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Chapter 3: Signed-rank charts

3.1. The Shewhart-type control chart
3.1.1. Introduction

As mentioned in Chapter 2, samples of fixed size are taken at regular intervals and the
plotting statistic is then plotted. The question is: Which quality parameter should be used as

the plotting statistic? In Chapter 2 the sign test statistic SN, was described and it was

mentioned that the sign test statistic is only influenced by the signs of the deviations

(x; —6,) . There is an alternative statistic that can be used to track the location of a process.
The statistic is a function of both the magnitudes and signs of the (x; —6,)’s, called the

signed-rank statistic.
3.1.2. Definition of the signed-rank test statistic

The signed-rank test is a nonparametric test that can be used to test hypotheses on or

construct confidence intervals (see Gibbons and Chakraborti (2003)) for the median of any
symmetric continuous population distribution. Let X,,X ,,...,X, denote the i" (i=1,2,..)

sample or subgroup of independent observations of size n>1 from a process with an

unknown continuous distribution function denoted by F . Let 6, denote the known in-control

location parameter (also called the target value). Let R; denote the rank of the absolute

X, —6)|) for i=123... .

deviations, , within the subgroup (in1 -6,

X -6,

X =6y lsees

Then R; is referred to as the within-group absolute rank of the deviations. The signed-rank

test statistic is given by

SR, = Zsign(xU —6,)R; fori=123... (3.1)

J=1

where sign(x) =-1,0,1if x<0, =0, >0.
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3.1.3. Plotting statistic

The signed-rank test statistic, SR, (given in (3.1)), is used as the plotting statistic on
the Shewhart signed-rank chart. If the plotting statistic SR, falls between the two control
limits, that is, LCL < SR, <UCL, the process is considered to be in-control. If the plotting
statistic SR, falls on or outside one of the control limits, that is SR, < LCL or SR, 2UCL,

the process is considered to be out-of-control.

The plotting statistic is linearly related to the well-known Wilcoxon signed-rank
statistic T, through the formula (see Bakir (2003), page 424, equation 2.4)

n(n+1)
2

SR, = 2T — (3.2)

where 7" = Zl//(xij —QO)R;. , w(x)=0,1if x<0,>0.
=1

Example 3.1
A two-sided Shewhart signed-rank chart for the Montgomery (2001) piston ring data

We illustrate the Shewhart-type signed-rank chart using the same set of data from
Montgomery (2001) that was used in example 2.1. We assume that the underlying distribution

is symmetric with a known median 6, = 74 mm. Panel a of Table 3.1 exhibits the individual
observations of 15 independent samples, each of size 5 i.e. n=35. The absolute deviations

‘xij — 90‘ and sign(x; —6,) are shown in panel b and panel ¢ of Table 3.1, respectively. The
known target value is taken to be 74, that is, 6, = 74 . The within-group absolute rank of the
deviations R; and the sign(x; — 00)R; values are shown in panel a and panel b of Table 3.2,

respectively. Panel ¢ of Table 3.2 holds the signed-ranks i.e. SR, for i =1,2,3,...,15.
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Table 3.1. Data and calculations for the signed-rank chart .
Panel a Panel b Panel ¢

— ~— L . —
Sample = sy = = "= T T E?G ':II;:.‘:' g
number x. x. . . . 'ﬂllh 'ﬂi-) ':? ':'Ih ':II::. I: |m o , Iﬂ
. e = = k- -E;:' .gh E;:' -%:;:' -E?'

1 74.012 | 74.015 | 74.030 | 73.986 | 74.000 | 0.012 | 0.015 | 0.030 | 0.014 | 0.000 1 1 1 -1 0

2 73.995 | 74.010 | 73.990 | 74.015 | 74.001 | 0.005 | 0.010 | 0.010 | 0.015 | 0.001 | -1 1 -1 1 1

3 73.987 | 73.999 | 73.985 | 74.000 | 73.990 | 0.013 | 0.001 | 0.015 | 0.000 | 0.010 | -1 -1 -1 0 -1

4 74.008 | 74.010 | 74.003 | 73.991 | 74.006 | 0.008 | 0.010 | 0.003 | 0.009 | 0.006 1 1 1 -1 1

5 74.003 | 74.000 | 74.001 | 73.986 | 73.997 | 0.003 | 0.000 | 0.001 | 0.014 | 0.003 1 0 1 -1 -1

6 73.994 | 74.003 | 74.015 | 74.020 | 74.004 | 0.006 | 0.003 | 0.015 | 0.020 | 0.004 | -1 1 1 1 1

7 74.008 | 74.002 | 74.018 | 73.995 | 74.005 | 0.008 | 0.002 | 0.018 | 0.005 | 0.005 1 1 1 -1 1

8 74.001 | 74.004 | 73.990 | 73.996 | 73.998 | 0.001 | 0.004 | 0.010 | 0.004 | 0.002 1 1 -1 -1 -1

9 74.015 | 74.000 | 74.016 | 74.025 | 74.000 | 0.015 | 0.000 | 0.016 | 0.025 | 0.000 1 0 1 1 0

10 74.030 | 74.005 | 74.000 | 74.016 | 74.012 | 0.030 | 0.005 | 0.000 | 0.016 | 0.012 1 1 0 1 1
11 74.001 | 73.990 | 73.995 | 74.010 | 74.024 | 0.001 | 0.010 | 0.005 | 0.010 | 0.024 1 -1 -1 1 1
12 74.015 | 74.020 | 74.024 | 74.005 | 74.019 | 0.015 | 0.020 | 0.024 | 0.005 | 0.019 1 1 1 1 1
13 74.035 | 74.010 | 74.012 | 74.015 | 74.026 | 0.035 | 0.010 | 0.012 | 0.015 | 0.026 1 1 1 1 1
14 74.017 | 74.013 | 74.036 | 74.025 | 74.026 | 0.017 | 0.013 | 0.036 | 0.025 | 0.026 1 1 1 1 1
15 74.010 | 74.005 | 74.029 | 74.000 | 74.020 | 0.010 | 0.005 | 0.029 | 0.000 | 0.020 1 1 1 0 1

" See SAS Program 5 in Appendix B for the calculation of the values in Table 3.1.
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Table 3.2. Calculations for the signed-rank chart’.

Panel a Panel b Panel ¢
+ = + ":':c;":] + + 0
e = B S e O
T vy T ) T
+ + + + + | | | | |
Ril Ri2 Ri3 Ri4 RiS — o [ =+ w SR;
b I R
Bi B | o 8| B
B B B B g7
1 2 4 5 3 1 2 4 5 3 0 8
2 2 4 4 5 1 2 4 4 5 1 4
3 4 2 5 1 3 -4 2 -5 0 3 -14
4 3 5 1 4 2 5 1 4 2 7
5 4 1 2 5 4 4 0 2 -5 -4 3
6 3 1 4 5 2 3 1 4 5 2 9
7 4 1 5 3 3 4 1 5 3 3 10
8 1 4 5 4 2 1 4 -5 -4 2 -6
9 3 2 4 5 2 3 0 4 5 0 12
10 5 2 1 4 3 5 2 0 4 3 14
11 1 4 2 4 5 1 4 2 4 5 4
12 2 4 5 1 3 2 4 5 1 3 15
13 5 1 2 3 4 5 1 2 3 4 15
14 2 1 5 3 4 2 1 5 3 4 15
15 3 2 5 1 4 3 2 5 0 4 14

Let ARL;, and FAR, denote the in-control average run length and the false alarm rate

for the upper one-sided Shewhart signed-rank control chart, respectively. For an upper one-

sided chart we would take UCL =15 since it is related to a false alarm rate of 0.0313
(FAR; =0.0313) and an in-control average run length of 32 (ARL; =32) - see Table 3.3.

Although the in-control average run length of 32 is far from the desired value, which is
generally taken to be 370 or 500, it is the best under present conditions. The false alarm rate

(FAR,) and the in-control average run length (ARL, ) for the symmetric two-sided Shewhart
signed-rank chart can be obtained through the relationships FAR, =2FAR, and

ARL;,

ARL, = , respectively (see Bakir (2003)). A symmetric two-sided chart is obtained by

choosing LCL =—-UCL. We take UCL =15 for the two-sided Shewhart signed-rank chart,

" See SAS Program 5 in Appendix B for the calculation of the values in Table 3.2.
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since it is related to a false alarm rate of 0.0626 ( FAR, = 2FAR; =2x0.0313 =0.0626) and

ARL'
0 = 3—22 =16). The two-sided signed-rank

an in-control average run length of 16 (ARL, =

chart is shown in Figure 3.1 with UCL =15, CL =0 and LCL =-15.

N MW
L

-104

Signed-rank statistic
o

-15 LCL = -15

T
i 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Sample number

Figure 3.1. Signed-rank control chart for Montgomery (2001) piston ring data.

The chart signals at sample number 12. Therefore, a search for assignable causes is
necessary. It appears most likely that the process median has shifted upwards from the target

value of 74mm.

3.1.4. Determination of chart constants

The control limits in example 3.1 were chosen to give a certain false alarm rate or in-
control ARL. Values of various control limits are given by Bakir (2003). Bakir included the
following table in his article which gives the false alarm rates and the in-control average run
lengths for the upper one-sided Shewhart signed-rank charts based on subgroups of sizes

n=4, Sand 6.
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Table 3.3. FAR’s and ARL,’s for the upper one-sided Shewhart signed-rank chart.

n=4 n=>5 n==6
UCL ARL: | FAR; | ARL, | FAR; | ARL, | FAR;
10 16.00 | 0.0625 10.66 | 0.0938 6.40 0.1563
11 oo 0 10.66 | 0.0938 6.40 0.1563
12 16.00 | 0.0630 9.14 0.1094
13 16.00 | 0.0630 9.14 0.1094
14 32.00 | 0.0313 12.80 | 0.0781
15 32.00 | 0.0313 12.80 | 0.0781
16 ) 0 21.33 | 0.0469
17 21.33 | 0.0469
18 32.00 | 0.0312
19 32.00 | 0.0312
20 64.00 | 0.0156
21 64.00 | 0.0156
22 oo 0

Table 3.3 shows the false alarm rates and the in-control average run lengths for the
upper one-sided Shewhart signed-rank chart as calculated using the null distribution of the

Wilcoxon signed-rank statistic (see Hollander and Wolfe (1973) and Bakir (2003)).

In Table 3.3 we see that there are some duplicates in the data. We consider a specific

example to shed light on the occurrence of these duplicates. Suppose n=5 and UCL =12.
Then FAR, = P(SR, 212|In-control)= P(T, >13.5) (using (3.2)). The last probability
equals P(T" >14) =0.0630, because T,” has zero probability at 13.5. When n=5 and
UCL =13 we have that FAR; = P(SR, 2131|1In-control) = P(T,” >14) =0.0630 (by using
the  null  distribution of the  Wilcoxon  signed-rank  statistic). Since
FAR; = P(T,;” 214) =0.0630 for two different values of the upper control limit, we have
duplicates in the data. This example points out an error in Table 1 of Bakir (2003). The
probability of P(T) 213.5) equals P(T, 214) which equals 0.0630 (and not 0.0938
corresponding to P(T,” 213) as reported by Bakir’s (2003) paper). This type of correction

was applied to the other entries of Bakir’s (2003) Table 1 and are given in Table 3.3 of this
thesis. The false alarm rates and in-control average run lengths for the two-sided Shewhart
signed-rank chart were calculated using SAS (with the appropriate corrections made) and are

shown in Table 3.4.

" This error is also pointed out by Chakraborti and Eryilmaz (2007).
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Table 3.4. FAR’s and ARL,’s for the two-sided Shewhart signed-rank chart’.

UcL n=4 n=>5 n=6 n="17 n=8 n=9 n=10

ARL, | FAR ARL, FAR ARL, FAR ARL, FAR ARL, FAR ARL, FAR ARL, FAR
11 8.018 | 0.125 3.248 0.308 2.307 0.433 2.132 0.469 1.830 0.546 1.526 0.655 1.447 0.691
12 ) 0 5.382 0.186 3.163 0.316 2.126 0.470 1.811 0.552 1.779 0.562 1.606 0.623
13 5.392 0.185 3.234 0.309 2.643 0.378 2.146 0.466 1.730 0.578 1.613 0.620
14 8.003 0.125 4.557 0.219 2.675 0.374 2.194 0.456 2.022 0.494 1.802 0.555
15 7.896 0.127 4.623 0.216 3.360 0.298 2.597 0.385 1.991 0.502 1.788 0.559
16 15.922 | 0.063 6.302 0.159 3.399 0.294 2.616 0.382 2.354 0.425 2.033 0.492
17 ) 0 6.483 0.154 4.552 0.220 3.201 0.312 2.346 0.426 2.032 0.492
18 10.797 | 0.093 4.553 0.220 3.276 0.305 2.770 0.361 2.276 0.439
19 10.762 | 0.093 6.514 0.154 4.004 0.250 2.778 0.360 2.345 0.426
20 16.291 | 0.061 6.307 0.159 3.999 0.250 3.350 0.299 2.635 0.379
21 15.982 | 0.063 9.164 0.109 5.053 0.198 3.309 0.302 2.664 0.375
22 29.890 | 0.033 9.152 0.109 5.149 0.194 4.034 0.248 3.071 0.326
23 oo 0 12.655 | 0.079 6.611 0.151 4.055 0.247 3.139 0.319
24 12.618 | 0.079 6.632 0.151 5.055 0.198 3.641 0.275
25 20.939 | 0.048 9.244 0.108 5.047 0.198 3.682 0.272
26 21.115 | 0.047 9.299 0.108 6.032 0.166 4.355 0.230
27 31.380 | 0.032 12.862 0.078 6.053 0.165 4.226 0.237
28 31.118 | 0.032 12.898 0.078 7.768 0.129 5.225 0.191
29 64.444 | 0.016 18.447 0.054 7.812 0.128 5.108 0.196
30 00 0 17.947 0.056 10.180 0.098 6.286 0.159
31 25.216 0.040 10.554 0.095 6.315 0.158
32 25.285 0.040 13.573 0.074 7.670 0.130
33 42.248 0.024 13.357 0.075 7.638 0.131
34 42.872 0.023 18.499 0.054 9.505 0.105
35 63.492 0.016 18.409 0.054 9.728 0.103
36 64.492 0.016 25.763 0.039 | 12.004 | 0.083
37 129.711 | 0.008 25.676 0.039 | 11.531 | 0.087
38 00 0 37.023 0.027 | 15.663 | 0.064
39 36.507 0.027 | 15.514 | 0.064
40 50919 | 0.020 | 20.504 | 0.049
41 51913 0.019 | 20.542 | 0.049

" See SAS Program 6 in Appendix B for the calculation of the values in Table 3.4. This table is an extension of Tables 1 and 2 given in Bakir (2003).
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42 87.428 | 0.011 | 27.510 | 0.036
43 84.898 | 0.012 | 26.771 | 0.037
4 127.219 | 0.008 | 36.928 | 0.027
45 128.950 | 0.008 | 37.308 | 0.027
46 251.312 | 0.004 | 50.234 | 0.020
47 ) 0 52.249 | 0.019
48 73.736 | 0.014
49 74.261 | 0.013
50 104.300 | 0.010
51 101.973 | 0.010
52 165.381 | 0.006
53 168.821 | 0.006
54 251.693 | 0.004
55 249.627 | 0.004
56 443.132 | 0.002
57 o0 0
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3.1.5. Summary

The signed-rank test is a popular nonparametric test for the median of a
symmetric continuous population. The signed-rank test is more powerful than the sign
test, but while the sign test is applicable for all continuous distributions, the
assumption of symmetry must be made, in addition, for the signed-rank test.
Furthermore, the sign test applies to all percentiles, whereas the signed-rank test is
proposed only for the median. Another drawback of the signed-rank chart is that the

FAR values for the chart are too high (in other words the ARL, values are too short)

unless the subgroup size is ‘large’. One way to remedy this problem is to use some

signaling rules to enhance the sensitivity of the charts. This will be considered next.

3.2. The Shewhart-type control chart with runs-type signaling rules

3.2.1. Introduction

In addition to defining warning limits or zones on control charts (see Section 2.2), we
can extend the existing charts by incorporating various signaling rules involving runs of the
plotting statistic. The signaling rules considered include the following: A process is declared
to be out-of-control when (a) a single point (charting statistic) plots outside the control limit(s)
(I-of-1 rule) (b) k consecutive points (charting statistics) plot outside the control limit(s) (k-
of-k rule) or (c) exactly k of the last w points (charting statistics) plot outside the control
limit(s) (k-of-w rule). We can consider these signaling rules where both & and w are positive
integers with 1 <k <w and w2 2. Rule (a) is the simplest and is the most frequently used in
the literature. Thus, the /-of-1 rule corresponds to the usual control chart, where a signal is
given when a plotting statistic falls outside the control limit(s). Rules (a) and (b) are special
cases of rule (c); rules (b) and (c) have been used in the context of supplementing the
Shewhart charts with warning limits and zones. Rules (a), (b) and (c) have been studied by
various authors (see for example Klein (2000) and Khoo (2004)). Klein (2000) suggested two
rules namely the 2-of-2 and 2-of-3 rules. Both control charts are easily implemented and have
better ARL performance than the /-of-1 rule. Khoo (2004) conducted a study of the ARL
performance of the 2-of-2, 2-of-3, 2-0f-4, 3-of-3 and 3-of-4 charts and concluded that the 3-of-

4 chart is the most sensitive scheme for detecting small process shifts.
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Chakraborti and Eryilmaz (2007) considered simple alternatives to the Bakir (2004)’s
class of nonparametric charts, using the signed-rank statistic but incorporating runs rules of
the type discussed above to define new signaling rules. If we set k equal to 2 in rule (b)
above, we obtain the simplest of the k-of-k type rules which are called the 2-of-2 DR and the
2-of-2 KL charts. The 2-of-2 KL chart signals, for example, when the two most recent signed-
rank statistics both fall either on or above or on or below the control limits. The 2-of-2 DR
chart is almost similar, but here a signal is indicated when both of the signed-rank statistics
fall either both on or above or both on or below or one on or above (below) and the next one
on or below (above) the control limits. It is shown that the new charts are nonparametric, have

much smaller FAR (and thus larger ARL,) than the /-of-1 signed-rank chart of Bakir.

