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Chapter 1: Introduction

1.1. Notation

SPC Statistical process control
NSPC Nonparametric statistical process control
pmf Probability mass function
cdf Cumulative distribution function
pef Probability generating function
mgf Moment generating function
cgf Cumulant generating function
n Sample size
X, X,,..X, Random variables in a sample
XpsXy,eX), Observations in a sample
6, Target value / Known or specified in-control location parameter’
CUSUM Cumulative sum
EWMA Exponentially weighted moving average
ARL Average run length
ARL, In-control average run length
ARL Out-of-control average run length
SDRL Standard deviation of the run length
MRL Median run length
UCL Upper control limit
CL Center line
LCL Lower control limit
FAR False alarm rate
FAP False alarm probability
VSI Variable sampling interval
FSI Fixed sampling interval
ay Upper action limit / Upper control limit
wy Upper warning limit
wy Lower warning limit
a Lower action limit / Lower control limit
TPM Transition probability matrix
A Absorbent
NA Non-absorbent

" The location parameter could be the mean, median or some percentile of the distribution. When the underlying
distribution is known to be highly skewed, the median or some percentile is preferred to the mean.
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1.2.  Distribution of chance causes

One of the main goals of statistical process control (SPC) is to distinguish between
two sources of variability, namely common cause (chance cause) variability and assignable
cause (special cause) variability. Common cause variability is an inherent or natural (random)
variability that is present in any repetitive process, whereas assignable cause variability is a
result of factors that are not solely random. In SPC, the pattern of chance causes is usually
assumed to follow some parametric distribution (such as the normal). The charting statistic
and the control limits depend on this assumption and as such the properties of these control
charts are “exact” only if this assumption is satisfied. However, the chance distribution is
either unknown or far from being normal in many applications and consequently the
performance of standard control charts is highly affected in such situations. Thus there is a
need for some easy to use, flexible and robust control charts that do not require normality or
any other specific parametric model assumption about the underlying chance distribution.
Distribution-free or nonparametric control charts can serve this broader purpose. On this point
see for example, Woodall and Montgomery (1999) and Woodall (2000). These researchers
and others provide more than enough reasons for the development of nonparametric control

charts.
1.3. Nonparametric or distribution-free

The term nonparametric is not intended to imply that there are no parameters involved,
in fact, quite the contrary. While the term distribution-free seems to be a better description of
what we expect from these charts, that is, they remain valid for a large class of distributions,
nonparametric is perhaps the term more often used. In the statistics literature there is now a
rather vast collection of nonparametric tests and confidence intervals and these methods have
been shown to perform well compared to their normal theory counterparts. Remarkably, even
when the underlying distribution is normal, the efficiency of some nonparametric methods
relative to the corresponding (optimal) normal theory methods can be as high as 0.955 (see,
e.g., Gibbons and Chakraborti, 2003). In fact, for some heavy-tailed distributions like the
double exponential, nonparametric tests can be more efficient. It may be argued that
nonparametric methods will be “less efficient” than their parametric counterparts when one
has a complete knowledge of the process distribution for which that parametric method was

specifically designed. However, the reality is that such information is seldom, if ever,
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available in practice. Thus it seems natural to develop and use nonparametric methods in SPC

and the quality practitioners will be well advised to have these techniques in their toolkits.

We only discuss univariate nonparametric control charts designed to track the location
of a continuous process since very few charts are available for monitoring the scale and
simultaneously monitoring the location and scale of a process. The field of multivariate
control charts is interesting and the body of literature on nonparametric multivariate control
charts is growing. However, in our opinion, it hasn’t yet reached a critical mass and a

discussion on this topic is better postponed for the future.
1.4. Nonparametric control charts

Chakraborti, Van der Laan and Bakir (2001) (hereafter CVB) provided a systematic
and thorough account of the nonparametric control chart literature. A nonparametric control
chart is defined in terms of its in-control run length distribution. If the in-control run length
distribution of a control chart is the same for every continuous distribution, the chart is called
nonparametric or distribution-free. CVB summarized the advantages of nonparametric control
charts as follows: (i) simplicity, (i1) no need to assume a particular parametric distribution for
the underlying process, (iii) the in-control run length distribution is the same for all
continuous distributions, (iv) more robust and outlier resistant, (v) more efficiency in
detecting changes when the true distribution is markedly non-normal, particularly with
heavier tails, and (vi) no need to estimate the variance to set up charts for the location
parameter. It is emphasized that from a technical point of view most nonparametric
procedures require the population to be continuous in order to be distribution-free and thus in
a SPC context we consider the so-called “variables control charts.” Some disadvantages of
nonparametric control charts are as follows: (i) they will be “less efficient” than their
parametric counterparts when one has a complete knowledge of the process distribution for
which that parametric method was specifically designed, (ii) one usually requires special
tables when the sample sizes are small, and (iii) nonparametric methods are not well-known

amongst all researchers and quality practitioners.
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1.5. Terminology and formulation

Two important problems in usual SPC are monitoring the process mean and/or the
process standard deviation. In the nonparametric setting, we consider, more generally,
monitoring the center or the location (or a shift) parameter and/or a scale parameter of a
process. The location parameter represents a typical value and could be the mean or the
median or some percentile of the distribution; the latter two are especially attractive when the
underlying distribution is expected to be skewed. Also in the nonparametric setting, the

processes are implicitly assumed to follow (i) a location model, with a cdf F(x—6), where 8

is the location parameter or (ii) a scale model, with a cdf F (fj, where 7(>0) is the scale
T

parameter. Even more generally, one might consider (iii) the location-scale model with cdf

F (x — 0) , where @ and 7 are the location and the scale parameter, respectively. Under these
T

model assumptions, the problem is to track € and 7 (or both), based on random samples or
subgroups taken (usually) at equally spaced time points. In the usual (parametric) control
charting problems F is assumed to be the cdf & of the standard normal distribution whereas
in the nonparametric setting, for variables data, F is some unknown continuous cdf.
Although the location-scale model seems to be a natural model to consider paralleling the
normal theory case with mean and variance both unknown, most of what is currently available
in the nonparametric statistical process control (NSPC) literature deals mainly with the

location model.

As we noted earlier, a comprehensive survey of the literature until about 2000 can be
found in CVB. Here, we mention some of the key contributions and ideas and a few of the
more recent developments in the area; the literature on nonparametric methods continues to
grow at a rapid pace. In fact, Woodall and Montgomery (1999) stated: ‘There would appear to
be an increasing role for nonparametric methods, particularly as data availability increases’.
Most nonparametric charts, however, have been developed for Phase II applications. There
are generally two phases in SPC. In Phase I (also called the retrospective phase), typically,
preliminary analysis is done which includes planning, administration, data collection, data
management, exploratory work including graphical and numerical analysis, goodness-of-fit
analysis etc. to ensure that the process is in-control. This means that the process is managed to

operate at or near some acceptable target value along with some natural variation and no
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special causes of concern are expected to be present. Once this is ascertained, SPC moves to
the next phase, Phase II, (or the prospective phase), where the control limits and/or the
estimators obtained in Phase I are used for process monitoring based on new samples of data.
When the underlying parameters of the process distribution are known or specified, this is
referred to as the “standard(s) known” case and is denoted case K. In contrast, if the
parameters are unknown and need to be estimated, it is typically done in Phase I, with in-
control data. This situation is referred to as the “standard(s) unknown” case and is denoted
case U. In this text we are going to consider decision problems under both Phase I and Phase
II. One of the main differences between the two phases is the fact that the FAR (or in-control

average run length ARL,) is typically used to construct and evaluate Phase II control charts,

whereas the false alarm probability (FAP) is used to construct and evaluate Phase I control
charts. The FAP is the probability of at least one false alarm out of many comparisons,
whereas the FAR is the probability of a single false alarm involving only a single comparison.
Various authors have studied the Phase I problem; see for example King (1954), Chou and
Champ (1995), Sullivan and Woodall (1996), Jones and Champ (2002), Champ and Chou
(2003), Champ and Jones (2004), Koning (2006) and Human, Chakraborti and Smit (2007).
Since not much is typically known or can be assumed about the underlying process

distribution in a Phase I setting, nonparametric Phase I control charts are of great use.

There are three main classes of control charts: the Shewhart chart, the cumulative sum
(CUSUM) chart and the exponentially weighted moving average (EWMA) chart and their
refinements. Relative advantages and disadvantages of these charts are well documented in
the literature (see, e.g., Montgomery, 2001). Analogs of these charts have been considered in

the nonparametric setting. We describe some of the charts under each of the three classes.

1.6. Shewhart-type charts

Shewhart-type charts are the most popular charts in practice because of their
simplicity, ease of application, and the fact that these versatile charts are quite efficient in
detecting moderate to large shifts. Both one-sided and two-sided charts are considered. The
one-sided charts are more useful when only a directional shift (higher or lower) in the median
is of interest. The two-sided charts, on the other hand, are typically used to detect a shift or

change in the median in any direction.
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1.7. CUSUM-type charts

While the Shewhart-type charts are widely known and most often used in practice
because of their simplicity and global performance, other classes of charts, such as the
CUSUM charts are useful and sometimes more naturally appropriate in the process control
environment in view of the sequential nature of data collection. These charts, typically based
on the cumulative totals of a plotting statistic, obtained as data accumulate, are known to be
more efficient for detecting certain types of shifts in the process. The normal theory CUSUM
chart for the mean is typically based on the cumulative sum of the deviations of the individual
observations (or the subgroup means) from the specified target mean. It seems natural to
consider analogs of these charts using the nonparametric plotting statistics discussed earlier.

These lead to nonparametric CUSUM (NPCUSUM) charts.
1.8. EWMA-type charts
Another popular class of control charts is the exponentially weighted moving average
(EWMA) charts. The EWMA charts also take advantage of the sequentially (time ordered)

accumulating nature of the data arising in a typical SPC environment and are known to be

efficient in detecting smaller shifts but are easier to implement than the CUSUM charts.
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Section A: Monitoring the location of a process when the target

location is specified (Case K)

Chapter 2: Sign control charts

2.1. The Shewhart-type control chart
2.1.1. Introduction

The sign test is one of the simplest and broadly applicable nonparametric tests (see, e.g.,
Gibbons and Chakraborti, 2003) that can be used to test hypotheses (or find confidence intervals)
for the median (or any specified percentile) of a continuous distribution. In this thesis, we will
only consider the 50™ percentile, i.e. the median. The fact that the sign test is applicable for any

continuous population is an advantage to quality practitioners. Suppose that the median of a

continuous process needs to be maintained at a specified value 6,. Amin et al. (1995) presented

Shewhart-type nonparametric charts for this problem using what are called “within group sign”

statistics. This is called a sign chart (also referred to as the SN chart).
2.1.2. Definition of the sign test statistic

Let X,,X,,,.,X, denote the i" (i=1,2,.) sample or subgroup of independent
observations of size n >1 from a process with an unknown continuous distribution function F .

Let 8, denote the known or specified value of the median when the process is in-control, then 6,
is called the target value. Compare each x; (j=12,.,n) with 6,. Record the difference
between 6, and each x; by subtracting 6, from x;. There will be n such differences, x; —6,
(j=12,...,n), in the i" sample. Let n* denote the number of observations with values greater
than 6, in the i" sample. Let n~ denote the number of observations with values less than 6, in

the i” sample. Provided there are no ties we have that n* +n~ =n.
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Define

SN, = sign(x; —6,) (2.1

j=1

where sign(x) =-1,0,1if x<0, =0, >0.

Then SN, is the difference between n* and n~ in the i” sample, ie. SN, is the

difference between the number of observations with values greater than 6 and the number of

observations with values less than 6, in the i sample.

Define

7"i=SNi+n, 2.2)
2

assuming there are no ties within a subgroup. The random variable 7; is the number of sample

observations greater than or equal to 6, in the i” sample. In (2.2) the statistic 7, is expressed in

terms of the sign test statistic SN,. Using the relationship in (2.2), the sign test statistic SN, can

be expressed in terms of the statistic 7; (if there are no ties within a subgroup) and we obtain

SN, =2T —n. (2.3)

This relationship is evident from the fact that

SN, =3 sign(x; =8 =Y 2y(x; —6,)-1)=2T, =

j= j=

where ¥ (x) =0, 1if x<0, >0.

In the literature the statistic 7, is also well-known under the name sign test statistic (see,

for example, Gibbons and Chakraborti (2003)). For the purpose of this study, SN, will be

referred to as the sign test statistic.
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Zero differences

For a continuous random variable, X , the probability of any particular value is zero; thus,

P(X =a) =0 for any a. Since the distribution of the observations is assumed to be continuous,
P(X; —6,=0)=0. Theoretically, the case where sign(x; —6,)=0 should occur with zero

probability, but in practice zero differences do occur as a result of, for example, truncation or
rounding of the observed values. A common practice in such cases is to discard all the

observations leading to zero differences and to redefine » as the number of nonzero differences.

2.1.3. Plotting statistic

Sign control charts are based on the well-known sign test. A control chart is a graph

consisting of values of a plotting (or charting) statistic and the associated control limits. The

plotting statistic for the sign chart is SN, = Z sign(x; —6,) for i=123,....
j=1

Distributional properties of the charting statistic

The random variable 7; has a binomial distribution with parameters n and
p=PX; >6,), i.e. T, ~BIN(n,p). Hence, we can find the distribution of SN, via the

relationship given in (2.3).
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Table 2.1. Moments and the probability mass function of the 7, and SN, statistics, respectively.

]

T; SN;
E(SN,)
Expected value E(T;)=np = EQ2T, —n)
=n(2p-1)
var(SN,)
Variance Var(Ti ) =np(l-p) = var(2T, —n)
=4np(1-p)
stdev(SN,)
Standard deviation stdev(T;) = \/np(1— p)
=2\/np(1—-p)
f(s)
= P(SN, =)
Probability mass function F()=PT =1)= (,jp[ (1-p)"™" | = PQT, ~n=s)

(pmf)

:P(T,. :n+sj
2

The probability distributions of 7; and SN, are both symmetric* as long as the median

remains at 6, . In this case:

¢ the probability distributions are referred to as the in-control probability distributions;

* p=P(X,;26,)=0.5;and

¢ since the in-control distribution of the plotting statistic SN, is symmetric, the control

limits will be equal distances away from 0.

Figure 2.1 illustrates for n =10 that the in-control probability distributions of 7; and SN, are

symmetric about their means, that is, T,

nxp=10x0.5=5 and

n(2p-1)=10(2x0.5-1)=0.

SN. 1S

1

symmetric

1

around

1

is symmetric around its mean given by

its mean given Dby

" T; and SN; are symmetric about np and zero, respectively, as long as the median remains at é,-
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Figure 2.1. The in-control probability distribution of 7; and SN, for n =10.

1

2.1.4. Determination of control limits

In order to find the control limits and study chart performance, the distribution of SN, is
necessary; this can be most easily obtained using the relationship SN, =27, —n . Since the in-
control distribution of 7; is binomial with parameters n and 0.5, it follows that the in-control

distribution of SN, is symmetric about 0 and hence the control limits and the center line of the

two-sided nonparametric Shewhart-type sign chart (for the median) are given by
UCL=c
CL=0 2.4)
LCL=—-c

where ce {1,2,...,n}.

If the plotting statistic SN, falls between the control limits, that is, —c < SN, <c, the

process is declared to be in-control, whereas if the plotting statistic SN, falls on or outside one of
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the control limits, that is, if SN; <—c or SN, = ¢, the process is declared to be out-of-control. In

the latter case corrective action and a search for assignable causes is necessary.

Take note that 7, can also be calculated and plotted against the control limits. This is

done by assuming that the LCL is equal to some constant a and that the UCL is equal to some
constant b, i.e. the control limits are given by: UCL=5b and LCL =a. Since the in-control

probability distribution of 7. is symmetric when working with the median, that is,

]

P(T; =a) = P(T, =n-a), a sensible choice for b is therefore n—a.

The control limits and the center line of the nonparametric Shewhart chart (for the

median) using 7; as the plotting statistic are given by

UCL=n-a
CL=np
LCL=a

where a denotes a positive integer which is selected such that LCL < UCL .

Although both 7, and SN, can be calculated for each sample and be compared to the
control limits, the statistic SN, has the advantage of keeping the control limits symmetric around
zero. Therefore, the plotting statistic SN, is calculated and used as the plotting statistic. The

terms ‘plotting statistic’ and ‘charting statistic’ will be used interchangeably throughout this text.

The question arises: When using SN, as the plotting statistic, what should the values of

the control limits be set equal to? In other words, what is the value of the charting constant ¢ ?
Specifying control limits is one of the critical decisions that must be made in designing a control
chart. By moving the control limits farther away from the center line, we decrease the risk of a
type I error — that is, the risk of a point falling beyond the control limits, indicating an out-of-
control condition when no assignable cause is present. However, widening the control limits will
also increase the risk of a type II error — that is, the risk of a point falling between the control
limits when the process is really out-of-control. If we move the control limits closer to the center

line, the opposite effect is obtained: The risk of type I error is increased, while the risk of type 11

22



UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

<
=

“ UNIVERSITEIT VAN PRETORIA

4

error is decreased. Consequently, the control limits are chosen such that if the process is in-
control, nearly all of the sample points will fall between them. In other words, the charting
constant ¢ is typically obtained for a specified in-control average run length, which, in case K, is

equal to the reciprocal of the nominal FAR, «. Thus, using the symmetry of the binomial

distribution, ¢ is the smallest integer such that P, (SN ;2 c)< %. For example, using Table G of

Gibbons and Chakraborti (2003) we give some Fy (T >t) values in Table 2.2 that may be

considered “small” in a SPC context. The charting constant ¢ is obtained using ¢ = 2¢ —n (recall

that the sign test statistic SN, is expressed in terms of the statistic 7, by the relationship
SN, =2T, —n). The false alarm rate is obtained by adding the probability in the left tail,
17 (T<n-t), and the probability in the right tail, B, (T>t), ie FAR=
P, (T<n-t)+ P, (T >1). Since the probability distribution of 7, is symmetric (as long as the
median remains at §,), the FAR is also obtained using FAR=2F, (T >1). For example, for

n=>5 we get t =5 and thus ¢ =5 fora FAR of 2(0.0312) =0.0624 and this is the lowest FAR
achievable. However for n =10 the FAR drops to 0.0020 if ¢ =10. It should be noted that the

lowest attainable FAR is always obtained when n=t¢.

Table 2.2. FAR and ARL, of a sign control chart for various values of n = ¢.

n 5 6 7 8 9 10

P, (T 21) 0.0312 | 0.0156 | 0.0078 | 0.0039 | 0.0020 | 0.0010

FAR (o) 0.0624 | 0.0312 | 0.0156 | 0.0078 | 0.0040 | 0.0020

ARL, 16.00 32.00 64.00 128.00 | 256.00 | 512.00

Looking at the attainable FAR and ARL, values shown in Table 2.2, we see that unless

the sample size is at least 10, the sign chart would be somewhat unattractive (from an operational
point of view) in SPC applications, where one often stipulates a large in-control average run
length, as large as 370 or 500, and a small FAR, as small as 0.0027. If, for example, the FAR is
too ‘large’, which is the case for ‘small’ sample sizes, many false alarms will be expected by this
chart leading to a possible loss of time and resources. Then again, the sign chart is the simplest of

nonparametric charts that works under minimal assumptions. In fact, from the hypothesis testing
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literature, it is known that the sign test (and so the chart) is more robust and efficient when the
chance distribution is symmetric like the normal but with heavier tails such as the double

exponential.

Example 2.1
A Shewhart-type sign chart for the Montgomery (2001) piston ring data

We illustrate the Shewhart-type sign chart using a set of data from Montgomery (2001;
Tables 5.1 and 5.2) on the inside diameters of piston rings manufactured by a forging process. A
part of this data, fifteen prospective samples (Table 5.2) each of five observations, is used here.
The rest of the data (Table 5.1) will be used later. We assume that the underlying distribution is

symmetric with a known median 6, =74 mm. From Table G (see Gibbons and Chakraborti
(2003)) we obtain =5 (when n=>5) for an achieved false alarm rate of 2(0.0312) =0.0624 .

Therefore, ¢ =2x5-5=35 and the control limits and the center line of the nonparametric

Shewhart sign chart are given by UCL=5, CL=0 and LCL=-5.

Panel a of Table 2.3 displays the sample number. The two rows of each cell in panel b

shows the individual observations and sign(x; —6,) values, respectively. The SN, and T, values

are shown in panel ¢ and panel d, respectively.

