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Chapter 3: Signed-rank charts 
 

3.1. The Shewhart-type control chart 

 

3.1.1. Introduction 

 

As mentioned in Chapter 2, samples of fixed size are taken at regular intervals and the 

plotting statistic is then plotted. The question is: Which quality parameter should be used as 

the plotting statistic? In Chapter 2 the sign test statistic iSN  was described and it was 

mentioned that the sign test statistic is only influenced by the signs of the deviations 

)( 0θ−ijx . There is an alternative statistic that can be used to track the location of a process. 

The statistic is a function of both the magnitudes and signs of the )( 0θ−ijx ’s, called the 

signed-rank statistic. 

 

3.1.2. Definition of the signed-rank test statistic 

 

The signed-rank test is a nonparametric test that can be used to test hypotheses on or 

construct confidence intervals (see Gibbons and Chakraborti (2003)) for the median of any 

symmetric continuous population distribution. Let inii XXX ,...,, 21  denote the thi  ,...)2,1( =i  

sample or subgroup of independent observations of size 1>n  from a process with an 

unknown continuous distribution function denoted by F . Let 0θ  denote the known in-control 

location parameter (also called the target value). Let +
ijR  denote the rank of the absolute 

deviations, 0θ−ijx , within the subgroup ( )00201 ,...,, θθθ −−− inii xxx  for ...3,2,1=i  . 

Then +
ijR  is referred to as the within-group absolute rank of the deviations. The signed-rank 

test statistic is given by 

 �
=

+−=
n

j
ijiji RxsignSR

1
0 )( θ  for ...3,2,1=i  (3.1) 

where )(xsign  = -1, 0, 1 if 0<x , 0= , 0> . 
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3.1.3. Plotting statistic 

 

The signed-rank test statistic, iSR  (given in (3.1)), is used as the plotting statistic on 

the Shewhart signed-rank chart. If the plotting statistic iSR  falls between the two control 

limits, that is, UCLSRLCL i << , the process is considered to be in-control. If the plotting 

statistic iSR  falls on or outside one of the control limits, that is LCLSRi ≤  or UCLSRi ≥ , 

the process is considered to be out-of-control. 

 

The plotting statistic is linearly related to the well-known Wilcoxon signed-rank 

statistic +
nT  through the formula (see Bakir (2003), page 424, equation 2.4) 

 
2

)1(
2

+−= + nn
TSR ni  (3.2) 

where �
=

++ −=
n

j
ijijn RxT

1
0 )( θψ ,  1,0)( =xψ  if 0,0 >≤x . 

 
Example 3.1 

A two-sided Shewhart signed-rank chart for the Montgomery (2001) piston ring data 

 

We illustrate the Shewhart-type signed-rank chart using the same set of data from 

Montgomery (2001) that was used in example 2.1. We assume that the underlying distribution 

is symmetric with a known median 740 =θ mm. Panel a of Table 3.1 exhibits the individual 

observations of 15 independent samples, each of size 5 i.e. 5=n . The absolute deviations 

0θ−ijx  and )( 0θ−ijxsign  are shown in panel b and panel c of Table 3.1, respectively. The 

known target value is taken to be 74, that is, 740 =θ . The within-group absolute rank of the 

deviations +
ijR  and the +− ijij Rxsign )( 0θ  values are shown in panel a and panel b of Table 3.2, 

respectively. Panel c of Table 3.2 holds the signed-ranks i.e. iSR  for 15,...,3,2,1=i . 
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Table 3.1. Data and calculations for the signed-rank chart*. 

Panel a  Panel b Panel c 

Sample 
number 

 1ix  2ix  3ix  4ix  5ix  

     

     

1 74.012 74.015 74.030 73.986 74.000 0.012 0.015 0.030 0.014 0.000 1 1 1 -1 0 

2 73.995 74.010 73.990 74.015 74.001 0.005 0.010 0.010 0.015 0.001 -1 1 -1 1 1 

3 73.987 73.999 73.985 74.000 73.990 0.013 0.001 0.015 0.000 0.010 -1 -1 -1 0 -1 

4 74.008 74.010 74.003 73.991 74.006 0.008 0.010 0.003 0.009 0.006 1 1 1 -1 1 

5 74.003 74.000 74.001 73.986 73.997 0.003 0.000 0.001 0.014 0.003 1 0 1 -1 -1 

6 73.994 74.003 74.015 74.020 74.004 0.006 0.003 0.015 0.020 0.004 -1 1 1 1 1 

7 74.008 74.002 74.018 73.995 74.005 0.008 0.002 0.018 0.005 0.005 1 1 1 -1 1 

8 74.001 74.004 73.990 73.996 73.998 0.001 0.004 0.010 0.004 0.002 1 1 -1 -1 -1 

9 74.015 74.000 74.016 74.025 74.000 0.015 0.000 0.016 0.025 0.000 1 0 1 1 0 

10 74.030 74.005 74.000 74.016 74.012 0.030 0.005 0.000 0.016 0.012 1 1 0 1 1 

11 74.001 73.990 73.995 74.010 74.024 0.001 0.010 0.005 0.010 0.024 1 -1 -1 1 1 

12 74.015 74.020 74.024 74.005 74.019 0.015 0.020 0.024 0.005 0.019 1 1 1 1 1 

13 74.035 74.010 74.012 74.015 74.026 0.035 0.010 0.012 0.015 0.026 1 1 1 1 1 

14 74.017 74.013 74.036 74.025 74.026 0.017 0.013 0.036 0.025 0.026 1 1 1 1 1 

15 74.010 74.005 74.029 74.000 74.020 0.010 0.005 0.029 0.000 0.020 1 1 1 0 1 

                                                 
* See SAS Program 5 in Appendix B for the calculation of the values in Table 3.1. 
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Table 3.2. Calculations for the signed-rank chart*. 

Panel a Panel b Panel c 

 
Sample 
number 

 

++++
1iR  ++++

2iR  ++++
3iR  ++++

4iR  ++++
5iR  

     

iSR  

1 2 4 5 3 1 2 4 5 -3 0 8 

2 2 4 4 5 1 -2 4 -4 5 1 4 

3 4 2 5 1 3 -4 -2 -5 0 -3 -14 

4 3 5 1 4 2 3 5 1 -4 2 7 

5 4 1 2 5 4 4 0 2 -5 -4 -3 

6 3 1 4 5 2 -3 1 4 5 2 9 

7 4 1 5 3 3 4 1 5 -3 3 10 

8 1 4 5 4 2 1 4 -5 -4 -2 -6 

9 3 2 4 5 2 3 0 4 5 0 12 

10 5 2 1 4 3 5 2 0 4 3 14 

11 1 4 2 4 5 1 -4 -2 4 5 4 

12 2 4 5 1 3 2 4 5 1 3 15 

13 5 1 2 3 4 5 1 2 3 4 15 

14 2 1 5 3 4 2 1 5 3 4 15 

15 3 2 5 1 4 3 2 5 0 4 14 

 

Let +
0ARL  and +

0FAR  denote the in-control average run length and the false alarm rate 

for the upper one-sided Shewhart signed-rank control chart, respectively. For an upper one-

sided chart we would take 15=UCL  since it is related to a false alarm rate of 0.0313 

( 0313.00 =+FAR ) and an in-control average run length of 32 ( 320 =+ARL ) - see Table 3.3. 

Although the in-control average run length of 32 is far from the desired value, which is 

generally taken to be 370 or 500, it is the best under present conditions. The false alarm rate 

( 0FAR ) and the in-control average run length ( 0ARL ) for the symmetric two-sided Shewhart 

signed-rank chart can be obtained through the relationships += 00 2FARFAR  and 

2
0

0

+

=
ARL

ARL , respectively (see Bakir (2003)). A symmetric two-sided chart is obtained by 

choosing UCLLCL −= .  We take 15=UCL  for the two-sided Shewhart signed-rank chart, 

                                                 
* See SAS Program 5 in Appendix B for the calculation of the values in Table 3.2. 
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since it is related to a false alarm rate of 0.0626 ( 0626.00313.022 00 =×== +FARFAR ) and 

an in-control average run length of 16 ( 16
2

32
2

0
0 ===

+ARL
ARL ). The two-sided signed-rank 

chart is shown in Figure 3.1 with 15=UCL , 0=CL  and 15−=LCL . 
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Figure 3.1. Signed-rank control chart for Montgomery (2001) piston ring data. 

 

The chart signals at sample number 12. Therefore, a search for assignable causes is 

necessary. It appears most likely that the process median has shifted upwards from the target 

value of 74mm. 

 

3.1.4. Determination of chart constants 

 

The control limits in example 3.1 were chosen to give a certain false alarm rate or in-

control ARL . Values of various control limits are given by Bakir (2003). Bakir included the 

following table in his article which gives the false alarm rates and the in-control average run 

lengths for the upper one-sided Shewhart signed-rank charts based on subgroups of sizes 

,4=n  5 and 6 .  
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Table 3.3. FAR ’s and 0ARL ’s for the upper one-sided Shewhart signed-rank chart. 

4====n  5====n  6====n  
UCL  ++++

0ARL  ++++
0FAR  ++++

0ARL  ++++
0FAR  ++++

0ARL  ++++
0FAR  

10 16.00 0.0625 10.66 0.0938 6.40 0.1563 
11 ∞  0 10.66 0.0938 6.40 0.1563 
12   16.00 0.0630 9.14 0.1094 
13   16.00 0.0630 9.14 0.1094 
14   32.00 0.0313 12.80 0.0781 
15   32.00 0.0313 12.80 0.0781 
16   ∞  0 21.33 0.0469 
17     21.33 0.0469 
18     32.00 0.0312 
19     32.00 0.0312 
20     64.00 0.0156 
21     64.00 0.0156 
22     ∞  0 

 

Table 3.3 shows the false alarm rates and the in-control average run lengths for the 

upper one-sided Shewhart signed-rank chart as calculated using the null distribution of the 

Wilcoxon signed-rank statistic (see Hollander and Wolfe (1973) and Bakir (2003)). 

 

In Table 3.3 we see that there are some duplicates in the data. We consider a specific 

example to shed light on the occurrence of these duplicates. Suppose 5=n  and 12=UCL . 

Then =+
0FAR )5.13()control-In|12( ≥=≥ +

ni TPSRP  (using (3.2)). The last probability 

equals 0630.0)14( =≥+
nTP , because +

nT  has zero probability at 13.5. When 5=n  and 

13=UCL  we have that 0630.0)14()control-In|13(0 =≥=≥= ++
ni TPSRPFAR  (by using 

the null distribution of the Wilcoxon signed-rank statistic). Since 

0630.0)14(0 =≥= ++
nTPFAR  for two different values of the upper control limit, we have 

duplicates in the data. This example points out an error* in Table 1 of Bakir (2003). The 

probability of )5.13( ≥+
nTP  equals )14( ≥+

nTP  which equals 0.0630 (and not 0.0938 

corresponding to )13( ≥+
nTP  as reported by Bakir’s (2003) paper). This type of correction 

was applied to the other entries of Bakir’s (2003) Table 1 and are given in Table 3.3 of this 

thesis. The false alarm rates and in-control average run lengths for the two-sided Shewhart 

signed-rank chart were calculated using SAS (with the appropriate corrections made) and are 

shown in Table 3.4. 

                                                 
* This error is also pointed out by Chakraborti and Eryilmaz (2007). 
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Table 3.4. FAR ’s and 0ARL ’s for the two-sided Shewhart signed-rank chart*. 

n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 UCL ARL0 FAR ARL0 FAR ARL0 FAR ARL0 FAR ARL0 FAR ARL0 FAR ARL0 FAR 
11 8.018 0.125 3.248 0.308 2.307 0.433 2.132 0.469 1.830 0.546 1.526 0.655 1.447 0.691 
12 ∞  0 5.382 0.186 3.163 0.316 2.126 0.470 1.811 0.552 1.779 0.562 1.606 0.623 
13   5.392 0.185 3.234 0.309 2.643 0.378 2.146 0.466 1.730 0.578 1.613 0.620 
14   8.003 0.125 4.557 0.219 2.675 0.374 2.194 0.456 2.022 0.494 1.802 0.555 
15   7.896 0.127 4.623 0.216 3.360 0.298 2.597 0.385 1.991 0.502 1.788 0.559 
16   15.922 0.063 6.302 0.159 3.399 0.294 2.616 0.382 2.354 0.425 2.033 0.492 
17   ∞  0 6.483 0.154 4.552 0.220 3.201 0.312 2.346 0.426 2.032 0.492 
18     10.797 0.093 4.553 0.220 3.276 0.305 2.770 0.361 2.276 0.439 
19     10.762 0.093 6.514 0.154 4.004 0.250 2.778 0.360 2.345 0.426 
20     16.291 0.061 6.307 0.159 3.999 0.250 3.350 0.299 2.635 0.379 
21     15.982 0.063 9.164 0.109 5.053 0.198 3.309 0.302 2.664 0.375 
22     29.890 0.033 9.152 0.109 5.149 0.194 4.034 0.248 3.071 0.326 
23     ∞  0 12.655 0.079 6.611 0.151 4.055 0.247 3.139 0.319 
24       12.618 0.079 6.632 0.151 5.055 0.198 3.641 0.275 
25       20.939 0.048 9.244 0.108 5.047 0.198 3.682 0.272 
26       21.115 0.047 9.299 0.108 6.032 0.166 4.355 0.230 
27       31.380 0.032 12.862 0.078 6.053 0.165 4.226 0.237 
28       31.118 0.032 12.898 0.078 7.768 0.129 5.225 0.191 
29       64.444 0.016 18.447 0.054 7.812 0.128 5.108 0.196 
30       ∞  0 17.947 0.056 10.180 0.098 6.286 0.159 
31         25.216 0.040 10.554 0.095 6.315 0.158 
32         25.285 0.040 13.573 0.074 7.670 0.130 
33         42.248 0.024 13.357 0.075 7.638 0.131 
34         42.872 0.023 18.499 0.054 9.505 0.105 
35         63.492 0.016 18.409 0.054 9.728 0.103 
36         64.492 0.016 25.763 0.039 12.004 0.083 
37         129.711 0.008 25.676 0.039 11.531 0.087 
38         ∞  0 37.023 0.027 15.663 0.064 
39           36.507 0.027 15.514 0.064 
40           50.919 0.020 20.504 0.049 
41           51.913 0.019 20.542 0.049 

                                                 
* See SAS Program 6 in Appendix B for the calculation of the values in Table 3.4. This table is an extension of Tables 1 and 2 given in Bakir (2003). 
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42           87.428 0.011 27.510 0.036 
43           84.898 0.012 26.771 0.037 
44           127.219 0.008 36.928 0.027 
45           128.950 0.008 37.308 0.027 
46           251.312 0.004 50.234 0.020 
47           ∞  0 52.249 0.019 
48             73.736 0.014 
49             74.261 0.013 
50             104.300 0.010 
51             101.973 0.010 
52             165.381 0.006 
53             168.821 0.006 
54             251.693 0.004 
55             249.627 0.004 
56             443.132 0.002 
57             ∞  0 
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3.1.5. Summary 

 

The signed-rank test is a popular nonparametric test for the median of a 

symmetric continuous population. The signed-rank test is more powerful than the sign 

test, but while the sign test is applicable for all continuous distributions, the 

assumption of symmetry must be made, in addition, for the signed-rank test. 

Furthermore, the sign test applies to all percentiles, whereas the signed-rank test is 

proposed only for the median. Another drawback of the signed-rank chart is that the 

FAR values for the chart are too high (in other words the 0ARL  values are too short) 

unless the subgroup size is ‘large’. One way to remedy this problem is to use some 

signaling rules to enhance the sensitivity of the charts. This will be considered next. 

 

3.2. The Shewhart-type control chart with runs-type signaling rules 

 

3.2.1. Introduction 

 

In addition to defining warning limits or zones on control charts (see Section 2.2), we 

can extend the existing charts by incorporating various signaling rules involving runs of the 

plotting statistic. The signaling rules considered include the following:  A process is declared 

to be out-of-control when (a) a single point (charting statistic) plots outside the control limit(s) 

(1-of-1 rule)  (b) k consecutive points (charting statistics) plot outside the control limit(s) (k-

of-k rule) or (c) exactly k of the last w points (charting statistics) plot outside the control 

limit(s)  (k-of-w rule). We can consider these signaling rules where both k  and w  are positive 

integers with wk ≤≤1  and 2≥w . Rule (a) is the simplest and is the most frequently used in 

the literature. Thus, the 1-of-1 rule corresponds to the usual control chart, where a signal is 

given when a plotting statistic falls outside the control limit(s). Rules (a) and (b) are special 

cases of rule (c); rules (b) and (c) have been used in the context of supplementing the 

Shewhart charts with warning limits and zones. Rules (a), (b) and (c) have been studied by 

various authors (see for example Klein (2000) and Khoo (2004)). Klein (2000) suggested two 

rules namely the 2-of-2 and 2-of-3 rules. Both control charts are easily implemented and have 

better ARL performance than the 1-of-1 rule. Khoo (2004) conducted a study of the ARL 

performance of the 2-of-2, 2-of-3, 2-of-4, 3-of-3 and 3-of-4 charts and concluded that the 3-of-

4 chart is the most sensitive scheme for detecting small process shifts. 
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Chakraborti and Eryilmaz (2007) considered simple alternatives to the Bakir (2004)’s 

class of nonparametric charts, using the signed-rank statistic but incorporating runs rules of 

the type discussed above to define new signaling rules. If we set k  equal to 2 in rule (b) 

above, we obtain the simplest of the k-of-k type rules which are called the 2-of-2 DR and the 

2-of-2 KL charts. The 2-of-2 KL chart signals, for example, when the two most recent signed-

rank statistics both fall either on or above or on or below the control limits. The 2-of-2 DR 

chart is almost similar, but here a signal is indicated when both of the signed-rank statistics 

fall either both on or above or both on or below or one on or above (below) and the next one 

on or below (above) the control limits. It is shown that the new charts are nonparametric, have 

much smaller FAR (and thus larger 0ARL ) than the 1-of-1 signed-rank chart of Bakir. 

Moreover, the new charts have better out-of-control performance than the 1-of-1 signed-rank 

chart for heavy-tailed and skewed distributions such as the Cauchy. We illustrate these 

procedures using the Montgomery (2001) piston ring data. 

 

3.2.2. Example 

 

Example 3.2 

A two-sided Shewhart signed-rank chart with signaling rules for the Montgomery (2001) 

piston ring data 

 

We illustrate the signed-rank chart with signaling rules using the Montgomery (2001) 

piston ring data. Recall that the dataset contains 15 samples (each of size 5). The signed-rank 

statistics were calculated and given in Table 3.2 and graphically represented in Figure 3.1. 

The symmetric two-sided control limits for the 1-of-1 and 2-of-2 signed-rank charts are given 

by Chakraborti and Eryilmaz (2007) for 6,5,4=n  and 10. The table for samples of size 5 is 

given here for reference. 
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Table 3.5. False alarm rates and in-control ARL values for the two-sided 1-of-1 and 2-of-2    

            signed-rank charts under DR and KL schemes, 5=n *. 

 1-of-1 2-of-2  DR 2-of-2  KL 

UCL  0ARL  FAR0 0,DRARL  FARDR,0 0,KLARL  FARKL,0 

11 5.33 0.1876 33.74 0.0352 62.15 0.0176 
13 8.00 0.1250 72.00 0.0156 136.00 0.0078 
15 15.97 0.0626 271.15 0.0039 526.34 0.0019 

 

 For 5=n , the control limits for the 1-of-1 (Bakir’s chart), the 2-of-2 DR and the 2-of-

2 KL charts, based on the signed-rank statistic, are set at 15± . These yield FAR values 

0.0626, 0.0039, and 0.0019, respectively.  If the control limits were taken to be 13± , the FAR 

would have been much higher: 0.1250, 0.0156, and 0.0078, respectively. Although the control 

limits are the same, namely 15± , the signaling rules are quite different operationally and the 

performance of the resulting charts turn out to be quite different. The 1-of-1 chart signals 

when the first signed-rank statistic falls on or outside of either of the two control limits; the 2-

of-2 KL chart signals when, for the first time, two consecutive signed-rank statistics fall either 

on or above or on or below the two control limits, while the 2-of-2 DR chart signals when for 

the first time two consecutive signed-rank statistics fall on or outside the control limits, either 

both on or above, or both on or below, or one on or above the next on or below, or one on or 

below and the next on or above. On the performance side, note that the 1-of-1 SR chart has a 

FAR of 0.0626 and an 0ARL  of approximately 16. Thus many more false alarms will be 

signaled by this chart leading to a possible loss of time and resources. Compared to that, the 

2-of-2 KL chart has a FAR of 0.0019 and an 0ARL  of 526.34, whereas the 2-of-2 DR chart 

has a FAR of 0.0039 and an 0ARL  of 271.15. Thus both of these run-rule-enhanced charts 

provide reasonable and practical false alarm rates and can be used in practice, depending on 

the type of shift one expects.  

