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Chapter 6: Mann-Whitney-Wilcoxon control charts 
 

6.1. The Shewhart-type control chart 

 

6.1.1. Introduction 

 

While the precedence chart is a step in the right direction, the precedence test is not the 

most popular or the most powerful of nonparametric two-sample tests. That honour goes to 

the Mann-Whitney test (see for example, Gibbons and Chakraborti, 2003). The Mann-

Whitney (hereafter MW) test (equivalent to the popular Wilcoxon rank-sum test) is a well-

known nonparametric competitor of the two-independent-sample t-test. The test is known to 

be more powerful than the precedence test for light tailed distributions and hence MW charts 

are expected to be more efficient for such cases. Of course, the MW chart is also distribution-

free and therefore has the same in-control robustness advantage as the precedence chart, 

namely that its in-control distribution is completely known. Park and Reynolds (1987) 

considered Shewhart-type control charts for monitoring the location parameter of a 

continuous process in case U. One of the special cases of their charts is the MW chart based 

on the Mann-Whitney-Wilcoxon (hereafter MWW) statistic. The control limits of these charts 

are established using Phase I reference data. However, they only considered properties of this 

chart when the reference sample size approaches infinity. Chakraborti and Van de Wiel 

(2003) considered the Shewhart-type MW chart for finite reference sample size, studied its 

properties, and provided tables for its implementation. These authors show that in some cases 

the MW chart is more efficient than the precedence chart.  

 

Assume that a reference sample of size m , mXXX ,...,, 21 , is available from an in-control 

process with an unknown continuous cdf )(xF . Let h
n

hh
h

YYY ,...,, 21 , ,...,2,1=h  denote the thh  

test sample of size hn . Let )(yG h  denote the cdf of the distribution of the thh  Phase II 

sample. )()( yGyG h =  h∀ , since the Phase II samples are all assumed to be identically 

distributed. Accordingly, the superscript h  can be suppressed from this point forward. For 

convenience, assume that the Phase II samples are all of the same size, n . The Mann-Whitney 

test is based on the total number of ( )YX ,  pairs where the Y -observation (Phase II sample) is 

strictly greater than the X -observation (Phase I sample).  
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6.1.2. Plotting statistic 

 

The Mann-Whitney statistic is defined to be 

 ijjiXY XYYXM >=  with ),( pairs ofnumber  the  (6.1)  

for mi ,...,2,1=  and nj ,...,2,1= . Expression (6.1) can be written as 

 ��
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where )( ij XYI >  is the indicator function, i.e. 
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There are a total of mn  ( )ji YX ,  pairs for each Phase II sample. Therefore, if all the Y -

observations are greater than the X -observations, XYM  would be equal to mn . On the other 

hand, if all the Y -observations are smaller than the X -observations, XYM  would be equal to 

0 . Therefore, we have that mnM XY ≤≤0 . For large values of XYM , that is, if a large 

number of the Y -observations are greater than the X -observations, this would be indicative 

of a positive shift from the X  to the Y  distribution. On the other hand, for small values of 

XYM , that is, if a large number of the Y -observations are smaller than the X -observations, 

this would be indicative of a negative shift from the X  to the Y  distribution.  

 

The proposed MW chart plots the XYM  statistics, that is, ,..., 21
XYXY MM , versus the 

test sample number. XYM  is referred to as the plotting statistic. The chart signals if the 

plotting statistic falls on or above the upper control limit (UCL ) or if the plotting statistic falls 

on or below the lower control limit ( LCL ). Since the in-control distribution of the plotting 

statistic, XYM , is symmetric about the mean 
2

mn
 (see Gibbons and Chakraborti (2003)), the 

control limits are taken to be symmetric. Because of symmetry, we have that 

)()( amnMPaMP XYXY −===  for the constant a  with mna ≤≤0 , so it is reasonable to 

take mnmn UmnL −=  where mnU  and mnL  denote the upper and lower control limits, 

respectively. If the plotting statistic XYM  falls between the control limits, that is, 

mnXYmn UML << , the process is declared to be in-control, whereas if the plotting statistic 
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XYM  falls on or outside one of the control limits, that is, if mnXY LM ≤  or mnXY UM ≥ , the 

process is declared to be out-of-control. 

 

6.1.3. Properties of the run-length distribution 

 

Result 6.1: Probability of a signal - conditional 

 

Let )(xpG  denote the probability of a signal with any test (Phase II) sample, given the 

reference sample ( ) ( )mm xxxXXX ,...,,,...,, 2121 =  (in short, xX = ). 

 

=)(xpG ( )mnYxG UMP ≥2   

 

( )
( ) ( )mnYxGmnYxG

GG

UMPLMP

xXPxp

≥+≤=
== |Signal)(

  

( ) ( )mnYxGmnYxG UMPUmnMP ≥+−≤=  

( )mnYxG UMP ≥= 2 .    
 

The last equality follows on account of symmetry (see Section 6.1.2). From Result 6.1 

it can be seen that the calculation of )(xpG  essentially requires the calculation of the upper-

tailed probability ( )mnYxG UMP ≥ . More detail on this point appears in Section 6.1.4. 

 

Result 6.2: Probability of no signal - conditional 

 

( ) ( )mnYxGGG UMPxpxXP ≥−=−== 21)(1|Signal No  

 

Result 6.3: Run-length distribution - conditional 

 

( ) ( ) ( ))()(1| 1 xpxpxXkNP G
k

G
−−===  for ,...3,2,1=k  

 

The conditional run length, denoted by xXN =| , will have a geometric distribution 

with parameter )(xpG , because all the Phase II samples are independent if we condition on 

the reference sample. A detailed motivation for using the method of conditioning is given by 
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Chakraborti (2000), but, in brief, the signalling events are dependent and by means of 

conditioning on the reference sample we don’t have to be concerned about the dependence. 

Consequently we have that 

xXN =|  ~ GEO ( )(xpG ) 

( ) ( ) ( ))()(1| 1 xpxpxXkNP G
k

G
−−===    for   ,...3,2,1=k  

Consequently, the cumulative distribution function (cdf) is found from 

( ) ( ) ( )�
=

−−==≤
k

i
G

i
G xpxpxXkNP

1

1 )()(1|    for   ,...3,2,1=k  

 

Result 6.4: Average run-length – conditional  

 

( )
)(

1
|
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xXNECARL

G
G ===  

 

Since the conditional run length, denoted by xXN =| , has a geometric distribution 

with parameter )(xpG , the conditional average run length is given by  

( )
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1
|
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G
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Result 6.5: Average run-length – unconditional  
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where 

υ  is some function of G  and mxxx ,...,, 21 . 
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The second equality in (6.3) follows from extending the notion of expectation to the 

conditional framework. The third equality in (6.3) follows from Result 6.4. The fourth 

equality in (6.3) follows from the definition of expected values (see, for example, Bain and 

Engelhardt (1992)). 

 

From (6.3) it can be seen that the unconditional ARL  is an m -dimensional integral, 

since the reference sample is of size m . Equation (6.3) can be expressed differently by 

writing 
)(

1
xpG

 as ( ) ( ))(),...,(),()(),...,(),( 2121 mmjjj xGxGxGxYPxYPxYP υυ =<<< , 

where υ  is some function of G  and mxxx ,...,, 21 . By substituting 
)(

1
xpG

 in (6.3) with 

( ))(),...,(),( 21 mxGxGxGυ  we obtain 

 

UARL  

( ) )()()(),...,(),( 121 mm xdFxdFxGxGxG ��� �
∞

∞−

∞

∞−

= υ . (6.4) 

 

Recall that a process is said to be in-control when FG = . Therefore, the in-control 

(unconditional) ARL  is obtained by substituting FG =  into the equation for the 

unconditional ARL  given in (6.3) and we obtain the m -dimensional integral 
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where the subscript 0 refers to the in-control state. 

 

In the out-of-control case the unconditional ARL  is given by the m -dimensional integral 
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where δ  signifies a shift between F  and G .  
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Recall that 
)(

1
xpG

 was re-written as ( ))(),...,(),( 21 mxGxGxGυ  where υ  is some 

function of G  and mxxx ,...,, 21 . Similarly, 
)(

1
xpF

 can be re-written as 

( ))(),...,(),( 21 mxFxFxFυ  and we obtain 

 

( ) )()()(),...,(),( 121

0

mm xdFxdFxFxFxF

UARL

��� �
∞

∞−

∞

∞−

= υ
 

( ) mm duduuuu ��� �=
1

0

1

0
121 ,...,,υ  

m
U

dudu
up

��� �=
1

0

1

0
1)(

1
,  (6.7) 

by the probability integral transformation (see, for example, Gibbons and Chakraborti 

(2003)). The subscript U  refers to the uniform(0,1) distribution and )(upU  is the conditional 

probability of a signal at any test sample, given the reference sample, when the process is in-

control. 

 

Recall that for the in-control case, the distributions of both the reference and test 

samples can be assumed to be uniformly(0,1) distributed*, which shows that the unconditional 

ARL , for the in-control situation, of the MW chart does not depend on the underlying process 

distributions F  and G . The same argument can be used to show that the in-control run 

length distribution does not depend on the underlying process distributions F  and G , thus 

establishing that the proposed MW chart is distribution-free. 

 

We have to calculate the unconditional ARL , for the in-control situation, using (6.7) 

to implement the chart. Following this, we have to calculate the unconditional ARL , for the 

out-of-control situation, using (6.3) to evaluate chart performance. We run into two problems 

in doing so, that is, (i) we don’t have exact formulas for the signal probabilities )(xpG  and 

)(upU ; and (ii) it could be difficult and time-consuming estimating (6.3) and (6.7), since both 

                                                 
* For the in-control case, the distributions of both the reference and test samples can be assumed to be 
uniformly(0,1) distributed. This is due to the well-known probabitliy integral transformation (see, for example, 
Gibbons and Chakraborti (2003)). 
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unconditional average run length formulas (for the in-control and out-of-control situations, 

respectively) are m -dimensional integrals. 