As an example, the calculation of SN, (found in Table 2.3) is given.

SN, = sign(x,, —6,) + sign(x,, — 6,) + sign(x,; — 6,) + sign(x,, — 6,) + sign(x,5 — 6,)
= sign(74.012 -74) + sign(74.015 - 74) + sign(74.030 — 74) + sign(73.986 — 74) + sign(74 —74)
= sign(0.012) + sign(0.015) + 5ign(0.03) + sign(—0.014) + sign(0)
=14+1+1-14+0
=2.
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Table 2.3. Data and calculations for the Shewhart sign chart .

Panel a Panel b Panel ¢ Panel d
Individual observations
Sample . SN, T,
number sign(x; —6,)
74.012° 74.015 74.030 73.986 74.000
1 2 3
1 1 1 -1 0
73.995 74.010 73.990 74.015 74.001
2 -1 1 -1 1 1 1 3
73.987 73.999 73.985 74.000 73.990
3 -4 0
-1 -1 -1 0 -1
74.008 74.010 74.003 73.991 74.006
4 1 1 1 -1 1 3 4
74.003 74.000 74.001 73.986 73.997
5 0 2
1 0 1 -1 -1
73.994 74.003 74.015 74.020 74.004
6 -1 1 1 1 1 3 4
74.008 74.002 74.018 73.995 74.005
7 1 1 1 -1 1 3 4
74.001 74.004 73.990 73.996 73.998
8 1 1 -1 -1 -1 -1 2
9 74.015 74.000 74.016 74.025 74.000 3 3
1 0 1 1 0
10 74.;)30 74.;)()5 74.(())0() 74.;)16 74.?12 4 4
74.001 73.990 73.995 74.010 74.024
1 1 -1 -1 1 1 I 3
74.015 74.020 74.024 74.005 74.019
12 1 1 1 1 1 3 3
74.035 74.010 74.012 74.015 74.026
13 1 1 1 1 1 3 3
74.017 74.013 74.036 74.025 74.026
4 1 1 1 1 1 3 3
15 74.;)10 74.;)05 74.?29 74.(())00 74.?20 4 4

The sign chart is shown in Figure 2.2 with UCL =5, CL=0 and LCL=-5.

* See SAS Program 1 in Appendix B for the calculation of the values in Table 2.3.

" The two rows of each cell in panel b shows the x; and sign(x; —6,) values, respectively, for example,

x,, =74.012
is presented as
sign(x;; —6,) =1

74.012
1
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Figure 2.2. Shewhart-type sign control chart for Montgomery (2001) piston ring data.

Observations 12, 13 and 14 lie on the upper control limit which indicates that the process
is out-of-control starting at sample 12. It appears most likely that the process median has shifted
upwards from the target value of 74 mm. Corrective action and a search for assignable causes is

necessary.

Control charts are often compared on the basis of various characteristics of the run length
distribution, such as the ARL. One prefers a “large” in-control average run length (denoted

ARL,) and a “small” out-of-control ARL (denoted ARLgs) under a shift. Amin et al. (1995)

compared the ARL of the classical Shewhart X chart and the Shewhart-type sign chart for
various shift sizes and underlying distributions. One practical advantage of sign charts, and of all
nonparametric charts (if, of course, their assumptions are satisfied), is that the FAR (and the

ARL,) remains the same (eg. FAR=0.0624 and ARL,=16 for n=5) for all continuous

distributions. This is so because the in-control run length distribution is the same for every
continuous distribution, for nonparametric charts, by definition. This does not hold for parametric
charts (except for EWMA charts), and, as a result, parametric charts (again, with the EWMA

chart being the exception) do not enjoy the same kind of robustness properties as nonparametric
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charts do. It should be noted that the EWMA control chart can be designed so that it is robust to
the normality assumption. On this point, Borror, Montgomery and Runger (1999) showed that the

ARL,, of the EWMA chart is reasonably close to the normal-theory value for both skewed and

heavy-tailed symmetric non-normal distributions.
2.1.5. Run length distribution

The number of subgroups or samples that need to be collected (or, equivalently, the
number of plotting statistics that must be plotted) before the next out-of-control signal is given by
a chart is called the run length. The run length is a random variable denoted by N . A popular
measure of chart performance is the ‘expected value’ or the ‘mean’ of the run length distribution,
called the average run length ( ARL). Various researchers, see for example, Barnard (1959) and
Chakraborti (2007), have suggested using other characteristics for assessment of chart
performance, for example, the standard deviation of the run length distribution (SDRL ), the
median run length (MRL) and/or other percentiles of the run length distribution. This
recommendation is warranted seeing as (i) the run-length can only take on positive integer values
by definition, (ii) the shape of this distribution is significantly right-skewed and (ii1) it’s known
that in a right-skewed distribution the mean is greater than the median and thus is usually not a

fair representation of a typical observation or the center.

Since the observations plotted on the control chart are assumed to be independent, the
number of points that must be plotted until the first plotted point plots on or exceeds a control

limit is a geometric random variable with parameter p, where p denotes the probability of a
success (or, equivalently, the probability of a signal). Therefore, N ~ GEO(P(Signal)) where
P(Signal) = p. The well-known properties of the geometric distribution are given in panel a of
Table 2.4 and we use the fact that if g denotes the probability of no signal then
P(Signal) + P(No Signal) = p+¢g =1, i.e. ¢g=1-p. The properties of the run length N are
derived using the well-known properties of the geometric distribution and they are displayed in

panel b of Table 2.4.
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Table 2.4. The properties of the geometric and run length distribution.

a b
~ GEO(p) N ~ GEO(P(Signal))

X
Expected value | E(X) = E(N)= ARL=—
Xpec ea value D P(Slgnal)

1— P(Signal)
Variance var(X ) = % var(N) = —— g :
p (P(Signal))

SDRL = /1= P(Signal)

Standard deviation | stdev(X) = ﬁ :
p P(Signal)

=P(X =x)=p(l—p)*" . o
Probability mass f]; E’C) | ; 5 X =pd=p) P(N = a) = P(Signal)(1 — P(Signal))*"
X =1,4,5,...

function (pmf) for a =1,2,3,...
Cumulative F)=P(X <x)=1—(-p)* | P(N <a)=1-(1- P(Signal))® for
distribution
for x=123.... a=123,.

function (cdf)

The 100p" (0< p <1) percentile is defined as the smallest / such that the cdf, given by
P(N <1)=1-(1-P(Signal)’ for [ =1,2......, at the integer [ is at least (100X p)% , that is,
[ =min{j:1- (- P(Signal))’ > p} for j=1,2,... (2.5)
which reduces to finding the smallest positive integer / such that

> nd=p) (2.6)
In(1 - P(Signal))

The run length distribution can be described via percentiles, for example, using the 5",

25" (the first quartile, Q,), 50" (the median run length, MRL), 75" (the third quartile, Q,) and
the 95™ percentiles by substituting p in expression (2.6) by 0.05, 0.25, 0.50, 0.75 and 0.95,

respectively.
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2.1.6. One-sided control charts

A lower one-sided chart will have a LCL equal to some constant value with no UCL,
whereas an upper one-sided chart will have an UCL equal to some constant value with no LCL.
One-sided control charts are particularly useful in situations where only an upward (or only a
downward) shift in a particular process parameter is of interest. For example, we might be
monitoring the breaking strength of material used to make parachutes. If the breaking strength of
the material decreases it might tear at a critical time, whereas if the breaking strength of the
material increases it is beneficial to the user, since the material would, most likely, not tear while
being used. In such a scenario a lower one-sided chart will be sufficient, since we are only

interested in detecting a downward shift in a process parameter.

For the sign control chart, if we are only interested in detecting a downward shift we will
use a lower one-sided sign control chart with LCL=-c and no upper control limit.

Consequently, if the plotting statistic SN, falls on or below the LCL the process is declared to be

out-of-control. On the other hand, if we are only interested in detecting an upward shift we will
use an upper one-sided sign control chart with UCL=c¢ and no lower control limit.

Consequently, if the plotting statistic SN, falls on or above the UCL the process is declared to be

out-of-control.
2.1.6.1. Lower one-sided control charts
Result 2.1: Probability of a signal

The probability that the control chart signals, that is, the probability that the plotting

statistic SN, is smaller than or equal to the lower control limit, can be expressed in terms of

p=P(X,; 26,), the sample size n and the constant c. Let P*(Signal) denote the probability of

a signal, where superscript L refers to the lower one-sided chart. The probability of a signal is

then given by

29



UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

<
=

“ UNIVERSITEIT VAN PRETORIA

4

n—c¢

. j Q)

P*(Signal) = P*(SN, < LCL) = P*(SN, < —¢) = P*(2T, —n<—c) = PL(T,. <

Note that (2.7) can be solved by using the cdf of a Binomial distribution.

The probabilities, P*(Signal)’s, were computed using Mathcad (see Mathcad Program 2

in Appendix B). In doing so, we kept in mind that we ultimately wanted to use the 7, statistic in

1

the calculation of PL(Signal) , because then we could use the cdf of a Binomial distribution to

find P“(Signal). Therefore, the probability of a signal for the lower one-sided sign chart was

computed using

P*(Signal) = P*(T, < LCL) = P*(T, < a) = Z('fjp"(l— )" (2.8)

i=0 \ !
The results are given in Tables 2.5, 2.6 and 2.7 for n=5, n=10 and n =15, respectively, for
p=0.1(0.1)0.9 and a =0(1)n. The shaded column ( p = 0.5) contains the value of the in-control
average run length (ARL,) and the false alarm rate ( FAR), whereas the rest of the columns

(p #0.5) contain the values of the out-of-control average run length (ARL ) and the probability

of a signal (when the process is considered to be out-of-control).

Result 2.2: Average run length

Since the run length has a geometric distribution (recall that N ~ GEO(PL(Signal)) the
expected value of this specific geometric distribution will be equal to L; The ARL is
P~ (Signal)
the mean of the run length distribution. Therefore, we have that

1

ARL" = E(N)=———.
P~ (Signal)

2.9)
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Result 2.3: Standard deviation of the run length

Since the run length has a geometric distribution (see Result 2.2) the standard deviation

\J1—- P%(Signal)

> L(S' D . Therefore, we have that
igna

_ pL(g;
SDRL-(N) = VI~ (Signal) (2.10)

Pt (Signal)

will be equal to

Example 2.2

For a sample size of 10 (n=10), p=0.5 and a =2, we can calculate the probability of a
signal and the average run length using (2.8) and (2.9), respectively, and we obtain P"(Signal) =
10 i 10—i L 1

_1(0.5)'1-=0.5)"" =0.055 and ARL" =—— =18.29.
i 0.055

2
i=0
2.1.6.2. Upper one-sided control charts

Result 2.4: Probability of a signal

The probability that the control chart signals, that is, the probability that the plotting

statistic SN, is greater than or equal to the upper control limit, can be expressed in terms of

p=P(X,; 26,), the sample size n and the constant c. Let PY (Signal) denote the probability

of a signal, where superscript U refers to the upper one-sided chart. The probability of a signal is

then given by

PY (Signal) = PY (SN, >UCL) = P (SN, Zc):PU(Ti > ”;Cj :I—PU(Ti < ”;C—lj. (2.11)

Note that (2.11) can be solved by using the cdf of a Binomial distribution.

The probabilities, PY (Signal)’s, were computed using Mathcad (see Mathcad Program 1

in Appendix B). In doing so, we kept in mind that we ultimately wanted to use the 7, statistic in

1
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the calculation of PV (Signal), because then we could use the cdf of a Binomial distribution to

find PY (Signal). Therefore, the probability of a signal for the upper one-sided sign chart was

computed using

PY(Signal) = PY(T, >UCL) = P'(T, 2 n—a) = Z ('fjp"a— P (2.12)

The results are given in Tables 2.5, 2.6 and 2.7 for n=5, n=10 and n =15, respectively, for
p =0.1(0.1)0.9 and a =0(1)n. The shaded column ( p = 0.5) contains the value of the in-control

average run length (ARL,) and the false alarm rate ( FAR), whereas the rest of the columns
(p #0.5) contain the values of the out-of-control average run length ( ARL;) and the probability

of a signal (when the process is considered to be out-of-control).

Result 2.5: Average run length

Since the run length has a geometric distribution (recall that N ~ GEO(PY (Signal)) the

expected value of this specific geometric distribution will be equal to U; The ARL is
P~ (Signal)

the mean of the run length distribution. Therefore, we have that

1

ARL” = E(N) =————.
P~ (Signal)

(2.13)

Result 2.6: Standard deviation of the run length

Since the run length has a geometric distribution (see Result 2.5) the standard deviation

\J1—PY (Signal)

PY (Signal)

. Therefore, we have that

—_ U 3
SDRIV () = V1= P (Signal) (2.14)

PY (Signal)

will be equal to
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Example 2.3

For a sample size of 10 (n=10), p=0.5 and a =2, we can calculate the probability of a

signal and the average run length using (2.12) and (2.13), respectively, and we obtain

10 (10 A |
P (Signal) = ( _j(O.S)’(l—O.S)lO’ =0.055 and ARIY :Wgszlg,zg,

i=10-2\_ !
Application

The average run length values for the lower and upper one-sided Shewhart sign charts are
calculated by evaluating expressions (2.8) and (2.9) for the lower one-sided chart and expressions

(2.12) and (2.13) for the upper one-sided chart using n=15,10 and 15, respectively. These values
are shown in Table 2.5, Table 2.6 and Table 2.7, respectively.” As mentioned previously, the

shaded column ( p =0.5) contains the value of the in-control average run length (ARL, ) and the
false alarm rate ( FAR ), whereas the rest of the columns ( p # 0.5) contain the values of the out-
of-control average run length (ARL;) and the probability of a signal (when the process is

considered to be out-of-control).

" Table 2.5, Table 2.6 and Table 2.7 should preferably be studied together.
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Table 2.5. The average run length for the one-sided Shewhart sign chart with n=5."

ARL pY 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
P(Signal) p- 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 1.69 3.05 5.95 12.86 32.00 97.66 411.52 3125.00 100000.00
0.590 0.328 0.168 0.078 0.031 0.010 0.002 0.000 0.000
{ 1.09 136 1.89 2.97 533 11.49 32.49 148.81 217391
0.919 0.737 0.528 0.337 0.188 0.087 0.031 0.007 0.000
5 1.01 1.06 1.19 1.47 2.00 3.15 6.13 17.27 116.82
0.991 0.942 0.837 0.683 0.500 0.317 0.163 0.058 0.009
a 3 1.00 1.01 1.03 1.10 1.23 151 2.12 381 12.28
1.000 0.993 0.969 0.913 0.813 0.663 0.472 0.263 0.081
4 1.00 1.00 1.00 1.01 1.03 1.08 1.20 1.49 2.44
1.000 1.000 0.998 0.990 0.969 0.922 0.832 0.672 0.410
5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

* See Mathcad Programs 1 and 2 in Appendix B for the calculation of the values in Table 2.5.
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Table 2.6. The average run length for the one-sided Shewhart sign chart with n=10."

ARL p 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
P(Signal) p- 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 2.87 931 35.40 165.38 1024.00 9536.74 169350.88 | 9765625.00 | 10000000000.00
0.349 0.107 0.028 0.006 0.001 0.000 0.000 0.000 0.000

) 136 2.66 6.70 21.57 93.09 596.05 6959.63 238185.98 109890109.89
0.736 0.376 0.149 0.046 0.011 0.002 0.000 0.000 0.000

5 1.08 1.48 2.61 5.08 18.29 8134 628.78 12832.62 2676659.53
0.930 0.678 0.383 0.167 0.055 0.012 0.002 0.000 0.000

3 1.00 1.14 1.54 2.62 5.82 18.26 94.41 1156.93 109629.89
0.987 0.879 0.650 0.382 0.172 0.055 0.011 0.001 0.000

4 1.00 1.03 1.18 1.58 2.65 6.02 21.12 157.00 6807.23
0.998 0.967 0.850 0.633 0.377 0.166 0.047 0.006 0.000

5 1.00 1.01 1.05 1.20 1.61 273 6.65 30.49 611.64

a 1.000 0.994 0.953 0.834 0.623 0.367 0.150 0.033 0.002

6 1.00 1.00 1.01 1.06 1.21 1.62 2.85 8.27 78.15
1.000 0.999 0.989 0.945 0.828 0.618 0.350 0.121 0.013

. 1.00 1.00 1.00 1.01 1.06 1.20 1.62 3.10 14.25
1.000 1.000 0.998 0.988 0.945 0.833 0.617 0.322 0.070

g 1.00 1.00 1.00 1.00 1.01 1.05 1.18 1.60 379
1.000 1.000 1.000 0.998 0.989 0.954 0.851 0.624 0.264

5 1.00 1.00 1.00 1.00 1.00 1.01 1.03 1.12 1.54
1.000 1.000 1.000 1.000 0.999 0.994 0.972 0.893 0.651

10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

" See Mathcad Programs 1 and 2 in Appendix B for the calculation of the values in Table 2.6.
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ARL pY 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
P(Signal) | p* 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 4.86 28.42 210.63 2126.82 32768.00 931322.57 69691719.38 30517578125.00 999999999999987.00
0.206 0.035 0.005 0.000 0.000 0.000 0.000 0.000 0.000
1 1.82 5.98 28.35 193.35 2048.00 39630.75 1935881.09 500288165.98 7352941176470.50
0.549 0.167 0.035 0.005 0.000 0.000 0.000 0.000 0.000
2 1.23 251 7.88 36.88 270.81 3585.46 114687.42 17528764.00 115727346371.95
0.816 0.398 0.127 0.027 0.004 0.000 0.000 0.000 0.000
3 1.06 1.54 3.37 11.05 56.89 518.73 10910.04 988871.98 2938272765.74
0.944 0.648 0.297 0.091 0.018 0.002 0.000 0.000 0.000
4 1.01 1.20 1.94 4.60 16.88 106.98 1487.58 80245.85 107571980.98
0.987 0.836 0.515 0.217 0.059 0.009 0.001 0.000 0.000
5 1.00 1.07 1.39 248 6.63 29.56 273.78 8831.92 5358475.36
0.998 0.939 0.722 0.403 0.151 0.034 0.004 0.000 0.000
6 1.00 1.02 1.15 1.64 3.29 10.52 65.61 127391 351310.79
1.000 0.982 0.869 0.610 0.304 0.095 0.015 0.001 0.000
7 1.00 1.00 1.05 1.27 2.00 4.69 19.99 235.86 29739.88
1.000 0.996 0.950 0.787 0.500 0.213 0.050 0.004 0.000
a 8 1.00 1.00 1.02 1.11 1.44 2.56 7.63 55.37 3219.26
1.000 0.999 0.985 0.905 0.696 0.390 0.131 0.018 0.000
9 1.00 1.00 1.00 1.04 1.18 1.68 3.59 16.38 444.51
1.000 1.000 0.996 0.966 0.849 0.597 0.278 0.061 0.002
10 1.00 1.00 1.00 1.01 1.06 1.28 2.06 6.09 78.61
1.000 1.000 0.999 0.991 0.941 0.783 0.485 0.164 0.013
11 1.00 1.00 1.00 1.00 1.02 1.10 142 2.84 18.00
1.000 1.000 1.000 0.998 0.982 0.909 0.703 0.352 0.056
12 1.00 1.00 1.00 1.00 1.00 1.03 1.15 1.66 543
1.000 1.000 1.000 1.000 0.996 0.973 0.873 0.602 0.184
13 1.00 1.00 1.00 1.00 1.00 1.01 1.04 1.20 222
1.000 1.000 1.000 1.000 1.000 0.995 0.965 0.833 0.451
14 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.04 1.26
1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.965 0.794
15 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

* See Mathcad Programs 1 and 2 in Appendix B for the calculation of the values in Table 2.7.
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2.1.7. Two-sided control charts
Result 2.7: Probability of a signal

The probability that the control chart signals, that is, the probability that the plotting
statistic SN, is greater than or equal to the UCL, or smaller than or equal to the LCL, can be
expressed in terms of p = P(X; 2 6,), the sample size n and the constant ¢ . The probability of

a signal is then given by

n—c¢

5 ] (2.15)

P(Signal) = 1— P(~c < 2T, —n<c):1—P(T,. < ”;C—1J+P(T,. <

Note that (2.15) can be solved by using the cdf of a binomial distribution.
Result 2.8: Average run length

Since the run length has a geometric distribution we have that

1

ARL=E(N)=—".
P(Signal)

(2.16)

Compare expression (2.16) to expressions (2.9) and (2.13).