 

From Figure 3.1 we see that the DR and KL 2-of-2 signed-rank charts both signal at 

sample 13, indicating a most likely upward shift in the process median.  The 1-of-1 signed-

rank chart, on the other hand, signals earlier, at sample 12, but note the much higher FAR of 

0.0626 (and correspondingly a much lower and less desirable 0ARL , 15.97) associated with 

this chart. It is interesting to note that, as shown in Montgomery (2001), for these data the 
                                                 
* Table 3.5 appears in Chakraborti and Eryilmaz (2007), Table 11. 
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Shewhart X  chart indicates a shift in the mean at sample 11 for these data. However, the key 

difference is that an application of the Shewhart chart can raise several questions such as the 

form of the underlying distribution (small 5=n ), and more importantly about the in-control 

(stable) performance of the chart in terms of the FAR (or the 0ARL ), since it is known that the 

in-control performance of the Shewhart X  chart is not robust in typical quality control 

applications. Compared to this, the proposed nonparametric charts provide a more generally 

applicable alternative monitoring scheme with a known (stable/robust) in-control performance 

and a better or equal out-of-control performance than the 1-of-1 signed-rank chart. 

 

3.2.3. Summary 

 

In this section we examined signed-rank control charts with runs-type signaling rules. 

Human, Chakraborti and Smit (2008) recently studied Shewhart-type sign charts with runs-

type signaling rules. These charts are similar in spirit to the Shewhart-type signed-rank charts 

with runs-type signaling rules (see Section 3.2). In the paper by Human et al. they derived 

expressions for the run length distributions using Markov chain theory. The in-control and 

out-of-control performance of these charts were studied and compared to those of the existing 

signed-ranked charts under the normal, double exponential and Cauchy distributions, using 

the ARL, SDRL, FAR and some percentiles of the run length. These runs rules enhanced sign 

charts have the advantage that one does not have to assume symmetry of the underlying 

distribution and they can be applied in situations where the data are dichotomous.  
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3.3. The tabular CUSUM control chart 

 

3.3.1. Introduction 

 

Bakir and Reynolds (1979) investigated the CUSUM chart using the Wilcoxon signed-

rank statistic. They used methods that are analogous to the methods used on the CUSUM sign 

chart (see Section 2.3), that is, a Markov chain approach is used to find the moments and other 

characteristics of the run length distribution for the CUSUM signed-rank chart. 

 

3.3.2. One-sided control charts 

 

3.3.2.1. Upper one-sided control charts 

 

Fu, Spiring and Xie (2002) and Fu and Lou (2003) presented three results that must be 

satisfied before implementing the finite-state Markov chain approach. Let +
tS  be a finite-state 

homogenous Markov chain on the state space +Ω  with a transition probability matrix (TPM) 

such that (i) },...,,{ 110 −+
+ =Ω srςςς  where hsr =<<<= −+ 110 ...0 ςςς  and 1−+srς  is an absorbent 

state; (ii) the TPM is given by ][ ijpTPM =  for 1,...,1,0 −+= sri  and 1,...,1,0 −+= srj  where r 

denotes the number of non-absorbent* states and s the number of absorbent† states, respectively, 

and (iii) the starting value should equal zero with probability one, that is, 1)0( 0 ==+SP  (this is to 

ensure that the process starts in-control). Assume that the Markov chain +
tS  satisfies conditions 

(i), (ii) and (iii), then the formulas given in (2.41) to (2.45) hold. 

 

The time that the procedure signals is the first time such that the finite-state Markov chain 
+
tS  enters the state 1−+srς  where the state space is given by },...,,{ 110 −+

+ =Ω srςςς , 00 =+S  and  

 { }{ }kSRShS ttt −+= +
−

+
1,0max,min  (3.3) 

                                                 
* The transient (non-absorbent) states are the states for which eventual return is uncertain. 
† If a state is entered once and is never left, the state is said to be absorbent. 
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3.4. The EWMA control chart 

 

3.4.1. Introduction 

 

In this section, the approach taken by Lucas and Saccucci (1990) is extended to the use of 

the signed-rank statistic resulting in an EWMA signed-rank chart that accumulates the statistics 

,...,, 321 SRSRSR  . Section 3.4 is analogous to Section 2.4 where the approach taken by Lucas and 

Saccucci (1990) was extended to the use of the sign statistic resulting in an EWMA sign chart. 

Therefore, the reader is frequently referred back to Section 2.4 throughout this section.  

 

3.4.2. The proposed EWMA signed-rank chart 

 

A nonparametric EWMA-type of control chart based on the signed-rank statistic (recall 

that �
=

+−=
n

j
ijiji RxsignSR

1
0 )( θ ) can be obtained by replacing iX  in expression (2.53) of Section 

2.4 with iSR . The EWMA signed-rank chart accumulates the statistics ,...,, 321 SRSRSR  with the 

plotting statistics defined as  

 1)1( −−+= iii ZSRZ λλ  (3.10) 

where 10 ≤< λ  is a constant called the weighting constant. The starting value 0Z  could be taken 

to equal zero, i.e. 00 =Z . 

 

The EWMA signed-rank chart is constructed by plotting iZ  against the sample number i  

(or time). If the plotting statistic iZ  falls between the two control limits, that is, UCLZLCL i << , 

the process is considered to be in-control. If the plotting statistic iZ  falls on or outside one of the 

control limits, that is LCLZ i ≤  or UCLZ i ≥ , the process is considered to be out-of-control. 

 

The exact control limits and the center line of the EWMA signed-rank control chart can 

be obtained by replacing σ  and 0θ  by 
iSRσ  and 0, respectively, in expression (2.55) of Section 

2.4 to obtain 
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Similarly, the steady-state control limits can be obtained by replacing σ  and 0θ  by 
iSRσ  

and 0, respectively, in expression (2.56) to obtain 
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 (3.12) 

where 
iSRσ  denotes the in-control standard deviation of the signed-rank statistic iSR  if there are 

no ties within a subgroup. 

 

The in-control standard deviation of iSR  is given by == )var( iSR SR
i

σ  

6
)12)(1(

2
)1(

2var
++=�

�

�
�
�

� +−+ nnnnn
T . This is obtained by using the relationship between 

iSR  and +T  (recall that 
2

)1(
2

+−= + nn
TSRi  if there are no ties within a subgroup) and the fact 

that 
24

)12)(1(
)var(

++=+ nnn
T  (see Gibbons and Chakraborti (2003) page 198). 

 

3.4.3. Markov-chain approach 

 

Lucas and Saccucci (1990) evaluated the properties of the continuous state Markov chain 

by discretizing the infinite state TPM . This procedure entails dividing the interval between the 

UCL  and the LCL  into N  subintervals of width δ2 . Then the plotting statistic, iZ , is said to be 

in the non-absorbing state j  at time i  if δδ +≤<− jij SZS  where jS  denotes the midpoint of 

the thj  interval. iZ  is said to be in the absorbing state if iZ  falls on or outside one of the control 
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limits, that is, LCLZ i ≤  or UCLZ i ≥ . Let ijp  denote the probability of moving from state i  to 

state j  in one step, i.e. ( )istateinjstatetoMovingPpij |= . To approximate this probability we 

assume that the plotting statistic is equal to iS  whenever it is in state i . For all j  non-absorbing 

we obtain ( )ikjkjij SZSZSPp =+≤<−= −1|δδ . By using the definition of the plotting 

statistic given in expression (3.10) we obtain 
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For all j  absorbing we obtain 
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Since the values LCL, UCL, δ , λ , n , iS  and jS  are known constants the Wilcoxon 

signed-rank probabilities in expressions (3.13) and (3.14) can easily be calculated. The 

probabilities for the Wilcoxon signed-rank statistics are given in Table H of Lehmann (1975) for 

 
 
 



 191 

samples sizes up to 20 and they are tabulated (more recently) in Table H of Gibbons and 

Chakraborti (2003) for sample sizes up to 15. 

 

Once the one-step transition probabilities are calculated, the TPM can be constructed and 

is given by 
�
�
�

�

�

�
�
�

�

�

−−−==
1|'0

|
][

pQ

pTPM ij  (written in partitioned form) where the essential transition 

probability sub-matrix Q  is the matrix that contains all the transition probabilities of going from 

a non-absorbing state to a non-absorbing state, Q ( )NANA →: , p  contains all the transition 

probabilities of going from each non-absorbing state to the absorbing states, p ( )ANA →: , 

'0 ( )0000 �=  contains all the transition probabilities of going from each absorbing state 

to the non-absorbing states. '0  is a row vector with all its elements equal to zero, because it is 

impossible to go from an absorbing state to a non-absorbing state, because once an absorbing 

state is entered, it is never left, '0  ( )NAA →: , and 1 represents the scalar value one. The 

probability of going of going from an absorbing state to an absorbing state is equal to one, 

because once an absorbing state is entered, it is never left, 1 ( )AA →: . The one-step TPM is used 

to calculate the expected value (ARL), the second raw moment, the variance, the standard 

deviation and the probability mass function (pmf) of the run-length variable N  which are given in 

equations (2.41) to (2.45). 

 

Example 3.10 

The EWMA signed-rank chart where the sample size is even ( 6====n ) 

 

The EWMA signed-rank chart is investigated for a smoothing constant of 0.1 ( 1.0=λ ) 

and a multiplier of 3 ( 3=L ). The steady-state control limits are given by 
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where 3=L , 1.0=λ , and 539.9=
iSRσ , since =

iSRσ =++
6

)12)(1( nnn =++
6

)112)(16(6
 

539.9 . Clearly, we only have to calculate the UCL  since UCLLCL −= . We obtain 

565.6
1.02

1.0
539.93 =�

�

�
�
�

�

−
×=UCL . Therefore, 565.6−=LCL . 

 

This Markov-chain procedure entails dividing the interval between the UCL  and the 

LCL  into N  subintervals of width δ2 . For this example N  is taken to equal 4. Figure 3.13 

illustrates the partitioning of the interval between the UCL  and the LCL  into subintervals. 

 

    

Figure 3.13. Partitioning of the interval between the UCL  and the LCL  into 4 subintervals. 

 

From Figure 3.13 we see that there are 4 non-absorbing states, i.e. 4=r . The TPM is 

given by 
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Table 3.31. Calculation of the one-step probabilities in the first row of the TPM. 

( )0|000 stateinstatetoMovingPp =  

( )0100 | SZSZSP kk =+≤<−= −δδ  from (3.13) 
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( )0|202 stateinstatetoMovingPp =  

( )0122 | SZSZSP kk =+≤<−= −δδ  from (3.13) 
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 The one-step probabilities in the remaining rows can be calculated similarly. Therefore, 

the TPM is given by 
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Other values of the multiplier (L) and the smoothing constant ( λ )  were also considered 

and the results are given in Tables 3.32 and 3.33. 
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Table 3.32. The in-control average run length ( 0ARL ), standard deviation of the run length 

( SDRL ), th5 , th25 , th50 , th75  and th95  percentile values* for the EWMA signed-rank chart when 

6=n  and 5=N , i.e. there are 5 subintervals between the lower and upper control limit†.  

 1====L  2====L  3====L  

05.0====λλλλ  
10.45 
12.32 

(1, 2, 6, 15, 35) 

56.69 
72.45 

(1, 5, 29, 82, 204) 

** 
 

1.0====λλλλ  
7.32 
8.38 

(1, 1, 4, 10, 24) 

33.83 
40.28 

(1, 4, 20, 48, 115) 

330.67 
369.33 

(2, 63, 213, 471, 1070) 

2.0====λλλλ  
4.95 
4.90 

(1, 1, 3, 7, 15) 

35.21 
39.63 

(1, 6, 22, 50, 115) 

361.92 
384.29 

(3, 87, 243,  510, 1130) 
** The inverse of the matrix ( QI − ) does not exist and as a result the ARL (given by 

( ) ( ) 11−−= QINE ξ ) can not be calculated for this combination of ( L,λ ). 

 

In example 3.10 we considered a sample size that may be considered “small”. The results 

are given for a larger sample size ( 10=n ) for various values of λ  and L in Table 3.33. 

 

Table 3.33. The in-control average run length ( 0ARL ), standard deviation of the run length 

( SDRL ), th5 , th25 , th50 , th75  and th95  percentile values‡ for the EWMA signed-rank chart when 

10=n  and 5=N , i.e. there are 5 subintervals between the lower and upper control limit§.  

 1====L  2====L  3====L  

05.0====λλλλ  
11.17 
13.49 

(1, 2, 6, 16, 39) 

67.94 
83.82 

(1, 7, 38, 98, 238) 

1448.44 
1573.37 

(10, 316, 956, 2052, 4595) 

1.0====λλλλ  
6.85 
7.74 

(1, 1, 4, 9, 23) 

48.87 
57.73 

(1, 6, 29, 70, 165) 

352.72 
384.51 

(3, 76, 232, 500, 1122) 

2.0====λλλλ  
5.05 
5.07 

(1, 1, 3, 7, 15) 

33.96 
38.48 

(1, 6, 21, 48, 111) 

336.34 
357.54 

(3, 80, 226, 474, 1051) 
 

                                                 
* The three rows of each cell shows the ARL0, the SDRL, and the percentiles ( 5ρ , 25ρ , 50ρ , 75ρ , 95ρ ) , respectively. 
† See SAS Program 8 in Appendix B for the calculation of the values in Table 3.32. 
‡ The three rows of each cell shows the ARL0, the SDRL, and the percentiles ( 5ρ , 25ρ , 50ρ , 75ρ , 95ρ ) , respectively. 
§ See SAS Program 8 in Appendix B for the calculation of the values in Table 3.33. 
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These tables can be extended by changing the sample size (n), the number of subintervals 

between the lower and upper control limit (N), the multiplier (L) and the smoothing constant ( λ ) 

in SAS Program 8  for the EWMA signed-rank chart given in Appendix B. 

 

From Tables 3.32 and 3.33 we see that the 0ARL , SDRL  and percentiles increase as the 

value of the multiplier (L) increases. From Table 3.33 we find an in-control average run length of 

336.34 for 10=n  when the multiplier is taken to equal 3 ( 3=L ) and the smoothing constant 0.2 

( 2.0=λ ). The chart performance is good, since the attained in-control average run length of 

336.34 is in the region of the desired in-control average run length which is generally taken to be 

370 or 500. 

 

3.4.4. Summary 

 

The EWMA control chart is one of several charting methods aimed at correcting a 

deficiency of the Shewhart chart - insensitivity to small shifts. Lucas and Saccucci (1990) have 

investigated some properties of the EWMA chart under the assumption of independent normally 

distributed observations, whereas in this section we have described and evaluated the 

nonparametric EWMA signed-rank chart. The main advantage of the nonparametric EWMA 

chart is that there is no need to assume a particular parametric distribution for the underlying 

process (see Section 1.4 for other advantages of the nonparametric EWMA chart). 
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where h is the decision interval and k is the reference value (see Section 2.3.1 for a detailed 

discussion on how the values of k and h are chosen). Equation (3.3) is obtained by replacing tSN  

with tSR  in (2.46). 

 

The distribution of tSR  can easily be obtained from the distribution of the Wilcoxon 

signed-rank statistic +T  (recall that 
2

)1(
2

+−= + nn
TSR ii  i∀ ). The probabilities for the 

Wilcoxon signed-rank statistics are given in Table H of Lehmann (1975) for samples sizes up to 

20 and they are tabulated (more recently) in Table H of Gibbons and Chakraborti (2003) for 

sample sizes up to 15. 

 

Example 3.3 

An upper one-sided CUSUM signed-rank chart where the sample size is even (n=4) 

 

The statistical properties of an upper one-sided CUSUM signed-rank chart with a decision 

interval of 6 ( )6=h , a reference value of 2 ( )2=k  and a sample size of 4 ( )4=n  is examined. 

We start by examining the pmf of the well-known Wilcoxon signed-rank statistic +T , since the 

plotting statistic iSR  is linearly related to +T . 
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Table 3.6. Enumeration for the distribution of +T  for a sample size of 4. 

Value 
of 

++++T  

Ranks associated 
with positive differences 

Number 
of  sample 

points 
)(tu  

)( tTP ====++++  )( tTP ≤≤≤≤++++  

0  1 16
1  16

1  
1 1 1 16

1  16
2  

2 2 1 16
1  16

3  
3 {1,2}; {3} 2 16

2  16
5  

4 {1,3}; {4} 2 16
2  16

7  
5 {1,4}; {2,3} 2 16

2  16
9  

6 {1,2,3}; {2,4} 2 16
2  16

11  
7 {1,2,4}; {3,4} 2 16

2  16
13  

8 {1,3,4} 1 16
1  16

14  
9 {2,3,4} 1 16

1  16
15  

10 {1,2,3,4} 1 16
1  16

16  
 

From Table 3.6 if follows that the pmf of +T  when the sample size is 4 is 

( )
�
�

�
�

�

=
=

=== +
+

otherwise0
7,6,5,4,3
10,9,8,2,1,0

)( 16
2

16
1

t

t

tTPtf
T

 

 

The values of tSR  are either the even or the odd integers between (and including) 

2
)1( +− nn

 and 
2

)1( +nn
, depending on whether 

2
)1( +nn

 is even or odd. In example 3.3 

10
2

)14(4
2

)1( =+=+nn
 which is even and as a result the possible values for tSR  are even 

integers between -10 and 10 inclusive. Thus, we have that 1010 ≤≤− tSR . In both cases 

(whether 
2

)1( +nn
 is even or odd) the sum ( )� − kSRi  will be an integer since both tSR  and k  

are integers. For this example, the reference value is taken to be equal to two, because this leads 

to the sum ( )� − kSRi  being equal to even values which reduces the size of the state space for 

the Markov chain. For 6=h  we have that }6,4,2,0{},,,{ 3210 ==Ω+ ςςςς  with 
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h=<<<= 32100 ςςςς . The state space is calculated using equation (3.3) and the calculations 

are shown in Table 3.7. 

 

Table 3.7. Calculation of the state space when 6=h , 2=k  and 4=n . 

tSR  kSRS tt −−−−++++++++
−−−−1  {{{{ }}}}kSRS tt −−−−++++++++

−−−−1,0max  {{{{ }}}}{{{{ }}}}kSRShS ttt −−−−++++==== ++++
−−−−

++++
1,0max,min  

-10 -12* 0 0 
-8 -10 0 0 
-6 -8 0 0 
-4 -6 0 0 
-2 -4 0 0 
0 -2 0 0 
2 0 0 0 
4 2 2 2 
6 4 4 4 
8 6 6 6 
10 8 8 6 

 

Table 3.8. Classification of the states. 

State number Description of the state Absorbent (A)/ Non-absorbent (NA) 
0 0=+

tS  NA 

1 2=+
tS  NA 

2 4=+
tS  NA 

3 6=+
tS  A 

 

From Table 3.8 we see that there are three non-absorbent states, i.e. 3=r , and one 

absorbent state, i.e. 1=s . Therefore, the corresponding TPM will be a 44)()( ×=+×+ srsr  

matrix. It can be shown (see Table 3.9) that the TPM is given by 
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2

16
1

16
2

16
11

66646260

46444240

26242220

06040200
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|

1|000

|
|
|

pQ

pppp

pppp

pppp

pppp

TPM  

                                                 
* Note: Since only the state space needs to be described, +

−1tS  can be any value from +Ω  and we therefore take, 

without loss of generality, 01 =+
−tS . Any other possible value for +

−1tS  would lead to the same +Ω .   
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where the essential transition probability sub-matrix )(:33 NANAQ →×  is an 33×=× rr  matrix, 

)(:
13

ANAp →
×

 is an 131)1( ×=×−+ sr  column vector, )(:'0 31 NAA →×  is a 

31)1(1 ×=−+× sr  row vector and )(:1 11 AA →×  represents the scalar value one. 

 

The one-step transition probabilities are calculated by substituting tSR  in expression (3.3) 

by 
2

)1(
2

+−+ nn
T  and substituting in values for h , k , +

tS  and +
−1tS . The calculation of the one-

step transition probabilities are given for illustration in Table 3.9. 

 

The probabilities in the last column of the TPM can be calculated using the fact that 

�
Ω∈

∀=
j

ij ip 1  (see equation (2.18)). Therefore, 

16
2

16
1

16
2

16
11

04020006 )(1)(1 =++−=++−= pppp ; 

16
3

16
2

16
2

16
9

24222026 )(1)(1 =++−=++−= pppp ; 

16
5

16
2

16
2

16
7

44424046 )(1)(1 =++−=++−= pppp ; 

1)000(1)(1 64626066 =++−=++−= pppp . 
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Table 3.9. The calculation of the transition probabilities when 6=h , 2=k  and 4=n . 