 

Chakraborti and Van de Wiel (2003) proposed a possible solution to both of these 

problems. Their proposed solution proceeds in two steps. Firstly, fast computations (or 

approximations) of the signal probabilities are done. It should be noted that although the 

computation of )(xpG  will be discussed in detail (in the following section), the computation 

of )(upU  is omitted, since it follows similarly to the computation of )(xpG . Secondly, 

Monte Carlo simulation is applied to approximate the unconditional ARL ’s (for the in-control 

and out-of-control situations, respectively). The Monte Carlo estimates are given by 

 �
=

≈
K

i iG xpK
LRA

1 )(
11ˆ  (6.8) 

and 

 �
=

≈
K

i iU upK
LRA

1
0 )(

11ˆ  (6.9) 

where K  denotes the number of Monte Carlo samples, ),...,,( 21 imiii xxxx =  and 

),...,,( 21 imiii uuuu =  denote the thi  Monte Carlo sample, Ki ,...,2,1= , of which each element 

is taken from some specified F  for the LRA ˆ  (for the out-of-control situations) and from the 

uniform(0,1) distribution for the 0
ˆLRA  (for the in-control situation). 

 

 One concern is the size of K , that is, how may Monte Carlo samples should be used? 

Although larger sizes of K  can result in more accurate approximations and smaller Monte 

Carlo errors, using larger Monte Carlo samples may be more time-consuming. This concern 

will be addressed in Section 6.1.6. 

 

6.1.4. The computation of the signal probability 

 

The Mann-Whitney statistic, given in (6.2), can be written in a simpler (more 

straightforward) form given by �
=

=
n

j
jYx CM

1

, where jC  denotes the number of x -

observations that precede jY , nj ,...,2,1= . Also recall that since =)(xpG  ( )mnYxG UMP ≥2 , 
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the calculation of )(xpG  essentially requires the calculation of the upper-tailed probability 

( )mnYxG UMP ≥ . The computation of the latter proceeds in two steps, namely: (i) listing of all 

n -tuples ),...,,( 21 nCCC  for which the sum is greater than or equal to mnU ; and (ii) the 

summation of the probabilities for these tuples. 

 

The Central Limit Theorem states that if nS  is the sum of n  variables, then the 

distribution of nS  approaches the normal distribution as n  approaches infinity, i.e. →nS  

Normal distribution as ∞→n . Using this result, we can find a normal approximation to the 

upper-tailed probability ( )mnYxG UMP ≥ , since �
=

=
n

j
jYx CM

1

 approaches the normal 

distribution as ∞→n . Although using a normal approximation to the upper-tailed probability 

is a possible solution, it is not ideal. The reason being that although normal approximations 

work well when n  is large (and improve as sample size increases), normal approximations do 

not work well when n  is considered small. In our applications we typically use sample sizes 

that may be considered small and as a result using normal approximations would be 

somewhat unattractive. Clearly, a better approach is needed. 

 

6.1.5. Saddlepoint approximations 

 

Saddlepoint approximations (or saddlepoint expansions) provide good approximations 

(with a small relative error) to very small tail probabilities. Consequently, saddlepoint 

approximations can be applied to the problem of finding )(xpG , which is usually set to be 

rather small (typically 0.0027). Jensen (1995) provides ample justifications for the application 

of saddlepoint expansions when approximating small probabilities. In Chapter 2 of Jensen 

(1995) the classical saddlepoint approximations for tail probabilities for sums of independent 

random variables are given. For our problem (the calculation of the upper-tailed probability 

)( mnYxG UMP ≥ ), we make use of the Lugannani-Rice formula (hereafter LR-formula) which 

is a saddlepoint expansion formula.  

 

Prior to defining the LR-formula, a few concepts will be explained. To begin with, let 

la  denote the probability that l  x -observations (given xX = ) precede jY  for nj ,...,2,1=  
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and ml ,...,1,0= , respectively. Therefore, ( ) ( ))1()(| +≤<==== ljljl xYxPxXlCPa  where 

)()2()1( mxxx ≤≤≤ �  are the order statistics.  

 

Since the pgf provides a very useful tool for studying the sum of independent random 

variables we turn to the conditional probability generating function (pgf) of jC , and 

subsequently to the conditional pgf of YxM . In view of the fact that jC , nj ,...,2,1= , is a 

random variable whose possible values are restricted to the nonnegative integers },...,1,0{ m , 

the conditional pgf of jC  is given by 

 ( )� �
= =

====Π
m

l

m

l

l
l

l
j zazxXlCPz

0 0
1 |)( . (6.10) 

 

It’s a well-known fact that if, for example, X  and Y  are independent random 

variables with probability generating functions )(zXΠ  and )(zYΠ , respectively, we have 

that  

 )()()( zzz YXYX ΠΠ=Π +  (6.11)  

(see, for example, Bain and Engelhardt (1992)). 
 

YxM  is the sum of n  independent identical variables (recall that �
=

=
n

j
jYx CM

1

) and 

therefore, by using (6.10) and (6.11), the conditional pgf of YxM  is given by 
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By implication jC , for nj ,...,2,1= , are independent identically distributed, conditionally. 
 

Next we examine the cumulant generating function (cgf) of jC . The cgf is just the 

logarithm of the moment generating function (mgf). Mathematically, the mgf and the cgf are 

equivalent. The cgf generates the mean and variance, instead of the uncentered moments. We 

can think of )('tκ  and )('' tκ  as the mean and variance, respectively, where )(tκ  denotes the 

cgf. Hence, the cgf of jC  can be obtained by taking the logarithm of the pgf in (6.12) at the 

point tez = . As a result, the cgf of  jC  is given by  
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The first and second order derivatives of the cgf is simply )('tκ  and )('' tκ  so that 

)()(' tmt =κ  and )()('' 2 tt σκ = . Also, let 
n

U mn=µ  and 
n

M
M Yx

Yx = . The saddlepoint, γ , is 

the solution to the equation µ=)(tm . In other words, we solve µ=)(tm  for t (see Theorem 3 

in Appendix A for a detailed discussion on saddlepoint techniques). 

 

Finally, we want to use a saddlepoint expansion to approximate the upper-tailed 

probability )( mnYxG UMP ≥ . Jensen (1995) defined an upper-tailed probability, denoted by 

( )xXP ≥ , in equation (3.3.17) on page 79 by 

 ( ) ( ) ( )( ) ( )�
�

�
	



� +−++Φ−=≥ −− 2/32 11
)(1)(1 nO

r
rnOrxXP

λ
φ  (6.14) 

with  

 ( ) ( ))(ˆ1 ))(ˆ( xen x θσλ θ−−=  and ( ) ( )( ) 2/1
))(ˆ()(ˆ2))(ˆsgn( xxxnxr θκθθ −=  (6.15) 

where )(ˆ xθ  denotes the saddlepoint, 1,1))(ˆsgn( −=xθ  or 0 depending on whether )(ˆ xθ  is 

positive, negative or zero and )(⋅O  is the big O  function. In general, the notation 

))(()( ngOnf =  means there is a real constant 0>c  and an integer 0n  such that 

|)(||)(| ngcnf ≤  for all 0nn ≥  and where )(nf  and )(ng  are functions of the variable n . In 

other words, the notation ))(()( ngOnf =  states that the function |)(| nf  is bounded above by 

a constant multiple of the function |)(| ng  for all sufficiently large values of n indicated by 

0nn ≥ . Getting back to equations (6.14) and (6.15) it should be noted that the derivation of r  

was done separately on page 75 of Jensen (1995) using equations (3.3.2) and (3.3.3). The 

Lugannani and Rice (1980) paper was the first to give formula (6.14). Although they were the 

first to give formula (6.14), their paper is perhaps not easy to read. However, Daniels (1987) 

has given a very readable account where formula (6.14) is also given. In this thesis we mostly 

refer to Jensen (1995), because Jensen’s textbook gives a rigorous account of the underlying 

mathematical theory of saddlepoint methods. 
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Using (6.14) and (6.15) we obtain 

 ( ) ( ) �
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11
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λ
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with  

 )()1( γσλ γ−−= en  and ( )( ) 21))((2)sgn( γκγµγ −= nr  (6.17) 

where γ  denotes the saddlepoint.  

 

Using (6.16) we can approximate the signal probability )(xpG  given in Result 6.1. 

 

6.1.6. Monte Carlo simulation 

 

We run into a problem when computing the out-of-control and in-control 

unconditional average run lengths, since both formulas (see equations (6.3) and (6.7)) are m -

dimensional integrals. A solution to this problem is using Monte Carlo simulation. Monte 

Carlo methods are based on the use of random numbers and probability statistics to 

investigate problems. It consists of a collection of ways for generating random samples on a 

computer and then using them to solve problems by providing approximate solutions to those 

problems. Moreover, Monte Carlo methods are useful for obtaining numerical solutions to 

problems which are too complicated to solve analytically and are, in this thesis, used to 

evaluate multiple integrals. Monte Carlo simulation is applied here to approximate the 

unconditional ARL ’s for the in-control and out-of-control situations, respectively. It should 

be noted that these are approximations to m-dimensional integrals (see equations (6.3) and 

(6.7) for the out-of-control and in-control unconditional average run length formulas, 

respectively). The Monte Carlo estimates are given by (6.8) and (6.9), respectively, and by 

studying these formulas we see that the computations of )(xpG  (for the out-of-control 

situation) and )(upU  (for the in-control situation) are repeated K  times to obtain the Monte 

Carlo estimates given in (6.8) and (6.9).  
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Monte Carlo simulation used to approximate the unconditional ARL  for the in-control 

situation 

 

Chakraborti and Van de Wiel (2003) proposed five methods for computing (or 

approximating) 0ARL . The first three methods are similar in the sense that they all make use 

of Monte Carlo simulation using (6.9), but they differ in the way that )(upU  is computed or 

approximated. The five methods are as follows: 

 

(i) Exact 

 

Monte Carlo simulation is applied to approximate the 0ARL  using (6.9), with 

)(upU  computed exactly using (6.12).  