Result 2.9: Standard deviation of the run length

Since the run length has a geometric distribution we have that

SDRL(N) = V1~ PGignab 2.17)

P(Signal)

Compare expression (2.17) to expressions (2.10) and (2.14).
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2.1.8. Summary

In Section 2.1 we have described and evaluated the nonparametric Shewhart-type sign
control chart. Generally speaking, when the underlying process distribution is either asymmetric
or symmetric with heavy tails, sign charts are more efficient while the reverse is true for normal
and normal-like distributions with light tails. One practical advantage of the nonparametric
Shewhart-type sign control chart is that there is no need to assume a particular parametric
distribution for the underlying process (see Section 1.4 for other advantages of nonparametric

charts).
2.2. The Shewhart-type control chart with warning limits
2.2.1. Introduction

It 1s known that standard Shewhart charts are efficient in detecting large process shifts
quickly, but are insensitive to small shifts (see, for example, Montgomery (2005)). Additional
supplementary rules have been suggested to increase the sensitivity of standard Shewhart charts
to small process shifts. Shewhart (1941) gave the first proposal in making the standard Shewhart
chart more sensitive to small process shifts by proposing that additional sensitizing tests should
be incorporated into the standard Shewhart chart. Various rules or ‘tests for special causes’ have
been considered in the literature for parametric control charts; see for example, the rules
associated with the Shewhart control chart in Nelson (1984) and in the Western Electric

handbook (1956). See also the discussion in Montgomery (2001).

Runs rules can be used to increase the sensitivity of standard Shewhart charts. Denote

each runs rule by R(r,n,k,l) where a signal is given if r out of the last n points fall in the
interval (k,l), where r <n are integers and k <[. The well-known standardized Shewhart X

control chart is denoted by {R(1,1,—e,—3) U R(1,1,3,%0)}, since the standardized Shewhart X
control chart signals if any charting statistic (1 out of 1 point) falls in the interval (—oo,—3) or if

any charting statistic (1 out of 1 point) falls in the interval (3,0).
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Page (1955) considered a Markov-chain approach for simple combinations of runs rules.
Amin et al. (1995) considered Shewhart-type sign charts with warning limits and runs rules. Page

(1962), Weindling, Littauer and Oliveira (1979) and Champ and Woodall (1987) studied the

properties of X charts with warning limits.

Incorporating the runs rules {R(1,1,—,a, ) U R(L,1,a, ,%)} into the Shewhart sign chart is
similar to using action limits where action will be taken if any 1 point falls outside the action
limits. Incorporating the two runs rules {R(r,r,w,,a,) U R(r,r,a,,w,)} into the Shewhart sign
chart is similar to using warning limits where action will be taken if r successive points fall
between the warning and action limits, that is, action will be taken if r successive points fall

between w, and a, or action will be taken if r successive points fall between a, and w, .
Hence, rule A follows: Action will be taken if r successive points fall between w;, and q; , or

if r successive points fall between a, and w, , or if any point falls outside the action limits. Let
L denote the ARL of rule A. Assume that the upper action and upper warning limits are equal
to some constants represented by a and w, respectively, thatis, a, =a and w;, = w . In the case
of the Shewhart-type sign control chart with warning limits, sensible choices for the lower action
and lower warning limits are —a and —w, respectively, that is, a, =—a and w, =—-w. The
latter choices are sensible, since the in-control distribution of SN, is symmetric about zero (see

Section 2.1.3).

In Section 2.2.3.1 two runs rules are incorporated into the upper one-sided Shewhart sign
chart. Similarly, in Section 2.2.3.2 two runs rules are incorporated into the lower one-sided
Shewhart sign chart. The average run lengths are computed for the upper and lower charts,
respectively. Finally, in Section 2.2.4 two runs rules are incorporated into the two-sided Shewhart

sign chart.
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2.2.2. Markov chain representation

A Markov chain representation of a Shewhart chart supplemented with runs rules is used
for calculating the probability that any subset of runs rules will give an out-of-control signal. In
this section some basic concepts of matrices and transition probabilities are given and explained.

An illustrative example follows in the next section, i.e. Section 2.2.3.1.

Let p, represent the probability that the process will, when in state i, next make a
transition to state j. Since probabilities are non-negative, p,; = 0. Let TPM denote the matrix of

one-step transition probabilities. The abbreviation TPM will be used throughout the text for

transition probability matrix which is given by

Powo Por " Poa
P Pu 0 Pu
TPM ity =LPs1=| | for i=0,,...,n and j=0,,.,n with n>2.
Pio Pa " Pi
pnO pnl pnn

The i” row,(p,y» Pi»er P, ) » cONtains all the transition probabilities to go from state i to one of
the states in Q, where Q denotes the state space, i.e. Q ={0,1,...,n}. We have that

> p;=1 Vi (2.18)

jeQ

since it’s certain that starting in state i the process will go to one of the states in one step.
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2.2.3. One-sided control charts
2.2.3.1. Upper one-sided control charts

The upper one-sided Shewhart sign chart, described previously, is efficient in detecting
large process shifts quickly. Since it is known to be inefficient in detecting small process shifts,
an upper warning limit is drawn below the upper action limit to increase its sensitivity for

detecting small shifts.

Define rule A, as: ‘Action will be taken if r successive points fall between w,, and q;
(denoted by R(r,r,w,,a, )) or if any point falls above a; (denoted by R(1,1,a,,,o0))’. Clearly,
rule A, is created to detect upward shifts. Let L’ denote the ARL of rule A,. L’ can be

calculated by enumerating the possible combinations of the positions of the plotted points and
treating them as the states of a discrete Markov process. The following set of rules is used:

{R(r,r,w,,a,)UR(,]1,a,,)}. The 3 mutually exclusive intervals (also referred to as zones)

which are considered are given by:

Zone Z, = the interval (—oo,w,)
Zone Z, = the interval [w ,a;)

Zone Z,=the interval [a;, )

These zones are graphically represented in Figure 2.3.
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Zone 2 [wiroag )

Zone 2 (=0, Wiy )

—C0

R(r,r,w,,a,): The chart will signal if any r successive points fall in Zone Z,; or

Figure 2.3. A control chart partitioned into 3 zones .

R(L1,a,,o0) : The chart will signal if any 1 point falls in Zone Z, .

Classification of states

If a state is entered once and can’t be left, the state is said to be absorbent. As a result, the

probability of going from an absorbent state to the same absorbent state is equal to one. The

transient (non-absorbent) states are the remaining states of which the time of return or the number

of steps before return is uncertain.

Table 2.8. Classifications and descriptions of states.

State Absorbent (A)/
number Description of state Non-absorbent
(NA)
0 1 point plots in Zone Z,, NA
1 1 point plots in Zone Z, NA
2 2 successive points plot in Zone Z, NA
3 3 successive points plot in Zone Z, NA
r—1 r —1 successive points plot in Zone Z, NA
r r successive points plot in Zone Z; or 1 point plots in Zone Z, A

* Any point plotting on a line is to be taken as plotting into the adjacent more extreme zone of the chart.
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Let p, denote the probability of plotting in Zone Z, for i =0,1,2. Therefore:

D, 1s the probability of plotting in Zone Z,; p, = P(SN, <w,);
p, 1s the probability of plotting in Zone Z,;; p, = P(w, < SN, <a,); and

D, 1s the probability of plotting in Zone Z,; p, = P(SN; 2 a,).

2
Clearly, Zpi =po+p, +p, =1, since the statistic must plot in one of the 3 zones. The
i=0

transition probability matrix, TPM =|[ pils for i =0,1,2,....,r and j=0,1,2,...,r is given by

Poo Po P Pouy Do, pe P, 0 - 0 P,

P1o Pu P o Pigen P, e 0 p - 0 P,

Pao P P»n 0 Pan Do, pe, 0 0 - 0 P,

TPM(r+l)><(r+l) = : : : . . = X . . . :
Pono Pon Pov2 ° Poneny P p, 0 O 0 p +p,

Pro Pn P Pr(,,l) D, 0 0 0O --- 0 1

From expression (2.18) we have Z P =1 Vi. This is easily proven for i =0,1,2,...,r.

jeQ
For example, for i =0 we have that ZPOJ =p,+p, +0+---+0+ p, =1. The rest of the
j=0

calculations follow similarly. Table 2.9 illustrates that the TPM can be partitioned into 4 sections.

Table 2.9. Transition probabilities for a Markov chain with one absorbing state.

States at time 7 + 1 States at time 7 + 1
States | o : :
attime | N | [ L T B A 0 1 2 | -l
; A) (NA) | (NA) NA) (A (NA) | (NA) | (NA) (NA) 1 (A)
0 ! '
(N A) P 0 P 1 O v O I p2
1 :
(NA) Po 0 )2 ... 0 D, _ |
2 I :
(NA) Do 0 0 0 D, 0., P,
(;\I_Al) pO O O O pl + p2
w 0] oo 0 1 0y, Ly
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po P O 0
Po P 0

where the sub-matrix Q. =| p, 0 0 --- 0] is called the essential transition probability
P, 0 0 - 0

sub-matrix and it contains all the transition probabilities of going from a non-absorbent
(transient) state to a non-absorbent state, Q :(NA — NA). P = (p, Py P, - P *D, )

contains all the transition probabilities of going from each non-absorbent state to the absorbent

=(0 0 0 --- 0) contains all the transition probabilities of going

states, p :(NA - A). 0,
from each absorbent state to the non-absorbent states, 0' : (A — NA). 0' is a row vector with all
its elements equal to zero, since it is impossible to go from an absorbent state to a non-absorbent
state, because once an absorbent state is entered, it is never left. 1, represents the scalar value

one which is the probability of going from an absorbent state to an absorbent state, 1: (A — A).

Therefore,

Qr><r ! Brxl

TPM o =| — — = | (2.19)
Ol

—1Ixr Ix1

Let L' denote the run length of the upper one-sided chart with initial state i for

i=0,1,2,...,r —1. To calculate the probability mass function, define the rx1 vector LZ by

P(L =h) Probability that the run length of the chart with initial state Ois &
U P(L! =h) Probability that the run length of the chart with initial state 1is A
L, = . = .
P(L_ =h) Probability that the run length of the chart with initial state (r —1)is &
Brook and Evans (1972) showed that these vectors can be calculated recursively using
L/ =(-Q)
and (2.20)

LY =LY, for h=23,..
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where 1 is a rx1 column vector of 1's, I is the rxr identity matrix and Q is the rxr

essential transition probability sub-matrix obtained from the partitioned TPM.

Multiplying out the matrices in (2.20) we get expressions for L for i =1,2,...r —1.

LV =1+ p, LY + p,IV,, for (i=012,.,r—2)

i+1
and (2.21)
L =1+ p,L; .

These equations may be solved recursively for L ,...,L] | in terms of L :

L] =1+ p,L; + p,L]

Ly =1+ p,L] + p,(1+ p,L] + p,L])

Ly =1+ p,Ly + p, + p,poLo + p,’ L)

L =1+ p,LY + p, + p,p LY + p, A+ p, LY + p,IV)
IV =1+ p,LY + p, + ppo LY+ p + plp LY + p, LY

LY =1+ p LY + p, + p,poLs + p,” + p > po LY + p +.t p/ LY,
Lg =1+ poLg tpt plpOLg + p12 + plpoLg + p13 Tt plr_l 1+ poLg)
Ly =14 poLy +p,+pipoly +p” + 0 poLy +p +etp ™ 4 p 7 po LG

r 1

LY —p, LY —pp LY = p poll —..=p LY =14+ p, +p +p .+ p (2.22)
r—1 r
) ) i 1= ) .
It can be proven by induction on r that Zpl = 1 PL for p, #1. Making use of this,
i=0 — P
expression (2.22) can be simplified to
1 ' 1-p,/
Lg _poLg B s
1-p, 1-p,
ol l=pi=p=p) | _1-p/
v =
1-p, 1-p,
= 1= . (2.23)

I-p, _po(l_plr)
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Expression (2.23) of this thesis is given in Amin et al. (1995) and determined in Page
(1962). Expression (2.23) is a closed form expression of the in-control average run length of a

one-sided chart with warning and action limits in the positive direction only.

Therefore, the in-control average run length of the one-sided (upper or positive direction)

chart with warning limit w;, and control limit (action limit) at a;, is given by (2.23) where

w+n-2
2 (n) . .
po=P(SN, <w,)= (Jpl (1-p)" (2.24)
i=0
and
a+n-2 wH+n—2
2 n . . T n . .
p,=Pw, <SN, <a,)= ), i pla-p=> ; piad-p). (2.25)
i=0 i=0

The derivations of (2.24) and (2.25) are given below.

Derivation of expression (2.24):

Po
=P(SN, <wy)

by using the relationship between SN, and 7, (recall that SN, = 2T, —n ) we obtain

=PQ2T, —n<wy)

:P(T,. W +n]
2

_ p(T, < Lf’l—zj
! 2

given that 7; is binomially distributed with parameters n and p = P(X; 2 6,) we obtain

wy +n—2

2 n i n—i
= 2 |.|]Pa-p
=0 \!
since the upper warning limit is equal to some constant w, i.e. w,, =w (see Section 2.2.1) we

obtain

w+n—=2

iy

=0

]

46



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quu® YUNIBESITHI YA PRETORIA

Derivation of expression (2.25):

P
=P(w, <SN,;<ay)

by using the relationship between SN, and 7, (recall that SN, = 2T, —n ) we obtain
=P(w, <2T,-n<ay,)

_p(Wutn o _agtn
2 l 2

_ P[T SMJ_ P(T SM)
! 2 ! 2

given that 7; is binomially distributed with parameters n and p = P(X; 2 6,) we obtain

ay +n-2 wy +n-2

T

since the upper action and warning limits are equal to constant values represented by a and w,

respectively, i.e. a, =a and w, =w (see Section 2.2.1), we obtain

a+n—2 w+n—2

:i ( Jp a-pi-3 (’:jp"a—p)""

i=0

The in-control average run length of the one-sided (lower or negative direction) chart with
warning limit at w, and control limit (action limit) at a, can be found by replacing p, and p,
by g, and g, where g, = P(SN; >w,) and q, = P(a;, <SN; <w,). The in-control average run
length for the two-sided chart, denoted L, can then be obtained using a result in Roberts (1958),

1 = i+i The lower one-sided and two-sided charts with warning limits are discussed in

L, LV I

detail in Sections 2.2.3.2 and 2.2.4 respectively.

The in-control average run length for the upper one-sided control chart with both warning
and action limits is calculated for a specific example (n =10, p =0.5) by evaluating expressions

(2.23), (2.24) and (2.25). These values are shown in Table 2.10. Amin, Reynolds and Bakir
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(1995) studied Shewhart charts with both warning and action limits. They constructed a table
containing the values of L] for Shewhart charts using the sign statistic when n=10 and
p=0.5. The values of L were noted for a, =8 and 10, w, =0(2)8 and r=2,3,...,7. Table
2.10 is similar to the table constructed by Amin, Reynolds and Bakir (1995). Note that the values

of L] can also be constructed for other values of n,a,,w, and r.

Table 2.10. Values of L] for Shewhart charts with both warning and action limits when n =10

and p=0.5."
a, =8 a, =10
wy 0 2 4 6 2 4 6 8

r

2 4.1 9.2 30.2 79.4 9.6 38.6 269.2 933.7
3 7.9 23.0 70.1 92.4 27.8 194.7 890.3 1023.0
4 13.5 44.7 88.4 93.1 73.0 593.7 1015.8 1024.0
5 21.2 66.9 92.3 93.1 175.4 911.2 1023.6 1024.0
6 31.0 81.5 93.0 93.1 364.4 1002.8 1024.0 1024.0
7 42.2 88.5 93.1 93.1 609.8 1020.3 1024.0 1024.0

Studying Table 2.10 we observe the following. For values of w, close to a, and r
reasonably large, the introduction of warning lines will have little effect on L{ . The reason being
thatif wy, is close to a;, , the probability of having r successive points plot in this small interval

[w,,a, ) is small. As an example, the calculation of the in-control average run length for n =10,

u’

p=05, a, =8, w, =2 and r =6 will be given. By substituting these values into equations

(2.23), (2.24) and (2.25) we obtain

5

10
Py = Z[ ; j(O.S)lO =0.6230,

i=0

8 (10 o (10 o
PFZOZ () —Z_O] . 05" =03662 and
1-p/ 1-(0.3662)°

[f({ = — = -
1-p,—p,(1=p,/)  1-0.3662-0.6230(1-(0.3662)° )

=81.4689 =81.5.

" See Mathcad Program 3 in Appendix B for the calculation of the values in Table 2.10. This table also appears in
Amin, Reynolds and Bakir (1995), page 1606, Table 2.
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2.2.3.2. Lower one-sided control charts

The lower one-sided Shewhart sign chart, described previously, is efficient in detecting
large process shifts quickly. Since it is known to be inefficient in detecting small process shifts, a
lower warning limit is drawn above the lower action limit to increase its sensitivity for detecting

small shifts.

Define rule A, as: ‘Action will be taken if r successive points fall between a, and w,
(denoted by R(r,r,a,,w,)) or if any point falls below a, (denoted by R(1,1,—0,a,))’. Clearly,
rule A, is created to detect downward shifts. Let L" denote the ARL of rule A,. L; can be
computed similarly as L{ (see equation (2.23)) with p, and p, being replaced by g, and ¢,
where ¢, denotes the probability that a given sample point falls above w; and g, denotes the

probability that a given sample point falls between a, and w, . Therefore, we have that

1_ r
L:= h_ (2.26)
1_% _40(1_511 )
where
4y =P(SN, >w,)=1-)" l. p'(1-p)" (2.27)
i=0
and
n;w n A . n;u n A .
q,=Pla, <SN, <w,)=) ; pia-p) =y ; pd-p)". (2.28)
i=0 i=0

Compare expressions (2.27) and (2.28) to (2.24) and (2.25).

The in-control average run length for the lower one-sided control chart with both warning

and action limits is calculated for a specific example (n =10, p =0.5) by evaluating expressions

(2.26), (2.27) and (2.28). These values are shown in Table 2.11.
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Table 2.11. Values of L for Shewhart charts with both warning and action limits when n =10

*

and p=0.5.
a, =10
Wi
0 2 4 6 2 4 6 8

r

2 4.1 9.2 30.2 79.4 9.6 38.6 269.2 933.7
3 7.9 23.0 70.1 92.4 27.8 194.7 890.3 1023.0
4 13.5 44.7 88.4 93.1 73.0 593.7 1015.8 1024.0
5 21.2 66.9 92.3 93.1 175.4 911.2 1023.6 1024.0
6 31.0 81.5 93.0 93.1 364.4 1002.8 1024.0 1024.0
7 42.2 88.5 93.1 93.1 609.8 1020.3 1024.0 1024.0

Studying Table 2.11 we observe the following. For values of w, close to a, and r
reasonably large, the introduction of warning lines will have little effect on L . The reason being
that if w, 1is close to a,, the probability of having r successive points plot in this small interval
(a,,w,] is small. As stated earlier, due to the symmetry of the Binomial distribution we have
that if a;, =a then let a, =—a and if w, =w then let w, =—w. As a result the values of L

and the values of L are equal.

As an example, the calculation of the in-control average run length for n =10, p=0.5,

a, =8, w, =2 and r=6 will be given. By substituting these values into equations (2.26),

(2.27) and (2.28) we obtain

4 (10 0
4 710.5) =0.6230,
i=0 l

-3
q, = i(l,o](o.sf‘) —2(1_0](0.5)‘0 =0.3662 and

i=0
1-q, 1-(0.3662)°

L= = 6
1-q,—q,d—q,") 1—0.3662—0.6230(1—(0.3662) )

=81.4689 =81.5.

" See Mathcad Program 3 in Appendix B for the calculation of the values in Table 2.11.
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2.2.4. Two-sided control charts

Roberts (1958) provided a method of approximating the ARL of the two-sided Shewhart
chart with both warning and action limits. The ARL for each separate one-sided Shewhart chart
was calculated and then combined by applying equation (2.29)

1.1 + L . (2.29)

L, Ly L

(See Appendix A Theorem 1 for a step-by-step derivation of equation (2.29)). Equation (2.29)
can be re-written as

LyLy

— 0™ 2.30
LE+ L] (2.30)

0
where L, denotes the ARL of a two-sided chart. In practice some observations can be tied with

the specified median. If the number of such cases, within a sample, is small (relative to n) one can
drop the tied cases and reduce n accordingly. On the other hand, if the number of ties is large,

more sophisticated analysis might be necessary.
The in-control average run length for the two-sided control chart with both warning and

action limits is calculated by evaluating expression (2.30). These values are shown in Table 2.12

for n=10, p=0.5, a=8 and 10,w=0(2)8 and r =2,3,...,7.

