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Section B: Monitoring the location of a process when the target 

location is unspecified or unknown (Case U) 
 

Introduction 

 

In Section A we focussed on monitoring the location of a chart when the location is 

specified (case K). This ‘standard(s) known’ case is when the underlying parameters of the 

process distribution are known or specified. In Section B we focus on monitoring the location 

of a chart when the location is unspecified or unknown (case U). This ‘standard(s) unknown’ 

case is when the parameters are unknown and need to be estimated.  

 

Chapter 4: Sign-like control charts 
 

4.1. The Shewhart-type control chart 

 

4.1.1. Introduction 

 

Janacek and Meikle (1997) proposed a Phase II nonparametric control chart useful in 

case U. The control limits of this chart are given by two selected order statistics of a Phase I 

reference sample. The charting statistic is the median iM  of the Phase II samples taken 

sequentially.  

  

Chakraborti, Van der Laan and Van de Wiel (2004; hereafter CVV) generalized the 

work of Janacek and Meikle (1997). They considered using some order statistic of a Phase II 

sample as the charting statistic and control limits constructed from a Phase I reference sample.  

Their work involves a class of two-sample nonparametric statistics, called precedence 

statistics and their Shewhart-type charts are called precedence charts. The terms precedence 

charts and sign-like charts will be used interchangeably throughout this text.  

 

Assume that a reference sample of size m , mXXX ,...,, 21 , is available from an in-control 

process with an unknown continuous cdf )(xF . The estimated control limits of the 

precedence chart are given by two reference sample order statistics, say, ):(
ˆ

maXLCL =  and 
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):(
ˆ

mbXLCU = , where mba ≤<≤1 . Let h
n

hh
h

YYY ,...,, 21  , ,...,2,1=h  denote the thh   test sample 

of size hn . The plotting statistic h
nj h

Y ):(  is the thj  order statistic from the thh  Phase II sample 

of size hn . Let )(yG h  denote the cdf of the distribution of the thh  Phase II sample. 

)()( yGyG h =  h∀ , since the Phase II samples are all assumed to be identically distributed.  

Assume that the Phase II samples are all of the same size, n , so that the subscript h  can be 

suppressed. Under this assumption the plotting statistic is denoted by ):( njY . For illustration 

purposes the plotting statistic is taken to be the median, but it can be any percentile of the 

Phase II sample. CVV provided recommendations and tables for the implementation of 

precedence charts and examined the chart performance in terms of the average run length.  

The overall conclusion is that the Shewhart-type precedence charts are more robust than their 

parametric counterparts, such as the Shewhart X  chart. The precedence chart, being 

nonparametric, has the in-control robustness property (such as the same 0ARL  or the FAR for 

all continuous distributions), whereas as we noted earlier, the performance of the Shewhart X  

(and other parametric charts) is significantly (highly) degraded if the distributional form of 

the observations differs from normality. 

 

4.1.2. Preliminary 

 

Let jW  denote the number of X -observations that precede ):( njY . The statistic jW  is 

called a precedence statistic and subsequently a test based on a precedence statistic is called a 

precedence test. Chakraborti and Van der Laan (1996, 1997; hereafter CV) gave an overview 

of some nonparametric procedures based on precedence statistics. CV’s procedures included 

both hypothesis testing and confidence intervals. CV also highlighted the fact that precedence 

tests are simple and robust nonparametric procedures that are useful for comparing two or 

more distributions.  

 

Let )( wWP jC =  denote the in-control probability distribution of jW , where the 

subscript C  refers to the in-control case. If wW j =  it means that w  X -observations precede 

):( njY . If w  X -observations are less than or equal to ):( njY , then )( wm −  X -observations are 

greater than ):( njY . If we combine the reference sample (containing m  X -observations) with 
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the test sample (containing n  Y -observations) we obtain a single sample consisting of 

nmN +=  observations. From this combined sample, w  X -observations and j  Y -

observations are less than or equal to ):( njY . On the other hand, )( wm −  X -observations and 

)( jn −  Y -observations are greater than ):( njY . There are a total of 1−+ jw  observations that 

are less than ):( njY  and a total of wjnmjnwm −−+=−+− )()(  observations that are 

greater than ):( njY . The in-control distribution of jW   can be obtained by using combinatorics 

which allows one to count the number of experimental outcomes when the experiment 

involves selecting a number of objects, say r , from a larger set of objects, say R . The rule 

then states that the number of combinations of R  objects taken r  at a time is given by ��
�

�
��
�

�

r

R
. 

By using such combinatorial arguments the in-control distribution of jW  can be obtained and 

is given by 
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)(   with  mw ,...,2,1,0= . (4.1) 

Note that the in-control probability distribution of jW , i.e. when GF = , only depends on the 

number of observations in the reference sample m , the number of observations in each test 

sample n  and the chosen percentile of the Phase II sample j . Thus, the in-control run length 

distribution of these precedence charts are distribution-free. The only condition is that the 

distribution of the reference sample and the distribution of the test sample be continuous and 

identical which is the case when the process is under control. It should be noted that this result 

is also given by Randles and Wolfe (1979), Theorem 11.4.4. 

 

As illustration, let the number of observations in the Phase I reference sample be 25 

( 25=m ), the number of observations in each Phase II test sample be 15 ( 15=n ) and the 

chosen percentile of the Phase II sample be the median �
�

�
�
�

� =+=+= 8
2

115
 

2
1n

j . The in-

control distribution, i.e. when GF = , of jW  is then given by 
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wWP jC   with  25,...,1,0=w . (4.2) 

 

Figure 4.1 represents the in-control distribution of jW  when 25=m , 15=n  and 

8=j . Note that the in-control probability distribution of jW  is symmetric. In general, the in-

control probability distribution of jW  is symmetric when n  is odd and the chosen percentile 

of the Phase II sample is the median of an odd Phase II sample. 
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Figure 4.1. The in-control distribution of jW  when 25=m , 15=n  and 8=j . 

 

Figure 4.2 represents the in-control probability distribution of jW  when the number of 

observations in the reference sample is kept at 25 ( 25=m ), the number of observations in 

each test sample is kept at 15 ( 15=n ), but the chosen percentile of the Phase II sample is not 

the median, i.e. 8≠j . We take 4=j  for illustration purposes. Note that the in-control 

probability distribution of jW  is now asymmetric. 
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Figure 4.2. The in-control distribution of jW  when 25=m , 15=n  and 4=j . 

 

4.1.3. Probability of no signal 

 

Recall that ):(
ˆ

maXLCL =  and ):(
ˆ

mbXLCU = . A non-signalling event in the case of the 

two-sided chart occurs when ):():():( mbnjma XYX ≤≤ . Stated differently, a non-signalling event 

occurs when at least a  X -observations precede ):( njY  and at most 1−b  X -observations 

precede ):( njY , i.e. 1−≤≤ bWa j . Let the probability of no signal be denoted by p . Then, the 

probability of no signal is given by  

                    ( ) ( )1),;,,( ):():():( −≤≤=≤≤== bWaPXYXPGFjnmpp jmbnjma . (4.3) 

From (4.3) it can be seen that the probability of no signal, p , can be expressed in terms of the 

precedence statistic jW , thus simplifying the probability calculations (see Randles and Wolfe 

(1979), Example 11.4.19). 

 

Let 0p  denote the in-control value of p . A process is said to be in-control when 

FG = . Therefore, the expression for 0p  can be obtained by simply substituting FG =  in 

expression (4.3). Thus, 

 ( )1control)-In |Signal No(),;,,(0 −≤≤=== bWaPPFFjnmpp jC . (4.4) 
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Recall that a false alarm is given when a signaling event occurs, given that the process 

is actually in-control. Therefore, the probability of a false alarm (also referred to as the false 

alarm rate (FAR)) is given by 

 FARPPp ==−=− control)-In |(Signalcontrol)-In |Signal No(11 0 . (4.5) 

 

4.1.4. Determination of chart constants 

 

The charting constants a  and b  are typically selected so that a specified false alarm 

rate or a specified in-control average run-length is attained. The exact expression for the 

0ARL  is derived later on in this chapter using a conditioning method. In this section we will 

focus on the FAR. Hence, the charting constants a  and b  are found by either setting the FAR 

(given by 01 p− ) to a desirable small value, say 01 P− , or by setting 0p  to some desirable 

large value, say 0P . Take note that 0P  will usually be chosen to be a large value such as 0.95 

or 0.99 and the desired or specified value of the FAR, given by 01 P− , will be a small value 

such as 0.05 or 0.01. The charting constants are found such that 

control)-In|Signal No(0 Pp =  is not smaller than the desired or specified value 0P , that is, 

00 control)-In|Signal No( PPp ≥=  (this is due to the discrete nature of the distribution of 

jW ). Stated differently, the charting constants are selected such that 

control)-In|Signal(1 0 Pp =−  is not larger than the desired or specified value 01 P− , that is, 

00 1control)-In|Signal(1 PPp −≤=− . Since the statistic jW  is discrete, not all desired or 

specified 0P  values are attainable for all combinations of ,m  n  and j . The inequality sign in 

(4.6) ensures that we are conservative. The charting constants are found such that 
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We can use any test sample order statistic (including the median) when implementing 

the two-sided precedence chart. If the plotting statistic is taken to be the median, the in-

control probability distribution of jW  is symmetric (for odd sample sizes) and a reasonable 

choice for b  is 1+− am . Once the charting constants a  and b  are found, the estimated 
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control limits ):(
ˆ

maXLCL =  and ):(
ˆ

mbXLCU =  can be determined. Therefore, when the 

plotting statistic is taken to be the median, we replace b  by 1+− am  in (4.6) to obtain 
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For example, let the number of observations in the reference sample be 125 

( 125=m ), the number of observations in each test sample be 5 ( 5=n ) and the chosen 

percentile of the Phase II sample be the median �
�

�
�
�

� =+=+= odd) is (when 3
2

15
 

2
1

n
n

j . By 

substituting 125=m , 5=n  and 3=j  into (4.7) we obtain 
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. (4.8) 

Possible control limits were calculated using (4.8) and are shown in Table 4.1. 