 

(ii) Lugannani-Rice formula 

 

Monte Carlo simulation is applied to approximate the 0ARL  using (6.9), with 

)(upU  computed approximately using (6.16).  

 

(iii) Normal Approximation 

 

Monte Carlo simulation is applied to approximate the 0ARL  using (6.9), with 

)(upU  computed using a normal approximation.  

 

 The first three methods have the same problem, namely, that we need to compute 

)(upU  K  times for K  Monte Carlo reference samples, where a reference sample is drawn 

from the uniform(0,1) distribution. Each element is taken from the uniform(0,1) distribution, 

since we’re approximating the in-control average run length. The number of Monte Carlo 

reference samples K  should be taken large enough so that the Monte Carlo error is 

acceptably small and, consequently, using methods (i), (ii) or (iii) may be time-consuming. 

By fixing the reference sample we would only need to compute )(upU  once. This is done in 

the fourth method by using the empirical cdf of mXXX ,...,, 21 . 
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(iv) Fixed reference sample 

 

Recall that )(xF  denotes the unknown continuous cdf of each of mXXX ,...,, 21 . Let 

)(xFm  denote the empirical cdf of mXXX ,...,, 21 . By the law of strong numbers (see, for 

example, Bain and Engelhardt (1992)), when m  is large, the empirical cdf )(xFm  

converges to )(xF  (which is the cdf of the uniform(0,1) distribution), i.e. )()( xFxFm →  

as ∞→m , almost surely for fixed x . Using this, we can replace the thi  reference sample 

observation by the ( )thmi )1( +  quantile, mi ,...,2,1= , of the uniform(0,1) distribution. 

Since this quantile is equal to )1( +mi  (say, )1( += miqi ), we can approximate 0ARL  

by )(1 qpU  where ( ))1(,...,)1(1),...,,( 21 ++== mmmqqqq m . It should be noted that 

one should only use the empirical cdf (and as a result fix the reference sample to 

qux == ) when m  is large. Using this method we only require one reference sample and 

we only compute )(upU  once.  

 

(v) Reciprocal of the false alarm rate 

 

A quick way to approximate the 0ARL  is by using the fact that if the charting 

statistics, ,..., 21
XYXY MM , were independent, the 0ARL  would be equal to the 

reciprocal of the false alarm rate, i.e. ( )mnXY UMPFAR
ARL

≥
==

2
11

0 . When 

implementing this method, the FAR  is estimated using the Fix-Hodges approximation 

formula (see Fix and Hodges (1955)). This approximation improves the normal 

approximation by including moments of order three and higher. Since the charting 

statistics are in fact dependent, we can only use the reciprocal of the false alarm rate as 

a quick approximation to the 0ARL . Further motivation for using the reciprocal of the 

false alarm rate as a quick approximation to the 0ARL  is given by Chakraborti (2000). 

In that paper the author showed that for the Shewhart X  chart, 
FAR

1
 can be used as a 
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lower bound to the 0ARL . Following this, we use the reciprocal of the false alarm rate 

as a quick approximation to the 0ARL . 

 

 Methods (iv) and (v) have the advantage that we don’t have to draw K  reference 

samples, since we approximate 0ARL  by )(1 qpU  (using method (iv)) and by 

( )mnXY UMP ≥21  (using method (v)). 

 

The five abovementioned methods show one how to calculate (or approximate) the 

unconditional 0ARL  corresponding to a given value of the UCL . A table containing values of 

the unconditional 0ARL , for various values of m  and n , is provided (see Table 1, 

Chakraborti and Van de Wiel (2003)). The table is given on the next page for reference. K  is 

kept constant ( 1000=K ) to obtain a fair comparison regarding the computing times. The 

values in Table 6.1 were computed using all five abovementioned methods. The table shows 

two computing times. The first computing time is the time it took a 3.2GHz Pentium PC with 

512MB of internal RAM to compute the values using Mathematica 6.0. The second 

computing time (given in brackets) is the computing time found by Chakraborti and Van de 

Wiel (2003) using a 1.7GHz Pentium PC with 128MB of internal RAM. 

 

Certain in-control average run length values (indicated by ** in Table 6.1) could not 

be computed within a practical time. Chakraborti and Van de Wiel (2003) determined these 

computing times by multiplying the computing time for K  = 1 by 1 000 and, consequently, 

getting a computing time for  K = 1 000. In this paper the same course of action was taken to 

estimate the computing times for K = 1 000. From Table 6.1 we see that the 3.2GHz Pentium 

PC with 512MB of internal RAM is at least three times faster than the 1.7GHz Pentium PC 

with 128MB of internal RAM. Interpreting the times in Table 6.1 we find that the exact 

method is exceptionally time-consuming, particularly so as m increases. Similarly, using the 

LR-formula is also very time-consuming, again, particularly as m increases, but it’s not as 

severely time-consuming as the exact method. Although fast approximations are given by the 

normal approximation, they are inaccurate. Fast approximations are also given by the fixed-

reference-sample method and the reciprocal-of-the-false-alarm-rate method. 
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Table 6.1*. 0ARL  approximations and computing times for various m and n values and 

4344=mnU †. 

m n Exact 
 

Lugannani-
Rice 

formula 
 

Normal 
Approximation 

Fixed 
reference 

sample 
 

Reciprocal 
of the false 
alarm rate 

  0
ˆLRA  

Time 
(sec.) 0

ˆLRA  
Time 
(sec.) 0

ˆLRA  
Time 
(sec.) 0

ˆLRA  
Time 
(sec.) 0

ˆLRA  
Time 
(sec.) 

50 5 486 18 
(54) 506 12 

(36) 307 0.33 
(1.00) 403 0.02 

(0.05) 247 0.003 
(0.01) 

 10 504 132 
(395) 505 12 

(34) 327 0.33 
(1.00) 524 0.02 

(0.05) 226 0.003 
(0.01) 

 25 488 1618 
(4850) 491 10 

(31) 
425 

 
0.40 

(1.20) 
694 

 
0.02 

(0.05) 119 0.003 
(0.01) 

100 5 496 75 
(220) 505 18 

(48) 219 0.40 
(1.20) 478 0.02 

(0.05) 353 0.003 
(0.01) 

 10 505 640 
(1920) 506 16 

(47) 339 0.42 
(1.30) 531 0.02 

(0.05) 332 0.003 
(0.01) 

 25 ** 8900 
(26168) 503 18 

(48) 422 0.42 
(1.30) 683 0.03 

(0.06) 233 0.003 
(0.01) 

500 5 491 3544 
(10633) 496 70 

(207) 226 0.40 
(1.20) 492 0.07 

(0.20) 445 0.003 
(0.01) 

 10 ** 24500 
(73516) 513 60 

(179) 367 0.60 
(1.70) 537 0.07 

(0.21) 484 0.003 
(0.01) 

 25 ** 2.53*105 

(7.59*105) 494 60 
(176) 445 0.55 

(1.60) 578 0.10 
(0.29) 450 0.003 

(0.01) 

1000 5 ** 10601 
(31766) 500 120 

(356) 235 0.70 
(2.10) 513 0.16 

(0.48) 471 0.003 
(0.01) 

 10 ** 1.15*105 

(3.42*105) 499 126 
(373) 355 0.80 

(2.40) 516 0.18 
(0.49) 488 0.003 

(0.01) 

 25 ** 1.05*106 

(3.15*106) 500 117 
(348) 442 0.61 

(1.70) 548 0.20 
(0.63) 482 0.003 

(0.01) 

2000 5 ** 0.57*105 

(1.71*105) 503 240 
(713) 234 0.70 

(2.10) 506 0.22 
(0.67) 474 0.003 

(0.01) 

 10 ** 0.48*106 

(1.44*106) 504 221 
(659) 354 0.64 

(1.90) 513 0.24 
(0.71) 499 0.003 

(0.01) 

 25 ** 0.43*107 

(1.29*107) 509 229 
(676) 446 0.71 

(2.10) 531 0.48 
(1.41) 497 0.003 

(0.01) 
 

                                                 
* Chakraborti and Van de Wiel (2003) wrote a Mathmatica program to approximate the ARL0 for a given m, n 
and value of the UCL. This Mathematica program can be downloaded using the website 
www.win.tue.nl/~markvdw. For more details on this Mathematica program see Mathematica Program 1 in 
Appendix B.  
 
† Table 6.1 appears in Chakraborti and Van de Wiel (2003), Table 1. It should be noted that Chakraborti and Van 
de Wiel (2003) failed to say what the value of the UCL was set equal to when constructing this table. Turning to 
their Mathematica program we see that the user specific parameters are set equal to m=1000, n=5 and 
UCL=4344. Recall that only the UCL needs to be specified, since the LCL can be calculated using Lmn=mn-Umn. 
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In Table 6.1 we have the exact formula and various approximations for the 

unconditional 0ARL . We see that although the exact formula gives us 0ARL  values close to 

500 (which is desirable), the exact computations are very time-consuming for most values of 

m  and n . Focusing on the approximations, the closer an 0ARL  value is to 500, the better the 

approximation. Using this criteria we see that the normal approximation is inaccurate for all 

values of m  and n . The fixed-reference-sample and the reciprocal-of-the-false-alarm-rate 

approximations are relatively good for 1000≥m  and, in particular, the fixed-reference-

sample approximation performs better for ‘small’ values of n  ( 5=  or 10) than for n  ‘large’ 

( 25=n ). It seems that the best approximation is the LR-formula, since all the corresponding 

0ARL  values are close to 500. In summary, the best method of calculating the unconditional 

0ARL  is by using the exact formula, if it’s not too time-consuming, otherwise the LR-formula 

is the best approximation. 

