle route. The neighbour is relocated from its route to the current route. 

The relocate operator can relocate a stop from the same route to another position. 
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Figure 31: Relocate on same route 
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Or relocate a stop from one route to another. 
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Figure 32: Relocate between routes 

4.5.1.4 Exchange Operator 

The exchange operator randomly selects a vehicle and corresponding route. The neighbours 

of the selected route‟s stops are tested for exchange between the corresponding routes. The 

operator acts on single stops from different or same routes only. 
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Figure 33: Exchange on single route 

The exchange from one route to another simulates a relocate from the one route to the other 

and vice versa. 
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Figure 34: Exchange between routes 
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4.5.1.5 Cross operator 

This operator cuts two routes at a position and swaps the second part of the routes. This is 

done by selecting a source vehicle and a source route randomly. Each stop in the source route 

is tested for the move. The stop‟s neighbours are tested for validity by checking if the stop is 

not on the same route. If not, the source route consisting of the stops up to the selected stop 

is combined with the target route consisting of the stops from the neighbour stop to the end 

to form a new route. The second new route consist of the target route from the beginning to 

the stop before the neighbour stop and the source route from the stops after the selected stop 

to the end. If the swap is valid in the current Tabu environment, it will be accepted. 
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Figure 35: Cross operation 

4.5.1.6 Vehicle Fit 

This operator exchange vehicles on routes. The operation is added to handle the 

heterogeneous fleet optimization problem. A vehicle can be swapped between routes if the 

capacity and time windows allow for the routes qualify. 

If there exists vehicles that have not been used, the vehicles can be tested on existing routes 

to result in better optimization. Tour depletion can result in a more effective vehicle to 

become available, and the vehicle fit operator will reinsert an available vehicle in the solution. 

4.5.1.7 Operator probability 

The standard Tabu heuristic is extended with a meta control system on the selected 

operations. On start of the algorithm, each operator is assigned a weight. All operators start 

out as equal in the Tabu only solution. In this study, it can differ because of the knowledge 

gained from the pre-analysis as well as construction heuristic result.  

The specific move‟s probability increases by a constant factor after each successful iteration. 

The probability is set not to exceed a specific upper bound and because the initial probability 
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is never reduced, a specific operator will always have likelihood to execute. This memory 

structure adds an additional dimension to the control of the algorithm. It reacts purely on the 

output from the move and the decision for the increase is localised to the operation itself. 

The controlling algorithm which has the ability to select the operation for the next move can 

use the probability distribution as indicator. 

4.6 Simulated Annealing 

Simulated Annealing searches the solution space by simulating the annealing process in 

metallurgy (Qili, 1999). The algorithm jumps to distant location in the search space initially. 

The size of the jumps reduces as time goes on or as the temperature “cools” down. 

Eventually the process will turn into local search descent method. 

One of its characteristics is that for very high temperatures, each state has almost equal 

change to be the current state. At low temperatures only states with low energy have a high 

probability of being the current state. These probabilities are derived for a never ending 

executing of the metropolis loop.   

In the modified version of SA, the algorithm starts with a relatively good solution resulting 

from a construction heuristic. Initial temperature is set at TS = 100, and is slowly decreased by 

  1 1( ) /(1 )k k kT T T  
 

Equation 3: Cool down tempo 

Where Tk is the current temperature at iteration k and t is a small time constant. The square 

root of Tk is introduced in the denominator to speed up the cool process. Here we use a 

simple monotonously decreasing function to replace the 1/log k scheme. It is found that the 

scheme, gives fairly good results in much less time. The algorithm attempts solutions in the 

neighbourhood of the current solution randomly or systematically and calculates the 

probability of moving to those solutions according to: 

( / )
( ) kT

P accepting amove e


  

Equation 4: Solution acceptance probability 
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This is a modified version of the annealing equation, where = C‟(S) - C(S), C(S) is the cost 

of the current solution and C‟(S) is the cost of the new solution. If 0   the move is always 

warranted. One can see that as the temperature cools, the probability of accepting a non-cost-

saving move is getting exponentially smaller. When the temperature has gone to the final 

temperature T = 0.001 or there is no more feasible moves in the neighbourhood, we reset the 

temperature to 

max( / 2, )r s bT T T
 

Equation 5: Reset temperature 

where Tr is the reset temperature, and was originally set to Ts, and Tb is the temperature at 

which the best current solution was found. Final temperature is not set at zero because as 

temperature decreases to infinitesimally close to zero, there is virtually zero probability of 

accepting a non-improving move. Thus a final temperature not equal but close to zero is 

more realistic.  