Table 2.12. Values of L, for Shewhart charts with both warning and action limits when n =10

and p=0.5 N
a=8§8 a=10
w
0 2 4 6 2 4 6 8

r

2 2.1 4.6 15.1 39.7 4.8 19.3 134.6 466.9
3 4.0 11.5 35.0 46.2 13.9 97.4 445.2 511.5
4 6.7 224 44.2 46.5 36.5 296.8 507.9 512.0
5 10.6 33.5 46.2 46.5 87.7 455.6 511.8 512.0
6 15.5 40.7 46.5 46.5 182.2 501.4 512.0 512.0
7 21.1 442 46.5 46.5 304.9 510.2 512.0 512.0

" See Mathcad Program 3 in Appendix B for the calculation of the values in Table 2.12.
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Studying Table 2.12 we observe the following: For values of w close to a and r
reasonably large, the introduction of warning limits will have little effect on L,. The reason being
that if w is close to a (and, consequently, —w is close to —a), the probability of having r
successive points plot in the small interval [w,a) or (—a,—w] is small. These procedures can’t be
meaningfully illustrated using the data of Montgomery (2001) because the sample size n = 5 used

there is too small. It may be noted that the highest possible L, values for the basic (without

warning limits) two-sided sign chart can be seen to be 2" (see Amin, Reynolds and Bakir
(1995) pp. 1609-1610 and their Appendix on pp. 1620-1621 for a detailed discussion on and a
proof that max L, =2"™"). Thus, achievable values of L, are too small for practical use, unless n
is about 10. In Table 2.13, the charting constants, i.e. the warning and action limits, are shown,
along with the achieved ARL values, for the in-control and one out-of-control case. The ARL

values for the two-sided sign chart, without the warning limits, are shown in each case, within

parentheses, for reference.

Table 2.13. In-control ARL values for the two-sided sign chart with and without warning limits

for n=10".

r=2 \ r=3 \ r=6
w=7anda =10
p=0.5 208.97 476.03 511.99
(in-control) (512.00) (512.00) (512.00)
p=0.6 35.03 103.28 162.17
(out-of-control) (162.60) (162.60) (162.60)
w=T7anda=8
p=05 42.86 46.37 46.55
(in-control) (46.55) (46.55) (46.55)
p=0.6 16.37 20.16 20.82
(out-of-control) (20.82) (20.82) (20.82)

It is seen that adding warning limits to a control chart decreases its average run length.
For example, adding a warning limit at 7 to the basic sign chart with an action limit at 10

decreases the ARL, approximately 59% (from 512 to 208.97), when r =2, 7% (512 to 476.03)

when r=3 and 0.002% (512 to 511.99) when r =6, respectively. The out-of-control average

" See Mathcad Program 3 in Appendix B for the calculation of the values in Table 2.13.
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run length is decreased by approximately 79% (from 162.6 to 35.03) when r=2, 36% (from
162.6 to 103.28) when r =3 and 0.26% (from 162.6 to 162.17) when r =6, respectively. Note
that although the out-of-control average run length is reduced significantly (which means a

quicker detection of shift) by the addition of warning limits, the ARL, is also reduced
significantly. This poses a dilemma in practice, since it is desirable to have a high ARL, and a

low FAR, so one would need to strike a balance. One possibility is to use warning limits closer to
the action limits. For example, from the second panel of Table 2.13, we see that adding a warning

limit at 7 to the sign chart with an action limit of 8, decreases the ARL, by only 8% (from 46.55
to 42.86) when r=2 and has little effect on ARL, when r is reasonably large. Amin et al.

(1995) concluded that for the upper one-sided Shewhart-type sign chart, introduction of warning
limits will have little effect on the in-control average run length, but can significantly reduce the
out-of-control average run length for small shifts when the warning limits are chosen close to the
action limits and r is reasonably large. Similar conclusions are expected to hold for two-sided

charts.

Up to this point we have discussed methods to increase the sensitivity of standard
Shewhart control charts to small process shifts. Another method is to extend the existing charts
by incorporating various signaling rules involving runs of the plotting statistic. The signaling
rules considered include the following: A process is declared to be out-of-control when (a) a
single point (charting statistic) plots outside the control limit(s) (/-of-1 rule) (b) k consecutive
points (charting statistics) plot outside the control limit(s) (k-of-k rule) or (c) exactly k of the last
w points (charting statistics) plot outside the control limit(s) (k-of-w rule). We can consider these
signaling rules where both £ and w are positive integers with 1<k <w and w>2. Rule (a) is
the simplest and is the most frequently used in the literature. Thus, the /-of-1 rule corresponds to
the usual control chart, where a signal is given when a plotting statistic falls outside the control
limit(s). Rules (a) and (b) are special cases of rule (c); rules (b) and (c) have been used in the

context of supplementing the Shewhart charts with warning limits and zones.
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Example 2.4

A two-sided Shewhart chart incorporating the 2-of-2 rule with one absorbing state that

corresponds to the out-of-control signal

In this example, a control chart is viewed as consisting of the zones shown in Figure 2.4.

Zone 24 [vr. agr )

Ll
Zone 24

Wi
Zong 2o (@r wr]

2

-

Figure 2.4. A control chart partitioned into 5 zones.

Let p; denote the probability of plotting in Zone Z; for i=12,3,4,5. To illustrate the

calculation of signal probabilities, the following set of rules is used:
{R(LL,=e0,a, ) UR(2,2,a,,w,) UR(2,2,w,,a,) UR(La,,)}.

R(1,1,—e0,a, ) : The chart will signal if any 1 point falls in Zone Z, (below LCL).
R(2,2,a,,w,): The chart will signal if any 2 successive points fall in Zone Z, .
R(2,2,w, ,a, ): The chart will signal if any 2 successive points fall in Zone Z,.

R(11,a, ,%) : The chart will signal if any 1 point falls in Zone Z5 (above UCL).
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Table 2.14. Classifications and descriptions of states.

State Absorbent (A)/
number Description of state Non-absorbent

(NA)

0 No points beyond any of the control limits. Point plots in Zone Z, NA

1 Point plots in Zone Z, NA

2 Point plots in Zone Z, NA

3 Point plots below a, or above a, or 2 successive points fall between A
w, and a, or 2 successive points fall between w, and a, .

5
Clearly, Zpi =p,+p,+p;s+ps+ps =1, since the statistic must plot in one of the 5
i=1

zones. The transition probabilities are given in the transition probability matrix, TPM =[p,], for

i=0123 and j=0,123.

Po Por Por Pos Ps P, D, Pt Ds
ey | P Puo Poo Pu| (P 0 pe pitpstp
P P Pxn P ps P, 0 p+ps+p,

P3Pz Pn P 0 0 O 1

From (2.18) we have z 2 =1 Vi. This is easily shown for i =0,1,2,3. For example,

jeQ
3
for i=0 we have that Zpoj =p,+p,+p,+p +ps=1. The rest of the calculations follow
Jj=0

similarly. Table 2.15 illustrates that the TPM can be partitioned into 4 sections.
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Table 2.15. Transition probabilities of the 2-of-2 rule for a Markov chain with one absorbing

state.
States at time 1+ 1 States at time ¢ + 1.
States | ;
at 0 1 2 3 0 1 2 3
time (NA) | (NA) | (NA) (A) (NA) (NA) (NA) (A)
t | |
0 g .
(NA) p3 p2 p4 E pl pS -
1 i :
(NA) p3 0 p4 i pl+p5+p2 Q3><3 ; £3><1
2
A | s
3 )
(A) O O 0 1 Q 1x3 11><1

Brook and Evans (1972) showed that the ARL for initial state i can be calculated by
adding the elements in the i" row of (I, , —Q,,)”" . Making use of (I —Q)™" is typically done in

stochastic processes where one works with recurrence and first passage times (see, for example,

Bartlett (1953)).

1 00 Ps P Py l-py —p, —p,
I;=05:=|0 1 O|=|py 0 p,|=|—p; I —p,
0 0 1 ps P, O —P; — D 1
l=p; =p, —p,)
(13x3_Q3><3)7l: —Ps 1 —Ps| =
—P; — D 1
14 p,p, -1+ p,p, -p,(I+p,) —p,s(I+p,)
-p;(+p,) —1+p;+p;p, Dy
(=14 pypy + Ps + P3P P> + P3P> + P3P,)
—-p;(+p,) — P> —1+ps+psp,

The ARL for initial state i can be calculated by adding the elements in the i” row of

(I —0ys) " for i=123.
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Example 2.5
A two-sided Shewhart chart incorporating the 2-of-2 rule with more than one absorbing

state that corresponds to an out-of-control signal.

This example is similar to the previous example in having three transient states, but
differs from the previous example by having more than one absorbing state. By changing the
classification of the states, the generalization to more than one absorbing state is considered. We
need to introduce a rule number and this is done by adding a subscript to each rule, i.e. in general

we have that R(r,n,k,l) which now becomes R i (r,n,k,l) where j denotes the rule number. This
modification allows for a separate absorbing state, A_/., that is associated with each of the runs
rules, R;(r,n,k,l). This modification of Champ and Woodall’s (1987) method was done by

Champ and Woodall (1997). As a result, we have the following rules with the corresponding

absorbing states (see Figure 2.4 for the partitioning of the control chart into 5 zones):

® R (LlL—oo,a,) associated with absorbing state A,: The chart will signal if any 1 point
falls in Zone Z, (below LCL).

* R,(2,2,a,,w,) associated with absorbing state A,: The chart will signal if any 2
successive points fall in Zone Z, .

* R,(2,2,w,,a,) associated with absorbing state A,: The chart will signal if any 2
successive points fall in Zone Z, .

* R,(Ll,a,,) associated with absorbing state A,: The chart will signal if any 1 point falls

in Zone Z; (above UCL).
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Zones
State State 7, Z, 73 74 Zs Absorbent (A)/
number | vector (—ooya, ]| (a,,w, 1| W, ,wy) | [wy,ay,) | [a,,) Non-z(llgio)rbent
0 (0,0) A, (1,0) (0,0) 0,1 A, NA
1 (1,0) A, A, (0,0) 0,1 A, NA
2 0,1) A (1,0) (0,0) A, A, NA
3 A, A, A A, A, A, A
4 A, A, A, A, A, A, A
5 A, A, A, A, A, A, A
6 A, A, A, A, A, A, A

Each non-absorbing state in Table 2.16 is represented by a vector of 0’s and 1’s. The

vector indicates by the 1’s only those observations that may contribute to an out-of-control

signal. Let p, denote the probability of plotting in Zone Z; for i=12,3,45. Clearly,

5
Zpi =p,+p,+p;s+p,+ps =1, since the statistic must plot in one of the 5 zones. The
i=1

transition probabilities are given in the transition probability matrix, 7PM = p;ls for i=0,1,...,6

and j=0,1,..6.

IPM ., =

Po  Pn
P Pn
Py P
Py P
Py Pau
Pso Psi
Pso  Par

P Pos
P Pis
Prn  Px
Py Py
Py Pg
Psy  Dss
Pe2 P

Pos Pos
Py Pis
Py Pos
Pis Pss
P Dis
DPsq Pss
Pes Des

Pos
Pis
P
P36
Pas
Pse
Des

Ps P,
ps O
Ps P
0 O
0 O
0 O
0 O

S o o =

o o = O O

0 ps
0 ps
Py Ps
0O O
0 O
1 0
0 1

From (2.18) we have Z p,; =1 Vi.This s easily shown for i =0,1....,6 . For example, for i =0

jeQ

6
we have that ZPOJ =p,+p,+p,+p, +0+0+ p, =1. The rest of the calculations follow

similarly. Table 2.17 illustrates that the TPM can be partitioned into 4 sections.

J=0
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Table 2.17. Transition probabilities of the 2-of-2 rule for a Markov chain with more than one

absorbing state.

States at time 7 + 1 States at time 7 + 1
“‘S‘t%t‘f‘z (I\?A) (NlA) (1\12A) (/i) (i) (i> (2) (I\?A> <NIA> <N2A>§ <i> <i> é) (2)
(h?A) Ps 2 Py po| 0O 0| ps
(NIA) P 0 Ps pol pra| O | ps Oy Ci
IS IR R LI N O T N e
w |l 0o o i1]lo]o]o0
w0 o ool 1]0]0 , ;
ol oo oitolo]1]o A -
ol o] o] otojo|o]|1 |
Ps Py Py
where the essential transition probability sub-matrix Q,.,=|p; 0 p, | contains all the
ps P, O

transition probabilities of going from a non-absorbent state to a non-absorbent state,
pp 0 0 ps

Q:(NA— NA). C,,=|p, p, O pg| contains all the transition probabilities of going
pe 0 p, ps

from each non-absorbent state to the absorbent states, C: (NA — A). Z, , = contains

S O O O
S O O
S O O

0

o

all the transition probabilities of going from each absorbent state to the non-absorbent states,
Z:(A— NA). The Z matrix is the zero matrix, since it is impossible to go from an absorbent

state to a non-absorbent state, because once an absorbent state is entered, it iS never left.

1 000
o = 0 contains all the transition probabilities of going from an absorbent state to

oS O =
[e]

0
1
0 0

[S—

an absorbent state, I : (A — A). A square matrix of this form is called the identity matrix.
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TPM =TPM ' represents the probability that the process will, when in state i, next make

a transition to state j, in one step. Consider the matrix, TPM " (read: “TPM to the power of
n”), the non-absorbing state i and the absorbing state j. The j” component of TPM" is the

probability that a signal will be caused by the j” set of runs rules that can cause a signal on or

th

before the n” sampling stage given the chart begins in non-absorbing state i. For that reason, an

n—eo

equation for TPM" is desired. In addition, we will show that 1im7PM" :(i I;J where the

elements of the matrix B are the probabilities that the chart will go from a non-absorbent state

(where no signal is given) to an absorbent state (where a signal is given) in n transitions. We are

interested in the matrix B, because the (i, j)™ element of B is the long run proportion of times

th

the j™ set of runs rules causes the chart to signal given the chart starts in a non-absorbing state

i.

Probabilities on the n™ sampling stage

C
TPM7X7 — TPM71><7 — (Q3><3 3><4J

4x3 I 4x4

TPM *

<7

=TPM )

TxT

-TPM ]

<7

— (Q3><3 C3><4 j(QSXS C3><4 j
Z 4x3 I 4x4 Z 4x3 4x4

— ( Q32><3 + C3><4Z 4x3 Q3><3 C3><4 + C3><4 I 4><4J — (Q32>G Q3><3 C3><4 + C3><4J
Z 4x3 Q3><3 + I 4x4 Z 4x3 Z 4x3 C3><4 + I j><4 Z 4x3 I 4x4

~
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TPM.
=TPM, -TPM),
= sy 034Csy +Cyyy ][sts CM]
Z 4x3 I 4x4 Z 4x3 I 4x4
— Q33><3 + Q3><3 C3><4Z 4x3 + C3><4Z 4x3 Q32><3 C3><4 + Q3><3 C3><4 I 4x4 + C3><4I 4><4j
Z 4x3 Q3><3 + I 4><4Z 4x3 Z 4x3 C3><4 + I Zx4
— Q33><3 Q32><3 C3><4 + Q3><3 C3><4 + C3><4j
Z 4x3 I 4x4

continuing in this way, we obtain

-1 -2 -1 -2
Q3n><3 Q3n><3 C3><4 + Q3n><3 C3><4 +..+ Q3><3 C3><4 + C3><4] — (Q;X3 (Q3n><3 + Q3n><3 +..+ Q3><3 + 13><3 )C3><4J

TPM . , = (
Z 4x3 I 4x4

4x3 I 4x4

This expression can be simplified by applying the following Corollary.

Corollary 2.1
Q' +0"*+.0+DHC=(I-0)"'(I-0"C

Proof:

I-0)I+Q+0Q*+Q° +..40"")
:I+Q+Q2+Q3 +...+Qn_1 —(Q+Q2+Q3 +”'+Qn—1 +Qn)
=1+0+40*+0°+.40"' —0-0*-0%-..—0"' -Q"

TPM" . = Q3nx3 (Q;x;l + Q;x? +..+ Q3><3 + I3x3 )C3><4 _ Q3nx3 (I3x3 - Q3><3 )71 (I3><3 - Q;><3)C3><4
n 1 \z 1

4x3 4x4 4x3 4x4

mTPM" . = Illl_rg Q3n><3 Illi_{g(13><3 - Q3><3)71 (I3><3 - Q;><3)C3><4 _ ZS><3 (13><3 _Q3><3)_1 C3><4 B Z3><3 B}x4
e 77 limZ,, lim7,, |z I Sz 1

n—soo n—soo 3

4x3 4x4 4x4

where B, , = (I 33~ Osa )_1 Cis-
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limQ; . =Z, ., because the elements of Q; ; are the transition probabilities that the chart will go
n—oo S

from a non-absorbent state to a non-absorbent state in n transitions. These probabilities will tend
to 0 as n tends to infinity, because once the system has moved from a non-absorbent state to an
absorbent state, that absorbent state can’t be left, i.e. the system will not be able to move back to

a non-absorbent state.

Recall that we are interested in the matrix B, because the (i, j)’h element of B is the

long run proportion of times the j” set of runs rules causes the chart to signal given the chart

starts in a non-absorbing state i .

By, = (I 33~ Oz )71 Ci

-1

0 Ps Py Pa p 0 0 ps
Of-lps O p, p p, 0 ps
1 ps p, O po 0 p, ps

Il
1
S o =
S = O

I-py =p, —p,4 B pp 0 0 ps
=l T Ps 1 Py pi p, 0 ps
—P; — P 1 p 0 p, ps
b, b, b; by,
=|by by by by
by, by, by by

The effort in inverting (I —Q) could be substantial and therefore some type of statistical
software package is desirable. Using Mathcad’s Symbolics — Evaluate — Symbolically we can

easily calculate the inverse of (I —Q) and multiply the two matrices, (I — Q)_1

and C, to get an

expression for the matrix B. The long run signal probabilities are given by

b, b,, b, b,, by, b,,, by, by, by, by,, b,; and b,,. Since these are all very long
p(+py)d+p,)

l=p,py =Py = P2P3Ps = P2Ps — P3Py

expressions, only one will be given and explained: b,, =

is the long run proportion of times that the runs rule R, causes the chart to signal when the chart
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starts in state 1. In general: b; is the long run proportion of times that the runs rule R; causes the

chart to signal when the chart starts in state i .
2.2.5. Summary

The necessary steps for calculating the probability that any subset of runs rules will give

an out-of -control signal:

STEP 1: Classification of states:
» State number

» Description of state

» Absorbent (A) / Non-absorbent (NA)
STEP 2: Setting up the transition probability matrix TPM =[p, ]

C
STEP 3: Partitioning of the transition probability matrix into 4 sections TPM =[p ] = (g IJ

> 0:(NA— NA)

> C:(NA— A

> Z:(A— NA)

> [:(A— A)
STEP 4: Obtain (/1 —Q)™"

STEP 5: Calculate B=(I-0)"'C

STEP 6: Interpret B. b; is the long run proportion of times that the runs rule R; causes the

chart to signal when the chart starts in state i .
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2.3. The tabular CUSUM control chart
2.3.1. Introduction

Cumulative sum (or CUSUM) control charts were first introduced by Page (1954)
(although not in its present form) and have been studied by many authors, for example,
Barnard (1959), Ewan and Kemp (1960), Johnson (1961), Goldsmith and Whitfield (1961),
Page (1961), Ewan (1963), Van Dobben de Bruyn (1968), Woodall and Adams (1993) and
Hawkins and Olwell (1998). Montgomery (2005) related CUSUM ideas to other SPC

methodologies.
The statistical design of CUSUM charts

While the Shewhart-type charts are widely known and most often used in practice
because of their simplicity and global performance, other classes of charts, such as the
CUSUM charts are useful and sometimes more naturally appropriate in the process control
environment in view of the sequential nature of data collection. The CUSUM chart
incorporates all the information in the sequence of sample values by plotting a function of the

cumulative sums of the deviations of the sample values from a target value. For example,

suppose that samples of size n =1 are collected and let x; denote the j" observation. The

case of individual observations occurs very often in practice, so that situation will be treated

first. Later we will see how to modify these results for subgroups. Then if &, is the target

value, the CUSUM chart is formed by plotting C, where

i i-1
Cr= (x;=0)=(x,=6)+ D (x,~6) = (x, =6 +C,_,.
j=1 J=1

The upper one-sided CUSUM works by accumulating deviations from 6, + K that are
above target. For the upper one-sided CUSUM chart we use
C’ =max[0,C], +(x,—6,)— K] fori=123,. (2.31)
to detect positive deviations from 6,. A signaling event occurs for the first i such that

C'>H.
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The lower one-sided CUSUM works by accumulating deviations from 6, — K that are
below target. For the lower one-sided CUSUM chart we use

C. =min[0,C., +(x, —6,)+ K] fori=123,.. (2.32)

1

or

C7 =max[0,C;, —(x,—6,)— K] fori=123,. (2.33)

l

to detect negative deviations from 6,. A signaling event occurs for the first i such that

C, <-H (if expression (2.32) is used) or C,._* > H (if expression (2.33) is used). For a

visually appealing chart, expression (2.32) will be used to construct the lower one-sided

CUSUM.