 

Table 4.1*. False alarm rate ( FAR ) and chart constant ( a ) values for the Shewhart sign-like 

chart when 125=m , 5=n  and 3=j . 

a  3 4 5 6 7 8 9 10 
FAR  0.000546 0.001079 0.001865 0.002948 0.004368 0.006164 0.008372 0.011025 
 

 From Table 4.1 we see that for a false alarm rate of 0.004368 one can take 7=a  so 

119171251 =+−=+−= amb  so that the control limits are the 7th and 119th ordered values 

of the reference sample. Thus, )125:7(
ˆ XLCL =  and )125:119(

ˆ XLCU = . For another example on 

exceedance statistics see Randles and Wolfe (1979), Example 11.4.19.  

 

                                                 
* The values in Table 4.1 were generated using Microsoft Excel. Table 4.1 is an extension of Table 3 given in 
Chakraborti, Eryilmaz and Human (2006). 
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4.1.5. The median chart 

 

Let 12 += sn , where ,...,2,1,0=s  (so that n  is odd). Therefore, the median is 

uniquely given by 1
2

1)12(
 

2
1 +=++=+= s

sn
j . The statistic 1+sW  is called the median 

statistic of Mathisen (1943). The in-control probability distribution of 1+sW  is found by 

substituting 12 += sn  and 1+= sj  into (4.1) and is given by 
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(see Randles and Wolfe (1979), Example 11.4.5). Recall that the in-control distribution of jW  

(in this case, 1+sW ) is symmetric when n  is odd and the chosen percentile of the Phase II 

sample is the median. In this case a reasonable choice for b  is 1+− am . The charting 

constant a  is found by substituting 12 += sn , 1+= sj  and 1+−= amb  into equation (4.6) 

and then solving for a  such that (4.10) is satisfied. 
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Once the charting constant a  is found using expression (4.10), the charting constant b  is 

found from the relationship 1+−= amb . Thereafter, the control limits ):(
ˆ

maXLCL =  and 

):(
ˆ

mbXLCU =  can be determined. By using symmetry we have that   

)( amWaP jC −≤≤  

( ))1()10(1 mWamPaWP jCjC ≤≤+−+−≤≤−=  

)10(21 −≤≤−= aWP jC  

and by setting 0)10(21 PaWP jC ≥−≤≤−  we obtain 

 
2

1
)10( 0P

aWP jC

−
≤−≤≤ . (4.11) 

Therefore, expression (4.10) can be re-written as expression (4.11) which is more convenient 

to work with. 
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For example, let the number of observations in the reference sample be 125 ( 125=m ) 

and 2=s  so that 512 =+= sn  and 31 =+= sj . By substituting 125=m  and 2=s  into 

(4.10) we obtain 

 0
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which is equal to expression (4.8). Therefore, the FAR  values given in Table 4.1 can be used 

in this example, meaning that one can take 7=a  so 119171251 =+−=+−= amb  so that 

the control limits are the 7th and 119th ordered values of the reference sample. Thus, 

)125:7(
ˆ XLCL =  and )125:119(

ˆ XLCU = , which yield a FAR  of 0.004368. 

 

4.1.6. Control charts for other percentiles 

 

Since we could be interested in other percentiles than the median (see Radson and 

Boyd (2005) and Shmueli and Cohen (2003)), the distribution of jW  is not symmetric (in 

such cases) and finding the charting constants a  and b  is much more difficult. 

 

Chakraborti, Van der Laan and Van de Wiel (2004) proposed the equal-tailed* 

procedure when the 100 thρ  percentile is of interest where 10 << ρ . The equal-tailed 

procedure is as follows: 

 

Find the largest integer a  ])[1( ρma ≤≤  such that 
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1
)10( 0P

aWP jC

−
≤−≤≤ ,  

and the smallest integer b  )( mba ≤<  such that  
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1
)1( 0P

mWbP jC

−
≤≤≤+ .  

 
These a and b values are then substituted in the control limits ):(

ˆ
maXLCL =  and 

):(
ˆ

mbXLCU = . 
 

                                                 
* Note that in general 1+−≠ amb  in this case so that the “equal-tailed” means equality in tail probabilities. 
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4.1.7. Properties of order statistics 

 

The ordered values of a sample are known as the order statistics. Various authors have 

studied order statistics (see for example Randles and Wolfe (1979)). Our goal is to study the 

distribution of order statistics. In addition, we give some well-known properties and results of 

order statistics that will be used later on. 

 

Suppose that nXXX ,...,, 21  denotes a random sample of size n  from a continuous 

pdf, )(xf . The pdf of the thk  order statistic ):( nkX  is given by 

 ( ) ( ) )()(1)(
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The joint pdf for ):( nkX  and ):( nlX  is given by 
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Let ):( nkU  denote the thk  order statistic of a sample of size n from the Uniform(0,1) 

distribution. The pdf of ):( nkU  is given by 
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where 
!
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The binomial series arises in connection with distributions of order statistics. The 

binomial theorem gives the expansion of kba )( + . Using the binomial theorem we obtain  
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where a  and b  are any real numbers and k  is a positive integer. 
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4.1.8. One-sided control charts 

 

In this section the lower- and upper one-sided precedence control charts are 

considered. The lower one-sided chart will have a LCL ˆ  equal to some constant value and an 

∞=LCU ˆ . In contrast, the upper one-sided chart will have an LCU ˆ  equal to some constant 

and a −∞=LCL ˆ . 

 

4.1.8.1. Lower one-sided control charts 

 

For the lower one-sided chart we have the ):(
ˆ

maXLCL = . Therefore, a non-signalling 

event occurs when ):():( manj XY ≥ . 

 

Result 4.1: Probability of no signal - conditional 
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Using the probability integral transformation (PIT) (see, for example, Gibbons and 

Chakraborti (2003)), we know that )( ):(
1

):( njnj UGY −=  and )( ):(
1

):( mama UFX −=  where F and 

G are both continuous cdf’s. 

 
( )xXP ma =):( | Signal No   )(xpL= , say, 

( )xXxYP manj =≥= ):():(  |  

( )xXxUGP manj =≥= −
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since jnj uu
jnj

−− −
+−

)1(
)1,(

1 1

β
 is the pdf of ):( njU  (see equation (4.14)). 
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Result 4.2: Probability of no signal – unconditional 

 

Let Lp  denote the unconditional probability of no signal, then: 
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Lp  
( )Signal NoP=  
( )):():( manj XYP ≥=  
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By the PIT we have that )( ):():( njnj YGU =  where G  is the continuous cdf of the Phase II 

sample nYYY ,...,, 21 . Using this we obtain 
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By the PIT we have that )( ):():( mama XFU =  so that )( ):(
1

):( mama UFX −=  where F  is the 

continuous cdf of the reference sample mXXX ,...,, 21 . Using this we obtain 
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The term jnu −− )1(  can be expanded to =− − jnu)1(  =��
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)1(  by using a binomial expansion (see equation (4.15)) and we obtain 
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By taking all the constants out of the integral sign and simplifying by setting hjhj uuu +−− = 11  

we obtain 
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Result 4.3: Probability of a signal - conditional 
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Result 4.4: Probability of a signal - unconditional 
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Result 4.5: Probability of a false alarm - conditional 
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Follows immediately from Result 4.3, since FG = . 

 

Result 4.6: Probability of a false alarm – unconditional 
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Follows immediately from Result 4.4, since FG =  and therefore vvFFvGF == −− )()( 11 . 
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Result 4.7: Run-length distribution - conditional 
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Result 4.8: Average run-length - conditional 
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Since the conditional run length, denoted by xXN ma =):(|  has a geometric 
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Result 4.9: Run-length distribution - unconditional 
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By taking all the constants out of the integral sign and simplifying by setting hjhj uuu +−− = 11  
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This equals one, because in general, �
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= 1)( dxxf  for real x . 