4.7 Ant Algorithms 

Observations on real ants searching for food were the inspiration to imitate the behaviour of 

ant colonies for solving combinatorial optimization problems. Real ants are able to 

communicate information concerning food sources via an aromatic essence, called 

pheromone. They mark the path they walk on by laying down pheromone in a quantity that 

depends on the length (cost) of the path and the quality of the discovered food source. Other 

ants can observe the pheromone trail and are attracted to follow it. Thus the path will be 

marked again and will therefore attract more ants. The pheromone trail on paths leading to 

rich food sources close to the nest will be more frequented and will therefore grow faster. 

The described behaviour of real ant colonies can be used to solve combinatorial optimization 

problems by simulation: artificial ants searching the solution space simulate real ants searching 

there environment, the objective values correspond to the quality of the food sources and an 

adaptive memory corresponds to the pheromone trails. In addition, the artificial are equipped 

with a local heuristic function to guide their search through the set of feasible solutions. 
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It is useful to list some broad behavioural categories which might be classified as collective 

intelligence, or swarm intelligence (Millonas, 1992). These may be thought of as evolutionary 

principles of selection, and are not intended to be definitive.  

 The first is the proximity principle. The group should be able to do elementary space 

and time computations. Since space and time translate into energy expenditure. 

 Second is the quality principle. The group should be able to respond not only to time 

and space considerations, but to quality factors, for instance, to the quality of 

foodstuffs or safety of location. 

 Third is the principle of diverse response. The group should not allocate all of its 

resource along excessively narrow lines. It should seek to distribute its resources along 

many modes as insurance against the sudden change in any one of them due to 

environmental fluctuations. 

 Fourth is the principle of stability. The group should not shift its behaviour from one 

mode to another upon every fluctuation of the environment, since such changes take 

energy, and may not produce a worthwhile return for the investment. 

In this thesis we utilize the concept of the ant system to solve the VRP. In the traditional way to 

solve the VRP, the artificial ants construct vehicle routes by successively choosing cities to 

visit, until each city has been visited. Whenever the choice of another city would lead to an 

infeasible solution for reasons such as vehicle capacity or total route length, the depot is 

chosen and a new tour is started. For the selection of a (not yet visited) city, two aspects are 

taken into account: how good was the choice of that city, information that is stored in the 

pheromone trails 𝜏𝑖,𝑗  associated with each arc (𝑣𝑖 , 𝑣𝑗 ), and how promising is the choice of 

that city. This latter measure of desirability, called visibility and denoted by 𝜂𝑖𝑗 , is influenced 

by factors calculated from previously discussed tools. In the case of the VRP on Solomon‟s 

benchmark, the desirability is defined as the reciprocal of the distance, i.e. 𝜂𝑖𝑗 = 1/𝑑𝑖𝑗 .  

With Ω =   𝑣𝑗 ∈ 𝑉 ∶  𝑣𝑗  𝑖𝑠 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑡𝑜 𝑏𝑒 𝑣𝑖𝑠𝑖𝑡𝑒𝑑  ∪  𝑣0 , stop 𝑣𝑗  is selected to be 

visited after stop 𝑣𝑖according to a random-proportional rule in that can be stated as follows: 
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𝑝𝑖𝑗 =  
[𝜏𝑖𝑗 ]𝛼 [𝜂 𝑖𝑗 ]𝛽

 [𝜏𝑖𝑗 ]𝛼 [𝜂 𝑖𝑗 ]𝛽ℎ∈Ω
  if  𝑣𝑗  ∈  Ω, 0 otherwise 

Equation 6: Random-proportional rule 

This probability distribution is biased by the parameters α and β that determine the relative 

influence of the trails and the visibility, respectively. 

After an artificial ant k has constructed the feasible solution, the pheromone trails are laid 

depending on the objective value 𝐿𝑘 . For each arc  𝑣𝑖 , 𝑣𝑗   that was used by the ant k, the 

pheromone trail is increased by ∆𝜏𝑖𝑗
𝑘 = 1/𝐿𝑘 . In addition to that, all arcs belong to the so far 

best solution (objective value 𝐿∗ ) are emphasised as if σ ants, so called elitist ants had used 

them. One elitist ant increases the trail intensity by an amount ∆𝜏𝑖𝑗
∗  that is equal to 1/𝐿∗ if arc 

 𝑣𝑖 , 𝑣𝑗   belongs to the so far best solution, and zero otherwise. Furthermore, part of the 

existing pheromone trails evaporates (𝜌 is the trail persistence). Thus, the trail intensity is on 

update according to the following formula, where m is the number of artificial ants: 

𝜏𝑖𝑗
𝑛𝑒𝑤 =  𝜌𝜏𝑖𝑗

𝑜𝑙𝑑 +   ∆𝜏𝑖𝑗
𝑘  

𝑚

𝑘=1

+  𝜎∆𝜏𝑖𝑗
∗  

Equation 7: Pheromone intensity update 

The constructive method of building the routes, forces the initial placement of ants at each 

stop. The implication for the implementation of this Ant System on the VRP is that as many 

ants are used as there are customers in the VRP, and that one ant is placed at each customer 

at the beginning of iteration. After initialising the basic ant system algorithm, the two steps 

construction of vehicle routes and trail update, are repeated for a given number of iterations. 