00p  
( )0|0 1 === −tt SSP  

{ }{ }( )020,0max,6min =−+= tSRP

{ }( )02,0max =−= tSRP  
( )02 ≤−= tSRP  
( )2≤= tSRP  
( )2102 ≤−= +TP  
( )6≤= +TP  

16
11=  

02p  
( )0|2 1 === −tt SSP  

{ }{ }( )220,0max,6min =−+= tSRP

{ }( )22,0max =−= tSRP  
( )22 =−= tSRP  
( )4== tSRP  
( )4102 =−= +TP  
( )7== +TP  

16
2=  

04p  
( )0|4 1 === −tt SSP  

{ }{ }( )420,0max,6min =−+= tSRP

{ }( )42,0max =−= tSRP  
( )42 =−= tSRP  
( )6== tSRP  
( )6102 =−= +TP  
( )8== +TP  

16
1=  

20p  
( )2|0 1 === −tt SSP  

{ }{ }( )022,0max,6min =−+= tSRP

{ }( )0,0max == tSRP  
( )0≤= tSRP  
( )0102 ≤−= +TP  
( )5≤= +TP  

16
9=  

22p  
( )2|2 1 === −tt SSP  

{ }{ }( )222,0max,6min =−+= tSRP

{ }( )2,0max == tSRP  
( )2== tSRP  
( )2102 =−= +TP  
( )6== +TP  

16
2=  

24p  
( )2|4 1 === −tt SSP  

{ }{ }( )422,0max,6min =−+= tSRP

{ }( )4,0max == tSRP  
( )4== tSRP  
( )4102 =−= +TP  
( )7== +TP  

16
2=  

40p  
( )4|0 1 === −tt SSP  

{ }{ }( )024,0max,6min =−+= tSRP
{ }( )02,0max =+= tSRP  

( )02 ≤+= tSRP  
( )2−≤= tSRP  
( )2102 −≤−= +TP  
( )4≤= +TP  

16
7=  

42p  
( )4|2 1 === −tt SSP  

{ }{ }( )224,0max,6min =−+= tSRP
{ }( )22,0max =+= tSRP  

( )22 =+= tSRP  
( )0== tSRP  
( )0102 =−= +TP  
( )5== +TP  

16
2=  

44p  
( )4|4 1 === −tt SSP  

{ }{ }( )424,0max,6min =−+= tSRP
{ }( )42,0max =+= tSRP  

( )42 =+= tSRP  
( )2== tSRP  
( )2102 =−= +TP  
( )6== +TP  

16
2=  

60p  
( )6|0 1 === −tt SSP  

0= * 

62p  
( )6|2 1 === −tt SSP  

0=  

64p  
( )6|4 1 === −tt SSP  

0=  
 

Using the TPM the ARL  can be calculated using ( ) 11−−= QIARL ξ . A well-known 

concern is that important information about the performance of a control chart can be missed 

when only examining the ARL (this is especially true when the process distribution is skewed). 

Various authors, see for example, Radson and Boyd (2005) and Chakraborti (2007), have 

                                                 
* The probability equals zero, because it is impossible to go from an absorbent state to a non-absorbent state. 
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suggested that one should examine a number of percentiles, including the median, to get the 

complete information about the performance of a control chart. Therefore, we now also consider 

percentiles. The 100 thρ  percentile is defined as the smallest integer l  such that the cdf is at least 

( )%100 ρ× . Thus, the 100 thρ  percentile l  is found from ρ≥≤ )( lNP . The median ( th50  

percentile) will be considered, since it is a more representative performance measure than the 

ARL. The first and third quartiles ( th25  and th75  percentiles) will also be considered, since it 

contains the middle half of the distribution. The ‘tails’ of the distribution should also be 

examined and therefore the th5  and th95  percentiles are calculated. The calculation of these 

percentiles is shown below for illustration purposes. 

 

Table 3.10. Calculation of the percentiles when 6=h , 2=k  and 4=n *. 

N )( lNP ≤≤≤≤  The 5th, 25th, 50th, 75th and 95th percentiles 
1 0.125 =05.0ρ 1 (smallest integer such that the cdf is at least 0.05) 

2 0.254 =25.0ρ 2 (smallest integer such that the cdf is at least 0.25) 
3 0.366  
4 0.462  
5 0.544 =5.0ρ 5 (smallest integer such that the cdf is at least 0.5) 
6 0.613  
7 0.671  
8 0.721  
9 0.763 =75.0ρ 9 (smallest integer such that the cdf is at least 0.75) 

10 0.799  
11 0.829  
12 0.855  
13 0.877  
14 0.896  
15 0.912  
16 0.925  
17 0.936  
18 0.946  
19 0.954 =95.0ρ 19 (smallest integer such that the cdf is at least 0.95) 
20† 0.961  
 

                                                 
* See SAS Program 7 in Appendix B for the calculation of the values in Table 3.10. 
† The value of the run length variable is only shown up to N = 20 for illustration purposes. 
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The formulas of the moments and some characteristics of the run length distribution have 

been studied by Fu, Spiring and Xie (2002) and Fu and Lou (2003) – see equations (2.41) to 

(2.45). By substituting )001(
31

=
×

ξ , 
�
�
�

�

�

	
	
	




�

=×

16
2

16
2

16
7

16
2

16
2

16
9

16
1

16
2

16
11

33Q  and 
�
�
�

�

�

	
	
	




�

=×

1
1
1

1 13  into these 

equations, we obtain the following: 

 

( ) ( ) 81.611 =−== −QINEARL ξ  

( ) 64.831))(( 22 =−+= −QIQINE ξ  

( ) ( ) 11.6)()( 22 =−== NENENVarSDRL  

1  percentile 5 5 == ρth  

2  percentile 25 25 == ρth  

5  percentile 50 Median 50 === ρth  

9  percentile 75 75 == ρth  

19  percentile 95 95 == ρth  

 

Other values of h, k and n were also considered and the results are given in Table 3.11. 
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Table 3.11. The in-control average run length ( +
0ARL ), standard deviation of the run length 

( SDRL ), th5 , th25 , th50 , th75  and th95  percentile values* for the upper one-sided CUSUM signed-

rank chart when 4=n †. 

h  k  2 4 6 8 10 

0 
2.29 
1.71 

(1, 1, 2, 3, 6) 

3.05 
2.44 

(1, 1, 2, 4, 8) 

4.27 
3.50 

(1, 2, 3, 6, 11) 

5.49 
4.55 

(1, 2, 4, 7, 15) 

7.24 
5.98 

(1, 3, 5, 10, 19) 

2 
3.20 
2.65 

(1, 1, 2, 4, 8) 

4.92 
4.31 

(1, 2, 4, 7, 14) 

6.81 
6.11 

(1, 2, 5, 9, 19) 

10.17 
9.21 

(1, 4, 7, 14, 29) 

 
 
 

4 
5.33 
4.81 

(1, 2, 4, 7, 15) 

7.74 
7.19 

(1, 3, 6, 11, 22) 

13.28 
12.58 

(1, 4, 9, 18, 38) 

 
 
 

 
 
 

6 
8.00 
7.48 

(1, 3, 6, 11, 23) 

15.06 
14.49 

(1, 5, 11, 21, 44) 

 
 

 
 

 
 

8 
16.00 
15.49 

(1, 5, 11, 22, 47) 

 
 

 
 

 
  

 

In order to allow for the possibility of stopping after one group, the values of h  is taken 

to satisfy k
nn

h −+≤
2

)1(
. For example, for 4=n  and 0=k , the reference value h  is taken to 

be smaller than or equal to 10, since 100
2

)14(4
2

)1( =−+=−+
k

nn
. 

 

The five percentiles are displayed in boxplot-like‡ graphs in Figure 3.2 for all the ),( kh -

combinations that are shaded in Table 3.11. It clearly shows the effects of h  and k  on the run 

length distribution. Figure 3.2 describes the run-length distribution when the process is in-

control. We would prefer a “boxplot” with a high valued (large) in-control average run length and 

a small spread. The “boxplots” are classified into 3 categories, namely, small ( 4≤+ kh ), 

                                                 
*The three rows of each cell shows the +

0ARL , the SDRL , and the percentiles ( 5ρ , 25ρ , 50ρ , 75ρ , 95ρ ) , respectively. 
† See SAS Program 7 in Appendix B for the calculation of the values in Table 3.11. 
‡ It should be noted that these boxplot-like graphs differ from standard box plots. In the latter case the whiskers are 
drawn from the ends of the box to the smallest and largest values inside specified limits, whereas, in the case of the 
boxplot-like graphs, the whiskers are drawn from the ends of the box to the 5th and 95th percentiles, respectively. In 
this thesis “boxplot” will refer to a boxplot-like graph from this point forward. 
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moderate ( 85 ≤+≤ kh ) and large ( 9≥+ kh ). If the sum of the reference value, k, and the 

decision interval, h, is small (moderate or large), the corresponding “boxplot” is classified under 

small (moderate or large). For example, where 4=+ kh , the “boxplot” is classified as small, 

since the +
0ARL , SDRL and percentile values are small for 4=n . In contrast, where 10=+ kh , 

the “boxplot” is classified as large, since the +
0ARL , SDRL and percentile values are large for 

4=n . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Boxplot-like graphs for the in-control run length distribution of various upper one-

sided CUSUM signed-rank charts when 4=n .  The whiskers extend to the 5th and the 95th  

percentiles.  The symbols “ ”, “ ” and “ ” denote the ARL, SDRL* and MRL, respectively. 

                                                 
* For ease of interpretation, the standard deviation (as measure of spread) is included in the (location) measures of 
percentiles. 
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Example 3.4 

An upper one-sided CUSUM signed-rank chart where the sample size is odd (n=5) 

 

The statistical properties of an upper one-sided CUSUM signed-rank chart with a decision 

interval of 6 ( )6=h , a reference value of 3 ( )3=k  and a sample size of 5 ( )5=n  is examined. 

We start by examining the pmf of the well-known Wilcoxon signed-rank statistic +T , since the 

plotting statistic iSR  is linearly related to +T  (see equation (3.2)). 

 

Table 3.12. Enumeration for the distribution of +T  for a sample size of 5. 

Value 
of 

++++T  

Ranks associated 
with positive differences 

Number 
of sample 

points 
)(tu  

)( tTP ====++++  )( tTP ≤≤≤≤++++  

0  1 32
1  32

1  
1 1 1 32

1  32
2  

2 2 1 32
1  32

3  
3 {1,2}; {3} 2 32

2  32
5  

4 {1,3}; {4} 2 32
2  32

7  
5 {1,4}; {2,3}; {5} 3 32

3  32
10  

6 {1,2,3}; {1,5}; {2,4} 3 32
3  32

13  
7 {1,2,4}; {2,5}; {3,4} 3 32

3  32
16  

8 {1,2,5}; {1,3,4}; {3,5} 3 32
3  32

19  
9 {1,3,5};  {2,3,4}; {4,5} 3 32

3  32
22  

10 {1,2,3,4}; {1,4,5}; {2,3,5} 3 32
3  32

25  
11 {1,2,3,5}; {2,4,5} 2 32

2  32
27  

12 {1,2,4,5}; {3,4,5} 2 32
2  32

29  
13 {1,3,4,5} 1 32

1  32
30  

14 {2,3,4,5} 1 32
1  32

31  
15 {1,2,3,4,5} 1 32

1  32
32  
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From Table 3.12 if follows that the pmf of +T  when the sample size is 5 is 

( )
�
�

�

�
�

�

�

=
=

=

=== +
+

otherwise0
10,9,8,7,6,5

12,11,4,3
15,14,13,2,1,0

)(
32

3

32
2

32
1

t

t

t

tTPtf
T

 

 

The reference value was taken to be equal to three, because this leads to the sum 

( )� − kSRi  being equal to even values which reduces the size of the state space for the Markov 

chain. For 6=h  we have that }6,4,2,0{},,,{ 3210 ==Ω+ ςςςς  with h=<<<= 32100 ςςςς . 

The state space is calculated using equation (3.3) and the calculations are shown in Table 3.13. 

 

Table 3.13. Calculation of the state space when 6=h , 3=k  and 5=n . 

tSR  kSRS tt −−−−++++++++
−−−−1  {{{{ }}}}kSRS tt −−−−++++++++

−−−−1,0max  {{{{ }}}}{{{{ }}}}kSRShS ttt −−−−++++==== ++++
−−−−

++++
1,0max,min  

-15 -18* 0 0 
-13 -16 0 0 
-11 -14 0 0 
-9 -12 0 0 
-7 -10 0 0 
-5 -8 0 0 
-3 -6 0 0 
-1 -4 0 0 
1 -2 0 0 
3 0 0 0 
5 2 2 2 
7 4 4 4 
9 6 6 6 
11 8 8 6 
13 10 10 6 
15 12 12 6 

 

                                                 
* Note: Since only the state space needs to be described, +

−1tS  can be any value from +Ω  and we therefore take, 

without loss of generality, 01 =+
−tS . Any other possible value for +

−1tS  would lead to the same +Ω .   
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Table 3.14. Classification of the states. 

State number Description of the state Absorbent (A)/ Non-absorbent (NA) 
0 0=+

tS  NA 

1 2=+
tS  NA 

2 4=+
tS  NA 

3 6=+
tS  A 

 

From Table 3.14 we see that there are three non-absorbent states, i.e. 3=r , and one 

absorbent state, i.e. 1=s . Therefore, the corresponding TPM will be a 44)()( ×=+×+ srsr  

matrix. It can be shown (see Table 3.15) that the TPM is given by 

�
�
�

�

�

	
	
	




�

−−−=

�
�
�
�
�
�

�

�

	
	
	
	
	
	




�

−−−−−
=

�
�
�
�
�

�

�

	
	
	
	
	




�

=

××

××

×

1131

1333

32
10

32
3

32
3

32
16

32
7

32
3

32
3

32
19

32
5

32
2

32
3

32
22

66646260

46444240

26242220

06040200

44

1|'0

|

1|000

|
|
|

pQ

pppp

pppp

pppp

pppp

TPM  

where the essential transition probability sub-matrix )(:33 NANAQ →×  is an 33×=× rr  matrix, 

)(:
13

ANAp →
×

 is an 131)1( ×=×−+ sr  column vector, )(:'0 31 NAA →×  is a 

31)1(1 ×=−+× sr  row vector and )(:1 11 AA →×  represents the scalar value one. The 

calculation of the one-step transition probabilities are given for illustration in Table 3.15. 

 

Recall that the probabilities in the last column of the TPM are calculated using the fact 

that �
Ω∈

∀=
j

ij ip 1  (see equation (2.18)). Therefore, 

32
5

32
2

32
3

32
22

04020006 )(1)(1 =++−=++−= pppp ; 

32
7

32
3

32
3

32
19

24222026 )(1)(1 =++−=++−= pppp ; 

32
10

32
3

32
3

32
16

44424046 )(1)(1 =++−=++−= pppp ; 

1)000(1)(1 64626066 =++−=++−= pppp . 
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Table 3.15. The calculation of the transition probabilities when 6=h , 3=k  and 5=n . 

00p  
( )0|0 1 === −tt SSP  

{ }{ }( )030,0max,6min =−+= tSRP

{ }( )03,0max =−= tSRP  
( )03 ≤−= tSRP  
( )3≤= tSRP  
( )3152 ≤−= +TP  
( )9≤= +TP  

32
22=  

02p  
( )0|2 1 === −tt SSP  

{ }{ }( )230,0max,6min =−+= tSRP

{ }( )23,0max =−= tSRP  
( )23 =−= tSRP  
( )5== tSRP  
( )5152 =−= +TP  
( )10== +TP  

32
3=  

02p  
( )0|4 1 === −tt SSP  

{ }{ }( )430,0max,6min =−+= tSRP  
{ }( )43,0max =−= tSRP  

( )43 =−= tSRP  
( )7== tSRP  
( )7152 =−= +TP  
( )11== +TP  

32
2=  

20p  
( )2|0 1 === −tt SSP  

{ }{ }( )032,0max,6min =−+= tSRP

{ }( )01,0max =−= tSRP  
( )01 ≤−= tSRP  
( )1≤= tSRP  
( )1152 ≤−= +TP  
( )8≤= +TP  

32
19=  

22p  
( )2|2 1 === −tt SSP  

{ }{ }( )232,0max,6min =−+= tSRP

{ }( )21,0max =−= tSRP  
( )21 =−= tSRP  
( )3== tSRP  
( )3152 =−= +TP  
( )9== +TP  

32
3=  

24p  
( )2|4 1 === −tt SSP  

{ }{ }( )432,0max,6min =−+= tSRP  
{ }( )41,0max =−= tSRP  

( )41 =−= tSRP  
( )5== tSRP  
( )5152 =−= +TP  
( )10== +TP  

32
3=  

40p  
( )4|0 1 === −tt SSP  

{ }{ }( )034,0max,6min =−+= tSRP

{ }( )01,0max =+= tSRP  
( )01 ≤+= tSRP  
( )1−≤= tSRP  
( )1152 −≤−= +TP  
( )7≤= +TP  

32
16=  

42p  
( )4|2 1 === −tt SSP  

{ }{ }( )234,0max,6min =−+= tSRP

{ }( )21,0max =+= tSRP  
( )21 =+= tSRP  
( )1== tSRP  
( )1152 =−= +TP  
( )8== +TP  

32
3=  

44p  
( )4|4 1 === −tt SSP  

{ }{ }( )434,0max,6min =−+= tSRP  
{ }( )41,0max =+= tSRP  

( )41 =+= tSRP  
( )3== tSRP  
( )3152 =−= +TP  

( )9== +TP  

32
3=  

60p  
( )6|0 1 === −tt SSP  

0= * 

62p  
( )6|2 1 === −tt SSP  

0=  

64p  
( )6|4 1 === −tt SSP  

0=  
 

 

 

 

                                                 
* The probability equals zero, because it is impossible to go from an absorbent state to a non-absorbent state. 
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The formulas of the moments and some characteristics of the run length distribution have 

been studied by Fu, Spiring and Xie (2002) and Fu and Lou (2003) – see equations (2.41) to 

(2.45). By substituting )001(
31

=
×

ξ , 
�
�
�

�

�

	
	
	




�

=×

32
3

32
3

32
16

32
3

32
3

32
19

32
2

32
3

32
22

33Q  and 
�
�
�

�

�

	
	
	




�

=×

1
1
1

1 13  into these 

equations, we obtain the following: 

 

( ) ( ) 79.511 =−== −QINEARL ξ  

( ) ( )( ) 14.60122 =−+= −QIQINE ξ  

( ) ( ) 16.5)()( 22 =−== NENENVarSDRL  

1  percentile 5 5 == pth  

2  percentile 25 25 == pth  

4  percentile 50 Median 50 === pth  

8  percentile 75 75 == pth  

16  percentile 95 95 == pth  

 

Other values of h, k and n were also considered and the results are given in Table 3.16. 
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Table 3.16. The in-control average run length ( +
0ARL ), standard deviation of the run length ( SDRL ), th5 , th25 , th50 , th75  and th95  

percentile values* for the upper one-sided CUSUM signed-rank chart when 5=n †. 

h  k  
2 4 6 8 10 12 14 

1 
2.46 
1.90 

(1, 1, 2, 3, 6) 

3.11 
2.53 

(1, 1, 2, 4, 8) 

4.08 
3.42 

(1, 2, 3, 5, 11) 

5.14 
4.38 

(1, 2, 4, 7, 14) 

6.71 
5.73 

(1, 3, 5, 9, 18) 

8.29 
7.13 

(1, 3, 6, 11, 22) 

10.46 
8.99 

(2, 4, 8, 14, 28) 

3 
3.20 
2.65 

(1, 1,2, 4, 8) 

4.39 
3.82 

(1, 2, 3, 6, 12) 

5.79 
5.16 

(1, 2, 4, 8, 16) 

8.13 
7.34 

(1, 3, 6, 11, 23) 

10.68 
9.75 

(1, 4, 8, 14, 30) 

14.78 
13.56 

(2, 5, 11, 20, 42) 
 

5 
4.57 
4.04 

(1, 2, 3, 6, 13) 

6.24 
5.69 

(1, 2, 4, 8, 18) 

9.44 
8.79 

(1, 3, 7, 13, 27) 

13.04 
12.31 

(1, 4, 9, 18, 38) 

20.16 
19.22 

(2, 6, 14, 28, 59) 
  

7 
6.40 
5.88 

(1, 2, 5, 9, 18) 

10.24 
9.68 

(1, 3, 7, 14, 30) 

14.77 
14.18 

(1, 5, 10, 20, 43) 

25.17 
24.43 

(2, 8, 18, 35, 74) 
   

9 
10.67 
10.15 

(1, 3, 8, 15, 31) 

15.75 
15.22 

(1, 5, 11, 22, 46) 

29.15 
28.55 

(2, 9, 20, 40, 86) 
    

11 
16.00 
15.49 

(1, 5, 11, 22, 47) 

31.03 
30.50 

(2, 9, 22, 43, 92) 
     

13 
32.00 
31.50 

(2, 10, 22, 44, 95) 
      

 

 

                                                 
* The three rows of each cell shows the +

0ARL , the SDRL , and the percentiles ( 5ρ , 25ρ , 50ρ , 75ρ , 95ρ ) , respectively. 
† See SAS program 7 in Appendix B for the calculation of the values in Table 3.16. 
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The five percentiles are displayed in boxplot-like graphs in Figure 3.3 for all the ),( kh -

combinations that are shaded in Table 3.16. It clearly shows the effects of h  and k  on the run 

length distribution. Figure 3.3 describes the run-length distribution when the process is in-

control. We would prefer a “boxplot” with a high valued (large) in-control average run length and 

a small spread. The “boxplots” are classified into 3 categories, namely small ( 5≤+ kh ), 

moderate ( 106 ≤+≤ kh ) and large ( 11≥+ kh ). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. Boxplot-like graphs for the in-control run length distribution of various upper one-

sided CUSUM signed-rank charts when 5=n .  The whiskers extend to the 5th and the 

95th percentiles.  The symbols “ ”, “ ” and “ ” denote the ARL, SDRL* and MRL, 

respectively. 

 
                                                 
* For ease of interpretation, the standard deviation (as measure of spread) is included in the (location) measures of 
percentiles. 
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Examples 3.3 and 3.4 illustrated the Markov chain approach used to calculate run length 

characteristics for n  even and odd, respectively. On the performance side, note that the largest 

in-control average run length that the upper one-sided CUSUM signed-rank can obtain is n2 . 