 

Result 4.10: In-control run-length distribution 
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Recall that the reference sample of size m , mXXX ,...,, 21 , is available from an in-

control process with a continuous cdf, )(xF .  The plotting statistic h
njY ):(  is the thj  order 

statistic from the thh  Phase II sample of size hn . Let )(yG h  denote the cdf of the distribution 

of the thh  Phase II sample. A process is said to be in-control at stage h  when FG h = .  

Assume that the Phase II samples are all of the same size, n , so that the subscript h  can be 

suppressed. Therefore, a process is said to be in-control when FG = . Therefore, the in-

control run length distribution is obtained by setting FG =  into the equation for the out-of-

control run length distribution. 

 

The out-of-control run length distribution for the lower one-sided chart is given by 
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Therefore, the in-control run length distribution for the lower one-sided chart is obtained by 

setting FG =  into equation (4.16) and we obtain 
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Result 4.11: Out-of-control average run-length - unconditional   
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Let δ,LUARL  denote the unconditional average run length, where δ  refers to the out-

of-control case. To derive an expression for the δ,LUARL , recall that 
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Result 4.12: In-control average run-length - unconditional 
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Let 0,LUARL  denote the unconditional average run length, where 0 refers to the in-

control case. To derive an expression for the 0,LUARL , recall that the in-control run length 

distribution for the lower one-sided chart is given by 
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4.1.8.2. Upper one-sided control charts 

 

For the upper one-sided chart we have ):(
ˆ

mbXLCU = . Therefore, a non-signalling 

event occurs when ):():( mbnj XY ≤ . 

 

Result 4.13: Probability of no signal - conditional 
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Using the PIT, we know that )( ):(
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both continuous cdf’s. 
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Result 4.14: Probability of no signal – unconditional 
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where )(vf  is the pdf of ):( mbU  which is given by bmb vv
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By taking all the constants out of the integral sign and simplifying by setting hjhj uuu +−− = 11  

we obtain 
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Result 4.15: Probability of a signal - conditional 
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Result 4.16: Probability of a signal – unconditional 
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Result 4.17: Probability of a false alarm - conditional 
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Follows immediately from Result 4.15, since FG = . 

 

Result 4.18: Probability of a false alarm - unconditional 

 

dvvv
bmb

m
v

h

jn

hjjnj
FAR bmbhj

jn

h

h
−−+

−

=

−
−−�

�
�

�
�
�
�

�
��
�

�
��
�

� −
+

−
+−

−= � )1(
)!()!1(

!)1(
)1,(

1
1 1

0β
 

 

Follows immediately from Result 4.16, since FG =  and therefore vvFFvGF == −− )()( 11 . 
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Result 4.19: Run-length distribution - conditional 
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Result 4.20: Average run-length - conditional 
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Result 4.21: Run-length distribution - unconditional 
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By taking all the constants out of the integral sign and simplifying by setting hjhj uuu +−− = 11  

we obtain 
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which simplifies to 
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This equals one, because in general, �
∞

∞−

= 1)( dxxf  for real x . 

 

Result 4.22: In-control run-length distribution 
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Recall that the reference sample of size m , mXXX ,...,, 21 , is available from an in-

control process with a continuous cdf, )(xF .  The plotting statistic h
njY ):(  is the thj  order 

statistic from the thh  Phase II sample of size hn . Let )(yG h  denote the cdf of the distribution 

of the thh  Phase II sample. A process is said to be in-control at stage h  when FG h = .  

Assume that the Phase II samples are all of the same size, n , so that the subscript h  can be 

suppressed. Therefore, a process is said to be in-control when FG = . Therefore, the in-

control run length distribution is obtained by setting FG =  into the equation for the out-of-

control run length distribution. 

 

The out-of-control run length distribution for the upper one-sided chart is given by 
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Therefore, the in-control run length distribution for the upper one-sided chart is obtained by 

setting FG =  into equation (4.18) and we obtain 
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Result 4.23: Out-of-control average run-length - unconditional 
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Let δ,UUARL  denote the unconditional average run length, where δ  refers to the out-

of-control case. To derive an expression for the δ,UUARL , recall that 
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Result 4.24: In-control average run-length - unconditional 
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Let 0,UUARL  denote the unconditional average run length, where 0 refers to the in-

control case. To derive an expression for the 0,UUARL , recall that the in-control run length 

distribution for the upper one-sided chart is given by 
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4.1.9. Two-sided control charts 

 

For the two-sided chart we have ):(
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mbXLCU = . Therefore, a non-

signalling event occurs when ):():():( mbnjma XYX ≤≤ . 

 

Result 4.25: Probability of no signal - conditional 
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Using the PIT, we know that )( ):(
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 is the pdf of ):( njU  (see equation 4.14). 

 

Result 4.26: Probability of no signal – unconditional 
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By taking all the constants out of the integral sign and simplifying by setting hjhj uuu +−− = 11  

we obtain 
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By integrating 
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Result 4.27: Probability of a signal - conditional 

 

A signalling event occurs when ):():( manj XY <  or  ):():( mbnj XY > . 
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Result 4.28: Probability of a signal - unconditional 
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Result 4.29: Probability of a false alarm - conditional 
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Follows immediately from Result 4.27, since FG = .
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Result 4.30: Probability of a false alarm - unconditional 
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Follows immediately from Result 4.28, since FG =  and therefore ssFFsGF == −− )()( 11  

and ttFFtGF == −− )()( 11 .  

 

Result 4.31: Run-length distribution - conditional 
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The conditional run length, denoted by zXxXN mbma == ):():( ,| , will have a geometric 

distribution with parameter ),(1 zxp− , because all the signalling events are independent. 

Therefore we have that 
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Consequently, the cumulative distribution function (cdf) is found from 
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We also have that 
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Result 4.32: Average run-length - conditional 

 

( )
),(1

1
,| ):():( zxp

zXxXNECARL mbma −
====  

or 

=CARL ( ) k

k
mbma zxpzXxXNE )),((,|

0
):():( �

∞

=

===  

 

Since the conditional run length, denoted by zXxXN mbma == ):():( ,|  has a geometric 

distribution with parameter ),(1 zxp− , the conditional average run length is given by 
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The second expression follows immediately from the geometric expansion of 1)),(1( −− zxp  
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Result 4.33: Run-length distribution - unconditional 
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where ),( tsf  is the joint pdf of ):( maU  and ):( mbU  which is given by 
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The term jnu −− )1(  can be expanded to =��
�

�
��
�

� −
−=− −−

−

=

− � hhjn
jn

h

hjn u
h

jn
u 1)1()1(

0

 

h
jn

h

h u
h

jn
��
�

�
��
�

� −
−�

−

=0

)1(  by using a binomial expansion (see equation (4.15)) and we obtain 

 

×
−−−−�

�
�

�

�

�
�
�

�

�

�
�

�

�

�
�

�

�

�
�
�

�
�
�
�

�
��
�

�
��
�

� −
−

+−
= � � � �

−

−

−

=

−

)!()!1()!1(
!

)1(
)1,(

11

0 0

)(

)( 0

1

1

1 bmaba
m

duu
h

jn
u

jnj

t
k

tGF

sGF

h
jn

h

hj

β
 

   dsdttsts bmaba −−−− −− )1()( 11  
 

By taking all the constants out of the integral sign and simplifying by setting hjhj uuu +−− = 11  

we obtain 
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By integrating 
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Result 4.34: In-control run-length distribution 
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Recall that the reference sample of size m , mXXX ,...,, 21 , is available from an in-

control process with a continuous cdf, )(xF .  The plotting statistic h
njY ):(  is the thj  order 

statistic from the thh  Phase II sample of size hn . Let )(yG h  denote the cdf of the distribution 

of the thh  Phase II sample. A process is said to be in-control at stage h  when FG h = .  

Assume that the Phase II samples are all of the same size, n , so that the subscript h  can be 

suppressed. Therefore, a process is said to be in-control when FG = . Therefore, the in-

control run length distribution is obtained by setting FG =  into the equation for the out-of-

control run length distribution. 

 

The out-of-control run length distribution for the two-sided chart is given by 
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Therefore, the in-control run length distribution for the two-sided chart is obtained by setting 

FG =  into equation (4.20) and we obtain 
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Result 4.35: Out-of-control average run-length - unconditional 

 

δUARL dsdttsf
GFnjtsS

t

),(
),,,,,(1

11

0 0
� � −

=  

with 

( ) ( )( )hjhj
jn

h

h

sGFtGF
h

jn

hjjnj
GFnjtsS

+−+−
−

=

−��
�

�
��
�

� −
+

−
+−

= � )()(
)1(

)1,(
1

),,,,,( 11

0β
 

 

Let δUARL  denote the unconditional average run length, where δ  refers to the out-of-

control case. To derive an expression for the δUARL , recall that 
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Finally, we have that (from the second expression in Result 4.32) 
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Result 4.36: In-control average run-length - unconditional 
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Let 0UARL  denote the unconditional average run length, where 0 refers to the in-

control case. To derive an expression for the 0UARL , recall that the in-control run length 

distribution for the two-sided chart is given by 
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Finally, we have that 
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4.1.10. Run-length distribution and ARL under some alternatives  

 

In the nonparametric setting, we consider, more generally, monitoring the center value 

or the location parameter and/or a scale parameter of a process. The location parameter 

represents a typical value and could be the mean or the median or some other percentile of the 

distribution; the latter two are especially attractive when the underlying distribution is 

skewed. When the underlying distribution is symmetric, the mean and the median are the 

same. Also in the nonparametric setting, the processes are implicitly assumed to follow (i) a 

location model, with a cdf )( θ−xF , where θ  is the location parameter or (ii) a scale model, 

with a cdf �
�

�
�
�

�

τ
x

F , where )0(>τ is the scale parameter.  Even more generally, one might 

consider (iii) the location-scale model with cdf �
�

�
�
�

� −
τ

θx
F , where θ  and τ  are the location 

and the scale parameter, respectively. 