Moreover, the new charts have better out-of-control performance than the /-of-1 signed-rank
chart for heavy-tailed and skewed distributions such as the Cauchy. We illustrate these

procedures using the Montgomery (2001) piston ring data.
3.2.2. Example

Example 3.2
A two-sided Shewhart signed-rank chart with signaling rules for the Montgomery (2001)

piston ring data

We illustrate the signed-rank chart with signaling rules using the Montgomery (2001)
piston ring data. Recall that the dataset contains 15 samples (each of size 5). The signed-rank
statistics were calculated and given in Table 3.2 and graphically represented in Figure 3.1.
The symmetric two-sided control limits for the /-of-1 and 2-of-2 signed-rank charts are given

by Chakraborti and Eryilmaz (2007) for n =4,5,6 and 10. The table for samples of size 5 is

given here for reference.
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Table 3.5. False alarm rates and in-control ARL values for the two-sided /-of-1 and 2-of-2

signed-rank charts under DR and KL schemes, n =5 "

1-of-1 2-0f-2 DR 2-0f-2 KL
UCL ARL, FAR, ARLpz, | FARpry | ARLy, | FARkLy
11 5.33 0.1876 33.74 0.0352 62.15 0.0176
13 8.00 0.1250 72.00 0.0156 136.00 0.0078
15 15.97 0.0626 271.15 0.0039 526.34 0.0019

For n =35, the control limits for the /-of-1 (Bakir’s chart), the 2-of-2 DR and the 2-of-
2 KL charts, based on the signed-rank statistic, are set at £15. These yield FAR values
0.0626, 0.0039, and 0.0019, respectively. If the control limits were taken to be +13, the FAR
would have been much higher: 0.1250, 0.0156, and 0.0078, respectively. Although the control
limits are the same, namely *15, the signaling rules are quite different operationally and the
performance of the resulting charts turn out to be quite different. The /-of-1 chart signals
when the first signed-rank statistic falls on or outside of either of the two control limits; the 2-
of-2 KL chart signals when, for the first time, two consecutive signed-rank statistics fall either
on or above or on or below the two control limits, while the 2-of-2 DR chart signals when for
the first time two consecutive signed-rank statistics fall on or outside the control limits, either
both on or above, or both on or below, or one on or above the next on or below, or one on or
below and the next on or above. On the performance side, note that the /-of-1 SR chart has a

FAR of 0.0626 and an ARL, of approximately 16. Thus many more false alarms will be
signaled by this chart leading to a possible loss of time and resources. Compared to that, the
2-of-2 KL chart has a FAR of 0.0019 and an ARL, of 526.34, whereas the 2-of-2 DR chart
has a FAR of 0.0039 and an ARL, of 271.15. Thus both of these run-rule-enhanced charts

provide reasonable and practical false alarm rates and can be used in practice, depending on

the type of shift one expects.

From Figure 3.1 we see that the DR and KL 2-of-2 signed-rank charts both signal at
sample 13, indicating a most likely upward shift in the process median. The /-of-1 signed-
rank chart, on the other hand, signals earlier, at sample 12, but note the much higher FAR of

0.0626 (and correspondingly a much lower and less desirable ARL,, 15.97) associated with

this chart. It is interesting to note that, as shown in Montgomery (2001), for these data the

* Table 3.5 appears in Chakraborti and Eryilmaz (2007), Table 11.
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Shewhart X chart indicates a shift in the mean at sample 11 for these data. However, the key
difference is that an application of the Shewhart chart can raise several questions such as the
form of the underlying distribution (small » =5), and more importantly about the in-control

(stable) performance of the chart in terms of the FAR (or the ARL,), since it is known that the

in-control performance of the Shewhart X chart is not robust in typical quality control
applications. Compared to this, the proposed nonparametric charts provide a more generally
applicable alternative monitoring scheme with a known (stable/robust) in-control performance

and a better or equal out-of-control performance than the /-of-1 signed-rank chart.

3.2.3. Summary

In this section we examined signed-rank control charts with runs-type signaling rules.
Human, Chakraborti and Smit (2008) recently studied Shewhart-type sign charts with runs-
type signaling rules. These charts are similar in spirit to the Shewhart-type signed-rank charts
with runs-type signaling rules (see Section 3.2). In the paper by Human et al. they derived
expressions for the run length distributions using Markov chain theory. The in-control and
out-of-control performance of these charts were studied and compared to those of the existing
signed-ranked charts under the normal, double exponential and Cauchy distributions, using
the ARL, SDRL, FAR and some percentiles of the run length. These runs rules enhanced sign
charts have the advantage that one does not have to assume symmetry of the underlying

distribution and they can be applied in situations where the data are dichotomous.
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3.3. The tabular CUSUM control chart
3.3.1. Introduction

Bakir and Reynolds (1979) investigated the CUSUM chart using the Wilcoxon signed-
rank statistic. They used methods that are analogous to the methods used on the CUSUM sign
chart (see Section 2.3), that is, a Markov chain approach is used to find the moments and other

characteristics of the run length distribution for the CUSUM signed-rank chart.
3.3.2. One-sided control charts
3.3.2.1. Upper one-sided control charts

Fu, Spiring and Xie (2002) and Fu and Lou (2003) presented three results that must be

satisfied before implementing the finite-state Markov chain approach. Let S be a finite-state

homogenous Markov chain on the state space Q" with a transition probability matrix (TPM)

such that (i) Q" ={g,,6,,--»G,.,,} Where 0=¢,<¢, <..<¢G,,,,=h and ¢

r+s—

, 1s an absorbent

r+s—1 r+s=1

state; (i1) the TPM is given by TPM = [p;] fori=0,1,..,r+s—1and j=0,1,..,r+s—1 where r
denotes the number of non-absorbent” states and s the number of absorbent’ states, respectively,
and (iii) the starting value should equal zero with probability one, that is, P(S; =0) =1 (this is to
ensure that the process starts in-control). Assume that the Markov chain S, satisfies conditions

(i), (1) and (iii), then the formulas given in (2.41) to (2.45) hold.

The time that the procedure signals is the first time such that the finite-state Markov chain

S, enters the state ¢, , where the state space is given by Q" ={¢,,6,--6,,,,}, S, =0 and

S+ = minfi, max{0,$7, + SR, -k} (3.3)

* . . . .
_ The transient (non-absorbent) states are the states for which eventual return is uncertain.
"If a state is entered once and is never left, the state is said to be absorbent.
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3.4. The EWMA control chart
3.4.1. Introduction

In this section, the approach taken by Lucas and Saccucci (1990) is extended to the use of

the signed-rank statistic resulting in an EWMA signed-rank chart that accumulates the statistics

SR,,SR,,SR,;,... . Section 3.4 is analogous to Section 2.4 where the approach taken by Lucas and

Saccucci (1990) was extended to the use of the sign statistic resulting in an EWMA sign chart.

Therefore, the reader is frequently referred back to Section 2.4 throughout this section.
3.4.2. The proposed EWMA signed-rank chart

A nonparametric EWMA-type of control chart based on the signed-rank statistic (recall

that SR, = Zsign(xlj —6,)R; ) can be obtained by replacing X, in expression (2.53) of Section

j=1
2.4 with SR,. The EWMA signed-rank chart accumulates the statistics SR,, SR,, SR;,... with the
plotting statistics defined as

Z, =ASR. +(1-1)Z_, (3.10)
where 0 < A <1 is a constant called the weighting constant. The starting value Z, could be taken

to equal zero, 1.e. Z, =0.

The EWMA signed-rank chart is constructed by plotting Z, against the sample number i
(or time). If the plotting statistic Z, falls between the two control limits, that is, LCL<Z, <UCL,
the process is considered to be in-control. If the plotting statistic Z, falls on or outside one of the

control limits, thatis Z, < LCL or Z, 2 UCL , the process is considered to be out-of-control.
The exact control limits and the center line of the EWMA signed-rank control chart can

be obtained by replacing o and 6, by o, and 0, respectively, in expression (2.55) of Section

2.4 to obtain
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UCL= Lo, \/(%)(1 —(1-1)%)

CL=0 . 3.11)

LCL=-Loy, \/ (ij(l —(1-2)%)

2-4

Similarly, the steady-state control limits can be obtained by replacing ¢ and 6, by o

and 0, respectively, in expression (2.56) to obtain

A

UCL = LO_SR,» (ﬂj

LCL=-Loy, ( 4 j

(3.12)

2-1
where o, denotes the in-control standard deviation of the signed-rank statistic SR, if there are

no ties within a subgroup.

The in-control standard deviation of SR, is given by o0y =./var(SR;) =

\/ var(ZT+ —@j = \/w This is obtained by using the relationship between

_n(n +1)

SR, and T" (recall that SR, =2T" if there are no ties within a subgroup) and the fact

nn+1)2n+1)

that var(T") =
) 24

(see Gibbons and Chakraborti (2003) page 198).

3.4.3. Markov-chain approach

Lucas and Saccucci (1990) evaluated the properties of the continuous state Markov chain
by discretizing the infinite state TPM. This procedure entails dividing the interval between the

UCL and the LCL into N subintervals of width 24 . Then the plotting statistic, Z,, is said to be

in the non-absorbing state j attime i if S, -6<Z, <, +0 where §; denotes the midpoint of

the j" interval. Z, is said to be in the absorbing state if Z, falls on or outside one of the control
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limits, that is, Z, < LCL or Z, 2UCL . Let p, denote the probability of moving from state i to
state j in one step, i.e. p; = P(Moving to state j\in state i). To approximate this probability we
assume that the plotting statistic is equal to S, whenever it is in state i. For all j non-absorbing
we obtain p, = P(Sj —0<Z,<§,+01Z,_, = Si). By using the definition of the plotting

statistic given in expression (3.10) we obtain

p, =P(S,~6<ASR, +(1-1)S, < S, +J)
S —-0)-(1-A4)S, S +0)—-(1-A)S,
:P((’ )—( )’<SRS(’ )= ( ),j

A ‘ A

n(n+1)

recall that SR, =2T," —

S -0)—-(1-1)S, S +9)-(1-1)S,
_p (S;—30)—( ),<2Tk+_n(n+l)g( ;TO)—(1-A)S,
! A 2 A
(Sj—5)—(1—/1)5i+n(n+l) (Sj+5)—(1—/1)Si+n(n+1)
=P A 2 g < A 2 (3.13)
2 £ 2 '
For all j absorbing we obtain
p,=P(Z, <LCL1Z,_ =S,)+P(Z, 2UCLIZ,_ =S,)
= P(ASR, +(1-A)S, < LCL)+ P(ASR, +(1-A)S, >UCL)
_ o sk, < LCL—(l—/i)Si]+P(SRk 5 UCL—(I—/l)S,.J
A A
_»p ZTk+_n(n+1)SLCL—(1—/1)S,. p 2Tk+_n(n+1)2UCL—(1—/1)S,.
2 A
LCL=(=A)S;  n(n+1) UCL=(1=A)S; , n(n+1)
=PT; < o 2 \vPT > o 2| (3.14)

Since the values LCL, UCL, 6, A, n, S, and S, are known constants the Wilcoxon

signed-rank probabilities in expressions (3.13) and (3.14) can easily be calculated. The

probabilities for the Wilcoxon signed-rank statistics are given in Table H of Lehmann (1975) for
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samples sizes up to 20 and they are tabulated (more recently) in Table H of Gibbons and

Chakraborti (2003) for sample sizes up to 15.

Once the one-step transition probabilities are calculated, the TPM can be constructed and

Q I p
is givenby TPM =[p;]=| — — — | (written in partitioned form) where the essential transition
0 I 1

probability sub-matrix Q is the matrix that contains all the transition probabilities of going from

a non-absorbing state to a non-absorbing state, Q: (NA - NA), P contains all the transition
probabilities of going from each non-absorbing state to the absorbing states, p : (NA — A),

0'=(0 0 0 --- 0) contains all the transition probabilities of going from each absorbing state
to the non-absorbing states. (' is a row vector with all its elements equal to zero, because it is
impossible to go from an absorbing state to a non-absorbing state, because once an absorbing
state is entered, it is never left, 0' :(A—)NA), and 1 represents the scalar value one. The
probability of going of going from an absorbing state to an absorbing state is equal to one,
because once an absorbing state is entered, it is never left, 1: (A - A). The one-step TPM is used
to calculate the expected value (ARL), the second raw moment, the variance, the standard

deviation and the probability mass function (pmf) of the run-length variable N which are given in

equations (2.41) to (2.45).

Example 3.10
The EWMA signed-rank chart where the sample size is even (7 =6)

The EWMA signed-rank chart is investigated for a smoothing constant of 0.1 (1=0.1)
and a multiplier of 3 (L = 3). The steady-state control limits are given by
A
UCL=Lo —
S (2—1)

A

LCL = _Lo-SR,- (ﬂj
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where L=3, A=0.1, and o =9.539, since o = \/n(n+1)(2n+1) _ \/6(6+1)(12+1) _

6 6
9.539. Clearly, we only have to calculate the UCL since LCL=-UCL. We obtain

UCL =3%9.539 (%) =6.565. Therefore, LCL =—6.565.

This Markov-chain procedure entails dividing the interval between the UCL and the
LCL into N subintervals of width 20 . For this example N is taken to equal 4. Figure 3.13

illustrates the partitioning of the interval between the UCL and the LCL into subintervals.

A UCL = 6.565
—— NA {50 =4.024
3.283
—— NA - et =1.641
0
- NA {52 =-1.641
-3.283
- NA {53 = -4.924
X LCL = -6.565

Figure 3.13. Partitioning of the interval between the UCL and the LCL into 4 subintervals.

From Figure 3.13 we see that there are 4 non-absorbing states, i.e. r =4. The TPM is

given by
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Pow Por Pz Pos  Pos

Po Pun P Pz Pu OQpa | P,
TPM =| pyy Py Pxn Py Pul|=| — — —

P P31 Pn P Ps Ops 1 1

Psw Ps1 P Psz Pu

Table 3.31. Calculation of the one-step probabilities in the first row of the TPM.

Doo = P(Moving to state 0 | in state 0)
=P(S,-0<Z, <S,+581Z,_, =S,) from (3.13)

A 2 A 2

((S0 -8)—-(1-A)S, N n(n+1)} ((s0 +0)-(1-24)S, N n(n+1)j
P <T; <
2 2
with § =1.641, 1=0.1, L=3 and S, =4.924

= P(4.755<T; <21.169)
= P(T;} <21)-P(T, <4)

= % from Gibbons and Chakraborti (2003)

Po; = P(Moving to state 11in state 0)
=P(S,-6<Z,<S,+81Z,_,=S5,) from (3.13)

((S1 -8)-(1-A)S, N n(n+1)J ((S1 +8)-(1-A)S, N n(n+1)j
=P <T; <

A 2 A 2
2 2

= P(—11.658 <T," < 4.755)
=P(T} <4)

7

64
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Doy = P(Moving to state 2 |in state 0)
=P(S,-6<2,<S5,+61Z,_, =S,) from (3.13)

((S2 -8 —(1-2)S, . n(n+l)j ((52 +0)—(1-A)S, N n(n+l)j
P <TS

A 2 A 2

= P(-28.072< T, <-11.658)
=0

Doz = P(Moving to state 31in state 0)
=P(S,-0<Z,<5,+51Z_, =S,) from (3.13)

((53 -0 —-(1-21)S, N n(n+l)j [(53 +0)—-(1-1)S, N n(n+l)j
P <T'

A 2 A 2

= P(-44.486 < T, <—-28.072)
=0

(Moving to state 4 |in state 0)
=P(z, <LCLIZ,_ =S,)+P(Z, >UCLIZ,_, =S,) from (3.14)
LCL - (1 S, N n(n+1) UCL-(1-A)S, N n(n+1)

2 +PTk+2 ﬂ/ 2
2 2

( <—44.486)+ P(T; >21.169)

The one-step probabilities in the remaining rows can be calculated similarly. Therefore,

Ter Ju 00 0
%4 5%4 %4 0 0 Q4><4 ! _p4><1
the TPMis givenby TPM =| 0 %, %, %, O|=| — — -
0 0 Ja T O (O | Iy

0O 0 0 0 1

Other values of the multiplier (L) and the smoothing constant (A1) were also considered

and the results are given in Tables 3.32 and 3.33.
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Table 3.32. The in-control average run length (ARL,), standard deviation of the run length

(SDRL), 5",25",50",75" and 95" percentile values for the EWMA signed-rank chart when

n=6and N =5, i.. there are 5 subintervals between the lower and upper control limit'.

L=1 L=2 L=3
10.45 56.69 s
1=0.05 12.32 72.45
(1,2,6,15,35) | (1,5,29, 82, 204)
7.32 33.83 330.67
A=0.1 8.38 40.28 369.33
(1,1,4,10,24) | (1,4,20,48,115) | (2,63,213,471, 1070)
4.95 3521 361.92
1=02 4.90 39.63 384.29
(1,1,3,7,15 | (1,6,22,50,115) | (3,87,243, 510, 1130)

** The inverse of the matrix (/ —Q) does not exist and as a result the ARL (given by

E(N)=&(I—Q)'1) can not be calculated for this combination of (A, L).

In example 3.10 we considered a sample size that may be considered “small”. The results

are given for a larger sample size (n =10) for various values of A and L in Table 3.33.

Table 3.33. The in-control average run length (ARL,), standard deviation of the run length

(SDRL), 5",25™,50™,75" and 95" percentile values* for the EWMA signed-rank chart when

n=10 and N =35, i.e. there are 5 subintervals between the lower and upper control limit®.

L=1 L=2 L=3
11.17 67.94 1448.44
1=0.05 13.49 83.82 1573.37
(1,2,6,16,39) | (1,7,38,98,238) | (10,316, 956,2052, 4595)
6.85 48.87 352.72
A=0.1 7.74 57.73 384.51
(1, 1,4,9,23) (1, 6,29, 70, 165) (3,76, 232, 500, 1122)
5.05 33.96 336.34
1=02 5.07 38.48 357.54
(1,1,3,7,15) (1,6,21,48, 111) (3, 80, 226, 474, 1051)

" The three rows of each cell shows the ARL,, the SDRL, and the percentiles ( ps, Pys » Psg » P75 » Pos ) » TEspectively.

" See SAS Program 8 in Appendix B for the calculation of the values in Table 3.32.
* The three rows of each cell shows the ARL, the SDRL, and the percentiles ( 05, 05 » P50 P75 > Pos5) » Lespectively.

¥ See SAS Program 8 in Appendix B for the calculation of the values in Table 3.33.
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These tables can be extended by changing the sample size (n), the number of subintervals
between the lower and upper control limit (N), the multiplier (L) and the smoothing constant (1)

in SAS Program 8 for the EWMA signed-rank chart given in Appendix B.

From Tables 3.32 and 3.33 we see that the ARL,, SDRL and percentiles increase as the

value of the multiplier (L) increases. From Table 3.33 we find an in-control average run length of
336.34 for n =10 when the multiplier is taken to equal 3 ( L = 3) and the smoothing constant 0.2
(A=0.2). The chart performance is good, since the attained in-control average run length of

336.34 is in the region of the desired in-control average run length which is generally taken to be

370 or 500.
3.4.4. Summary

The EWMA control chart is one of several charting methods aimed at correcting a
deficiency of the Shewhart chart - insensitivity to small shifts. Lucas and Saccucci (1990) have
investigated some properties of the EWMA chart under the assumption of independent normally
distributed observations, whereas in this section we have described and evaluated the
nonparametric EWMA signed-rank chart. The main advantage of the nonparametric EWMA
chart is that there is no need to assume a particular parametric distribution for the underlying

process (see Section 1.4 for other advantages of the nonparametric EWMA chart).
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where 4 is the decision interval and k is the reference value (see Section 2.3.1 for a detailed

discussion on how the values of k and & are chosen). Equation (3.3) is obtained by replacing SN,

with SR in (2.46).

The distribution of SR, can easily be obtained from the distribution of the Wilcoxon

nn+1)

signed-rank statistic 7% (recall that SR, =27 — Vi). The probabilities for the

Wilcoxon signed-rank statistics are given in Table H of Lehmann (1975) for samples sizes up to
20 and they are tabulated (more recently) in Table H of Gibbons and Chakraborti (2003) for

sample sizes up to 15.