Therefore, for a sample size of 4 the largest +
0ARL  equals 1624 =  (this is obtained when 2=h  

and 8=k ). Thus, a large number of false alarms will be signaled by this chart leading to a 

possible loss of time and resources. Compared to this, for a sample of size 5 the largest +
0ARL  

equals 3225 =  (this is obtained when 2=h  and 13=k ). Both examples considered sample 

sizes that may be considered “small”. Some results will be given for larger sample sizes ( =n 6 

and 10).  
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Table 3.17. The in-control average run length ( +
0ARL ), standard deviation of the run length ( SDRL ), th5 , th25 , th50 , th75  and th95  

percentile values* for the upper one-sided CUSUM signed-rank chart when 6=n †. 

h  k  
2 4 6 8 10 12 14 16 18 

1 
2.37 
1.80 

(1, 1, 2, 3, 6) 

2.86 
2.28 

(1, 1, 2, 4, 7) 

3.39 
2.79 

(1, 1, 3, 4, 9) 

4.08 
3.42 

(1, 2, 3, 5, 11) 

5.03 
4.25 

(1, 2, 4, 7, 13) 

6.10 
5.17 

(1, 2, 5, 8, 16) 

7.24 
6.17 

(1, 3, 5, 10, 20) 

8.72 
7.41 

(2, 3, 6, 12, 23) 

10.21 
8.69 

(2, 4, 8, 14, 28) 

3 
2.91 
2.36 

(1, 1, 2, 4, 8) 

3.51 
2.95 

(1, 1, 3, 5, 9) 

4.33 
3.74 

(1, 2, 3, 6, 12) 

5.55 
4.87 

(1, 2, 4, 7, 15) 

7.00 
6.21 

(1, 3, 5, 9, 19) 

8.63 
7.72 

(1, 3, 6, 12, 24) 

10.99 
9.86 

(2, 4, 8, 15, 31) 

13.43 
12.12 

(2, 5, 10, 18, 38) 

16.78 
15.18 

(2, 6, 12, 23, 47) 

5 
3.56 
3.01 

(1, 1, 3, 5, 10) 

4.49 
3.94 

(1, 2, 3, 6, 12) 

5.95 
5.35 

(1, 2, 4, 8, 17) 

7.82 
7.14 

(1, 3, 6, 11, 22) 

10.02 
9.25 

(1, 3, 7, 14, 28) 

13.55 
12.60 

(2, 5, 10, 18, 39) 

17.39 
16.29 

(2, 6, 12, 24, 50) 

23.44 
22.07 

(2, 8, 17, 32, 67) 
 

7 
4.57 
4.04 

(1, 2, 3, 6, 13) 

6.24 
5.70 

(1, 2, 4, 8, 18) 

8.50 
7.91 

(1, 3, 6, 12, 24) 

11.26 
10.61 

(1, 4, 8, 15, 32 

16.17 
15.39 

(2, 5, 11, 22, 47) 

21.79 
20.90 

(2, 7, 15, 30, 63) 

32.01 
30.88 

(3, 10, 23, 44, 94) 
  

9 
6.40 
5.88 

(1, 2, 5, 9, 18) 

8.96 
8.42 

(1, 3, 6, 12, 26) 

12.16 
11.60 

(1, 4, 9, 17, 35) 

18.48 
17.83 

(2, 6, 13, 25, 54) 

25.89 
25.17 

(2, 8, 18, 36, 76) 

41.56 
40.64 

(2, 13, 29, 57, 123) 

 
 
 

 
 
 

 
 
 

11 
9.14 
8.63 

(1, 3, 6, 12, 26) 

12.64 
12.12 

(1, 4, 9, 17, 37) 

20.05 
19.48 

(2, 6, 14, 28, 59) 

28.88 
28.27 

(2, 9, 20, 40, 85) 

50.26 
49.52 

(3, 15, 35, 69, 149) 

 
 

 
 

 
 

 
 

13 
12.80 
12.29 

(1, 4, 9, 18, 37) 

20.90 
20.37 

(2, 6, 15, 29, 62) 

30.76 
30.22 

(2, 9, 21, 42, 91) 

56.62 
55.99 

(3, 17, 39, 78, 168) 

 
 

 
 

 
 

 
 

 
 

15 
21.33 
20.83 

(2, 6, 15, 29, 63) 

31.75 
31.24 

(2, 9, 22, 44, 94) 

61.08 
60.53 

(4, 18, 43, 84, 182) 
      

17 
32.00 
31.50 

(2, 10, 22, 44, 95) 

63.02 
62.50 

(4, 18, 44, 87, 188) 
       

19 
64.00 
63.50 

(4, 19, 45, 89, 191) 
        

 

 

                                                 
* The three rows of each cell shows the +

0ARL , the SDRL , and the percentiles ( 5ρ , 25ρ , 50ρ , 75ρ , 95ρ ) , respectively. 
† See SAS Program 7 in Appendix B for the calculation of the values in Table 3.17. 
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Figure 3.4. Boxplot-like graphs for the in-control run length distribution of various upper one-

sided CUSUM signed-rank charts when 6=n .  The whiskers extend to the 5th and the  

95th percentiles.  The symbols “ ”, “ ” and “ ” denote the ARL, SDRL* and MRL, 

respectively†. 

                                                 
* For ease of interpretation, the standard deviation (as measure of spread) is included in the (location) measures of 
percentiles. 
† The “boxplots” are classified into 3 categories, namely small ( 7≤+ kh ), moderate ( 168 ≤+≤ kh ) and large 

( 17≥+ kh ). 
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Table 3.18. The in-control average run length ( +
0ARL ), standard deviation of the run length ( SDRL ), th5 , th25 , th50 , th75  and th95  

percentile values* for samples of size 10=n  for 14,...,4,2=h  and 23,...,3,1=k  for the upper one-sided CUSUM signed-rank chart†. 

h k 2 4 6 8 10 12 14 

1 
2.17 
1.59 

(1, 1, 2, 3, 5) 

2.36 
1.78 

(1, 1, 2, 3, 6) 

2.57 
1.99 

(1, 1, 2, 3, 7) 

2.81 
2.22 

(1, 1, 2, 4, 7) 

3.07 
2.47 

(1, 1, 2, 4, 8) 

3.36 
2.73 

(1, 1, 3, 4, 9) 

3.68 
3.02 

(1, 2, 3, 5, 10) 

3 
2.36 
1.80 

(1, 1, 2, 3, 6) 

2.59 
2.02 

(1, 1, 2, 3, 7) 

2.84 
2.27 

(1, 1, 2, 4, 7) 

3.12 
2.54 

(1, 1, 2, 4, 8) 

3.44 
2.84 

(1, 1, 3, 5, 9) 

3.79 
3.17 

(1, 2, 3, 5, 10) 

4.18 
3.52 

(1, 2, 3, 6, 11) 

5 
2.60 
2.04 

(1, 1, 2, 3, 7) 

2.87 
2.31 

(1, 1, 2, 4, 7) 

3.16 
2.60 

(1, 1, 2, 4, 8) 

3.50 
2.93 

(1, 1, 3, 5, 9) 

3.88 
3.29 

(1, 2, 3, 5, 10) 

4.31 
3.69 

(1, 2, 3, 6, 12) 

4.79 
4.14 

(1, 2, 4, 6, 13) 

7 
2.88 
2.32 

(1, 1, 2, 4, 8) 

3.19 
2.64 

(1, 1, 2, 4, 8) 

3.55 
2.99 

(1, 1, 3, 5, 10) 

3.96 
3.39 

(1, 2, 3, 5, 11) 

4.42 
3.83 

(1, 2, 3, 6, 12) 

4.95 
4.34 

(1, 2, 4, 7, 14) 

5.55 
4.91 

(1, 2, 4, 7, 15) 

9 
3.20 
2.65 

(1, 1, 2, 4, 8) 

3.58 
3.03 

(1, 1, 3, 5, 10) 

4.01 
3.46 

(1, 2, 3, 5, 11) 

4.51 
3.94 

(1, 2, 3, 6, 12) 

5.08 
4.50 

(1, 2, 4, 7, 14) 

5.75 
5.14 

(1, 2, 4, 8, 16) 

6.49 
5.85 

(1, 2, 5, 9, 18) 

11 
3.59 
3.05 

(1, 1, 3, 5, 10) 

4.05 
3.51 

(1, 2, 3, 5, 11) 

4.57 
4.03 

(1, 2, 3, 6, 13) 

5.19 
4.63 

(1, 2, 4, 7, 14) 

5.91 
5.33 

(1, 2, 4, 8, 17) 

6.73 
6.12 

(1, 2, 5, 9, 19) 

7.69 
7.05 

(1, 3, 6, 10, 22) 

13 
4.06 
3.53 

(1, 2, 3, 5, 11) 

4.61 
4.08 

(1, 2, 3, 6, 13) 

5.26 
4.72 

(1, 2, 4, 7, 15) 

6.03 
5.48 

(1, 2, 4, 8, 17) 

6.92 
6.35 

(1, 2, 5, 9, 20) 

7.97 
7.37 

(1, 3, 6, 11, 23) 

9.24 
8.60 

(1, 3, 7, 13, 26) 

15 
4.63 
4.10 

(1, 2, 3, 6, 13) 

5.31 
4.78 

(1, 2, 4, 7, 15) 

6.12 
5.59 

(1, 2, 4, 8, 17) 

7.06 
6.52 

(1, 2, 5, 10, 20) 

8.20 
7.63 

(1, 3, 6, 11, 23) 

9.58 
8.99 

(1, 3, 7, 13, 28) 

11.19 
10.56 

(1, 4, 8, 15, 32) 

17 
5.33 
4.81 

(1, 2, 4, 7, 15) 

6.18 
5.65 

(1, 2, 4, 8, 17) 

7.17 
6.64 

(1, 2, 5, 10, 20) 

8.37 
7.83 

(1, 3, 6, 11, 24) 

9.86 
9.30 

(1, 3, 7, 13, 28) 

11.60 
11.02 

(1, 4, 8, 16, 34) 

13.74 
13.12 

(1, 4, 10, 19, 40) 

19 
6.21 
5.68 

(1, 2, 4, 8, 18) 

7.23 
6.71 

(1, 2, 5, 10, 21) 

8.50 
7.97 

(1, 3, 6, 12, 24) 

10.07 
9.53 

(1, 3, 7, 14, 29) 

11.93 
11.37 

(1, 4, 8, 16, 35) 

14.24 
13.66 

(1, 5, 10, 20, 42) 

17.12 
16.50 

(1, 5, 12, 23, 50) 

21 
7.26 
6.74 

(1, 2, 5, 10, 21) 

8.57 
8.05 

(1, 3, 6, 12, 25) 

10.21 
9.69 

(1, 3, 7, 14, 30) 

12.18 
11.64 

(1, 4, 9, 17, 35) 

14.64 
14.08 

(1, 5, 10, 20, 43) 

17.73 
17.15 

(1, 6, 12, 24, 52) 

21.60 
21.00 

(2, 7, 15, 30, 64) 

23 
8.61 
8.09 

(1, 3, 6, 12, 25) 

10.30 
9.79 

(1, 3, 7, 14, 30) 

12.34 
11.82 

(1, 4, 9, 17, 36) 

14.93 
14.39 

(1, 5, 11, 20, 44) 

18.20 
17.65 

(1, 6, 13, 25, 53) 

22.36 
21.79 

(2, 7, 16, 31, 66) 

28.16 
27.56 

(2, 9, 20, 39, 83) 

 

                                                 
* The three rows of each cell shows the +

0ARL , the SDRL , and the percentiles ( 5ρ , 25ρ , 50ρ , 75ρ , 95ρ ) , respectively. 
† See SAS Program 7 in Appendix B for the calculation of the values in Table 3.18. 
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Table 3.18 continued for h = 2, 4, ..., 14 and k = 25, 27, ..., 53. 
h k 2 4 6 8 10 12 14 

25 
10.34 
9.83 

(1, 3, 7, 14, 30) 

12.44 
11.93 

(1, 4, 9, 17,  36) 

15.12 
14.60 

(1, 5,  11, 21, 44) 

18.55 
18.02 

(1, 6, 13, 26, 55) 

22.93 
22.38 

(2, 7, 16, 32, 68) 

29.14 
28.57 

(2, 9, 20, 40, 86) 

37.30 
36.70 

(2, 11, 26, 51, 111) 

27 
12.49 
11.98 

(1, 4, 9, 17, 36) 

15.23 
14.72 

(1, 5, 11, 21, 45) 

18.77 
18.25 

(1, 6, 13, 26, 55) 

23.33 
22.80 

(2, 7, 16, 32, 69) 

29.87 
29.33 

(2, 9, 21, 41, 88) 

38.56 
38.00 

(3, 11, 27, 53, 114) 

49.52 
48.94 

(3, 15, 35, 68, 147) 

29 
15.28 
14.78 

(1, 5, 11, 21, 45) 

18.91 
18.40 

(1, 6, 13, 26, 56) 

23.59 
23.08 

(2, 7, 17, 33, 70) 

30.39 
29.87 

(2, 9, 21, 42, 90) 

39.50 
38.96 

(3, 12, 28, 55, 117) 

51.09 
50.53 

(3, 15, 36, 71, 152) 

67.68 
67.10 

(4, 20, 47, 94, 202) 

31 
18.96 
18.46 

(1, 6, 13, 26, 56) 

23.75 
23.24 

(2, 7, 17, 33, 70) 

30.74 
30.22 

(2, 9, 21, 42, 91) 

40.17 
39.64 

(3, 12, 28, 55, 119) 

52.23 
51.70 

(3, 15, 36, 72, 155) 

69.70 
69.14 

(4, 20, 48, 96, 208) 

95.33 
94.76 

(5, 28, 66, 132, 284) 

33 
23.81 
23.31 

(2, 7, 17, 33, 70) 

30.94 
30.43 

(2, 9, 22, 43, 92) 

40.60 
40.09 

(3, 12, 28, 56, 121) 

53.02 
52.51 

(3, 16, 37, 73, 158) 

71.14 
70.61 

(4, 21, 49, 98, 212) 

98.00 
97.46 

(6, 9, 68, 136, 292) 

137.20 
136.63 

(8, 40, 95, 190, 410) 

35 
31.03 
30.53 

(2, 9, 22, 43, 92) 

40.86 
40.35 

(3, 12, 28, 56, 121) 

53.53 
53.02 

(3, 16, 37, 74, 159) 

72.12 
71.61 

(4, 21, 50, 100, 215) 

99.90 
99.37 

(6, 29, 69, 138, 298) 

140.75 
140.21 

(8, 41, 98, 195, 421) 

194.51 
193.96 

(11, 56, 135, 269, 582) 

37 
40.96 
40.46 

(3, 12, 29, 57, 122) 

53.80 
53.29 

(3, 16, 37, 74, 160) 

72.71 
72.20 

(4, 21, 51, 101, 217) 

101.12 
100.60 

(6, 29, 70, 140, 302) 

143.15 
142.63 

(8, 42, 99, 198,428) 

198.67 
198.14 

(11, 58, 138, 275, 594) 

323.14 
322.58 

(17, 93, 224, 448, 967) 

39 
53.89 
53.39 

(3, 16, 38, 75, 160) 

73.02 
72.51 

(4, 21, 51, 101, 218) 

101.84 
101.33 

(6, 30, 71, 141, 304) 

144.68 
144.17 

(8, 42, 100, 200, 432) 

201.42 
200.90 

(11, 58, 140, 279, 602) 

330.31 
329.78 

(17, 95, 229, 458, 988) 

490.25 
489.71 

(26, 141, 340, 679, 1468) 

41 
73.14 
72.64 

(4, 21, 51, 101, 218) 

102.24 
101,74 

(6, 30, 71, 142, 305) 

145.61 
145.11 

(8, 42, 101, 202, 435) 

203.16 
203.65 

(11, 59, 141, 281, 608) 

335.17 
334.65 

(18, 97, 232, 464, 1003) 

499.40 
498.88 

(26, 144, 346, 692, 1495) 

973.74 
973.19 

(50, 281, 675, 1350, 2916) 

43 
102.40 
101.90 

(6, 30, 71, 142, 306) 

146.10 
145.60 

(8, 42, 101, 202, 437) 

204.16 
203.66 

(11, 59, 142, 283, 611) 

338.24 
337.73 

(18, 98, 235, 469, 1012) 

505.29 
504.77 

(26, 146, 350, 700, 1513) 

994.57 
994.05 

(52, 286, 690, 1379, 2978) 
 

45 
146.29 
145.78 

(8, 42, 102, 203, 437) 

204.64 
204.14 

(11, 59, 142, 283, 612) 

340.00 
339.50 

(18, 98, 236, 471, 1018) 

508.76 
508.25 

(27, 147, 353, 705, 1523) 

1008.16 
1007.64 

(52, 290, 699, 1397, 3019) 
  

47 
204.80 
204.30 

(11, 59, 142, 284, 613) 

340.89 
340.39 

(18, 98, 236, 472, 1020) 

510.75 
510.25 

(27, 147, 354, 708, 1529) 

1016.04 
1015.53 

(53, 293, 704, 1408, 3043) 
   

49 
341.33 
340.83 

(18, 99, 237, 473, 1022) 

511.75 
511.25 

(27, 148, 355, 709, 1532) 

1021.00 
1020.50 

(53, 294, 708, 1415, 
3058) 

    

51 
512.00 
511.50 

(27, 148, 355, 710, 1533) 

1023.00 
1022.50 

(53, 295, 709, 1418, 3064) 
     

53 
1024.00 
1023.50 

(53, 295, 710, 1419, 3067) 
      

 
 
 



 155 

Table 3.18 continued for h = 16, 18, ..., 28 and k = 1, 3, ..., 25. 

h  k  
16 18 20 22 24 26 28 

1 
4.03 
3.33 

(1, 2, 3, 5, 11) 

4.41 
3.67 

(1, 2, 3, 6, 12) 

4.83 
4.03 

(1, 2, 4, 6, 13) 

5.27 
4.41 

(1, 2, 4, 7, 14) 

5.76 
4.82 

(1, 2, 4, 8, 15) 

6.28 
5.26 

(1, 3, 5, 8, 17) 

6.83 
5.72 

(1, 3, 5, 9, 18) 

3 
4.61 
3.91 

(1, 2, 3, 6, 12) 

5.09 
4.34 

(1, 2, 4, 7, 14) 

5.60 
4.80 

(1, 2, 4, 7, 15) 

6.18 
5.31 

(1, 2, 5, 8, 17) 

6.80 
5.86 

(1, 3, 5, 9, 18) 

7.47 
6.44 

(1, 3, 6, 10, 20) 

8.19 
7.07 

(1, 3, 6, 11, 22) 

5 
5.33 
4.64 

(1, 2, 4, 7, 15) 

5.93 
5.18 

(1, 2, 4, 8, 16) 

6.59 
5.79 

(1, 2, 5, 9, 18) 

7.34 
6.47 

(1, 3, 5, 10, 20) 

8.14 
7.19 

(1, 3, 6, 11, 22) 

9.03 
7.99 

(1, 3, 7, 12, 25) 

10.00 
8.87 

(1, 4, 7, 13, 28) 

7 
6.23 
5.54 

(1, 2, 5, 8, 17) 

6.99 
6.25 

(1, 3, 5, 9, 19) 

7.86 
7.06 

(1, 3, 6, 11, 22) 

8.82 
7.95 

(1, 3, 6, 12, 25) 

9.90 
8.95 

(1, 4, 7, 13, 28) 

11.10 
10.06 

(1, 4, 8, 15, 31) 

12.43 
11.30 

(2, 4, 9, 17, 35) 

9 
7.36 
6.68 

(1, 3, 5, 10, 21) 

8.37 
7.63 

(1, 3, 6, 11, 24) 

9.49 
8.69 

(1, 3, 7, 13, 27) 

10.77 
9.90 

(1, 4, 8, 15, 31) 

12.23 
11.28 

(1, 4, 9, 17, 35) 

13.88 
12.85 

(2, 5, 10, 19, 40) 

15.83 
14.69 

(2, 5, 11, 22, 45) 

11 
8.83 
8.15 

(1, 3, 6, 12, 25) 

10.12 
9.38 

(1, 3, 7, 14, 29) 

11.62 
10.83 

(1, 4, 8, 16, 33) 

13.36 
12.50 

(1, 4, 10, 18, 38) 

15.38 
14.44 

(2, 5, 11, 21, 44) 

17.82 
16.78 

(2, 6, 13, 24, 51) 

20.61 
19.47 

(2, 7, 15, 28, 59) 

13 
10.69 
10.01 

(1, 4, 8, 15, 31) 

12.41 
11.69 

(1, 4, 9, 17, 36) 

14.45 
13.67 

(1, 5, 10, 20, 42) 

16.85 
16.00 

(2, 5, 12, 23, 49) 

19.85 
18.91 

(2, 6, 14, 27, 58) 

23.36 
22.32 

(2, 7, 17, 32, 68) 

27.32 
26.19 

(2, 9, 19, 37, 80) 

15 
13.13 
12.46 

(1, 4, 9, 18, 38) 

15.46 
14.74 

(1, 5, 11, 21, 45) 

18.26 
17.48 

(2, 6, 13, 25, 53) 

21.85 
21.00 

(2, 7, 15, 30, 64) 

