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Section B: Monitoring the location of a process when the target

location is unspecified or unknown (Case U)

Introduction

In Section A we focussed on monitoring the location of a chart when the location is
specified (case K). This ‘standard(s) known’ case is when the underlying parameters of the
process distribution are known or specified. In Section B we focus on monitoring the location
of a chart when the location is unspecified or unknown (case U). This ‘standard(s) unknown’

case is when the parameters are unknown and need to be estimated.
Chapter 4: Sign-like control charts

4.1. The Shewhart-type control chart
4.1.1. Introduction

Janacek and Meikle (1997) proposed a Phase II nonparametric control chart useful in
case U. The control limits of this chart are given by two selected order statistics of a Phase I

reference sample. The charting statistic is the median M, of the Phase II samples taken

sequentially.

Chakraborti, Van der Laan and Van de Wiel (2004; hereafter CVV) generalized the
work of Janacek and Meikle (1997). They considered using some order statistic of a Phase Il
sample as the charting statistic and control limits constructed from a Phase I reference sample.
Their work involves a class of two-sample nonparametric statistics, called precedence
statistics and their Shewhart-type charts are called precedence charts. The terms precedence

charts and sign-like charts will be used interchangeably throughout this text.

Assume that a reference sample of size m, X, X,.,..., X,,, 1s available from an in-control

process with an unknown continuous cdf F(x). The estimated control limits of the

precedence chart are given by two reference sample order statistics, say, LCL=X (@m and
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UCL = X (> Where 1<a<b<m. Let Ylh,Y2h,...,Yn}f , h=1,2,..., denote the h™" test sample

th

of size n,,. The plotting statistic Y('}m) is the j™” order statistic from the 4™ Phase II sample

of size n,. Let G"(y) denote the cdf of the distribution of the h™ Phase II sample.

G"(y)=G(y) Vh, since the Phase II samples are all assumed to be identically distributed.

Assume that the Phase II samples are all of the same size, n, so that the subscript 4 can be

suppressed. Under this assumption the plotting statistic is denoted by Y, For illustration

jm
purposes the plotting statistic is taken to be the median, but it can be any percentile of the
Phase II sample. CVV provided recommendations and tables for the implementation of
precedence charts and examined the chart performance in terms of the average run length.

The overall conclusion is that the Shewhart-type precedence charts are more robust than their
parametric counterparts, such as the Shewhart X chart. The precedence chart, being

nonparametric, has the in-control robustness property (such as the same ARL, or the FAR for

all continuous distributions), whereas as we noted earlier, the performance of the Shewhart X
(and other parametric charts) is significantly (highly) degraded if the distributional form of

the observations differs from normality.
4.1.2. Preliminary

Let W, denote the number of X -observations that precede Y The statistic W; is

Jin)
called a precedence statistic and subsequently a test based on a precedence statistic is called a
precedence test. Chakraborti and Van der Laan (1996, 1997; hereafter CV) gave an overview
of some nonparametric procedures based on precedence statistics. CV’s procedures included
both hypothesis testing and confidence intervals. CV also highlighted the fact that precedence

tests are simple and robust nonparametric procedures that are useful for comparing two or

more distributions.

Let P.(W; =w) denote the in-control probability distribution of W, where the
subscript C refers to the in-control case. If W; =w it means that w X -observations precede

Y,

(jm - If w X -observations are less than or equal to Y;,,,, then (m—w) X -observations are

jny>

greater than Y If we combine the reference sample (containing m X -observations) with

jn) *
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the test sample (containing n Y -observations) we obtain a single sample consisting of

N =m+n observations. From this combined sample, w X -observations and j Y-

observations are less than or equal to ¥, On the other hand, (m —w) X -observations and

jn) *

(n—j) Y -observations are greater than Y, There are a total of w+ j—1 observations that

jn) -

are less than Y

(i) and a total of (m—w)+(n—j)=m+n— j—w observations that are

greater than Y, The in-control distribution of W; can be obtained by using combinatorics

jin) -
which allows one to count the number of experimental outcomes when the experiment

involves selecting a number of objects, say r, from a larger set of objects, say R. The rule
o : o R

then states that the number of combinations of R objects taken r at a time is given by .
r

By using such combinatorial arguments the in-control distribution of W; can be obtained and

is given by

w nm-—w

B

Note that the in-control probability distribution of W ., i.e. when F =G, only depends on the

w+j—1j(m+n—j—w

j with w=0,1,2,....,m. 4.1)

Pc(W; =w)=(

number of observations in the reference sample m , the number of observations in each test
sample n and the chosen percentile of the Phase II sample j. Thus, the in-control run length
distribution of these precedence charts are distribution-free. The only condition is that the
distribution of the reference sample and the distribution of the test sample be continuous and

identical which is the case when the process is under control. It should be noted that this result

is also given by Randles and Wolfe (1979), Theorem 11.4.4.

As illustration, let the number of observations in the Phase I reference sample be 25
(m =25), the number of observations in each Phase II test sample be 15 (n=15) and the

chosen percentile of the Phase II sample be the median [ j= n;—l = 152+1 :8) The in-

control distribution, i.e. when F =G, of Wj is then given by
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w+7\32—w
w 25—-w .
Pc(W; = w) = 20 with w=0,1,...,25. 4.2)

Figure 4.1 represents the in-control distribution of W; when m=25, n=15 and

J =8. Note that the in-control probability distribution of W, is symmetric. In general, the in-
control probability distribution of W; is symmetric when n is odd and the chosen percentile

of the Phase II sample is the median of an odd Phase II sample.

0.02 HHHHHH
oo HHHM Mﬂnﬁ

012 3456 7 89 101112131415 1617 1819202122 23 24 25

w

Figure 4.1. The in-control distribution of W; when m =25, n=15 and j=38.

Figure 4.2 represents the in-control probability distribution of W; when the number of

observations in the reference sample is kept at 25 (m = 25), the number of observations in
each test sample is kept at 15 (n =15), but the chosen percentile of the Phase II sample is not

the median, i.e. j#8. We take j=4 for illustration purposes. Note that the in-control

probability distribution of W, is now asymmetric.
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Figure 4.2. The in-control distribution of W; when m =25, n=15 and j=4.
4.1.3. Probability of no signal

Recall that LCL = X and UCL =X ) - A non-signalling event in the case of the

(a:m)

<Y

two-sided chart occurs when X )

< X () - Stated differently, a non-signalling event

(a:m)

occurs when at least a X -observations precede Y ;,, and at most b—1 X -observations

precede Y, .

(jm > 1.6 a<W; <b—1. Let the probability of no signal be denoted by p . Then, the

probability of no signal is given by

p = p(mn, j;F,G)=P(X ., <Y, < X4m)=Plasw, <b-1). (4.3)
From (4.3) it can be seen that the probability of no signal, p, can be expressed in terms of the
precedence statistic W ., thus simplifying the probability calculations (see Randles and Wolfe

(1979), Example 11.4.19).

Let p, denote the in-control value of p. A process is said to be in-control when
G = F . Therefore, the expression for p, can be obtained by simply substituting G = F in
expression (4.3). Thus,
po = p(m,n, j; F,F)= P(NoSignal | In - control) = P, (a <W.<b- 1). “4.4)

J
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Recall that a false alarm is given when a signaling event occurs, given that the process
is actually in-control. Therefore, the probability of a false alarm (also referred to as the false

alarm rate (FAR)) is given by
1- p, =1- P(No Signal | In - control) = P(Signal | In - control) = FAR.  (4.5)

4.1.4. Determination of chart constants

The charting constants a and b are typically selected so that a specified false alarm
rate or a specified in-control average run-length is attained. The exact expression for the

ARL, is derived later on in this chapter using a conditioning method. In this section we will

focus on the FAR. Hence, the charting constants a and b are found by either setting the FAR

(given by 1-p,) to a desirable small value, say 1— F,, or by setting p, to some desirable
large value, say F,. Take note that P, will usually be chosen to be a large value such as 0.95
or 0.99 and the desired or specified value of the FAR, given by 1-F,, will be a small value

such as 0.05 or 0.0l. The charting constants are found such that

p, = P(No Signal | In - control) is not smaller than the desired or specified value F,, that is,
p, = P(NoSignal | In - control) 2 P, (this is due to the discrete nature of the distribution of
W;). Stated differently, the charting constants are selected such that
1- p, = P(Signal | In - control) is not larger than the desired or specified value 1- F,, that is,
1—p, = P(Signal | In - control) <1- F;. Since the statistic W, is discrete, not all desired or

specified P, values are attainable for all combinations of m, n and j. The inequality sign in

(4.6) ensures that we are conservative. The charting constants are found such that

(w+j—1](m+n—j—wj
b-1 —
Pa<W,<b-1)=> " mow s

o m+n =Po-
m

We can use any test sample order statistic (including the median) when implementing

(4.6)

the two-sided precedence chart. If the plotting statistic is taken to be the median, the in-

control probability distribution of W, is symmetric (for odd sample sizes) and a reasonable

choice for b is m—a+1. Once the charting constants @ and b are found, the estimated

202



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qo VYUNIBESITHI YA PRETORIA

O

control limits LCL= X (@m and UCL=X »m can be determined. Therefore, when the

plotting statistic is taken to be the median, we replace b by m—a+1 in (4.6) to obtain

[w+j—1j(m+n—j—wj
~ w m—-w
P.(asW,<m-a)=) >

~ m+n =Po-
m

For example, let the number of observations in the reference sample be 125

(4.7)

(m=125), the number of observations in each test sample be 5 (n=5) and the chosen

percentile of the Phase II sample be the median ( j= n;—l = S+l =3 (whenn is odd)j. By

2

substituting m =125, n=5 and j =3 into (4.7) we obtain

w+2\127—-w
1Z57al 125—-w
P.(a<W,<125-a)= ). 30 >p,. (4.8)
o)

Possible control limits were calculated using (4.8) and are shown in Table 4.1.

Table 4.1°. False alarm rate (FAR) and chart constant (a ) values for the Shewhart sign-like

chart when m =125, n=5 and j=3.

a 3 4 5 6 7 8 9 10

FAR | 0.000546 | 0.001079 | 0.001865 | 0.002948 | 0.004368 | 0.006164 | 0.008372 | 0.011025

From Table 4.1 we see that for a false alarm rate of 0.004368 one can take a =7 so

b=m—-a+1=125-7+1=119 so that the control limits are the 7" and 119™ ordered values
of the reference sample. Thus, LCL=X (7125, and UCL=X (19125, - For another example on

exceedance statistics see Randles and Wolfe (1979), Example 11.4.19.

" The values in Table 4.1 were generated using Microsoft Excel. Table 4.1 is an extension of Table 3 given in
Chakraborti, Eryilmaz and Human (2006).
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4.1.5. The median chart

Let n=2s+1, where s=0,1,2,..., (so that n is odd). Therefore, the median is

uniquely given by j= n;—l = (2s +21)+1 =s+1. The statistic W, 1is called the median

statistic of Mathisen (1943). The in-control probability distribution of W, 1is found by

substituting n =2s+1 and j=s+1 into (4.1) and is given by
(w+ sJ(an—w]
w m—w
4.9)
m+2s+1
m

(see Randles and Wolfe (1979), Example 11.4.5). Recall that the in-control distribution of W,

PC (WHI = W) =

(in this case, W_,,) is symmetric when n is odd and the chosen percentile of the Phase II

sample is the median. In this case a reasonable choice for b is m—a+1. The charting

constant a is found by substituting n =2s+1, j=s+1 and b =m—a+1 into equation (4.6)

and then solving for a such that (4.10) is satisfied.

(w+sj(m+s—wj
PC(aSWMSm—a)=Z_: i n-w 2D (4.10)
— m+2s+1

Once the charting constant a is found using expression (4.10), the charting constant b is
found from the relationship b =m—a+1. Thereafter, the control limits LCL=X (@m and
UCL=X »m) Can be determined. By using symmetry we have that

P.(asW,<m-a)

=1-(P.OSW, <a-)+P.(m—a+1<W, <m))

=1-2P.(0<W,<a-1)

and by setting 1-2P.(0<W, <a—1) 2> F, we obtain

1-P
P.OsW,<a-1= 20. 4.11)

Therefore, expression (4.10) can be re-written as expression (4.11) which is more convenient

to work with.
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For example, let the number of observations in the reference sample be 125 (m =125)

and s=2 so that n=2s+1=5 and j=s+1=3. By substituting m =125 and s =2 into
(4.10) we obtain

w42\ 127 -w
122l w \125-w
P.(a<W,<125-a)= ) 30 > P,
(125]

which is equal to expression (4.8). Therefore, the FAR values given in Table 4.1 can be used
in this example, meaning that one can take a=7 so b=m—-a+1=125-7+1=119 so that

the control limits are the 7" and 119" ordered values of the reference sample. Thus,

LCL = X 5, and UCL = X 4., » Which yield a FAR of 0.004368.