 

Monte Carlo simulation used to approximate the unconditional ARL  for the out-of-

control situation 

 

Monte Carlo simulation is used to approximate the unconditional ARL  for the out-of-

control situation. There are concerns about the number of Monte Carlo samples used, namely, 

that although larger sizes of K  will result in more accurate approximations and smaller 

Monte Carlo errors, using larger Monte Carlo samples may be time-consuming or 

computationally expensive or both. 

 

 Since the unconditional ARL  is the average of the conditional )(XARLG  over all 

possible sX '  and the K  Monte Carlo reference samples are independent, the Monte Carlo 

standard error of the estimate LRA ˆ  is given by  

 
( )

K

XARLG
mc

)(σσ =  (6.18) 

where ( ))(XARLGσ  denotes the unknown standard deviation of )(XARLG . From (6.18) we 

see that the standard error decreases with the square root of the number of Monte Carlo 

samples used. If we, for example, quadruple the number of Monte Carlo samples used, we 

will half the standard error. While increasing K  is one technique for reducing the standard 
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error, doing so can be time-consuming or computationally expensive or both. Clearly, a better 

approach is needed. 

 

Let D  denote some specified value such that 

 
( )

D
K

XARLs
s G

mc ≤=
)(

. (6.19) 

where the sample standard deviation ( ))(XARLs G  is used to estimate ( ))(XARLGσ  and, 

subsequently, 
( )

K

XARLs
s G

mc

)(
=  is used to estimate 

( )
K

XARLG
mc

)(σσ = . 

 

We want to find the smallest K  such that (6.19) is satisfied. We start by taking K  

‘small’, say 100=K , for example, and then we compute the corresponding standard error 

mcs . If (6.19) is not satisfied we increase K  and the process is repeated until the standard 

error is smaller than or equal to some specified value D . It should be noted that D  could also 

be taken to be some percentage of the estimate LRA ˆ . By implementing (6.19), we find an 

accurate approximation (with a small Monte Carlo error) of the unconditional ARL  for the 

out-of-control situation.  

 

6.1.7. Determination of chart constants 

 

Up to this point we’ve addressed the problem where one has to calculate the 

(unknown) unconditional 0ARL  for a given (known) upper control limit. In this section we 

address the opposite problem where one has to calculate the (unknown) upper control limit for 

a specified (known) 0ARL . In order to solve the latter problem, we use an iterative procedure 

based on linear interpolation. An initial value for the UCL, say UCL(1), is needed to start the 

iteration. We can limit our search of UCL(1) (and ultimately of UCL) to integer values 

between 0 and mn, since the MW charting statistic only takes on integer values between 0 and 

mn (recall that mnM XY ≤≤0 ). In addition, we use the fact that 0ARL  is strictly increasing in 

UCL (and subsequently, )(upU  is strictly decreasing in UCL). Let the desired unconditional 

5000 =ARL . 
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To obtain UCL(1), the fixed-reference-sample approximation or the reciprocal-of-the-

FAR  approximation can be used, since they are both very fast and relatively accurate 

approximations. For the latter approach, we equate the reciprocal of the false alarm rate to 

500, meaning that we have to solve for ( ) 500
)(2

1 =
uFH

, where )(uFH  denotes the Fix-

Hodges approximation for the upper tail probability ( )uMP Yx ≥0 . We estimate (through 

Monte Carlo simulation) 0ARL  at UCL(1) using (6.9), where the LR-approximation is used to 

calculate )(upU . In doing so, we obtain a new 0ARL , say )1(
0ARL . If )1(

0ARL  is smaller than 

500, we increase the value of UCL(1) by a specified amount, say s, to obtain UCL(2) = UCL(1) + 

s. On the contrary, if )1(
0ARL  is greater than 500, we decrease the value of UCL(1) to obtain 

UCL(2) = UCL(1) - s.  Using UCL(2), the search procedure is repeated until 0ARL  is 

‘satisfactorily close’ to the target value of 500. 

 

A question arises: How close is ‘satisfactorily close’? To answer this Chakraborti and 

Van de Wiel (2003) suggest using a target interval, say 500500 λ± , where λ  denotes the 

percentage deviation from the target value that is acceptable. Suppose we allow a deviation of 

3%, i.e. 03.0=λ , the search procedure stops at the thl  step if 515485 )(
0 ≤≤ lARL . The larger 

this margin, the faster the algorithm, and as a result, the faster a solution is found. If the 

specifications can’t be met, the algorithm returns one or more solutions for which 0ARL  is 

close to the target value. If 0=λ , the search procedure stops at the thl  step if )(lUCL  has a 

corresponding 5000 <ARL  and 1)( +lUCL  has a corresponding 5000 ≥ARL , and as a result, 

the practitioner has to decide whether to use )(lUCL  or 1)( +lUCL . 

 

We illustrate this search procedure with an example. Suppose the reference sample 

size is 50 (m = 50), the test sample size is 5 (n = 5) and we want to find the chart constants 

( mnU  and mnmn UmnL −= ) such that the specified target 5000 =ARL . Suppose we specify 

that a 3% deviation from the target value is acceptable, i.e. 03.0=λ . In doing so, the search 

procedure stops when 515ˆ485 0 ≤≤ LRA  and yields the corresponding chart constants. In 

addition, we specify that the Monte Carlo standard error, mcs , be smaller than or equal to 

2.5% of the estimate of 0ARL . Then 5.12500025.0 =×=D  is the maximum value of the 
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standard error of the estimate that we allow. The output from the program is given in Table 

6.2. 

 

Table 6.2. Finding chart constants for m=50, n=5, target 0ARL =500, 03.0=λ  and 

5.12=D *. 

1/(false alarm rate approximation) 
(1)  ucl= 222  lcl= 28  ARL0= 500 
Fixed reference sample approximation 
(2)  ucl= 222  lcl= 28  ARL0= 874.22 
(3)  ucl= 212  lcl= 38  ARL0= 206.763 
(4)  ucl= 216  lcl= 34  ARL0= 351.068 
(5)  ucl= 218  lcl= 32  ARL0= 467.529 
LR-approximation 
(6)  ucl= 218  lcl= 32  ARL0= 571.016  smc= 15.4659  5% perc= 122.654  K= 2000 
(7)  ucl= 208  lcl= 42  ARL0= 138.825  smc= 3.46778  5% perc= 44.3363  K= 1061 
(8)  ucl= 216  lcl= 34  ARL0= 426.735  smc= 11.7639  5% perc= 95.169  K= 2000 
(9)  ucl= 217  lcl= 33  ARL0= 494.728  smc= 13.6655  5% perc= 105.761  K= 2000 
{231.156,Null} 
 

From Table 6.2 it can be seen that one iteration has been carried out under the 

reciprocal-of-the-FAR approximation and that four iterations have been carried out under the 

fixed-reference-sample approximation. These five iterations didn’t take long, since both the 

reciprocal-of-the-FAR and the fixed-reference-sample approximations are fast 

approximations. For each of these five iterations, the values of mnU  (denoted ucl in the 

output), mnL  (denoted lcl in the output) and the corresponding unconditional 0ARL  (denoted 

ARL0 in the output) are given. 

 

From Table 6.2 it can also be seen that four iterations have been carried out under the 

Lugannani-Rice approximation. For each of these four iterations, the values of mnU , mnL , the 

corresponding unconditional 0ARL , the standard error of the estimated 0ARL  (denoted smc 

in the output), the estimated 5th percentile of the conditional in-control ARL distribution 

(denoted 5% perc in the output) and the number of Monte Carlo samples used to obtain the 

estimates (denoted by K in the output) are given. In total there were nine iterations that have 

been carried out in approximately 231 seconds. The final chart constants are found at iteration 

number 9. They are 217=mnU  and 33=mnL  with a corresponding unconditional 

                                                 
* The values in Table 6.2 were obtained by running the Mathematica program provided by Chakraborti and Van 
de Wiel (2003). See Mathematica Program 1 in Appendix B for more information on this Mathematica program. 
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728.4940 =ARL . The 5th percentile of the conditional in-control ARL distribution is equal to 

105.761, meaning that 95% of all reference samples (that could possibly have been taken 

from the in-control process) will generate a conditional 0ARL  of at least 106. Previously 

stated is the fact that K  is chosen such that the standard error of the estimate is smaller than 

or equal to 2.5% of the estimate. Stated differently, K  is chosen such that Dsmc ≤ . When 

studying iteration number 9, we see that this condition is not satisfied, since 

5.126655.13 >=mcs . The reason for this is that the maximum number of Monte Carlo 

samples is set to 2 000 in the Mathematica program. If there were no restriction put on the 

number of Monte Carlo samples, the iterative procedure would have increased K  and 

repeated the process until the standard error is smaller than or equal to 5.12=D . Table 6.3 

contains the chart constants for various values of m and n with 03.0=λ  and where mcs  must 

be smaller than or equal to 2.5% of the estimate of 0ARL . 

 

Table 6.3. Control limits for various values of m and n*. 

m n 3700 ====ARL  5000 ====ARL  

  mnL  mnU  mnL  mnU  
50 5 35 215 33 217 

 10 115 385 111 389 
 25 400 850 393 857 

100 5 69 431 65 435 
 10 231 769 224 776 
 25 805 1695 793 1707 

500 5 348 2152 328 2172 
 10 1170 3830 1128 3872 
 25 4081 8419 4016 8484 

1000 5 698 4302 653 4347 
 10 2344 7656 2268 7732 
 25 8169 16831 8058 16942 

2000 5 1397 8603 1309 8691 
 10 4682 15318 4540 15460 
 25 16392 33608 16145 33855 

 

                                                 
* The values in Table 6.3 were obtained by running the Mathematica program provided by Chakraborti and Van 
de Wiel (2003). See Mathematica Program 1 in Appendix B for more information on this Mathematica program. 
Table 6.3 also appears in Chakraborti and Van de Wiel (2003), Table 3. 
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Example 6.1 

A Mann-Whitney control chart based on the Montgomery (2001) piston ring data 

 

For the piston-ring data with 125=m  (see example 4.1 for an explanation of why m is 

equal to 125 (and not 25 like some of the earlier examples)) and 5=n , Chakraborti and Van 

de Wiel (2003) found the upper and lower control limits of the Shewhart-type MW chart to be 

540 and 85, respectively. The control limits are obtained by setting the user-specific 

parameters equal to 125=m , 5=n , target 4000 =ARL , 02.0=λ  and 6=D  in the 

Mathematica program provided by Chakraborti and Van de Wiel (2003). By setting 6=D  we 

require that 6≤mcs . By setting 02.0=λ  we specify that a 2% deviation from the target value 

is acceptable. In doing so, the search procedure stops when 408ˆ392 0 ≤≤ LRA  and yields the 

corresponding chart constants, which (in this case) equal 85=mnL  and 540=mnU . The 

fifteen Phase II samples and the reference sample lead to fifteen MW statistics shown in 

Table 6.4 (read from left to right and to left) and the MW control chart is shown in Figure 6.1. 