26.15 
25.21 

(2, 8, 18, 36, 76) 

31.11 
30.09 

(3, 10, 22, 43, 91) 

37.23 
36.10 

(3, 12, 26, 51, 109) 

17 
16.36 
15.70 

(1, 5, 12, 22, 48) 

19.54 
18.84 

(2, 6, 14, 27, 57) 

23.74 
22.97 

(2, 7, 17, 33, 70) 

28.88 
28.03 

(2, 9, 20, 40, 85) 

34.92 
34.00 

(3, 11, 24, 48, 103) 

42.59 
41.57 

(3, 13, 30, 59, 126) 

52.23 
51.12 

(4, 16, 37, 72, 154) 

19 
20.67 
20.02 

(2, 6, 15, 28, 61) 

25.45 
24.74 

(2, 8, 18, 35, 75) 

31.43 
30.67 

(2, 10, 22, 43, 93) 

38.60 
37.77 

(3, 12, 27, 53, 114) 

47.93 
47.02 

(3, 14, 34, 66, 142) 

60.03 
59.03 

(4, 18, 42, 83, 178) 

75.33 
74.23 

(5, 22, 53, 104, 223) 

21 
26.93 
26.28 

(2, 8, 19, 37, 79) 

33.72 
33.02 

(2, 10, 24, 46, 100) 

41.99 
41.23 

(3, 13, 29, 58, 124) 

53.02 
52.20 

(3, 16, 37, 73, 157) 

67.73 
66.84 

(4, 20, 47, 94, 201) 

86.89 
85.90 

(5, 26, 61, 120, 258) 

110.04 
108.97 

(7, 32, 77, 152, 327) 

23 
35.69 
35.04 

(2, 11, 25, 49, 106) 

44.98 
44.29 

(3, 13, 31, 62, 133) 

57.66 
57.66 

(4, 17, 40, 80, 171) 

75.02 
74.21 

(5, 22, 52, 104, 223) 

98.22 
97.34 

(6, 29, 68, 136, 292) 

126.80 
125.85 

(7, 37, 88, 175, 378) 

175.50 
174.41 

(10, 51, 122, 243, 524) 

25 
47.50 
46.87 

(3, 14, 33, 66, 141) 

61.69 
61.02 

(4, 18, 43, 85, 183) 

81.56 
80.84 

(5, 24, 57, 113, 243) 

108.78 
107.99 

(6, 32, 76, 150, 324) 

142.88 
142.04 

(8, 42, 99, 198, 426) 

204.49 
203.53 

(11, 60, 142, 283, 611) 

275.50 
274.45 

(15, 80, 191, 382, 823) 
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Table 3.18 continued for h = 16, 18, ..., 28 and k = 27, 29, ..., 53. 

h  k  
16 18 20 22 24 26 28 

27 
65.03 
64.41 

(4, 19, 45, 90, 194) 

87.16 
86.50 

(5, 26, 61, 121, 260) 

118.11 
117.40 

(7, 34, 82, 163, 352) 

157.47 
156.72 

(9, 46, 109, 218, 470) 

232.48 
231.62 

(13, 67, 161, 322, 695) 

320.44 
319.51 

(17, 93, 222, 444, 958) 

500.06 
498.96 

(27, 145, 347, 693, 
1496) 

29 
91.75 
91.14 

(5, 27, 64, 127, 274) 

126.00 
125.35 

(7, 37, 88, 174, 376) 

170.09 
169.40 

(9, 49, 118, 236, 508) 

258.15 
257.38 

(14, 75, 179, 358, 772) 

363.03 
362.21 

(19, 105, 252, 503, 1086) 

594.47 
593.50 

(31, 172, 412, 824, 
1779) 

 

31 
132.34 
131.74 

(7, 38, 92, 183, 395) 

180.44 
179.81 

(10, 52, 125, 250, 539) 

280.37 
279.68 

(15, 81, 195, 388, 839) 

400.92 
400.19 

(21, 116, 278, 556, 1200) 

686.75 
685.89 

(36, 198, 476, 952, 2056) 
  

33 
188.52 
187.93 

(10, 55, 131, 261, 564) 

298.55 
297.92 

(16, 86, 207, 414, 893) 

432.84 
432.18 

(23, 125, 300, 600, 1295) 

770.90 
770.13 

(40, 222, 535, 1068, 2308) 
   

35 
312.77 
312.18 

(17, 90, 217, 433, 936) 

458.19 
457.58 

(24, 132, 318, 635, 
1371) 

824.79 
842.11 

(44, 243, 584, 1168, 2523) 
    

37 

476.93 
476.36 

(25, 138, 331, 661, 
1428) 

899.99 
899.36 

(47, 259, 624, 1247, 
2695) 

     

39 

942.81 
942.23 

(49, 272, 654, 1307, 
2823) 

      

41        
43        
45        
47        
49        
51        
53        
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Table 3.18 continued for h = 30, 32, ..., 42 and k = 1, 3, ..., 53. 
h k 30 32 34 36 38 40 42 

1 
7.41 
6.21 

(1, 3, 6, 10, 20) 

8.03 
6.72 

(1, 3, 6, 11, 21) 

8.68 
7.26 

(2, 4, 7, 12, 23) 

9.38 
7.84 

(2, 4, 7, 12, 25) 

10.10 
8.44 

(2, 4, 8, 13, 27) 

10.84 
9.05 

(2, 4, 8, 14, 29) 

11.61 
9.70 

(2, 5, 9, 15, 31) 

3 
8.79 
7.75 

(1, 3, 7, 12, 24) 

9.80 
8.47 

(2, 4, 7, 13, 27) 

10.71 
9.26 

(2, 4, 8, 14, 29) 

11.66 
10.09 

(2, 5, 9, 16, 32) 

12.65 
10.96 

(2, 5, 9, 17, 34) 

13.71 
11.89 

(2, 5, 10, 18, 37) 

14.82 
12.87 

(2, 6, 11, 20, 40) 

5 
11.05 
9.82 

(2, 4, 8, 15, 31) 

12.24 
10.89 

(2, 5, 9, 16, 34) 

13.50 
12.04 

(2, 5, 10, 18, 37) 

14.84 
13.25 

(2, 5, 11, 20, 41) 

16.28 
14.57 

(2, 6, 12, 22, 45) 

17.84 
15.99 

(3, 7, 13, 24, 50) 

19.49 
17.50 

(3, 7, 14, 26, 54) 

7 
13.96 
12.71 

(2, 5, 10, 19, 39) 

15.63 
14.26 

(2, 6, 11, 21, 44) 

17.41 
15.93 

(2, 6, 13, 24, 49) 

19.39 
17.79 

(2, 7, 14, 26, 55) 

21.57 
19.83 

(3, 7, 16, 29, 61) 

23.92 
22.04 

(3, 8, 17, 32, 68) 

26.43 
24.42 

(3, 9, 19, 36, 75) 

9 
18.01 
16.76 

(2, 6, 13, 24, 51) 

20.38 
19.01 

(2, 7, 15, 28, 58) 

23.07 
21.58 

(3, 8, 16, 31, 66) 

26.10 
24.48 

(3, 9, 19, 36, 75) 

29.44 
27.69 

(3, 10, 21, 40, 85) 

33.06 
31.17 

(3, 11, 24, 45, 95) 

37.30 
35.26 

(4, 12, 27, 51, 108) 

11 
23.71 
22.46 

(2, 8, 17, 32, 69) 

27.32 
25.95 

(3, 9, 19, 37, 79) 

31.48 
29.99 

(3, 10, 22, 43, 91) 

36.20 
34.57 

(3, 12, 26, 50, 105) 

41.38 
39.62 

(4, 13, 29, 57, 120) 

47.70 
45.79 

(4, 15, 34, 65, 139) 

54.39 
52.34 

(5, 17, 38, 75, 159) 

13 
32.08 
30.83 

(3, 10, 23, 44, 94) 

37.72 
36.35 

(3, 12, 27, 52, 110) 

44.27 
42.77 

(4, 14, 31, 61, 130) 

51.58 
49.97 

(4, 16, 36, 71, 151) 

60.93 
59.16 

(5, 19, 43, 84, 179) 

70.90 
69.00 

(5, 22, 50, 98, 209) 

83.34 
81.28 

(6, 25, 58, 115, 246) 

15 
44.70 
43.46 

(3, 14, 31, 61, 131) 

53.62 
52.26 

(4, 16, 38, 74, 158) 

63.77 
62.30 

(5, 19, 45, 88, 188) 

77.41 
75.78 

(6, 23, 54, 107, 229) 

92.09 
90.34 

(6, 28, 64, 127, 272) 

111.35 
109.43 

(8, 33, 78, 154, 330) 
 

17 
64.08 
62.85 

(4, 19, 45, 88, 190) 

77.84 
76.51 

(5, 23, 54, 107, 231) 

97.39 
95.89 

(6, 29, 68, 134, 289) 

118.64 
117.02 

(8, 35, 83, 164, 352) 

148.17 
146.38 

(9, 44, 103, 205, 440) 
  

19 
93.47 
92.27 

(6, 28, 65, 129, 278) 

120.80 
119.44 

(7, 36, 84, 167, 359) 

150.87 
149.40 

(9, 44, 105, 209, 449) 

195.52 
193.87 

(12, 57, 136, 270, 582) 
   

21 
147.14 
145.92 

(9, 43, 102, 204, 438) 

188.54 
187.22 

(11, 55, 131, 261, 562) 

254.71 
253.20 

(14, 74 , 177, 353, 760) 
    

23 
230.72 
229.53 

(13, 67, 160, 319, 689) 

326.23 
324.86 

(18, 95, 227, 452, 975) 
     

25 
409.08 
407.84 

(22, 119, 284, 567, 1223) 
      

27        
29        

�         

53        
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Table 3.18 continued for h = 44, 46, ..., 54 and k = 1, 3, ..., 53. 

h  k  
44 46 48 50 52 54 

1 
12.42 
10.37 

(2, 5, 9, 16, 33) 

13.25 
11.06 

(2, 5, 10, 18, 35) 

14.09 
11.78 

(3, 6, 11, 19, 38) 

14.99 
12.53 

(3, 6, 11, 20, 40) 

15.90 
13.30 

(3, 7, 12, 21, 42) 

16.85 
14.10 

(3, 7, 13, 22, 45) 

3 
15.99 
13.90 

(3, 6, 12, 21, 44) 

17.19 
14.96 

(3, 7, 13, 23, 47) 

18.49 
16.11 

(3, 7, 14, 25, 51) 

19.82 
17.30 

(3, 8, 15, 27, 54) 

21.23 
18.56 

(3, 8, 16, 28, 58) 
 

5 
21.22 
19.10 

(3, 8, 15, 29, 59) 

23.14 
20.86 

(3, 8, 17, 31, 65) 

25.10 
22.69 

(3, 9, 18, 34, 70) 

27.25 
24.67 

(4, 10, 20, 37, 76) 
  

7 
29.27 
27.11 

(3, 10, 21, 40, 83) 

32.22 
29.92 

(4, 11, 23, 44, 92) 

35.53 
33.07 

(4, 12, 25, 48, 101) 
   

9 
41.75 
39.57 

(4, 14, 30, 57, 121) 

46.88 
44.55 

(5, 15, 33, 64, 136) 
    

11 
62.38 
60.18 

(5, 20, 44, 86, 182) 
     

13       
15       

�        

53       

 

Recall that the reason why there are so many open cells is because the values of h  is taken to satisfy k
nn

h −+≤
2

)1(
. For example, for 

11=k  the reference value h  is taken to be smaller than or equal to 44, since 44115511
2

)110(10
2

)1( =−=−+=−+
k

nn
. 
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Figure 3.5. Boxplot-like graphs for the in-control run length distribution of various upper one-

sided CUSUM signed-rank charts when 10=n .  The whiskers extend to the 5th and the  

95th percentiles.  The symbols “ ”, “ ” and “ ” denote the ARL, SDRL* and MRL, 

respectively†. 

                                                 
* For ease of interpretation, the standard deviation (as measure of spread) is included in the (location) measures of 
percentiles. 
† The “boxplots” are classified into 3 categories, namely small ( 25≤+ kh ), moderate ( 5025 ≤+< kh ) and large 

( 50>+ kh ). 
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Example 3.5 

An upper one-sided CUSUM signed-rank chart for the Montgomery (2001) piston ring data 

 

We conclude this sub-section by illustrating the upper one-sided CUSUM signed-rank 

chart using the Montgomery (2001) piston ring data. Recall that the dataset contains 15 samples 

(each of size 5). For illustration take 3=k  and 8=h . From Table 3.16 it can be seen that the in-

control average run length equals 8.13 when )3,8(),( =kh . Generally, one chooses the chart 

constants so that a specified in-control average run length, such as 500, or 370, is obtained. 

Taking this into consideration, an in-control average run length of 8.13 is considered small. 

Recall that unless the sample size n  is 10 or more, the signed-rank chart is somewhat unattractive 

(from an operational point of view) in SPC applications. The plotting statistics for the Shewhart 

signed-rank chart ( iSR  for 15,...,2,1=i ) are given in the second row of Table 3.19. The upper 

one-sided CUSUM plotting statistics ( +
iS  for 15,...,2,1=i ) are given in the last row of Table 

3.19. 

 

Table 3.19. iSR  and +
iS  values for the piston ring data in Montgomery (2001)*. 

Sample No: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
iSR  8 4 -14 7 -3 9 10 -6 12 14 4 15 15 15 14 

++++
iS  5 6 0 4 0 6 13 4 13 24 25 37 49 61 72 

 

To illustrate the calculations, consider sample number 1. The equation for the plotting 

statistic is =+
1S =−++ ],0max[ 10 kSRS =−+ ]380,0max[ 5]5,0max[ =  where a signaling event 

occurs for the first i  such that hS i ≥+ , that is, 8≥+
iS . The graphical display of the upper one-

sided CUSUM signed-rank chart is shown in Figure 3.6. 

 

                                                                                                                                                              
 
* The values in Table 3.19 were generated using Microsoft Excel. 
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Figure 3.6. The upper one-sided CUSUM signed-rank chart for the Montgomery (2001) piston 

ring data. 

 

The upper one-sided CUSUM signed-rank chart signals at sample 7, indicating a most 

likely positive deviation from the known target value 0θ . The action taken following an out-of-

control signal on a CUSUM chart is identical to that with any control chart. A search for 

assignable causes should be done, corrective action should be taken (if required) and, following 

this, the CUSUM is reset to zero.  

 

3.3.2.2.  Lower one-sided control charts 

 

The time that the procedure signals is the first time such that the finite-state Markov chain 
−
tS  enters the state 0ς  where the state space is given by },...,,{ 110 −+

− =Ω srςςς  with 

0... 10 =<<=− −+srh ςς ,  00 =−S  and  

 { }{ }kSRShS ttt ++−= −
−

−
1,0min,max . (3.4) 
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Example 3.6 

A lower one-sided CUSUM signed-rank chart where the sample size is even (n=4) 

 

The statistical properties of a lower one-sided CUSUM signed-rank chart with a decision 

interval of 6 ( 6=h ), a reference value of 2 ( 2=k ) and a sample size of 4 ( 4=n ) is examined. 

For n even, the reference value is taken to be even, because this leads to the sum ( )� − kSRi  

being equal to even values which reduces the size of the state space for the Markov chain. For 

6=h  we have }0,2,4,6{0)2( −−−=−=Ω− h . The state space is calculated using equation (3.4) 

and the calculations are shown in Table 3.20. 

 

Table 3.20. Calculation of the state space when 6=h , 2=k  and 4=n . 

tSR  kSRS tt ++++++++−−−−
−−−−1  {{{{ }}}}kSRS tt ++++++++−−−−

−−−−1,0min  {{{{ }}}}{{{{ }}}}kSRShS ttt ++++++++−−−−==== −−−−
−−−−

−−−−
1,0min,max  

-10 -8* -8 -6 
-8 -6 -6 -6 
-6 -4 -4 -4 
-4 -2 -2 -2 
-2 0 0 0 
0 2 0 0 
2 4 0 0 
4 6 0 0 
6 8 0 0 
8 10 0 0 
10 12 0 0 

 

Table 3.21. Classification of the states. 

State number Description of the state Absorbent (A)/ Non-absorbent (NA) 
0 0=+

tS  NA 

1 2−=+
tS  NA 

2 4−=+
tS  NA 

3 6−=+
tS  A 

 

                                                 
* Note: Since only the state space needs to be described, −

−1tS  can be any value from −Ω  and we therefore take, 

without loss of generality, 01 =−
−tS . Any other possible value for −

−1tS  would lead to the same −Ω .     
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From Table 3.21 we see that there are three non-absorbent states, i.e. 3=r , and one 

absorbent state, i.e. 1=s . Therefore, the corresponding TPM will be a 44)()( ×=+×+ srsr  

matrix. It can be shown (see Table 3.22) that the TPM is given by 

�
�
�

�

�
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1333

16
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16
2

16
2

16
7

16
3

16
2

16
2

16
9

16
2

16
1

16
2

16
11

)6)(6()4)(6()2)(6(0)6(

)6)(4()4)(4()2)(4(0)4(

)6)(2()4)(2()2)(2(0)2(

)6(0)4(0)2(000

44

1|'0

|

1|000

|
|
|

pQ

pppp

pppp

pppp

pppp

TPM  

where the essential transition probability sub-matrix )(:33 NANAQ →×  is an 33×=× rr  matrix, 

)(:
13

ANAp →
×

 is an 131)1( ×=×−+ sr  column vector, )(:'0 31 NAA →×  is a 

31)1(1 ×=−+× sr  row vector and )(:1 11 AA →×  represents the scalar value one. 

 

The one-step transition probabilities are calculated by substituting tSR  in expression (3.4) 

by 
2

)1(
2

+−+ nn
T  and substituting values for h , k , −

tS  and −
−1tS . The calculation of the one-step 

transition probabilities are given for illustration in Table 3.22. 

 

Recall that the probabilities in the last column of the TPM are calculated using the fact 

that �
Ω∈

∀=
j

ij ip 1  (see equation (2.18)). Therefore, 

16
2

16
1

16
2

16
11

)4(0)2(000)6(0 )(1)(1 =++−=++−= −−− pppp ; 

16
3

16
2

16
2

16
9

)4)(2()2)(2(0)2()6)(2( )(1)(1 =++−=++−= −−−−−−− pppp ; 

16
5

16
2

16
2

16
7

)4)(4()2)(4(0)4()6)(4( )(1)(1 =++−=++−= −−−−−−− pppp ; 

1)000(1)(1 4)6(2)6(0)6()6)(6( =++−=++−= −−−−− pppp . 
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Table 3.22. The calculation of the transition probabilities when 6=h , 2=k  and 4=n . 
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* The probability equals zero, because it is impossible to go from an absorbent state to a non-absorbent state. 
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The formulas of the moments and some characteristics of the run length distribution have 

been studied by Fu, Spiring and Xie (2002) and Fu and Lou (2003) – see equations (2.41) to 

(2.45). By substituting )001(
31

=
×

ξ , 
�
�
�

�

�

	
	
	




�

=×

16
2

16
2

16
7

16
2

16
2

16
9

16
1

16
2

16
11

33Q  and 
�
�
�

�

�

	
	
	




�

=×

1
1
1

1 13  into these 

equations, we obtain the following: 

 

( ) ( ) 81.611 =−== −QINEARL ξ  

( ) ( )( ) 64.83122 =−+= −QIQINE ξ  

( ) ( ) 11.6)()( 22 =−== NENENVarSDRL  

1  percentile 5 5 == ρth  

2  percentile 25 25 == ρth  

5  percentile 50 Median 50 === ρth  

9  percentile 75 75 == ρth  

19  percentile 95 95 == ρth  

 

  The in-control average run length ( −
0ARL ) values, standard deviation of the run length 

( SDRL ) values and percentiles for the lower one-sided CUSUM signed-rank chart are exactly the 

same as for the upper one-sided CUSUM signed-rank chart, since the one-step transition 

probabilities matrices are the same. Therefore, the in-control average run length ( 0ARL ), 

standard deviation of the run length ( SDRL ), th5 , th25 , th50 , th75  and th95  percentile values for 

the upper one-sided CUSUM signed-rank chart will also hold for the lower one-sided CUSUM 

signed-rank chart. 
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Example 3.7 

A lower one-sided CUSUM signed-rank chart for the Montgomery (2001) piston ring data 

 

We conclude this sub-section by illustrating the lower one-sided CUSUM signed-rank 

chart using the Montgomery (2001) piston ring data. Recall that the dataset contains 15 samples 

(each of size 5). For illustration take 3=k  and 8=h . From Table 3.16 it can be seen that the in-

control average run length equals 8.13 when )3,8(),( =kh . Generally, one chooses the chart 

constants so that a specified in-control average run length, such as 500, or 370, is obtained. 

Taking this into consideration, an in-control average run length of 8.13 is considered small. 

Recall that unless the sample size n  is 10 or more, the signed-rank chart is somewhat unattractive 

(from an operational point of view) in SPC applications. 

 

The plotting statistics for the Shewhart signed-rank chart ( iSR  for 15,...,2,1=i ) are given 

in the second row of Table 3.23. The lower one-sided CUSUM plotting statistics ( −
iS  for 

15,...,2,1=i ) are given in the last row of Table 3.23. 

 

Table 3.23. iSR  and −
iS  values for the piston ring data in Montgomery (2001)*. 