4.1.6. Control charts for other percentiles

Since we could be interested in other percentiles than the median (see Radson and

Boyd (2005) and Shmueli and Cohen (2003)), the distribution of W, is not symmetric (in

such cases) and finding the charting constants a and b is much more difficult.

Chakraborti, Van der Laan and Van de Wiel (2004) proposed the equal-tailed’
procedure when the 100 p™ percentile is of interest where 0< p <1. The equal-tailed

procedure is as follows:

Find the largest integer a (1< a <[mp]) such that

1-P,
2 b

P.(OSW, <a-1)<

and the smallest integer b (a < b < m) such that

1-P
Felb+1 W, <m)<— 0

These @ and b values are then substituted in the control limits LCL= X and

UCL=X,,,.

(a:m)

" Note that in general b #m—a+1 in this case so that the “equal-tailed” means equality in tail probabilities.
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4.1.7. Properties of order statistics

The ordered values of a sample are known as the order statistics. Various authors have
studied order statistics (see for example Randles and Wolfe (1979)). Our goal is to study the
distribution of order statistics. In addition, we give some well-known properties and results of

order statistics that will be used later on.

Suppose that X, X,...., X, denotes a random sample of size n from a continuous

pdf, f(x).The pdf of the k™ order statistic X (kmy 18 given by

n!

m (F('x(k:n) ))k_l (1 - F (X ))n_k F X)) - (4.12)

8 (X)) =

The joint pdf for X ., and X, is given by

n!
X
k=Dl -k-D!(n-1)!

8u (‘x(k:n) ’x(l:n)) =

(F('x(k:n)))k_lf('x(k:n))(F('x(l:n) _x(k:n)))l_k_l (l_ F(x(zzn)))n_l f('x(l:n))' (4.13)

Let U,,., denote the k™ order statistic of a sample of size n from the Uniform(0,1)

distribution. The pdf of U ,.,, is given by

Toan =gk 1T (4.14)
where B(k,n—k+1) = nk)g(::;; +1) _ (k- l)iq('n -t

The binomial series arises in connection with distributions of order statistics. The

binomial theorem gives the expansion of (a +b)" . Using the binomial theorem we obtain
k k
(a=b)* =>(=D" " |a""b" (4.15)
n=0 n

where a and b are any real numbers and k is a positive integer.
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4.1.8. One-sided control charts

In this section the lower- and upper one-sided precedence control charts are
considered. The lower one-sided chart will have a LCL equal to some constant value and an
UCL = o . In contrast, the upper one-sided chart will have an UCL equal to some constant

anda LCL = —o
4.1.8.1. Lower one-sided control charts

For the lower one-sided chart we have the LCL = X Therefore, a non-signalling

(a:m) *

event occurs when Y ;,,, 2 X

(azm) *

Result 4.1: Probability of no signal - conditional

1
1 ‘ ‘
P(NoSignal| X, = x)= j ——————u'(1-w) " du
G(x)ﬁ(]an_.]-l_l)

Using the probability integral transformation (PIT) (see, for example, Gibbons and

Chakraborti (2003)), we know that ¥, =G~ (U,,) and X, =F "' (U, ) where F and

(a:m)

G are both continuous cdf’s.

P(No Signall X .., = ) . (x), say,
=Py, >x1X,, =x)
- P67 W2 x1X,,, =x)

=P, 26 IX(am) )

1
= J- %Mj_l(l—u)n_jdu
G(x) :8(]9”_.]+1)

since %m’—l (1—u)"™/ is the pdf of U/, (see equation (4.14)).
B(j.n—j+1
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Result 4.2: Probability of no signal — unconditional

Let p, denote the unconditional probability of no signal, then:

P(No Slgnal) ( Yim 2 X(am))

j ( ni( 2 ( .](1—GF ‘I(V))H’] m! v A =v)" " dv

BG.n—j+D) & j+h\ h (a—D(m—-a)

Pr

= P(No Signal)

= P(Y(j:n) 2 X(a:m))

=Ex,., (P(Yu‘:n) 2 X (am) |X<a:m>))
=Ey, (PG(Y,,) 2 G(X ()1 X )

By the PIT we have that U, =G(Y,,) where G is the continuous cdf of the Phase II

(jn)

sample Y,,Y,,....Y . Using this we obtain
= EXw:m) (P(U(j:n) 2 G(X(a:m)) I X(a:m) ))

By the PIT we have that U =F(X, ) so that X =F'(U, .) where F is the

(a:m) (a:m) (a:m) (a:m)

continuous cdf of the reference sample X, X,,..., X, . Using this we obtain

_ -
- EU(a:m) (P(U(j:n) 2 GF (U(a:m)) I U(a:m)))

[PW,, 2GF 01U, =v)f (v

m!

(a-D(m—-a)!

where f(v) is the pdf of U, whichis given by f(v)= vl 1—v)ma

1 1 1 ‘ ‘
_ —  W=w) " du [f(v)dy
! GFJIM Blj.n—j+1)
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= f e - du oy ) dy
0\ GF~ (V),B(],n ]+1) (a—l)!(m—a)!

. , n-j N
The term (I-u)"’ can be expanded to (1—u)"’ = Z(—l)"(n ]JI”’/_"M" =

n—j

i
z (—1)'{ 5 ])uh by using a binomial expansion (see equation (4.15)) and we obtain
h=0

1 J-1 nj Y n—j\ ., ! -
'([[GFJ.(”)mu (hz—;‘( 1)( h ju ]du](a—l)!(m—a)!v (I-v)"“dv

By taking all the constants out of the integral sign and simplifying by setting u’/~'u" =5 /™"

we obtain

1 1 Jj=1+h m‘ a-1 m—a
_g(ﬂ(m ,+1)Z( )( jju du}(a_l)!(m_a)!v (1=v)"“dv

GF™ (v)

1 jth u=1

. . u
Integrating ju’ "y =
GF™'(v)

1 ~(GF )" ! o
_!]-[’B(]’n ]+1)Z( )( j( Jj+h (a—l)!(m—a)!v (=)™ dv

which simplifies to

_ 17 (6P o)™ _1-(GF T w)"
w—GF () j+h j+h j+h

we have
j+h

j( S ‘j(l-GF-‘(v))’”] My () dy.

Bn—j+D) S j+h\ h (a-1)\(m-a)!

209



e

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quu® YUNIBESITHI YA PRETORIA

Result 4.3: Probability of a signal - conditional

A signalling event occurs when Y, < X

(am) *

1

1 . :

P(SlgnalIXam ):1_ WM l-w)"du
- G'L)IB(J’"—]‘H)

Result 4.4: Probability of a signal - unconditional

1- p, = P(Signal) =

- j ( Zj( Al .j(l_GF _l(v))j+hj et (=) dy

Bn—j+D)E j+h\ h (a—1)(m-a)!

Result 4.5: Probability of a false alarm - conditional

0 1
CFAR=1- j

_ w(1—u)" du
F(x) IB(]an_]+l)

Follows immediately from Result 4.3, since G = F .

Result 4.6: Probability of a false alarm — unconditional

0 ( 1) (l’l -] J+h m' a—1 _ m—a
FAR=1- ;[(,B(],n ]+1)z]+hL hj ) j(a—l)!(m—a)!v (I=wyrdy

Follows immediately from Result 4.4, since G = F and therefore GF ™' (v) = FF'(v) = v.
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Result 4.7: Run-length distribution - conditional

PN=kI1X_ =x)=(p, )" U=p,(x)) for k=123,..

(a:zm) —

The conditional run length, denoted by NIX =x, will have a geometric

(a:m)
distribution with parameter 1— p,(x), because all the signalling events are independent.
Therefore we have that

NI1X ., =x~GEO(1-p, (x))

P(N=kI X (o = x)=(p, N (1= p,(x) for k=123,.

Consequently, the cumulative distribution function (cdf) is found from

P(N<kIX,, =x)

=2 (P, () A= p () =1=(p, (x))" for k=123,

We also have that

PN > k11X, =x)=1-(1-(p, )" )= (p, (X))".

Result 4.8: Average run-length - conditional

CARL=EN1X,,, =x)= -
I-p, (%)

or

(a:zm) —

CARL=E(N1X,,, =x)=3 (p, (x)"

Since the conditional run length, denoted by NIX =x has a geometric

(a:m)

distribution with parameter 1— p, (x), the conditional average run length is given by

CARL=E(N1X,,, =x)= .
I-p,(x)

The second expression follows immediately from the geometric expansion of (1- p, (x))™

for p,(x)<1.
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Result 4.9: Run-length distribution - unconditional

P(N =k)=Dj (k—1)-Dj (k) for k=123,.., D, (0)=1

where

N -1 o] m
DL(k)_i(ﬁ(j,n—j+l)hZ_;]+hk h ](1 6w} ](a—l)!(m—a)!v (=ndv

P(N =k)
=E, (PIN=k1X,, =1x)

£y (p,0)* 0= p, ()
=Ex ((PL () = (p (x)"* )
=, ((p. o))y (p)")

By only focussing on E, ((p, (x))*) we have

Ey. ((p.(0)")

| k
-E, j %u"l(l—u)"ﬂdu
I et BUR =+ D)

! [GJ@)m (1‘”‘)61”} £ (v)dv

m!
(a-DV(m—-a)!

where f(v) is the pdf of U, whichis given by f(v)= vl —y)me

I{ ] —uﬂ’"(l—u)"ﬂ"duJ T
o B(j.n—j+1) (a—1)!(m-a)!

GF™'(v)

. oo n—j .
The term (1-u)"/ can be expanded to (l—u)"“’=2(—l)h( hjjl"“"huh=

n—j

h=0

i
(—l)h( 5 J)uh by using a binomial expansion (see equation (4.15)) and we obtain

212




UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qo YUNIBESITHI YA PRETORIA

1 1 | N k . o
_i{cj‘wm (;( D( j Jdu] @ m—ap’ O

By taking all the constants out of the integral sign and simplifying by setting u’™'u" = u /™"

we obtain

l 1 Jj=l+h k m' a-l _ m—a
'([(ﬁ(],n ]+1)Z( )( jGF.[(I/f) du] PET——_ (1=v)"“dv

1 jth u=l j+h
. j-14h g U
Integrating u"""du =

GF'(v)

U (GFm)™" 1-(6F ')
 j+h j+h j+h

we have

j+h

u=GF~' (v)

| Al A N TR
_'([(,B(],n ]+1)z( )( j{ j+h @im—ay’ "V

which simplifies to

1 n—j( 1) ( - ) . " k o L
l(ﬁ(”” o el j(l 6r ) j @Dim—ay’ TV

D, (k),

say.

Recall that P(N =k)=E, _ ((p,)*")=E,_ ((p,())").
Therefore, P(N =k)=D, (k—1)— D, (k) for k=123,.., and D,(0)=1.

D, (0) =1 since
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( v .j(l—GF‘l(v))Mj G (SR

Bjn- J+1)hoj+hk h (a-(m—-a)!

O

S
&~ %
~
O
I|

v A =v)" " dy

(a— 1)'(m a)!

f()dv

Il
— ot~ ot S C—y —

This equals one, because in general, .[ f(x)dx=1 forreal x.

—oo

Result 4.10: In-control run-length distribution

P.(N=k)=D,(k—1)=D, (k) for k=123,., D,(0)=1

and

‘ L (0= 7Yy o o
Dk = j(ﬁ(]n J+1)z]+hk hj =) j(a—l)!(m—a)!v A=) dv

Recall that the reference sample of size m, X,,X,,...,X,, , is available from an in-
control process with a continuous cdf, F(x). The plotting statistic Y(’}n) is the j” order
statistic from the A™ Phase II sample of size n,. Let G"(y) denote the cdf of the distribution

of the 1™ Phase II sample. A process is said to be in-control at stage 7 when G" =F .
Assume that the Phase II samples are all of the same size, n, so that the subscript 2 can be
suppressed. Therefore, a process is said to be in-control when G = F'. Therefore, the in-
control run length distribution is obtained by setting G = F' into the equation for the out-of-

control run length distribution.