 

Table 6.4. Phase II MW statistics for the Piston-ring data in Montgomery (2001)*. 

429.0 333.0 142.5 370.5 241.5 410.5 393.0 240.5 
471.0 486.0 340.5 561.0 575.5 601.5 484.5  
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Figure 6.1 MW Chart for the Montgomery (2001) piston ring data. 

                                                 
*The values in Table 6.4 were calculated using Minitab. 
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It is seen that all but three of the test groups, 12, 13 and 14 are in-control. The 

conclusion from the MW chart is that the medians of test groups 12, 13 and 14 have shifted to 

the right in comparison with the median of the in-control distribution, assuming that G is a 

location shift of F. It may be noted that the Shewhart X  chart shown in Montgomery (2001) 

led to the same conclusion with respect to the means. Of course, the advantage with the MW 

chart (and with any nonparametric chart) is that it is distribution-free, so that regardless of the 

underlying distribution, the in-control ARL  of the chart is roughly equal to 400 and there is 

no need to worry about (non-) normality, as one must for the X  chart. For comparison 

purposes, the distribution-free 1-of-1 precedence chart for this data for an unconditional 

4000 =ARL  is found to be 982.73=LCL  and 017.74=UCL  for an attained 0.4140 ≈ARL . 

Consequently, the precedence chart declares the 12th and the 14th groups to be out of control 

but not the 13th group, unlike the MW and the Shewhart chart. This is not entirely surprising 

since the MW test is generally more powerful than the precedence test. 

 

6.1.8. Control chart performance 

 

The performance of a control chart is usually judged in terms of certain characteristics 

associated with its run-length distribution. For the most part the ARL  is used to evaluate chart 

performance, since it indicates, on average, how long one has to wait before the chart signals. 

Some researchers have advocated using other characteristics than the ARL , such as 

percentiles of the run length distribution (see Section 2.1.5 for a detailed discussion on this 

issue). Chakraborti and Van de Wiel (2003) examined the ARL , the 5th and the 95th 

percentiles (denoted 5ρ  and 95ρ , respectively) of the conditional distribution for the MW 

chart. The question may be raised about why the authors decided to use (only) the conditional 

distribution when both the conditional and unconditional distributions provide key 

information concerning the performance of a chart. Recall that the unconditional distribution 

results from averaging over all possible reference samples and in practice researchers would 

(almost certainly) not have the benefit of averaging. 

 

Chakraborti and Van de Wiel (2003) compared the MW chart to the Shewhart X  

chart. For the latter we assume case UU, when both the mean and variance are unknown, and 

consequently both parameters need to be estimated from the reference sample. Therefore, the 

MW chart is compared to the Shewhart X  chart with estimated parameters. Additionally, 
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both charts are designed to have the same in-control average run length ( 5000 ≈ARL ). The 

latter two conditions are necessary to ensure a fair comparison between the MW and 

Shewhart X  chart. The in-control case is considered first. 

 

In-control performance 

 

For the in-control case a lower order percentile, specifically the 5th percentile, should 

be examined (the 95th percentile is also examined for completeness). Recall that we want the 

in-control ARL  to be large and, by the same token, large values of the 5th percentile are 

desirable. The test sample size, n , was taken to equal 5 for all cases, whereas the reference 

sample size, m , varies from 50 to 2000. Both the reference and test samples were drawn from 

a normal distribution, specifically a )1,0(N  distribution. The results were obtained using 

1000=K  simulations and are shown in Table 6.5. 

 

Table 6.5. The 5th and 95th percentiles and standard deviations of the conditional in-control 

distribution with 5=n  and 5000 ≈ARL *. 

MW chart Shewhart X  Chart 

m Upper 
Control 
Limit 

5ρρρρ  95ρρρρ  Standard 
Deviation 

Upper 
Control 
Limit 

5ρρρρ  95ρρρρ  Standard 
Deviation 

50 217 97 1292 553 3.01996 49 1619 854 
75 326 146 1219 461 3.05156 87 1379 645 

100 435 182 1146 358 3.06535 112 1290 463 
150 654 251 1090 315 3.07715 154 1197 377 
300 1304 284 845 197 3.08607 232 927 235 
500 2172 322 700 140 3.08848 270 828 174 
750 3258 360 677 107 3.08935 314 765 140 

1000 4347 379 674 83 3.08969 338 721 121 
2000 8691 420 629 55 3.09007 376 651 84 
 

From Table 6.5 we find that for the MW chart with 100=m  and a control chart 

constant of 435 ( 435=mnU ), 1825 =ρ , meaning that 95% of the in-control average run 

lengths are at least 182, whereas for the Shewhart X  chart with 100=m  and a control chart 

                                                 
* The values in Table 6.5 were obtained by running the Mathematica program provided by Chakraborti and Van 
de Wiel (2003). See Mathematica Program 1 in Appendix B for more information on this Mathematica program. 
Table 6.5 also appears in Chakraborti and Van de Wiel (2003), Table 4. 
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constant of 3.06535, 1125 =ρ , meaning that 95% of the in-control average run lengths are at 

least 112. Since 182 > 112 it can be concluded that the in-control performance of the MW 

chart is better than that of the Shewhart X  chart with estimated parameters. Moreover, all the 

5th percentiles of the MW chart are larger than those of the Shewhart X  chart with estimated 

parameters, particularly for 150≤m , further supporting the statement that the in-control 

performance of the MW chart is better than that of the Shewhart X  chart with estimated 

parameters. The estimated standard deviations are given in Table 6.5 to give some 

information about the variability of 0ARL . All the estimated standard deviations for the MW 

chart are smaller than those of the Shewhart X  chart with estimated parameters, further 

supporting the statement that the in-control performance of the MW chart is better. 

 

Out-of-control performance 

 

 For the out-of-control case a higher order percentile, specifically the 95th percentile, is 

examined. Recall that we want the out-of-control ARL  to be small and, by the same token, 

small values of the 95th percentile are desirable. These two performance measures, the δARL  

and 95ρ , are examined for three distributions, namely, the Normal, Laplace and Gamma(2,2) 

distributions, respectively. The motivation for examining these three distributions is that we 

would like to examine a symmetric (Normal), asymmetric (Gamma(2,2)) and heavy-tailed 

(Laplace) distribution, respectively. The Laplace distribution is comparable to the Normal 

distribution, but it has heavier tails, while the Gamma(2,2) distribution is positively skewed. 
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Figure 6.2. The shapes of the three distributions under consideration. 

 

(i) The normal distribution 

 

For the Normal distribution we would expect the out-of-control performance of the 

Shewhart X  chart with estimated parameters to be better than that of the MW chart. The 

reason for this being that it’s typical for normal theory methods to outperform nonparametric 

methods when the normality assumption is met. A two-sided chart was applied in the case of 

the Normal distribution. The test sample size, n , was taken to equal 5, whereas the reference 

sample size, m , was taken to equal 100. The chart constants for both the MW and Shewhart 

X  chart are chosen such that the in-control average run length is approximately equal 

( 5000 ≈ARL ) for both charts. δARL  and the 95th percentiles of the distribution of δARL  

were computed, using these chart constants, for various values of δ , where δ  is the unknown 

shift parameter (recall that shift alternatives are denoted as δ−= xFxG ()( )). The results are 

shown below in Figure 6.3. 
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Figure 6.3. Comparison of the MW chart with the Shewhart X  chart for the Normal 

distribution. 

 

When comparing the MW chart with the Shewhart X  chart under Normal shift 

alternatives we find that the Shewhart X  chart is performing only slightly better than the MW 

chart, since the 95th percentiles for the Shewhart X  chart are smaller than the 95th percentiles 

for the MW chart. However, it should be noted that the differences are small and it appears to 

fade away when the shift is greater than one. A similar pattern holds for the δARL ’s. 

 

(ii) The Laplace distribution 

 

The Laplace distribution, also called the Double-Exponential distribution, is 

comparable to the Normal distribution, but it has heavier tails (see Figure 6.2). As a result, 

there are higher probabilities associated with extreme values when working with the Laplace 

distribution as opposed to using the Normal distribution. For the Laplace distribution we 

would expect the out-of-control performance of the MW chart to be better than that of the 

Shewhart X  chart. The reason for this being that it’s typical for nonparametric methods to 

outperform normal theory methods when the distribution in question is heavy-tailed (see, for 

example, Gibbons and Chakraborti (2003)). A two-sided chart was applied to the Laplace 

distribution. For consistency, 5=n  and 100=m  (the same values were used under Normal 

shift alternatives) and the chart constants for both the MW and Shewhart X  chart are chosen 

 
 
 



 292 

such that the in-control average run length is approximately equal ( 5000 ≈ARL ) for both 

charts.  
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Figure 6.4. Comparison of the MW chart with the Shewhart X  chart for the Laplace 

distribution. 