 

Recall that the reference sample is available from an in-control process with a continuous 

cdf, )(xF , and that )( yG  denotes the cdf of the distribution of the Phase II sample. The run 

length distribution depends on F  and G , through the function 1−= GFψ . A process is said 

to be in-control when FG = . In this case ( ) ( ) uuFFuFGu === −− )()()( 11ψ . 
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4.1.10.1. Location alternatives 

 

)()( 1θ−= xHxF  and )()( 2θ−= xHxG , where H  is a continuous cdf, ℜ∈x  and 

ℜ∈21 ,θθ , ))(()( 1
21 uHHu −+−= θθψ . For example, let both F and G be normally 

distributed with a change in the mean, i.e. )()( xxF Φ=  and )()( θ−Φ= xxG . But )(uψ  

))(( 1 uFG −= (by definition) and therefore )(uψ ))(( 1 θ−ΦΦ= − u . 

 

4.1.10.2. Scale alternatives 
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4.1.10.3. Location-scale alternatives 
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4.1.10.4. Lehmann alternatives 

 

 )()( xFxG δ= , where ℜ∈x  and +ℜ∈δ , δψ uu =)( . For example, let uxF =)(  and 

δ))(()( xFxG = . But )(uψ ))(( 1 uFG −=  (by definition) and therefore =)(uψ  

δδ uuFF =− )))((( 1 . 

 

• For :1=δ  )()( xFuu ==ψ . 

• For :2=δ  )()( 22 xFuu ==ψ . 

 

4.1.10.5. Proportional hazards alternatives 

 
γ))(1(1)( xFxG −−= , where ℜ∈x  and +ℜ∈γ , γψ )1(1)( uu −−= . For example, let 

uxF =)(  and γ))(1(1)( xFxG −−= . But )(uψ ))(( 1 uFG −=  (by definition) and therefore 

=)(uψ  γγ )1(1)))((1(1 1 uuFF −−=−− − . 

 

4.1.10.6. Summary 

 

Although a lot of research has been done in the last few years regarding Lehmann and 

proportional hazard alternatives (see for example Van der Laan and Chakraborti (1999)), 

more remains to be done. Van der Laan and Chakraborti (1999) showed that the power of a 

precedence test can be determined for both the Lehmann and proportional hazards 

alternatives. The body of literature on Lehmann and proportional hazards alternatives is 

growing. However, in our opinion, a discussion on this topic is better postponed for the 

future. 

 

4.2. The Shewhart-type control chart with runs-type signalling rules 

 

4.2.1. Introduction 

 

Chakraborti, Eryilmaz and Human (2006) considered enhancing the precedence charts 

with 2-of-2 type signalling rules. The 2-of-2 DR and 2-of-2 KL rules were defined previously 

(see Section 3.2). Recall that the 2-of-2 KL chart signals when two of the most recent charting 
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statistics both fall either on or above or on or below the control limits, whereas the 2-of-2 DR 

chart signals when the charting statistics fall either both on or above or both on or below or 

one on or above (below) and the next one on or below (above) the control limits. We illustrate 

these procedures using the Montgomery (2001) piston ring data. 

 

4.2.2. Example 

 

Example 4.1 

A sign-like control chart based on the Montgomery (2001) piston ring data 

 

We illustrate the sign-like control charts using a set of data from Montgomery (2001, 

Tables 5.1 and 5.2) on inside diameters of piston rings manufactured by a forging process. 

Table 5.1 of Montgomery (2001) contains 25 retrospective or Phase I samples, each of size 

five, that were collected when the process was thought to be in-control. When working with 

individual observations, we have 125525 =× , i.e. 125=m , individual observations. Table 

5.2 of Montgomery (2001) contains 15 prospective or Phase II samples, each of five 

observations.  

 

In order to implement the control charts, the charting constants are needed. Generally, 

one finds the chart constants so that a specified 0ARL , such as 500 or 370, is obtained. For 

the precedence type charts, symmetric control limits are used so that 1+−= amb  and only 

one charting constant a  )1(≥  needs to be found. Possible control limits for the three charts 

are shown in Table 4.2 for 125=m , 5=n  and 3=j , along with the corresponding FAR and 

0ARL  values. The basic Shewhart-type precedence chart is referred to as the 1-of-1 chart. 
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Table 4.2.  In-control average run length ( 0ARL ), false alarm rate (FAR) and chart constant 

( a ) for the 1-of-1, 2-of-2 DR and 2-of-2 KL precedence charts when 125=m , 5=n  and 

3=j *. 

 1-of-1 2-of-2  DR 2-of-2  KL 
a 0ARL  FAR a 0ARL  FAR a 0ARL  FAR 
5 1315.98 0.001865 19 464.38 0.004020 19 819.47 0.002355 
6 695.09 0.002948 20 344.73 0.005195 20 608.81 0.003019 
7 413.80 0.004358 21 260.69 0.006627 21 460.54 0.003823 
8 267.40 0.006164 22 200.46 0.008356 22 354.09 0.004788 

 

Thus, for an 0ARL  of 500, one can take 7=a  and 119=b  so that the control limits 

for the 1-of-1 precedence chart are the 7th and the 119th ordered values of the reference 

sample. Thus 984.73ˆ
)125:7( == XLCL  and 017.74ˆ

)125:119( == XLCU , which yield an in-

control average run length of 413.80 and a FAR of 0.0044.  A plot of the sample medians for 

the 1-of-1 chart is shown in Figure 4.3. It is seen that the 1-of-1 precedence chart signals on 

the 12th sample in the prospective phase.  

 

 
Figure 4.3. 1-of-1 Precedence chart for the Montgomery (2001) piston ring data. 

 

                                                 
* Table 4.2 appears in Chakraborti, Eryilmaz and Human (2006), Table 3. 
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For the 2-of-2 DR chart, take 19=a  so that 107119125 =+−=b  and the resulting 

limits, 992.73ˆ
)125:19( == XLCL  and 012.74ˆ

)125:107( == XLCU , yield an 0ARL  and FAR of 

464.38 and 0.0040, respectively. Note however that if one chooses 20=a  so that 106=b , 

the control limits are )125:20(
ˆ XLCL =  and )125:106(

ˆ XLCU =  and the 0ARL  decreases to 344.73, 

whereas the FAR slightly increases to 0.0052.  The 2-of-2 DR chart is shown in Figure 4.4. 

 

 
Figure 4.4. 2-of-2 DR precedence chart for the Montgomery (2001) piston ring data. 

 

For the 2-of-2 KL chart take 21=a  so that 105121125 =+−=b  so that 

992.73ˆ
)125:21( == XLCL  and 011.74ˆ

)125:105( == XLCU , and this yields an 0ARL  of 460.54 

and a FAR of 0.0038, respectively. This 2-of-2 KL chart is almost identical to the DR chart in 

Figure 4.4.  
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Figure 4.5. 2-of-2 KL precedence chart for the Montgomery (2001) piston ring data. 

 

Both the 2-of-2 DR and KL charts signal on the 10th sample in the prospective phase.  

Note, however, that the achieved FAR values for all three charts are much larger than the 

nominal FAR of 0.0027.   

 

4.2.3. Summary 

 

In this chapter we examined sign-like control charts with runs-type signalling rules. 

We illustrated these procedures using the piston ring data from Montgomery (2001) to help 

the reader to understand the subject more thoroughly. There are many advantages to using 

these nonparametric charts (see Section 1.4). Chakraborti, Eryilmaz and Human (2006) draw 

attention to two advantages in particular, namely, that these charts can be applied as soon as 

the required order statistics are observed (recall that both the control limits and the charting 

statistic are based on order statistics), whereas for the Shewhart X  charts one needs the full 

dataset to calculate the average. Moreover, these charts can be adapted to and applied in the 

case of ordinal data. As a result Chakraborti, Eryilmaz and Human (2006) recommend that 

these charts be used in practice. 
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Chapter 5: Signed-rank-like charts 
 

5.1. The Shewhart-type control chart 

 

5.1.1. Introduction 

 
The statistics used in nonparametric control charts are mostly signs, ranks and signed-

ranks and related to nonparametric procedures, such as the Wilcoxon signed-rank test and the 

Mann-Whitney-Wilcoxon rank-sum test. When considering nonparametric tests based on 

ranks, such tests deal with the ranking of independent, identically distributed (iid) random 

variables (under the assumption that the process is in-control). In Chapter 5 we consider 

nonparametric tests that involve ranking random variables that are exchangeable (again, this 

holds under the assumption that the process is in-control), meaning that each possible ranking 

is equally likely. Randles and Wolfe (1979) state that the term rank-like is used to describe a 

type of test procedure where the variables that are ranked are not the original observations, 

but are, instead, functions of them. The term rank-like was first introduced by Moses (1963).  