Sample No: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
iSR  8 4 -14 7 -3 9 10 -6 12 14 4 15 15 15 14 

−−−−
iS  0 0 -11 -1 -1 0 0 -3 0 0 0 0 0 0 0 

 

To illustrate the calculations, consider sample number 1. The equation for the plotting 

statistic −
1S  is  

 0]11,0max[]380,0max[],0max[ 101

**

=−=−−=−−= −− kSRSS  (3.5) 

or 

 0]11,0min[]380,0min[],0min[ 101 ==++=++= −− kSRSS  (3.6) 

                                                 
* The values in Table 3.23 were generated using Microsoft Excel. 
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A signaling event occurs for the first i  such that hS i ≥−*

, that is, 8
*

≥−
iS  if expression 

(3.5) is used or hS i −≤− , that is, 8−≤−
iS  if expression (3.6) is used. The graphical display of the 

lower one-sided CUSUM signed-rank chart is shown in Figure 3.7. 
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Figure 3.7. The lower one-sided CUSUM signed-rank chart for the Montgomery (2001) piston-

ring data. 

 

The lower one-sided CUSUM signed-rank chart signals at sample 3. Recall that the lower 

one-sided CUSUM sign chart did not signal at all. This emphasizes the fact that the signed-rank 

test is more powerful than the sign test. The question arises: Why not always use the signed-rank 

test if it is more powerful than the sign test? The sign test is applicable for all continuous 

distributions, while the assumption of symmetry must be made, in addition, for the signed-rank 

test. Also, the sign test applies to all percentiles while the signed-rank test is proposed only for 

the median. 
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3.3.3. Two-sided control charts 

 

Recall that for the upper one-sided CUSUM signed-rank chart we use  

 { }},0max{,min 1
+
−

+ +−= ttt SkSRhS  for ,...2,1=t  (3.7) 

For a lower one-sided CUSUM signed-rank chart we use  

 { }},0min{,max 1
−
−

− ++−= ttt SkSRhS  for ,...2,1=t  (3.8) 

For the two-sided scheme the two one-sided schemes are performed simultaneously. The 

corresponding two-sided CUSUM chart signals for the first n  at which either one of the two 

inequalities is satisfied, that is, either hS t ≥+  or hS t −≤− . Starting values are typically chosen to 

equal zero, that is, 000 == −+ SS . The two-sided scheme signals at N  where 

 { }hShStN ttt
−≤≥= −+ or:min  (3.9) 

where h  is a positive integer.  

 

The two-sided CUSUM scheme can be represented by a Markov chain with states 

corresponding to the possible combinations of values of +
tS  and −

tS . The states corresponding to 

values for which a signal is given by the CUSUM scheme are called absorbing states. Clearly, 

there are two absorbing states ( 2=s ) since the chart signals when +
tS  falls on or above h  or 

when −
tS  falls on or below h− . The probability of going from an absorbing state to the same 

absorbing state is equal to one, because once an absorbing state is entered, it is never left. The 

transient states are the remaining states for which eventual return is uncertain. Let r  denote the 

number of remaining states, i.e. r  denotes the number of transient (non-absorbing) states. 

Clearly, in total there are sr +  states and therefore the corresponding TPM will be an 

)()( srsr +×+  matrix. 

 

The time that the procedure signals is the first time such that the finite-state Markov chain 

enters the state 0ς  or 1−+srς  where the state space is given by Ω  = −+ Ω∪Ω  = },...,,{ 110 −+srςςς  

with hh sr =<<=− −+ 10 ... ςς . 
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Example 3.8 

A two-sided CUSUM signed-rank chart where the sample size is even (n=4) 

 

The statistical properties of a two-sided CUSUM signed-rank chart with a decision 

interval of 4 ( 4=h ), a reference value of 2 ( 2=k ) and a sample size of 4 ( 4=n ) is examined.   

Let Ω  denote the state space for the two-sided chart. Ω  is the union of the state space for the 

upper one-sided chart }4,2,0{=Ω+  and the state space for the lower one-sided chart 

}0,2,4{ −−=Ω− . Therefore, Ω  = −+ Ω∪Ω  = }4,2,0{}0,2,4{ ∪−−  = }4,2,0,2,4{ −−  = 

},,,,{ 43210 ςςςςς  with hh =<<<<=− 43210 ςςςςς . 

 

  Table 3.24. Classification of the states. 

State number Values of the CUSUM statistic(s) Absorbing (A) 
Non-absorbing (NA) 

0 0=−
tS  and 0=+

tS  NA 

1 2=−
tS  or 2=+

tS * NA 

2 2−=−
tS  or 2−=+

tS † NA 

3 4=−
tS  or 4=+

tS ‡ A 

4 4−=−
tS  or 4−=+

tS § A 
 

From Table 3.24 we see that there are three non-absorbing states, i.e. 3=r , and two 

absorbing states, i.e. 2=s . Therefore the corresponding TPM will be a )55( ×  matrix. The 

layout of the TPM is as follows. There are three transient states and two absorbing states.  By 

                                                 
* Moving from state 0 to state 1 can happen when either the upper cumulative sum or the lower cumulative sum 
equals 2. But the lower cumulative sum can not equal 2 since by definition the lower cumulative sum can only take 
on integer values smaller than or equal to zero. Therefore, we only use the probability that the upper cumulative sum 
equals 2 in the calculation of the probabilities in the TPM. 
 
† Moving from state 0 to state 2 can happen when either the upper cumulative sum or the lower cumulative sum 
equals -2. But the upper cumulative sum can not equal -2 since by definition the upper cumulative sum can only take 
on integer values greater than or equal to zero. Therefore, we only use the probability that the lower cumulative sum 
equals -2 in the calculation of the probabilities in the TPM. 
 
‡ A similar argument to the argument in the first footnote on this page holds. Therefore, we only use the probability 
that the upper cumulative sum equals 4 in the calculation of the probabilities in the TPM. 
 
§ A similar argument to the argument in the second footnote on this page holds. Therefore, we only use the 
probability that the lower cumulative sum equals -4 in the calculation of the probabilities in the TPM. 
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convention we first list the non-absorbing states and then we list the absorbing states.  In column 

one we compute the probability of moving from state i  to state 0, for all i . Note that the process 

reaches state 0 when both the upper and the lower cumulative sums equal zero. In columns two 

and three, we compute the probabilities of moving from state i  to the remaining non-absorbing 

states, for all i . Finally, in the remaining two columns we compute the probabilities of moving 

from state i  to the absorbing states, for all i . Thus, the TPM can be conveniently partitioned into 

4 sections given by 
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where )(:33 NANAQ →×  is an 33×=× rr  matrix, )(:23 ANAC →×  is an 23×=× sr  matrix, 

)(:32 NAAZ →×  is an 32 ×=× rs  matrix and )(:22 AAI →×  is an 22 ×=× ss  matrix . 

 

The calculation of the elements of the TPM is illustrated next. Note that this essentially 

involves the calculation of the matrices Q  and C . First consider the transient states.  Note that 

the process moves to state 0, i.e., 0=j , when both the upper and the lower cumulative sums 

equal 0.  Thus the required probability of moving to 0, from any other transient state, is the 

probability of an intersection of two sets involving values of the upper and the lower CUSUM 

statistics, respectively. On the other hand, the probability of moving to any state 0≠j , from any 

other state, is the probability of a union of two sets involving values of the upper and the lower 

CUSUM statistics, respectively.  However, one of these two sets is empty so that the required 

probability is the probability of only the non-empty set. 

 

The calculation of the entry in the first row and the first column of the TPM, 00p , will be 

discussed in detail. This is the probability of moving from state 0 to state 0 in one step at time t. 

As we just described, this can happen only when the upper and the lower cumulative sums both 

equal 0 at time t . For the upper one-sided CUSUM 00p  is the probability that the upper CUSUM 
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equals 0 at time t , given that the upper CUSUM equaled 0 at time 1−t , that is, 

)0|0( 1 == +
−

+
tt SSP . For the lower one-sided procedure 00p  is the probability that the lower 

CUSUM equals 0 at time t , given that the lower CUSUM equaled 0 at time 1−t , that is, 

)0|0( 1 == −
−

−
tt SSP . For the two-sided procedure the two one-sided procedures are performed 

simultaneously. Therefore we have that { } { }( )0|00|0 1100 ==∩=== −
−

−+
−

+
tttt SSSSPp  . We have 

that 

{ } { }( )0|00|0 11

00

==∩=== −
−

−+
−

+
tttt SSSSP

p
 

this is computed by substituting in values for h , k , +
tS , +

−1tS ,  −
tS  and −

−1tS  into (3.7) and (3.8) 

{ }{ } { }{ }( )
{ } { }( )
( ) ( )( )
( ) ( )( )22

00202

0}02,0min{0}02,0max{

0}02,0min{,4max0}02,0max{,4min

−≥∩≤=
≥++∩≤−=

=++∩=+−=
=++−∩=+−=

tt

tt

tt

tt

SRSRP

SRSRP

SRSRP

SRSRP

 

recall that 
2

)1(
2

+−= + nn
TSRt  where +T  is the Wilcoxon signed-rank statistic 

( ) ( )( )
( ) ( )( )46

21022102

≥∩≤=
−≥−∩≤−=

++

++

TTP

TTP
 

.
)6()5()4(

16
6=

=+=+== +++ TPTPTP
 

 

The remaining entries of the TPM can be calculated similarly. In doing so, we find that  
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Using the TPM the ARL  can be calculated using ( ) 11−−= QIARL ξ . A well-known 

concern is that important information about the performance of a control chart can be missed 

when only examining the ARL (this is especially true when the process distribution is skewed). 

Various authors, see for example, Radson and Boyd (2005) and Chakraborti (2007), have 
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suggested that one should examine a number of percentiles, including the median, to get the 

complete information about the performance of a control chart. Therefore, we now also consider 

percentiles. The calculation of these percentiles is shown in Table 3.25 for illustration purposes. 

The first column of Table 3.25 contains the values that the run length variable ( N ) can take on.  

 

Table 3.25. Calculation of the percentiles when 4=h , 2=k  and 4=n *. 

N )( lNP ≤≤≤≤  The 5th, 25th, 50th, 75th and 95th percentiles 
1 0.3750000 =25.0ρ 1 (smallest integer such that cdf is at least 0.05 and 0.25) 

2 0.6406250 =5.0ρ 2 (smallest integer such that cdf is at least 0.50) 

3 0.7949219 =75.0ρ 3 (smallest integer such that cdf is at least 0.75) 
4 0.8830566  
5 0.9333191  
6 0.9619789 =95.0ρ 6 (smallest integer such that cdf is at least 0.95) 
7† 0.9783206  

 

The formulas of the moments and some characteristics of the run length distribution have 

been studied by Fu, Spiring and Xie (2002) and Fu and Lou (2003) – see equations (2.41) to 

(2.45). By substituting )001(
31

=
×

ξ , 
�
�
�

�

�

	
	
	




�

=×

16
2

16
2

16
4

16
2

16
2

16
4

16
2

16
2

16
6

33 16
1

Q  and 
�
�
�

�

�

	
	
	




�

=×

1
1
1

1 13  into these 

equations, we obtain the following: 

 

( ) ( ) 46.211 =−== −QINEARL ξ  

( ) ( )( ) 28.9122 =−+= −QIQINE ξ  

( ) ( ) 79.1)()( 22 =−== NENENVarSDRL  

1  percentile 5 05.0 == pth  

1  percentile 25 25.0 == pth  

2  percentile 50 Median 5.0 === pth  

                                                 
* See SAS Program 7 in Appendix B for the calculation of the values in Table 3.25. 
† The value of the run length variable is only shown up to N = 7 for illustration purposes. 
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3  percentile 75 75.0 == pth  

6  percentile 95 95.0 == pth  

 

Other values of h, k and n were also considered and the results are given in Table 3.26. 

 

Table 3.26. The in-control average run length ( 0ARL ), standard deviation of the run length 

( SDRL ), th5 , th25 , th50 , th75  and th95  percentile values* for samples of size 4=n  and various 

values of h and k  for the two-sided CUSUM signed-rank chart†. 

h  k  
2 4 6 8 10 

0 
1.14 
0.40 

(1, 1, 1, 1, 2) 

1.52 
0.81 

(1, 1, 1, 2, 3) 

2.14 
1.51 

(1, 1, 1, 3, 5) 

2.74 
2.19 

(1, 1, 2, 3, 7) 

3.62 
2.80 

(1, 1, 2, 4, 10) 

2 
1.60 
0.98 

(1, 1, 1, 2, 4) 

2.46 
1.79 

(1, 1, 2, 3, 6) 

3.41 
2.66 

(1, 1, 2, 4, 9) 

5.09 
4.07 

(1, 2, 4, 7, 13) 
 

4 
2.67 
2.11 

(1, 1, 2, 3, 7) 

3.87 
3.29 

(1, 1, 3, 5, 10) 

6.64 
5.92 

(1, 2, 5, 9, 18) 
  

6 
4.00 
3.46 

(1, 1, 3, 5, 11) 

7.53 
6.95 

(1, 3, 5, 10, 21) 
   

8 
8.00 
7.45 

(1, 2, 5, 11, 23) 
    

 

Values of k  and h  are restricted to be integers so that the Markov chain approach could 

be employed to obtain exact values for the average run length. In order to allow for the possibility 

of stopping after one group, the values of h  is taken to satisfy k
nn

h −+≤
2

)1(
. For example, for 

4=n  and 0=k , the reference value h  is taken to be smaller than or equal to 10, since 

100
2

)14(4
2

)1( =−+=−+
k

nn
. The five percentiles are displayed in boxplot-like graphs in 

Figure 3.8 for all the ),( kh -combinations that are shaded in Table 3.26. The “boxplots” are 

                                                 
* The three rows of each cell shows the ARL0, the SDRL , and the percentiles ( 5ρ , 25ρ , 50ρ , 75ρ , 95ρ ) , respectively.  
† See SAS Program 7 in Appendix B for the calculation of the values in Table 3.26. 
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classified into 3 categories, namely small ( 4≤+ kh ), moderate ( 85 ≤+≤ kh ) and large 

( 9≥+ kh ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8. Boxplot-like graphs for the in-control run length distribution of various two-sided 

CUSUM signed-rank charts when 4=n .  The whiskers extend to the 5th and the 95th percentiles. 

The symbols “ ”, “ ” and “ ” denote the ARL, SDRL* and MRL, respectively. 

                                                 
* For ease of interpretation, the standard deviation (as measure of spread) is included in the (location) measures of 
percentiles. 
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Table 3.27. The in-control average run length ( 0ARL ), standard deviation of the run length 

( SDRL ), th5 , th25 , th50 , th75  and th95  percentile values* for samples of size 5=n  and various 

values of h and k  for the two-sided CUSUM signed-rank chart†. 
h k 2 4 6 8 10 12 14 

1 
1.23 
0.53 

(1, 1, 1, 1, 2) 

1.56 
0.88 

(1, 1, 1, 2, 3) 

2.04 
1.30 

(1, 1, 2, 3, 5) 

2.57 
1.87 

(1, 1, 2, 3, 7) 

3.36 
2.97 

(1, 1, 3, 5, 11) 

4.15 
3.46 

(1, 1, 3, 5, 11) 

5.23 
4.38 

(1, 2, 4, 7, 14) 

3 
1.60 
0.98 

(1, 1, 1, 2, 4) 

2.20 
1.57 

(1, 1, 2, 3, 5) 

2.90 
2.22 

(1, 1, 2, 4, 7) 

4.07 
3.23 

(1, 2, 3, 5, 10) 

5.34 
4.36 

(1, 2, 4, 7, 14) 

7.39 
6.61 

(1, 2, 5, 10, 21) 
 

5 
2.29 
1.71 

(1, 1, 2, 3, 6) 

3.12 
2.54 

(1, 1, 2, 4, 8) 

4.72 
4.05 

(1, 2, 3, 6, 13) 

6.52 
5.77 

(1, 2, 5, 9, 18) 

10.09 
9.11 

(1, 4, 7, 14, 28) 
  

7 
3.20 
2.65 

(1, 1, 2, 4, 8) 

5.12 
4.55 

(1, 2, 4, 7, 14) 
 

7.39 
6.78 

(1, 3, 5, 10, 21) 

12.58 
11.83 

(1, 4, 9, 17, 36) 
   

9 
5.33 
4.81 

(1, 2, 4, 7, 15) 

7.87 
7.34 

(1, 3, 6, 11, 23) 

14.57 
13.97 

(1, 5, 10, 20, 42) 
    

11 
8.00 
7.48 

(1, 3, 6, 11, 23) 

15.52 
14.98 

(1, 5, 11, 21, 45) 
     

13 
16.00 
15.49 

(1, 5, 11, 22, 47) 
      

 

The five percentiles are displayed in boxplot-like graphs in Figure 3.9 for all the ),( kh -

combinations that are shaded in Table 3.27. The “boxplots” are classified into 3 categories, 

namely small ( 5≤+ kh ), moderate ( 106 ≤+≤ kh ) and large ( 11≥+ kh ). 

 

 

 

 

 

 

 

 

 

 

 

                                                 
* The three rows of each cell shows the ARL0, the SDRL , and the percentiles ( 5ρ , 25ρ , 50ρ , 75ρ , 95ρ ) , respectively.  
† See SAS Program 7 in Appendix B for the calculation of the values in Table 3.27. 

 
 
 



 176 

0

5

10

15

20

25

30

35

40

45

50

(4, 1) (2, 3) (6, 3) (4, 5) (4, 11) (2, 13)

'Small'                          'Moderate'                     'Large'
(h, k)

0

1

2

3

4

5

(4, 1) (2, 3)

(h, k)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9. Boxplot-like graphs for the in-control run length distribution of various two-sided 

CUSUM signed-rank charts when 5=n .  The whiskers extend to the 5th and the 95th  percentiles. 

 The symbols “ ”, “ ” and “ ” denote the ARL, SDRL* and MRL, respectively. 

                                                 
* For ease of interpretation, the standard deviation (as measure of spread) is included in the (location) measures of 
percentiles. 

 
 
 



 177 

Table 3.28. The in-control average run length ( +
0ARL ), standard deviation of the run length ( SDRL ), th5 , th25 , th50 , th75  and th95  

percentile values* for samples of size 6=n  and various values of h and k   for the two-sided CUSUM signed-rank chart†. 

h k 
2 4 6 8 10 12 14 16 18 

1 
1.19 
0.47 

(1, 1, 1, 1, 2) 

1.43 
0.75 

(1, 1, 1, 2, 3) 

1.69 
1.01 

(1, 1, 1, 2, 4) 

2.08 
1.37 

(1, 1, 1, 2, 5) 

2.52 
2.10 

(1, 1, 2, 3, 6) 

3.05 
2.48 

(1, 1, 2, 4, 8) 

3.62 
3.09 

(1, 1, 2, 5, 10) 

4.36 
3.32 

(1, 1, 3, 6, 11) 

5.11 
4.24 

(1, 2, 4, 7, 14) 

3 
1.45 
0.81 

(1, 1, 1, 2, 3) 

1.75 
1.13 

(1, 1, 1, 2, 4) 

2.17 
1.52 

(1, 1, 2, 3, 5) 

2.77 
2.04 

(1, 1, 2, 4, 7) 

3.50 
2.65 

(1, 2, 3, 5, 9) 

4.32 
3.36 

(1, 1, 3, 6, 12) 

5.49 
4.72 

(1, 2, 4, 8, 15) 

6.72 
5.96 

(1, 2, 5, 9, 19) 

8.39 
7.49 

(1, 3, 6, 11, 24) 

5 
1.78 
1.18 

(1, 1, 1, 2,4) 

2.25 
1.65 

(1, 1, 1, 2, 3, 6) 

2.98 
2.34 

(1, 1, 2, 4, 8) 

3.91 
3.20 

(1, 2, 3, 5, 10) 

5.01 
4.21 

(1, 2, 4, 7, 13) 

6.77 
5.79 

(1, 3, 5, 9, 18) 

8.69 
7.56 

(1, 3, 6, 12, 24) 

11.72 
10.54 

(1, 5, 11, 22, 47) 
 

7 
2.29 
1.71 

(1, 1, 2, 3, 6) 

3.12 
2.54 

(1, 1, 2, 4, 8) 

4.25 
3.63 

(1, 2, 3, 6, 11) 

5.63 
4.96 

(1, 2, 4, 8, 16) 

8.09 
7.28 

(1, 3, 6, 11, 23) 

10.90 
9.98 

(1, 4, 8, 15, 31) 

16.01 
14.85 

(2, 5, 11, 22, 46) 
  

9 
3.20 
2.65 

(1, 1, 2, 4, 8) 

4.48 
3.93 

(1, 2, 3, 6, 12) 

6.08 
5.50 

(1, 2, 4, 8, 17) 

9.24 
8.57 

(1, 3, 7, 13, 26) 

12.95 
12.21 

(1, 4, 9, 18, 37) 

20.78 
19.85 

(2, 7, 15, 28, 60) 
   

11 
4.57 
4.04 

(1, 2, 3, 6, 13) 

6.32 
5.78 

(1, 2, 5, 9, 18) 

10.02 
9.44 

(1, 3, 7, 14, 29) 

14.44 
13.82 

(1, 5, 10, 20, 24) 

25.13 
24.38 

(2, 8, 18, 35, 74) 
    

13 
6.40 
5.88 

(1, 2, 5, 9, 18) 

10.45 
9.91 

(1, 3, 7, 14, 30) 

15.38 
14.83 

(1, 5, 11, 21, 45) 

28.31 
27.68 

(2, 9, 20, 39, 84) 
     

15 
10.67 
10.15 

(1, 3, 8, 15, 31) 

15.87 
15.36 

(1, 5, 11, 22, 47) 

30.54 
29.99 

(2, 9, 21, 42, 90) 
      

17 
16.00 
15.49 

(1, 5, 11, 22, 47) 

31.51 
30.99 

(2, 9, 22, 43, 93) 
       

19 
32.00 
31.50 

(2, 10, 22, 44, 95) 
        

 

                                                 
* The three rows of each cell shows the ARL0, the SDRL , and the percentiles ( 5ρ , 25ρ , 50ρ , 75ρ , 95ρ ) , respectively.  
† See SAS Program 7 in Appendix B for the calculation of the values in Table 3.28. 
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Figure 3.10. Boxplot-like graphs for the in-control run length distribution of various two-sided 

CUSUM signed-rank charts when 6=n .  The whiskers extend to the 5th and the 95th percentiles. 