Example 3.3

An upper one-sided CUSUM signed-rank chart where the sample size is even (n=4)

The statistical properties of an upper one-sided CUSUM signed-rank chart with a decision

interval of 6 (h =6), a reference value of 2 (k =2) and a sample size of 4 (n=4) is examined.
We start by examining the pmf of the well-known Wilcoxon signed-rank statistic 7", since the

plotting statistic SR, is linearly related to 7.
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Table 3.6. Enumeration for the distribution of 7" for a sample size of 4.

Number
Vz(l)lfue Ranks associated of sample P(T* =t) | PT* <1)
N with positive differences points - =
T u(t)

0 1 Ao As

1 1 1 Ao As

2 2 1 Ao Ns

3 {1,2}; {3} 2 Ao Ao

4 {1,3}; {4} 2 A Ao

5 {1.4}; {2,3} 2 As As

6 {1,2,3}; {2,4} 2 As e

7 {1,2,4}; {34} 2 As As

8 {1,3,4} 1 Ao Ut

9 {2,3.4} 1 Ao As

10 {1,2,3,4} 1 N s

From Table 3.6 if follows that the pmf of 7% when the sample size is 4 is
e t=0,1,2,8,9,10
£, =P =1)=1% t=3,4,5,6,7
0 otherwise
The values of SR, are either the even or the odd integers between (and including)

3 nn+1) nn+1) nn+1)

and

is even or odd. In example 3.3

, depending on whether

n(n+1) _4(4+1)

5 =10 which is even and as a result the possible values for SR, are even

integers between -10 and 10 inclusive. Thus, we have that —10< SR, <10. In both cases

(whether @ is even or odd) the sum Z(SRi — k) will be an integer since both SR, and k

are integers. For this example, the reference value is taken to be equal to two, because this leads

to the sum Z(SRi — k) being equal to even values which reduces the size of the state space for

the Markov chain. For h=6 we have that Q" ={¢,,¢,s,,.¢;}={0,2,4,6} with
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0=¢,<¢, <¢g, <¢g; =h. The state space is calculated using equation (3.3) and the calculations

are shown in Table 3.7.

Table 3.7. Calculation of the state space when h=6, k=2 and n=4.

SR, | S*,+SR, -k | max{0,S;, +SR, -k} | S} =min{r,max{0,S;, + SR, -k}
-10 -12° 0 0
8 10 0 0
6 8 0 0
4 6 0 0
2 4 0 0
0 2 0 0
2 0 0 0
4 2 2 2
6 4 4 4
8 6 6 6
10 8 8 6

Table 3.8. Classification of the states.

State number Description of the state Absorbent (A)/ Non-absorbent (NA)
0 S =0 NA
1 SH=2 NA
2 SF =4 NA
3 S =6 A

From Table 3.8 we see that there are three non-absorbent states, i.e. r =3, and one

absorbent state, i.e. s =1. Therefore, the corresponding TPM will be a (r+s)xX(r+s)=4x4

matrix. It can be shown (see Table 3.9) that the TPM is given by

Poo
P

4xs =
Pao

Peso

TPM

Po
P2
P
Pe2

Pos
P2
Pus
Py

Pos
Pas
Pas
Pes

Ao
As

0

Ko N 1 M
%6 %6 | %6 Q3x3 £3><l
No Ao | He|=| — - -
- - - - 0 I 1y
0o o0 I 1

" Note: Since only the state space needs to be described, S, can be any value from Q" and we therefore take,

without loss of generality, ", =0. Any other possible value for S

+

-, would lead to the same Q.
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where the essential transition probability sub-matrix Q, ; : (NA — NA) is an rXr = 3X3 matrix,
p, (NA—>A) is an (r+s-D)xI=3x1 column vector, 0';:(A—=>NA) 1is a

Ix(r+s—1)=1x3 row vector and 1, : (A — A) represents the scalar value one.

The one-step transition probabilities are calculated by substituting SR, in expression (3.3)

nn+1)

by 2T - and substituting in values for 4, k, S, and S;,. The calculation of the one-

step transition probabilities are given for illustration in Table 3.9.

The probabilities in the last column of the TPM can be calculated using the fact that
Z p; =1 Vi (see equation (2.18)). Therefore,

jeQ

Pos =1=(Poo + Pop + Pos) =1= W+ Zs+ ) = X6
Pas =1=(Pag + Poa+ Pas) = 1= (Vs + A5+ Ae) = A ;
Pas =1=(Pag+ Pyz+ Pag) =1=(Us+ A+ Ae) = Ao

Pes = L= (Pgo + Pgr + Ps) =1-(0+0+0)=1.
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Table 3.9. The calculation of the transition probabilities when h=6, k=2 and n=4.

Poo Po2 Po4
=P(S, =01S,, =0) =P(S,=21S,_,=0) =P(S, =41S,_,=0)
= P(min{6, max{0,0+ SR, —2}}=0) | = P(min{6, max{0,0+ SR —2}}=2) | = P(min{6, max{0,0+ SR, —2}}=4)
= P(max{0, SR, —2}=0) = P(max{0, SR —2}=2) = P(max{0, SR, —2}=4)
= P(SR, -2<0) =P(SR -2=2) =P(SR -2=4)
= P(SR <2) =P(SR =4) =P(SR =6)
=Pl -10<2) =P -10=4) =P -10=6)
= P(r <) =pP(r =7) =p(r =8)
1 -2 _L
16 16 16
P20 P2 P24
=P(S,=01S,,=2) =P(s,=21S,,=2) =P(S,=41S,,=2)
= P(min{6, max{0,2+ SR, —2}}=0) | = P(min{6,max{0,2+ SR —2}}=2) | = P(min{6, max{0,2+ SR —2}}=4)
= P(max{0, SR }=0) = P(max{0, SR }=2) = P(max{0, SR }=4)
= P(SR <0) =P(SR =2) =P(SR =4)
= P21 ~10<0) =P -10=2) =P -10=4)
= P(r* <5) =P(r* =6) =pP(r=7)
-2 -2 -2z
16 16 16
P4o P42 Paa
=P(S,=01S_ =4) =P(S, =215, =4) =P(S, =415, =4)
= P(min{6, max{0,4 + SR, —2}}=0) | = P(min{6, max{0,4 + SR —2}}=2) | = P(min{6, max{0,4 + SR —2}}=4)
= P(maX{O, SR, + 2}= 0) = P(max{O, SR, + 2}= 2) = P(max{O, SR, + 2}= 4)
= P(SR, +2<0) =P(SR +2=2) =P(SR +2=4)
= P(SR, <-2) =P(SR =0) =P(SR, =2)
= Pl2r* -10<-2) = Pl2r* -10=0) =pPlr -10=2)
= Pr* <4) =PI =5) =pP(r =6)
-7 -2z -2z
16 16 16
Peo Pe2 Pea
=P(S,=01S,_ =6) =P(S,=21S,_,=6) =P(S, =415, =6)
=0 * =0 =0

Using the TPM the ARL can be calculated using ARL=£(1—-0)'1. A well-known

concern is that important information about the performance of a control chart can be missed
when only examining the ARL (this is especially true when the process distribution is skewed).

Various authors, see for example, Radson and Boyd (2005) and Chakraborti (2007), have

" The probability equals zero, because it is impossible to go from an absorbent state to a non-absorbent state.
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suggested that one should examine a number of percentiles, including the median, to get the

complete information about the performance of a control chart. Therefore, we now also consider

percentiles. The 100 p” percentile is defined as the smallest integer [ such that the cdf is at least

(100x p)% . Thus, the 100 p™ percentile [ is found from P(N <I)> p. The median (50"

percentile) will be considered, since it is a more representative performance measure than the

ARL. The first and third quartiles (25™ and 75" percentiles) will also be considered, since it

contains the middle half of the distribution. The °‘tails’ of the distribution should also be

examined and therefore the 5” and 95" percentiles are calculated. The calculation of these

percentiles is shown below for illustration purposes.

Table 3.10. Calculation of the percentiles when h=6, k=2 and n=4".

N P(N <) The 5™, 25™, 50", 75™ and 95™ percentiles
1 0.125 Poos =1 (smallest integer such that the cdf is at least 0.05)
2 0.254 Poas =2 (smallest integer such that the cdf is at least 0.25)
3 0.366
4 0.462
5 0.544 Pos =3 (smallest integer such that the cdf is at least 0.5)
6 0.613
7 0.671
8 0.721
9 0.763 Poss =9 (smallest integer such that the cdf is at least 0.75)
10 0.799
11 0.829
12 0.855
13 0.877
14 0.896
15 0.912
16 0.925
17 0.936
18 0.946
19 0.954 Poos =19 (smallest integer such that the cdf is at least 0.95)
20" 0.961

f See SAS Program 7 in Appendix B for the calculation of the values in Table 3.10.
" The value of the run length variable is only shown up to N = 20 for illustration purposes.
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The formulas of the moments and some characteristics of the run length distribution have

been studied by Fu, Spiring and Xie (2002) and Fu and Lou (2003) — see equations (2.41) to

Ws
(2.45). By substituting & =1 0 0), Oy =| %

As

equations, we obtain the following:

ARL=E(N)=£&(1-0)"'1=6.81

E(N 2)= EI+0)I-0)71=83.64

SDRL = [Var(N) =/E(N?)- (E(N))’ =6.11

5™ percentile= p, =1

25" percentile= p,, =2
Median =50" percentile= p,, =5
75" percentile= p, =9

95" percentile= p,; =19

s Mo 1
%s He| and 1,,=|1| into these
As No 1

Other values of A, k and n were also considered and the results are given in Table 3.11.
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Table 3.11. The in-control average run length ( ARL;), standard deviation of the run length

(SDRL), 5™,25™ 50" ,75™ and 95" percentile values for the upper one-sided CUSUM signed-

rank chart when n=4",

X h
2 4 6 8 10
2.29 3.05 4.27 5.49 7.24
0 1.71 2.44 3.50 4.55 5.98
(1,1,2,3,6) (1,1,2,4,8) (1,2,3,6,11) (1,2,4,7,15) | (1,3,5,10,19)
3.20 4.92 6.81 10.17
2 2.65 4.31 6.11 9.21
(1,1,2,4,8) (1,2,4,7,14) (1,2,5,9,19) | (1.4.7,14,29)
5.33 7.74 13.28
4 4.81 7.19 12.58
(1,2,4,7,15) (1,3,6,11,22) | (1,4,9,18,38)
8.00 15.06
6 7.48 14.49
(1,3,6,11,23) (1,5, 11,21, 44)
16.00
8 15.49
(1,5,11,22,47)

In order to allow for the possibility of stopping after one group, the values of 4 is taken

to satisfy h < M —k . For example, for n =4 and k =0, the reference value # is taken to

n(n+l) 44+

be smaller than or equal to 10, since k 0=10.

The five percentiles are displayed in boxplot-like* graphs in Figure 3.2 for all the (h,k)-
combinations that are shaded in Table 3.11. It clearly shows the effects of # and k on the run
length distribution. Figure 3.2 describes the run-length distribution when the process is in-
control. We would prefer a “boxplot” with a high valued (large) in-control average run length and

a small spread. The “boxplots” are classified into 3 categories, namely, small (h+k <4),

“The three rows of each cell shows the ARL;, the SDRL, and the percentiles ( 05 , a5 » Pso s Po5 s Pos ) » TESPectively.
" See SAS Program 7 in Appendix B for the calculation of the values in Table 3.11.

* It should be noted that these boxplot-like graphs differ from standard box plots. In the latter case the whiskers are
drawn from the ends of the box to the smallest and largest values inside specified limits, whereas, in the case of the
boxplot-like graphs, the whiskers are drawn from the ends of the box to the 5™ and 95™ percentiles, respectively. In
this thesis “boxplot” will refer to a boxplot-like graph from this point forward.
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moderate (5<h+k <8) and large (h+k=9). If the sum of the reference value, k, and the
decision interval, A, is small (moderate or large), the corresponding “boxplot” is classified under

small (moderate or large). For example, where h+k =4, the “boxplot” is classified as small,

since the ARL;, SDRL and percentile values are small for n =4 . In contrast, where h+k =10,

the “boxplot” is classified as large, since the ARL;, SDRL and percentile values are large for

n=4.
50
10
454 L
8 o __
40 H [ A R DI B SR R RS
I oo
35 — i T e T S
ol S R (e
30 H 0 L Y N N
(4,0) (2,2)
(h, k)
25
20 +----- A *********************************** F-
st — B
not--——-- | e e e F--
e L rT
1= =5 T 7
(4, 0) (2, 2) 4, 4) (2, 6) (4, 6) (2, 8)
'Small’ 'Moderate’ ‘Large’
(h, k)

Figure 3.2. Boxplot-like graphs for the in-control run length distribution of various upper one-
sided CUSUM signed-rank charts when n=4. The whiskers extend to the 5" and the 95
percentiles. The symbols “==", “ &> and “~" denote the ARL, SDRL" and MRL, respectively.

* For ease of interpretation, the standard deviation (as measure of spread) is included in the (location) measures of
percentiles.
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Example 3.4

An upper one-sided CUSUM signed-rank chart where the sample size is odd (n=5)

The statistical properties of an upper one-sided CUSUM signed-rank chart with a decision

interval of 6 (h=6), a reference value of 3 (k =3) and a sample size of 5 (n=35) is examined.

We start by examining the pmf of the well-known Wilcoxon signed-rank statistic 7", since the

plotting statistic SR, is linearly related to 7™ (see equation (3.2)).

Table 3.12. Enumeration for the distribution of 7" for a sample size of 5.

Value Rank iated I;Iumbe;’
anks associate of sample

0{ with positive differences pOintl; PT*=t) | PT" <1)
T u(t)

0 1 Vi Vo
1 1 1 Va2 Y
2 2 1 Vi Yo
3 {1,2}; {3} 2 Y Y
4 {1,3}; {4} 2 Y P28
5 {1.4}; {2,3}; {5} 3 Y "V
6 {1,2,3}; {1,5}; {2.4} 3 Y Y
7 {1,24}; {2,5}; {3.4} 3 Yo %
8 {1,2,5}; {1,3,4}; {3,5} 3 Y Vs
9 {1,3,5}; {2,3.4}; {4,5} 3 Y 7
10 {1,2,3,4}; {1,4,5}; {2,3,5} 3 Y Rz
11 {1,2,3,5}; {2,4,5} 2 %, s
12 {1,2,4,5}; {3,4,5} 2 Y %
13 {1,3,4,5} 1 Vi %o
14 {2,3,4,5} 1 5 Sz
15 {1,2,3,4,5} 1 S %o
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From Table 3.12 if follows that the pmf of 7% when the sample size is 5 is
Vo t=0,1,2,13,14,15

J t=3,4,11,12
f.0)=PlT" =1)= &

b2 t=5,6,7,8,9,10

0 otherwise

The reference value was taken to be equal to three, because this leads to the sum

Z(SRi — k) being equal to even values which reduces the size of the state space for the Markov

chain. For h=6 we have that Q" ={¢,,6,,5,.6;} ={0,2,4,6} with 0=¢,<¢g,<¢,<g, =h.

The state space is calculated using equation (3.3) and the calculations are shown in Table 3.13.

Table 3.13. Calculation of the state space when h=6, k=3 and n=5.

SR, S, +SR, —k | max{0,5*, +SR, -k} | §} =min{r,max{0,S;, + SR, —k }}
-15 -18° 0 0
‘13 16 0 0
11 14 0 0
9 12 0 0
7 -10 0 0
5 8 0 0
3 6 0 0
1 4 0 0
1 2 0 0
3 0 0 0
5 2 2 2
7 4 4 4
9 6 6 6
11 8 8 6
13 10 10 6
15 12 12 6

" Note: Since only the state space needs to be described, S, can be any value from Q" and we therefore take,

+

-, would lead to the same Q" .

without loss of generality, 7, =0 . Any other possible value for S
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Table 3.14. Classification of the states.

State number Description of the state Absorbent (A)/ Non-absorbent (NA)
0 S =0 NA
1 SH=2 NA
2 SF =4 NA
3 S’ =6 A

From Table 3.14 we see that there are three non-absorbent states, i.e. r =3, and one

absorbent state, i.e. s =1. Therefore, the corresponding TPM will be a (r+s)x(r+s)=4x4

matrix. It can be shown (see Table 3.15) that the TPM is given by

Pow Po Pos P s e
00 02 04 06 e Y ¥ | Ows | P
Py Pxn  Pu P -

TPM ,, = =% Y Ve | W= - -
Psw Ps Pau  Pas . 0' |1
~1x3

Peo Per Pes Pes

where the essential transition probability sub-matrix Q, ; : (NA — NA) is an rXr = 3X3 matrix,
p, (NA—>A) is an (r+s-D)xI=3x1 column vector, 0';:(A—=>NA) 1is a

IX(r+s—1)=1x3 row vector and 1, :(A— A) represents the scalar value one. The

calculation of the one-step transition probabilities are given for illustration in Table 3.15.

Recall that the probabilities in the last column of the TPM are calculated using the fact
that z p; =1 Vi (see equation (2.18)). Therefore,

jeQ
Pos =1=(Poo + Pon + Pos) = 1= (Fa+ iy + 745) = Yo
D =1—(p20+p22+P24)=1_(1932+%2+%2)=%2;
Pas =1=(Pao + Pao+ Pa) =1= %+ Y+ 75 = 1%,

Pss =1—(Pgo+ Psy + Pss) =1-(0+0+0)=1.

145



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Quu® YUNIBESITHI YA PRETORIA

Table 3.15. The calculation of the transition probabilities when 4 =6, k=3 and n=5.