This solution might be sufficient for the travelling salesman problem, but is no where 

efficient enough for a complex VRP problem. 

This constructive methodology does not support an efficient heuristic approach. The side 

constraints of the VRP contribute to the complexity of valid stop selection in the latter part 

of the route. The combinations of selected stops do not necessarily result in a good solution 

because of the structure of the environment. In a low constraint impact scenario, i.e. where a 
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stop has a number of possible neighbours, the constructive method can result in good and 

even good enough solutions, because of the possible combinations still left at the latter part 

of the route. On the other end of the spectrum, where constraints are strict, the method can 

also result in good solutions because of the limited number of combinations that exist in any 

case across the entire solution. 

The methodology of using ants to build routes has to be extended to allow for a feasible 

methodology. Let us consider the analogous between the first research of termites by Eugene 

Marais and the level of implementation achieved. While observing the natural behaviour of 

these creatures, he noticed that firstly, the whole termitarium had to be considered as a single 

organism whose organs work like those of a human being. The queen was the brain and the 

womb; the workers were mouthparts and tissue builders; the soldiers were the white blood 

cells and the humus gardens were the stomach. Then secondly, he noticed that the actions 

within the termitarium were completely instinctive. 

Compared to this, the current ant approach is just half a brain and mouthparts. This study 

improves on the implementation approach, and not just on the formulas used to calculate the 

pheromone trial, which determine the selection criteria. The consideration of the problem 

environment, as well as the creative construction methods build up the new body. 

It is important to realise that the real world ant problem has the major advantage to ignore 

poor trials. This can be translated in the VRP to the generation of orphans when the stops are 

just too costly. The idea seems lucrative in defining business on a strategic level. This study 

does not allow orphans as part of the solution. The design of such a solution has an impact 

on the objective function that can be handled by this solution approach, but the impact on 

the search algorithm is not considered in this study. It can be investigated in further studies. 

Studies of the foraging behaviour of several species of real ants revealed an initial random or 

chaotic activity pattern in the search for food. Traditional two stage approach in the VRP 

suggests that the initial solution should be as good as possible. In this study we revert back to 

the scientists‟ suggestion and emphasised the importance of the initial preparation. A „good‟ 

initial solution is redefined from the traditional value based evaluation.  The convergence to a 

good solution is dependent on the common iteration between the various ants. The 

recruitment mechanism differs for different species, although the most common use is the 

pheromone trial. 
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Hybridisation in general means combining ideas of several different methods in one 

approach. Such proceeding is common practice for hard combinatorial optimisation 

problems and has been successfully applied to other problems. We define the hybridisation as 

different functions by different body parts in the ant system. The environment influences the 

brain to use certain parts of the body more than other, or in combination with other.  

Mapping our solution to the human body analogy of Marais, the following ants with their 

associated memory structures are defined in the system: 

 Queen – The queen is the brains of the operation. This ant is represented by the Ant 

System Class and is responsible for controlling all actions. 

o Simulated Annealing – the queen utilise the adapted SA approach as described 

in a previous paragraph to guide the goals of the scouts and workers. 

o Probability – the queen control the overall probability matrix gained from all 

ants. The probability value is based on an extended formula on the traditional 

pheromone calculation. 

o Environment – the queen deduces the environment from statistical data and 

scout ants. 

o Parallel – the queen controls the parallel processing of all ants. 

 Scouts – Scouts are defined as ants that do a random chaotic search, to ensure that 

divergence is achieved. Scouts do have a certain level of intelligence and can control 

subordinates from their knowledge gained. 

o Initial solution – the scout‟s main function is to construct an initial solution 

base to work form. 

o Clusters – the scouts use the clusters as indication of areas of similarity. 

o Inverse pheromone – the scouts use the provided pheromone trial as tabu 

area to ensure convergence. 

 Soldiers – Soldiers are responsible for the optimisation of the current operations. 

Soldiers are also equipped with some specific level of intelligence which is used to 

guide the workers. 
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o Local heuristic – the soldiers use the Tabu search heuristic to improve on the 

solutions. 