The out-of-control run length distribution for the lower one-sided chart is given by

P(N =k)=Dj(k—1)-Dj (k) for k=123,., D,(0)=1
and (4.16)

214




e

] UNIVERSITEIT VAN PRETORIA
‘ UNIVERSITY OF PRETORIA
Quu® YUNIBESITHI YA PRETORIA

s _1 1 ) (_1)h (n_.] _ -1 Jj+h ‘ m! a-l,1 _ \m—a
DL(k)_ﬂﬁ(j,n—ﬁl)hZ;ﬁhk h j(l Gr™' ) j @—Dim—ay’ TV

Therefore, the in-control run length distribution for the lower one-sided chart is obtained by

setting G = F' into equation (4.16) and we obtain

P-(N=k)=D,(k—-1)=D,(k) for k=123,., D,(0)=1
and (4.17)

_1 ( 1) (I’l -] J+h ' m' a-l _ . \m-a
DL(k)_j(ﬁ(],n ]+1)z]+hk hj -) J(a—l)!(m—a)!v (=™ dv.

Result 4.11: Out-of-control average run-length - unconditional

1

1
UARL, s = - f(v)dv
e gl—SL(v,J,n,F,G)
with
n—j +
S, jum F.Gy= L §ED 0= ](1 GF™ ()™
BG.n—j+D i j+h\ h

Let UARL, 5 denote the unconditional average run length, where & refers to the out-

of-control case. To derive an expression for the UARL, s, recall that

EX(a;m) ((pL (x))k )

=D, (k)
SHED!(n= RPN ‘ m! a1 m-a
('B(]’n ]+1)hz‘;]+h h j( o (V)) ] (a—l)!(m—a)!v I=v)""dv

1 {(=D)"(n=j IURYA
!(ﬂ(]m ]+1)Z]+h h ](1_GF Q) jf(v)d"

1 (=" (n-

For simplicity let S, (v, j,n,F,G) = —— ; ;
L B(j,n—j+1) = ]+hk h

JJ(I —GF™' ()™, therefore

we obtain
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=[(S, v, j.n, F,G)) f(v)dv

o'—.»—

Finally, we have that (from the second expression in Result 4.8)

UARL,

Ey. ((p,(x)")

Z(k)

1]
I I

j S, 0, j.n,F,G))" f(v)dv

i (S, (v, j.,n, F,G)) f(v)dv

s
|

v)dv from the geometric expansion of (1-S, (v, j,n,F,G))™"
1- S(VJ,nFG)f() g p (1=S,(v,j )

Result 4.12: In-control average run-length - unconditional

; m! -1 _
UARL a 1_ m-—a
Lo~ !(1 S (VJn)J(a Dim—ay’ T
with
. {(-)"(n~ AT
Ty J+1>zj+hk h J -

Let UARL,, denote the unconditional average run length, where O refers to the in-
control case. To derive an expression for the UARL, ,, recall that the in-control run length

distribution for the lower one-sided chart is given by
P.(N=k)=D,(k-1)-D,(k) for k=123,.., D,(0)=1
with

D, (k)= j( ! nz_j: D (n - jj(l - v)‘j+hj ! v A=) dv

W BG.n—j+D& j+h h (@a—1)(m-a)!
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( LSt ]j( )j £y

o'—,»—

BG.n—j+D)E j+h\ h

L e n-j
Bln—j+1) S j+h\ h

For simplicity let S, (v, j,n) = ](1 v)’*" | therefore we obtain

D, (k)= [ (S, (v, j;m)" f()av

and, finally, we have that

UARL,

2 LK)
>

j S, (v, j.m) fF()dv

k=0

i S L (v, ],n) f()dv

-5, ( v’]’n)f( v)dv.

>
s

4.1.8.2. Upper one-sided control charts

For the upper one-sided chart we have UCL =X wm - Lherefore, a non-signalling

event occurs when ¥, < X, .

Result 4.13: Probability of no signal - conditional

G(z) 1

[ - du
v BGn—j+1)

P(No Signal | X .. = )

Using the PIT, we know that Y, =G~'(U,,,) and X, =F "' (U,,,) where F and G are

(/ n)

both continuous cdf’s.
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P(No Signal | X oy = Z)Z py (2), say,

:P(Y(j:n) SZI)((bzm) :Z)

— -1 —

= P(G Ui S2l X = Z)

= P(U(j:n) <G Xy, = Z)

G(z) 1

= | ——————u'0-w)""du
o BG.n—j+1)
since ;uj_l (1—u)"/ is the pdf of U

- - . (see equation (4.14)).
B(j.n—j+1) m

Result 4.14: Probability of no signal — unconditional

Let p, denote the unconditional probability of no signal, then:

P(No Signal) = P(Y;,,, < X )

( 1§D (n—j](GF_l(v))j+hj M gy
BG.n—j+D)E j+h\ h (b—1)!(m—b)!

S S——

Py
= P(No Signal)
=P ) < X))

= EXW) (P(Y(j:n) < X hom I X (hom) ))
= EX(h:m) (P(G(Y(In)) < G(X(b:m)) | X(b:m) ))

By the PIT we have that U, =G(Y,,) where G is the continous cdf of the Phase II

(jn)
sample Y,,Y,,....Y . Using this we obtain
= EX(h:m) (P(U(ji”) < G(X(b:m)) | X(b:m) ))

By the PIT we have that U, = F(X,,,) so that X, =F"'(U,, ) where F is the

continous cdf of the reference sample X,,X,,..., X, . Using this we obtain

E, (PU, <GF ' Wum)1U,4))

(b:m)

IP(U(j:n) <GF™ )1 Uiy = v)f(v)dv
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. . . . m' b—1 m—b
where f(v) is the pdf of U,,. , which is given b V)= v (1-v
f) p (bm) g y f(v) b-D)l(m—b)! ( )

1 GF™'(v)
= J. J. .;.MH (1—u)"" du ! v A=v)" " av
ol o BU.n—j+D (b-1)!(m—b)!

. R n—j .
The term (1-u)"/ can be expanded to (l—u)"“’=2(—1)h( hjjl"“"huh=

n—j

(—1)'{ ; )uh by using a binomial expansion (see equation (4.15)) and we obtain

h=0

—j. GFJ-I(V); j-1 i(_l)h n_j h d m! b—l(l_ )m—bd
) BGa—iat & I e pim—y” VT

By taking all the constants out of the integral sign and simplifying by setting u’/~'u" = u/™'*"

we obtain

1 h - (V)j 1+h m! b-1 m—b
!(ﬂu,n ]+1)Z( )( ] [u du}—(b_l)!(m_b)!v (1=v)"dv

0

GFil(V) MZGFil(V)

By integrating ju*”"duz :
0 j+h

j+h
u J

_lertw)"” _ _eFrtm)”
=0 j+h j+h

we obtain

| GF o)™ ) m e
'([(,B(],n ]+1)z( )( J i+h Jo-Dim—py’ O

which simplifies to

1 n- /( 1) ( 1 j+h m' by .
'([(ﬂ(],n ]+1)hz ]+hk h ](GF ()) J(b—l)!(m—b)!v A-=v)""dv.
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Result 4.15: Probability of a signal - conditional

A signalling event occurs when Y ;,.) > X 4, -

G(2) 1

P(Signall X, =z)=1- [

T w' ' A—=u)"" du
o BG.n—j+1)

Result 4.16: Probability of a signal — unconditional

1- p, = P(Signal) =

1- j( z’( D" _jj(GF‘l(v))‘th—m! ! (1=v)"" dy

Bljn—j+ D) j+h\ h (b=1)!(m—b)!

Result 4.17: Probability of a false alarm - conditional

F(z2)
CFAR=1- j %uf‘l(l—u)"‘fdu
o BG.n—j+1)

Follows immediately from Result 4.15, since G = F .

Result 4.18: Probability of a false alarm - unconditional

FAR=1-
(ﬁ(m J+Dis

i Jj ] Lyt

L j+h\ h (b=1)(m—Db)!

Follows immediately from Result 4.16, since G = F and therefore GF ™' (v) = FF'(v) =v.
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O

Result 4.19: Run-length distribution - conditional

P(N = k | X(h:m) = Z): (pU (Z))k_l (1_ pU (Z)) for k = 15293a---

The conditional run length, denoted by NIX,, =z, will have a geometric

distribution with parameter 1-— p, (z), because all the signalling events are independent.

Therefore we have that

N1X ., =2 ~GEO(1-p,(2)

PN=kI1X,,, = 2)=(py (2 (U= p,(2) for k=123,
Consequently, the cumulative distribution function (cdf) is found from

PN <kIX,, =2)

=2 (py (@) A= py () =1=(py ()" for k=123,.

We also have that

P(N >k1X g, = z)zl—(l—(pU(z))k)=(pU(z))".

Result 4.20: Average run-length - conditional

1

CARL=EN1X,, =z)=——
o 1= py(2)

or

CARL=EN1X,,, =)= i(p,, ()"

Since the conditional run length, denoted by NIX, =z has a geometric

distribution with parameter 1— p,, (z), the conditional average run length is given by

1

CARL=E(N1X, =z)=——.
o 1= py (2)

The second expression follows immediately from the geometric expansion of (1- p, (z))™

for p,(z) <1.
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Result 4.21: Run-length distribution - unconditional

P(N =k)=D, (k—1) - D, (k) for k=123,.., D,(0) =1
and
m!

o e VLT AT PR
DU(k)_i(,B(j,n—j+l),,Z_:§j+hL h ](GF ) j G-Dim—py” TV

P(N = k)
=E,, (P(N=kIX,, =2)

=E, ((p, ()"0~ p, (2))
=E, ((py ()" ~(py (2))")
=E,, ((py")-E,, ((py(2)")

By only focussing on E | ((pU ()" ) we have

m)

Ey, ((py(2))")

GF'(v) 1 . - k
emil o BU.n—j+1)

1| (GF'() k
:J- { mu‘”(l—u)"]du] f(V)dV

m!
where f(v) is the pdf of U,,. , which is given b V)=
f) p (bm) g y f(v) b-1)l(m—b)!

Yo (1 =y

1 (GF'o) 1 . ' k ml
= j e’ (1-w)" du - VI (1=v)"" dv
ol o BG.n—j+1D) (b—1)!(m—b)!

222



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qo YUNIBESITHI YA PRETORIA

; o n—j\., _.
The term (I1-w)"”/ can be expanded to (I—-u)"’/ =) (-1)" ( . J]l""‘h u" =
h7

n—j —_ 7
(-1 ( ju" by using a binomial expansion (see equation 4.15)) and we obtain
h=0

1| (GF'(v) i n=j RN AT ‘ m! b-1 m—b
j{ I m” (;(_D( h ]” jd”J b-im—pn

By taking all the constants out of the integral sign and simplifying by setting u’™'u" = u /™"

we obtain

p GF~ (v)j o k ! U
l[ﬁ@” J+1>z( )( J I du} G-nim—py’ T

0

GF™'(v) j+h u=GF ™ (v)

By integrating ju*”"du =2
0 j+h

_lertw)"” _ _eFrtm)”
j+h j+h

we obtain

u=0

—1 h (GF (v ))]+h k m! - o
_g(ﬁ(%” J+1)Z( )( j j+h ) o-nim-pn’ T

which simplifies to

j( L ge'(ne j(GF_l( ))MJ M eyt gy

BG.n—j+D)E j+hl h (b—1)!(m—Db)!

=Dy (k),

say.

Recall that P(N = k) =E,  ((p, (2)"")-E,, ((py (2)").
Therefore, P(N =k) =D, (k—1)—D,, (k) for k=123,.., and D, (0)=1.

DZ (0) =1 since
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Il
— Ot~ Ot~ Ot~

D, (0)

( ! Zj Sy j(GF‘l (v))j+hJ My dy

Bn—j+D)E j+h\ h (b=1)(m—b)!
m'

(b—Dl(m—b)!

b-1 (1 _ v)m—h dV

f()dv

This equals one, because in general, .[ f(x)dx=1 forreal x.

—oo

Result 4.22: In-control run-length distribution

P.(N=k)=Dy(k—=1)-D, (k) for k=123.., D,(0)=1

and

")
D”(k)_ﬂﬁu,n—mn_oj+hk h j(v) j oty

Recall that the reference sample of size m, X,,X,,...,X,,, is available from an in-
control process with a continuous cdf, F(x). The plotting statistic Y(}]’.:n) is the j™ order
statistic from the A" Phase II sample of size n,. Let G"(y) denote the cdf of the distribution

of the 1™ Phase II sample. A process is said to be in-control at stage 7 when G" =F .
Assume that the Phase Il samples are all of the same size, n, so that the subscript # can be
suppressed. Therefore, a process is said to be in-control when G = F'. Therefore, the in-
control run length distribution is obtained by setting G = F' into the equation for the out-of-

control run length distribution.