 

When comparing the MW chart with the Shewhart X  chart under Laplace shift 

alternatives we find that the MW chart is performing much better than the Shewhart X  chart, 

since the 95th percentiles for the MW chart are smaller than the 95th percentiles for the 

Shewhart X  chart. It should be noted that these differences are reasonably large for all shifts, 

indicating that the MW chart is performing a great deal better than the Shewhart X  chart. 

 

(iii) The Gamma distribution 

 

From Figure 6.2 it can be seen that the Gamma(2,2) distribution is positively skewed. 

For the Gamma(2,2) distribution we would expect the out-of-control performance of the MW 

chart to be better than that of the Shewhart X  chart. An upper one-sided chart was applied to 

the Gamma(2,2) distribution. For consistency, 5=n  and 100=m  (the same values were used 

under Normal and Laplace shift alternatives) and the chart constants for both the MW and 

Shewhart X  chart are chosen such that the in-control average run length is approximately 

equal ( 5000 ≈ARL ) for both charts.  
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Figure 6.5. Comparison of the MW chart with the Shewhart X  chart for the Gamma 

distribution. 

 

When comparing the MW chart with the Shewhart X  chart under Gamma(2,2) shift 

alternatives we find that the MW chart is performing better than the Shewhart X  chart, since 

the 95th percentiles for the MW chart are smaller than the 95th percentiles for the Shewhart X  

chart. It should be noted that these differences are not as large as the differences obtained 

using the Laplace distribution. 

 

The graphs were also constructed for larger values of m , but since the graphs were very 

similar to the given figures, they we omitted. In conclusion we found that the MW chart 

performs better than the Shewhart X  chart with estimated parameters under heavy tailed and 

skewed distributions. 

 

6.1.9. Summary 

 

In Section 6.1 we examined a Shewhart-type chart based on the Mann-Whitney-

Wilcoxon statistic. We illustrated these procedures using the piston ring data from 

Montgomery (2001) to help the reader to understand the subject more thoroughly. One 

practical advantage of the nonparametric Shewhart-type Mann-Whitney control chart is that 

there is no need to assume a particular parametric distribution for the underlying process (see 

Section 1.4 for other advantages of nonparametric charts). 
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6.2. The tabular Phase I CUSUM control chart 

 

6.2.1. Introduction 

 

Zhou, Zou and Wang (2007) (hereafter ZZW) proposed a Phase I CUSUM control 

chart for individual observations based on the Mann-Whitney-Wilcoxon statistic. They 

compared their proposed control chart to the likelihood ratio test (LRT) chart of Sullivan and 

Woodall (1996) and the CUSUM LT chart of Koning and Does (2000). 

 

Suppose that a sample of size n , nXXX ,...,, 21 , is available with an unknown 

continuous cdf, ),( ixF µ  ni ,...,2,1= , where iµ  denotes the location parameter. In this set up, 

let iµ  denote the population mean of iX . An out-of-control condition is a shift in the location 

parameter to some different value. The problem of detecting a shift in a parameter of the 

process is similar to sequential change-point detection (see, for example, Hawkins and Zamba 

(2005)). Various authors have studied the change-point problem; see for example Hawkins 

(1977), Sullivan and Woodall (1996), Hawkins, Qiu and Kang (2003) and Hawkins and 

Zamba (2005). In a change-point model, all the observations up to the change-point have the 

same distribution, say ),( axF µ , while the remaining observations have the same distribution, 

say ),( bxF µ , i.e. 

�
�
�

++=
=

=
nttixF

tixF
X

b

a
i ,...,2,1for),(

,...,2,1for),(
µ
µ

 

where t, with nt <≤1 , is the change-point. If ba µµ =  the process is said to be in-control, 

whereas if ba µµ ≠  the process is declared to be out-of-control. ZZW give an estimate for the 

position of the change-point, τ̂ , as  |}max{|argˆ
1

t
nt

SMW
<<

=τ * (see Pettitt (1979)), where tSMW  

is defined in (6.21). One can also look for multiple shifts, especially if the dataset is large. 

This could be done by partitioning the data at the location of the change-point then repeating 

the process on each subset of observations. This continues until no evidence of additional 

change-points is given. For example, if there are two shifts we have 

                                                 
* Arg max stands for the argument of the maximum, that is, the value of the given argument for which the value 
of the given expression attains its maximum value. For example, arg max {f(x)} is the value of x for which f(x) 
has the largest value. 
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where 1τ  and 2τ  are the two change-points, respectively. ZZW lay emphasis on the fact that 

their proposed CUSUM Mann-Whitney chart is not intended to be used for detecting multiple 

shifts, but they still expect the chart to have good detecting performance if the mean shifts 

( aµ , bµ  and cµ ) are all in the same direction, i.e. aµ , bµ  and cµ  form either a decreasing or 

an increasing sequence.  

 

The Mann-Whitney statistic* is defined to be the number of ),( ji XX  pairs with 

ji XX >  where ti ,...,2,1=  and nttj ,...,2,1 ++= . This can be written as 

 � �
= +=

<=
t

i

n

tj
ijt XXIMW

1 1

)(  for 1,...,2,1 −= nt  (6.20) 

where )( ij XXI <  is the indicator function, i.e. 

�
�
�

≥
<

=<
ij

ij
ij XX

XX
XXI

if0
if1

)( . 

 

The expected value, variance and standard deviation of the Mann-Whitney statistic is 

easy to find by using the relationship 

 
2

)1( +−= tt
WMW tt   

where tW  is the well-known Wilcoxon rank-sum test statistic, that is, �
=

=
t

i
it RW

1

 and 

tRRR ,...,, 21  are the ranks of the t observations txxx ,...,, 21  in the complete sample of n 

observations. The expected value and variance of tW  is given by (see Gibbons and 

                                                 
* The tMW  statistic is directly related to the well-known Mann-Whitney U  test statistic (see Gibbons and 
Chakraborti (2003)) where the Mann-Whitney U  test statistic is defined as the number of times Y precedes X in 
the combined ordered arrangement of the two samples, mXXX ,...,, 21  and nYYY ,...,, 21 , into a single sequence 

of nmN +=  variables. Then the U  test statistic is defined as ��
= =

=
m

i

n

j
ijDU

1 1

 where 0,1=ijD  if ij XY < , 

ij XY >  ji,∀ . 
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Chakraborti (2003)) ( )
2

)1( += nt
WE t  and ( ) =tWvar  

12
)1)(( +− ntnt

. As a result, the expected 

value, variance and standard deviation of tMW  is given by 

 ( ) ( )
2

)(
2

)1(
2

)1( tnttt
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tt
WEMWE ttt

−=+−=�
�

�
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� +−= ntnttt
WMW tt , and  
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)1)((
)var()(

+−== ntnt
MWMWstdev tt .  

It follows that the standardized value of tMW  is given by 

 

12
)1)((

2
)(

)(
)(

+−

−−
=

−
=

ntnt

tnt
MW

MWstdev
MWEMW

SMW
t

t

tt
t . (6.21) 

If all iX -observations ( ti ,...,2,1= ) are smaller than the jX -observations ( ,1+= tj  

nt ,...,2+ ), tMW  would be equal to zero. On the other hand, if all iX -observations are 

greater then the jX -observations, tMW  would equal )( tnt −× . Therefore we have that 

)(0 tntMWt −≤≤ . 

 

If the process is in-control, the distribution of tMW  is symmetric about its mean, 

2
)( tnt −

 for each t, and large values of tMW , that is, if a large number of iX -observations are 

greater than the jX -observations, would be indicative of a negative shift, whereas small 

values of tMW  would be indicative of a positive shift. If there are ties present, i.e. if any 

ji XX = , then recall that for a continuous random variable the probability of any particular 

value is zero; thus, 0)( == aXP  for any a . Since the distribution of the observations is 

assumed to be continuous, 0)0( ==− ji XXP . Theoretically, ties should occur with zero 

probability, but in practice ties do occur. In case of the occurrence of ties, a correction to the 

variance of tMW  can be made by multiplying the variance by the factor 
)1(

)1(
1 2

2

1

−

−
−
�

=

nn

gg i
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i

 

where ig  denotes the frequency of the thi  value and r denotes the distinct number of values in 
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the total of n observations, respectively. Since the sum over all frequencies equal n we have 

that �
=

=
r

i
i ng

1

. Consequently, the variance of tMW  (which is also the variance of tW ) is 

given by 
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The charting statistic for the proposed CUSUM Mann-Whitney chart is obtained by 

replacing iy  by tSMW  in the equations for the classic standardized CUSUM chart (these 

equations are given in Section 2.3 numbers (2.35), (2.36) and (2.37)). 

 

The resulting upper one-sided CUSUM is given by 

 ],0max[ 1 kSMWSS iii −+= +
−

+     for ,...3,2,1=i  (6.22) 

while the resulting lower one-sided CUSUM is given by 

 ],0min[ 1 kSMWSS iii ++= −
−

−     for ,...3,2,1=i  (6.23) 

or 

 ],0max[
*

1

*
kSMWSS iii −−= −

−
−   for ,...3,2,1=i  (6.24) 

The two-sided CUSUM is constructed by running the upper and lower one-sided CUSUM 

charts simultaneously and signals at the first i  such that hS i ≥+  or hS i −≤− . The starting 

values, −
0S  and +

0S , are typically set equal to zero, that is, 00 =−S  and 00 =+S . 

 

6.2.2. Determination of chart constants 

 

ZZW take the reference value, k, to equal 2. They motivate their choice of k  by stating 

that smaller values of k lead to quicker detection of smaller shifts. Their simulation studies 

also support the decision of setting 2=k , since the simulation results show that the 

corresponding control chart has good performance. The decision interval, h, is chosen such 

that a desired FAP, denoted by α , is attained.  ZZW considered h for various combinations of 

α  and n . The table is given below for reference. 
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Table 6.6. Simulated h values for the CUSUM Mann-Whitney chart*. 

