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Chapter 1: Introduction 
 

1.1. Notation 

 
SPC Statistical process control 

NSPC Nonparametric statistical process control 
pmf Probability mass function 
cdf Cumulative distribution function 
pgf Probability generating function 
mgf Moment generating function 
cgf Cumulant generating function 
n  Sample size 

nXXX ,..., 21  Random variables in a sample 

nxxx ,..., 21  Observations in a sample 

0θ  Target value / Known or specified in-control location parameter1 
CUSUM Cumulative sum 
EWMA Exponentially weighted moving average 

ARL  Average run length 

0ARL  In-control average run length 

δARL  Out-of-control average run length 
SDRL Standard deviation of the run length 
MRL Median run length 
UCL Upper control limit 
CL Center line 

LCL Lower control limit 
FAR False alarm rate 
FAP False alarm probability 
VSI Variable sampling interval 
FSI Fixed sampling interval 

Ua  Upper action limit / Upper control limit 

Uw  Upper warning limit 

Lw  Lower warning limit 

La  Lower action limit / Lower control limit 
TPM Transition probability matrix 

A Absorbent 
NA Non-absorbent 

 

                                                 
1 The location parameter could be the mean, median or some percentile of the distribution. When the underlying 
distribution is known to be highly skewed, the median or some percentile is preferred to the mean. 
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1.2. Distribution of chance causes 

 

One of the main goals of statistical process control (SPC) is to distinguish between 

two sources of variability, namely common cause (chance cause) variability and assignable 

cause (special cause) variability. Common cause variability is an inherent or natural (random) 

variability that is present in any repetitive process, whereas assignable cause variability is a 

result of factors that are not solely random. In SPC, the pattern of chance causes is usually 

assumed to follow some parametric distribution (such as the normal). The charting statistic 

and the control limits depend on this assumption and as such the properties of these control 

charts are “exact” only if this assumption is satisfied. However, the chance distribution is 

either unknown or far from being normal in many applications and consequently the 

performance of standard control charts is highly affected in such situations. Thus there is a 

need for some easy to use, flexible and robust control charts that do not require normality or 

any other specific parametric model assumption about the underlying chance distribution. 

Distribution-free or nonparametric control charts can serve this broader purpose. On this point 

see for example, Woodall and Montgomery (1999) and Woodall (2000). These researchers 

and others provide more than enough reasons for the development of nonparametric control 

charts. 

   

1.3. Nonparametric or distribution-free 

 

The term nonparametric is not intended to imply that there are no parameters involved, 

in fact, quite the contrary. While the term distribution-free seems to be a better description of 

what we expect from these charts, that is, they remain valid for a large class of distributions, 

nonparametric is perhaps the term more often used. In the statistics literature there is now a 

rather vast collection of nonparametric tests and confidence intervals and these methods have 

been shown to perform well compared to their normal theory counterparts. Remarkably, even 

when the underlying distribution is normal, the efficiency of some nonparametric methods 

relative to the corresponding (optimal) normal theory methods can be as high as 0.955 (see, 

e.g., Gibbons and Chakraborti, 2003). In fact, for some heavy-tailed distributions like the 

double exponential, nonparametric tests can be more efficient. It may be argued that 

nonparametric methods will be “less efficient” than their parametric counterparts when one 

has a complete knowledge of the process distribution for which that parametric method was 

specifically designed. However, the reality is that such information is seldom, if ever, 
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available in practice. Thus it seems natural to develop and use nonparametric methods in SPC 

and the quality practitioners will be well advised to have these techniques in their toolkits.   

 

We only discuss univariate nonparametric control charts designed to track the location 

of a continuous process since very few charts are available for monitoring the scale and 

simultaneously monitoring the location and scale of a process. The field of multivariate 

control charts is interesting and the body of literature on nonparametric multivariate control 

charts is growing. However, in our opinion, it hasn’t yet reached a critical mass and a 

discussion on this topic is better postponed for the future. 

  

1.4. Nonparametric control charts 

 

Chakraborti, Van der Laan and Bakir (2001) (hereafter CVB) provided a systematic 

and thorough account of the nonparametric control chart literature. A nonparametric control 

chart is defined in terms of its in-control run length distribution. If the in-control run length 

distribution of a control chart is the same for every continuous distribution, the chart is called 

nonparametric or distribution-free. CVB summarized the advantages of nonparametric control 

charts as follows: (i) simplicity, (ii) no need to assume a particular parametric distribution for 

the underlying process, (iii) the in-control run length distribution is the same for all 

continuous distributions, (iv) more robust and outlier resistant, (v) more efficiency in 

detecting changes when the true distribution is markedly non-normal, particularly with 

heavier tails, and (vi) no need to estimate the variance to set up charts for the location 

parameter. It is emphasized that from a technical point of view most nonparametric 

procedures require the population to be continuous in order to be distribution-free and thus in 

a SPC context we consider the so-called “variables control charts.” Some disadvantages of 

nonparametric control charts are as follows: (i) they will be “less efficient” than their 

parametric counterparts when one has a complete knowledge of the process distribution for 

which that parametric method was specifically designed, (ii) one usually requires special 

tables when the sample sizes are small, and (iii) nonparametric methods are not well-known 

amongst all researchers and quality practitioners. 
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1.5. Terminology and formulation 

 