The out-of-control run length distribution for the upper one-sided chart is given by

P(N =k)=Dj (k—1)- D, (k) for k=123,.., D,0)=1
and (4.18)
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D, (k) = I( — nij(._Dh("_jj(GF‘%v))"”] ey,

W BGn—j+1)& j+h h (b=1)!(m—b)!

Therefore, the in-control run length distribution for the upper one-sided chart is obtained by

setting G = F' into equation (4.18) and we obtain

P.(N=k)=D,(k=1)-D, (k) for k=123.., D,(0)=1

and (4.19)

1

L(=D)" (” J N+ k m! b=l gy ym=b
byl = j(ﬁ(},n ]+1)z]+hk h j ) j(b—l)!(m—b)!v A=n""dv.

Result 4.23: Out-of-control average run-length - unconditional

1

1
UARLy 5 = : f(@)dv
v gl—SU(v,],n,F,G)
with
n—j ¢ h _ n
Sy W, j,n, F,G) = — ! : (,D ( J](GF_l(v))]h
BGjn—j+D = j+h\ h

Let UARL,, 5 denote the unconditional average run length, where ¢ refers to the out-

of-control case. To derive an expression for the UARL,, s, recall that

EX(,””) ((PU (Z))k )

=D (k)
= D" (n— )it ‘ m! b1y mb
i (ﬁ(m 02 jeal j(GF ) j(b_l),(m_b)!v (=" dv

1 LD (=Y e )
!(ﬂu,n ]+1)Z]+h h ](GF ) jf(v)dv

1 (=" (n-

For simplicity let S, (v, j,n, F,G) = —— ; ;
v B(j,n—j+1) = ]+hk h

]J(GF - (v))‘j+h, therefore we

obtain
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1

Dy (k) = [(Sy (v, jn. F,G))" f (v)dv

0
Finally, we have that (from the second expression in Result 4.20)

UARL,,

X(b:m) ((pU (Z))k )

Il
Mz i MS EMz

Z(k)

j Sy v, jon, F.G)) f(v)dv

O

(S, (v jun FoG) )y

1
1-S, (v, j,nF,G)

O — O — — »

f(v)dv.

Result 4.24: In-control average run-length - unconditional

| 1 m! - .
UARL,, , = .
v -([(I_SU(V’L”)}(b—l)'(m_b)lv ( V) dv
with
. LD (n=0Y
Sy, j,n)= ,B(],n ]+1)z ]+hk I j V)

Let UARL; , denote the unconditional average run length, where 0 refers to the in-
control case. To derive an expression for the UARL,, ,, recall that the in-control run length

distribution for the upper one-sided chart is given by
P.(N=k)=D,(k-1)-D, (k) for k=123,.., D,(0)=1
with

_1 1 "_j(—])h(l’l—j i+ ¢ m' b-1,1 _  \m=b
D”(k)_i(ﬂ(j,n—j+1)hz_::j+hk h ](v) ](b—l)!(m‘b)’v e
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o j (- 1)/1( »
_'([(,B(J,Fl ]+1)2]+hk h j ) jf(V)dv

h a
For simplicity let S, (v, j,n) = Z ) ( J(v)f " therefore we obtain

B(j.n- J+1)
Dy (k) = [ (S, (v, j:m)" f )y

Finally, we have that

UARL,

Mz i MS

D (k)

O

J.S (v, ],n) f)dv

=

S —y — o'—.»— »
H

S (v, ],n) f(v)dv

1
—1 S, ) n)f(v)dv .

4.1.9. Two-sided control charts

For the two-sided chart we have LCL=X (@m and UCL=X »m) - Lherefore, a non-

signalling event occurs when X, <Y, <X, ..

Result 4.25: Probability of no signal - conditional

G(2) 1

 W'-w"du
G(x) ﬁ(]?n_ J +1)

P(No Signall X .., =x,X,,,, = z) =

Using the PIT, we know that Y, =G '(Ug,,): Xgw=F U,
X pm =F U ) Where F and G are both continuous cdf’s.

and
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(No Signall X .., =%, X .., = Z) = p(x,z2), say,

- P()C< Y(]n) = Zl‘Xv(a:m) - x’X(b:m) = Z)

—Plx<G'W ) <21 X 0y = % X ) = 2)

= P(G(.X) S U(jn) - G(Z)IX(am) = 'x’ X(b:m) = Z)
G(z) 1

= | ————u'Ad-w)"du
G(x) ﬁ(]?n_ J +1)

. 1 - ;. .
since ——  u’~ (1-u)""’ isthe pdf of U, ., (see equation 4.14).
B(j.n—j+1) m

Result 4.26: Probability of no signal — unconditional

Let p denote the unconditional probability of no signal, then:

P(No Signal) = P(X .., <Yy < X))

'(['([(,B(J,nl j+1)nZJ:(]_i)h( ;Jj((GF (I)) (GFI(S))j+h)J><

m!
(@-Dlb—a-Dim—b)"

(= )P 1= )" dsdr

p

= P(No Signal)

= P(X iy S Yy S X))

- EXW:,,,),X(M)( (X (amy) = Yy < X )| X(a:mwX(b:m))

= Ex X (P(G(X<a:m)) SG ) S GX X (s X(b:m))

By the PIT we have that U, =G(Y,,) where G is the continous cdf of the Phase II
sample Y,,Y,,....Y . Using this we obtain
= EX(u:m),X(b:m) (P(G(X(aim)) < U(] m) — G(X(b m) )) | X(a :m) ° X(b:m) )

By the PIT we have that U, =F(X,,) so that X, =F'U,,) and
Ugm =F(Xy,,) sothat X, =F W ) Where F is the continous cdf of the reference

sample X, X,,..., X, . Using this we obtain
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EU(a:m)va;m) (P(GF - (U(a:m) ) S U( n) S GF - (U(b:m) )) | U(a:m) ’ U(h:m) )

1
[(GF(s)<U;,, <GF ')V, =5.U,,, =0 f(s,0dsdt
0

where  f(s,r) is the joint pdf of U, and Ug,,, which is given by

m!

FD = b —a—Dim—b)!

Sa—l (t _ S)b—a—l (1 _ t)m—b

GF (1)

1
GFfl(S) ﬁ(j’n_j—i_l)

k
or @ . . |
{ I %u”(l—u)"’duJ o st —s5)" T A=0"" dsdt

Il
) S——
o'.—,w

w ' A=u)"’ dujf(s, t)dsdt

Il
<) S——
o~

o BUn=j+1) (a=DI(b—a-D!(m—-b)!

. R -
The term (1-u)"/ can be expanded to (l—u)”“’=Z(—1)h(nhjjl"“"huh=

n—j

n —
(—1)'{ 5 J)uh by using a binomial expansion (see equation 4.15)) and we obtain
h=0

1e| (GF (1) 1 o k m!
_M {GF'[(‘Y)ﬁ(j,n—j+l) (hz;‘( D( J J ] (a—l)!(b—a—l)!(m—b)!x

a l( S)b a— 1(1 t)m dedt

By taking all the constants out of the integral sign and simplifying by setting u’™'u" = u /™"

we obtain

1t GF™'(1) k
h -] Jj-l+h m’
}[}[(/5(]” J+1)Z( )( j Iu du} (a—l)!(b—a—l)!(m—b)!x

GF™ (s)
a l( S)b a— 1(1 t) _dedt

GF' (1) jen [4=CF () GF-' j+h 1 j+h
) . e t —\GF .
By integrating ju" gy =2 = ( ( )) . ( (s)) we obtain
GFfl(x) ‘] + u=GF ™ (s) ‘] + h
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I I { S 'j((GF‘(o)" ~(6F- <>)’”)J

,B(Ja” J+Di J+hk h
m!

@D —a D=y ¢S A" dsdr.

Result 4.27: Probability of a signal - conditional

A signalling event occurs when Y.,y < X ) OF Yy > Xy -

G(z) 1

@m) = %> X () =z)=1- I

_ w ' —u)"du
G(x)ﬂ(]’n_]—i'l)

P(Slgnal | X

Result 4.28: Probability of a signal - unconditional

1—- p = P(Signal) =

- iﬂﬂ(]ﬂ J+1)ni(]i);( ;jj((GF‘(t))j —(GF- (s))”h)j

h=0

m!

(@a-D!(b—a—1)(m—b)! s =) A= dsdt

Result 4.29: Probability of a false alarm - conditional

F(z)
CFAR=1- j %u"l(l—u)"ﬂdu
F(x) IB(]’n_ ]+1)

Follows immediately from Result 4.27, since G = F .
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Result 4.30: Probability of a false alarm - unconditional

~ I n— j( 1)/1(,1 j j+h_ "
~1- M(ﬂ(]n J+1)hz;‘1+hk h ](t )JX
m!

(a=D!b-a-D!(m->b)!

s =) A= dsdr

Follows immediately from Result 4.28, since G =F and therefore GF ' (s)=FF'(s)=s

and GF'(t)=FF'(t) =t.

Result 4.31: Run-length distribution - conditional

(am =% Xy = Z): (p(x, Z))k_l(l - p(x,2))

for k=123,...

P(N=kIX

The conditional run length, denoted by N1X ., =x, X, =z, will have a geometric

distribution with parameter 1— p(x,z), because all the signalling events are independent.
Therefore we have that

N1X =% Xy = 2~ GEO(1— p(x, 7))

(a:m)

o =5 X = 2) = (p(x, 2) 7 (1= p(x,2)

for k=1,2,3,...

P(N=k1x
Consequently, the cumulative distribution function (cdf) is found from
P(N SKVX (my = X X oy = Z)

= Z( p(x,2)) A= p(x,2)=1-(p(x,2))" for k=123,..

We also have that

PN >KkI1X,, =x.X,,, =2)=1-(1-(p(x.2)")= (p(x. 2))"
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Result 4.32: Average run-length - conditional

1
=X X ) = z)z

CARL=E(N1X -
l_p(x’ Z)

(a:m)
or

CARL=ENI1X,,,, =xX,,, =2)= i (p(x, )
k=0

Since the conditional run length, denoted by N1X ., =x X, =z has a geometric

(a:m)

distribution with parameter 1— p(x, z), the conditional average run length is given by

CARL=E(N1X,,, =x.X,,, =2)=—

1-p(x,2) )

(a:m)

The second expression follows immediately from the geometric expansion of (1— p(x,2)"

for p(x,z)<1.

Result 4.33: Run-length distribution - unconditional

P(N=k)=D (k-1)-D"(k) for k=123,..., D (0)=1

and

D' (k)= ”(ﬁ( $C D" _jj((GF_l(t))j ~(GF¢s ))’M)T

j.n—j+1)i= ]+hk h

m!
(a=D!(b—a-1)!(m->b)!

s =) A=) dsdr

P(N =k)
X( ) s X (b )(P(N:kIX(a:m) =4, X(h:m) :Z))

v (P06, 2 (A= p(x,20)
Ex( (G ) = (p(x2)))
=E, . ((peo))-E, y, (p(r.2)))

By only focussingon E, ., (( p(x, z))k) we have
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Ex<a:m),x(b:/,,) ((p(x, Z))k)

GF™ (1) k

1 . .

=By oo || | e ey du
(e om {GFl(s)ﬁ(J,n—Hl)

GF™'(1t)

1

_“{ j mu“(l—u)"’du} f (s,1)dsdt
00| \GF™'(s) >

where  f(s,r) is the joint pdf of U, and Ug,,, which is given by

— m! a-l,,  \b—a-1l, . \m-b
J = i b—a—Dimopy® A0
1if (GF'(0 1 ' . k -
=H I ——————u (1~w)"du st =) (1 —1)" " dsdt
D3l Lt BUn = j+1) (a-Db—a—1)!(m—b)!