The two-sided CUSUM chart signals for the first i at which either one of the two
inequalities is satisfied, that is, either Cl.+ 2H or C; <-H. Both K and H are non-

negative integers and they are needed in order to implement the CUSUM chart. Details
regarding how to choose these constants are given in Section 2.3.1 in the sub-section called

Recommendations for the design of the CUSUM control chart.

Note that both C;” and C; accumulate deviations from the target value 6, that are
greater than K . Originally, Page (1954) set the starting values equal to zero, that is, C; =0

and C, =0. Later on, Lucas and Crosier (1982) recommended setting the starting values

equal to some nonzero value to improve the sensitivity of the CUSUM at process start-up.

This is referred to as the fast initial response (FIR) or head start feature.
The standardized CUSUM

The variable x, can be standardized by subtracting its mean and dividing by its

standard deviation, that is,

Yi = (x,;é’o) (2.34)
o

The resulting standardized upper one-sided CUSUM is given by
S =max[0,S;, +y, —k] fori=123,.. (2.35)

while the resulting standardized lower one-sided CUSUM is given by
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S; =min[0,S,, +y, +k] for i=123,. (2.36)
or

S” =max[0,S], —y, —k] for i=123,.. (2.37)

The two-sided standardized CUSUM is constructed by running the upper and lower

one-sided standardized CUSUM charts simultaneously and signals at the first i such that
S*>H, or S, <—H_ . Both k and H, are non-negative integers and they are needed in

order to implement the standardized CUSUM chart. As mentioned previously, details
regarding how to choose these constants are given in Section 2.3.1 in the sub-section called

Recommendations for the design of the CUSUM control chart.

The unstandardized CUSUM C,; and the standardized CUSUM S, contains the same

information. The question arises: Should unstandardized or standardized data be used?
Unstandardized data has the advantage that the units of the vertical axis are in their original
measurements which makes interpretation easier. Standardized data has the advantage that

different CUSUM charts can be compared.
The CUSUM for monitoring the process mean and other sample statistics

A CUSUM chart for monitoring the process mean can be obtained by replacing x; in

expression (2.34) with the sample average X, and by replacing o by 0'/ Jn. It is also

possible to develop CUSUM charts for other sample statistics, for example, standard
deviations and defects. These CUSUM charts for other sample statistics have been studied by
many authors, for example, Lucas (1985), Gan (1993) and White, Keats and Stanley (1997).

Recommendations for the design of the CUSUM control chart

Phase II CUSUM charts should be designed on the basis of ARL performance. The

parameters K and H are obtained for a specified in-control average run length. Both

" The vertical axis of the standardized CUSUM will be measured in multiples of the standard deviation (o ) of
the data, whereas the vertical axis of the unstandardized data will be measured in the same units of X, for
example, in meters, millimeters, ect. To avoid confusion, H and H; will be used to denote the decision intervals
for the unstandardized and standardized CUSUM charts, respectively.
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parameters are non-negative integers. Let ¢ denote the standard deviation of the sample
variable used in forming the cumulative sum. Parametric CUSUM charts (see Page (1954))
are used for detecting shifts in a normal mean based on the cumulative sum of differences
from target. Let H = ho and K = ko where h is usually taken to be equal to 4 or 5 and & is
usually taken to equal 0.5 (see Montgomery (2005) page 395). By choosing h=4 or h=5
and k =0.5 (the values most commonly used in practice) we generally get a good average run
length performance for parametric CUSUM charts. In the next section we will show that
choosing h=4 or h=5 and k =0.5 is not recommended for nonparametric CUSUM charts,
since it usually gives a poor in-control average run length performance. Since we will not be
using H =40 or 50 and K =0.50 for nonparametric control charts, we will denote the

decision interval and reference value by 4 and k, respectively, from this point forward.
The proposed nonparametric CUSUM chart

Amin, Reynolds and Bakir (1995) proposed a nonparametric CUSUM chart for the
median (or any other percentile) of any continuous population based on sign statistics. Recall

that for the i” random sample the plotting statistic in the Shewhart-type chart was

SN, = z sign(x; —6,). The chart proposed by Amin et al. (1995) instead uses the cumulative

j=1
sum of the statistic SN, with a stopping rule. They also calculated the ARL of the chart using

a Markov chain approach where the transition probabilities are calculated via the distribution
of the sign statistic, which is of course binomial. The procedure is distribution-free since the

in-control distribution of SN, does not depend on the underlying distribution for all
continuous distributions. A CUSUM sign chart can be obtained by replacing y, in
expressions (2.35), (2.36) and (2.37) with SN,. In other words, for the upper one-sided
CUSUM sign chart we use

S.” =max[0,S], + SN, —k] fori=123,.. (2.38)
to detect positive deviations from the known target value ,. A signaling event occurs for the

first i such that S," > h.

For a lower one-sided CUSUM sign chart we use

S =min[0,S_, + SN, +k] for i=123,... (2.39)
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or
S” =max[0,S., —SN,—k] for i=123,... (2.40)
to detect negative deviations from the known target value 6, . A signaling event occurs for the
first i such that S, <-h (if expression (2.39) is used) or § ;_* > h (if expression (2.40) is

used).

The corresponding two-sided CUSUM chart signals for the first i at which either one

of the two inequalities is satisfied, that is, either S." >h or S,” <—h. Starting values are

typically chosen to equal zero, thatis, S,” =S, =0.

The constants k and s are obtained for a specified in-control average run length. In-

control average run length ( ARL,), standard deviation of the run length (SDRL,), 5" ,25"
(the first quartile, Q,), 50" (the median run length, MRL,), 75" (the third quartile, Q) and

95" percentile values will be computed and tabulated for various values of 4 and k later on.
2.3.2. One-sided control charts
2.3.2.1. Upper one-sided control charts

Various expressions for the exact run length distribution and its parameters have been
given for the normal theory one-sided CUSUM procedure by, for example, Ewan and Kemp
(1960), Brook and Evans (1972), Woodall (1983) and Hawkins and Olwell (1998). Many
authors have presented various approximations for the run length distribution and its
parameters for the one-sided CUSUM procedure. A Markov chain representation of the one-
sided CUSUM procedure based on integer-valued cumulative sums is presented in this
section. The number of states included in the Markov chain is minimized in order to make the

methods as efficient as possible.
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Markov chain approach

Brook and Evans (1972) and Amin et al. (1995) considered a method for evaluating
the exact average run length and its moments for the upper one-sided CUSUM chart by
treating the cumulative sum as a Markov chain with the state space a subset of {0.,1,2....,h}.
Markov techniques have a great advantage as they are adjustable to many runs related
problems and they often simplify the solutions to the specific problems they are applied on.
Fu, Spiring and Xie (2002) presented three results that must be satisfied before implementing

the finite-state Markov chain approach.

Let S, be a finite-state homogenous Markov chain on the state space Q* with a TPM

such that (i) Q" ={5,,6,»-6,.,,} where 0=¢,<¢, <..<G,,,,=h and ¢ i1s an

r+s—1 r+s—1

absorbent state; (ii) the TPM is given by TPM = [P,y] for i=0,1,.,r+s—1 and
j=0,l,...,r+s5s—1 where r denotes the number of non-absorbent states and s the number of
absorbent states, respectively, and (iii) the starting value should be in the “dummy” state with

probability one, that is, P(S, =¢,) =1, to ensure the process starts in-control . Assume that

the Markov chain S, satisfies conditions (i), (ii) and (iii), then from Fu, Spiring and Xie

(2002) and Fu and Lou (2003) we have

P(N=nlS; =0)=§0""'(I-Q)1 (2.41)
E(N)=£(1-0)1 (2.42)
E(N*)=¢&(1+0)1-0)"1 (2.43)

var(N) = E(N?)- (B} =€+ o)1 -0)°1-[er-0)"1)  44)

SDRL = \[var(N) = | £(1 + 0)1 - 0) 1~ (¢(1 - 0)"1) (2.45)
where the essential transition probability sub-matrix Q is the r X r matrix that contains all the

transition probabilities of going from a non-absorbent state to a non-absorbent state, I is the

rxr identity matrix, & is a 1Xr row vector with 1 at the 1 element and zero elsewhere and

1 is an rx1 column vector with all elements equal to unity. See Theorem 2 in Appendix A

for the derivations done by Fu, Spiring and Xie (2002) and Fu and Lou (2003).
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The time that the procedure signals is the first time such that the finite-state Markov
chain S’ enters one of the absorbent states where the state space is given by
Q+ = {gO’gl"”’gH—s—l} ’ S(;— = 0 and

S* = minfh, max{0, 7, + SN, —k}}. (2.46)

The state corresponding to a signal by the CUSUM chart is called an absorbent state.
Clearly, there is only one absorbent state, since the chart signals when S, falls on or above £,

1e. s=1.

The distribution of SN, can easily be obtained from the binomial distribution (recall

that SN, =2T,—n Vi, where 7, is binomially distributed with parameters n and

L

p=P(X,;26,)) . The binomial probabilities are given in Table G of Gibbons and

Chakraborti (2003) and can easily be calculated using some type of statistical software

package, for example, Excel or SAS.

Example 2.6
An upper one-sided CUSUM sign chart where the sample size is odd (n=5)

The statistical properties of an upper one-sided CUSUM sign chart with a decision
interval of 4 (h=4), a reference value of 1 (k=1) and a sample size of 5 (n=95) is

examined. For n odd, the reference value is taken to be odd, because this leads to the sum
Z(SN,. — k) being equal to even values which reduces the size of the state space for the
Markov chain. This will halve the size of the matrices of transition probabilities. For h =4
we have that the state space is Q* ={¢,,¢,,¢,} ={0,2,4} with 0=¢, <¢, <&, = h. The state

space is calculated using equation (2.46) and the calculations are shown in Table 2.18.
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Table 2.18. Calculation of the state space when h=4, k=1 and n=35.

SN, | S*, +SN, -k | max{0,S*, + SN, =k} | S} = min{h,max{0,S", + SN, -k}
-5 6 0 0
-3 -4 0 0
-1 -2 0 0
1 0 0 0
3 2 2 2
5 4 4 4
Table 2.19. Classifications and descriptions of the states.
State number Description of the state Absorbent (A)/ Non-absorbent (NA)
0 S'=0 NA
1 SH=2 NA
2 SH=4 A

From Table 2.19 we see that there are two non-absorbent states, i.e. » =2, and one

absorbent state, i.e. s =1. Therefore, the corresponding TPM will be a (r +s)X(r+s5) =3X%3
matrix. It can be shown (see Table 2.20) that the TPM is given by

Yo Y |
Po Poi P Orp | P

9 % 1 %
TPM s, =| Py Pu Pn |= _

Py Pu Pxn 0 0 | 1 0 | 1y

where the essential transition probability sub-matrix Q, , :(NA — NA) is an rXr=2X2

matrix, p,, :(NA—> A) is an (r+s—1)x1=2x1 column vector, 0',,:(A— NA) is a

IX(r+s—1)=1x2 row vector and 1, : (A — A) represents the scalar value one.

The one-step transition probabilities are calculated by substituting SN, in expression

(2.46) by 2T —n and substituting in values for i, k, S and S;,. The calculation of the

one-step transition probabilities are given in Table 2.20 for illustration.

The probabilities in the last column of the TPM can also be calculated using the fact

that z p; =1 Vi (see equation (2.18)). Therefore,

jeQ

" Note: Since only the state space needs to be described, S,7, can be any value from Q" and we therefore take,

without loss of generality, S;”, =0. Any other possible value for S,”, would lead to the same Q™.
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P =1=(Poy + Po) =1= %+ %) = Vs
P =1=(p, +P11):1_(l%2+l%2):%2§and

Py =1=(Py+py)=1-(0+0)=1.

Since it is easier to calculate the probabilities in the last column of the TPM using the latter

approach, it will be used throughout the text from this point forward.

Table 2.20. The calculation of the transition probabilities when h=4, k=1 and n=5.

Poo

=P(S,=01S,,=0)

= P(min{4,max{0,0+ SN, —1}} =0)
= P(max{0,0 + SN, -1} =0)

Po

=P(S,=21§,,=0)

= P(min{4,max{0,0+ SN, —1}} =2)
= P(max{0,SN, -1} =2)

Po

=P(S, =41§5,,=0)

= P(min{4, max{0,0+ SN, —-1}} =4)
= P(max{0, SN, -1} = 4)

=P(SN,-1<0) =P(SN,-1=2) =P(SN,-1=4)
=P(SN, <1) = P(SN, =3) = P(SN, 25)
=PQ2T-5<1) =PQ2T -5=3) =P(2T-525)
=P(T <3) =P(T =4) =1-P(T £4)
=% =% =)o

Do Pu P

=P(S,=01S5_=2)
= P(min{4,max{0,2+ SN, —1}} =0)
= P(max{0,SN, +1} =0)

=P(S, =218, =2
= P(min{4,max{0,2+ SN, —1}} =2)
= P(max{0,SN, +1} = 2)

=P(S, =415, =2)
= P(min{4, max{0,2+ SN, —1}} = 4)
= P(max{0, SN, +1} 2 4)

=P(SN, <-1) =P(SN, =1) =P(SN, 23)
=PQR2T-5<-1) =PQR2T-5=1) =PQR2T-523)
=P(T<2) =P(T =3) =1-P(T £3)

=% =% =%,

Do P2 Pxn
=P(S,=01S,,=4) =P(S, =215_=4 =P(S, =415_,=4%
=0 =0 =17

Using the TPM the ARL can be calculated using ARL=£(I—0Q)"'1. A well-known

concern is that important information about the performance of a control chart can be missed

when only examining the ARL (this is especially true when the process distribution is

skewed). Various authors, see for example, Radson and Boyd (2005) and Chakraborti (2007),

have suggested that one should examine a number of percentiles, including the median, to get

the complete information about the performance of a control chart. Therefore, we now also

consider percentiles. The 100 p” percentile is defined as the smallest integer [ such that the

" The probability equals zero, because it is impossible to go from an absorbent state to a non-absorbent state.
" The probability equals one, since the probability of going from an absorbent state to an absorbent state is equal
to one (once an absorbent state is entered, it is never left).
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cdf is at least (100x p)% . Thus, the 100 p” percentile [ is found from P(N <[)> p. The
median (50" percentile) will be considered, since it is a more representative performance
measure than the ARL (see the discussion in Section 2.1.5). The first and third quartiles (25"
and 75" percentiles) will also be considered, since it contains the middle half of the
distribution. The ‘tails’ of the distribution should also be examined and therefore the 5" and

95™ percentiles are calculated. The calculation of these percentiles is shown in Table 2.21 for
illustration purposes. The first column of Table 2.21 contains the values that the run length

variable ( N ) can take on.

Table 2.21. Calculation of the percentiles when h=4, k=1 and n=35 "

N P(N <) The 5, 25", 50™, 75™ and 95" percentiles
1 0.0313
2 0.0859 Poos = 2 (smallest integer such that the cdf is at least 0.05)
3 0.1420
4 0.1954
5 0.2456
6 0.2928 Pors = 6 (smallest integer such that the cdf is at least 0.25)
7 0.3370
8 0.3784
9 0.4173
10 0.4537
11 0.4878
12 0.5198 Pos = 12 (smallest integer such that the cdf is at least 0.5)
13 0.5499
14 0.5780
15 0.6044
16 0.6291
17 0.6523
18 0.6740
19 0.6944
20 0.7135
21 0.7314
22 0.7482
23 0.7639 Pors = 23 (smallest integer such that the cdf is at least 0.75)
24 0.7787
25 0.7925
26 0.8055
27 0.8176
28 0.8290
29 0.8397
30 0.8497
48 0.9530 Poos =48 (smallest integer such that the cdf is at least 0.95)
49" 0.9559

" See SAS Program 2 in Appendix B for the calculation of the values in Table 2.21.
" The value of the run length variable is only shown for some values up to N=49 for illustration purposes.
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The formulas of the moments and some characteristics of the run length distribution

have been studied by Fu, Spiring and Xie (2002) and Fu and Lou (2003) — see equations

1(26 5 1
2.41) to (2.45). By substitutin =1 0, Q,, =— and 1,, = into these
( ) ( ). By g §1X2 ( )s O 37 (16 10} Lo (1j

equations, we obtain the following:

ARL=E(N)=¢&(1-0)"'1=16.62

E(N?)=&(1+0)1-0)21=516.59

SDRL = \[Var(N) =/E(N?)- (E(N))* =15.51

5" percentile= p, ;s =2

25" percentile= p,,; = 6
Median =50" percentile = p,; =12
75" percentile= p, 5 = 23

95" percentile = p, s = 48

Other values of &, k and n were also considered and the results are given in Table 2.22.

Table 2.22. The in-control average run length (ARL;), standard deviation of the run length

(SDRL), 5™,25™,50™,75" and 95" percentile values for the upper one-sided CUSUM

sign chart when n=5".

h
k 2 Jor4d
5.33 16.62
1 4.81 15.51
(1,2,4,7,15) (2,6, 12,23, 48)
32.00
3 31.50 ¢
(2, 10, 22, 44, 95)

" The three rows of each cell shows the ARL, the SDRL, and the percentiles ( 0s, Oy, Pso > P75 > Pos)s

respectively.

" See SAS Program 2 in Appendix B for the calculation of the values in Table 2.22.

* Since the decision interval is taken to satisfy h<n—k there are open cells in Table 2.22.
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Note that the summary measures for odd values of 4 will be equal to the summary
measures of the subsequent even integer. More on this later (refer to example (2.8)). Values of
k and h are restricted to be integers so that the Markov chain approach could be employed to
obtain expressions for the exact run length distribution and its parameters. In order to allow
for the possibility of stopping after one sample, i.e. issuing a signal, the values of 4 is taken

to satisfy h<n—-k.

The five percentiles (given in Table 2.22) are displayed in boxplot-like graphs for
various & and k values in Figure 2.5. It should be noted that these boxplot-like graphs differ
from standard box plots. In the latter case the whiskers are drawn from the ends of the box to
the smallest and largest values inside specified limits, whereas, in the case of the boxplot-like
graphs, the whiskers are drawn from the ends of the box to the 5™ and 95™ percentiles,

respectively. In this thesis “boxplot” will refer to a boxplot-like graph from this point forward.

Figure 2.5 clearly shows the effects of 2 and k& on the run length distribution and it
portrays the run length distribution when the process is in-control. We would prefer a
“boxplot” with a high valued (large) in-control average run length and a small spread.
Applying this criterion, we see that the “boxplot” corresponding to the (h,k)=(2,3)
combination has the largest in-control average run length, which is favorable, but it also has
the largest spread which is unattractive. The “boxplot” furthest to the right is exactly opposite
from the “boxplot” furthest to the left. The latter has the smallest spread, which is favorable,
but it also has the smallest in-control average run length, which is unattractive. In conclusion,

no “boxplot” is optimal relative to the others.
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Figure 2.5. Boxplot-like graphs for the in-control run length distribution of various upper
one-sided CUSUM sign charts when n=35. The whiskers extend to the 5" and the 95
percentiles. The symbols === *“&” and “~" denote the ARL, SDRL" and MRL,

respectively.