Poo Po2 Po2
=P(S,=01S_ =0) =P(S,=21S,_,=0) =P(S, =415, =0)
= P(min{6, maX{O 0+ SR, —3}}=0) | = P(min{6,max{0,0+ SR, —=3}}=2) | = P(min{6,max{0,0+ SR, -3}}=4)
= P(max{0, SR, —3}=0) = P(max{0, SR —3}=2) = P(max{0, SR —3}=4)
=P(SR —3<0) =P(SR —3=2) =P(SR, -3=4)
= P(SR, <3) = P(SR =5) =P(SR =7)
= P21t ~15<3) = P21 -15=5) - Por*-15=7)
= P(r* <9) = P(r =10) =pP(r* =11)
_22 -3 _2
32 32 32
P20 P22 P24
=P(s, =015, =2) =P(s, =21S,_=2) =P(S, =415, =2)
= P(min{6, max{0,2+ SR, -3}}=0) | = (mm{6 max{0,2+ SR, —3}}=2) | = P(min{6, max{0.2+ SR, —3}}=4)
= P(max{0, SR, —1}=0) = P(max{0, SR, —1}=2) = P(max{0, SR —1}=4)
= P(SR —1<0) =P(SR -1=2) =P(SR —1=4)
= P(SR, <1) =P(SR =3) = P(SR =5)
= Plr* -15<1) = P21 -15=3) = Plr* -15=5)
=P(r <3) = P(T+ 9) = P(r* =10)
19 3
i "3 "3
P40 P42 Paa
=P(S,=01S_ =4) =P(S, =215 =4) =P(S,=41S_ =4)
= P(min{6, maX{O 4+5SR -3}}=0) | = P(min{6, max{0.4+ SR, -3}}=2) | = P(mm{6,max{0,4+ SR, —3}}=4)
= P(max{0, SR, +1}=0) = P(max{0, SR, +1}=2) = P(max{0, SR +1}=4)
=P(SR +1<0) =P(SR +1=2) =P(SR, +1=4)
=P(SR <-1) =P(SR =1) = P(SR, =3)
= Plor* ~15<-1) =pPlr*-15=1) =Pl2r* —15=3)
= P(r <7) = P(r* =8) = P(r* =9)
_16 -3 _3
32 32 32
P60 P62 Pe4
=P(S, =01S_ =6) =P(S, =215, =6) (S, =415 =6)
=0 * = =0

" The probability equals zero, because it is impossible to go from an absorbent state to a non-absorbent state.
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The formulas of the moments and some characteristics of the run length distribution have

been studied by Fu, Spiring and Xie (2002) and Fu and Lou (2003) — see equations (2.41) to

% Yo X 1
32 32 32
(2.45). By substituting §1X3 =1 0 0), Q=% % » | and 1,,=|1]| into these
Yo Yo % !
32 32 32

equations, we obtain the following:

ARL=E(N)=£&(1-0)"'1=5.79

E(N?)=&(1+0)1-0)"1=60.14

SDRL = \[Var(N) =/E(N?)- (E(N))’ =5.16

5" percentile= p, =1

25" percentile = p,; =2
Median =50" percentile= p,, = 4
75" percentile= p,, =8

95" percentile = p,; =16

Other values of A, k and n were also considered and the results are given in Table 3.16.
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Table 3.16. The in-control average run length ( ARL} ), standard deviation of the run length (SDRL), 5",25™,50",75" and 95"

percentile values” for the upper one-sided CUSUM signed-rank chart when n =5 T

(2,10, 22,44, 95)

k h
2 4 6 8 10 12 14
2.46 311 4.08 5.14 6.71 8.29 10.46
1 1.90 2.53 3.42 438 5.73 7.13 8.99
(1,1,2,3,6) (1,1,2,4,8) (1,2,3,5,11) (1,2,4,7, 14) (1,3,5,9, 18) (1,3,6,11,22) (2, 4,8, 14, 28)
3.20 4.39 579 8.13 10.68 14.78
3 2.65 3.82 5.16 7.34 9.75 13.56
(1,12,4,8) (1,2,3,6,12) (1,2, 4,8, 16) (1,3,6,11,23) (1,4, 8, 14, 30) (2,5, 11,20, 42)
4.57 6.24 9.44 13.04 20.16
5 4.04 5.69 8.79 12.31 19.22
(1,2,3,6,13) (1,2,4,8, 18) (1,3,7,13,27) | (1,4,9,18,38) (2,6, 14, 28, 59)
6.40 10.24 14.77 25.17
7 5.88 9.68 14.18 2443
(1,2,5,9, 18) (1,3,7,14,30) | (1,5,10,20,43) | (2,8, 18,35, 74)
10.67 15.75 29.15
9 10.15 15.22 28.55
(1,3,8,15,31) | (1,5,11,22,46) | (2,9,20,40, 86)
16.00 31.03
11 15.49 30.50
(1,5,11,22,47) | (2,9,22,43,92)
32.00
13 31.50

" The three rows of each cell shows the ARL;, the SDRL , and the percentiles ( 0, , Pys s Pso s Prs » Pos ) » TESpectively.

" See SAS program 7 in Appendix B for the calculation of the values in Table 3.16.
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The five percentiles are displayed in boxplot-like graphs in Figure 3.3 for all the (h,k) -
combinations that are shaded in Table 3.16. It clearly shows the effects of # and k on the run
length distribution. Figure 3.3 describes the run-length distribution when the process is in-
control. We would prefer a “boxplot” with a high valued (large) in-control average run length and
a small spread. The “boxplots” are classified into 3 categories, namely small (h+k <5),

moderate (6 < h+k <10) and large (h+k >11).

100
o +-—- 10— e
8 - e __
=T T e i
64 - - -4 _____
44+ _____
7o+ || eem || eem | | e
2,,,,, ,,,,,,,,
eo4+--| O tb——n——+——"—"-—""""""“¥ | ______1_________1____
(4,1) (2,3)
(h, k)
50 +——-
40 A 77777777777777777777777777777777777777 [
N —_— ] ___
20 +---— - - - |4 |- - -4 - -—
io4+------ - 1( 777777777 I 77777777777777 D
i i e l |
. [=] [=] L 5
“4,1) (2, 3) (6, 3) “4,5) “4,11) 2, 13)
‘Small’ ‘Moderate’ ‘Large’
(h, k)

Figure 3.3. Boxplot-like graphs for the in-control run length distribution of various upper one-
sided CUSUM signed-rank charts when n=35. The whiskers extend to the 5" and the

g5t percentiles. The symbols “™===  “&” and “~" denote the ARL, SDRL" and MRL,

respectively.

* For ease of interpretation, the standard deviation (as measure of spread) is included in the (location) measures of
percentiles.
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Examples 3.3 and 3.4 illustrated the Markov chain approach used to calculate run length

characteristics for n even and odd, respectively. On the performance side, note that the largest
in-control average run length that the upper one-sided CUSUM signed-rank can obtain is 2".
Therefore, for a sample size of 4 the largest ARL} equals 2* =16 (this is obtained when /=2
and k =8). Thus, a large number of false alarms will be signaled by this chart leading to a
possible loss of time and resources. Compared to this, for a sample of size 5 the largest ARL;
equals 2° =32 (this is obtained when hZ=2 and k =13). Both examples considered sample

sizes that may be considered “small”. Some results will be given for larger sample sizes (n =6

and 10).

150



e

Qe

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Table 3.17. The in-control average run length ( ARL}), standard deviation of the run length (SDRL), 5",25",50",75" and 95"

percentile values” for the upper one-sided CUSUM signed-rank chart when n = 6.

k h
2 4 6 8 10 12 14 16 18
237 2.86 339 4.08 5.03 6.10 724 872 1021
1 1.80 228 2.79 342 425 5.17 6.17 7.41 8.69
(1,1,2,3,6) (1,1,2,4,7) (1,1,3,4,9) (1,2,3,5,11) (1,2,4,7,13) (1,2,5,8,16) (1,3,5, 10, 20) (2,3,6,12,23) (2,4,8,14,28)
291 351 433 555 7.00 3.63 10.99 13.43 16.78
3 2.36 2.95 3.74 4.87 6.21 7.72 9.86 12.12 15.18
(1,1,2,4,8) (1,1,3,5,9) (1,2,3,6, 12) (1,2,4,7,15) (1,3,5,9,19) (1,3,6,12,24) (2,4,8,15,31) (2,5,10,18,38) | (2,6,12,23,47)
3.56 4.49 5.95 782 10.02 13.55 17.39 23.44
5 3.01 3.94 5.35 7.14 9.25 12.60 16.29 22.07
(1,1,3,5,10) (1,2,3,6,12) (1,2,4,8,17) (1,3,6,11,22) (1,3,7,14,28) (2,5,10,18,39) | (2.6,12,24,50) | (2.8.17,32,67)
457 6.24 8.50 11.26 16.17 21.79 32.01
7 4.04 570 7.91 10.61 15.39 20.90 30.88
(1,2,3,6,13) (1,2,4,8,18) (1,3,6,12,24) (1,4,8,15,32 (2,5,11,22,47) (2,7,15,30,63) | (3,10,23,44,94)
6.40 3.96 12.16 18.48 25.89 41.56
9 5.88 8.42 11.60 17.83 25.17 40.64
(1,2,5,9,18) (1,3,6,12,26) (1,4,9,17,35) (2,6,13,25,54) (2,8,18,36,76) | (2,13,29, 57, 123)
9.14 12.64 20.05 28.88 50.26
11 8.63 12.12 19.48 28.27 49.52
(1,3,6,12,26) (1,4,9,17,37) (2,6, 14, 28, 59) (2,9,20,40.85) | (3.15.35.69, 149)
12.80 20.90 30.76 56.62
13 12.29 20.37 30.22 55.99
(1,4,9,18,37) (2,6,15,29, 62) (2,9,21,42,91) | (3,17.39.78. 168)
21.33 31.75 61.08
15 20.83 31.24 60.53
(2,6,15,29, 63) (2,9,22,44,94) | (4,18,43, 84, 182)
32.00 63.02
17 31.50 62.50
(2,10,22,44,95) | (4,18,44,87, 188)
64.00
19 63.50

(4,19, 45,89, 191)

" The three rows of each cell shows the ARL;, the SDRL , and the percentiles ( 0, , Pys s Pso s Prs » Pos ) » TESpectively.

" See SAS Program 7 in Appendix B for the calculation of the values in Table 3.17.
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Figure 3.4. Boxplot-like graphs for the in-control run length distribution of various upper one-
sided CUSUM signed-rank charts when n=6. The whiskers extend to the 5™ and the

95" percentiles. The symbols “===" <o and “~" denote the ARL, SDRL" and MRL,

respectively’.

* For ease of interpretation, the standard deviation (as measure of spread) is included in the (location) measures of
percentiles.

" The “boxplots” are classified into 3 categories, namely small (4+k <7 ), moderate (8§ <h+k <16) and large

(h+k=17).

152



e

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qo YUNIBESITHI YA PRETORIA

Table 3.18. The in-control average run length ( ARL;), standard deviation of the run length (SDRL), 5",25",50",75" and 95"

percentile values” for samples of size n =10 for h =2,4,....14 and k =1,3,...,23 for the upper one-sided CUSUM signed-rank chart’.

i h
2 4 6 3 10 12 14
2.17 2.36 257 2.81 3.07 3.36 3.68
1 1.59 178 1.99 222 247 2.73 3.02
(1,1,2,3,5) (1,1,2,3,6) (1,1,2,3,7) (1,1,2,4,7) (1,1,2,4,8) (1,1,3,4,9 (1,2,3,5,10)
2.36 2.59 2.84 312 3.44 379 418
3 1.80 2.02 227 2.54 2.84 3.17 3.52
(1,1,2,3,6) (1,1,2,3,7) (1,1,2,4,7) (1,1,2,4,8) (1,1,3,5,9) (1,2,3,5,10) (1,2,3,6,11)
2.60 287 3.16 3.50 3.88 431 479
5 2.04 231 2.60 2.93 3.29 3.69 4.14
(1,1,2,3,7 (1,1,2,4,7) (1,1,2,4,8) (1,1,3,5,9 (1,2,3,5,10) (1,2,3,6,12) (1,2,4,6,13)
238 3.19 355 3.96 442 495 555
7 2.32 2.64 2.99 3.39 3.83 434 491
(1,1,2,4,8) (1,1,2,4,8) (1,1,3,5, 10) (1,2,3,5,11) (1,2,3,6,12) (1,2,4,7,14) (1,2,4,7,15)
320 3.58 4.01 451 5.08 575 6.49
9 2,65 3.03 3.46 3.94 4.50 5.14 5.85
(1,1,2,4,8) (1,1,3,5, 10) (1,2,3,5,11) (1,2,3,6,12) (1,2,4,7, 14) (1,2,4,8,16) (1,2,5,9,18)
359 4.05 457 5.19 591 6.73 7.69
11 3.05 351 4.03 4.63 533 6.12 7.05
(1,1,3,5,10) (1,2,3,5,11) (1,2,3,6,13) (1,2,4,7,14) (1,2,4,8,17) (1,2,5,9,19) (1,3,6,10,22)
4.06 461 5.26 6.03 6.92 7.97 9.24
13 3.53 408 4.72 5.48 6.35 737 8.60
(1,2,3,5,11) (1,2,3,6,13) (1,2,4,7,15) (1,2,4,8,17) (1,2,5,9,20) (1,3,6,11,23) (1,3,7,13,26)
463 531 6.12 7.06 8.20 9.58 11.19
15 4.10 4.78 5.59 6.52 7.63 8.99 10.56
(1,2,3,6,13) (1,2,4,7,15) (1,2,4,8,17) (1,2,5,10,20) (1,3,6,11,23) (1,3,7,13,28) (1,4,8,15,32)
533 6.18 717 8.37 9.86 11.60 13.74
17 481 565 6.64 7.83 9.30 11.02 13.12
(1,2,4,7,15) (1,2,4,8,17) (1,2, 5,10, 20) (1,3,6,11,24) (1,3,7,13,28) (1,4,8,16,34) (1,4, 10, 19, 40)
621 723 3.50 10.07 11.93 14.24 17.12
19 5.68 6.71 797 9.53 11.37 13.66 16.50
(1,2,4,8,18) (1,2,5,10,21) (1,3,6,12,24) (1,3,7, 14, 29) (1,4,8,16,35) (1,5, 10, 20, 42) (1,5, 12,23, 50)
7.26 8.57 10.21 12.18 14.64 17.73 21.60
21 6.74 8.05 9.69 11.64 14.08 17.15 21.00
(1,2,5,10,21) | (1,3.6,12,25) (1,3,7,14,30) (1,4,9,17,35) (1,5, 10,20, 43) (1,6,12,24,52) (2,7,15,30, 64)
8.61 10.30 12.34 14.93 18.20 22.36 28.16
23 8.09 9.79 11.82 14.39 17.65 21.79 27.56

(1,3,6,12,25)

(1,3,7,14,30)

(1,4,9,17,36)

1,5,11, 20, 44)

(1,6,13,25,53)

(2,7,16,31, 66)

(2,9, 20, 39, 83)

" The three rows of each cell shows the ARL;, the SDRL , and the percentiles ( 0, , Pys s Pso s Prs » Pos ) » TESpectively.

" See SAS Program 7 in Appendix B for the calculation of the values in Table 3.18.
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Table 3.18 continued for h =2, 4, ..., 14 and k = 25, 27, ..., 53.

YUNIBESITHI YA PRETORIA

& h
2 4 6 8 10 12 14
10.34 12.44 15.12 18.55 22.93 29.14 37.30
25 9.83 11.93 14.60 18.02 22.38 28.57 36.70
(1,3,7, 14, 30) (1,4,9,17, 36) (1,5, 11,21,44) (1,6, 13,26,55) (2,7,16,32,68) (2,9, 20, 40, 86) (2,11,26,51,111)
12.49 15.23 18.77 23.33 29.87 38.56 49.52
27 11.98 14.72 18.25 22.80 29.33 38.00 48.94
(1,4,9,17,36) 1,5,11,21,45) (1,6, 13,26, 55) (2,7,16,32,69) (2,9,21,41, 88) (3,11,27,53,114) (3,15, 35, 68, 147)
15.28 1891 23.59 30.39 39.50 51.09 67.68
29 14.78 18.40 23.08 29.87 38.96 50.53 67.10
(1,5,11,21,45) 1,6, 13,26, 56) (2,7,17,33,70) (2,9,21,42,90) (3,12,28, 55, 117) (3,15,36,71,152) (4,20,47, 94, 202)
18.96 23.75 30.74 40.17 52.23 69.70 95.33
31 18.46 23.24 30.22 39.64 51.70 69.14 94.76
(1,6,13,26,56) (2,7,17,33,70) (2,9,21,42,91) (3,12, 28, 55, 119) (3,15, 36, 72, 155) (4,20, 48, 96, 208) (5,28, 66, 132, 284)
23.81 30.94 40.60 53.02 71.14 98.00 137.20
33 2331 30.43 40.09 52.51 70.61 97.46 136.63
(2,7,17,33,70) (2,9,22,43,92) (3,12, 28, 56, 121) (3,16,37,73, 158) (4,21, 49,98, 212) (6,9, 68, 136, 292) (8,40, 95, 190, 410)
31.03 40.86 53.53 72.12 99.90 140.75 194.51
35 30.53 40.35 53.02 71.61 99.37 140.21 193.96
(2,9,22,43,92) (3,12,28,56,121) (3,16,37,74,159) (4,21, 50, 100, 215) (6,29, 69, 138, 298) (8,41, 98, 195, 421) (11,56, 135, 269, 582)
40.96 53.80 72.71 101.12 143.15 198.67 323.14
37 40.46 53.29 72.20 100.60 142.63 198.14 322.58
(3,12,29,57,122) (3, 16,37, 74, 160) (4,21, 51,101, 217) (6,29, 70, 140, 302) (8,42,99, 198.,428) (11, 58, 138, 275, 594) (17,93, 224, 448, 967)
53.89 73.02 101.84 144.68 201.42 330.31 490.25
39 53.39 7251 101.33 144.17 200.90 329.78 489.71
(3,16, 38,75, 160) (4,21, 51,101, 218) (6,30,71, 141, 304) (8,42, 100, 200, 432) (11, 58, 140, 279, 602) (17,95, 229, 458, 988) (26, 141, 340, 679, 1468)
73.14 102.24 145.61 203.16 335.17 499.40 973.74
41 72.64 101,74 145.11 203.65 334.65 498.88 973.19
(4,21,51,101, 218) (6,30, 71, 142, 305) (8,42, 101, 202, 435) (11,59, 141, 281, 608) (18,97, 232, 464, 1003) (26, 144, 346, 692, 1495) (50, 281, 675, 1350, 2916)
102.40 146.10 204.16 338.24 505.29 994.57
43 101.90 145.60 203.66 337.73 504.77 994.05
(6,30,71, 142, 306) (8,42, 101, 202, 437) (11,59, 142, 283, 611) (18, 98, 235, 469, 1012) (26, 146, 350, 700, 1513) (52, 286, 690, 1379, 2978)
146.29 204.64 340.00 508.76 1008.16
45 145.78 204.14 339.50 508.25 1007.64
(8,42,102,203,437) (11, 59, 142, 283, 612) (18, 98, 236,471, 1018) (27, 147, 353, 705, 1523) (52,290, 699, 1397, 3019)
204.80 340.89 510.75 1016.04
47 204.30 340.39 510.25 1015.53
(11, 59, 142,284, 613) (18,98, 236, 472, 1020) (27, 147,354, 708, 1529) (53,293,704, 1408, 3043)
341.33 511.75 iggégg
49 340.83 511.25 (53,294 768 1415
(18,99, 237,473, 1022) (27, 148, 355,709, 1532) ’ 3b58) ’ ’
512.00 1023.00
51 511.50 1022.50
(27, 148, 355, 710, 1533) (53,295, 709, 1418, 3064)
1024.00
53 1023.50

(53, 295, 710, 1419, 3067)
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Table 3.18 continued for A =16, 18, ..., 28 and k=1, 3, ..., 25.