 αααα  
n 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.0075 
20 0.753 0.885 1.053 1.306 1.656 2.194 3.247 3.671 
30 1.267 1.490 1.788 2.187 2.719 3.615 5.531 6.371 
40 1.774 2.111 2.525 3.081 3.882 5.258 7.612 9.134 
50 2.362 2.779 3.329 4.102 5.194 6.988 10.236 11.993 
60 2.940 3.454 4.124 4.989 6.328 8.401 12.480 14.147 

 

From Table 6.6 we observe that h increases as n increases and α  decreases. As 

pointed out by Sullivan and Woodall (1996), it is not important for the preliminary 

application to find exact control limits that correspond to a specific FAP. Instead it is 

sufficient to use computationally convenient limits having approximately the desired 

performance. Consequently, ZZW derived a formula to approximate the decision interval h: 

 0248.11923.0log)5221.00905.0( +−+−= nnh α . (6.25) 

Using equation (6.25) to approximate the decision interval we obtain the following values for 
h. 
 
Table 6.7. Approximated h values for the CUSUM Mann-Whitney chart†. 

 αααα  
n 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.0075 
20 0.604 0.802 1.037 1.324 1.695 2.217 3.110 3.480 
30 1.087 1.425 1.825 2.314 2.945 3.834 5.354 5.985 
40 1.571 2.048 2.613 3.305 4.196 5.452 7.599 8.490 
50 2.055 2.672 3.401 4.295 5.446 7.069 9.844 10.995 
60 2.538 3.295 4.190 5.285 6.697 8.687 12.089 13.500 

 

Comparing the approximated h values with the simulated results in Table 6.6 it is clear 

that the approximated decision interval using equation (6.25) performs very well as they agree 

well with the values of Table 6.6. 

 

6.2.3. Performance comparison 

 

The performance of a control chart is usually judged in terms of certain characteristics 

associated with its run-length distribution. In a Phase I setting, the FAP, which is the 

probability of at least one false alarm out of many comparisons, is used for performance 

comparison as opposed to using the FAR, which is the probability of a single false alarm 

                                                 
* Table 6.6 appears in ZZW, page 5, Table 1. 
† The values in Table 6.7 were generated using Microsoft Excel. 
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involving only a single comparison. By using the FAP we take into account that the signaling 

events are dependent. ZZW looked at the FAP, the true signal probability (TSP) and the 

average true signal probability (ATSP) for performance comparison*. The TSP is the 

probability of a signal when a shift has occurred. The ATSP is defined as 

�
−

=
=

1

1

)(
n

k
kTSPkFATSP  where kTSP  denotes the TSP of a control chart when the shift occurs 

after the thk  observation and )(kF  denotes the distribution of the position of the shifts.  To 

ensure fair comparison between two charts, charts with the same FAP are considered and the 

chart with the larger TSP (or ATSP) is the preferred chart. In their paper, ZZW assumes that 

the position of the shift is uniformly distributed so that the position of the shift is equally 

likely at any point and, under this assumption, the CUSUM Mann-Whitney chart, the 

CUSUM chart for detecting the linear trend (CUSUM LT) chart (see Koning and Does 

(2000)) and the likelihood ratio test (LRT) chart (see Sullivan and Woodall (1996)) are 

compared. For the LRT and CUSUM LT charts the assumption of normality is necessary, 

whereas with the CUSUM Mann-Whitney chart no assumption about the underlying process 

distribution needs to be made. The performances of these charts are compared for five 

distributions, namely the Normal, Chi-square, Student t, Weibull and Lognormal, 

respectively. We would expect to find that the CUSUM Mann-Whitney chart performs better 

compared to the CUSUM LT and LRT charts when the distribution is skewed or heavy-tailed. 

 

(i)    The standard normal distribution 

 

For the standard normal distribution both a step shift and a linear trend shift are used 

to evaluate chart performance. Recall that charts with the same FAP ( 05.0= ) are considered 

to ensure fair comparison and that the chart with the larger ATSP is the preferred chart. 

 

                                                 
* The terms TSP and ATSP are fairly new and are introduced by Sullivan and Woodall (1996). 
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Figure 6.6. The ATSP values for a single step shift when the data is from a N(0,1) 

distribution. 

 

When comparing the CUSUM Mann-Whitney chart with the CUSUM LT chart we 

find that these charts have comparable performance. When comparing all three charts we find 

that the CUSUM Mann-Whitney chart has a slight disadvantage in detecting large shifts. 
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Figure 6.7. The ATSP values for a linear trend shift when the data is from a N(0,1) 

distribution. 
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When comparing the CUSUM Mann-Whitney chart with the CUSUM LT chart we 

find that the CUSUM LT chart is performing slightly better than the CUSUM Mann-Whitney 

chart. When comparing all three charts we find that the CUSUM Mann-Whitney chart has a 

slight disadvantage in detecting large shifts. It is worth mentioning that even for normally 

distributed data the CUSUM Mann-Whitney chart is performing very well. The performance 

of the CUSUM Mann-Whitney chart could be improved by changing the reference value to 

some other value (recall that ZZW set the reference value equal to 2). 

 

(ii)    The t-distribution 

 

The t-distribution with degrees of freedom 2 is symmetric around zero and as the 

number of degrees of freedom increases, the difference between the t-distribution and the 

standard normal distribution becomes smaller and smaller. 
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Figure 6.8. The ATSP values for a single step shift when the data is from a t(2) distribution. 

  

Recall that charts with the same FAP ( 05.0= ) are considered to ensure fair 

comparison and that the chart with the larger ATSP is the preferred chart. From Figure 6.8 we 

can see that the LRT chart can not obtain the specified FAP of 0.05. Consequently, the LRT 

chart is not compared to the other charts under t(2) shift alternatives. When comparing the 

CUSUM Mann-Whitney chart with the CUSUM LT chart we find that the CUSUM Mann-

Whitney chart is performing better than the CUSUM LT chart, since the ATSP values for the 

 
 
 



 302 

CUSUM Mann-Whitney chart are larger than that of the CUSUM LT chart. It should be noted 

that the differences are relatively small over all values of the shift. 

 

(iii)    The Chi-square distribution 

 

 The Chi-square distribution is highly skewed to the right and as a result we would 

expect the performance of the CUSUM Mann-Whitney chart to be better than that of the 

CUSUM LT and LRT charts (since they have the additional assumption of normality). 
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Figure 6.9. The ATSP values for a single step shift when the data is from a )2(2χ  

distribution. 

 

Similar to the previous comparison, we see that the LRT chart can not obtain the 

specified FAP of 0.05. Consequently, the LRT chart is not compared to the other charts under 

)2(2χ  shift alternatives. When comparing the CUSUM Mann-Whitney chart with the 

CUSUM LT chart we find that the CUSUM Mann-Whitney chart is performing better than 

the CUSUM LT chart, since the ATSP values for the CUSUM Mann-Whitney chart are larger 

than that of the CUSUM LT chart. It should be noted that the differences are larger than those 

under t(2) shift alternatives. 
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(iv)    The Weibull distribution 
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Figure 6.10. The ATSP values for a single step shift when the data is from a Weibull(1,1) 

distribution. 

 

Similar to the previous two comparisons, we see that the LRT chart can not obtain the 

specified FAP of 0.05. Consequently, the LRT chart is not compared to the other charts under 

Weibull(1,1) shift alternatives. When comparing the CUSUM Mann-Whitney chart with the 

CUSUM LT chart we find that the CUSUM Mann-Whitney chart is performing better than 

the CUSUM LT chart for small shift sizes, whereas, for large shift sizes the opposite is true, 

although to a very small extent. 

 

 
 
 



 304 

(v)    The lognormal distribution 
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Figure 6.11. The ATSP values for a single step shift when the data is from a lognormal(0,1) 

distribution. 

 

Similar to the previous three comparisons, we see that the LRT chart can not obtain 

the specified FAP of 0.05. Consequently, the LRT chart is not compared to the other charts 

under lognormal(0,1) shift alternatives. When comparing the CUSUM Mann-Whitney chart 

with the CUSUM LT chart we find that the CUSUM Mann-Whitney chart is performing 

better than the CUSUM LT chart, since the ATSP values for the CUSUM Mann-Whitney 

chart are larger than that of the CUSUM LT chart.  
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Table 6.8. A summary of the performances of the CUSUM Mann-Whitney, CUSUM LT and 

LRT charts for five different distributions. 

Distribution Type of shift Preferred control chart* 
Normal(0,1) Linear trend shift For shifts < 3.5: 

1) CUSUM LT 
2) CUSUM MW 
3) LRT 
 
For shifts > 3.5: 
1) LRT 
2) CUSUM LT 
3) CUSUM MW 

Normal(0,1) Single step shift For shifts < 2.5: 
1) CUSUM MW or CUSUM LT (comparable performance) 
2) LRT 
 
For shifts > 2.5: 
1) LRT 
2) CUSUM LT or CUSUM MW (comparable performance) 

t(2) Single step shift 1) CUSUM MW 
2) CUSUM LT 

)2(2χ  Single step shift 1) CUSUM MW 
2) CUSUM LT 

Weibull(1,1) Single step shift For shifts < 3.0: 
1) CUSUM MW 
2) CUSUM LT 
 
For shifts > 3.0: 
1) CUSUM LT 
2) CUSUM MW 

Lognormal(0,1) Single step shift 1) CUSUM MW 
2) CUSUM LT 

 

Example 6.2 

A CUSUM Mann-Whitney control chart 

 

We illustrate the CUSUM Mann-Whitney control chart using a set of simulated data 

used by Sullivan and Woodall (1996; Table 2) and ZZW (2007; Table 2). This data set is ideal 

for use in this Phase I problem, since it is known to have a single step shift in the mean.  