Example 2.7

An upper one-sided CUSUM sign chart where the sample size is even (n=6)

The statistical properties of an upper one-sided CUSUM sign chart with a decision
interval of 4 (h=4), a reference value of 2 (k=2) and a sample size of 6 (n=06) is

examined. For n even, the reference value is taken to be even, because this leads to the sum
Z(SN,. — k) being equal to even values which reduces the size of the state space for the
Markov chain. For =4 we have that the state space is Q" ={g,,5,,6,} ={0,2,4} with
0=¢,<¢, <¢, =h. The state space is calculated using equation (2.46) and the calculations

are shown in Table 2.23.

* For ease of interpretation, the standard deviation (as measure of spread) is included in the (location) measures
of percentiles.
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Table 2.23. Calculation of the state space when h=4, k=2 and n=6.

SN, | $*, +SN, -k | max{0,S*, + SN, =k} | S =minih,max{0,S;, + SN, -k J}
-6 -8 0 0
-4 -6 0 0
-2 -4 0 0
0 -2 0 0
2 0 0 0
4 2 2 2
6 4 4 4
Table 2.24. Classifications and descriptions of the states.
State number Description of the state Absorbent (A)/ Non-absorbent (NA)
0 S'=0 NA
1 SH=2 NA
2 SH=4 A

From Table 2.24 we see that there are two non-absorbent states, i.e. ¥ =2, and one

absorbent state, i.e. s =1. Therefore, the corresponding TPM will be a (r +s)X(r+s) =3%3
matrix. It can be shown (see Table 2.25) that the TPM is given by
Tor Va1 Ja

Pow Po P LAY Qo | Py,
64 Jos 64
TPM ;=\ py Pn Pu |= _ I e B -
Py Pau Pn 0w, I 1y

0O 0 | 1
where the essential transition probability sub-matrix Q,., : (NA — NA) is an rXr=2X2
matrix, Pt (NA— A) is an (r+s-1)x1=2x1 column vector, 0'.,:(A— NA) is a
IX(r+s—1)=1x2 row vector and 1, : (A — A) represents the scalar value one. The one-
step transition probabilities are calculated by substituting SN, in expression (2.46) by 2T —n
and substituting in values for &, k, S and S;,. The calculation of the one-step transition

probabilities are given in Table 2.25 for illustration.

" Note: Since only the state space needs to be described, S,7, can be any value from Q" and we therefore take,

without loss of generality, S, = 0. Any other possible value for S,°, would lead to the same Q.
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Table 2.25. The calculation of the transition probabilities when h=4, k=2 and n=6.

Poo Por Poa

=P(S, =015, =0) =P(S, =215, =0) =1=(poy + Por)
= P(min{4, max{0,0+ SN, —2}}=0) = P(min{4, max{0,0+ SN, —2}}=2) =1-CU,+ %)
= P(max{0,0+ SN, -2} =0) = P(max{0, SN, -2} =2) =Y,
=P(SN,-2<0) =P(SN,-2=2)

=P(SN, £2) =P(SN, =4)

=P(T <4) =P(T=)5)

:5764 :664

P Pu Pr
=P(S,=01§,,=2) =P(S, =218,,=2) =1=(p,,+Piy)

= P(min{4, max{0,2+ SN, —2}}=0)
= P(max{0, SN, } =0)

= P(min{4, max{0,2+ SN, —-2}}=2)
= P(max{0,SN,}=2)

=1= ("% + %)

-7
= /o4

=P(SN, £0) =P(SN, =2)

=P(T<3) =P(T =4

=4%4 ="

Pao P P
=P(S,=01S,_, =4 =P(S, =215,_,=4 =1=(py +Py)
:0* =0 =1

The formulas of the moments and some characteristics of the run length distribution

have been studied by Fu, Spiring and Xie (2002) and Fu and Lou (2003) — see equations

1(57 6 1
2.41) to (2.45). By substitutin =1 0, 0,, =— and 1,, = into these
( ) ( ). By g §1><2 ( ) Qz 2 64 (42 15] Lo (J

equations, we obtain the following:

ARL=E(N)=&(I-0)"'1=38.68

E(N?)=&(1+0)1-0)>1=2918.19

SDRL = \[Var(N) = E(N?)- (E(N))* =37.71

5™ percentile = p, s =3

25" percentile = p,,s =12
Median = 50" percentile= p,; = 27
75" percentile= p, s =53

95" percentile = p, o5 =114

* The probability equals zero, because it is impossible to go from an absorbent state to a non-absorbent state.
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Other values of &, k and n were also considered and the results are given in Table 2.26.

Table 2.26. The in-control average run length (ARL;), standard deviation of the run length

(SDRL), 5™,25™,50™,75™ and 95™ percentile” values for the upper one-sided CUSUM

sign chart when n=6".

L h
2 3or4 S50ré6

2.91 5.92 10.66

0 2.36 4.96 8.80

1,1,2,4,8) 1,2, 4,8, 16) (2,4, 8,14, 28)

9.14 38.68

2 8.63 37.71 i

(1,3, 6, 12, 26) (3, 12,27, 53, 114)

64.00

4 63.50

(4,19, 45, 89, 191)

The five percentiles (given in Table 2.26) are displayed in boxplot-like graphs for
various h and k values in Figure 2.6. Recall that we would prefer a “boxplot” with a high
valued (large) in-control average run length and a small spread. Applying this criterion, we

see that the “boxplot” corresponding to the (h,k)=(2,4) combination has the largest in-

control average run length, which is favorable, but it also has the largest spread which is
unattractive. The “boxplot” furthest to the right is exactly opposite from the “boxplot” furthest
to the left. The latter has the smallest spread, which is favorable, but it also has the smallest
in-control average run length, which is unattractive. In conclusion, no “boxplot” is optimal

relative to the others.

" The three rows of each cell shows the ARL), the SDRL, and the percentiles ( Ps. 05, P50 » P75 » Pos )

respectively.
" See SAS Program 2 in Appendix B for the calculation of the values in Table 2.26.
* Since the decision interval is taken to satisfy h<n—k there are open cells in Table 2.26.

79



UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

<
=

“ UNIVERSITEIT VAN PRETORIA

4

200
190 +
18
180 -1 4l s s
L
170 4 | L
10
160 el e
150 +-4 61 T ********* = | |t
At
140 +- 27 g f A B
0
130 - (2,0) (3,0) (4,00 f
120 1 _ (h’k) 77777777777777777777777 _
> X
110 o
100 -
90 -
80 - -
70 F b -
60 - -
50 - - - -
40 - - - -
30 | b -
(2,0) (3,0) (4, 0) (2, 2) (5, 0) (6, 0) (3, 2) 4, 2) (2, 4)
(h, k)

Figure 2.6. Boxplot-like graphs for the in-control run length distribution of various upper
one-sided CUSUM sign charts when n=6. The whiskers extend to the 5™ and the 95™

percentiles. The symbols === “&” and “~" denote the ARL, SDRL" and MRL,

respectively.

* For ease of interpretation, the standard deviation (as measure of spread) is included in the (location) measures
of percentiles.
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On the performance side, note that the largest in-control average run length that the
upper one-sided CUSUM sign chart can obtain is 2". Therefore, for a sample size of 6 the

largest ARL; equals 2° = 64 (this is obtained when =2 and k = 4). For this case we find

63, 1
the TPM =(§4 /164] and as a result the in-control average run length equals

ARL, = (I - Q) '1=1x(1-%,)" x1=64. Since the largest ARL| is only 64 for n=6,

many false alarms will be expected by this chart leading to a possible loss of time and
resources. Larger sample sizes should therefore preferably be taken when implementing the

upper one-sided CUSUM sign chart.

Example 2.8
An upper one-sided CUSUM sign chart with a decision interval of 4 (h=4), a reference

value of 1 (k=1) and a sample size of 5 (n=5)

In the previous two examples it can be seen that summary measures for odd values of
h will be equal to the summary measures of the subsequent even integer. This will be

illustrated by the use of an example.

For the upper one-sided CUSUM sign chart with a decision interval of 4 (h=4), a
reference value of 1 (k=1) and a sample size of 5 (n=5) the TPM was given by
TPM =|'%, %, %, | (see example (2.6). By keeping the reference value and the sample

0O 0 1
size fixed and changing /& to an odd integer (/4 =3) we obtain the same TPM and therefore
we obtain the same summary measures. Stated differently, the summary measures of 4 odd

(h =3) will be equal to the summary measures of the subsequent even integer (h =4 ).

We’ve considered sample sizes of n =5 and 6 and established that larger sample sizes
should preferably be taken when implementing the upper one-sided CUSUM sign chart.

Therefore, a larger sample size (n =10) is considered and the results are given in Table 2.27.

81



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qo VYUNIBESITHI YA PRETORIA

O

Table 2.27. The in-control average run length (ARL;), standard deviation of the run length

(SDRL), 5™,25™,50™,75" and 95" percentile values for the upper one-sided CUSUM

sign chart when n=10".

f h
3or4 S50ré6 7or8
14.34 36.81 91.59

2 13.58 35.48 89.45

(1,5, 10, 20, 41) (3, 12,26, 51, 108) (7, 28, 64, 126, 270)

77.97 464.86

4 77.29 463.68 :

(5,23, 54, 108, 232) (25, 135, 323, 644, 1390)

929.97

6 929.37

(48, 268, 645, 1289, 2785)

Table 2.27 gives values of ARL, for various values of & and k when the sample size

is equal to 10. Amin, Bakir and Reynolds (1995) provided a similar Table (see Table 5 on

page 1613) containing the in-control run length summary values for the upper one-sided

CUSUM sign chart (ARL;) for a range of k and h values when n =10.

The five percentiles (given in Table 2.27) are displayed in boxplot-like graphs for
various h and k values in Figure 2.7. Recall that we would prefer a “boxplot” with a high
valued (large) in-control average run length and a small spread. Applying this criterion, we
see that the “boxplot” corresponding to the (h,k)=(3,6) or (h,k)=(4,6) combination has
the largest in-control average run length, which is favorable, but it also has the largest spread
which is unattractive. The “boxplot” furthest to the right is exactly opposite from the
“boxplot” furthest to the left. The latter has the smallest spread, which is favorable, but it also
has the smallest in-control average run length, which is unattractive. In conclusion, no

“boxplot” is optimal relative to the others.

" The three rows of each cell shows the ARL;, the SDRL, and the percentiles ( 0s, 0ss, Pso > P75 > Pos )

respectively.
" See SAS Program 2 in Appendix B for the calculation of the values in Table 2.27.

: Since the decision interval is taken to satisfy 2 <n -k there are open cells in Table 2.27.
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Figure 2.7. Boxplot-like graphs for the in-control run length distribution of various upper
one-sided CUSUM sign charts when n=10. The whiskers extend to the 5 and the 95"

percentiles. The symbols === “&” and “~" denote the ARL, SDRL" and MRL,

respectively.

ES
For ease of interpretation, the standard deviation (as measure of spread) is included in the (location) measures
of percentiles.
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Example 2.9
An upper one-sided CUSUM sign chart for the Montgomery (2001) piston ring data

We conclude this sub-section by illustrating the upper one-sided CUSUM sign chart
using a set of data from Montgomery (2001; Table 5.2) on the inside diameters of piston rings
manufactured by a forging process. The dataset contains 15 samples (each of size 5). We
assume that the underlying distribution is symmetric with a known target value of

6, =74 mm.

Let £ =3. Once £ is selected, the constant 4 should be chosen to give the desired in-
control average run length performance. By choosing & =2 we obtain an in-control average

run length of 32 which is the highest in-control average run length attainable when n =5 (see

Table 2.22).

The plotting statistics for the Shewhart sign chart (SN, for i =1,2,...,15) are given in

the second row of Table 2.28. The upper one-sided CUSUM plotting statistics (S, for
i=12,..15) are given in the third row of Table 2.28.

Table 2.28. SN, and S, values for the piston ring data in Montgomery (2001)".

SampleNo: [ 1 (2| 3 (4[5 )6 7 8] 9 [10]11|12[13 |14 (15
SN, | 2|14 |3[]0|3|3|-1|3|4|1|[5]|5]|5]|4

S’ ofofofofojojofojof1rjo|2f4]°6

To illustrate the calculations, consider sample number 1. The equation for the plotting
statistic S is S =max[0,S; + SN, — k] =max[0,0 + 2 —3] = max[0,—~1]=0 where a
signaling event occurs for the first i such that S;” > &, thatis, S > 2. The graphical display

of the upper one-sided CUSUM sign chart is shown in Figure 2.8.

" See SAS Program 3 in Appendix B for the calculation of the values in Table 2.28.
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Figure 2.8. The upper one-sided CUSUM sign chart for the Montgomery (2001) piston ring

data.

The upper one-sided CUSUM sign chart signals at sample 12, indicating a most likely

upward shift from the known target value 6,. The action taken following an out-of-control

signal on a CUSUM chart is identical to that with any control chart. A search for assignable

causes should be done, corrective action should be taken (if required) and, following this, the

CUSUM is reset to zero. Different control charts are compared by designing the control charts

to have the same ARL, and then evaluating the ARL;. The control chart with the lower

ARL; is the preferred chart. These procedures can not be meaningfully illustrated using the

data from Montgomery (2001) because the sample size n =5 used here is too small. It may

be noted that the highest ARL; is 32 for n=35. Thus, achievable values of ARL; are too

small for practical use, unless n is ‘large’.
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2.3.2.2. Lower one-sided control charts

Analogous to the previous section, a Markov chain representation of the one-sided
CUSUM procedure based on integer-valued cumulative sums is presented in this section. The
number of states included in the Markov chain is minimized in order to make the methods as

efficient as possible. The time that the procedure signals is the first time such that the finite-
state Markov chain S, enters the state ¢, where the state space is given by
Q ={6,,6,»G, ) With —h=¢,<..<¢,, =0, S, =0 and

S” = max{- i, min{0,5~, + SN, + & J}. (2.47)
Clearly, there is only one absorbent state, since the chart signals when S, falls on or below

—h,1e. s=1.

The distribution of SN, can easily be obtained from the binomial distribution (recall

that SN, =27, —n Vi, where 7, is binomially distributed with parameters n and

L

p=P(X;26,)) . The binomial probabilities are given in Table G of Gibbons and

Chakraborti (2003) and can easily be calculated using some type of statistical software

package, for example, Excel or SAS.

Example 2.10
A lower one-sided CUSUM sign chart where the sample size is odd (n=5)

The statistical properties of a lower one-sided CUSUM sign chart with a decision
interval of 4 (h=4), a reference value of 1 (k=1) and a sample size of 5 (n=35) is

examined. For n odd, the reference value is taken to be odd, because this leads to the sum
Z(SN ; — k) being equal to even values which reduces the size of the state space for the
Markov chain. For 7 =4 we have Q" = {g,,¢,,¢,}={-4,-2,0} with —h=¢g, <¢, <g,=0.

The state space is calculated using equation (2.47) and the calculations are shown in Table

2.20.
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Table 2.29. Calculation of the state space when h=4, k=1 and n=35.

SN, | 7, +SN, +k | min{0,S7, + SN, +k} | S7 =max{-h,min{0,S_, + SN, +k }}
-5 -4 -4 -4
3 2 2 2
1 0 0 0
I 2 0 0
3 4 0 0
5 6 0 0

Table 2.30. Classifications and descriptions of the states.

State number Description of the state Absorbent (A)/ Non-absorbent (NA)
0 S, =0 NA
1 S =2 NA
2 S =-4 A

From Table 2.30 we see that there are two non-absorbent states, i.e. » =2, and one

absorbent state, i.e. s =1. Therefore, the corresponding TPM will be a (r +s)X(r+s5) =3X%3
matrix. It can be shown (see Table 2.31) that the TPM is given by
2%2 %2 l %2

Poo Po2) Poc-a) 0, 0L Y O | P,
TPM. . = | 72 32
33 | P Py Peayes | T _

Piayo  Pray—ay  Pay 0 0 | 1 0w, | 1y
where the essential transition probability sub-matrix Q, , :(NA — NA) is an rXr=2X2
matrix, P, (NA— A) is an (r+s-1)x1=2x1 column vector, 0',,:(A—> NA) is a

IX(r+s—1)=1x2 row vector and 1, : (A — A) represents the scalar value one.

The one-step transition probabilities are calculated by substituting SN, in expression

(2.47) by 2T —n and substituting in values for i, k, S; and S,_,. The calculation of the

one-step transition probabilities are given for illustration in Table 2.31.

" Note: Since only the state space needs to be described, S,_, can be any value from Q" and we therefore take,

without loss of generality, S,_; =0. Any other possible value for S,_; would lead to the same Q" .
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Table 2.31. The calculation of the transition probabilities when h=4, k=1 and n=5.

Poo Po2) Poc-a)
=P(S,=01S,,=0) =P(S,=-215,,=0) =1=(Poo + Poc2)
= P(max{-4,min{0,0+ SN, +1}}=0) | = P(max{-4,min{0,0+ SN, +1}} =-2) | =1=-(+))
= Pmin{0,0 + SN, +1} = 0) = P(min{0, SN, +1} = -2) =/
= P(SN, +12>0) = P(SN, +1=-2)
= P(SN, >-1) = P(SN, = -3)
=PQT -52-1) = PQ2T —5=-3)
=P(T22) =P(T =1)
=1-P(T <1) =%,
- 2632
P20 P22 Pas
=P(S,=01S,_, =-2) =P(S, =-218,,=-2) j:il;f +/ :;Hm
= P(max{—4,min{0,~2+ SN, +1}} =0) | = P(max{~4,min{0.-2+ SN, +1}} =-2) | _,, e
= P(min{0,—2+ SN, +1} = 0) = P(min{0,-2+ SN, +1} =-2)
= P(SN, —1>0) =P(SN, -1=-2)
= P(SN, >1) =P(SN, =-1)
=PQ2T-521) =PQ2T-5=-1)
=P(T 23) =P(T =2)
=1-P(T <2) =19,
= 1%2
P4y Pay-2) Penes
=P(S, =01S,_,=-4 =P(S, =218, =-4) =1= (P *+ Praa)
_o" -0 =1-(0+0)
=1

The formulas of the moments and some characteristics of the run length distribution

have been studied by Fu, Spiring and Xie (2002) and Fu and Lou (2003) — see equations

o _ _ % Yo _ 1 .
(2.41) to (2.45). By substituting §1X2 =1 0), 0,, —(1%2 o, and 1,, = : into these

equations, we obtain the following:

ARL=E(N)=£&(1-0)"'1=16.62

E(N?)=&(1+0)1-0)71=516.59

SDRL = \[Var(N) = E(N?)- (E(N))* =15.51

5" percentile= p, =2

25" percentile= p,, =6

* The probability equals zero, because it is impossible to go from an absorbent state to a non-absorbent state.
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Median = 50" percentile = p,, =12
75" percentile = p.; =23

95" percentile = p,; = 48

The in-control average run length values, standard deviation of the run length values
and percentiles for the lower one-sided CUSUM sign chart are exactly the same as for the
upper one-sided CUSUM sign chart, since the one-step transition probabilities matrices are
the same (compare the transition probabilities matrices of examples 2.6 and 2.10). Therefore,

we obtain Result 2.10:

Result 2.10:

The in-control average run length (ARL;), standard deviation of the run length (SDRL),

5",25"™,50™,75"™ and 95" percentile values tabulated for the upper one-sided CUSUM sign
chart will also hold for the lower one-sided CUSUM sign chart.

Example 2.11
A lower one-sided CUSUM sign chart for the Montgomery (2001) piston ring data

We conclude this sub-section by illustrating the lower one-sided CUSUM sign chart
using a set of data from Montgomery (2001; Table 5.2) on the inside diameters of piston rings
manufactured by a forging process. The dataset contains 15 samples (each of size 5). We
assume that the underlying distribution is symmetric with a known target value of

6, =74 mm.

From Table 2.22 it can be seen that the in-control average run length equals 32 when

h=2 and k=3 (recall that this is the largest possible in-control average run length value
that the chart can obtain, since 2° =32). The plotting statistics for the Shewhart sign chart

(SN, for i=12,..,15) are given in the second row of Table 2.32. The lower one-sided

CUSUM plotting statistics (S, for i =1,2,...,15) are given in the third row of Table 2.32.
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Table 2.32. SN, and S; values for the piston ring data in Montgomery (2001)".