IVERSITEIT VAN PRETOR
RSITY OF PRETORIA
ESITHI YA PRETORIA

1A

k h
16 18 20 22 24 26 28
4.03 441 4.83 5.27 5.76 6.28 6.83
1 333 3.67 4.03 4.41 4.82 5.26 5.72
(1,2,3,5,11) (1,2,3,6,12) (1,2,4,6,13) (1,2,4,7,14) (1,2,4,8,15) (1,3,5,8,17) (1,3,5,9,18)
4.61 5.09 5.60 6.18 6.80 7.47 8.19
3 391 4.34 4.80 5.31 5.86 6.44 7.07
(1,2,3,6,12) 1,2,4,7,14) (1,2,4,7,15) (1,2,5,8,17) (1,3,5,9,18) (1,3,6, 10, 20) (1,3,6,11,22)
533 5.93 6.59 7.34 8.14 9.03 10.00
5 4.64 5.18 5.79 6.47 7.19 7.99 8.87
(1,2,4,7,15) (1,2,4,8,16) (1,2,5,9,18) (1,3,5, 10, 20) (1,3,6,11,22) (1,3,7,12,25) (1,4,7,13,28)
6.23 6.99 7.86 8.82 9.90 11.10 12.43
7 5.54 6.25 7.06 7.95 8.95 10.06 11.30
1,2,5,8,17) (1,3,5,9,19) (1,3,6,11,22) (1,3,6,12,25) (1,4,7,13,28) (1,4,8,15,31) (2,4,9,17,35)
7.36 8.37 9.49 10.77 12.23 13.88 15.83
9 6.68 7.63 8.69 9.90 11.28 12.85 14.69
(1,3,5,10,21) (1,3,6,11,24) (1,3,7,13,27) (1,4,8,15,31) (1,4,9,17,35) (2,5, 10,19, 40) (2,5, 11, 22,45)
8.83 10.12 11.62 13.36 15.38 17.82 20.61
11 8.15 9.38 10.83 12.50 14.44 16.78 19.47
(1,3,6,12,25) (1,3,7,14,29) (1,4,8,16,33) (1,4, 10, 18, 38) (2,5,11,21,44) (2,6,13,24,51) (2,7,15,28,59)
10.69 12.41 14.45 16.85 19.85 23.36 27.32
13 10.01 11.69 13.67 16.00 18.91 2232 26.19
(1,4,8,15,31) (1,4,9,17,36) (1,5, 10, 20,42) (2,5,12,23,49) (2,6, 14,27, 58) (2,7,17,32,68) (2,9, 19,37, 80)
13.13 15.46 18.26 21.85 26.15 31.11 37.23
15 12.46 14.74 17.48 21.00 25.21 30.09 36.10
(1,4,9, 18, 38) 1,5,11,21,45) (2,6,13,25,53) (2,7, 15,30, 64) (2,8,18,36,76) (3,10,22,43,91) (3,12,26,51, 109)
16.36 19.54 23.74 28.88 34.92 42.59 5223
17 15.70 18.84 22.97 28.03 34.00 41.57 51.12
(1,5,12,22,48) (2,6,14,27,57) (2,7,17,33,70) (2,9, 20, 40, 85) (3,11, 24,48, 103) (3,13, 30, 59, 126) (4,16,37,72,154)
20.67 25.45 31.43 38.60 47.93 60.03 75.33
19 20.02 24.74 30.67 37.77 47.02 59.03 74.23
(2,6,15,28,61) (2,8,18,35,75) (2,10,22,43,93) (3,12,27,53,114) (3, 14, 34, 66, 142) (4,18,42,83,178) (5,22,53, 104, 223)
26.93 33.72 41.99 53.02 67.73 86.89 110.04
21 26.28 33.02 41.23 52.20 66.84 85.90 108.97
(2,8,19,37,79) (2, 10, 24, 46, 100) (3,13,29,58, 124) (3,16,37,73, 157) (4,20,47,94,201) (5,26, 61, 120, 258) (7,32,77,152,327)
35.69 44.98 57.66 75.02 98.22 126.80 175.50
23 35.04 44.29 57.66 74.21 97.34 125.85 174.41
(2,11, 25, 49, 106) (3,13,31,62, 133) (4,17, 40,80, 171) (5,22,52,104, 223) (6,29, 68, 136, 292) (7,317, 88, 175, 378) (10, 51, 122, 243, 524)
47.50 61.69 81.56 108.78 142.88 204.49 275.50
25 46.87 61.02 80.84 107.99 142.04 203.53 274.45

(3, 14,33, 66, 141)

(4,18,43, 85, 183)

(5,24,57,113, 243)

(6,32, 76, 150, 324)

(8,42,99, 198, 426)

(11, 60, 142, 283, 611)

(15, 80, 191, 382, 823)




.
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

4

YUNIBESITHI YA PRETORIA

Table 3.18 continued for 4 = 16, 18, ..., 28 and k=27, 29, ..., 53.
k h
16 18 20 2 24 26 28
65.03 87.16 118.11 15747 232.48 320.44 igg'gg
27 6441 86.50 117.40 156.72 231.62 319.51 27, 145 340, 693
(4,19, 45,90, 194) (5,26, 61, 121, 260) (7,34, 82, 163, 352) (9, 46, 109, 218, 470) (13,67, 161,322,695) | (17,93,222, 444, 958) PG
91.75 126.00 170.09 258.15 363.03 23‘3"‘5‘(7)
29 91.14 12535 169.40 257.38 36221 L 19 e 824
(5,27, 64, 127, 274) (7,37, 88, 174, 376) (9,49, 118, 236, 508) (14,75,179.358,772) | (19,105, 252, 503, 1086) ey
13234 180.44 28037 40092 686.75
31 131.74 179.81 279.68 400.19 685.89
(7,38,92,183,395) | (10,52, 125,250, 539) (15,81, 195, 388, 839) (21, 116,278, 556, 1200) | (36, 198, 476, 952, 2056)
188.52 298.55 43284 770.90
33 187.93 297.92 43218 770.13
(10,55, 131,261, 564) | (16,86,207,414,893) |  (23,125,300,600,1295) | (40,222, 535, 1068, 2308)
312,77 jggég 824.79
35 312,18 a1 318, 635 842.11
(17,90, 217, 433, 936) It (44,243, 584, 1168,2523)
476.93 899.99
% 476,36 899.36
(25, 138,331, 661, (47,259, 624, 1247,
1428) 2695)
042,81
2 94223
(49,272, 654, 1307,
2823)
a1
3
45
47
49
51
53
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Table 3.18 continued for 4 = 30, 32, ..., 42 and k=1, 3, ..., 53.
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UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

X h
30 32 34 36 38 40 12
741 3.03 3.68 938 10.10 10.84 11.61
1 6.21 6.72 7.26 7.84 8.44 9.05 9.70
(1,3,6,10, 20) (1,3,6,11,21) (2,4,7,12,23) (2,4,7,12,25) (2,4,8,13,27) (2,4,8,14,29) (2,5,9,15,31)
379 9.80 10.71 11.66 12.65 13.71 14.82
3 7.75 8.47 9.26 10.09 10.96 11.89 12.87
(1,3,7,12,24) (2,4,7,13,27) (2,4,8,14,29) (2,5,9,16,32) (2,5,9,17,34) (2,5,10,18,37) (2,6, 11,20, 40)
11.05 1224 1350 14.84 16.28 17.84 19.49
5 9.82 10.89 12.04 13.25 14.57 15.99 17.50
(2,4,8,15,31) (2,5,9,16,34) (2,5,10,18,37) (2,5,11,20,41) (2,6,12,22,45) (3,7,13,24, 50) (3,7, 14,26, 54)
13.96 15.63 1741 19.39 21.57 23.92 26.43
7 12.71 14.26 15.93 17.79 19.83 22.04 24.42
(2,5, 10, 19, 39) (2,6,11,21, 44) (2,6,13,24, 49) (2,7, 14, 26, 55) (3,7,16,29, 61) (3.8, 17,32, 68) (3.9, 19, 36,75)
18.01 20.38 23.07 26.10 29.44 33.06 37.30
9 16.76 19.01 21.58 24.48 27.69 31.17 35.26
(2,6, 13,24,51) (2.7, 15,28, 58) (3.8, 16,31, 66) (3.9, 19,36,75) (3,10,21,40, 85) (3, 11,24, 45, 95) (4,12,27,51, 108)
2371 27.32 31.48 36.20 4138 4770 54.39
11 2246 25.95 29.99 34.57 39.62 45.79 52.34
(2,8,17,32,69) (3,9,19,37,79) (3,10,22,43,91) (3, 12,26, 50, 105) (4,13,29, 57, 120) (4,15,34,65,139) | (5,17,38,75,159)
32.08 3772 4427 51.58 60.93 70.90 8334
13 30.83 36.35 4277 49.97 59.16 69.00 81.28
(3,10, 23, 44, 94) (3,12,27,52, 110) (4,14, 31, 61, 130) (4,16,36,71, 151) (5,19, 43, 84, 179) (5,22,50,98,209) | (6,25,58, 115,246)
4470 53.62 63.77 7741 92.09 111.35
15 43.46 52.26 62.30 75.78 90.34 109.43
(3,14,31, 61, 131) (4, 16,38, 74, 158) (5,19, 45, 88, 188) (6,23, 54, 107, 229) (6,28,64,127,272) | (8,33,78, 154,330)
64.08 77.84 97.39 118.64 148.17
17 62.85 76.51 95.89 117.02 146.38
(4,19, 45, 88, 190) (5,23,54, 107, 231) (6,29, 68, 134, 289) (8,35,83,164,352) | (9,44, 103,205, 440)
93.47 120.80 150.87 195.52
19 92.27 119.44 149.40 193.87
(6,28, 65, 129, 278) (7,36,84, 167, 359) (9,44,105,209,449) | (12,57, 136,270, 582)
147.14 188.54 254.71
21 145.92 187.22 253.20
(9,43, 102, 204, 438) (11,55,131,261,562) | (14,74 ,177,353,760)
230.72 32623
23 229.53 324.86
(13,67,160,319,689) | (18,95,227,452,975)
409.08
25 407.84
(22,119,284, 567, 1223)
27
29
53
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Table 3.18 continued for h = 44, 46, ..., 54 and k=1, 3, ..., 53.
k h
44 46 43 50 52 54
12.42 1325 14.09 14.99 15.90 16.85
1 10.37 11.06 11.78 12.53 13.30 14.10
(2,5,9,16,33) (2,5, 10, 18, 35) (3,6, 11, 19,38) (3,6,11,20,40) | (3,7,12,21,42) | (3,7,13,22,45)
15.99 17.19 18.49 19.82 21.23
3 13.90 14.96 16.11 17.30 18.56
(3,6,12,21,44) (3,7, 13,23,47) (3,7, 14,25,51) (3,8,15,27,54) | (3,8, 16,28,58)
21.22 23.14 25.10 27.25
5 19.10 20.86 22.69 24.67
(3,8, 15,29, 59) (3,8,17,31,65) (3,9,18,34,70) | (4,10,20,37,76)
29.27 32.22 35.53
7 27.11 29.92 33.07
(3,10,21,40,83) | (4,11,23,44,92) | (4,12,25,48,101)
41.75 46.88
9 39.57 4455
(4,14,30,57, 121) | (5, 15,33, 64, 136)
62.38
11 60.18
(5,20, 44, 86, 182)
13
15
53

n(n+1)

Recall that the reason why there are so many open cells is because the values of # is taken to satisfy 4 < —k . For example, for

nn+l) , _10(10+1)

k =11 the reference value 4 is taken to be smaller than or equal to 44, since —11=55-11=44.
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Figure 3.5. Boxplot-like graphs for the in-control run length distribution of various upper one-
sided CUSUM signed-rank charts when n=10. The whiskers extend to the 5™ and the

g5t percentiles. The symbols “===  “2” and “~” denote the ARL, SDRL" and MRL,

respectively'.

* For ease of interpretation, the standard deviation (as measure of spread) is included in the (location) measures of

percentiles.
¥ The “boxplots” are classified into 3 categories, namely small (2+k <25), moderate (25 < h+k <50) and large

(h+k>50).
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Example 3.5
An upper one-sided CUSUM signed-rank chart for the Montgomery (2001) piston ring data

We conclude this sub-section by illustrating the upper one-sided CUSUM signed-rank
chart using the Montgomery (2001) piston ring data. Recall that the dataset contains 15 samples
(each of size 5). For illustration take k =3 and & =8. From Table 3.16 it can be seen that the in-
control average run length equals 8.13 when (h,k)=(8,3). Generally, one chooses the chart
constants so that a specified in-control average run length, such as 500, or 370, is obtained.
Taking this into consideration, an in-control average run length of 8.13 is considered small.
Recall that unless the sample size n is 10 or more, the signed-rank chart is somewhat unattractive
(from an operational point of view) in SPC applications. The plotting statistics for the Shewhart

signed-rank chart (SR, for i=1,2,...,15) are given in the second row of Table 3.19. The upper

one-sided CUSUM plotting statistics (S, for i=1,2,....15) are given in the last row of Table

3.19.

Table 3.19. SR, and S, values for the piston ring data in Montgomery (2001)".

SampleNo: | 1 |2 | 3 (4| 5|6 7 (8] 9 |10(11[12]13 |14 (15
SR, 814 |-14(7(-3|9(10|-6]|12|14| 4 |15]|15|15(14

St 5161 0 406|134 1324253714961 ]72

To illustrate the calculations, consider sample number 1. The equation for the plotting
statistic is S,” = max[0, S, + SR, —k] = max[0,0 + 8 —3] = max[0,5] =5 where a signaling event
occurs for the first i such that S > h, that is, S >8. The graphical display of the upper one-

sided CUSUM signed-rank chart is shown in Figure 3.6.

" The values in Table 3.19 were generated using Microsoft Excel.

160



UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

<
=

“ UNIVERSITEIT VAN PRETORIA

4

80

70+

60

50+

40

30+

Cumulative sum

20-
10- WAV h=8
0_

T T T T T T T T T
i1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Sample number

Figure 3.6. The upper one-sided CUSUM signed-rank chart for the Montgomery (2001) piston

ring data.

The upper one-sided CUSUM signed-rank chart signals at sample 7, indicating a most
likely positive deviation from the known target value 6,. The action taken following an out-of-
control signal on a CUSUM chart is identical to that with any control chart. A search for

assignable causes should be done, corrective action should be taken (if required) and, following

this, the CUSUM is reset to zero.
3.3.2.2. Lower one-sided control charts

The time that the procedure signals is the first time such that the finite-state Markov chain

S, enters the state ¢, where the state space is given by Q° ={¢5,.¢.....¢,,,,} Wwith

t

-h=¢,<..<¢,,,.,=0, §; =0 and

r+s—1

S” =max{- h,min{0, S, + SR, +kJ}. (3.4)

t
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A lower one-sided CUSUM signed-rank chart where the sample size is even (n=4)
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The statistical properties of a lower one-sided CUSUM signed-rank chart with a decision

interval of 6 (h=6), a reference value of 2 (k =2) and a sample size of 4 (n =4) is examined.

For n even, the reference value is taken to be even, because this leads to the sum Z(SR,. —k)

being equal to even values which reduces the size of the state space for the Markov chain. For

h=6 we have Q~

and the calculations are shown in Table 3.20.

Table 3.20. Calculation of the state space when h=6, k=2 and n=4.

—h(2)0 ={-6,—-4,-2,0} . The state space is calculated using equation (3.4)

SR, | S7,+SR, +k | min{0,S7, +SR, +k}| S; =max{-h,min{0,S", + SR, +k}}

-10 -8 -8 -6
3 6 6 6
6 4 4 4
4 2 2 2
2 0 0 0
0 2 0 0
2 4 0 0
4 6 0 0
6 8 0 0
8 10 0 0
10 12 0 0

Table 3.21. Classification of the states.

State number Description of the state Absorbent (A)/ Non-absorbent (NA)
0 S =0 NA
1 SF==2 NA
2 SH=—4 NA
3 S5 =-6 A

" Note: Since only the state space needs to be described, S _; can be any value from Q~ and we therefore take,

without loss of generality, S,_; =0. Any other possible value for S,_; would lead to the same Q" .
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From Table 3.21 we see that there are three non-absorbent states, i.e. r =3, and one

absorbent state, i.e. s =1. Therefore, the corresponding TPM will be a (r+s)xX(r+s)=4x4

matrix. It can be shown (see Table 3.22) that the TPM is given by

Poo Po2) Pocs) Poc-s)
N Ko K 1 s Ows | P,
P2y P2 Py P

TPM ., = =\ Ue Ao s | Hs|=| — - -
Pao Pra2y P Pray-o 0
- - - - = Yi1x3 Ix1

Peo Pox-2 Prox— Proy-o

where the essential transition probability sub-matrix Q, ; : (NA — NA) is an rXr = 3X3 matrix,
J 2o (NA—>A) i1s an (r+s-1)x1=3x1 column vector, 0 ;:(A—>NA) 1is a

Ix(r+s—1)=1x3 row vector and 1, : (A — A) represents the scalar value one.

The one-step transition probabilities are calculated by substituting SR, in expression (3.4)

nn+1)

by 27" — and substituting values for &, k, S, and §,_,. The calculation of the one-step

transition probabilities are given for illustration in Table 3.22.

Recall that the probabilities in the last column of the TPM are calculated using the fact
that z p; =1 Vi (see equation (2.18)). Therefore,

jeQ
Pocey =1=(Pog + Pocay + Poay) =1= e+ Hs+ M6) = Vs
Piayeey =17 (P oy + Py T Piaysy) =1- s+ As+As) = Hos
Py = 1= (P + Prayay + Piayesy) = 1= s+ 76+ A6) = Ns s

P6y-6) = 1- (p(fs)o t Pt p(—6)4) =1-(0+0+0)=1.
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Table 3.22. The calculation of the transition probabilities when h=6, k=2 and n=4.