There are 30 observations, i.e. n = 30, which are distributed as follows: iX ~ )1,0(N  for 15≤i  

and iX ~ )1,1(N  for 15>i  (a value of 1 was added to the last 15 observations causing the data 
                                                 
* The control charts are ranked from the most preferred to the least preferred. The LRT chart could not be 
compared to the CUSUM MW and CUSUM LT charts under t(2), )2(2χ , Weibull(1,1) and Lognormal(0,1) 
shift alternatives, since the LRT chart could not obtain the specified FAP of 0.05. 
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to exhibit a step shift in the middle of the sample). Clearly, there is a known change-point at 

15=t  where the mean has shifted from 0 to 1. The Mann-Whitney statistics ( tMW ), the 

corresponding expected values ( )( tMWE ), standard deviations ( )( tMWstdev ) and 

standardized values ( tSMW ), respectively, are given in Table 6.9. The CUSUM +
iS  and −

iS  

values are also given in Table 6.9 and illustrated in Figure 6.12. The starting values are set 

equal to zero, that is, 000 == −+ SS  (as recommended by Page (1954)). 

 

Table 6.9. Data and calculations for the CUSUM Mann-Whitney chart when 2=k .* 

i Xi tMW  )( tMWE  )( tMWstdev  tSMW  ++++
iS  −−−−

iS  
1 -0.69 6 14.5 8.655 -0.982 0.000 0.000 
2 0.56 20 28.0 12.028 -0.665 0.000 0.000 
3 -0.96 23 40.5 14.465 -1.210 0.000 0.000 
4 -0.11 29 52.0 16.391 -1.403 0.000 0.000 
5 -0.25 33 62.5 17.970 -1.642 0.000 0.000 
6 0.45 41 72.0 19.287 -1.607 0.000 0.000 
7 -0.26 42 80.5 20.394 -1.888 0.000 0.000 
8 0.68 54 88.0 21.323 -1.595 0.000 0.000 
9 0.22 57 94.5 22.096 -1.697 0.000 0.000 

10 -2.10 49 100.0 22.730 -2.244 0.000 -0.244 
11 0.65 56 104.5 23.236 -2.087 0.000 -0.331 
12 -1.49 47 108.0 23.622 -2.582 0.000 -0.913 
13 -2.49 35 110.5 23.894 -3.160 0.000 -2.073 
14 -1.11 25 112.0 24.055 -3.617 0.000 -3.690 
15 0.23 23 112.5 24.109 -3.712 0.000 -5.402 
16 2.16 35 112.0 24.055 -3.201 0.000 -6.603 
17 1.95 45 110.5 23.894 -2.741 0.000 -7.344 
18 1.54 52 108.0 23.622 -2.371 0.000 -7.715 
19 0.67 52 104.5 23.236 -2.259 0.000 -7.974 
20 1.09 54 100.0 22.730 -2.024 0.000 -7.998 
21 1.37 56 94.5 22.096 -1.742 0.000 -7.740 
22 0.69 55 88.0 21.323 -1.548 0.000 -7.288 
23 2.26 61 80.5 20.394 -0.956 0.000 -6.244 
24 1.86 63 72.0 19.287 -0.467 0.000 -4.711 
25 0.62 55 62.5 17.970 -0.417 0.000 -3.128 
26 -1.04 34 52.0 16.391 -1.098 0.000 -2.226 
27 2.30 37 40.5 14.465 -0.242 0.000 -0.468 
28 0.07 20 28.0 12.028 -0.665 0.000 0.000 
29 1.49 15 14.5 8.655 0.058 0.000 0.000 
30 0.52       
 

                                                 
* See SAS Program 9 in Appendix B for the calculation of the values in Table 6.9. This table also appears in 
ZZW, page 7, Table 2. 
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Table 6.9 also appears in ZZW, page 7, Table 2. It should be noted that the CUSUM 
−
iS  values that we obtained in Table 6.9 are different from those in ZZW, since they used 

equation (6.24) to calculate −
iS , whereas we used equation (6.23). 

 

As illustration, the expected value ( )( tMWE ), standard deviation ( )( tMWstdev ), 

standardized value ( tSMW ), CUSUM +
iS  and −

iS  values will be calculated for 1=t . 

( ) 5.14
2

)130(1
1 =−=MWE ,  655.8

12
)130)(130(1

)( =+−==tMWstdev , 

982.0
655.8

5.146
)(

)(
−=−=

−
=

t

tt
t MWstdev

MWEMW
SMW , 

0]2)982.0(0,0max[],0max[ 101 =−−+=−+= ++ kSMWSS ,  

0]2)982.0(0,0min[],0min[ 101 =+−+=++= −− kSMWSS . 
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Figure 6.12. The CUSUM Mann-Whitney chart with n = 30,  k = 2 and h = 1.788. 

 

For a sample size of 30 and a desired FAP of 0.05, the decision interval is taken to be 

1.788 (see Table 6.6). From Figure 6.12 we see that the process is out-of-control starting at 

sample number 13 using the CUSUM Mann-Whitney chart, whereas the LRT chart of 
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Sullivan and Woodall (1996) indicated that observation 15 is the most likely location of the 

shift. Hence, the CUSUM Mann-Whitney chart detects that the mean has shifted upwards.  

 

6.2.4. Summary 

 

ZZW found that the Phase I CUSUM Mann-Whitney chart has good performance 

compared to the CUSUM LT chart for all distributions, except for the Weibull distribution for 

large shifts. Their proposed nonparametric chart for preliminary analysis can be useful for 

quality practitioners in applications where not much is known or can be assumed about the 

process distribution. Although a lot has been accomplished in the last few years regarding the 

development of control charts based on the Mann-Whitney statistic, more remains to be done. 

In terms of research, work needs to be done on a Phase II CUSUM-type chart based on the 

Mann-Whitney statistic for individual observations and subgroups (recall that the control 

chart proposed by ZZW is a Phase I CUSUM-type chart for preliminary analysis of individual 

observations). Also recall that ZZW assumes that the position of the shift is uniformly 

distributed. One could, for future research, consider other distributions for the position of the 

shift. Furthermore, work needs to be done on Phase I and Phase II EWMA-type charts based 

on the Mann-Whitney statistic. Clearly, there are lots of opportunities for future research. 
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Chapter 7: Concluding remarks 
 

In this thesis, we mentioned some of the key contributions and ideas and a few of the 

more recent developments in the area of univariate nonparametric control charts. We 

considered the three main classes of control charts: the Shewhart, CUSUM and EWMA 

control charts and their refinements. The statistics used in nonparametric control charts are 

mostly signs, ranks and signed-ranks and related to nonparametric procedures, such as the 

Wilcoxon signed-rank test and the Mann-Whitney-Wilcoxon rank-sum test. We described the 

sign and signed-rank control charts under each of the three classes in Chapters 2 and 3, 

respectively. In Chapter 4 we only considered the Shewhart-type sign-like control chart, since 

the CUSUM- and EWMA-type control charts have not been developed for the sign-like case. 

In Chapter 5 we only considered the Shewhart-type signed-rank-like control chart, since the 

CUSUM- and EWMA-type control charts have not been developed for the signed-rank-like 

case. Finally, in Chapter 6 we only considered the Shewhart- and CUSUM-type Mann-

Whitney-Wilcoxon control charts, since the EWMA-type control chart has not been 

developed for the Mann-Whitney-Wilcoxon statistic. Clearly, there are lots of opportunities 

for future research. 

 

We considered decision problems under both Phase I and Phase II (see Section 1.5 for 

a distinction between the two phases). In all the sections of this thesis we considered Phase II 

process monitoring, except in Section 6.2 where a CUSUM-type control chart for the 

preliminary Phase I analysis of individual observations based on the Mann-Whitney two-

sample test is proposed. Although the field of preliminary Phase I analysis is interesting and 

the body of literature on Phase I control charts is growing, more research is necessary on 

Phase I nonparametric control charts in general. 

 

We only discussed univariate nonparametric control charts designed to track the 

location of a continuous process, since very few charts are available for scale. Therefore, 

future research needs to be done on monitoring the scale and simultaneously monitoring the 

location and the scale of a process. 

 

There has been other work on nonparametric control charts.  Among these, for 

example, Albers and Kallenberg (2004) studied conditions under which the nonparametric 
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charts become viable alternatives to their parametric counterparts. They consider Phase II 

charts for individual observations in case U based on empirical quantiles or order statistics. 

The basic problem is that for the very small FAR typically used in the industry, a very large 

reference sample size is usually necessary to set up the chart.  They discuss various remedies 

for this problem.   

 

Another area that has received some attention is control charts for variable sampling 

intervals (VSI). In a typical control charting environment, the time interval between two 

successive samples is fixed, and this called a fixed sampling interval (FSI) scheme. VSI 

schemes allow the user to vary the sampling interval between taking samples. This idea has 

intuitive appeal since when one or more charting statistics fall close to one of the control 

limits but not quite outside, it seems reasonable to sample more frequently, whereas when 

charting statistics plot closer to the centerline, no action is necessary and only a few samples 

might be sufficient. On the point of VSI control schemes see for example, Amin (1987), 

Reynolds et al (1990), Rendtel (1990), Saccucci et al (1992) and Amin and Hemasinha 

(1993). These researchers examined combining the VSI approach with the Shewhart, 

CUSUM and the EWMA control schemes, respectively. They demonstrated that the VSI 

control schemes are more efficient than the corresponding FSI control schemes. VSI control 

schemes use a long sampling interval between successive samples when the plotting statistic 

is close to target and a shorter sampling interval otherwise. Initially, the short sampling 

interval could be used for the first few samples to offer protection at start-up. Amin and 

Widmaier (1999) compared the Shewhart X  charts with sign control charts, under the FSI 

and VSI schemes, on the basis of ARL for various shift sizes and several underlying 

distributions like the normal distribution and distributions that are heavy-tailed and/or 

asymmetric like the double exponential and the gamma. It is seen that the nonparametric VSI 

sign charts are more efficient than the corresponding FSI sign charts. 

 

We hope this thesis leads to a wider acceptance of nonparametric control charts 

among practitioners and promotes further interest in the development of nonparametric 

control charts. 
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