Moses’s rank-like test is a nonparametric test for comparing differences in dispersion between 

two samples in which the medians are not equal. This requires randomly allocating the sample 

observations into two subgroups, ranking the subgroups according to their dispersion indexes 

and calculating the ranks sums for each subgroup. It should be noted that although Moses’s 

rank-like test uses rankings of iid random variables (under the assumption that the process is 

in-control), these variables are not the original observations, but instead, functions of them. 

Bakir (2006) considered what are called signed-rank-like (SRL) statistics and used these to 

construct distribution-free charts. He uses the median of a reference sample (taken when the 

process was operating in-control) to estimate the unknown in-control process center.  

 
5.1.2. Definition of the signed-rank-like test statistic 

 
Assume that a reference sample of size 1>m , mXXX ,...,, 21 , is available from an in-

control process with an unknown continuous cdf )(xF . Let inii YYY ,...,, 21  , ,...,2,1=i  denote 

the thi   test sample of size n . In case U the median of the in-control distribution (assumed to 

be symmetric) is unknown and can be estimated by the median of a reference sample, say M. 

 
 
 



 246 

Let *
ijR  denote the rank of Myij −  within the subgroup ( )MyMy ini −− ,...,1  for 

...3,2,1=i . *
ijR  can be calculated using  

 |)|||(1
1

* MyMyIR ij

n

k
ikij −<−+= �

=

 for nj ,...,2,1=  (5.1) 

where I is the indicator function defined by 0,1)( =xI  if x  is true or false.  
 

The charting statistic is given by 

 ( ) *

1
ij

n

j
iji RMysignSRL �

=
−=   for  ...3,2,1=i  (5.2) 

where )(xsign  = -1, 0, 1 if 0<x , 0= , 0> . The charting statistic, iSRL ,  is a direct analog of 

the plotting statistic iSR  used in case K. If the charting statistic iSRL  falls between the two 

control limits, that is, UCLSRLLCL i << , the process is considered to be in-control. If the 

charting statistic iSRL  falls on or outside one of the control limits, that is LCLSRLi ≤  or 

UCLSRLi ≥ , the process is considered to be out-of-control. 

 
Example 5.1 

A Shewhart-type signed-rank-like statistic for the Montgomery (2001) piston ring data 

 

We illustrate the Shewhart-type signed-rank-like chart using a set of data from 

Montgomery (2001; Tables 5.1 and 5.2) on the inside diameters of piston rings manufactured 

by a forging process. Table 5.1 of Montgomery (2001) contains the reference sample of size 

125=m  (see example 4.1 for an explanation of why m  is equal to 125 (and not 25 like some 

of the earlier examples) and the median of this reference sample equals 74.001, i.e. 

001.74=M .   

 

Panel a of Table 5.1 exhibits the individual observations of 15 independent samples, 

each of size 5 i.e. 5=n . The absolute deviations Myij −  and ( )Mysign ij −  are shown in 

panel b and panel c of Table 5.1, respectively. The rank *
ijR  and the ( )Mysign ij − *

ijR  values 

are shown in panel a and panel b of Table 5.2, respectively. Panel c of Table 5.2 holds the 

SRL-values i.e. iSRL  for 15,...,3,2,1=i . 
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Table 5.1. Data and calculations for the signed-rank-like chart.* 
 

Panel a  Panel b Panel c 

 
Sample 
number 

 
1iy  2iy  3iy  4iy  5iy  

     
     

1 74.012 74.015 74.030 73.986 74.000 0.011 0.014 0.029 0.015 0.001 1 1 1 -1 -1 

2 73.995 74.010 73.990 74.015 74.001 0.006 0.009 0.011 0.014 0.000 -1 1 -1 1 0 

3 73.987 73.999 73.985 74.000 73.990 0.014 0.002 0.016 0.001 0.011 -1 -1 -1 -1 -1 

4 74.008 74.010 74.003 73.991 74.006 0.007 0.009 0.002 0.01 0.005 1 1 1 -1 1 

5 74.003 74.000 74.001 73.986 73.997 0.002 0.001 0.000 0.015 0.004 1 -1 0 -1 -1 

6 73.994 74.003 74.015 74.020 74.004 0.007 0.002 0.014 0.019 0.003 -1 1 1 1 1 

7 74.008 74.002 74.018 73.995 74.005 0.007 0.001 0.017 0.006 0.004 1 1 1 -1 1 

8 74.001 74.004 73.990 73.996 73.998 0.000 0.003 0.011 0.005 0.003 0 1 -1 -1 -1 

9 74.015 74.000 74.016 74.025 74.000 0.014 0.001 0.015 0.024 0.001 1 -1 1 1 -1 

10 74.030 74.005 74.000 74.016 74.012 0.029 0.004 0.001 0.015 0.011 1 1 -1 1 1 

11 74.001 73.990 73.995 74.010 74.024 0.000 0.011 0.006 0.009 0.023 0 -1 -1 1 1 

12 74.015 74.020 74.024 74.005 74.019 0.014 0.019 0.023 0.004 0.018 1 1 1 1 1 

13 74.035 74.010 74.012 74.015 74.026 0.034 0.009 0.011 0.014 0.025 1 1 1 1 1 

14 74.017 74.013 74.036 74.025 74.026 0.016 0.012 0.035 0.024 0.025 1 1 1 1 1 

15 74.010 74.005 74.029 74.000 74.020 0.009 0.004 0.028 0.001 0.019 1 1 1 -1 1 

 

                                                 
* See SAS Program 10 in Appendix B for the calculation of the values in Table 5.1. 
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Table 5.2. Calculations for the signed-rank-like chart*. 
Panel a  Panel b Panel c 

 
Sample 
number 

 

*
1iR  *

2iR  *
3iR  *

4iR  *
5iR  

     

iSRL  

1 2 3 5 4 1 2 3 5 -4 -1 5 

2 2 3 4 5 1 -2 3 -4 5 0 2 

3 4 2 5 1 3 -4 -2 -5 -1 -3 -15 

4 3 4 1 5 2 3 4 1 -5 2 5 

5 3 2 1 5 4 3 -2 0 -5 -4 -8 

6 3 1 4 5 2 -3 1 4 5 2 9 

7 4 1 5 3 2 4 1 5 -3 2 9 

8 1 2.5 5 4 2.5 0 2.5 -5 -4 -2.5 -9 

9 3 1.5 4 5 1.5 3 -1.5 4 5 -1.5 9 

10 5 2 1 4 3 5 2 -1 4 3 13 

11 1 4 2 3 5 0 -4 -2 3 5 2 

12 2 4 5 1 3 2 4 5 1 3 15 

13 5 1 2 3 4 5 1 2 3 4 15 

14 2 1 5 3 4 2 1 5 3 4 15 

15 3 2 5 1 4 3 2 5 -1 4 13 

 
The control limits are chosen to give a certain false alarm rate or in-control ARL . A 

symmetric two-sided chart is obtained by choosing UCLLCL −= . For 5=n , the control 

limits for the signed-rank-like chart are set at 15± . These control limits yield an in-control 

ARL  of 16 and a FAR  of 0.0626 (these values were obtained by the use of a simulation study 

(see SAS Program 6 in Appendix B) where 500=m  and 5=n ). With such a small in-control 

average run length, many false alarms will be signalled by this chart leading to possible loss 

of time and resources. The chart is shown in Figure 5.1 with control limits at 15± . 

 

                                                 
* See SAS Program 10 Appendix B for the calculation of the values in Table 5.2. 
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Figure 5.1. Shewhart-type signed-rank-like control chart for Montgomery (2001) piton ring 

data. 
 

Observations 3, 12, 13 and 14 lie on the upper control limit which indicates that the 

process is out-of-control starting at sample 3. It appears most likely that the process median 

has shifted upwards from the target value of 74mm. Corrective action and a search for 

assignable causes is necessary. 

 

5.1.3. Distribution-free properties 

 

We want to establish that the charting statistic iSRL  is distribution-free. If the latter is 

true, then the signed-rank-like chart based on the iSRL  statistic will be distribution-free. To 

establish that iSRL  is distribution-free, we first have to look at some properties. Randles and 

Wolfe (1979) provided various definitions and theorems that are useful in this text.  