Poo

=P(S,=01S,,=0)

= P(max{—-6,min{0,0+ SR, +2}} =0)
= P(min{0,0 + SR, +2} =0)

Po2)

=P(S, =-21S,,=0)

= P(max{—-6,min{0,0+ SR, +2}} =-2)
= P(min{0, SR, +2} =-2)

Po-a)

=P(S,=-41S,,=0)

= P(max{-6,min{0,0 + SR, +2}} =-4)
= P(min{0, SR, +2} =-4)

=P(SR, +220) =P(SR, +2=-2) =P(SR, +2=-4)
=P(SR, 2-2) = P(SR, =-4) = P(SR, =—-6)
=PQRT*-10>-2) =PRT*-10=-4) =PQ2T" -10=-6)
=P(T" > 4) =P(T" =3) =P(T" =2)
=1-P(T" <3) _2 _ L

1 16 16

16
Py Payo Doy

=P(Sr =O|Sr—1 2_2)
= P(max{-6,min{0,-2+ SR, +2}}=0)
= P(min{0,—2+ SR, +2} =0)

= P(Sr =-21 Sr—l = _2)
= P(max{—6,min{0,—2 + SR, +2}} =-2)
= P(min{0, SR, } =-2)

=P(S, =415, ,=-2)
= P(max{~6,min{0,—2 + SR, +2}} = —4)
= P(min{0, SR, } = —4)

= P(SR, =20) =P(SR, =-2) = P(SR, =—-4)
= PQ2T" -10=0) = PQT" -10=-2) =PQ2T"-10=-4)
=P(T* >5) =P(T"=4) =P(T*=3)
=1-P(T* <4) _2 _2

9 16 16

16
Day Pay-2) Py

= P(S, =015, =—4)
= P(max{-6,min{0,—4 + SR, +2}} =0)
= P(min{0,—4 + SR, +2} =0)

=P(S, =-215,=-4
= P(max{-6,min{0,—4 + SR, +2}}=-2)
= P(min{0, SR, — 2} = -2)

=P(S, =-415,=-4
= P(max{—6,min{0,—4 + SR, +2}} =—4)
= P(min{0, SR, —2} = —4)

=P(SR, 22) =P(SR —2=-2) =P(SR, —2=-4)
= PQT" -1022) = PQ2T*" -10=0) =P(SR, =-2)
=P(T" 26) =P(T*=5) =PQ2T" -10=-2)
=1-P(T" <5) _2 =P(T" =4)
7 16 _2
" 16 16
P60 P62 Psy—)
=P, =015, =-6) =P(S, =-215,_,=-6) =P(S, =415, =-6)
=0 =0 =0

" The probability equals zero, because it is impossible to go from an absorbent state to a non-absorbent state.
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The formulas of the moments and some characteristics of the run length distribution have

been studied by Fu, Spiring and Xie (2002) and Fu and Lou (2003) — see equations (2.41) to

e Ae No 1
(2.45). By substituting §1X3 =1 0 0, Os=|% % %s| and 1,, =|1| into these
Ao Ns N 1

equations, we obtain the following:

ARL=E(N)=£&(1-0)"'1=6.81

E(N?)=&(1+0)(1-0)1=83.64

SDRL = [Var(N) =/E(N?)- (E(N))’ =6.11

5" percentile= p, =1

25" percentile= p,, =2
Median =50" percentile= p,, =5
75" percentile= p, =9

95" percentile= p,; =19

The in-control average run length (ARL;) values, standard deviation of the run length

(SDRL) values and percentiles for the lower one-sided CUSUM signed-rank chart are exactly the
same as for the upper one-sided CUSUM signed-rank chart, since the one-step transition
probabilities matrices are the same. Therefore, the in-control average run length (ARL,),
standard deviation of the run length (SDRL), 5" ,25",50™,75" and 95" percentile values for

the upper one-sided CUSUM signed-rank chart will also hold for the lower one-sided CUSUM
signed-rank chart.
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Example 3.7
A lower one-sided CUSUM signed-rank chart for the Montgomery (2001) piston ring data

We conclude this sub-section by illustrating the lower one-sided CUSUM signed-rank
chart using the Montgomery (2001) piston ring data. Recall that the dataset contains 15 samples
(each of size 5). For illustration take k =3 and 4 =8. From Table 3.16 it can be seen that the in-
control average run length equals 8.13 when (h,k)=(8,3). Generally, one chooses the chart
constants so that a specified in-control average run length, such as 500, or 370, is obtained.
Taking this into consideration, an in-control average run length of 8.13 is considered small.
Recall that unless the sample size n is 10 or more, the signed-rank chart is somewhat unattractive

(from an operational point of view) in SPC applications.

The plotting statistics for the Shewhart signed-rank chart (SR, for i =1,2,...,15) are given

in the second row of Table 3.23. The lower one-sided CUSUM plotting statistics (S, for

i=12,..,15) are given in the last row of Table 3.23.

Table 3.23. SR, and S; values for the piston ring data in Montgomery (2001)".

SampleNo: | 1 |2 | 3 (4| 5|67 (8] 9 |10(11[12]13 |14 (15
SR, 814 |-14(7(-3|9(10|-6]|12|14| 4 |15]|15|15( 14

Sr ofol-11|-1y-rfoyo0|-3f0jo0|1o0ofofojoj]o

To illustrate the calculations, consider sample number 1. The equation for the plotting
statistic S 1is
S” =max[0,S; — SR, —k]=max[0,0—8—3] = max[0,—11] = 0 (3.5)
or

S. =min[0,S; + SR, + k]=min[0,0+ 8+ 3] = min[0,11] =0 (3.6)

" The values in Table 3.23 were generated using Microsoft Excel.
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A signaling event occurs for the first i such that S lf* > h, that is, Sl.: > 8 if expression
(3.5)isused or §; <—h, thatis, §; < -8 if expression (3.6) is used. The graphical display of the

lower one-sided CUSUM signed-rank chart is shown in Figure 3.7.

Cumulative sum
1
(o))
1

-10-

-124

T T T T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Sample number

Figure 3.7. The lower one-sided CUSUM signed-rank chart for the Montgomery (2001) piston-

ring data.

The lower one-sided CUSUM signed-rank chart signals at sample 3. Recall that the lower
one-sided CUSUM sign chart did not signal at all. This emphasizes the fact that the signed-rank
test is more powerful than the sign test. The question arises: Why not always use the signed-rank
test if it is more powerful than the sign test? The sign test is applicable for all continuous
distributions, while the assumption of symmetry must be made, in addition, for the signed-rank
test. Also, the sign test applies to all percentiles while the signed-rank test is proposed only for

the median.
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3.3.3. Two-sided control charts

Recall that for the upper one-sided CUSUM signed-rank chart we use
S* =min{h, max{0,SR, —k +S*,}} for r =1,2,... (3.7)
For a lower one-sided CUSUM signed-rank chart we use
S™ = max{-h,min{0, SR, +k+S,}} for  =1.2,... (3.8)

For the two-sided scheme the two one-sided schemes are performed simultaneously. The

corresponding two-sided CUSUM chart signals for the first n at which either one of the two

inequalities is satisfied, that is, either S;” > h or S, < —h. Starting values are typically chosen to

equal zero, that is, S; =S, =0. The two-sided scheme signals at N where

N=minf:S >h or S, <-i} (3.9)

where / is a positive integer.

The two-sided CUSUM scheme can be represented by a Markov chain with states
corresponding to the possible combinations of values of S, and S, . The states corresponding to
values for which a signal is given by the CUSUM scheme are called absorbing states. Clearly,

there are two absorbing states (s =2) since the chart signals when S, falls on or above h or

when S falls on or below —#/. The probability of going from an absorbing state to the same
absorbing state is equal to one, because once an absorbing state is entered, it is never left. The
transient states are the remaining states for which eventual return is uncertain. Let r denote the
number of remaining states, i.e. r denotes the number of transient (non-absorbing) states.
Clearly, in total there are r+s states and therefore the corresponding TPM will be an

(r+s)X(r+s) matrix.

The time that the procedure signals is the first time such that the finite-state Markov chain

enters the state ¢, or ¢

r+s—

. where the state space is given by Q = Q" UQ™ = {6),6,++G,., 4}

with —h=¢,<..<g,, , =h.
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Example 3.8

A two-sided CUSUM signed-rank chart where the sample size is even (n=4)

The statistical properties of a two-sided CUSUM signed-rank chart with a decision
interval of 4 (h=4), a reference value of 2 (k =2) and a sample size of 4 (n =4) is examined.

Let Q denote the state space for the two-sided chart. Q is the union of the state space for the

upper one-sided chart Q" ={0,2,4} and the state space for the lower one-sided chart
Q™ ={-4,-2,0}. Therefore, Q@ = Q" uUQ™ = {-4,-20}u{0,24} = {-4,-2024} =

{€0:61:62:63.6,} With —h =¢, <¢, <¢, <g; <¢g, =h.

Table 3.24. Classification of the states.

State number | Values of the CUSUM statistic(s) Nor?-l;i)(;zll)*ibniig?lzl A)
0 S, =0and S =0 NA
1 S"=2o0r S =2" NA
2 S ==2orS§ =-=2" NA
3 ST =4or S5 =47 A
4 S-=—4orS"=-4° A

From Table 3.24 we see that there are three non-absorbing states, i.e. r =3, and two

absorbing states, i.e. s =2. Therefore the corresponding TPM will be a (5x5) matrix. The

layout of the TPM is as follows. There are three transient states and two absorbing states. By

* Moving from state O to state 1 can happen when either the upper cumulative sum or the lower cumulative sum
equals 2. But the lower cumulative sum can not equal 2 since by definition the lower cumulative sum can only take
on integer values smaller than or equal to zero. Therefore, we only use the probability that the upper cumulative sum
equals 2 in the calculation of the probabilities in the TPM.

" Moving from state 0 to state 2 can happen when either the upper cumulative sum or the lower cumulative sum
equals -2. But the upper cumulative sum can not equal -2 since by definition the upper cumulative sum can only take
on integer values greater than or equal to zero. Therefore, we only use the probability that the lower cumulative sum
equals -2 in the calculation of the probabilities in the TPM.

* A similar argument to the argument in the first footnote on this page holds. Therefore, we only use the probability
that the upper cumulative sum equals 4 in the calculation of the probabilities in the TPM.

¥ A similar argument to the argument in the second footnote on this page holds. Therefore, we only use the
probability that the lower cumulative sum equals -4 in the calculation of the probabilities in the TPM.
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convention we first list the non-absorbing states and then we list the absorbing states. In column
one we compute the probability of moving from state i to state 0, for all i. Note that the process
reaches state O when both the upper and the lower cumulative sums equal zero. In columns two
and three, we compute the probabilities of moving from state i to the remaining non-absorbing
states, for all i. Finally, in the remaining two columns we compute the probabilities of moving
from state i to the absorbing states, for all i. Thus, the TPM can be conveniently partitioned into
4 sections given by

Ao 7o As U Ns Ho
No 7o Ao U Ts Ho
No 7o Ao | Ns No

P Poi Pon Pos Pos
Pvw Pu Pn Pz Pu
TPM s =| Py Py Pn Pun Pu|=
P P31 Py Pz Pu Zyy | 1y,

O 0 O I 1 O
Pso Par Par Paz P 0 0 0 | 0

where Q.. :(NA — NA) is an rxr =3x3 matrix, C,, :(NA — A) is an rXs=3X2 matrix,

Z,s (A= NA)isan sxr=2x3 matrix and /,,, : (A — A) isan sXs=2X2 matrix .

The calculation of the elements of the TPM is illustrated next. Note that this essentially
involves the calculation of the matrices Q and C. First consider the transient states. Note that
the process moves to state 0, i.e., j =0, when both the upper and the lower cumulative sums
equal 0. Thus the required probability of moving to 0, from any other transient state, is the
probability of an intersection of two sets involving values of the upper and the lower CUSUM
statistics, respectively. On the other hand, the probability of moving to any state j # 0, from any

other state, is the probability of a union of two sets involving values of the upper and the lower
CUSUM statistics, respectively. However, one of these two sets is empty so that the required

probability is the probability of only the non-empty set.

The calculation of the entry in the first row and the first column of the TPM, p,,,, will be

discussed in detail. This is the probability of moving from state O to state 0 in one step at time ¢.
As we just described, this can happen only when the upper and the lower cumulative sums both

equal O at time ¢. For the upper one-sided CUSUM p,, is the probability that the upper CUSUM
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equals O at time ¢, given that the upper CUSUM equaled O at time 7—1, that is,
P(S; =018}, =0). For the lower one-sided procedure p,, is the probability that the lower
CUSUM equals O at time ¢, given that the lower CUSUM equaled O at time 7—1, that is,
P(S; =01S,, =0). For the two-sided procedure the two one-sided procedures are performed
simultaneously. Therefore we have that p,, = P({S: =01S], = O}O {S S =018, = 0}) . We have
that

Poo

=P({sr =015, =ofn{s; =015, =0})

this is computed by substituting in values for &, k, S, S;",, S, and S, into (3.7) and (3.8)

= P({min{4, max {0, SR, — 2 +0}} = 0} {max{- 4, min{0, SR, + 2 +0}} = 0})
= P({max {0, SR, —2+0} =0}~ {min{0, SR, +2+0} = 0})

=P((SR, —2<0)n (SR, +2+0>0))

= P((SR, <2)n (SR, >-2))

recall that SR, =2T" — n(n+1)

where T is the Wilcoxon signed-rank statistic

= P(2r* -10<2)n 27" -10> 2))
=P(7* <6)n(r" > 4)

=P(T" =4)+ P(T* =5)+ P(T* =6)
= %e-

The remaining entries of the TPM can be calculated similarly. In doing so, we find that

%% Ao As Ao No
No Ao As Ao No
TPM =\ %s X5 %s Ho e |-
0O 0 o0 1 O
0O 0 0 0 1

Using the TPM the ARL can be calculated using ARL = é([ —0)'1. A well-known

concern is that important information about the performance of a control chart can be missed
when only examining the ARL (this is especially true when the process distribution is skewed).

Various authors, see for example, Radson and Boyd (2005) and Chakraborti (2007), have
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suggested that one should examine a number of percentiles, including the median, to get the
complete information about the performance of a control chart. Therefore, we now also consider
percentiles. The calculation of these percentiles is shown in Table 3.25 for illustration purposes.

The first column of Table 3.25 contains the values that the run length variable ( N ) can take on.

Table 3.25. Calculation of the percentiles when h=4, k=2 and n=4 ",

N P(N <) The 5, 25™, 50", 75™ and 95™ percentiles

1 0.3750000 | p,,s =1 (smallest integer such that cdf is at least 0.05 and 0.25)
2 0.6406250 | p,s =2 (smallest integer such that cdf is at least 0.50)

3 0.7949219 | p,,;s =3 (smallest integer such that cdf is at least 0.75)

4 0.8830566

5 0.9333191

6 0.9619789 | p,.s =6 (smallest integer such that cdf is at least 0.95)

7" 109783206

The formulas of the moments and some characteristics of the run length distribution have

been studied by Fu, Spiring and Xie (2002) and Fu and Lou (2003) — see equations (2.41) to

| Ao As o 1
(2.45). By substituting ﬁm =1 0 0), Oy :E Yo Ao Heo| and 1., =|1| into these
Ao Ao o 1

equations, we obtain the following:

ARL=E(N)=£&(I1-0)'1=246

E(N?)=&(1+0)1-0)71=9.28

SDRL = \Var(N) = E(N?)- (E(N))* =1.79

5™ percentile= p s = 1

25" percentile = p, s = 1

Median = 50" percentile= p, s =2

f See SAS Program 7 in Appendix B for the calculation of the values in Table 3.25.
" The value of the run length variable is only shown up to N = 7 for illustration purposes.
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75™ percentile = p, ;s =3

95" percentile = p, 45 = 6

Other values of &, k and n were also considered and the results are given in Table 3.26.

Table 3.26. The in-control average run length (ARL,), standard deviation of the run length

(SDRL), 5™,25" 50" ,75™ and 95" percentile values for samples of size n=4 and various

values of 4 and k for the two-sided CUSUM signed-rank chart’.

h
k 2 4 6 8 10
1.14 1.52 2.14 2.74 3.62
0 0.40 0.81 1.51 2.19 2.80
(1, 1,1,1,2) (1, 51,23 | (1,1,1,3,5 | (1,1,2,3,7) | (1,1,2,4,10)
1.60 2.46 3.41 5.09
2 0.98 1.79 2.66 4.07
G LL24 | 4,1,236) | (1,1,2,49) | (1,2,4,7,13)
2.67 3.87 6.64
4 2.11 3.29 5.92
(1,1,2,3,7) | (1,1,3,5,10) | (1,2,5,9,18)
4.00 7.53
6 3.46 6.95
(1,1,3,5,11) | (1,3,5,10,21)
8.00
8 7.45
(1,2,5,11, 23)

Values of k and h are restricted to be integers so that the Markov chain approach could
be employed to obtain exact values for the average run length. In order to allow for the possibility

of stopping after one group, the values of # is taken to satisfy h < nn+1)

—k . For example, for

n=4 and k=0, the reference value h is taken to be smaller than or equal to 10, since

n(n+1) 4(4+1)

2
Figure 3.8 for all the (h,k)-combinations that are shaded in Table 3.26. The “boxplots” are

—k=

—0=10. The five percentiles are displayed in boxplot-like graphs in

" The three rows of each cell shows the ARLy, the SDRL , and the percentiles ( 05, 0,5, Pso > Pss » Pos ) » TESpeCtively.
" See SAS Program 7 in Appendix B for the calculation of the values in Table 3.26.
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classified into 3 categories, namely small (h+k <4), moderate (5<h+k <8) and large

(h+k>9).

24

R . ALL

(4, 0) (2, 2) (4, 4) (2, 6) (4, 6) (2, 8)

'‘Small’ 'Moderate’ '‘Large’
(h, k)

Figure 3.8. Boxplot-like graphs for the in-control run length distribution of various two-sided
CUSUM signed-rank charts when n =4 . The whiskers extend to the 5" and the 95" percentiles.
The symbols “ == 2" and “~" denote the ARL, SDRL" and MRL, respectively.

* For ease of interpretation, the standard deviation (as measure of spread) is included in the (location) measures of
percentiles.

174



UNIVERSITEIT VAN PRETORIA

4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Table 3.27. The in-control average run length (ARL,), standard deviation of the run length

(SDRL), 5" ,25™,50™ 75" and 95" percentile values for samples of size n=35 and various

values of & and k for the two-sided CUSUM signed-rank chart’.

P 7
2 4 6 8 10 2 14
123 156 2.04 2.57 3.36 315 523
1 0.53 0.88 130 1.87 2.97 3.46 438
(11,1, 1,2) a,1,1,2,3) (1,1,2,3,5) L1237 | L3511 | (L3510 | (1,247, 14)
160 2.20 2.90 407 534 739
3 0.98 157 222 323 436 6.61
(A, 1,1,2,4) (1,1,2,3,5) 1,247 | (1,235100 | (1L2,4.7,14) | (1,2.5,10,21)
2.29 312 472 6.52 10.09
5 171 2.54 4.05 5.77 9.11
(1,1,2,3,6) (1,1,2,4,8) (1,2,3,6,13) | (1,2.5.9,18) | (1,47, 14,28)
3.20 Z;g 7.39 12.58
7 2.65 VR 6.78 11.83
(1,1,2,4,8) 247, (1,3,5,10,21) | (1,4,9,17,36)
533 787 1457
9 4381 7.34 13.97
(1,2,4,7,15) | (1,3.6.11,23) | (1,5, 10,20, 42)
8.00 15.52
1 7.48 14.98
(1,3,6,11,23) | (1,5, 11,21, 45)
16.00
13 15.49
(1,5, 11,22, 47)

The five percentiles are displayed in boxplot-like graphs in Figure 3.9 for all the (h,k)-

combinations that are shaded in Table 3.27. The “boxplots” are classified into 3 categories,

namely small (2+k <5), moderate (6 <h+k <10) and large (h+k >11).

" The three rows of each cell shows the ARLy, the SDRL , and the percentiles ( 05, 0,5, Pso > Pss » Pos ) » TESpeCtively.
" See SAS Program 7 in Appendix B for the calculation of the values in Table 3.27.
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Figure 3.9. Boxplot-like graphs for the in-control run length distribution of various two-sided
CUSUM signed-rank charts when n =5. The whiskers extend to the 5™ and the 95" percentiles.
The symbols “ == ¢ o> and “~" denote the ARL, SDRL" and MRL, respectively.