SampleNo: | 1 |2 3 [4[5[6[ 7 [8]9[wo]mn]12]13]14]15
SN, 2 (1| 4|3 313 (-1]3
S- olo|-1t{olojojlofo]o|lo|lo]o|o]oO

)

To illustrate the calculations, consider sample number 1. The equation for the plotting
statistic S, is
S =max[0,S; — SN, —k]=max[0,0 —2—3] = max[0,—5] = 0 (2.48)

or

S, =min[0,S, + SN, + k] =min[0,0 + 2+ 3] = min[0,5] =0. (2.49)

A signaling event occurs for the first i such that S,._* > h, that is, S,._* >2 if

expression (2.48) is used or §; < —h, thatis, S; <-2 if expression (2.49) is used.

The graphical display of the lower one-sided CUSUM sign chart (using expression

(2.49)) is shown in Figure 2.9 and does not signal.

0.0+
-0.54
£
=]
("]
)
2 1.0
©
E
O
-1.54
2.0 -h=-2
T T T T T T T T T T T T T T T
i 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Sample number

Figure 2.9. The lower one-sided CUSUM sign chart for the Montgomery (2001) piston ring
data.

" See SAS Program 3 in Appendix B for the calculation of the values in Table 2.32.

90



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qo VYUNIBESITHI YA PRETORIA

O

2.3.3. Two-sided control charts

Various authors have studied the two-sided CUSUM scheme, for example, Kemp
(1971) gives the average run length of the two-sided CUSUM scheme in terms of the average
run lengths of the two corresponding one-sided schemes. Lucas and Crosier (1982) used a
Markov chain representation of the two-sided CUSUM scheme to determine the run length
distribution and the average run length. In this thesis, the approach taken by Brook and Evans
(1972) for the one-sided CUSUM scheme is extended to the two-sided CUSUM scheme. A
Markov chain representation of the two-sided CUSUM scheme based on integer-valued
random variables will be presented. This is done since the nonparametric statistics that are the
building blocks of the CUSUM scheme are discrete random variables. The number of states
included in the Markov chain is minimized by taking the reference value k so that the state
space of the Markov chain is a set of even numbers. This reduces the size of the TPM and

thus eliminates unnecessary calculations in order to make the methods as efficient as possible.

Recall that for the upper one-sided CUSUM sign chart we use
S* = min{r, max{0,SN, —k + 57 }} for n=1.2,... (2.50)
For a lower one-sided CUSUM sign chart we use
S” =max{- 1, min{0,SN, + k + S, }} for n=12,... (2.51)

For the two-sided scheme the two one-sided schemes are performed simultaneously. The

corresponding two-sided CUSUM chart signals for the first ¢ at which either one of the two

inequalities is satisfied, that is, either S > h or S, <—h. Starting values are typically chosen

to equal zero, that is, S, =S,=0. The two-sided scheme signals at

N = min{t :ST>2h or § < —h} where h is a positive integer.
t

The two-sided CUSUM scheme can be represented by a Markov chain with states

corresponding to the possible combinations of values of S, and S, . The states corresponding
to values for which a signal is given by the CUSUM scheme are called absorbent states.

Clearly, there are two absorbent states since the chart signals when S falls on or above & or

when S, falls on or below —#,i.e. s =2. Recall that r denotes the number of non-absorbent
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states and, consequently, the corresponding TPM is an (r+s)xX(r+s), ie. an

(r+2)x(r+2) matrix.

The time that the procedure signals is the first time such that the finite-state Markov

chain enters the state ¢, or ¢, , where the state space is given by Q = Q" UQ™ =

{G05G15sG iy} With —h=¢  <..<g,,  =h.

Example 2.12
A two-sided CUSUM sign chart where the sample size is odd (n=5)

The statistical properties of a two-sided CUSUM sign chart with a decision interval of

4 (h=4), a reference value of 1 (k =1) and a sample size of 5 (n=5) is examined. For n

odd, the reference value k is taken to be odd, because this leads to the sum Z(SN i k) being

equal to even values which reduces the size of the state space for the Markov chain. This
reduces the size of the TPM and thus eliminates unnecessary calculations in order to make the

methods as efficient as possible. Let Q denote the state space for the two-sided chart. Q is

the union of the state space for the upper one-sided chart Q" ={0,2,4} and the state space for
the lower one-sided chart Q™ ={—4,-2,0}. Therefore, Q = Q" U Q™ = {-4,-2,0}U{0,2,4} =

{(—4,-2,0,2,4} = {6,.6,,6,,65.6,} with —h=¢,<¢, <¢,<¢;<¢g, =h.
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Table 2.33. Classifications and descriptions of the states.

State number | Values of the CUSUM statistic(s) Noigi)(;l(;l:gglﬁl)\l A)
0 S =0and S'=0 NA
1 ST =2orS8"=2" NA
2 S ==2orS§ =27 NA
3 ST =4or S =47 A
4 S =-4orS =-4° A

From Table 2.33 we see that there are three non-absorbent states, i.e. r =3, and two
absorbent states, i.e. s=2. Therefore, the corresponding TPM will be a

(r+s)x(r+s)=>5x5 matrix. The layout of the TPM is as follows. There are three transient

states and two absorbent states. By convention we first list the non-absorbent states and then
we list the absorbent states. In column one we compute the probability of moving from state
i to state O, for all i. Note that the process reaches state O when both the upper and the lower
cumulative sums equal zero. In columns two and three, we compute the probabilities of
moving from state i to the remaining non-absorbent states, for all i. Finally, in the remaining
two columns we compute the probabilities of moving from state i to the absorbent states, for

all i. Thus, the TPM can be conveniently partitioned into 4 sections given by

v 32 %2 %2 l %2 %2

Pwo Poi P P Pu A B V)
Po Pu P Pz Pu oo L % % Qs | Cyy
TPM 55 =| Pyy Pu Pn Px P |= _

P Pz Pn Pz Pu Zys I Iy,

0 0 O I 1 O
Py Psuy Pso Pz Pu 0 0 0 I 0 1

" Moving from state 0 to state 1 can happen when either the upper cumulative sum or the lower cumulative sum
equals 2. But the lower cumulative sum can not equal 2 since by definition the lower cumulative sum can only
take on integer values smaller than or equal to zero. Therefore, we only use the probability that the upper
cumulative sum equals 2 in the calculation of the probabilities in the TPM.

" Moving from state 0 to state 2 can happen when either the upper cumulative sum or the lower cumulative sum
equals -2. But the upper cumulative sum can not equal -2 since by definition the upper cumulative sum can only
take on integer values greater than or equal to zero. Therefore, we only use the probability that the lower
cumulative sum equals -2 in the calculation of the probabilities in the TPM.

* A similar argument to the argument in the first footnote on this page holds. Therefore, we only use the
probability that the upper cumulative sum equals 4 in the calculation of the probabilities in the TPM.

% A similar argument to the argument in the second footnote on this page holds. Therefore, we only use the
probability that the lower cumulative sum equals -4 in the calculation of the probabilities in the TPM.
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where the essential transition probability sub-matrix Q, ,:(NA — NA) is an rXr=3X3
matrix, C,,, : (NA — A) is an rXs=3x2 matrix, Z,; : (A — NA) is an sXr =2x3 matrix

and 7, , : (A — A) isa sXs=2X2 matrix.

2x2

The calculation of the elements of the TPM is illustrated next. Note that this

essentially involves the calculation of the matrices Q and C. First consider the transient
states. Note that the process moves to state 0, i.e., j =0, when both the upper and the lower

cumulative sums equal 0. Thus the required probability of moving to 0, from any other
transient state, is the probability of an infersection of two sets involving values of the upper
and the lower CUSUM statistics, respectively. On the other hand, the probability of moving to

any state j # 0, from any other state, is the probability of a union of two sets involving values

of the upper and the lower CUSUM statistics, respectively. However, one of these two sets is

empty so that the required probability is the probability of only the non-empty set.

The calculation of the entry in the first row and the first column of the matrix Q, p,,,

will be discussed in detail. This is the probability of moving from state O to state O in one step.
As we just described, this can happen only when the upper and the lower cumulative sums

both equal 0 at time ¢. For the upper one-sided CUSUM p,, is the probability that the upper
CUSUM equals 0 at time ¢, given that the upper CUSUM equaled O at time 7 —1, that is,
P(S; =018, =0). For the lower one-sided procedure p,, is the probability that the lower
CUSUM equals 0 at time ¢, given that the lower CUSUM equaled O at time 7 —1, that is,

P(S; =01S§,_, =0). For the two-sided procedure the two one-sided procedures are performed

simultaneously. Therefore we have that p,, = P({S,+ =018, = O}ﬁ {Sr_ =018, = O})
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We have that

Poo
= Plis; =015y, =0} {s; =015, =0})

this is computed by substituting in values for A, k, S, S’,, S~ and S, , into equations

(2.50) and (2.51)
= P({min{4, max {0, SN, —1+0}} = 0}~ {max{- 4, min{0, SN, +1+0}} = 0})

= P({max{0,SN, —1+0} = 0} {min{0, SN, +1+ 0} = 0})

= P((SN, -1<0)n (SN, +1+0=>0))

= P((SN, <1)n (SN, > -1))

recall that SN, =27 —n where T is binomially distributed with parameters n and
p=P(X, 26,

=P(2r -5<1)n (2T =52 -1))

=P(T <3)n(T =2))

=P(T =2)+ P(T =3)

=2P(T =2)

=2X (1%2)

=%,

since T is binomially distributed with parameters n =5 and p =0.5.

The remaining entries in the first column of the matrix Q can be calculated similarly

and we find that p,, =%, and p,, ='%,.

Next we discuss the calculation of the entry in the first row and the second column of
the matrix Q, p,,, in detail. This is the probability of moving from state O to state 1 in one
step. This can happen when either the upper cumulative sum or the lower cumulative sum
equals 2. But the lower cumulative sum can not equal 2 since by definition the lower
cumulative sum can only take on integer values smaller than or equal to zero. Therefore
although the required probability is the probability of the union of two sets involving values
of the upper and the lower CUSUM statistics, one of these sets is empty so that the required
probability is the probability of only the non-empty set. Hence, in this case, we will only have

to calculate the upper one-sided probability. For the upper one-sided CUSUM, p,, is the
probability that the upper cumulative sum equals 2 at time ¢, given that the upper cumulative

sum equaled O at time 7 —1, thatis, P(S; =215, =0). We have that
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Por

=P(S =21S8",=0)

= P(min{4, max{0,SN, —1+0}}=2)
= P(max{0,SN, —1+0} = 2)

= P(SN, -1=2)
= P(SN, =3)
=PQ2T-5=3)
= P(T = 4)
=Y.

The remaining entries in the second column of the matrix Q can be calculated

similarly and we find that p,, ='%, and p,, =%,.

Next we discuss the calculation of the entry in the first row and the third column of the
matrix O, p,,. in detail. This is the probability of moving from state O to state 2 in one step.
This happens when only the lower cumulative sum moves to -2, since the upper cumulative
sum can not move to -2. Recall that the upper cumulative sum can only take on integer values
greater than or equal to zero. As in the case of p,,, this probability is also the probability of
the union of two sets, involving values of the CUSUM statistics, one of which is empty, so
that the required probability is the probability of only the non-empty set. Hence, in this case
since the lower CUSUM is involved, we will only have to calculate the probability associated

with the lower one-sided procedure. Now, for the lower one-sided procedure pg, is the
probability that the lower cumulative sum equals -2 at time ¢, given that the lower cumulative
sum equaled O at time 7 —1, thatis, P(S, =-21§,_, =0). We have that

Por
=P(S, ==-21§5_,=0)

t

= P(max{-4,min{0, SN, +1+0}}=-2)

= P(min{0,SN, +1+0} =-2)
=P(SN, +1=-2)

= P(SN, =-3)

= P21 -5=-3)

=P(T=1)

:%2-
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The remaining entries in the third column of the matrix Q can be calculated similarly

and we find that p, =%, and p,, ='%,.

Next we discuss the calculation of the entry in the first row and the first column of the

matrix C, p,,, in detail. This is the probability of moving from state 0 to an absorbent state,

state 3, in one step. Again, this can happen when only the upper cumulative sum moves to 4,
since the lower cumulative sum can not move to 4. Recall that the lower cumulative sum can
only take on integer values smaller than or equal to zero. Therefore, once again the required
probability is the probability of the union of two sets involving values of the CUSUM
statistics, one of which is empty so that the probability is the probability of only the non-
empty set. Therefore we will only have to calculate the upper one-sided probability in this

case. For the upper one-sided procedure p, is the probability that the upper cumulative sum
equals 4 at time ¢, given that the upper cumulative sum equaled O at time ¢—1, that is,
P(S’ =418’ =0). We have that

Pos
=P(S+=4|Sr+_1=0)

= P(min{4, max {0, SN, —1+0}}=4)
= P(SN, —1>4)
= P(SN, >5)
(2T 525)
=P(T 2

=/3-

The remaining entries in the first column of the matrix C can be calculated similarly

and we find that p, =%, and p,, = )%,.

Next we discuss the calculation of the entry in the first row and the last column of the

matrix C, p,,, in detail. This is the probability of moving from state O to state 4 in one step.

This can happen when only the lower cumulative sum moves to -4, since the upper cumulative
sum can not move to -4. Recall that the upper cumulative sum can only take on integer values
greater than or equal to zero. Therefore although the required probability is the probability of
the union of two sets involving values of the upper and the lower CUSUM statistics, one of

these sets is empty so that the required probability is the probability of only the non-empty
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set. Therefore we will only have to calculate the lower one-sided probability. For the lower

one-sided procedure p,, is the probability that the lower cumulative sum equals -4 at time 7,

given that the lower cumulative sum equaled O at time # —1, thatis, P(S; =—415,_,=0). We
have that

DPos
=P(S;, =-415_,=0)
= P(max{-4,min{0,SN, +1+0}}=—4)
= P(SN +1<-4)
= P(SN, <-5)

P(2T 5<-5)
=P(r <0)
=)
The remaining entries in the last column of the matrix C can be calculated similarly

and we find that p, = ), and p,, =%,.

The run length distribution and its parameters

The run length distribution and its parameters are calculated using the matrix Q. The

20 5 5 1
ARL is given by &(I-0)"'1 where £ = 0 0), 0y, :3—12 10 10 5 |andl,, =[1].
10 5 10 1

Asaresult, ARL=E(N)=£&(1-0)"'1=83I.

Let ARL" and ARL  denote the average run lengths of the upper and lower one-sided
charts, respectively. The ARL of the two-sided chart can be expressed as a function of the
average run lengths of the one-sided charts through the expression

(ARL')(ARL)

ARL =
(ARL" + ARL")

(2.52)

(see Theorem 1 in Appendix A for the proof of result (2.52)).
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From the lower- and upper CUSUM sign sections we have that ARL" =16.62 and

ARL =16.62 . Using equation (2.52) we have that ARL = (16.62)(16.62) =8.31.

(16.62+16.62)

Table 2.34. The in-control average run length (ARL, ), standard deviation of the run length

(SDRL), 5™ ,25™ 50", 75" and 95" percentile values for the two-sided CUSUM sign chart

when n=5".
h

k 2 3ord
2.67 8.31

1 2.11 7.16

(1,1,2,3,7) (1, 3,6, 11, 23)

16.00

3 15.50 :

(1,5,11,22,47)

Analogous to what was done for the upper one-sided chart, the five percentiles (given
in Table 2.34) are displayed in boxplot-like graphs for various ~ and k values in Figure 2.10.
Recall that we would prefer a “boxplot” with a high valued (large) in-control average run
length and a small spread. Applying this criterion, we see that the “boxplot” corresponding to
the (h,k)=(2,3) combination has the largest in-control average run length, which is
favorable, but it also has the largest spread which is unattractive. The “boxplot” furthest to the
right is exactly opposite from the “boxplot” furthest to the left. The latter has the smallest
spread, which is favorable, but it also has the smallest in-control average run length, which is

unattractive. In conclusion, no “box plot” is optimal relative to the others.

" The three rows of each cell shows the ARL), the SDRL, and the percentiles (0s, 0y, Pso P75 > Pos )

respectively.
" See SAS Program 2 in Appendix B for the calculation of the values in Table 2.34.
* Since the decision interval is taken to satisfy h<n—k there are open cells in Table 2.34.
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(h, k)

Figure 2.10. Boxplot-like graphs for the in-control run length distribution of various two-
sided CUSUM sign charts when n=35. The whiskers extend to the 5" and the 95
percentiles. The symbols “™=="  “o” and “~=" denote the ARL, SDRL" and MRL,

respectively.

* For ease of interpretation, the standard deviation (as measure of spread) is included in the (location) measures
of percentiles.
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Other values of &, k and n were also considered and the results are given in Table 2.35.

Table 2.35. The in-control average run length (ARL, ), standard deviation of the run length

(SDRL), 5" ,25™ ,50™ ,75™ and 95" percentile” values for the two-sided CUSUM sign chart

when n=6".

f h
2 3or4 Sor6
1.45 2.96 5.33
0 0.81 1.88 4.22
1,1,1,2,3) (1,2,3,4,7) (1,2,4,7, 14)
4.57 19.34
2 4.04 18.36 ¢
1,2,3,6,13) (2, 6, 14, 26, 56)
32.00
4 31.50
(2, 10, 22, 44, 95)

™ The three rows of each cell shows the ARL,, the SDRL, and the percentiles ( Ps P55 Pso s P75 5 Los )

respectively.
" See SAS Program 2 in Appendix B for the calculation of the values in Table 2.35.
* Since the decision interval is taken to satisfy h<n—k there are open cells in Table 2.35.
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100
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(2,00 (3,00 (40 (22 (50 (60 (3,2 (42 (24
(h, k)

Figure 2.11. Boxplot-like graphs for the in-control run length distribution of various two-
sided CUSUM sign charts when n=6. The whiskers extend to the 5™ and the
95" percentiles. The symbols “===" “o” and “~=" denote the ARL, SDRL" and MRL,

respectively.

* For ease of interpretation, the standard deviation (as measure of spread) is included in the (location) measures
of percentiles.
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Table 2.36. The in-control average run length (ARL, ), standard deviation of the run length

(SDRL), 5" ,25™ 50", 75" and 95" percentile values for the two-sided CUSUM sign chart

when n=10".

K h

Jord Soré6 7or 8
7.17 18.41 45.80
2 6.39 17.05 43.63
(1, 3,5, 10, 20) (2,6, 13,25,52) (4, 15, 32, 63, 133)

38.98 232.43

4 38.30 231.26 ¥

(3,12, 27, 54, 115) (13, 68, 161, 322, 694)

464.98

6 464.39

(24, 134, 322, 644, 1392)

" The three rows of each cell shows the ARL), the SDRL, and the percentiles (0s, 0y, Pso P75 > Pos )

respectively.
" See SAS Program 2 in Appendix B for the calculation of the values in Table 2.36.

: Since the decision interval is taken to satisfy #<n -k there are open cells in Table 2.36.
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Figure 2.12. Boxplot-like graphs for the in-control run length distribution of various two-
sided CUSUM sign charts when n=10. The whiskers extend to the 5" and the
and “~" denote the ARL, SDRL" and MRL,

2

95" percentiles. The symbols “ == o

respectively.

* For ease of interpretation, the standard deviation (as measure of spread) is included in the (location) measures
of percentiles.
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A two-sided CUSUM sign chart for the Montgomery (2001) piston ring data
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We conclude this sub-section by illustrating the two-sided CUSUM sign chart using

the piston ring data set from Montgomery (2001). We assume that the underlying distribution

is symmetric with a known target value of 6, =74 mm. Let k =3. Once k is selected, the

constant /& should be chosen to give the desired in-control average run length performance. By

choosing 4 =2 we obtain an in-control average run length of 16 which is the highest in-

control average run length attainable when n =35 (see Table 2.34). Table 2.37 shows the

upper and lower sign CUSUM statistics, respectively.

Table 2.37. One-sided sign (S, and S, ) statistics .

Sample | | 5 ) 3l 4 s 6| 78] 9 10| 1n|12]13]14]15
number
S;' 0 0 0 1
S; -1 0 0
7 Variable
—@— Upper sign CUSUM statistics
6 —#— Lower sign CUSUM statistics
5_
€ 41
=
/)]
£ 3
whd
é 2 h=2
3 11
04 - - —a—a—=
\ /
-1- ]
-2 -h=-2
123456 7 8 910111213 1415
Sample number

Figure 2.13. The two-sided CUSUM sign chart for the Montgomery (2001) piston ring data.