 

Definition 1 

(See Definition 1.3.1. of Randles and Wolfe (1979), pg. 13) 

 

Two random variables S and T are said to be equal in distribution if they have the 

same cdf. To denote ‘equal in distribution’ we use the notation TS
d
= . 
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Definition 2 

(See Definition 1.3.6 of Randles and Wolfe (1979), pg. 15) 

 

A collection of random variables nXXX ,...,, 21  is said to be exchangeable if for every 

permutation ( )nααα ,...,, 21  of the integers ),...,2,1( n , ( ) ( )
n

XXXXXX
d

n ααα ,...,,,...,,
2121 =  . 

 

Theorem 1 

(See Theorem 1.3.7 of Randles and Wolfe (1979), pg. 16) 

 

If YX
d
=  and )(⋅U  is a (measurable) function (possibly vector valued) defined on the 

common support of these random variables, then )()( YUXU
d
= . 

 

Theorem 2 

(See Theorem 11.2.3 of Randles and Wolfe (1979), pg. 356) 

 

Let ( )ipiii XXXX ,...,, 21= , ni ,...,2,1=  be a random sample from some p-variate 

continuous distribution. Let )(⋅g  be any function of n p-vectors that is symmetric in its 

arguments. Let ),( ⋅⋅h  be any real-valued function of a p-tuple and the function values of )(⋅g  

and define the random variables ( )),...,(, 1 nii XXgXhW = , ni ,...,2,1= . Then nWWW ,...,, 21  

are exchangeable random variables, i.e. ),...,,(),...,,(
2121 n

WWWWWW
d

n ααα=  where 

( )nααα ,...,, 21  is any permutation of ),...,2,1( n . 

 

Theorem 2 can be generalized to complement our problem. Suppose 

( ) FXXXXX m ~,...,, 211 ==  and ( ) GYYYYX n ~,...,, 212 ==  are independent random 

samples and F and G are continuous distributions. Let )(⋅g  be a function of X  that is 

symmetric in its arguments and let ),( ⋅⋅h  be any real-valued function of Y  and the function 

values of )(⋅g . Then define ( ) ( )),...,(,)(, 1 mjjj XXgYhXgYhW ==  for nj ,...,1= . Then, 

from Theorem 2, we have that nWWW ,...,, 21  are exchangeable random variables when GF = . 
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Corollary 1 

(See Corollary 2.4.5 of Randles and Wolfe (1979), pg. 50) 

 

Let ),( *RS Ψ  be a statistic that depends on the observations nXXX ,...,, 21  only 

through  nΨΨΨ ,...,, 21  and *R . Then the statistic )(⋅S  is distribution-free over Θ , the 

collection of joint distributions of n iid continuous random variables, each symmetrically 

distributed about zero. 

 

Corollary 2 

(See Corollary 11.2.5 of Randles and Wolfe (1979), pg. 357) 

 

Let nWWW ,...,, 21  be defined as in Theorem 2 and let *
iR  denote the rank of iW  among 

nWWW ,...,, 21 . If ( ) 0== ji WWP  for every ji ≠ , then ( )
!

1*

n
rRP ==  for every r , a 

permutation of the integers ( )n,...,1 . Thus any statistic that is a function of the sample 

observations nXX ,...,1  only through the ranks ** ,..., ni RR  is nonparametric distribution-free 

over the class of all  p-variate continuous distribution. 

 

Lemma 1 

(See Lemma 2.4.2 of Randles and Wolfe (1979), pg. 49) 

 

Let Z  be a continuous random variable with a distribution that is symmetric about 0. 

Then the random variables Z  and )(ZΨ=Ψ  are stochastically independent. 

 

Establishing that the charting statistic SRLi is distribution-free for an in-control process 

 

The first step in establishing that the charting statistic iSRL  is distribution-free, is by 

proving that when the process is in-control, i.e. GF = , nVVV ,...,, 21  are exchangeable random 

variables, where jV  is defined as MYV jj −= , nj ,...,2,1= , and M  is the median of 

mXX ,...,1 . The proof to this follows from Theorem 2 by setting ( ) MXXgXg m == ),...,( 1  

and =jW  ( ) MYXXgYh jmj −=),...,(, 1 . 
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The second step in establishing that the charting statistic iSRL  is distribution-free, is 

by proving that when GF = , nUUU ,...,, 21  are exchangeable random variables, where jU  is 

defined as ( )MYsignU jj −= , nj ,...,2,1= . The proof to this follows from Theorem 2 by 

setting ( ) MXXgXg m == ),...,( 1  and ( ) ( )MYsignXXgYhW jmjj −== ),...,(, 1 . 

 

The next step is to prove that when GF = , the joint distribution of nUUU ,...,, 21  is 

distribution-free. To prove this we need to keep two things in mind. The first being that 

( )
2
1

0or  1 ==jUP  since ( )MY j −  is symmetric about zero when GF = . The second fact to 

recall is that nUUU ,...,, 21  are exchangeable when GF = . The proof follows 

straightforwardly by combining these two facts. 

 

In addition, when GF = , ( )MYsignU jj −=  and MYV jj −=  for nj ,...,2,1= , are 

independent random variables. The proof follows from Lemma 1, since the distribution of 

( )MY j −  is symmetric about zero when GF = . 

 

Next, we define ),...,,( **
2

*
1

*
nRRRR =  where �

=

<+=
n

k
jkj VVIR

1

* )(1  

( )�
=

−<−+=
n

k
jk MYMYI

1

||||1  for nj ,...,2,1=  (note that *
jR  is directly comparable to *

ijR  in 

equation (5.1)). Therefore,  *R  is the vector of ranks of nVVV ,...,, 21 , i.e. *R  is the vector of 

ranks of ||...,|,||,| 21 MYMYMY n −−− . We can prove, using Corollaries 1 and 2, that when 

GF = , any statistic that depends on the observations only through nUUU ,...,, 21 , i.e. 

)(...,),(),( 21 MYsignMYsignMYsign n −−− , and *R  is distribution-free over the class of 

continuous symmetric distributions. Consequently, the statistic ( ) *

1
ij

n

j
iji RMysignSRL �

=

−=  is 

distribution-free. Since iSRL  is now known to be distribution-free, so is the signed-rank-like 

chart. 
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5.1.4. Simulation study 

 

Bakir (2006) performed a simulation study where the robustness of the standard 

Shewhart X  chart and that of the proposed Shewhart signed-rank-like chart are compared 

using the contaminated normal distribution. The contaminated normal distribution has been 

considered by various authors in an SPC context (see, for example, Wu, Zhao and Wang 

(2002) and Sheu and Yang (2006)). The cdf of the contaminated normal distribution is given 

by 

 ),()1,()1(),( 22 σθθσθ Φ+Φ−=Φ ppp  (5.3) 

where )1()0( ≤≤ p  denotes the percentage of contamination, 2σ  (>0) denotes the severity of 

contamination and Φ  denotes the cdf of the normal distribution, respectively. It should be 

noted that if 0=p  and 0=θ  equation (5.3) reduces to the standard normal distribution. 

Bakir (2006) proved, through simulation, that if a process is contaminated by outliers it is ill-

advised to use the standard Shewhart X  chart, especially if the percentage of contamination 

( p ) and/or the severity of contamination ( 2σ ) is high, i.e. 01.0>p  and/or 42 >σ . Bakir 

concludes that the Shewhart X  chart is not robust against outliers, whereas the proposed 

Shewhart signed-rank-like chart is robust against outliers for all possible combinations of 

),( 2σp . This is what we expected to find: the Shewhart signed-rank-like chart wouldn’t be 

affected by outliers, since the median from the reference sample, the signs from the test 

sample and the ranks from the test sample aren’t affected by outliers (recall that 

*

1

)( ij

n

j
iji RMysignSRL �

=

−= ). 

 

Table 5.3 shows the simulated values of the 0ARL ’s of the two-sided Shewhart X  

chart for all possible combinations of ),( 2σp  with =p 0.01, 0.05, 0.10, 0.15, 0.20, 1 and 

2σ = 4, 9, 16. These values are graphically illustrated in Figure 5.2. These simulated values 

are for a stable process with the presense of sporadic outliers. The case where the process is 

operational with no outliers, i.e. 0=p , is also given for reference. In these simulation studies 

500 reference samples, each of size 39=m , were generated from the standard normal 

distribution. In addition, 500 test samples, each of size 10=n , were generated from the 

contaminated normal distribution.  
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Table 5.3. Simulated values of the 0ARL ’s for the two-sided Shewhart X  chart*. 
Severity of contamination 

42 ====σσσσ  92 ====σσσσ  162 ====σσσσ  
Level of severity 8.2/ ±±±±====UCLLCL  

Low Moderately 
high High 

0====p  
(0%) 

None 163 163 163 

01.0====p  
(1%) 

Low 159 115 70 

05.0====p  
(5%) 

90 39 21 

10.0====p  
(10%) 

Moderately 
high 

61 22 12 

15.0====p  
(15%) 

41 15 8 

Pe
rc

en
ta

ge
 o

f c
on

ta
m

in
at

io
n 

20.0====p  
(20%) 

L
ev

el
 o

f  
p 

High 
33 11 6 

 
Intuitively, we would expect the ARL  to decrease (which would lead to an increase in 

the number of false alarms) as the percentage and/or severity of contamination increases. This 

is evident by looking at the lowest ),( 2σp  combination, i.e. =),( 2σp  (0, 4), opposed to the 

highest ),( 2σp  combination, i.e. =),( 2σp  (0.20, 16). The former shows that the ARL  

equals 163 when the process is operational with no outliers, whereas the latter shows that the 

ARL  equals 6 when both the percentage and severity of contamination are high. These 

numbers indicate that there should be about 27 times as many false alarms when =),( 2σp  

(0.20, 16) as opposed to )4,0(),( 2 =σp . 