 The symbols “ ”, “ ” and “ ” denote the ARL, SDRL and MRL, respectively*.

                                                 
* The “boxplots” are classified into 3 categories, namely small ( 7≤+ kh ), moderate ( 168 ≤+≤ kh ) and large 

( 17≥+ kh ). 
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Table 3.29. The in-control average run length ( 0ARL ), standard deviation of the run length ( SDRL ), th5 , th25 , th50 , th75  and th95  

percentile values* for samples of size 10=n  for 14,...,4,2=h  and 23,...,3,1=k  for the two-sided CUSUM signed-rank chart†. 

h k 2 4 6 8 10 12 14 

1 
1.09 
0.80 

(1, 1, 1, 1, 2) 

1.18 
0.89 

(1, 1, 1, 1, 3) 

1.29 
1.00 

(1, 1, 1, 1, 3) 

1.41 
1.11 

(1, 1, 1, 2, 3) 

1.54 
1.24 

(1, 1, 1, 2, 4) 

1.68 
1.37 

(1, 1, 1, 2, 4) 

1.84 
1.51 

(1, 1, 1, 2, 5) 

3 
1.18 
0.90 

(1, 1, 1, 1, 3) 

1.30 
1.01 

(1, 1, 1, 1, 3) 

1.42 
1.14 

(1, 1, 1, 2, 3) 

1.56 
1.27 

(1, 1, 1, 2, 4) 

1.72 
1.42 

(1, 1, 1, 2, 4) 

1.90 
1.59 

(1, 1, 1, 2, 5) 

2.09 
1.76 

(1, 1, 1, 3, 5) 

5 
1.30 
1.02 

(1, 1, 1, 1, 3) 

1.44 
1.16 

(1, 1, 1, 2, 3) 

1.58 
1.30 

(1, 1, 1, 2, 4) 

1.75 
1.47 

(1, 1, 1, 2, 4) 

1.94 
1.65 

(1, 1, 1, 2, 5) 

2.16 
1.85 

(1, 1, 1, 3, 6) 

2.40 
2.07 

(1, 1, 2, 3, 6) 

7 
1.44 
1.16 

(1, 1, 1, 2, 4) 

1.60 
1.32 

(1, 1, 1, 2, 4) 

1.78 
1.50 

(1, 1, 1, 2, 5) 

1.98 
1.70 

(1, 1, 1, 2, 5) 

2.21 
1.92 

(1, 1, 1, 3, 6) 

2.48 
2.17 

(1, 1, 2, 3, 7) 

2.78 
2.46 

(1, 1, 2, 3, 7) 

9 
1.60 
1.33 

(1, 1, 1, 2, 4) 

1.79 
1.52 

(1, 1, 1, 2, 5) 

2.01 
1.73 

(1, 1, 1, 2, 5) 

2.26 
1.97 

(1, 1, 1, 3, 6) 

2.54 
2.25 

(1, 1, 2, 3, 7) 

2.88 
2.57 

(1, 1, 2, 4, 8) 

3.25 
2.93 

(1, 1, 2, 4, 9) 

11 
1.80 
1.53 

(1, 1, 1, 2, 5) 

2.03 
1.76 

(1, 1, 1, 2, 5) 

2.29 
2.02 

(1, 1, 1, 3, 6) 

2.60 
2.32 

(1, 1, 2, 3, 7) 

2.96 
2.67 

(1, 1, 2, 4, 8) 

3.37 
3.06 

(1, 1, 2, 4, 9) 

3.85 
3.53 

(1, 1, 3, 5, 11) 

13 
2.03 
1.77 

(1, 1, 1, 2, 5) 

2.31 
2.04 

(1, 1, 1, 3, 6) 

2.63 
2.36 

(1, 1, 2, 3, 7) 

3.02 
2.74 

(1, 1, 2, 4, 8) 

3.46 
3.18 

(1, 1, 2, 4, 10) 

3.99 
3.69 

(1, 1, 3, 5, 11) 

4.62 
4.30 

(1, 1, 3, 6, 13) 

15 
2.32 
2.05 

(1, 1, 1, 3, 6) 

2.66 
2.39 

(1, 1, 2, 3, 7) 

3.06 
2.80 

(1, 1, 2, 4, 8) 

3.53 
3.26 

(1, 1, 2, 5, 10) 

4.10 
3.82 

(1, 1, 3, 5, 11) 

4.79 
4.50 

(1, 1, 3, 6, 14) 

5.60 
5.28 

(1, 2, 4, 7, 16) 

17 
2.67 
2.41 

(1, 1, 2, 3, 7) 

3.09 
2.83 

(1, 1, 2, 4, 8) 

3.59 
3.32 

(1, 1, 2, 5, 10) 

4.19 
3.92 

(1, 1, 3, 5, 12) 

4.93 
4.65 

(1, 1, 3, 6, 14) 

5.80 
5.51 

(1, 2, 4, 8, 17) 

6.87 
6.56 

(1, 2, 5, 9, 20) 

19 
3.11 
2.84 

(1, 1, 2, 4, 9) 

3.62 
3.36 

(1, 1, 2, 5, 10) 

4.25 
3.99 

(1, 1, 3, 6, 12) 

5.04 
4.77 

(1, 1, 3, 7, 14) 

5.97 
5.69 

(1, 2, 4, 8, 17) 

7.12 
6.83 

(1, 2, 5, 10, 21) 

8.56 
8.25 

(1, 2, 6, 11, 25) 

21 
3.63 
3.37 

(1, 1, 2, 5, 10) 

4.29 
4.03 

(1, 1, 3, 6, 12) 

5.11 
4.85 

(1, 1, 3, 7, 15) 

6.09 
5.82 

(1, 2, 4, 8, 17) 

7.32 
7.04 

(1, 2, 50, 10, 21) 

8.87 
8.58 

(1, 3, 6, 12, 26) 

10.80 
10.50 

(1, 3, 7, 15, 32) 

23 
4.31 
4.05 

(1, 1, 3, 6, 12) 

5.15 
4.90 

(1, 1, 3, 7, 15) 

6.17 
5.91 

(1, 2, 4, 8, 18) 

7.47 
7.20 

(1, 2, 5, 10, 22) 

9.10 
8.83 

(1, 3, 6, 12, 26) 

11.18 
10.90 

(1, 3, 8, 15, 33) 

14.08 
13.78 

(1, 4, 10, 19, 41) 

 

                                                 
* The three rows of each cell shows the +

0ARL , the SDRL , and the percentiles ( 5ρ , 25ρ , 50ρ , 75ρ , 95ρ ) , respectively. 
† See SAS Program 7 in Appendix B for the calculation of the values in Table 3.29. 
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Table 3.29 continued for h = 2, 4, ..., 14 and k = 25, 27, ..., 53. 
h k 2 4 6 8 10 12 14 

25 
5.17 
4.92 

(1, 1, 3, 7, 15) 

6.22 
5.97 

(1, 2, 4, 8, 18) 

7.56 
7.30 

(1, 2, 5, 10, 22) 

9.28 
9.01 

(1, 3, 6, 13, 27) 

11.47 
11.19 

(1, 3, 8, 16, 34) 

14.57 
14.29 

(1, 4, 10, 20, 43) 

18.65 
18.35 

(1, 5, 13, 25, 55) 

27 
6.25 
5.99 

(1, 2, 4, 8, 18) 

7.62 
7.36 

(1, 2, 5, 10, 22) 

9.39 
9.13 

(1, 3, 6, 13, 27) 

11.67 
11.40 

(1, 3, 8, 16, 34) 

14.94 
14.67 

(1, 4, 10, 20, 44) 

19.28 
19.00 

(1, 5, 13, 26, 57) 

24.76 
24.47 

(1, 7, 17, 34, 73) 

29 
7.64 
7.39 

(1, 2, 5, 10, 22) 

9.46 
9.20 

(1, 3, 6, 13, 28) 

11.80 
11.54 

(1, 3, 8, 16, 35) 

15.20 
14.94 

(1, 4, 10, 21, 45) 

19.75 
19.48 

(1, 6, 14, 27, 58) 

25.55 
25.27 

(1, 7, 18, 35, 76) 

33.84 
33.55 

(2, 10, 23, 47, 101) 

31 
9.48 
8.97 

(1, 3, 7, 13, 27) 

11.87 
11.36 

(1, 4, 8, 16, 35) 

15.37 
14.85 

(1, 5, 11, 21, 45) 

20.08 
19.56 

(2, 6, 14, 28, 59) 

26.12 
25.58 

(2, 8, 18, 36, 77) 

34.85 
34.29 

(2, 10, 24, 48, 103) 

47.67 
47.38 

(2, 14, 33, 66, 142) 

33 
11.91 
11.40 

(1, 4, 8, 16, 35) 

15.47 
14.96 

(1, 5, 11, 21, 45) 

20.30 
19.79 

(2, 6, 14, 28, 60) 

26.51 
25.99 

(2, 8, 19, 37, 78) 

35.57 
35.04 

(2, 11, 25, 49, 105) 

49.00 
48.45 

(3, 14, 34, 68, 146) 

68.60 
68.32 

(4, 20, 47, 95, 205) 

35 
15.52 
15.01 

(1, 5, 11, 21, 45) 

20.43 
19.92 

(2, 6, 14, 28, 60) 

26.76 
26.25 

(2, 8, 19, 37, 79) 

36.06 
35.54 

(2, 11, 25, 50, 107) 

49.95 
49.42 

(3, 15, 35, 69, 149) 

70.38 
69.83 

(4, 21, 49, 97, 210) 

97.26 
96.98 

(5, 28, 67, 134, 291) 

37 
20.48 
19.97 

(2, 6, 14, 28, 60) 

26.90 
26.39 

(2, 8, 19, 37, 80) 

36.35 
35.85 

(2, 11, 25, 50, 108) 

50.56 
50.04 

(3, 15, 35, 70, 150) 

71.58 
71.05 

(4, 21, 50, 99, 213) 

99.34 
98.80 

(6, 29, 69, 138, 297) 

161.57 
161.29 

(8, 46, 112, 224, 483) 

39 
26.95 
26.44 

(2, 8, 19, 37, 80) 

36.51 
36.00 

(2, 11, 25, 50, 108) 

50.92 
50.41 

(3, 15, 35, 70, 152) 

72.34 
71.83 

(4, 21, 50, 100, 216) 

100.71 
100.19 

(6, 29, 70, 139, 301) 

165.16 
164.62 

(9, 48, 115, 229, 494) 

245.13 
244.86 

(13, 70, 170, 339, 734) 

41 
36.57 
36.07 

(2, 11, 26, 51, 109) 

51.12 
50.62 

(3, 15, 36, 71, 152) 

72.81 
72.30 

(4, 21, 51, 101, 217) 

101.58 
101.07 

(6, 30, 71, 141, 303) 

167.59 
167.07 

(9, 49, 116, 232, 501) 

249.70 
249.18 

(13, 72, 173, 346, 747) 

486.87 
486.60 

(25, 140, 337, 675, 1458) 

43 
51.20 
50.70 

(3, 15, 36, 71, 152) 

73.05 
72.55 

(4, 21, 51, 101, 218) 

102.08 
101.58 

(6, 30, 71, 141, 305) 

169.12 
168.61 

(9, 49, 117, 234, 506) 

252.64 
252.13 

(13, 73, 175, 350, 756) 

497.29 
496.76 

(26, 143, 345, 689, 1489) 
 

45 
73.14 
72.64 

(4, 21, 51, 101, 218) 

102.32 
101.82 

(6, 30, 71, 142, 306) 

170.00 
169.50 

(9, 49, 118, 235, 508) 

254.38 
253.87 

(14, 74, 176, 352, 761) 

504.08 
503.56 

(26, 145, 350, 699, 1509) 
  

47 
102.40 
101.90 

(6, 30, 71, 142, 306) 

170.44 
169.94 

(9, 49, 118, 236, 510) 

255.38 
254.87 

(14, 74, 177, 354, 764) 

508.02 
507.51 

(27, 147, 352, 704, 1521) 
   

49 
170.67 
170.17 

(9, 49, 118, 236, 510) 

255.87 
255.37 

(14, 74, 178, 355, 766) 

510.50 
510.00 

(27, 147, 354, 708, 1528) 
    

51 
256.00 
255.50 

(14, 74, 178, 355, 766) 

511.50 
511.00 

(27, 148, 355, 709, 1531) 
     

53 
512.00 
511.50 

(27, 148, 355, 710, 1533) 
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Table 3.29 continued for h = 16, 18, ..., 28 and k = 1, 3, ..., 25. 

h  k  
16 18 20 22 24 26 28 

1 
2.02 
1.67 

(1, 1, 1, 2, 5) 

2.21 
1.84 

(1, 1, 1, 3, 6) 

2.42 
2.02 

(1, 1, 2, 3, 6) 

2.64 
2.21 

(1, 1, 2, 3, 7) 

2.88 
2.41 

(1, 1, 2, 4, 7) 

3.14 
2.63 

(1, 1, 2, 4, 8) 

3.42 
2.86 

(1, 1, 2, 4, 9) 

3 
2.31 
1.96 

(1, 1, 1, 3, 6) 

2.55 
2.17 

(1, 1, 2, 3, 7) 

2.80 
2.40 

(1, 1, 2, 3, 7) 

3.09 
2.66 

(1, 1, 2, 4, 8) 

3.40 
2.93 

(1, 1, 2, 4, 9) 

3.74 
3.22 

(1, 1, 3, 5, 10) 

4.10 
3.54 

(1, 1, 3, 5, 11) 

5 
2.67 
2.32 

(1, 1, 2, 3, 7) 

2.97 
2.59 

(1, 1, 2, 4, 8) 

3.30 
2.90 

(1, 1, 2, 4, 9) 

3.67 
3.24 

(1, 1, 2, 5, 10) 

4.07 
3.60 

(1, 1, 3, 5, 11) 

4.52 
4.00 

(1, 1, 3, 6, 12) 

5.00 
4.44 

(1, 2, 3, 6, 14) 

7 
3.12 
2.77 

(1, 1, 2, 4, 8) 

3.50 
3.13 

(1, 1, 2, 4, 9) 

3.93 
3.53 

(1, 1, 3, 5, 11) 

4.41 
3.98 

(1, 1, 3, 6, 12) 

4.95 
4.48 

(1, 2, 3, 6, 14) 

5.55 
5.03 

(1, 2, 4, 7, 15) 

6.22 
5.65 

(1, 2, 4, 8, 17) 

9 
3.68 
3.34 

(1, 1, 2, 5, 10) 

4.19 
3.82 

(1, 1, 3, 5, 12) 

4.75 
4.35 

(1, 1, 3, 6, 13) 

5.39 
4.95 

(1, 2, 4, 7, 15) 

6.12 
5.64 

(1, 2, 4, 8, 17) 

6.94 
6.43 

(1, 2, 5, 9, 20) 

7.92 
7.35 

(1, 2, 5, 11, 22) 

11 
4.42 
4.08 

(1, 1, 3, 6, 12) 

5.06 
4.69 

(1, 1, 3, 7, 14) 

5.81 
5.42 

(1, 2, 4, 8, 16) 

6.68 
6.25 

(1, 2, 5, 9, 19) 

7.69 
7.22 

(1, 2, 5, 10, 22) 

8.91 
8.39 

(1, 3, 6, 12, 25) 

10.31 
9.74 

(1, 3, 7, 14, 29) 

13 
5.35 
5.01 

(1, 2, 4, 7, 15) 

6.21 
5.85 

(1, 2, 4, 8, 18) 

7.23 
6.84 

(1, 2, 5, 10, 21) 

8.43 
8.00 

(1, 2, 6, 11, 24) 

9.93 
9.46 

(1, 3, 7, 13, 29) 

11.68 
11.16 

(1, 3, 8, 16, 34) 

13.66 
13.10 

(1, 4, 9, 18, 40) 

15 
6.57 
6.23 

(1, 2, 4, 9, 19) 

7.73 
7.37 

(1, 2, 5, 10, 22) 

9.13 
8.74 

(1, 3, 6, 12, 26) 

10.93 
10.50 

(1, 3, 7, 15, 32) 

13.08 
12.61 

(1, 4, 9, 18, 38) 

15.56 
15.05 

(1, 5, 11, 21, 45) 

18.62 
18.05 

(1, 6, 13, 25, 54) 

17 
8.18 
7.85 

(1, 2, 6, 11, 24) 

9.77 
9.42 

(1, 3, 7, 13, 28) 

11.87 
11.49 

(1, 3, 8, 16, 35) 

14.44 
14.02 

(1, 4, 10, 20, 42) 

17.46 
17.00 

(1, 5, 12, 24, 51) 

21.30 
20.79 

(1, 6, 15, 29, 63) 

26.12 
25.56 

(2, 8, 18, 36, 77) 

19 
10.34 
10.01 

(1, 3, 7, 14, 30) 

12.73 
12.37 

(1, 4, 9, 17, 37) 

15.72 
15.34 

(1, 5, 11, 21, 46) 

19.30 
18.89 

(1, 6, 13, 26, 57) 

23.97 
23.51 

(1, 7, 17, 33, 71) 

30.02 
29.52 

(2, 9, 21, 41, 89) 

37.67 
37.12 

(2, 11, 26, 52, 111) 

21 
13.47 
13.14 

(1, 4, 9, 18, 39) 

16.86 
16.51 

(1, 5, 12, 23, 50) 

21.00 
20.62 

(1, 6, 14, 29, 62) 

26.51 
26.10 

(1, 8, 18, 36, 78) 

33.87 
33.42 

(2, 10, 23, 47, 100) 

43.45 
42.95 

(2, 13, 30, 60, 129) 

55.02 
54.49 

(3, 16, 38, 76, 163) 

23 
17.85 
17.52 

(1, 5, 12, 24, 53) 

22.49 
22.15 

(1, 6, 15, 31, 66) 

28.83 
28.50 

(2, 8, 20, 40, 85) 

37.51 
37.11 

(2, 11, 26, 52, 111) 

49.11 
48.67 

(3, 14, 34, 68, 146) 

63.40 
62.93 

(3, 18, 44, 87, 189) 

87.75 
87.21 

(5, 25, 61, 121, 262) 

25 
23.75 
23.44 

(1, 7, 16, 33, 70) 

30.85 
30.51 

(2, 9, 21, 42, 91) 

40.78 
40.42 

(2, 12, 28, 56, 121) 

54.39 
54.00 

(3, 16, 38, 75, 162) 

71.44 
71.02 

(4, 21, 49, 99, 213) 

102.25 
101.77 

(5, 30, 71, 141, 305) 

137.75 
137.23 

(7, 40, 95, 191, 411) 
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Table 3.29 continued for h = 16, 18, ..., 28 and k = 27, 29, ..., 53. 

h  k  
16 18 20 22 24 26 28 

27 
32.52 
32.21 

(2, 9, 22, 45, 97) 

43.58 
43.25 

(2, 13, 30, 60, 130) 

59.06 
58.70 

(3, 17, 41, 81, 176) 

78.74 
78.36 

(4, 23, 54, 109, 235) 

116.24 
115.81 

(6, 33, 80, 161, 347) 

160.22 
159.76 

(8, 46, 111, 222, 479) 

250.03 
249.48 

(13, 72, 173, 346, 748) 

29 
45.88 
45.57 

(2, 13, 32, 63, 137) 

63.00 
62.68 

(3, 18, 44, 87, 188) 

85.05 
84.70 

(4, 24, 59, 118, 254) 

129.08 
128.69 

(7, 37, 79, 179, 386) 

181.52 
181.11 

(9, 52, 126, 251, 543) 

297.24 
296.75 

(15, 86, 206, 412, 889) 
 

31 
66.17 
65.87 

(3, 19, 46, 91, 197) 

90.22 
89.91 

(5, 26, 62, 125, 269) 

140.19 
139.84 

(7, 40, 97, 194, 419) 

200.46 
200.10 

(10, 58, 139, 278, 600) 

343.38 
342.95 

(18, 99, 238, 476, 1028) 
  

33 
94.26 
93.97 

(5, 27, 65, 130, 282) 

149.28 
148.96 

(8, 43, 103, 207, 446) 

216.42 
216.09 

(11, 62, 150, 300, 647) 