. R -
The term (1-u)"/ can be expanded to (l—u)”"=Z(—1)h(nhjjl""‘huh=

n—j

Z (—1)"(n ; ]ju" by using a binomial expansion (see equation (4.15)) and we obtain
h=0

GF™ (1)

( i k m!
M {cjmﬁ(w j+n (g( D( j j } (a—Dib—a—-1)lm—b)! |

s =) A=) dsdt

By taking all the constants out of the integral sign and simplifying by setting u’™'u" = u /™"

we obtain

11t GF™'(1) k
_ —-J j—1+h m!
_-(['([[ﬂ(j,n J+1)Z( )[ ] j” duj @-Dlb—a-Dlm=b)

GF™ (s)
s M=) 1=0)""dsdt
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GF' (1) jen [4=GF () GF-' j+h _ j+h
) . e t —\GF .
By integrating ju" gy = 2 = ( ( )) . ( (s)) we obtain
GFfl(x) ‘] + h u=GF ™ (s) ‘] + h

Bjn—j+1)im J+h\ h
m!

(a=D!(b-a-D!(m->b)!

H( SHen - )((GFl(o)’”’ (GF- ())’”)jk

sV =9 A -0" dsdr

=D’ (k),

say.

Recall that P(N =k)=E, (pCx. o))~ Ev  xo (p(x.2)")
Therefore, P(N=k)=D"(k—1)-D" (k) for k=123,.., and D (0)=1.

D" (0) =1 since

&0 (1 Mg - o))
po= ”[ﬁ(]n J+l); j+h\ h ]((GF " -lor o )]
m!

(a—l)!(b—a—l)!(m—b)!s

1t — oA — )™ dsdr

m!

(a—l)!(b—a—l)!(m—b)!s

Il
— ot— - ot—

=) A =1)" " dsdt

f(s,t)dsdt

O ey O

Result 4.34: In-control run-length distribution

P.(N=k)=D(k-1)—-D(k) for k=123,.., D@0)=1

and

_lt ( 1) (l’l J j+h j+h ‘ m!
D(k)_'([j(ﬂ(]n ]+1)Z]+hk h j( - )j (a—l)!(b—a—1)!(m—b)!><

s t=9) T A=) dsdt
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Recall that the reference sample of size m, X,,X,,....X,,, is available from an in-
control process with a continuous cdf, F(x). The plotting statistic Y(}]’.:n) is the j™ order
statistic from the A™ Phase II sample of size n,. Let G"(y) denote the cdf of the distribution

of the 1™ Phase II sample. A process is said to be in-control at stage # when G" = F .
Assume that the Phase II samples are all of the same size, n, so that the subscript 4 can be
suppressed. Therefore, a process is said to be in-control when G = F'. Therefore, the in-
control run length distribution is obtained by setting G = F into the equation for the out-of-

control run length distribution.

The out-of-control run length distribution for the two-sided chart is given by
P(N=k)=D"(k-1)-D"(k) for k=123,.., D (0)=1
and (4.20)

o S -]

m!
(@-Dlb—a-Dim—b)"

-9 A=) dsdr .

Therefore, the in-control run length distribution for the two-sided chart is obtained by setting

G = F into equation (4.20) and we obtain

P.(N =k)=D(k-1)-D(k) for k=123,.., D0)=1
and 4.21)

_lt ( 1) (l’l J j+/1 j+h ‘ m!
D(k)_'([j(ﬂ(]n ]+1)Z]+hk h ]( - )J (a—1)!(17—(1—1)!(171—[7)!><

s =) A=) " dsdr .
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Result 4.35: Out-of-control average run-length - unconditional

11t
UARLgz = { { 56 F G £ (s,0)dsdt
with
; _ 1 < (_l)h (l’l _j -1 jth -1 j+h
S(s,t,],n,F,G)—ﬁ(j’n_j_i_l)hz_(;j+hk , ]((GF 0)" =(GF(s)) )

Let UARL; denote the unconditional average run length, where & refers to the out-of-

control case. To derive an expression for the UARL; , recall that

Ev o ((p(x2))
=D" (k)

H[ e’ fn- j((crl(t))"”’—(GF-1<s>)"”‘)]k><

BGn—j+)& j+hl h

m!

(a—l)!(b—a—l)!(m—b)!s

1 — )= )" dsdr .

_lt ( 1)11( —J -1 jth a j+h ‘
_M(ﬂw,n J+1)Zj+hk h j((GF )" -(6r o) )j f(s,0)dsdt

: _ LED" (M=) (et Vo (oot o
Let S(s,t, jn, F,G) = e ,+1>Z J((GF 0)" =(GF(s)) )

= [[(S(s.t, j,n. F,G))" f (s,t)dsdt .

Finally, we have that (from the second expression in Result 4.32)

UARL

Ey . Xom ((P(X, Z))k)

N

D" (k)

x~
I
=]
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(S(s,t, jon, F.G))" f(s,0)dsdt

>~
Il
o

Il

M
) S
o~

(S(s,t, jon, F,G)) £ (s,0)dsdt

NgE

T
(=]

1
-S(s,t, j,n, F,G)

O — O —

f(s,t)dsdt .

Ot~ O~

p—

Result 4.36: In-control average run-length - unconditional

11 - - — -
ARI o
= '(';E((l S(s,1, ],n)](a DIb—a—-1!(m- b)'s (=) (A—1)""dsdt

with

i 1 (=" (” J th _ g ith
R TPy P J( ~s™)

Let UARL, denote the unconditional average run length, where O refers to the in-

control case. To derive an expression for the UARL,, recall that the in-control run length

distribution for the two-sided chart is given by
P.(N=k)=D(k-1)-D(k) for k=123,.., D(Q)=1

with

Y LD (=Y ) m!
D(k)‘ﬂ(ﬁu,n J+1)z]+hk h )( i )j (a=-Dlb—a-Dim—b) "

s =) A=) dsdt

_lr ( 1)( ]+h ]+h k
_}[!(ﬁ(],n ]+1)z]+hk h j( )J Sf(s,t)dsdt

(= h -7 . .
For simplicity let S(s.t,j,n)=—— ! _ (_1) (n ]J(t“"—s’”’), therefore we
BG.n—j+1 & j+hl h

obtain

D(k)z” S(s,t, j,n)) f(s,t)dsdt
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Finally, we have that

>~
I
(=]

(S(s,t, j,n)) f(s,0)dsdt

T
(=]

Il
NgE
o t—
o —_

(S(s.t, j,n))" f(s,0)dsdt

il

C— — O —

1
—f(s,f dsdt .
1-8(s,t, j,n)f( )

Ot~ O —

4.1.10. Run-length distribution and ARL under some alternatives

In the nonparametric setting, we consider, more generally, monitoring the center value
or the location parameter and/or a scale parameter of a process. The location parameter
represents a typical value and could be the mean or the median or some other percentile of the
distribution; the latter two are especially attractive when the underlying distribution is
skewed. When the underlying distribution is symmetric, the mean and the median are the
same. Also in the nonparametric setting, the processes are implicitly assumed to follow (i) a

location model, with a cdf F(x—6), where 8 is the location parameter or (i1) a scale model,

with a cdf F (fj, where 7(>0)is the scale parameter. Even more generally, one might
T

x—0
T

consider (iii) the location-scale model with cdf F [ j, where 6 and 7 are the location

and the scale parameter, respectively.

Recall that the reference sample is available from an in-control process with a continuous

cdf, F(x), and that G(y) denotes the cdf of the distribution of the Phase Il sample. The run
length distribution depends on F and G, through the function ¥ = GF™'. A process is said

to be in-control when G = F . In this case y(u) = G(F_1 (u)): F(F_1 (u)): u.
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4.1.10.1. Location alternatives

F(x)=H(x-6,) and G(x)=H(x—6,), where H is a continuous cdf, xe R and
6,,6,eR, ywu)=HO6,-6,+H “"(u)). For example, let both F and G be normally
distributed with a change in the mean, i.e. F(x)=®(x) and G(x)=P(x—6). But yw(u)

= G(F ' (u)) (by definition) and therefore w(u) = ®(® "' (u)-0).
4.1.10.2. Scale alternatives

X X

F(x):H( J and G(x):H(

J, where H is a continuous cdf, xe R and

1 2

V.7, €R", wu)=H (ﬁH - (u)]. For example, let both F and G be normally distributed

V2

with a change in the spread, i.e. F(x)=®(x) and G(x) = @(%j But w(u) = G(F ' (u)) (by

-1
definition) and therefore y(u) = CI{CD (u)j.
4

4.1.10.3. Location-scale alternatives

x—6,

-6
F(x)zH( j and G(x)zH(x 2], where H is a continuous cdf, xe R,

i 7>

6,,0,e R, and 7,,7, € R", y(u) = H(M+AH‘1 (u)]. For example, let both F and G

7 7>

be normally distributed with a change in the mean and spread, i.e. F(x)=®(x) and

G(x)= q{x— gj. But wu)=G(F'(u)) (by definition) and therefore w(u)=
cI{cp- (u)—@j :q{df () _gj'
v /4 v
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4.1.10.4. Lehmann alternatives

G(x)=F°(x), where xe R and 5 R*, w(u)=u’. For example, let F(x)=u and
G(x)=(F(x))°. But wu)=G(F"'(u)) (by definition) and therefore w(u)=

(F(F™' )’ =u’.

e Foro=1: y(u)=u=F(x).

e Ford=2:yu)=u>=F*(x).
4.1.10.5. Proportional hazards alternatives

G(x)=1-(1-F(x))”, where xe R and y€ R", w(u)=1—(1-u)”. For example, let
F(x)=u and G(x)=1-(1-F(x))". But w(u) =G(F (1)) (by definition) and therefore

) = 1-(1-F(F " )" =1-1-u)".
4.1.10.6. Summary

Although a lot of research has been done in the last few years regarding Lehmann and
proportional hazard alternatives (see for example Van der Laan and Chakraborti (1999)),
more remains to be done. Van der Laan and Chakraborti (1999) showed that the power of a
precedence test can be determined for both the Lehmann and proportional hazards
alternatives. The body of literature on Lehmann and proportional hazards alternatives is
growing. However, in our opinion, a discussion on this topic is better postponed for the

future.
4.2. The Shewhart-type control chart with runs-type signalling rules
4.2.1. Introduction
Chakraborti, Eryilmaz and Human (2006) considered enhancing the precedence charts

with 2-of-2 type signalling rules. The 2-of-2 DR and 2-of-2 KL rules were defined previously
(see Section 3.2). Recall that the 2-of-2 KL chart signals when two of the most recent charting
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statistics both fall either on or above or on or below the control limits, whereas the 2-of-2 DR
chart signals when the charting statistics fall either both on or above or both on or below or
one on or above (below) and the next one on or below (above) the control limits. We illustrate

these procedures using the Montgomery (2001) piston ring data.
4.2.2. Example

Example 4.1
A sign-like control chart based on the Montgomery (2001) piston ring data

We illustrate the sign-like control charts using a set of data from Montgomery (2001,
Tables 5.1 and 5.2) on inside diameters of piston rings manufactured by a forging process.
Table 5.1 of Montgomery (2001) contains 25 retrospective or Phase I samples, each of size
five, that were collected when the process was thought to be in-control. When working with
individual observations, we have 25x5=125, i.e. m =125, individual observations. Table
5.2 of Montgomery (2001) contains 15 prospective or Phase II samples, each of five

observations.

In order to implement the control charts, the charting constants are needed. Generally,

one finds the chart constants so that a specified ARL,, such as 500 or 370, is obtained. For

the precedence type charts, symmetric control limits are used so that b =m—a+1 and only

one charting constant a (=1) needs to be found. Possible control limits for the three charts
are shown in Table 4.2 for m =125, n=5 and j =3, along with the corresponding FAR and

ARL, values. The basic Shewhart-type precedence chart is referred to as the /-of-1 chart.
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Table 4.2. In-control average run length (ARL, ), false alarm rate (FAR) and chart constant

(a) for the I-of-1, 2-of-2 DR and 2-of-2 KL precedence charts when m =125, n=5 and

j=3"
1-of-1 2-0f-2 DR 2-0f-2 KL
a ARL, FAR a ARL, FAR a | ARL, FAR
5 | 131598 | 0.001865 | 19 | 464.38 | 0.004020 | 19 | 819.47 | 0.002355
6 | 695.09 | 0.002948 | 20 | 344.73 | 0.005195 | 20 | 608.81 | 0.003019
7 | 413.80 | 0.004358 | 21 | 260.69 | 0.006627 | 21 | 460.54 | 0.003823
8 | 267.40 | 0.006164 | 22 | 200.46 | 0.008356 | 22 | 354.09 | 0.004788

Thus, for an ARL, of 500, one can take a =7 and b =119 so that the control limits
for the I-of-1 precedence chart are the 7™ and the 119" ordered values of the reference
sample. Thus LCL= X ;.5 =73.984 and UCL= X 5,5 =74.017, which yield an in-

control average run length of 413.80 and a FAR of 0.0044. A plot of the sample medians for
the /-of-1 chart is shown in Figure 4.3. It is seen that the /-of-1 precedence chart signals on

the 12" sample in the prospective phase.