 

Next, we look at what happens when both p  and 2σ  are low. This is done by looking 

at the =),( 2σp  (0.01, 4) combination compared to the =),( 2σp  (0, 4) combination. The 

latter shows that the ARL equals 163 when the process is operational with no outliers, whereas 

the former shows that the ARL equals 159 when both the percentage and severity of 

contamination are low. These numbers indicate that there should be about the same number of 

false alarms when =),( 2σp  (0.01, 4) as opposed to )4,0(),( 2 =σp . 

 

                                                 
* Table 5.3 appears in Bakir (2006), page 751, Table 1. 
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Next, we look at what happens when p  is low, but 2σ  is moderately high. This is 

done by looking at the =),( 2σp  (0.01, 9) combination where the ARL has dropped to 115. 

This indicates that there should be about 1.42 times as many false alarms as the expected ARL 

of 163. Subsequently, we look at what happens when p  is moderately high, but 2σ  is low. 

This is done by looking at the =),( 2σp  (0.05, 4) combination where the ARL has dropped to 

90. This indicates that there should be about 1.81 as many false alarms as the expected  ARL 

of 163. The rest of table can be interpreted similarly. The main conclusion that can be drawn 

from Table 5.3 is that it is ill-advised to use the Shewhart X  chart when a process is 

contaminated by outliers, especially if the percentage of contamination ( p ) and/or the 

severity of contamination ( 2σ ) is high, i.e. 01.0>p  and/or 42 >σ . 
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Figure 5.2. Simulated 0ARL  values for the two-sided Shewhart X  chart for various 

values of p and 2σ . 
 

5.1.5. Comparisons 

 

The first comparison between the standard Shewhart X  chart and the proposed 

Shewhart signed-rank-like chart. 
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Table 5.4. Simulated values of the ARL for the two-sided Shewhart X  control chart ( CCX ) and the Shewhart signed-rank-like control chart 
( CCSRL )*. 
 

 Severity of contamination 
 42 ====σσσσ  92 ====σσσσ  162 ====σσσσ  
 Level of severity 
 Low Moderately high High 

 
01.0====p  

(1%) 
10.0====p  

(10%) 
01.0====p  

(1%) 
10.0====p  

(10%) 
01.0====p  

(1%) 
10.0====p  

(10%) 
Control 

chart CCX  CCSRL  CCX  CCSRL  CCX  CCSRL  CCX  CCSRL  CCX  CCSRL  CCX  CCSRL  

UCLLCL /  85.2±±±±  53±±±±  25.3±±±±  53±±±±  96.2±±±±  53±±±±  98.3±±±±  53±±±±  24.3±±±±  53±±±±  92.4±±±±  53±±±±  
0.0====θθθθ  170.0 166.0 165.0 166.0 167.4 166.0 166.7 166.0 164.6 166.0 167.0 166.0 
2.0====θθθθ  122.8 121.8 131.8 128.3 115.4 120.4 124.3 122.2 137.3 130.2 145.6 128.6 
4.0====θθθθ  43.9 50.9 59.8 54.4 56.4 60.7 65.4 66.2 60.6 61.7 88.3 65.0 
6.0====θθθθ  10.6 24.2 13.5 27.2 14.4 23.7 27.5 26.5 17.7 22.1 42.8 31.5 
8.0====θθθθ  3.5 11.1 5.4 10.6 4.2 9.3 11.9 10.3 6.7 8.4 22.6 11.3 
0.1====θθθθ  1.9 4.4 2.8 5.5 2.1 4.7 5.3 5.6 3.5 4.5 13.4 5.9 

                                                 
* Table 5.4 appears in Bakir (2006), page 754, Table 3. 
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Bakir (2006) compared the proposed Shewhart signed-rank-like chart to the Shewhart 

X  chart using the contaminated normal distribution (the observations are normally 

distributed with occasional outliers). Both charts are designed to have approximately the same 

in-control average run length to ensure fair comparison between the charts. The out-of-control 

average run lengths were computed, using these chart constants, for various values of the 

median θ , the percentage of contamination (p) and the severity of contamination ( )2σ . We 

typically want the δARL  to be small, i.e. the chart with the smallest δARL  will be the 

preferred chart.  

 

From Table 5.4 we see that the median ranges from 0 (the in-control value) to 1 in 

increments of 0.2; the severity of contamination ranges from low to high, that is, 42 =σ  

(low), 92 =σ  (moderately high) and 162 =σ  (high); and the percentage of contamination is 

taken to be 1% (low) and 10% (moderately high), respectively. 

 

We start by investigating the lowest percentage and severity of contamination levels 

for the smallest process shift of 0.2. The δARL  of the Shewhart X  chart (=122.8) is almost 

equivalent to the δARL  of the Shewhart signed-rank-like chart (=121.8). Therefore, for a low 

percentage and severity of contamination and a small process shift, both charts are performing 

equally well. More generally, for low to moderately high levels of  p (= 0.01 or 0.1) and 2σ  

(= 4 or 9) and small process shifts ( =θ 0.2 or 0.4), the δARL  values of the Shewhart signed-

rank-like chart are almost equivalent to the δARL  values of the Shewhart X  chart. 

 

In contrast, we investigate the highest percentage and severity of contamination for the 

largest process shift of 1. The δARL  of the Shewhart X  chart (=13.4) is higher than the 

δARL  of the Shewhart signed-rank-like chart (=5.9). Consequently, we see that the Shewhart 

signed-rank-like chart performs better than the Shewhart X  chart for a high percentage and 

severity of contamination and a large process shift. More generally, we find that for 1.0=p  

and 162 =σ  the δARL  values of the Shewhart X  chart are all higher than the δARL  values 

of the Shewhart signed-rank-like chart for all process shifts ( =θ 0.2, 0.4, 0.6, 0.8 and 1). As a 

result we conclude that the Shewhart signed-rank-like chart performs better than the Shewhart 

X  chart for high levels of  p and 2σ  over all process shifts. 
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It should be noted that there are various cases where the Shewhart X  chart performs 

better than the Shewhart signed-rank-like chart. An illustration of the latter is, for example, 

for low to moderately high levels of p (= 0.01 or 0.1), 42 =σ  and large process shifts 

( =θ 0.6, 0.8 and 1) the δARL  values of the Shewhart X  chart are lower than those of the 

Shewhart signed-rank-like chart. Hence, in some cases the Shewhart X  chart outperforms the 

Shewhart signed-rank-like chart and vice versa. Table 5.5 indicates which chart, between the 

Shewhart X  chart and the proposed signed-rank-like chart, is the preferred chart for various 

values of  p, 2σ  and θ . The term ‘comparable’ in Table 5.5 implies that the proposed signed-

rank-like chart is as efficient as the Shewhart X  chart. 

 

Table 5.5. Summary of the first comparison between the Shewhart X  chart and the proposed 

signed-rank-like chart*. 

 42 ====σσσσ  92 ====σσσσ  162 ====σσσσ  

01.0====p  

 
Small shifts: Comparable 
 
Large shifts: X  
 

 
Small shifts: Comparable 
 
Large shifts: X  

 
Small shifts: Comparable 
 
Large shifts: X  

10.0====p  

 
Small shifts: Comparable 
 
Large shifts: X  
 

 
All shifts:  
Comparable 

 
All shifts: 
Signed-rank-like chart 

 

The second comparison between the standard Shewhart X  chart and the proposed 

Shewhart signed-rank-like chart. 

 

The out-of-control ARL is examined for three distributions, namely, the Normal, 

Laplace and Cauchy distributions, respectively. Recall that we want the δARL  to be small in 

all cases. 

 

                                                 
* Small shifts refer to 2.0=θ  or 0.4, whereas large shifts refer to 8.0,6.0=θ  or 1. 
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Figure 5.3. The shapes of the three distributions under consideration. 

 
 
(i)    The Normal distribution 
 

 
For the Normal distribution we would expect the out-of-control performance of the 

Shewhart X  chart to be better than that of the Shewhart signed-rank-like chart. The chart 

constants for both the Shewhart signed-rank-like and Shewhart X  charts are chosen such that 

the in-control average run length is approximately equal ( 1640 ≈ARL ) for both charts: 

80.2/ ±=XUCLLCL  and 53/ ±=SRLUCLLCL . The out-of-control average run length 

values were computed, using these chart constants, for various values of the median θ . The 

median ranges from 0 (the in-control value) to 1 in increments of 0.2. The results are shown 

below in Figure 5.4. 
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Figure 5.4. Comparison of the Shewhart signed-rank-like chart with the Shewhart X  chart 

under Normal shift alternatives. 