* See SAS Program 3 in Appendix B for the calculation of the values in Table 2.37.
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The two-sided CUSUM sign chart signals at sample number 12, indicating a most like
upward shift in the process median. The action taken following an out-of-control signal on a
CUSUM chart is identical to that with any control chart. A search for assignable causes
should be done, corrective action should be taken (if required) and, following this, the

CUSUM is reset to zero.
2.3.4. Summary

While the Shewhart-type charts are widely known and most often used in practice
because of their simplicity and global performance, other classes of charts, such as the
CUSUM charts are useful and sometimes more naturally appropriate in the process control
environment in view of the sequential nature of data collection. In this section we have
described the properties of the CUSUM sign chart and given tables for its implementation.
Detailed calculations have been given to help the reader to understand the subject more

thoroughly.
2.4. The EWMA control chart
2.4.1. Introduction

The exponentially weighted moving average (EWMA) scheme was first introduced by
Roberts (1959). In a subsequent article, Roberts (1966) compared the performance of EWMA
charts to Shewhart and CUSUM charts. Various authors have studied EWMA charts (see for
example Robinson and Ho (1978) and Crowder (1987)). EWMA charts have become very
popular over the last few years. It is one of several charting methods aimed at correcting a

deficiency of the Shewhart chart — insensitivity to small process shifts.

An EWMA control chart scheme accumulates statistics X, X,, X;,... with the plotting
statistics defined as
Z. =X, +(1-1Z_, (2.53)
where 0 <A <1 is a constant called the weighting constant. The starting value Z, is often

taken to be the process target value, i.e. Z, =6,.

106



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qo VYUNIBESITHI YA PRETORIA

O

The EWMA chart is constructed by plotting Z, against the sample number i (or
time). If the plotting statistic Z, falls between the two control limits, that is,
LCL < Z, <UCL, the process is considered to be in-control. If the plotting statistic Z; falls on
or outside one of the control limits, that is Z, < LCL or Z, 2 UCL, the process is considered

to be out-of-control.

To illustrate that the plotting statistic Z, is a weighted average of all the previous
statistics, Z, , may be substituted by Z, , = AX, , +(1-4)Z,_, in equation (2.53) to obtain

Z, =X, + (1= DX, + (- DZ,.,)
=X, +A1-DX,_ +(1-1*Z,,
=X, +A1-DX, +1-D* (X, +1-DZ,,)
=X, + A= DX + A=K, + (=)' Z .

This method of substitution is called recursive substitution. By continuing the process

of recursive substitution for Z,

i-p> pP= 253’---,t , We obtain

i—1
Z, =AY A1-D’'X,_, +(1-2)'Z,. (2.54)
p=0

We can see from expression (2.54) that Z, can be written as a moving average of the current

and past observations which has geometrically decreasing weights A(1—A)” associated with
increasingly aged observations X, , (p=12,...). Therefore, the EWMA has been referred to

as a geometric moving average (see, for example, Montgomery (2005)).

If the observations {X,,i=12,..} are independent identically distributed variables

with mean g and variance o, then the mean and the variance of the plotting statistic Z, are
given by
Uy = E(Z)=u for i=12,..

and

o) :(,—2(%}1—(1—/1)2") for i=12,.. .
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The exact control limits and the center line of the EWMA control chart are given by

A 2

UCL =6, + LO'\/(mj(l —(1-A)%)

CL=6, . (2.55)
A 2

LCL=6, - LG\/(mj(l —1-A%)

From (2.55) we see that we have two design parameters of interest, namely the
multiplier L, (L > 0) and the smoothing constant 4. We also see that (1 —(1-2)" ) —lasi

increases. Therefore, as i increases the control limits will approach steady-state values given

by

UCL=6,+Lo (LJ
2-1
(2.56)

LCL=6,-Lo (Lj
2-4

The above-mentioned control limits are called steady-state control limits.

Various authors recommend choosing the EWMA constants L and A by minimizing
the average run length at a specified shift for a desired in-control average run length. In
general, values of A in the interval 0.05 < A <0.25 work well in the normal theory case with

A=0.05, 1=0.1 and 4 =0.2 being popular choices. The ARL,, standard deviation of the
run length (SDRL), 5",25" (the first quartile, Q,), 50" (the median run length, MRL),
75" (the third quartile, Q;) and 95" percentile values can be computed and tabulated for

various values of L and A.

Lucas and Saccucci (1990) have investigated some properties of the EWMA chart
under the assumption of independent normally distributed observations. Lucas and Saccucci’s
most important contribution is the use of a Markov-chain approach to evaluate the run-length
properties of the EWMA chart. It is important to note that the successive observations are
assumed to be independent over time in their evaluation. Lucas and Saccucci (1990) used a
procedure similar to that described by Brook and Evans (1972) to approximate the properties

of an EWMA scheme. They evaluate the properties of the continuous state Markov chain by
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discretizing the infinite state transition probability matrix (TPM). This procedure entails
dividing the interval between the upper control limit and the lower control limit into N
subintervals of width 20 . Then the plotting statistic, Z,, is said to be in the non-absorbing
state j attime i if

S, -0<Z < S, +0 for j=12,.,N-1
and

§;—0<Z,<§;+6 for j=N
where §; denotes the midpoint of the j " interval. Let r denote the number of non-absorbing
states. Z, is said to be in the absorbing state if Z, falls on or outside one of the control limits,

that 1s, Z, <LCL or Z, 2UCL. Clearly, there are r+1 states, since there are r non-

absorbing states and one absorbing state. Lucas and Saccucci (1990) have done a thorough
job of evaluating the run length properties of the EWMA chart and provided helpful tables for
the design of the EWMA chart. Additional tables are provided in the technical report by
Lucas and Saccucci (1987). In their 1990 paper they concentrate on the average run length
characteristics of various charting combinations. The authors conclude that EWMA
procedures have average run length properties similar to those for CUSUM procedures. This
point has also been made by various authors, for example, Ewan (1963), Roberts (1966) and
Montgomery, Gardiner and Pizzano (1987). In this thesis, the approach taken by Lucas and
Saccucci (1990) is extended to the use of the sign statistic resulting in an EWMA sign chart

that accumulates the statistics SN,,SN,,SN,,... .

2.4.2. The proposed EWMA sign chart

A nonparametric EWMA-type of control chart based on the sign statistic can be

obtained by replacing X, in expression (2.53) with SN, (recall that SN, = ZSign(x,.j —-6,)).

j=1
The EWMA sign chart accumulates the statistics SN, SN,,SN;,... with the plotting statistics

defined as
Z,=ASN,+(1-1Z_, (2.57)

where 0 < A <1 and the starting value Z, is usually taken to equal zero, i.e. Z, =0.
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The expected value, variance and standard deviation of SN, are found from the fact
that the distribution of SN, can easily be obtained from the distribution of the binomial
distribution (recall that SN, = 2T, —n if there are no ties within a subgroup, where 7; has a
binomial distribution with parameters n and p=P(X i 2 6,)). The formulas for the
expected value, variance and standard deviation of SN, was derived in Section 2.1 and we
obtained E(SN,;)=n(2p-1), var(SN;)=4np(1—p) and stdev(SN,) =0y =2/np(1-p),
respectively. The starting value Z, can also be taken to be the expected value of SN,,

therefore Z, = E(SN,;)=n(2p—1) and in the in-control case where p=0.5 we have

Z,=n(2x0.5-1)=0 forall n.

From the similarity between the definitions of the normal EWMA scheme and the sign
EWMA scheme, it follows that the exact control limits and the center line of the EWMA sign

control chart can be obtained by replacing o in (2.55) with o, which yields

_ A o g
UCL=0+Log, \/(mj(l 1-2)%)

CL=0 . (2.58)

0. A NG g
LCL=0 LO'SNl\/(z_/J(I 1-2)%)

It is important to note 6, in (2.55) is replaced by O in (2.58). This is because the

EWMA sign chart is designed for the sign test statistic and not for the observations (the
X,’s).

Similarly, the steady-state control limits can be obtained by replacing ¢ in (2.56)

with o, and 6, by zero which yields
A
UCL=Lo —
S (2 — /IJ
. (2.59)
A

LCL = _Lo-SN, (ﬂj
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2.4.3. Markov-chain approach

Lucas and Saccucci (1990) evaluated the properties of the continuous state Markov
chain by discretizing the infinite state TPM. This procedure entails dividing the interval
between the UCL and the LCL into N subintervals of width 20. The width of each

1_(ucL-LcL)

subinterval can be obtained by setting J = EX and we get that the width of an

(UCL-LCL)

interval equals 20 = . Thus, the endpoints of the subintervals will be given by

(UcL-LcCL) (UCL-LCL)

LCL, LCL+=——= 0 LCL+ 25 2, LCL+(N_1)(UCL—LCL)

, UCL,

respectively (see Figure 2.14). In general, the endpoints of the j” interval will be given by

UCL-LCL)

(LCLj,UCLj):(LCL+(j—1)><(

,LCL+ jX(UCL;LCL)}

th

The midpoint of the ;™ interval, §,, is easily obtained by taking the sum of the two

endpoints of the j™ interval and dividing it by 2. Thus, we obtain

A\

J

_ LCL,+UCL,
e

LCL+"

(LCLJF (j —D(U;L— LCL)] J{ (UCL_LCL)j

2

_(2j-nlucL-LcL)
- 2N '
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Figure 2.14. Partitioning of the interval between the UCL and the LCL into N subintervals.

Then the plotting statistic, Z,, is said to be in the non-absorbing state j at time i if
§,-0<Z,<8,+6 for j=12,..N-1 (2.60)

and

§;—6<Z,<S;+6 for j=N. (2.61)
Z, is said to be in the absorbing state if Z; falls on or outside one of the control limits, that is,

Z.<LCLor Z 2UCL.

Let p, denote the probability of moving from state i to state j in one step. We have
that p, = P(Moving to state j|in state ;). To calculate this probability we assume that the
plotting statistic is equal to S, whenever it is in state i. For all j non-absorbing we obtain
Py = P(Sj —0<Z,<8;+01Z;,, = Si). This is the probability that Z, is within state j,
conditioned on Z,_, being equal to the midpoint of state i. By using the definition of the

plotting statistic given in expression (2.57) this transition probability can be written as
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p; =PS;~S<ASN, +(1-DZ,, <5, +81Z,_ =S;)
P(S, -8 < ASN, +(1-1)S, < S, +3)
:P((Sj—é');(l—/i)Si “SN < (Sj+5)—(1—/1)5,.]‘

¢ A

Recall that SN, =2T, —n where T, is binomially distributed with parameters n and

p=P(X, 26,

<
A A
[(Sj—§)—(1—/1)Si j ((Sj+5)—(1—/1)si ]
g +n +n
=P <T, <

S . —-0)—-(1-4)S,; S +0)-(1-4)S.
p,-j=P((] )~U=AS SO ),J

A

2.62
> k 5 (2.62)

The probability of transition to the out-of-control state can be determined similarly.

For all j absorbing we obtain

P(Z,<LCL\Z, ,=S,)+P(zZ, >UCLI1Z, , =S,)
(ASN, +(1-A)Z, < LCL\Z, ,=S,)+P(ASN, +(1-A)Z, , 2UCLI1Z, ,=S,)
(ASN, +(1-24)S, < LCL)+ P(ASN, +(1- 1)S, > UCL)

A s, < LCL—(;—/I)SZ.}P(SM 5 UCL—(;—/l)Sij

o TR, o UCL=0-08)

[LCL—(I—/DSI. j [UCL—(l—/%)Si j
+n +n
T, < +P| T, >

pij

P
P

A A

=P T < 2.63
k > > (2.63)

Since the values 6, A, n, S, and S ; are known constants the binomial probabilities

in expressions (2.62) and (2.63) can easily be calculated using some type of statistical

software package, for example, Excel or SAS.
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Once the one-step transition probabilities are calculated, the TPM can be constructed

Q I p
and is given by TPM =| — — — | (written in partitioned form) where Q is the matrix that
0 I 1

contains all the transition probabilities of going from a non-absorbing state to a non-absorbing

state. In other words, Q is the transition matrix among the in-control states, Q :(NA — NA).

p contains all the transition probabilities of going from each non-absorbing state to the

absorbing states, p:(NA—A). 0'=(0 0 O --- 0) contains all the transition

probabilities of going from the absorbing state to each non-absorbing state, 0' : (A — NA). 1
represents the scalar value one which is the probability of going from the absorbing state to

the absorbing state, 1: (A — A).

Lucas and Saccucci (1990) have investigated some properties of the EWMA chart
under the assumptions of independent normally distributed observations. From the similarity
between the definitions of the normal EWMA scheme and the sign EWMA scheme, it follows
that the formulas derived by Lucas and Saccucci (1990) can be extended to the use of the sign
EWMA scheme. The formulas derived by Lucas and Saccucci (1990) have been studied by
other authors, for example, Fu, Spiring and Xie (2002) and Fu and Lou (2003). The latter two
used the moment generating function and the probability generating function, respectively, to
derive expressions for the first and second moments of the run length variable N . See
Theorem 2 in Appendix A for the derivations done by Fu, Spiring and Xie (2002) and Fu and
Lou (2003). For the formulas refer to equations (2.41) to (2.45) of this thesis.
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Example 2.14
The EWMA sign chart where the sample size is even (n = 6)

We consider the EWMA sign chart with a smoothing constant of 0.1 (A =0.1) and a
multiplier of 3 (L =3). The interval between the UCL and the LCL is divided into 4

subintervals (N =4). For a sample size of 6, the sign statistic SN, can take on the values

{—6,—-4,-2,0,2,4,6} and the statistic 7, takes on the values {0,1,2,3,4,5,6}.

The steady-state control limits are given in (2.59) by

UCL= Loy, (Lj

2-1
A
LCL=-Lo —
e (2 — /1)
where L=3, A=0.1, and o, =2449, since oy =2np(l-p)=

2,/6(0.5)1-0.5) =2.449.

Clearly, we only have to calculate the UCL since LCL=-UCL. We have that

0.1

UCL =3x2.449 ( lj =1.686. Therefore, LCL =—1.686.

This Markov-chain procedure entails dividing the interval between the UCL and the
LCL into subintervals of width 2J. Figure 2.15 illustrates the partitioning of the interval
between the UCL and the LCL into subintervals.
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UCL = 5, +6 = 1 636
Sy=1265 —

Sy -6 =8 +6 =0343
5 =042 ——>

S-8=5+8=10
§ =041 —>

$ -6 =8 +6 = —0.343
5y =-1265 ———

LCL =1, -6 =-1886

Figure 2.15. Partitioning of the interval between the UCL and the LCL into 4 subintervals.

From Figure 2.15 we see that there are 4 non-absorbing states, i.e. r =4. The TPM is

given by

Po Por Poz Pos Pos
P Pu P P Pu Opa | P,
TPM s =| Pyy Py Pn Py Pul|=| — — —

P P Pn Pz Pu Opy I 1y
Py Py Pso Py Pu

The plotting statistic, Z,, is said to be in the non-absorbing state j at time i if
S, - 0<Z <S it o for j=0,1,2,3 where S ; denotes the midpoint of the j" interval. Each

sub-interval has a width of 26 = 0.843, therefore 0 = 0.4215.
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Table 2.38. Calculation of the one-step probabilities in the first row of the TPM.

Do = P(Moving to state 0l in state O)
using expression (2.62) we obtain

[(SO -0) :1(1—/1)50 +”j
=P

[(SO +0)—(1-A)S, +"j
<

<T, < A
2 2

with § =0.4215, A=0.1, L=3 and S, =1.265

= P(1.525 < T, <5.740)

=P(T, =2)+ P(T, =3)+ P(T, =4) + P(T, =5)
56

64

Doi = P(Moving to state 11 in state 0)
=P(S,-6<27,<8,+381Z,,=5,)

using expression (2.62) we obtain

[(S1 -8 -(1-D)S, +"j ((S1 +8)—(1-A)S, +”j
=P T, <

A A
2 2

< k_

= P(=2.690 < T, <1.525)
=P(T, <1)
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Doy = P(Moving to state 2| in state 0)

using expression (2.62) we obtain

((52—5)—(1—/1)50 +”j [(S2+5)—(1—/1)S0 +”j
=P T, <

A < A
2 k= 2

= P(-6.904 < T, <-2.690)
=0

Pos = P(Moving to state 31 in state 0)
=P(S,-6<Z, <S,+61Z,_,=5,)

using expression (2.62) we obtain

((53 -0) ;(1—/1)50 +”j
=p

((53 +0)—(1-A)S, +”j
<

<T, < A
2 2

= P(—-11.119 < T, <-6.904)
=0

Doy = P(Moving to state 4 in state 0)
=P(z, <LCL1Z, ,=S,)+P(Z, 2UCLIZ, ,=S,)
using expression (2.63) we obtain

LCL=(1-DS, UCL-(-D)S, ,

- P|T, < A P T, 2 A
2 2

= P(T, <-11.119)+ P(T, >5.739)
=0+ P(T, =6)
1
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The calculations of the other transition probabilities can be done similarly. Therefore

Y4 Ve O 0 Y
Vo s Ve 0 0 Op | D,
the TPM is givenby TPM =| 0 7%, %, % O |=| — — -

0 0 74 % Ja Ope I Iy
O o0 0 0 1

Other values of the multiplier (L) and the smoothing constant (A1) were also

considered and the results are given in Tables 2.39 and 2.40".

Table 2.39. The in-control average run length (ARL, ), standard deviation of the run length

(SDRL), 5",25™,50™,75™ and 95™ percentile values' for the EWMA sign chart when

n=6and N =35, i.e. there are 5 subintervals between the lower and upper control limit*.

L=1 L=2 L=3

6.79 22.86 736.00

A=0.05 8.56 30.29 827.24
(1,1,3,9,24) (1,3,10,31,85) | (4,134,472,1051, 2393)

4.84 83.69 736.00

A=0.1 5.36 104.13 819.78
(1,1,3,7,16) (1,6,47,121,294) | (4,142,477, 1049, 2377)

4.73 34.12 585.80

A=02 5.08 39.63 608.31
(1,1,3,6,15) (1,5,21,49,114) | (9,152,398, 820, 1800)

Similar tables can be constructed by changing the sample size (n), the number of
subintervals between the lower and upper control limit (N), the multiplier (L) and the

smoothing constant (A ) in the SAS program for the EWMA sign chart given in Appendix B.

* These results were calculated through the formulas given in equations (2.41) to (2.45).

" The three rows of each cell shows the ARL,, the SDRL, and the percentiles (05, Pas Py » P75 » Pos)
respectively.

¥ See SAS Program 4 in Appendix B for the calculation of the values in Table 2.39.
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Table 2.40. The in-control average run length (ARL, ), standard deviation of the run length

(SDRL), 5",25™,50™,75™ and 95" percentile values for the EWMA sign chart when

n=10 and N =35, i.e. there are 5 subintervals between the lower and upper control limit'.

L=1 L=2 L=3
25.47 166.06 1773.34
A=0.05 31.96 207.27 2089.12
(1,2,13,37,90) | (1,11, 93,241, 585) | (6,228, 1087, 2557, 5970)
10.35 75.61 845.42
A=0.1 11.02 81.91 890.53
(1,2,7,14,33) | (1,16,50,107,204) | (9,208,570, 1188, 2624)
3.67 25.47 272.79
A=0.2 3.68 31.96 305.97
(1,1,2,5,11) (1,2, 13,37,90) (1,51, 176, 389, 886)

From Tables 2.39 and 2.40 we see that the ARL,, SDRL and percentiles increase as
the value of the multiplier (L) increases. In contrast, the ARL,, SDRL and percentiles

decrease as the value of the smoothing constant (A) increases. From Table 2.40 we find an
in-control average run length of 272.79 for n =10 when the multiplier is taken to equal 3
(L =3) and the smoothing constant 0.2 (A4 =0.2). The chart performance is good, since the
attained in-control average run length of 272.79 is in the region of the desired in-control

average run length which is generally taken to be 370 or 500.

2.4.4. Summary

EWMA charts are popular control charts; they take advantage of the sequentially (time
ordered) accumulating nature of the data arising in a typical SPC environment and are known
to be efficient in detecting smaller shifts but are easier to implement than the CUSUM charts.
We have described the properties of the EWMA sign chart and given tables for its
implementation. Although a lot has been done over the past few years concerning EWMA-
type charts, more work is necessary on the practical implementation of the charts as well as

on adaptations in case U.

" The three rows of each cell shows the ARL,, the SDRL, and the percentiles (Ps, Pas > Ps0» P75 » Pos)

respectively.
" See SAS Program 4 in Appendix B for the calculation of the values in Table 2.40.
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