74.03 4

Phase 2

FPhase 1

74.02 1
LICL = 74,017

74.01 4

Median

74,00 1

73,99 4

LCL = 73.904

73.93 4

28 32 36 40

16 20 24
Sample number

12

Figure 4.3. /-of-1 Precedence chart for the Montgomery (2001) piston ring data.

" Table 4.2 appears in Chakraborti, Eryilmaz and Human (2006), Table 3.
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For the 2-0f-2 DR chart, take a =19 so that b =125-19+1=107 and the resulting
limits, LCL =X 0,55, =73.992 and UCL = X 1,5, = 74.012, yield an ARL, and FAR of
464.38 and 0.0040, respectively. Note however that if one chooses a =20 so that b =106,
the control limits are LCL = X (20125, and UCL=X aoe12s) and the ARL, decreases to 344.73,

whereas the FAR slightly increases to 0.0052. The 2-o0f-2 DR chart is shown in Figure 4.4.

74,02
Phasze 1 Fhasge 2
74.02 4
% + L LCL = 74,012
= 74.01
i
=
74,00 4
»
LCL = 73,992
F3.99 4 l
4 a8 12 16 20 24 2a 32 36 40
Sample number

Figure 4.4. 2-0f-2 DR precedence chart for the Montgomery (2001) piston ring data.

For the 2-of-2 KL chart take a=21 so that b=125-21+1=105 so that
LCL=X 5,105, =73.992 and UCL = X 5,5, = 74.011, and this yields an ARL, of 460.54

and a FAR of 0.0038, respectively. This 2-0f-2 KL chart is almost identical to the DR chart in
Figure 4.4.
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74,03
F4.02 1
= * h —
% 74.01 4 3 LICL = 74,011
i
=
74,00 4
L
LCL = 73,992
73,99 4 l
4 g 1 15 20 24 28 32 36 40
Sample number

Figure 4.5. 2-of-2 KL precedence chart for the Montgomery (2001) piston ring data.

Both the 2-0f-2 DR and KL charts signal on the 10" sample in the prospective phase.
Note, however, that the achieved FAR values for all three charts are much larger than the

nominal FAR of 0.0027.
4.2.3. Summary

In this chapter we examined sign-like control charts with runs-type signalling rules.
We illustrated these procedures using the piston ring data from Montgomery (2001) to help
the reader to understand the subject more thoroughly. There are many advantages to using
these nonparametric charts (see Section 1.4). Chakraborti, Eryilmaz and Human (2006) draw
attention to two advantages in particular, namely, that these charts can be applied as soon as
the required order statistics are observed (recall that both the control limits and the charting
statistic are based on order statistics), whereas for the Shewhart X charts one needs the full
dataset to calculate the average. Moreover, these charts can be adapted to and applied in the
case of ordinal data. As a result Chakraborti, Eryilmaz and Human (2006) recommend that

these charts be used in practice.
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Chapter 5: Signed-rank-like charts

5.1. The Shewhart-type control chart

5.1.1. Introduction

The statistics used in nonparametric control charts are mostly signs, ranks and signed-
ranks and related to nonparametric procedures, such as the Wilcoxon signed-rank test and the
Mann-Whitney-Wilcoxon rank-sum test. When considering nonparametric tests based on
ranks, such tests deal with the ranking of independent, identically distributed (iid) random
variables (under the assumption that the process is in-control). In Chapter 5 we consider
nonparametric tests that involve ranking random variables that are exchangeable (again, this
holds under the assumption that the process is in-control), meaning that each possible ranking
is equally likely. Randles and Wolfe (1979) state that the term rank-like is used to describe a
type of test procedure where the variables that are ranked are not the original observations,
but are, instead, functions of them. The term rank-like was first introduced by Moses (1963).
Moses’s rank-like test is a nonparametric test for comparing differences in dispersion between
two samples in which the medians are not equal. This requires randomly allocating the sample
observations into two subgroups, ranking the subgroups according to their dispersion indexes
and calculating the ranks sums for each subgroup. It should be noted that although Moses’s
rank-like test uses rankings of iid random variables (under the assumption that the process is
in-control), these variables are not the original observations, but instead, functions of them.
Bakir (2006) considered what are called signed-rank-like (SRL) statistics and used these to
construct distribution-free charts. He uses the median of a reference sample (taken when the

process was operating in-control) to estimate the unknown in-control process center.

5.1.2. Definition of the signed-rank-like test statistic

Assume that a reference sample of size m >1, X,,X,,...,X,, , is available from an in-

control process with an unknown continuous cdf F(x). Let ¥;,Y,,....Y, i=12,..., denote

secesdin o

th

the i test sample of size n. In case U the median of the in-control distribution (assumed to

be symmetric) is unknown and can be estimated by the median of a reference sample, say M.
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Let R; denote the rank of ‘yij —M‘ within the subgroup Qyil -M|,...|y,, —M|) for
i=1273.... R; can be calculated using
R, =1+> (Ily, —MI<ly, =M ) for j=12,..n (5.1)
k=1
where / is the indicator function defined by /(x) =1, 0 if x is true or false.
The charting statistic is given by
SRL, = sign(y; ~M R, for i=123.. (5.2)

j=1
where sign(x) =-1,0, 1 if x<0, =0, >0. The charting statistic, SRL;, is a direct analog of
the plotting statistic SR, used in case K. If the charting statistic SRL, falls between the two
control limits, that is, LCL < SRL, <UCL, the process is considered to be in-control. If the
charting statistic SRL; falls on or outside one of the control limits, that is SRL; < LCL or

SRL, = UCL, the process is considered to be out-of-control.

Example 5.1
A Shewhart-type signed-rank-like statistic for the Montgomery (2001) piston ring data

We illustrate the Shewhart-type signed-rank-like chart using a set of data from
Montgomery (2001; Tables 5.1 and 5.2) on the inside diameters of piston rings manufactured
by a forging process. Table 5.1 of Montgomery (2001) contains the reference sample of size
m =125 (see example 4.1 for an explanation of why m is equal to 125 (and not 25 like some
of the earlier examples) and the median of this reference sample equals 74.001, i.e.

M =74.001.

Panel a of Table 5.1 exhibits the individual observations of 15 independent samples,

each of size 5 i.e. n=5. The absolute deviations ‘ yi—M ‘ and sign(y,-j -M ) are shown in

panel b and panel c of Table 5.1, respectively. The rank R;- and the sign(yij -M ) R;; values

ij
are shown in panel a and panel b of Table 5.2, respectively. Panel ¢ of Table 5.2 holds the
SRL-values i.e. SRL, for i =1,2,3,...,15.
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Table 5.1. Data and calculations for the signed-rank-like chart.”

Panel a Panel b Panel ¢
=R -
Sample T BT = TN T (L IR RN S
number |y Yi2 Yis Yia Yis 'q I';\! Im Lr I._ﬂ ;z‘ g\: g: ;‘ g:
o N ol o@ R @
1 74.012 | 74015 | 74.030 | 73.986 | 74.000 | 0.011 | 0.014 | 0.029 | 0.015 | 0.001 | 1 1 1| 1|
2 73.995 | 74.010 | 73.990 | 74.015 | 74.001 | 0.006 | 0.009 | 0.011 | 0.014 | 0.000 | -1 1| 1] 1 |o
3 73.987 | 73.999 | 73.985 | 74.000 | 73.990 | 0.014 | 0.002 | 0.016 | 0.001 [ 0011 | -1 | -1 | -1 | -1 | -1
4 74.008 | 74.010 | 74.003 | 73.991 | 74.006 | 0.007 | 0.009 | 0.002 | 001 | 0.005 | 1 1 1| -1 |1
5 74.003 | 74.000 | 74.001 | 73.986 | 73.997 | 0.002 | 0.001 | 0.000 | 0.015 | 0.004 | 1 100 | 1|
6 73.994 | 74.003 | 74.015 | 74.020 | 74.004 | 0.007 | 0.002 | 0.014 | 0.019 | 0.003 | -1 1 1 1|1
7 74.008 | 74.002 | 74.018 | 73.995 | 74.005 | 0.007 | 0.001 | 0.017 | 0.006 | 0.004 | 1 1 1| -1 |1
8 74.001 | 74.004 | 73.990 | 73.996 | 73.998 | 0.000 | 0.003 | 0.011 | 0.005 | 0.003 | © N IS T S T B
9 74.015 | 74.000 | 74.016 | 74.025 | 74.000 | 0.014 | 0.001 | 0.015 | 0.024 | 0.001 | 1 1|1 1| -1
10 74.030 | 74.005 | 74.000 | 74.016 | 74.012 | 0.029 | 0.004 | 0.001 | 0.015 | 0.011 | 1 1 S T I O
11 74.001 | 73.990 | 73.995 | 74.010 | 74.024 | 0.000 | 0.011 | 0.006 | 0.009 | 0023 | o | -1 | -1 | 1 | 1
12 74.015 | 74020 | 74.024 | 74.005 | 74.019 | 0.014 | 0.019 | 0.023 | 0.004 | 0018 | 1 1 1 1|1
13 74.035 | 74010 | 74.012 | 74.015 | 74.026 | 0.034 | 0.009 | 0.011 | 0.014 | 0.025 | 1 1 1 1|1
14 74017 | 74.013 | 74.036 | 74.025 | 74.026 | 0.016 | 0.012 | 0.035 | 0.024 | 0.025 | 1 1 1 1|1
15 74.010 | 74.005 | 74.029 | 74.000 | 74.020 | 0.009 | 0.004 | 0.028 | 0.001 | 0.019 | 1 1 1| -1 |1

" See SAS Program 10 in Appendix B for the calculation of the values in Table 5.1.
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Table 5.2. Calculations for the signed-rank-like chart .

Panel a Panel b Panel ¢
*_—- *_m % %J *_Fr * D;:._
= - - -
R, | R, | R, | R, | R, N N N L | SRL
Sample ~ = '_"":: E‘:: =,
number g;:l g;j _gﬁ E;il gﬂ
1 2 3 5 4 1 2 3 5 -4 -1 5
2 2 3 4 5 1 2 3 -4 5 0 2
3 4 2 5 1 3 -4 2 -5 -1 -3 -15
4 3 4 1 5 2 3 4 1 -5 2 5
5 3 2 1 5 4 3 2 0 -5 -4 -8
6 3 1 4 5 2 -3 1 4 5 2 9
7 4 1 5 3 2 4 1 5 -3 2 9
8 1 2.5 5 4 2.5 2.5 -5 -4 2.5 9
9 3 1.5 4 5 1.5 3 -1.5 4 5 -1.5 9
10 5 2 1 4 3 5 2 -1 4 3 13
11 1 4 2 3 5 0 -4 2 3 5 2
12 2 4 5 1 3 2 4 5 1 3 15
13 5 1 2 3 4 5 1 2 3 4 15
14 2 1 5 3 4 2 1 5 3 4 15
15 3 2 5 1 4 3 2 5 -1 4 13

The control limits are chosen to give a certain false alarm rate or in-control ARL. A

symmetric two-sided chart is obtained by choosing LCL =-UCL. For n =15, the control

limits for the signed-rank-like chart are set at =15. These control limits yield an in-control

ARL of 16 and a FAR of 0.0626 (these values were obtained by the use of a simulation study

(see SAS Program 6 in Appendix B) where m =500 and n =5). With such a small in-control

average run length, many false alarms will be signalled by this chart leading to possible loss

of time and resources. The chart is shown in Figure 5.1 with control limits at 15.

" See SAS Program 10 Appendix B for the calculation of the values in Table 5.2.
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SRLi

-104

-15 ® -15

T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Sample number

Figure 5.1. Shewhart-type signed-rank-like control chart for Montgomery (2001) piton ring
data.

Observations 3, 12, 13 and 14 lie on the upper control limit which indicates that the
process is out-of-control starting at sample 3. It appears most likely that the process median
has shifted upwards from the target value of 74mm. Corrective action and a search for

assignable causes is necessary.

5.1.3. Distribution-free properties

We want to establish that the charting statistic SRL; is distribution-free. If the latter is
true, then the signed-rank-like chart based on the SRL, statistic will be distribution-free. To
establish that SRL, is distribution-free, we first have to look at some properties. Randles and

Wolfe (1979) provided various definitions and theorems that are useful in this text.