* For ease of interpretation, the standard deviation (as measure of spread) is included in the (location) measures of
percentiles.
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Table 3.28. The in-control average run length ( ARL}), standard deviation of the run length (SDRL), 5",25™,50™,75" and

e

5

Qe

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

percentile values  for samples of size n =6 and various values of 4 and k for the two-sided CUSUM signed-rank chart’,

95 th

k h
2 4 6 8 10 12 14 16 18
1.19 1.43 1.69 2.08 2.52 3.05 362 436 511
1 0.47 0.75 1.01 1.37 2.10 248 3.09 3.32 424
(1,1,1,1,2) 1,1,1,2,3) (1,1,1,2,4) (1,1,1,2,5) (1,1,2,3,6) (1,1,2,4,8) (1,1,2,5,10) (1,1,3,6,11) (1,2,4,7, 14)
1.45 1.75 2.17 2.77 3.50 432 549 6.72 339
3 0.81 113 1.52 2.04 2.65 3.36 472 5.96 7.49
(1,1,1,2,3) 1,1,1,2,4) (1,1,2,3,5) (1,1,2,4,7 (1,2,3,5,9) (1,1,3,6,12) (1,2,4,8,15) (1,2,5,9,19) | (1,3,6,11,24)
1.78 2.25 2.98 391 5.01 6.77 8.69 11.72
5 1.18 1.65 2.34 3.20 421 5.79 7.56 10.54
(1,1,1,24) (1,1,1,2,3,6) (1,1,2,4,8) (1,2,3,5,10) (1,2,4,7,13) (1,3,5,9,18) (1,3,6,12,24) | (1,5,11,22,47)
2.29 3.12 425 5.63 8.09 10.90 16.01
7 1.71 2.54 3.63 4.96 7.28 9.98 14.85
(1,1,2,3,6) (1,1,2,4,8) (1,2,3,6,11) (1,2,4,8,16) (1,3,6,11,23) | (1,4,8,15,31) | (2,5,11,22,46)
320 448 6.08 924 12.95 20.78
9 2.65 3.93 5.50 8.57 1221 19.85
(1,1,2,4,8) (1,2,3,6,12) (1,2,4,8,17) (1,3,7,13,26) | (1,4,9,18,37) | (2,7.15,28,60)
457 6.32 10.02 14.44 25.13
11 4.04 5.78 9.44 13.82 24.38
(1,2,3,6,13) (1,2,5,9,18) (1,3,7,14,29) | (1,5,10,20,24) | (2,8,18,35,74)
6.40 10.45 1538 2831
13 5.88 9.91 14.83 27.68
(1,2,5,9,18) (1,3,7,14,30) | (1,5,11,21,45) | (2,9,20, 39, 84)
10.67 15.87 30.54
15 10.15 15.36 29.99
(1,3,8,15,31) | (1,5,11,22,47) | (2,9,21,42,90)
16.00 31.51
17 15.49 30.99
(1,5,11,22,47) | (2,9,22,43,93)
32.00
19 31.50

(2,10, 22, 44, 95)

" The three rows of each cell shows the ARL,, the SDRL , and the percentiles ( 05, 0,5 > Psg > Ps5 » Pos ) » TESpeCtively.
" See SAS Program 7 in Appendix B for the calculation of the values in Table 3.28.
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Figure 3.10. Boxplot-like graphs for the in-control run length distribution of various two-sided
CUSUM signed-rank charts when n =6. The whiskers extend to the 5™ and the 95" percentiles.
The symbols “===> “o” and “~~” denote the ARL, SDRL and MRL, respectively*.

" The “boxplots” are classified into 3 categories, namely small (h+k <7 ), moderate (8 <h+k <16) and large

(h+k>17).
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UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qo YUNIBESITHI YA PRETORIA

Table 3.29. The in-control average run length ( ARL,), standard deviation of the run length (SDRL), 5",25",50",75" and 95"

percentile values for samples of size n =10 for h =2,4,...,14 and k =1,3,...,23 for the two-sided CUSUM signed-rank chart’.

X h
2 4 6 3 10 12 14
1.09 1.18 1.29 141 1.54 1.68 1.84
1 0.80 0.89 1.00 1.11 1.24 1.37 1.51
(1,1,1,1,2) (1,1,1,1,3) (1,1,1,1,3) (1,1,1,2,3) (1,1,1,2,4) (1,1,1,2,4) (1,1,1,2,5)
1.18 1.30 1.42 1.56 1.72 1.90 2.09
3 0.90 1.01 1.14 1.27 142 1.59 1.76
(1,1,1,1,3) (1,1,1,1,3) (1,1,1,2,3) (1,1,1,2,4) (1,1,1,2,4) (1,1,1,2,5) (1,1,1,3,5)
1.30 1.44 1.58 175 1.94 2.16 240
5 1.02 1.16 1.30 1.47 1.65 1.85 2.07
(LL1,1,3) (1,1,1,2,3) (1,1,1,2,4 (1,1,1,2,4) (1,1,1,2,5) (1,1,1,3,6) (1,1,2,3,6)
1.44 1.60 1.78 1.98 221 248 278
7 1.16 1.32 1.50 1.70 1.92 2.17 2.46
(1,1,1,2,4) (1,1,1,2,4) (1,1,1,2,5) (1,1,1,2,5) (1,1,1,3,6) (1,1,2,3,7) (1,1,2,3,7)
1.60 1.79 2.01 2.26 2.54 2.88 325
9 1.33 1.52 1.73 1.97 225 2.57 2.93
(1,1,1,2,4) (1,1,1,2,5) (1,1,1,2,5) (1,1,1,3,6) (1,1,2,3,7) (1,1,2,4,8) (1,1,2,4,9
1.80 2.03 2.29 2.60 2.96 337 385
11 1.53 1.76 2.02 2.32 2.67 3.06 3.53
(1,1,1,2,5) (1,1,1,2,5) (1,1,1,3,6) (1,1,2,3,7) (1,1,2,4,8) (1,1,2,4,9) (1,1,3,5,11)
2.03 231 2.63 3.02 3.46 3.99 4.62
13 1.77 2.04 2.36 2.74 3.18 3.69 430
(1,1,1,2,5) (1,1,1,3,6) (1,1,2,3,7) (1,1,2,4,8) (1,1,2,4,10) (1,1,3,5,11) (1,1,3,6,13)
232 2.66 3.06 353 4.10 479 5.60
15 2.05 2.39 2.80 3.26 3.82 450 528
(1,1,1,3,6) (1,1,2,3,7) (1,1,2,4,8) (1,1,2,5, 10) (1,1,3,5,11) (1,1,3,6,14) (1,2,4,7,16)
2.67 3.09 3.59 4.19 4.93 5.80 6.87
17 241 2.83 3.32 3.92 4.65 5.51 6.56
(1,1,2,3,7) (1,1,2,4,8) (1,1,2,5,10) (1,1,3,5,12) (1,1,3,6,14) (1,2,4,8,17) (1,2,5,9,20)
3.11 3.62 425 5.04 5.97 712 8.56
19 2.84 3.36 3.99 4.77 5.69 6.83 8.25
(1,1,2,4,9) (1,1,2,5,10) (1,1,3,6,12) (1,1,3,7, 14) (1,2,4,8,17) (1,2,5,10,21) (1,2,6,11,25)
3.63 4.29 5.11 6.09 732 8.87 10.80
21 3.37 4.03 4.85 5.82 7.04 8.58 10.50
(1,1,2,5, 10) (1,1,3,6,12) (1,1,3,7,15) (1,2,4,8,17) (1,2,50, 10, 21) (1,3,6,12,26) (1,3,7,15,32)
431 5.15 6.17 747 9.10 11.18 14.08
23 4.05 4.90 591 7.20 8.83 10.90 13.78
(1,1,3,6, 12) (1,1,3,7,15) (1,2,4,8,18) (1,2,5,10,22) (1,3,6,12,26) (1,3,8,15,33) (1,4, 10,19, 41)

" The three rows of each cell shows the ARL, the SDRL , and the percentiles (05 , D5 » Pso » s » Pos ) » TESPectively.

" See SAS Program 7 in Appendix B for the calculation of the values in Table 3.29.
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Table 3.29 continued for h =2, 4, ..., 14 and k = 25, 27, ..., 53.

k h
2 4 6 8 10 12 14
5.17 6.22 7.56 9.28 11.47 14.57 18.65
25 4.92 597 7.30 9.01 11.19 14.29 18.35
1,1,3,7,15) (1,2,4,8,18) (1,2,5,10,22) (1,3,6,13,27) (1,3,8,16,34) (1,4, 10, 20,43) (1,5, 13,25, 55)
6.25 7.62 9.39 11.67 14.94 19.28 24.76
27 5.99 7.36 9.13 11.40 14.67 19.00 24.47
(1,2,4,8,18) (1,2,5,10,22) (1,3,6,13,27) (1,3,8,16,34) (1,4,10,20,44) (1,5, 13,26,57) (1,7,17,34,73)
7.64 9.46 11.80 15.20 19.75 25.55 33.84
29 7.39 9.20 11.54 14.94 19.48 2527 33.55
1,2,5,10,22) (1,3,6,13,28) (1,3,8, 16, 35) (1,4, 10,21, 45) (1,6, 14,217, 58) (1,7, 18,35,76) (2,10, 23,47, 101)
9.48 11.87 15.37 20.08 26.12 34.85 47.67
31 8.97 11.36 14.85 19.56 25.58 34.29 47.38
(1,3,7,13,27) (1,4,8,16,35) (1,5,11,21,45) (2,6,14,28,59) (2,8,18,36,77) (2,10, 24, 48, 103) (2, 14, 33, 66, 142)
11.91 15.47 20.30 26.51 35.57 49.00 68.60
33 11.40 14.96 19.79 25.99 35.04 48.45 68.32
(1,4,8,16,35) (1,5,11, 21, 45) (2,6, 14, 28, 60) (2,8,19,37,78) (2,11, 25, 49, 105) (3, 14, 34, 68, 146) (4, 20,47, 95, 205)
15.52 20.43 26.76 36.06 49.95 70.38 97.26
35 15.01 19.92 26.25 35.54 49.42 69.83 96.98
(1,5,11,21,45) (2,6, 14, 28, 60) (2,8,19,37,79) (2,11, 25, 50, 107) (3, 15, 35, 69, 149) (4,21, 49,97, 210) (5,28, 67,134,291)
20.48 26.90 36.35 50.56 71.58 99.34 161.57
37 19.97 26.39 35.85 50.04 71.05 98.80 161.29
(2,6, 14, 28, 60) (2,8, 19,37, 80) (2,11, 25, 50, 108) (3, 15, 35, 70, 150) (4,21, 50,99, 213) (6,29, 69, 138, 297) (8,46, 112,224, 483)
26.95 36.51 50.92 72.34 100.71 165.16 245.13
39 26.44 36.00 50.41 71.83 100.19 164.62 244.86
(2,8,19,37,80) (2,11, 25, 50, 108) (3,15, 35,70, 152) (4,21, 50, 100, 216) (6,29, 70, 139, 301) (9,48, 115, 229, 494) (13,70, 170, 339, 734)
36.57 51.12 72.81 101.58 167.59 249.70 486.87
41 36.07 50.62 72.30 101.07 167.07 249.18 486.60
(2,11, 26,51, 109) (3,15,36,71, 152) (4,21, 51,101, 217) (6, 30,71, 141, 303) (9,49, 116, 232, 501) (13,72, 173, 346, 747) (25, 140, 337, 675, 1458)
51.20 73.05 102.08 169.12 252.64 497.29
43 50.70 72.55 101.58 168.61 252.13 496.76
(3,15,36,71,152) (4,21, 51,101, 218) (6,30, 71, 141, 305) (9,49, 117,234, 506) (13,73, 175, 350, 756) (26, 143, 345, 689, 1489)
73.14 102.32 170.00 254.38 504.08
45 72.64 101.82 169.50 253.87 503.56
(4,21, 51,101, 218) (6, 30,71, 142, 306) (9,49, 118, 235, 508) (14,74, 176, 352, 761) (26, 145, 350, 699, 1509)
102.40 170.44 255.38 508.02
47 101.90 169.94 254.87 507.51
(6,30, 71, 142, 306) (9,49, 118,236,510) (14,74, 177, 354, 764) (27, 147,352,704, 1521)
170.67 255.87 510.50
49 170.17 255.37 510.00
(9,49, 118, 236, 510) (14,74, 178, 355, 766) (27, 147, 354, 708, 1528)
256.00 511.50
51 255.50 511.00
(14, 74, 178, 355, 766) (27, 148, 355,709, 1531)
512.00
53 511.50

(27, 148, 355, 710, 1533)
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Table 3.29 continued for =16, 18, ...,28 and k=1, 3, ..., 25.

k h
16 18 20 22 24 26 28
2.02 221 242 2.64 2.88 3.14 342
1 1.67 1.84 2.02 221 241 2.63 2.86
(1,1,1,2,5) (1,1,1,3,6) (1,1,2,3,6) (1,1,2,3,7) (1,1,2,4,7) (1,1,2,4,8) (1,1,2,4,9)
231 255 2.80 3.09 340 374 4.10
3 1.96 2.17 2.40 2.66 293 3.22 3.54
(1,1,1,3,6) (1,1,2,3,7) (1,1,2,3,7) (1,1,2,4,8) (1,1,2,4,9) (1,1,3,5,10) (1,1,3,5,11)
267 2.97 330 3.67 4.07 452 5.00
5 232 2.59 2.90 3.24 3.60 4.00 4.44
(1,1,2,3,7) (1,1,2,4,8) (1,1,2,4,9) (1,1,2,5,10) (1,1,3,5,11) (1,1,3,6,12) (1,2,3,6,14)
312 3.50 3.93 441 495 5.55 6.22
7 2.77 3.13 3.53 3.98 448 5.03 5.65
(1,1,2,4,8) (1,1,2,4,9) (1,1,3,5,11) (1,1,3,6,12) (1,2,3,6,14) (1,2,4,7,15) (1,2,4,8,17)
3.68 419 475 539 6.12 6.94 7.92
9 3.34 3.82 435 4.95 5.64 6.43 7.35
(1,1,2,5,10) (1,1,3,5,12) (1,1,3,6,13) (1,2,4,7,15) (1,2,4,8,17) (1,2,5,9,20) (1,2,5,11,22)
442 5.06 581 6.68 7.69 891 10.31
11 4.08 4.69 5.42 6.25 722 8.39 9.74
(1,1,3,6,12) (1,1,3,7,14) (1,2,4,8,16) (1,2,5,9,19) (1,2,5,10,22) (1,3,6,12,25) (1,3,7,14,29)
535 621 7.23 843 9.93 11.68 13.66
13 5.01 5.85 6.84 8.00 9.46 11.16 13.10
(1,2,4,7,15) (1,2,4,8,18) (1,2,5,10,21) (1,2,6,11,24) (1,3,7,13,29) (1,3,8,16,34) (1,4,9, 18, 40)
6.57 773 9.13 10.93 13.08 15.56 18.62
15 6.23 737 8.74 10.50 12.61 15.05 18.05
(1,2,4,9,19) (1,2,5,10,22) (1,3,6,12,26) (1,3,7,15,32) (1,4,9,18,38) (1,5,11,21,45) (1,6,13,25,54)
8.18 9.77 11.87 14.44 17.46 21.30 26.12
17 7.85 9.42 11.49 14.02 17.00 20.79 25.56
(1,2,6,11,24) (1,3,7,13,28) (1,3,8, 16, 35) (1,4, 10,20, 42) (1,5,12,24,51) (1,6,15,29, 63) (2,8,18,36,77)
10.34 12.73 15.72 19.30 23.97 30.02 37.67
19 10.01 12.37 15.34 18.89 23.51 29.52 37.12
(1,3,7, 14, 30) (1,4,9,17,37) (1,5,11,21,46) (1,6,13,26,57) (1,7,17,33,71) (2,9,21,41, 89) (2,11,26,52, 111)
13.47 16.86 21.00 26.51 33.87 4345 55.02
21 13.14 16.51 20.62 26.10 33.42 4295 54.49
(1,4,9, 18, 39) (1,5,12,23, 50) (1,6, 14,29, 62) (1,8, 18, 36,78) (2,10, 23, 47, 100) (2,13, 30, 60, 129) (3, 16, 38,76, 163)
17.85 22.49 28.83 37.51 49.11 63.40 87.75
23 17.52 22.15 28.50 37.11 48.67 62.93 87.21
(1,5,12,24,53) (1,6,15,31, 66) (2,8, 20,40, 85) (2,11,26,52,111) | (3,14, 34, 68, 146) (3,18, 44, 87, 189) (5,25,61,121,262)
23.75 30.85 40.78 54.39 71.44 102.25 137.75
25 23.44 30.51 4042 54.00 71.02 101.77 137.23

(1,7, 16, 33,70)

(2,9,21,42,91)

(2,12, 28, 56, 121)

(3,16,38,75, 162)

(4,21, 49,99, 213)

(5,30, 71, 141, 305)

(7,40, 95, 191, 411)




Table 3.29 continued for 4 = 16, 18, ..., 28 and k=27, 29, ..., 53.

.

1 UNIVERSITEIT VAN PRETORIA

UNIVERSITY OF PRETORIA

Qo YUNIBESITHI YA PRETORIA

k h
16 18 20 22 24 26 28
3252 43.58 59.06 78.74 116.24 160.22 250.03
27 32.21 43.25 58.70 78.36 115.81 159.76 249.48
(2,9,22,45,97) (2,13, 30, 60, 130) (3,17,41, 81, 176) (4,23, 54, 109, 235) (6, 33, 80, 161, 347) (8,46, 111, 222,479) (13,72, 173, 346, 748)
45.88 63.00 85.05 129.08 181.52 297.24
29 45.57 62.68 84.70 128.69 181.11 296.75
(2,13,32,63,137) (3,18, 44,87, 188) (4,24, 59, 118,254) (7,37,79, 179, 386) (9,52, 126, 251, 543) (15, 86, 206, 412, 889)
66.17 90.22 140.19 200.46 343.38
31 65.87 89.91 139.84 200.10 342.95
(3,19,46,91, 197) (5,26, 62, 125, 269) (7,40, 97,194, 419) (10, 58, 139, 278, 600) (18,99, 238, 476, 1028)
94.26 149.28 216.42 385.45
33 93.97 148.96 216.09 385.06
(5,27, 65, 130, 282) (8,43, 103, 207, 446) (11, 62, 150, 300, 647) (20, 111, 267, 534, 1154)
156.39 229.10 412.40
35 156.09 228.79 421.06
(8,45, 108, 216, 468) (12, 66, 159, 317, 685) (22,121, 292, 584, 1261)
238.47 450.00
37 238.18 449.68
(12, 69, 165, 330, 714) (23,129, 312, 623, 1347)
471.21
39 471.12
(24, 136, 327, 653, 1411)
41
43
45
47
49
51
53
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Table 3.29 continued for 2 =30, 32, ...,42and k=1, 3, ..., 53.