385.45 
385.06 

(20, 111, 267, 534, 1154) 
   

35 
156.39 
156.09 

(8, 45, 108, 216, 468) 

229.10 
228.79 

(12, 66, 159, 317, 685) 

412.40 
421.06 

(22, 121, 292, 584, 1261) 
    

37 
238.47 
238.18 

(12, 69, 165, 330, 714) 

450.00 
449.68 

(23, 129, 312, 623, 1347) 
     

39 
471.21 
471.12 

(24, 136, 327, 653, 1411) 
      

41        
43        
45        
47        
49        
51        
53        
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Table 3.29 continued for h = 30, 32, ..., 42 and k = 1, 3, ..., 53. 
h k 30 32 34 36 38 40 42 

1 
3.71 
3.11 

(1, 1, 3, 5, 10) 

4.02 
3.36 

(1, 1, 3, 5, 10) 

4.34 
3.63 

(1, 2, 3, 6, 11) 

4.69 
3.92 

(1, 2, 3, 6, 12) 

5.05 
4.22 

(1, 2, 4, 6, 13) 

5.41 
4.53 

(1, 2, 4, 7, 14) 

5.81 
4.85 

(1, 2, 4, 7, 15) 

3 
4.40 
3.88 

(1, 1, 3, 6, 12) 

4.90 
4.24 

(1, 2, 3, 6, 13) 

5.36 
4.63 

(1, 2, 4, 7, 14) 

5.83 
5.05 

(1, 2, 4, 8, 16) 

6.33 
5.48 

(1, 2, 4, 8, 17) 

6.86 
5.95 

(1, 2, 5, 9, 18) 

7.41 
6.44 

(1, 3, 5, 10, 20) 

5 
5.53 
4.91 

(1, 2, 4, 7, 15) 

6.12 
5.45 

(1, 2, 4, 8, 17) 

6.75 
6.02 

(1, 2, 5, 9, 18) 

7.42 
6.63 

(1, 2, 5, 10, 20) 

8.14 
7.29 

(1, 3, 6, 11, 22) 

8.92 
8.00 

(1, 3, 6, 12, 25) 

9.75 
8.75 

(1, 3, 7, 13, 27) 

7 
6.98 
6.36 

(1, 2, 5, 9, 19) 

7.82 
7.13 

(1, 3, 5, 10, 22) 

8.71 
7.97 

(1, 3, 6, 12, 24) 

9.70 
8.90 

(1, 3, 7, 13, 27) 

10.79 
9.92 

(1, 3, 8, 14, 30) 

11.96 
11.02 

(1, 4, 8, 16, 34) 

13.22 
12.21 

(1, 4, 9, 18, 37) 

9 
9.01 
8.38 

(1, 3, 6, 12, 25) 

10.19 
9.51 

(1, 3, 7, 14, 29) 

11.54 
10.79 

(1, 4, 8, 15, 33) 

13.05 
12.24 

(1, 4, 9, 18, 37) 

14.72 
13.85 

(1, 5, 10, 20, 42) 

16.53 
15.59 

(1, 5, 12, 22, 47) 

18.65 
17.63 

(2, 6, 13, 25, 54) 

11 
11.86 
11.23 

(1, 4, 8, 16, 34) 

13.66 
12.98 

(1, 4, 9, 18, 39) 

15.74 
15.00 

(1, 5, 11, 21, 45) 

18.10 
17.29 

(1, 6, 13, 25, 52) 

20.69 
19.81 

(2, 6, 14, 28, 60) 

23.85 
22.90 

(2, 7, 17, 32, 69) 

27.20 
26.17 

(2, 8, 19, 37, 79) 

13 
16.04 
15.42 

(1, 5, 11, 22, 47) 

18.86 
18.18 

(1, 6, 13, 26, 55) 

22.14 
21.29 

(2, 7, 15, 30, 65) 

25.79 
24.99 

(2, 8, 18, 35, 75) 

30.47 
29.58 

(2, 9, 21, 42, 89) 

35.45 
34.50 

(2, 11, 25, 49, 104) 

41.67 
40.64 

(3, 12, 29, 57, 123) 

15 
22.35 
21.73 

(1, 7, 15, 30, 65) 

26.81 
26.13 

(2, 8, 19, 37, 79) 

31.89 
31.15 

(2, 9, 22, 44, 94) 

38.71 
37.89 

(3, 11, 27, 53, 114) 

46.05 
45.17 

(3, 14, 32, 63, 136) 

55.68 
54.71 

(4, 16, 39, 77, 165) 
 

17 
32.04 
31.43 

(2, 9, 22, 44, 95) 

38.92 
38.26 

(2, 11, 27, 53, 115) 

48.70 
47.95 

(3, 14, 34, 67, 144) 

59.32 
58.51 

(4, 17, 41, 82, 176) 

74.09 
73.19 

(4, 22, 51, 102, 220) 
  

19 
46.74 
46.14 

(3, 14, 32, 64, 139) 

60.40 
59.72 

(3, 18, 42, 83, 179) 

75.44 
74.70 

(4, 22, 52, 104, 224) 

97.76 
96.94 

(6, 28, 68, 135, 291) 
   

21 
73.57 
72.96 

(4, 21, 51, 102, 219) 

94.27 
93.61 

(5, 27, 65, 130, 281) 

127.36 
126.60 

(7, 37 , 88, 176, 380) 
    

23 
115.36 
114.77 

(6, 33, 80, 159, 344) 

163.12 
162.43 

(9, 47, 113, 226, 487) 
     

25 
204.54 
203.92 

(11, 59, 142, 283, 611) 
      

27        
29        

�         

53        
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Table 3.29 continued for h = 44, 46, ..., 54 and k = 1, 3, ..., 53. 

h  k  
44 46 48 50 52 54 

1 
6.21 
5.19 

(1, 2, 4, 8, 16) 

6.63 
5.53 

(1, 2, 5, 9, 17) 

7.05 
5.89 

(1, 3, 5, 9, 19) 

7.50 
6.27 

(1, 3, 5, 10, 20) 

7.95 
6.65 

(1, 3, 6, 10, 21) 

8.43 
7.05 

(1, 3, 6, 11, 22) 

3 
8.00 
6.95 

(1, 3, 6, 10, 22) 

8.60 
7.48 

(1, 3, 6, 11, 23) 

9.25 
8.06 

(1, 3, 7, 12, 25) 

9.91 
8.65 

(1, 4, 7, 13, 27) 

10.62 
9.28 

(1, 4, 8, 14, 29) 
 

5 
10.61 
9.55 

(1, 4, 7, 14, 29) 

11.57 
10.43 

(1, 4, 8, 15, 32) 

12.55 
11.35 

(1, 4, 9, 17, 35) 

13.63 
12.34 

(2, 5, 10, 18, 38) 
  

7 
14.64 
13.56 

(1, 5, 10, 20, 41) 

16.11 
14.96 

(2, 5, 11, 22, 46) 

17.77 
16.54 

(2, 6, 12, 24, 50) 
   

9 
20.88 
19.79 

(2, 7, 15, 28, 60) 

33.44 
22.28 

(2, 7, 16, 32, 68) 
    

11 
31.19 
30.09 

(2, 10, 22, 43, 91) 
     

13       
15       

�        

53       
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Figure 3.11. Boxplot-like graphs for the in-control run length distribution of various two-sided 

CUSUM signed-rank charts when 10=n .  The whiskers extend to the 5th and the 95th percentiles. 

 The symbols “ ”, “ ” and “ ” denote the ARL, SDRL* and MRL, respectively†. 
                                                 
* For ease of interpretation, the standard deviation (as measure of spread) is included in the (location) measures of 
percentiles. 
† The “boxplots” are classified into 3 categories, namely small ( 25≤+ kh ), moderate ( 5025 ≤+< kh ) and large 

( 50>+ kh ). 
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Example 3.9 

A two-sided CUSUM signed-rank chart for the Montgomery (2001) piston ring data 

 

We conclude this sub-section by illustrating the two-sided CUSUM signed-rank chart 

using the piston ring data set from Montgomery (2001). We assume that the underlying 

distribution is symmetric with a known target value of 740 =θ mm. For illustration take 3=k  

and 8=h . From Table 3.27 it can be seen that the in-control average run length equals 4.07 when 

)3,8(),( =kh . Generally, one chooses the chart constants so that a specified in-control average 

run length, such as 500, or 370, is obtained. Taking this into consideration, an in-control average 

run length of 4.07 is considered small. Table 3.30 shows the upper and lower signed-rank 

CUSUM statistics, respectively. 

 

Table 3.30.  One-sided signed-rank ( +
iS  and −

iS ) statistics*. 

Sample 
number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

++++
iS  5 6 0 4 0 6 13 4 13 24 25 37 49 61 72 
−−−−
iS  0 0 -11 -1 -1 0 0 -3 0 0 0 0 0 0 0 

 

                                                 
* The values in Table 3.30 we generated using Microsoft Excel. 
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Figure 3.12. The two-sided CUSUM signed-rank chart for the Montgomery (2001) piston ring 

data. 

 

The two-sided CUSUM signed-rank chart signals at sample number 3, indicating a most 

likely upward shift in the process median. The action taken following an out-of-control signal on 

a CUSUM chart is identical to that with any control chart. A search for assignable causes should 

be done, corrective action should be taken (if required) and, following this, the CUSUM is reset 

to zero.  

 

3.3.4. Summary 

 

While the Shewhart-type charts are the most widely known and used control charts in 

practice because of their simplicity and global performance, other classes of charts, such as the 

CUSUM charts are useful and sometimes more naturally appropriate in the process control 

environment in view of the sequential nature of data collection. In this chapter we have described 

the properties of the CUSUM signed-rank chart and given tables for its implementation. Detailed 

calculations have been given to help the reader to understand the subject more thoroughly. 
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3.4. The EWMA control chart 

 

3.4.1. Introduction 

 

In this section, the approach taken by Lucas and Saccucci (1990) is extended to the use of 

the signed-rank statistic resulting in an EWMA signed-rank chart that accumulates the statistics 

,...,, 321 SRSRSR  . Section 3.4 is analogous to Section 2.4 where the approach taken by Lucas and 

Saccucci (1990) was extended to the use of the sign statistic resulting in an EWMA sign chart. 

Therefore, the reader is frequently referred back to Section 2.4 throughout this section.  

 

3.4.2. The proposed EWMA signed-rank chart 

 

A nonparametric EWMA-type of control chart based on the signed-rank statistic (recall 

that �
=

+−=
n

j
ijiji RxsignSR

1
0 )( θ ) can be obtained by replacing iX  in expression (2.53) of Section 

2.4 with iSR . The EWMA signed-rank chart accumulates the statistics ,...,, 321 SRSRSR  with the 

plotting statistics defined as  

 1)1( −−+= iii ZSRZ λλ  (3.10) 

where 10 ≤< λ  is a constant called the weighting constant. The starting value 0Z  could be taken 

to equal zero, i.e. 00 =Z . 

 

The EWMA signed-rank chart is constructed by plotting iZ  against the sample number i  

(or time). If the plotting statistic iZ  falls between the two control limits, that is, UCLZLCL i << , 

the process is considered to be in-control. If the plotting statistic iZ  falls on or outside one of the 

control limits, that is LCLZ i ≤  or UCLZ i ≥ , the process is considered to be out-of-control. 

 

The exact control limits and the center line of the EWMA signed-rank control chart can 

be obtained by replacing σ  and 0θ  by 
iSRσ  and 0, respectively, in expression (2.55) of Section 

2.4 to obtain 
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Similarly, the steady-state control limits can be obtained by replacing σ  and 0θ  by 
iSRσ  

and 0, respectively, in expression (2.56) to obtain 

 

�
�

�
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�
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�
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λ
λσ

λ
λσ

2

2

i

i

SR
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LLCL

LUCL

 (3.12) 

where 
iSRσ  denotes the in-control standard deviation of the signed-rank statistic iSR  if there are 

no ties within a subgroup. 

 

The in-control standard deviation of iSR  is given by == )var( iSR SR
i

σ  

6
)12)(1(

2
)1(

2var
++=�

�

�
�
�

� +−+ nnnnn
T . This is obtained by using the relationship between 

iSR  and +T  (recall that 
2

)1(
2

+−= + nn
TSRi  if there are no ties within a subgroup) and the fact 

that 
24

)12)(1(
)var(

++=+ nnn
T  (see Gibbons and Chakraborti (2003) page 198). 

 

3.4.3. Markov-chain approach 

 

Lucas and Saccucci (1990) evaluated the properties of the continuous state Markov chain 

by discretizing the infinite state TPM . This procedure entails dividing the interval between the 

UCL  and the LCL  into N  subintervals of width δ2 . Then the plotting statistic, iZ , is said to be 

in the non-absorbing state j  at time i  if δδ +≤<− jij SZS  where jS  denotes the midpoint of 

the thj  interval. iZ  is said to be in the absorbing state if iZ  falls on or outside one of the control 
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limits, that is, LCLZ i ≤  or UCLZ i ≥ . Let ijp  denote the probability of moving from state i  to 

state j  in one step, i.e. ( )istateinjstatetoMovingPpij |= . To approximate this probability we 

assume that the plotting statistic is equal to iS  whenever it is in state i . For all j  non-absorbing 

we obtain ( )ikjkjij SZSZSPp =+≤<−= −1|δδ . By using the definition of the plotting 

statistic given in expression (3.10) we obtain 

( )
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For all j  absorbing we obtain 
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Since the values LCL, UCL, δ , λ , n , iS  and jS  are known constants the Wilcoxon 

signed-rank probabilities in expressions (3.13) and (3.14) can easily be calculated. The 

probabilities for the Wilcoxon signed-rank statistics are given in Table H of Lehmann (1975) for 
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samples sizes up to 20 and they are tabulated (more recently) in Table H of Gibbons and 

Chakraborti (2003) for sample sizes up to 15. 

 

Once the one-step transition probabilities are calculated, the TPM can be constructed and 

is given by 
�
�
�

�

�

�
�
�

�

�

−−−==
1|'0

|
][

pQ

pTPM ij  (written in partitioned form) where the essential transition 

probability sub-matrix Q  is the matrix that contains all the transition probabilities of going from 

a non-absorbing state to a non-absorbing state, Q ( )NANA →: , p  contains all the transition 

probabilities of going from each non-absorbing state to the absorbing states, p ( )ANA →: , 

'0 ( )0000 �=  contains all the transition probabilities of going from each absorbing state 

to the non-absorbing states. '0  is a row vector with all its elements equal to zero, because it is 

impossible to go from an absorbing state to a non-absorbing state, because once an absorbing 

state is entered, it is never left, '0  ( )NAA →: , and 1 represents the scalar value one. The 

probability of going of going from an absorbing state to an absorbing state is equal to one, 

because once an absorbing state is entered, it is never left, 1 ( )AA →: . The one-step TPM is used 

to calculate the expected value (ARL), the second raw moment, the variance, the standard 

deviation and the probability mass function (pmf) of the run-length variable N  which are given in 

equations (2.41) to (2.45). 

 

Example 3.10 

The EWMA signed-rank chart where the sample size is even ( 6====n ) 

 

The EWMA signed-rank chart is investigated for a smoothing constant of 0.1 ( 1.0=λ ) 

and a multiplier of 3 ( 3=L ). The steady-state control limits are given by 
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where 3=L , 1.0=λ , and 539.9=
iSRσ , since =

iSRσ =++
6

)12)(1( nnn =++
6

)112)(16(6
 

539.9 . Clearly, we only have to calculate the UCL  since UCLLCL −= . We obtain 

565.6
1.02

1.0
539.93 =�

�

�
�
�

�

−
×=UCL . Therefore, 565.6−=LCL . 

 

This Markov-chain procedure entails dividing the interval between the UCL  and the 

LCL  into N  subintervals of width δ2 . For this example N  is taken to equal 4. Figure 3.13 

illustrates the partitioning of the interval between the UCL  and the LCL  into subintervals. 

 

    

Figure 3.13. Partitioning of the interval between the UCL  and the LCL  into 4 subintervals. 

 

From Figure 3.13 we see that there are 4 non-absorbing states, i.e. 4=r . The TPM is 

given by 
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Table 3.31. Calculation of the one-step probabilities in the first row of the TPM. 

( )0|000 stateinstatetoMovingPp =  

( )0100 | SZSZSP kk =+≤<−= −δδ  from (3.13) 
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with 641.1=δ , 1.0=λ , 3=L  and 924.40 =S  
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57=  from Gibbons and Chakraborti (2003) 
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64
7

)4(

)755.4658.11(

2
2

)1()1()(

2
2

)1()1()( 0101

=

≤=

≤<−=

��
�
�
�

�

�

��
�
�
�

�

�
�
�

�
�
�

� ++
−−+

≤<
�
�

�
�
�

� ++
−−−

=

+

+

+

k

k

k

TP

TP

nnSS

T

nnSS

P
λ

λδ
λ

λδ

 

 
 
 



 194 

 
( )0|202 stateinstatetoMovingPp =  

( )0122 | SZSZSP kk =+≤<−= −δδ  from (3.13) 
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 The one-step probabilities in the remaining rows can be calculated similarly. Therefore, 

the TPM is given by 
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Other values of the multiplier (L) and the smoothing constant ( λ )  were also considered 

and the results are given in Tables 3.32 and 3.33. 
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Table 3.32. The in-control average run length ( 0ARL ), standard deviation of the run length 

( SDRL ), th5 , th25 , th50 , th75  and th95  percentile values* for the EWMA signed-rank chart when 

6=n  and 5=N , i.e. there are 5 subintervals between the lower and upper control limit†.  

 1====L  2====L  3====L  

05.0====λλλλ  
10.45 
12.32 

(1, 2, 6, 15, 35) 

56.69 
72.45 

(1, 5, 29, 82, 204) 

** 
 

1.0====λλλλ  
7.32 
8.38 

(1, 1, 4, 10, 24) 

33.83 
40.28 

(1, 4, 20, 48, 115) 

330.67 
369.33 

(2, 63, 213, 471, 1070) 

2.0====λλλλ  
4.95 
4.90 

(1, 1, 3, 7, 15) 

35.21 
39.63 

(1, 6, 22, 50, 115) 

361.92 
384.29 

(3, 87, 243,  510, 1130) 
** The inverse of the matrix ( QI − ) does not exist and as a result the ARL (given by 

( ) ( ) 11−−= QINE ξ ) can not be calculated for this combination of ( L,λ ). 

 

In example 3.10 we considered a sample size that may be considered “small”. The results 

are given for a larger sample size ( 10=n ) for various values of λ  and L in Table 3.33. 

 

Table 3.33. The in-control average run length ( 0ARL ), standard deviation of the run length 

( SDRL ), th5 , th25 , th50 , th75  and th95  percentile values‡ for the EWMA signed-rank chart when 

10=n  and 5=N , i.e. there are 5 subintervals between the lower and upper control limit§.  

 1====L  2====L  3====L  

05.0====λλλλ  
11.17 
13.49 

(1, 2, 6, 16, 39) 

67.94 
83.82 

(1, 7, 38, 98, 238) 

1448.44 
1573.37 

(10, 316, 956, 2052, 4595) 

1.0====λλλλ  
6.85 
7.74 

(1, 1, 4, 9, 23) 

48.87 
57.73 

(1, 6, 29, 70, 165) 

352.72 
384.51 

(3, 76, 232, 500, 1122) 

2.0====λλλλ  
5.05 
5.07 

(1, 1, 3, 7, 15) 

33.96 
38.48 

(1, 6, 21, 48, 111) 

336.34 
357.54 

(3, 80, 226, 474, 1051) 
 

                                                 
* The three rows of each cell shows the ARL0, the SDRL, and the percentiles ( 5ρ , 25ρ , 50ρ , 75ρ , 95ρ ) , respectively. 
† See SAS Program 8 in Appendix B for the calculation of the values in Table 3.32. 
‡ The three rows of each cell shows the ARL0, the SDRL, and the percentiles ( 5ρ , 25ρ , 50ρ , 75ρ , 95ρ ) , respectively. 
§ See SAS Program 8 in Appendix B for the calculation of the values in Table 3.33. 

 
 
 



 196 

These tables can be extended by changing the sample size (n), the number of subintervals 

between the lower and upper control limit (N), the multiplier (L) and the smoothing constant ( λ ) 

in SAS Program 8  for the EWMA signed-rank chart given in Appendix B. 

 

From Tables 3.32 and 3.33 we see that the 0ARL , SDRL  and percentiles increase as the 

value of the multiplier (L) increases. From Table 3.33 we find an in-control average run length of 

336.34 for 10=n  when the multiplier is taken to equal 3 ( 3=L ) and the smoothing constant 0.2 

( 2.0=λ ). The chart performance is good, since the attained in-control average run length of 

336.34 is in the region of the desired in-control average run length which is generally taken to be 

370 or 500. 

 

3.4.4. Summary 

 

The EWMA control chart is one of several charting methods aimed at correcting a 

deficiency of the Shewhart chart - insensitivity to small shifts. Lucas and Saccucci (1990) have 

investigated some properties of the EWMA chart under the assumption of independent normally 

distributed observations, whereas in this section we have described and evaluated the 

nonparametric EWMA signed-rank chart. The main advantage of the nonparametric EWMA 

chart is that there is no need to assume a particular parametric distribution for the underlying 

process (see Section 1.4 for other advantages of the nonparametric EWMA chart). 
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