Definition 1

(See Definition 1.3.1. of Randles and Wolfe (1979), pg. 13)

Two random variables S and T are said to be equal in distribution if they have the

d
same cdf. To denote ‘equal in distribution” we use the notation S=T .
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Definition 2
(See Definition 1.3.6 of Randles and Wolfe (1979), pg. 15)

A collection of random variables X, X,,..., X, is said to be exchangeable if for every

n

d
permutation (a'l,az,...,an) of the integers (1,2,...,n), (XI,XZ,...,Xn):(Xal,Xaz,...,Xa”) .

Theorem 1

(See Theorem 1.3.7 of Randles and Wolfe (1979), pg. 16)

d
If X=Y and U(-) is a (measurable) function (possibly vector valued) defined on the

d
common support of these random variables, then U(X)=U(Y) .

Theorem 2

(See Theorem 11.2.3 of Randles and Wolfe (1979), pg. 356)

Let X, =(X,-1,X,-2,...,Xip), i=12,.,n be a random sample from some p-variate
continuous distribution. Let g(-) be any function of n p-vectors that is symmetric in its
arguments. Let A(-,-) be any real-valued function of a p-tuple and the function values of g(-)

and define the random variables W, = h@i,g(ll,...,in)), i=12,.,n. Then W, W,,...W,

d
are exchangeable random variables, i.e. (Wl,Wz,...,Wn)z(Wal,W%,.,.,W )  where

all

(a'l,az,...,an) is any permutation of (1,2,...,n).

Theorem 2 can be generalized to complement our problem. Suppose
X, =X-= (Xl,Xz,...,Xm)~ F and X,=Y= (Yl,Yz,...,Yn)~ G are independent random
samples and F and G are continuous distributions. Let g(-) be a function of X that is
symmetric in its arguments and let A(-,-) be any real-valued function of Y and the function
values of g(-). Then define Wj = h(Yj,g(X)): h(Yj,g(Xl,...,Xm)) for j=1,..,n. Then,

from Theorem 2, we have that W,,W,,...,W  are exchangeable random variables when F =G .
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Corollary 1
(See Corollary 2.4.5 of Randles and Wolfe (1979), pg. 50)

Let S(Y, B*) be a statistic that depends on the observations X,,X,,....X, only

n

through Y¥,,%,....,¥, and B*. Then the statistic S(-) is distribution-free over ®, the

n
collection of joint distributions of n iid continuous random variables, each symmetrically

distributed about zero.

Corollary 2
(See Corollary 11.2.5 of Randles and Wolfe (1979), pg. 357)

Let W,,W,.,...,W, be defined as in Theorem 2 and let R, denote the rank of W, among

1

W, W,,.sW,. It PW, =W,)=0 for every i# j, then P(g*:g):i for every r, a

n

permutation of the integers (L...,n). Thus any statistic that is a function of the sample

*

LR

, 18 nonparametric distribution-free

observations X ,,..., X, only through the ranks R

i

over the class of all p-variate continuous distribution.

Lemma 1

(See Lemma 2.4.2 of Randles and Wolfe (1979), pg. 49)

Let Z be a continuous random variable with a distribution that is symmetric about 0.

Then the random variables |Z| and ¥ = W(Z) are stochastically independent.

Establishing that the charting statistic SRL; is distribution-free for an in-control process

The first step in establishing that the charting statistic SRL; is distribution-free, is by

proving that when the process is in-control, i.e. F =G, V,,V,,...,V, are exchangeable random

variables, where V; is defined as v, =‘Yj -M|, j=12,.,n, and M is the median of

X,,....X,,. The proof to this follows from Theorem 2 by setting g(X)= gX,,..X,)=M

and W, = h(v,.g(X,...X,))=|v, - M|.
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The second step in establishing that the charting statistic SRL, is distribution-free, is
by proving that when F =G, U,,U,,...,U, are exchangeable random variables, where U ; is
defined as U ;= sign(Yj -M ), j=12,...,n. The proof to this follows from Theorem 2 by

setting g(X)=g(X,,.. X,)=M and W, =h(Y,,g(X,,... X,))=signly, - M ).

The next step is to prove that when F =G, the joint distribution of U,,U,,...,U, is

distribution-free. To prove this we need to keep two things in mind. The first being that

1 . . .
P(U j=lor 0): ) since (Y ,—M ) is symmetric about zero when F =G . The second fact to

recall is that U,,U,,..,U, are exchangeable when F =G. The proof follows

n

straightforwardly by combining these two facts.

In addition, when F =G, U, = sign(Yj —M) and Vv, =‘Yj —M‘ for j=12,..,n, are

independent random variables. The proof follows from Lemma 1, since the distribution of

(Y —M ) is symmetric about zero when F'=G.

* *

Next, we define R = (R ,R,,...R) where R; =1+ ZI(Vk <V))

k=1
=1+ ZI(I Y, -M I Y,-M I) for j=12,...,n (note that R; is directly comparable to R; in
k=1
equation (5.1)). Therefore, B* is the vector of ranks of V;,V,,...,V ,ie. B* is the vector of

ranks of 1Y, =M I,IY,—=M |,...,IY —M |. We can prove, using Corollaries 1 and 2, that when

F =G, any statistic that depends on the observations only through U,,U,,...,U,, ie.

sign(Y, = M), sign(Y, —M),...,sign(Y, —M ), and B* is distribution-free over the class of

continuous symmetric distributions. Consequently, the statistic SRL, = Zsign(yij -M )R; is

j=l
distribution-free. Since SRL, is now known to be distribution-free, so is the signed-rank-like

chart.
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5.1.4. Simulation study

Bakir (2006) performed a simulation study where the robustness of the standard

Shewhart X chart and that of the proposed Shewhart signed-rank-like chart are compared
using the contaminated normal distribution. The contaminated normal distribution has been
considered by various authors in an SPC context (see, for example, Wu, Zhao and Wang
(2002) and Sheu and Yang (2006)). The cdf of the contaminated normal distribution is given
by

@, (0,0%)=(1-p)®B.1)+ pP(8,0°) (5.3)

where (0 <) p (1) denotes the percentage of contamination, o> (>0) denotes the severity of

contamination and @ denotes the cdf of the normal distribution, respectively. It should be

noted that if p=0 and € =0 equation (5.3) reduces to the standard normal distribution.
Bakir (2006) proved, through simulation, that if a process is contaminated by outliers it is ill-
advised to use the standard Shewhart X chart, especially if the percentage of contamination
( p) and/or the severity of contamination (o) is high, i.e. p>0.01 and/or o >4 . Bakir
concludes that the Shewhart X chart is not robust against outliers, whereas the proposed
Shewhart signed-rank-like chart is robust against outliers for all possible combinations of
(p,o?). This is what we expected to find: the Shewhart signed-rank-like chart wouldn’t be

affected by outliers, since the median from the reference sample, the signs from the test

sample and the ranks from the test sample aren’t affected by outliers (recall that

SRL, = sign(y, — M)R,).

j=1

Table 5.3 shows the simulated values of the ARL,’s of the two-sided Shewhart X
chart for all possible combinations of (p,o?) with p=0.01, 0.05, 0.10, 0.15, 0.20, 1 and

0’=4,9, 16. These values are graphically illustrated in Figure 5.2. These simulated values
are for a stable process with the presense of sporadic outliers. The case where the process is
operational with no outliers, i.e. p =0, is also given for reference. In these simulation studies
500 reference samples, each of size m =39, were generated from the standard normal
distribution. In addition, 500 test samples, each of size n =10, were generated from the

contaminated normal distribution.
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Table 5.3. Simulated values of the ARL, s for the two-sided Shewhart X chart .

Severity of contamination
o’ =4 o?=9 o’ =16
LCL/UCL =128 Level of severity
Low Mo‘lil‘i*;ﬁtely High
p=0
N 163 163 163
= 0%) one
5 =0.01
|7 Low 159 115 70
£ %)
s =0.05 oy
- | D
90 39 21
§ (5%) E Moderately
S — e 3
s | p=0.10 > high
61 22 12
% 10%) | =
3 —
g | p=015 41 15 8
g | (15%) .
z High
) 1g
A p=020 33 1 6
(20%)

Intuitively, we would expect the ARL to decrease (which would lead to an increase in

the number of false alarms) as the percentage and/or severity of contamination increases. This

is evident by looking at the lowest (p,o”) combination, i.e. (p,o>) = (0, 4), opposed to the

highest (p,0”) combination, i.e. (p,0>)= (0.20, 16). The former shows that the ARL

equals 163 when the process is operational with no outliers, whereas the latter shows that the

ARL equals 6 when both the percentage and severity of contamination are high. These

numbers indicate that there should be about 27 times as many false alarms when (p,o”) =

(0.20, 16) as opposed to (p,o*) = (0,4).

Next, we look at what happens when both p and o are low. This is done by looking

at the (p,0”)= (0.01, 4) combination compared to the (p,o°)= (0, 4) combination. The

latter shows that the ARL equals 163 when the process is operational with no outliers, whereas
the former shows that the ARL equals 159 when both the percentage and severity of

contamination are low. These numbers indicate that there should be about the same number of

false alarms when (p,o”) = (0.01, 4) as opposed to (p,c>) = (0,4).

* Table 5.3 appears in Bakir (2006), page 751, Table 1.
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Next, we look at what happens when p is low, but o is moderately high. This is
done by looking at the (p,0°)= (0.01, 9) combination where the ARL has dropped to 115.
This indicates that there should be about 1.42 times as many false alarms as the expected ARL

of 163. Subsequently, we look at what happens when p is moderately high, but ¢ is low.

This is done by looking at the (p,o*) = (0.05, 4) combination where the ARL has dropped to
90. This indicates that there should be about 1.81 as many false alarms as the expected ARL
of 163. The rest of table can be interpreted similarly. The main conclusion that can be drawn
from Table 5.3 is that it is ill-advised to use the Shewhart X chart when a process is

contaminated by outliers, especially if the percentage of contamination ( p) and/or the

severity of contamination (o) is high, i.e. p >0.01 and/or 6> > 4.

180
£ 160 l ---------- @ .
2 S
£ 140 -
E 120 . ---&---Standard normal
: . ~-4-- p=0.01
g 100 .\o\\ _E_p=005
% 80 Ig\ \~\\\ p=010
1 —
g 6o X —s—p=0.15
5 \\ —&—p=0.20
8 40 -\
I N
0 ‘ ‘

4 9 16
Severity of contamination

Figure 5.2. Simulated ARL, values for the two-sided Shewhart X chart for various

values of p and & .

5.1.5. Comparisons

The first comparison between the standard Shewhart X chart and the proposed

Shewhart signed-rank-like chart.
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of the ARL for the two-sided Shewhart X control chart ( X ..) and the Shewhart signed-rank-like control chart

(SRL..)".
Severity of contamination
o’=4 c’=9 o’ =16
Level of severity
Low Moderately high High
p =0.01 p=0.10 p =0.01 p=0.10 p =0.01 p=0.10
(1%) (10%) (1%) (10%) (1%) (10%)
Ccol,:::ll:::)l XCC SRLCC XCC SRLCC XCC SRLCC XCC SRLCC XCC SRLCC XCC SRLCC
LCL/UCL | £2.85 +53 +3.25 +53 +2.96 +53 +3.98 +53 +3.24 +53 +4.92 +53
6=0.0 170.0 166.0 165.0 166.0 167.4 166.0 166.7 166.0 164.6 166.0 167.0 166.0
6=0.2 122.8 121.8 131.8 128.3 1154 120.4 124.3 122.2 137.3 130.2 145.6 128.6
6=04 43.9 50.9 59.8 54.4 56.4 60.7 65.4 66.2 60.6 61.7 88.3 65.0
0=0.6 10.6 24.2 13.5 27.2 14.4 23.7 27.5 26.5 17.7 22.1 42.8 31.5
6=0.28 3.5 11.1 5.4 10.6 4.2 9.3 11.9 10.3 6.7 8.4 22.6 11.3
6=1.0 1.9 4.4 2.8 5.5 2.1 4.7 53 5.6 3.5 4.5 13.4 5.9

" Table 5.4 appears in Bakir (2006), page 754, Table 3.
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Bakir (2006) compared the proposed Shewhart signed-rank-like chart to the Shewhart

X chart using the contaminated normal distribution (the observations are normally
distributed with occasional outliers). Both charts are designed to have approximately the same
in-control average run length to ensure fair comparison between the charts. The out-of-control

average run lengths were computed, using these chart constants, for various values of the
median @, the percentage of contamination (p) and the severity of contamination (o). We
typically want the ARL; to be small, i.e. the chart with the smallest ARL; will be the

preferred chart.