& h
30 32 34 36 38 40 42
3.71 4.02 4.34 4.69 5.05 541 5.81
1 3.11 3.36 3.63 3.92 422 453 4.85
(1,1,3,5,10) (1,1,3,5,10) (1,2,3,6,11) (1,2,3,6,12) (1,2,4,6,13) (1,2,4,7,14) (1,2,4,7,15)
4.40 4.90 5.36 5.83 6.33 6.86 7.41
3 3.88 4.24 4.63 5.05 5.48 5.95 6.44
(1,1,3,6,12) (1,2,3,6,13) (1,2,4,7,14) (1,2,4,8,16) (1,2,4,8,17) (1,2,5,9, 18) (1,3, 5, 10, 20)
5.53 6.12 6.75 7.42 8.14 8.92 9.75
5 491 545 6.02 6.63 7.29 8.00 8.75
1,2,4,7,15) (1,2,4,8,17) (1,2,5,9,18) (1,2,5, 10, 20) (1,3,6,11,22) (1,3,6,12,25) (1,3,7,13,27)
6.98 7.82 8.71 9.70 10.79 11.96 13.22
7 6.36 7.13 7.97 8.90 9.92 11.02 12.21
1,2,5,9,19) (1,3,5,10,22) (1,3,6,12,24) (1,3,7,13,27) (1,3,8,14,30) (1,4,8,16,34) (1,4,9,18,37)
9.01 10.19 11.54 13.05 14.72 16.53 18.65
9 8.38 9.51 10.79 12.24 13.85 15.59 17.63
(1,3,6,12,25) (1,3,7,14,29) (1,4,8,15,33) (1,4,9,18,37) (1,5,10,20,42) (1,5,12,22,47) (2,6,13,25,54)
11.86 13.66 15.74 18.10 20.69 23.85 27.20
11 11.23 12.98 15.00 17.29 19.81 22.90 26.17
(1,4,8,16,34) (1,4,9,18,39) (1,5,11,21,45) (1,6,13,25,52) (2,6, 14, 28, 60) (2,7,17,32,69) (2,8,19,37,79)
16.04 18.86 22.14 25.79 30.47 35.45 41.67
13 1542 18.18 21.29 24.99 29.58 34.50 40.64
(1,5, 11, 22,47) (1,6,13,26,55) (2,7, 15,30, 65) (2,8,18,35,75) (2,9,21,42,89) (2,11, 25,49, 104) (3,12,29, 57, 123)
22.35 26.81 31.89 38.71 46.05 55.68
15 21.73 26.13 31.15 37.89 45.17 54.71
(1,7, 15,30, 65) (2,8,19,37,79) (2,9,22,44,94) (3,11,27,53,114) (3,14, 32,63, 136) (4,16,39,717, 165)
32.04 38.92 48.70 59.32 74.09
17 3143 38.26 47.95 58.51 73.19
(2,9, 22,44, 95) (2,11,27,53,115) (3,14, 34, 67, 144) (4,17,41, 82, 176) (4,22,51,102, 220)
46.74 60.40 75.44 97.76
19 46.14 59.72 74.70 96.94
(3,14, 32, 64, 139) (3,18,42,83,179) (4,22, 52,104, 224) (6, 28, 68, 135, 291)
73.57 94.27 127.36
21 72.96 93.61 126.60
(4,21, 51,102, 219) (5,27, 65, 130, 281) (7,37, 88,176, 380)
115.36 163.12
23 114.77 162.43
(6, 33, 80, 159, 344) (9,47, 113,226, 487)
204.54
25 203.92
(11, 59, 142,283, 611)
27
29
53
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.54 andk=1,3, ..., 53.

k h
44 46 48 50 52 54
6.21 6.63 7.05 7.50 7.95 8.43
1 5.19 5.53 5.89 6.27 6.65 7.05
(1,2,4,8,16) 1,2,5,9,17) (1,3,5,9,19) (1, 3,5, 10, 20) (1,3,6,10,21) (1,3,6,11,22)
8.00 8.60 9.25 991 10.62
3 6.95 7.48 8.06 8.65 9.28
1,3,6,10,22) (1,3,6,11,23) (1,3,7,12,25) (1,4,7,13,27) (1,4,8,14,29)
10.61 11.57 12.55 13.63
5 9.55 10.43 11.35 12.34
(1,4,7,14,29) (1,4,8,15,32) (1,4,9,17,35) (2,5,10, 18, 38)
14.64 16.11 17.77
7 13.56 14.96 16.54
(1,5, 10, 20,41) (2,5,11,22,46) (2,6,12,24,50)
20.88 33.44
9 19.79 2228
(2,7,15,28,60) (2,7,16,32,68)
31.19
11 30.09
(2,10, 22,43,91)
13
15
53
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Figure 3.11. Boxplot-like graphs for the in-control run length distribution of various two-sided
CUSUM signed-rank charts when n =10. The whiskers extend to the 5" and the 95 percentiles.
The symbols “ == ‘o and “~" denote the ARL, SDRL" and MRL, respectivelyT.

* For ease of interpretation, the standard deviation (as measure of spread) is included in the (location) measures of
percentiles.
" The “boxplots” are classified into 3 categories, namely small (h+k <25), moderate (25 < h+k <50) and large

(h+k>50).
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Example 3.9
A two-sided CUSUM signed-rank chart for the Montgomery (2001) piston ring data

We conclude this sub-section by illustrating the two-sided CUSUM signed-rank chart
using the piston ring data set from Montgomery (2001). We assume that the underlying
distribution is symmetric with a known target value of 6, =74 mm. For illustration take k =3
and h =8. From Table 3.27 it can be seen that the in-control average run length equals 4.07 when
(h,k) =(8,3). Generally, one chooses the chart constants so that a specified in-control average
run length, such as 500, or 370, is obtained. Taking this into consideration, an in-control average

run length of 4.07 is considered small. Table 3.30 shows the upper and lower signed-rank

CUSUM statistics, respectively.

Table 3.30. One-sided signed-rank (S and §) statistics .

Sample | ;1 5 | 3 4 | 5|6 7|89 10/11]12]13|14]15
number
S* 51610406134 13]24|25/[37]49]|61]72
S- ol ofl-11]-1l-1]loflo|3/lololololo]o]o

" The values in Table 3.30 we generated using Microsoft Excel.
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Figure 3.12. The two-sided CUSUM signed-rank chart for the Montgomery (2001) piston ring

data.

The two-sided CUSUM signed-rank chart signals at sample number 3, indicating a most
likely upward shift in the process median. The action taken following an out-of-control signal on
a CUSUM chart is identical to that with any control chart. A search for assignable causes should
be done, corrective action should be taken (if required) and, following this, the CUSUM is reset

to zero.

3.3.4. Summary

While the Shewhart-type charts are the most widely known and used control charts in
practice because of their simplicity and global performance, other classes of charts, such as the
CUSUM charts are useful and sometimes more naturally appropriate in the process control
environment in view of the sequential nature of data collection. In this chapter we have described
the properties of the CUSUM signed-rank chart and given tables for its implementation. Detailed

calculations have been given to help the reader to understand the subject more thoroughly.
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3.4. The EWMA control chart
3.4.1. Introduction

In this section, the approach taken by Lucas and Saccucci (1990) is extended to the use of

the signed-rank statistic resulting in an EWMA signed-rank chart that accumulates the statistics

SR,,SR,,SR,;,... . Section 3.4 is analogous to Section 2.4 where the approach taken by Lucas and

Saccucci (1990) was extended to the use of the sign statistic resulting in an EWMA sign chart.

Therefore, the reader is frequently referred back to Section 2.4 throughout this section.
3.4.2. The proposed EWMA signed-rank chart

A nonparametric EWMA-type of control chart based on the signed-rank statistic (recall

that SR, = Zsign(xlj —6,)R; ) can be obtained by replacing X, in expression (2.53) of Section

j=1
2.4 with SR,. The EWMA signed-rank chart accumulates the statistics SR,, SR,, SR;,... with the
plotting statistics defined as

Z, =ASR. +(1-1)Z_, (3.10)
where 0 < A <1 is a constant called the weighting constant. The starting value Z, could be taken

to equal zero, 1.e. Z, =0.

The EWMA signed-rank chart is constructed by plotting Z, against the sample number i
(or time). If the plotting statistic Z, falls between the two control limits, that is, LCL<Z, <UCL,
the process is considered to be in-control. If the plotting statistic Z, falls on or outside one of the

control limits, thatis Z, < LCL or Z, 2 UCL , the process is considered to be out-of-control.
The exact control limits and the center line of the EWMA signed-rank control chart can

be obtained by replacing o and 6, by o, and 0, respectively, in expression (2.55) of Section

2.4 to obtain
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UCL= Lo, \/(%)(1 —(1-1)%)

CL=0 . 3.11)

LCL=-Loy, \/ (ij(l —(1-2)%)

2-4

Similarly, the steady-state control limits can be obtained by replacing ¢ and 6, by o

and 0, respectively, in expression (2.56) to obtain

A

UCL = LO_SR,» (ﬂj

LCL=-Loy, ( 4 j

(3.12)

2-1
where o, denotes the in-control standard deviation of the signed-rank statistic SR, if there are

no ties within a subgroup.

The in-control standard deviation of SR, is given by o0y =./var(SR;) =

\/ var(ZT+ —@j = \/w This is obtained by using the relationship between

_n(n +1)

SR, and T" (recall that SR, =2T" if there are no ties within a subgroup) and the fact

nn+1)2n+1)

that var(T") =
) 24

(see Gibbons and Chakraborti (2003) page 198).

3.4.3. Markov-chain approach

Lucas and Saccucci (1990) evaluated the properties of the continuous state Markov chain
by discretizing the infinite state TPM. This procedure entails dividing the interval between the

UCL and the LCL into N subintervals of width 24 . Then the plotting statistic, Z,, is said to be

in the non-absorbing state j attime i if S, -6<Z, <, +0 where §; denotes the midpoint of

the j" interval. Z, is said to be in the absorbing state if Z, falls on or outside one of the control
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limits, that is, Z, < LCL or Z, 2UCL . Let p, denote the probability of moving from state i to
state j in one step, i.e. p; = P(Moving to state j\in state i). To approximate this probability we
assume that the plotting statistic is equal to S, whenever it is in state i. For all j non-absorbing
we obtain p, = P(Sj —0<Z,<§,+01Z,_, = Si). By using the definition of the plotting

statistic given in expression (3.10) we obtain

p, =P(S,~6<ASR, +(1-1)S, < S, +J)
S —-0)-(1-A4)S, S +0)—-(1-A)S,
:P((’ )—( )’<SRS(’ )= ( ),j

A ‘ A

n(n+1)

recall that SR, =2T," —

S -0)—-(1-1)S, S +9)-(1-1)S,
_p (S;—30)—( ),<2Tk+_n(n+l)g( ;TO)—(1-A)S,
! A 2 A
(Sj—5)—(1—/1)5i+n(n+l) (Sj+5)—(1—/1)Si+n(n+1)
=P A 2 g < A 2 (3.13)
2 £ 2 '
For all j absorbing we obtain
p,=P(Z, <LCL1Z,_ =S,)+P(Z, 2UCLIZ,_ =S,)
= P(ASR, +(1-A)S, < LCL)+ P(ASR, +(1-A)S, >UCL)
_ o sk, < LCL—(l—/i)Si]+P(SRk 5 UCL—(I—/l)S,.J
A A
_»p ZTk+_n(n+1)SLCL—(1—/1)S,. p 2Tk+_n(n+1)2UCL—(1—/1)S,.
2 A
LCL=(=A)S;  n(n+1) UCL=(1=A)S; , n(n+1)
=PT; < o 2 \vPT > o 2| (3.14)

Since the values LCL, UCL, 6, A, n, S, and S, are known constants the Wilcoxon

signed-rank probabilities in expressions (3.13) and (3.14) can easily be calculated. The

probabilities for the Wilcoxon signed-rank statistics are given in Table H of Lehmann (1975) for
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samples sizes up to 20 and they are tabulated (more recently) in Table H of Gibbons and

Chakraborti (2003) for sample sizes up to 15.

Once the one-step transition probabilities are calculated, the TPM can be constructed and

Q I p
is givenby TPM =[p;]=| — — — | (written in partitioned form) where the essential transition
0 I 1

probability sub-matrix Q is the matrix that contains all the transition probabilities of going from

a non-absorbing state to a non-absorbing state, Q: (NA - NA), P contains all the transition
probabilities of going from each non-absorbing state to the absorbing states, p : (NA — A),

0'=(0 0 0 --- 0) contains all the transition probabilities of going from each absorbing state
to the non-absorbing states. (' is a row vector with all its elements equal to zero, because it is
impossible to go from an absorbing state to a non-absorbing state, because once an absorbing
state is entered, it is never left, 0' :(A—)NA), and 1 represents the scalar value one. The
probability of going of going from an absorbing state to an absorbing state is equal to one,
because once an absorbing state is entered, it is never left, 1: (A - A). The one-step TPM is used
to calculate the expected value (ARL), the second raw moment, the variance, the standard

deviation and the probability mass function (pmf) of the run-length variable N which are given in

equations (2.41) to (2.45).

Example 3.10
The EWMA signed-rank chart where the sample size is even (7 =6)

The EWMA signed-rank chart is investigated for a smoothing constant of 0.1 (1=0.1)
and a multiplier of 3 (L = 3). The steady-state control limits are given by
A
UCL=Lo —
S (2—1)

A

LCL = _Lo-SR,- (ﬂj
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where L=3, A=0.1, and o =9.539, since o = \/n(n+1)(2n+1) _ \/6(6+1)(12+1) _

6 6
9.539. Clearly, we only have to calculate the UCL since LCL=-UCL. We obtain

UCL =3%9.539 (%) =6.565. Therefore, LCL =—6.565.

This Markov-chain procedure entails dividing the interval between the UCL and the
LCL into N subintervals of width 20 . For this example N is taken to equal 4. Figure 3.13

illustrates the partitioning of the interval between the UCL and the LCL into subintervals.

A UCL = 6.565
—— NA {50 =4.024
3.283
—— NA - et =1.641
0
- NA {52 =-1.641
-3.283
- NA {53 = -4.924
X LCL = -6.565

Figure 3.13. Partitioning of the interval between the UCL and the LCL into 4 subintervals.

From Figure 3.13 we see that there are 4 non-absorbing states, i.e. r =4. The TPM is

given by
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Pow Por Pz Pos  Pos

Po Pun P Pz Pu OQpa | P,
TPM =| pyy Py Pxn Py Pul|=| — — —

P P31 Pn P Ps Ops 1 1

Psw Ps1 P Psz Pu

Table 3.31. Calculation of the one-step probabilities in the first row of the TPM.

Doo = P(Moving to state 0 | in state 0)
=P(S,-0<Z, <S,+581Z,_, =S,) from (3.13)

A 2 A 2

((S0 -8)—-(1-A)S, N n(n+1)} ((s0 +0)-(1-24)S, N n(n+1)j
P <T; <
2 2
with § =1.641, 1=0.1, L=3 and S, =4.924

= P(4.755<T; <21.169)
= P(T;} <21)-P(T, <4)

= % from Gibbons and Chakraborti (2003)

Po; = P(Moving to state 11in state 0)
=P(S,-6<Z,<S,+81Z,_,=S5,) from (3.13)

((S1 -8)-(1-A)S, N n(n+1)J ((S1 +8)-(1-A)S, N n(n+1)j
=P <T; <

A 2 A 2
2 2

= P(—11.658 <T," < 4.755)
=P(T} <4)

7

64
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Doy = P(Moving to state 2 |in state 0)
=P(S,-6<2,<S5,+61Z,_, =S,) from (3.13)

((S2 -8 —(1-2)S, . n(n+l)j ((52 +0)—(1-A)S, N n(n+l)j
P <TS

A 2 A 2

= P(-28.072< T, <-11.658)
=0

Doz = P(Moving to state 31in state 0)
=P(S,-0<Z,<5,+51Z_, =S,) from (3.13)

((53 -0 —-(1-21)S, N n(n+l)j [(53 +0)—-(1-1)S, N n(n+l)j
P <T'

A 2 A 2

= P(-44.486 < T, <—-28.072)
=0

(Moving to state 4 |in state 0)
=P(z, <LCLIZ,_ =S,)+P(Z, >UCLIZ,_, =S,) from (3.14)
LCL - (1 S, N n(n+1) UCL-(1-A)S, N n(n+1)

2 +PTk+2 ﬂ/ 2
2 2

( <—44.486)+ P(T; >21.169)

The one-step probabilities in the remaining rows can be calculated similarly. Therefore,

Ter Ju 00 0
%4 5%4 %4 0 0 Q4><4 ! _p4><1
the TPMis givenby TPM =| 0 %, %, %, O|=| — — -
0 0 Ja T O (O | Iy

0O 0 0 0 1

Other values of the multiplier (L) and the smoothing constant (A1) were also considered

and the results are given in Tables 3.32 and 3.33.

194



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quu® YUNIBESITHI YA PRETORIA

Table 3.32. The in-control average run length (ARL,), standard deviation of the run length

(SDRL), 5",25",50",75" and 95" percentile values for the EWMA signed-rank chart when

n=6and N =5, i.. there are 5 subintervals between the lower and upper control limit'.

L=1 L=2 L=3
10.45 56.69 s
1=0.05 12.32 72.45
(1,2,6,15,35) | (1,5,29, 82, 204)
7.32 33.83 330.67
A=0.1 8.38 40.28 369.33
(1,1,4,10,24) | (1,4,20,48,115) | (2,63,213,471, 1070)
4.95 3521 361.92
1=02 4.90 39.63 384.29
(1,1,3,7,15 | (1,6,22,50,115) | (3,87,243, 510, 1130)

** The inverse of the matrix (/ —Q) does not exist and as a result the ARL (given by

E(N)=&(I—Q)'1) can not be calculated for this combination of (A, L).

In example 3.10 we considered a sample size that may be considered “small”. The results

are given for a larger sample size (n =10) for various values of A and L in Table 3.33.

Table 3.33. The in-control average run length (ARL,), standard deviation of the run length

(SDRL), 5",25™,50™,75" and 95" percentile values* for the EWMA signed-rank chart when

n=10 and N =35, i.e. there are 5 subintervals between the lower and upper control limit®.

L=1 L=2 L=3
11.17 67.94 1448.44
1=0.05 13.49 83.82 1573.37
(1,2,6,16,39) | (1,7,38,98,238) | (10,316, 956,2052, 4595)
6.85 48.87 352.72
A=0.1 7.74 57.73 384.51
(1, 1,4,9,23) (1, 6,29, 70, 165) (3,76, 232, 500, 1122)
5.05 33.96 336.34
1=02 5.07 38.48 357.54
(1,1,3,7,15) (1,6,21,48, 111) (3, 80, 226, 474, 1051)

" The three rows of each cell shows the ARL,, the SDRL, and the percentiles ( ps, Pys » Psg » P75 » Pos ) » TEspectively.

" See SAS Program 8 in Appendix B for the calculation of the values in Table 3.32.
* The three rows of each cell shows the ARL, the SDRL, and the percentiles ( 05, 05 » P50 P75 > Pos5) » Lespectively.

¥ See SAS Program 8 in Appendix B for the calculation of the values in Table 3.33.
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These tables can be extended by changing the sample size (n), the number of subintervals
between the lower and upper control limit (N), the multiplier (L) and the smoothing constant (1)

in SAS Program 8 for the EWMA signed-rank chart given in Appendix B.

From Tables 3.32 and 3.33 we see that the ARL,, SDRL and percentiles increase as the

value of the multiplier (L) increases. From Table 3.33 we find an in-control average run length of
336.34 for n =10 when the multiplier is taken to equal 3 ( L = 3) and the smoothing constant 0.2
(A=0.2). The chart performance is good, since the attained in-control average run length of

336.34 is in the region of the desired in-control average run length which is generally taken to be

370 or 500.
3.4.4. Summary

The EWMA control chart is one of several charting methods aimed at correcting a
deficiency of the Shewhart chart - insensitivity to small shifts. Lucas and Saccucci (1990) have
investigated some properties of the EWMA chart under the assumption of independent normally
distributed observations, whereas in this section we have described and evaluated the
nonparametric EWMA signed-rank chart. The main advantage of the nonparametric EWMA
chart is that there is no need to assume a particular parametric distribution for the underlying

process (see Section 1.4 for other advantages of the nonparametric EWMA chart).
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