 
When comparing the Shewhart signed-rank-like chart with the Shewhart X  chart 

under Normal shift alternatives we find that the Shewhart X  chart is performing better than 

the Shewhart signed-rank-like chart, since the out-of-control average run length values for the 

Shewhart X  chart are smaller than the out-of-control average run length values for the 

Shewhart signed-rank-like chart. However, it should be noted that the differences are small 

and it appears to fade away when the process is shifted from its in-control value of 0 to values 

greater than 0.8. 

 
(ii)    The Double Exponential distribution 
 

 
The Double Exponential distribution, also called the Laplace distribution, is 

comparable to the Normal distribution (since they are both symmetric around 0), but it has 

heavier tails (see Figure 5.3). As a result, there are higher probabilities associated with 

extreme values when working with the Double Exponential distribution as opposed to using 

the Normal distribution. The scale parameter λ  of the Double Exponential distribution is set 

equal to 2/1  so that the Double Exponential distribution has a standard deviation of 1.  For 

the Double Exponential distribution we would expect the out-of-control performance of the 

Shewhart signed-rank-like chart to be better than that of the Shewhart X  chart. The chart 

constants for both the Shewhart signed-rank-like and Shewhart X  chart are chosen such that 
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the in-control average run length is approximately equal ( 1500 ≈ARL ) for both charts: 

85.2/ ±=XUCLLCL  and  53/ ±=SRLUCLLCL . The results are shown below in Figure 5.5. 
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Figure 5.5. Comparison of the Shewhart signed-rank-like chart with the Shewhart X  chart 

under Double Exponential shift alternatives. 

 

When comparing the Shewhart signed-rank-like chart with the Shewhart X  chart 

under Double Exponential shift alternatives we find that the Shewhart signed-rank-like chart 

is performing better than the Shewhart X  chart, since the out-of-control average run length 

values for the Shewhart signed-rank-like chart are smaller than the out-of-control average run 

length values for the Shewhart X  chart. However, it should be noted that the differences are 

small and it appears to fade away when the process is shifted from its in-control value of 0 to 

values greater than 0.8.  

 

(iii)    The Cauchy distribution 
 

 
The scale parameter λ  of the Cauchy distribution is set equal to 0.2605 so that the 

Cauchy distribution has a probability of 0.95 to the left of 1.645 (which is also the case for the 

standard normal distribution). For the Cauchy distribution we would expect the out-of-control 

performance of the Shewhart signed-rank-like chart to be better than that of the Shewhart X  

chart. The chart constants for both the Shewhart signed-rank-like and Shewhart X  chart are 

chosen such that the in-control average run length is approximately equal ( 1640 ≈ARL ) for 
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both charts: 22/ ±=XUCLLCL  and  53/ ±=SRLUCLLCL .  The results are shown below in 

Figure 5.6. 
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Figure 5.6. Comparison of the Shewhart signed-rank-like chart with the Shewhart X  chart 

under Cauchy shift alternatives. 

 

When comparing the Shewhart signed-rank-like chart with the Shewhart X  chart 

under Cauchy shift alternatives we find that the Shewhart signed-rank-like chart is performing 

better than the Shewhart X  chart, since the out-of-control average run length values for the 

Shewhart signed-rank-like chart are smaller than the out-of-control average run length values 

for the Shewhart X  chart. It should be noted that these differences are large for all values of 

the median θ . 

 
In conclusion we found that the Shewhart signed-rank-like chart performs better than 

the Shewhart X  chart under heavy tailed distributions. In addition, recall that the Shewhart 

X  chart is not robust against outliers, whereas the proposed Shewhart signed-rank-like chart 

is, for the most part, robust against outliers. These are two key motivations to why the user 

should rather use the Shewhart signed-rank-like chart as opposed to using the Shewhart X  

chart.  
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Table 5.6. Summary of the second comparison between the Shewhart X  chart and the 

proposed signed-rank-like chart. 

Distribution Preferred control chart 
Normal Shewhart X  chart 
Double Exponential Shewhart signed-rank-like chart 
Cauchy Shewhart signed-rank-like chart 

 

5.1.6. The tabular CUSUM control chart 

 

Bakir (2006) proposed a tabular CUSUM signed-rank-like chart. Generally, the 

standardized upper one-sided CUSUM is given by 

 ],0max[ 1 kySS iii −+= +
−

+     for ,...3,2,1=i  (5.4) 

while the resulting standardized lower one-sided CUSUM is given by 

 ],0min[ 1 kySS iii ++= −
−

−     for ,...3,2,1=i  (5.5) 

or 

 ],0max[
*

1

*
kySS iii −−= −

−
−   for ,...3,2,1=i  (5.6) 

The two-sided standardized CUSUM is constructed by running the upper and lower one-sided 

standardized CUSUM charts simultaneously and signals at the first i  such that hS i ≥+  or 

hS i −≤− . 

 

The chart proposed by Bakir (2006) instead uses the cumulative sum of the statistic 

iSRL  (defined in (5.2)) with a stopping rule. A CUSUM signed-rank-like chart can be 

obtained by replacing iy  in expressions (5.4), (5.5) and (5.6) with iSRL . In other words, for 

the upper one-sided CUSUM signed-rank-like chart we use 

 ],0max[ 1 kSRLSS iii −+= +
−

+     for ,...3,2,1=i  (5.7) 

to detect positive deviations from zero. A signalling event occurs for the first i  such that 

hS i ≥+ .  

 

For a lower one-sided CUSUM signed-rank-like chart we use  

 ],0min[ 1 kSRLSS iii ++= −
−

−     for ,...3,2,1=i  (5.8) 

or 

 ],0max[
*

1

*
kSRLSS iii −−= −

−
−     for ,...3,2,1=i  (5.9) 
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to detect negative deviations from zero. A signalling event occurs for the first i  such that 

hS i −≤−  (if expression (5.8) is used) or hS i ≥−*
 (if expression (5.9) is used).    

 

The corresponding two-sided CUSUM chart signals for the first i  at which either one 

of the two inequalities is satisfied, that is, either hS i ≥+  or hS i −≤− . Starting values are 

typically chosen to equal zero, that is, 000 == −+ SS .  

 

A CUSUM signed-rank-like chart can also be constructed by replacing iy  in 

expressions (5.4), (5.5) and (5.6) with the standardized signed-rank-like statistic. 

 

Although Bakir (2006) provided the general idea of how to construct a CUSUM 

signed-rank-like control chart, he failed to do any simulation studies or to give any tables that 

can be used for the implementation of the chart. More research is necessary on CUSUM 

signed-rank-like control charts, for example, one could look at the implementation of the 

CUSUM signed-rank-like chart and study its performance. 

 

5.1.7. The EWMA control chart 

 

Bakir (2006) proposed an EWMA signed-rank-like chart. Generally, an EWMA 

control chart scheme accumulates statistics ,...,, 321 XXX with the plotting statistics defined as  

 1)1( −−+= iii ZXZ λλ  (5.10) 

where 10 ≤< λ  is a constant called the weighting constant. The starting value 0Z  is often 

taken to be zero. 

 

A nonparametric EWMA-type of control chart based on the signed-rank-like statistic 

can be obtained by replacing iX  in expression (5.10) with iSRL . Therefore, the EWMA 

signed-rank-like chart accumulates the statistics ,...,, 321 SRLSRLSRL  with the plotting 

statistics defined as  

 1)1( −−+= iii ZSRLZ λλ  (5.11) 

where 10 ≤< λ  and the starting value 0Z  could be taken to equal zero, i.e. 00 =Z . 
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 An EWMA signed-rank-like chart can also be constructed by replacing iX  in 

expression (5.10) with the standardized signed-rank-like statistic. 

 

Although Bakir (2006) provided the general idea of how to construct an EWMA 

signed-rank-like control chart, he failed to do any simulation studies or to give any tables that 

can be used for the implementation of the chart. More research is necessary on EWMA 

signed-rank-like control charts, for example, one could look at the implementation of the 

EWMA signed-rank-like chart and study its performance. 

 

5.1.8. Summary 

 

In this chapter we examined the Shewhart-type signed-rank-like chart proposed by 

Bakir (2006). We illustrated these procedures using the piston ring data from Montgomery 

(2001) to help the reader to understand the subject more thoroughly. The proposed chart is 

recommended when the process distribution is known to be heavy-tailed or to be 

contaminated by occasional outliers. We also briefly looked at CUSUM- and EWMA-type 

signed-rank-like charts. Although Bakir (2006) provided general ideas on how to construct 

CUSUM- and EWMA-type signed-rank-like control charts, he failed to do any simulation 

studies or to give any tables that can be used for the implementation of these charts. More 

research is necessary on CUSUM- and EWMA-type signed-rank-like control charts, for 

example, one could look at the implementation of these charts and study their performance. 
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