From Table 5.4 we see that the median ranges from O (the in-control value) to 1 in
increments of 0.2; the severity of contamination ranges from low to high, that is, c’=4

(low), 0> =9 (moderately high) and o> =16 (high); and the percentage of contamination is

taken to be 1% (low) and 10% (moderately high), respectively.

We start by investigating the lowest percentage and severity of contamination levels
for the smallest process shift of 0.2. The ARL; of the Shewhart X chart (=122.8) is almost
equivalent to the ARL; of the Shewhart signed-rank-like chart (=121.8). Therefore, for a low
percentage and severity of contamination and a small process shift, both charts are performing
equally well. More generally, for low to moderately high levels of p (= 0.01 or 0.1) and &

(=4 or 9) and small process shifts (€ =0.2 or 0.4), the ARL; values of the Shewhart signed-

rank-like chart are almost equivalent to the ARL; values of the Shewhart X chart.

In contrast, we investigate the highest percentage and severity of contamination for the

largest process shift of 1. The ARL; of the Shewhart X chart (=13.4) is higher than the
ARL; of the Shewhart signed-rank-like chart (=5.9). Consequently, we see that the Shewhart

signed-rank-like chart performs better than the Shewhart X chart for a high percentage and
severity of contamination and a large process shift. More generally, we find that for p =0.1
and o’ =16 the ARL; values of the Shewhart X chart are all higher than the ARL; values
of the Shewhart signed-rank-like chart for all process shifts (€ =0.2, 0.4, 0.6, 0.8 and 1). As a

result we conclude that the Shewhart signed-rank-like chart performs better than the Shewhart

X chart for high levels of p and o> over all process shifts.
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It should be noted that there are various cases where the Shewhart X chart performs
better than the Shewhart signed-rank-like chart. An illustration of the latter is, for example,
for low to moderately high levels of p (= 0.01 or 0.1), 6> =4 and large process shifts
(6=0.6, 0.8 and 1) the ARL; values of the Shewhart X chart are lower than those of the

Shewhart signed-rank-like chart. Hence, in some cases the Shewhart X chart outperforms the
Shewhart signed-rank-like chart and vice versa. Table 5.5 indicates which chart, between the
Shewhart X chart and the proposed signed-rank-like chart, is the preferred chart for various

2

values of p, 0~ and @. The term ‘comparable’ in Table 5.5 implies that the proposed signed-

rank-like chart is as efficient as the Shewhart X chart.

Table 5.5. Summary of the first comparison between the Shewhart X chart and the proposed

signed-rank-like chart .

ol =4 o’=9 o’ =16

Small shifts: Comparable | Small shifts: Comparable | Small shifts: Comparable

p =0.01
Large shifts: X Large shifts: X Large shifts: X
Small shifts: Comparable | All shifts: All shifts:

p=0.10 Comparable Signed-rank-like chart

Large shifts: X

The second comparison between the standard Shewhart X chart and the proposed

Shewhart signed-rank-like chart.

The out-of-control ARL is examined for three distributions, namely, the Normal,

Laplace and Cauchy distributions, respectively. Recall that we want the ARL; to be small in

all cases.

* Small shifts refer to € =0.2 or 0.4, whereas large shifts refer to 8 =0.6,0.8 or 1.
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Figure 5.3. The shapes of the three distributions under consideration.

(i)

The Normal distribution

For the Normal distribution we would expect the out-of-control performance of the

Shewhart X chart to be better than that of the Shewhart signed-rank-like chart. The chart

constants for both the Shewhart signed-rank-like and Shewhart X charts are chosen such that

the in-control average run length is approximately equal (ARL, =164 ) for both charts:

LCL/UCL,; =%+2.80 and LCL/UCLg, =*53. The out-of-control average run length

values were computed, using these chart constants, for various values of the median 6. The

median ranges from 0 (the in-control value) to 1 in increments of 0.2. The results are shown

below in Figure 5.4.
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Figure 5.4. Comparison of the Shewhart signed-rank-like chart with the Shewhart X chart

under Normal shift alternatives.

When comparing the Shewhart signed-rank-like chart with the Shewhart X chart
under Normal shift alternatives we find that the Shewhart X chart is performing better than
the Shewhart signed-rank-like chart, since the out-of-control average run length values for the
Shewhart X chart are smaller than the out-of-control average run length values for the
Shewhart signed-rank-like chart. However, it should be noted that the differences are small
and it appears to fade away when the process is shifted from its in-control value of O to values

greater than 0.8.

(ii) The Double Exponential distribution

The Double Exponential distribution, also called the Laplace distribution, is
comparable to the Normal distribution (since they are both symmetric around 0), but it has
heavier tails (see Figure 5.3). As a result, there are higher probabilities associated with
extreme values when working with the Double Exponential distribution as opposed to using

the Normal distribution. The scale parameter A of the Double Exponential distribution is set

equal to 1/ V2 so that the Double Exponential distribution has a standard deviation of 1. For

the Double Exponential distribution we would expect the out-of-control performance of the
Shewhart signed-rank-like chart to be better than that of the Shewhart X chart. The chart

constants for both the Shewhart signed-rank-like and Shewhart X chart are chosen such that

260



UNIVERSITY OF PRETORIA

e
=

ﬂ UNIVERSITEIT VAN PRETORIA
& YUNIBESITHI YA PRETORIA

the in-control average run length is approximately equal (ARL, =150) for both charts:

LCL/UCL; =£2.85 and LCL/UCLg, == 53. The results are shown below in Figure 5.5.

o —e— X-bar

< 80 \\ = SRL
60

0 AN

50 \\ \

0 : : \m

0 0.2 0.4 0.6 0.8 1

Median

Figure 5.5. Comparison of the Shewhart signed-rank-like chart with the Shewhart X chart

under Double Exponential shift alternatives.

When comparing the Shewhart signed-rank-like chart with the Shewhart X chart

under Double Exponential shift alternatives we find that the Shewhart signed-rank-like chart

is performing better than the Shewhart X chart, since the out-of-control average run length

values for the Shewhart signed-rank-like chart are smaller than the out-of-control average run

length values for the Shewhart X chart. However, it should be noted that the differences are
small and it appears to fade away when the process is shifted from its in-control value of 0 to

values greater than 0.8.

(iii) The Cauchy distribution

The scale parameter A of the Cauchy distribution is set equal to 0.2605 so that the
Cauchy distribution has a probability of 0.95 to the left of 1.645 (which is also the case for the

standard normal distribution). For the Cauchy distribution we would expect the out-of-control
performance of the Shewhart signed-rank-like chart to be better than that of the Shewhart X
chart. The chart constants for both the Shewhart signed-rank-like and Shewhart X chart are

chosen such that the in-control average run length is approximately equal (ARL, =164 ) for
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both charts: LCL/UCL, =+22 and LCL/UCLg, =%*53. The results are shown below in

Figure 5.6.
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0 0.2 0.4 0.6 0.8 1
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Figure 5.6. Comparison of the Shewhart signed-rank-like chart with the Shewhart X chart

under Cauchy shift alternatives.

When comparing the Shewhart signed-rank-like chart with the Shewhart X chart

under Cauchy shift alternatives we find that the Shewhart signed-rank-like chart is performing

better than the Shewhart X chart, since the out-of-control average run length values for the

Shewhart signed-rank-like chart are smaller than the out-of-control average run length values

for the Shewhart X chart. It should be noted that these differences are large for all values of

the median 6.

In conclusion we found that the Shewhart signed-rank-like chart performs better than
the Shewhart X chart under heavy tailed distributions. In addition, recall that the Shewhart

X chart is not robust against outliers, whereas the proposed Shewhart signed-rank-like chart

is, for the most part, robust against outliers. These are two key motivations to why the user

should rather use the Shewhart signed-rank-like chart as opposed to using the Shewhart X

chart.
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Table 5.6. Summary of the second comparison between the Shewhart X chart and the

proposed signed-rank-like chart.

Distribution Preferred control chart
Normal Shewhart X chart

Double Exponential Shewhart signed-rank-like chart
Cauchy Shewhart signed-rank-like chart

5.1.6. The tabular CUSUM control chart

Bakir (2006) proposed a tabular CUSUM signed-rank-like chart. Generally, the
standardized upper one-sided CUSUM is given by

S =max[0,S], +y, —k] fori=123,. (5.4)
while the resulting standardized lower one-sided CUSUM is given by

S; =min[0,S, +y, +k] fori=123,.. (5.5)
or

S™ =max[0,S, —y, —k] for i=123,.. (5.6)
The two-sided standardized CUSUM is constructed by running the upper and lower one-sided

standardized CUSUM charts simultaneously and signals at the first i such that S,” >h or

S <—h.

The chart proposed by Bakir (2006) instead uses the cumulative sum of the statistic

SRL, (defined in (5.2)) with a stopping rule. A CUSUM signed-rank-like chart can be
obtained by replacing y, in expressions (5.4), (5.5) and (5.6) with SRL,. In other words, for
the upper one-sided CUSUM signed-rank-like chart we use

S." =max[0,S], + SRL, —k] for i=1,23,... (5.7)

to detect positive deviations from zero. A signalling event occurs for the first i such that

ST>h.

For a lower one-sided CUSUM signed-rank-like chart we use
S =min[0,S_, + SRL, + k] for i=12,3,... (5.8)

1

or

S; =max[0,5;, —SRL,—k] fori=123,. (5.9)

l
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to detect negative deviations from zero. A signalling event occurs for the first i such that

S, <-—h (if expression (5.8) is used) or § i_* > h (if expression (5.9) is used).

The corresponding two-sided CUSUM chart signals for the first i at which either one

of the two inequalities is satisfied, that is, either S ;+ >2h or S, <-—h. Starting values are

typically chosen to equal zero, thatis, S,” =S,  =0.
A CUSUM signed-rank-like chart can also be constructed by replacing y, in

expressions (5.4), (5.5) and (5.6) with the standardized signed-rank-like statistic.

Although Bakir (2006) provided the general idea of how to construct a CUSUM
signed-rank-like control chart, he failed to do any simulation studies or to give any tables that
can be used for the implementation of the chart. More research is necessary on CUSUM
signed-rank-like control charts, for example, one could look at the implementation of the

CUSUM signed-rank-like chart and study its performance.
5.1.7. The EWMA control chart

Bakir (2006) proposed an EWMA signed-rank-like chart. Generally, an EWMA

control chart scheme accumulates statistics X, X,, X ;,... with the plotting statistics defined as
Z =X, +(1-4)Z,_, (5.10)
where 0< A <1 is a constant called the weighting constant. The starting value Z, is often

taken to be zero.

A nonparametric EWMA-type of control chart based on the signed-rank-like statistic
can be obtained by replacing X, in expression (5.10) with SRL,. Therefore, the EWMA

signed-rank-like chart accumulates the statistics SRL,,SRL,,SRL,,... with the plotting

statistics defined as
Z, =ASRL, +(1-A)Z,, (5.11)

where 0 < A <1 and the starting value Z, could be taken to equal zero, i.e. Z, =0.
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An EWMA signed-rank-like chart can also be constructed by replacing X, in

expression (5.10) with the standardized signed-rank-like statistic.

Although Bakir (2006) provided the general idea of how to construct an EWMA
signed-rank-like control chart, he failed to do any simulation studies or to give any tables that
can be used for the implementation of the chart. More research is necessary on EWMA
signed-rank-like control charts, for example, one could look at the implementation of the

EWMA signed-rank-like chart and study its performance.

5.1.8. Summary

In this chapter we examined the Shewhart-type signed-rank-like chart proposed by
Bakir (2006). We illustrated these procedures using the piston ring data from Montgomery
(2001) to help the reader to understand the subject more thoroughly. The proposed chart is
recommended when the process distribution is known to be heavy-tailed or to be
contaminated by occasional outliers. We also briefly looked at CUSUM- and EWMA-type
signed-rank-like charts. Although Bakir (2006) provided general ideas on how to construct
CUSUM- and EWMA-type signed-rank-like control charts, he failed to do any simulation
studies or to give any tables that can be used for the implementation of these charts. More
research is necessary on CUSUM- and EWMA-type signed-rank-like control charts, for

example, one could look at the implementation of these charts and study their performance.
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