 Workers – Workers are responsible to build the empirical proof of the solution. The 

aim is that they do not have intelligence over a group, but is focussed on their 

immediate environment. 

o Pheromone trial – the workers build routes through a traditional pheromone 

trial. 

o Memory – the workers react on memory set by themselves as well as fed 

down from their controlling ant. 

The subsequent diagram in Figure 36 depicts the relation between the entities. It can be 

viewed as a hierarchal system. 

 

Figure 36: Ant type relations 

The aim of the ant solution is the principle of locality. The behaviour of the individual 

organisms will be determined solely by local influences. This means that the individual 

organisms will not have any memory, non-local navigational skills, or any type of behaviour 

that involves storage of internal information. Any information flow must then be a product of 

the collective behaviour. The communication between the different types of ants is to 

influence the local stored information. 
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4.8 Solution Algorithm 

This section summarise the algorithm designed in this study. Literature has shown that 

methods like Tabu are still superior to new agent-based approaches. Results will show that the 

intelligent implementation of agents and controlling the relations between them can both 

utilise proven local methods, but also increase the time to find a good solution in real-world 

applications. The Solomon benchmark problems are used as a base, and several other 

problem spaces are solved to show the flexibility of the algorithm.  

The difference between an agent based approach and typical Tabu searches is not that clear 

cut. We argue that the agent based approach is a conceptual structure that assists with the 

management of the typical adaptive memory. The agent based approach also add another 

dimension, the inter agent communication layer. This approach assists in the component 

orientated design approach and compliments the use of adaptive objects. 

The principle of locality is tricky to implement. The approach is to ensure that an intelligent 

ant is well defined, i.e. it is familiar with all parameters available to use and how to react. The 

inter ant communication can influence the local parameters. We reason that a too simplistic 

implementation of a pheromone trial will not suffice as a practical approach to our problem. 

Creating a more complex structure is necessary, but it can be done on a different layer to 

ensure the problem complexity is still manageable.   

Read problem space from adaptive provider. 

Create solution space from problem space 

 Calculate a best possible cost matrix 

 Deduct a probability matrix from cost matrix 

Evaluate environment 

 Count number of possible neighbours per stop 

 Calculate average, best and worst cost per stop 

 Compare values with neighbour and overall stops 

Apply environment result on probability matrix 

 Decrease probability on unlikely stops 

Solve 

 Initial solution 

 Improvement solution 

Algorithm 7: Solution Approach 
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Algorithm 7: Solution Approach defines the outline of our Ant System on Adaptive Objects 

(ASAO) algorithm. It is important to keep in mind that the algorithm is build on top of an 

adaptive object model. It has to provide the guideline to the problem space elements on how 

it could be used optimally, i.e. when are the function calls to the object cost functions. 

 

Figure 37: Ant System on Adaptive Objects - 
ASAO 

Algorithm 8 represent a pseudo version on high-level for the ASAO algorithm. 

 
 
 



 
133 

 

Step 1. Build solution workspace from problem space. 

a. Build best cost matrix 

b. Build initial probability matrix 

c. Create routable stops and vehicles 

d. Build environment summary 

Step 2. Initialise ASAO  

Step 3. Send out scouts 

a. Constructive ant best accept 

b. Constructive ant second best accept 

c. Constructive ant random accept 

d. Constructive ant adapted neighbour insertion 

Step 4. Evaluate results and update memory structures 

Step 5. Apply selective soldiers on selective solutions 

Step 6. Evaluate best solutions, if improvement deemed 

possible, go to 4 

Step 7. If improvement stabilize, go to 3 

Step 8. Update possible final solution list 

Step 9. If number of iterations < max number go to 3. 

Step 10. Return final solution list. 

 

Algorithm 8: ASAO 

The final result consists of a list of possible solutions that represent a dissimilar solution. 
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4.9 Summary 

The solution algorithm depends on the collaboration between several existing techniques. 

The agent based approached, build on an ant colony optimisation technique, assist in 

mimicking a multi-agent approach that has strong ties to physical examples which can be 

empirically proofed.  

Solving an already complex problem is an unknown environment requires a hybrid of more 

than one approach. The multi-start initial solution approach provides a good starting point 

for the improvement phase. It also influence the memory structure used in the improvement 

phase, which kick start the improvement phase with knowledge gained. 

The combination of an ant pheromone trial and tabu list results in a dual contradictory 

memory list. The pheromone indicates the better moves, but the tabu control the overall use 

of these combinations. The implementation of both these lists allows the control mechanism 

to determine convergence and diversification without explicit events set.  

The methods used in this solution consist of well known understood approaches. The 

powerful use of memory structures to guide the algorithm in an unknown domain is what 

makes this solution successful. 
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