Two important problems in usual SPC are monitoring the process mean and/or the 

process standard deviation. In the nonparametric setting, we consider, more generally, 

monitoring the center or the location (or a shift) parameter and/or a scale parameter of a 

process. The location parameter represents a typical value and could be the mean or the 

median or some percentile of the distribution; the latter two are especially attractive when the 

underlying distribution is expected to be skewed. Also in the nonparametric setting, the 

processes are implicitly assumed to follow (i) a location model, with a cdf )( θ−xF , where θ  

is the location parameter or (ii) a scale model, with a cdf �
�

�
�
�

�

τ
x

F , where )0(>τ  is the scale 

parameter. Even more generally, one might consider (iii) the location-scale model with cdf 

�
�

�
�
�

� −
τ

θx
F , where θ  and τ  are the location and the scale parameter, respectively. Under these 

model assumptions, the problem is to track θ  and τ  (or both), based on random samples or 

subgroups taken (usually) at equally spaced time points. In the usual (parametric) control 

charting problems F  is assumed to be the cdf Φ  of the standard normal distribution whereas 

in the nonparametric setting, for variables data, F  is some unknown continuous cdf. 

Although the location-scale model seems to be a natural model to consider paralleling the 

normal theory case with mean and variance both unknown, most of what is currently available 

in the nonparametric statistical process control (NSPC) literature deals mainly with the 

location model.  

   

As we noted earlier, a comprehensive survey of the literature until about 2000 can be 

found in CVB. Here, we mention some of the key contributions and ideas and a few of the 

more recent developments in the area; the literature on nonparametric methods continues to 

grow at a rapid pace. In fact, Woodall and Montgomery (1999) stated: ‘There would appear to 

be an increasing role for nonparametric methods, particularly as data availability increases’. 

Most nonparametric charts, however, have been developed for Phase II applications. There 

are generally two phases in SPC. In Phase I (also called the retrospective phase), typically, 

preliminary analysis is done which includes planning, administration, data collection, data 

management, exploratory work including graphical and numerical analysis, goodness-of-fit 

analysis etc. to ensure that the process is in-control. This means that the process is managed to 

operate at or near some acceptable target value along with some natural variation and no 
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special causes of concern are expected to be present. Once this is ascertained, SPC moves to 

the next phase, Phase II, (or the prospective phase), where the control limits and/or the 

estimators obtained in Phase I are used for process monitoring based on new samples of data. 

When the underlying parameters of the process distribution are known or specified, this is 

referred to as the “standard(s) known” case and is denoted case K. In contrast, if the 

parameters are unknown and need to be estimated, it is typically done in Phase I, with in-

control data. This situation is referred to as the “standard(s) unknown” case and is denoted 

case U. In this text we are going to consider decision problems under both Phase I and Phase 

II. One of the main differences between the two phases is the fact that the FAR (or in-control 

average run length 0ARL ) is typically used to construct and evaluate Phase II control charts, 

whereas the false alarm probability (FAP) is used to construct and evaluate Phase I control 

charts. The FAP is the probability of at least one false alarm out of many comparisons, 

whereas the FAR is the probability of a single false alarm involving only a single comparison. 

Various authors have studied the Phase I problem; see for example King (1954), Chou and 

Champ (1995), Sullivan and Woodall (1996), Jones and Champ (2002), Champ and Chou 

(2003), Champ and Jones (2004), Koning (2006) and Human, Chakraborti and Smit (2007). 

Since not much is typically known or can be assumed about the underlying process 

distribution in a Phase I setting, nonparametric Phase I control charts are of great use.  

   

There are three main classes of control charts: the Shewhart chart, the cumulative sum 

(CUSUM) chart and the exponentially weighted moving average (EWMA) chart and their 

refinements. Relative advantages and disadvantages of these charts are well documented in 

the literature (see, e.g., Montgomery, 2001). Analogs of these charts have been considered in 

the nonparametric setting. We describe some of the charts under each of the three classes. 

 

1.6. Shewhart-type charts 

 

Shewhart-type charts are the most popular charts in practice because of their 

simplicity, ease of application, and the fact that these versatile charts are quite efficient in 

detecting moderate to large shifts. Both one-sided and two-sided charts are considered. The 

one-sided charts are more useful when only a directional shift (higher or lower) in the median 

is of interest. The two-sided charts, on the other hand, are typically used to detect a shift or 

change in the median in any direction. 
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1.7. CUSUM-type charts 

 

While the Shewhart-type charts are widely known and most often used in practice 

because of their simplicity and global performance, other classes of charts, such as the 

CUSUM charts are useful and sometimes more naturally appropriate in the process control 

environment in view of the sequential nature of data collection. These charts, typically based 

on the cumulative totals of a plotting statistic, obtained as data accumulate, are known to be 

more efficient for detecting certain types of shifts in the process. The normal theory CUSUM 

chart for the mean is typically based on the cumulative sum of the deviations of the individual 

observations (or the subgroup means) from the specified target mean. It seems natural to 

consider analogs of these charts using the nonparametric plotting statistics discussed earlier. 

These lead to nonparametric CUSUM (NPCUSUM) charts. 

 

1.8. EWMA-type charts 

 

Another popular class of control charts is the exponentially weighted moving average 

(EWMA) charts. The EWMA charts also take advantage of the sequentially (time ordered) 

accumulating nature of the data arising in a typical SPC environment and are known to be 

efficient in detecting smaller shifts but are easier to implement than the CUSUM charts.   
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Section A: Monitoring the location of a process when the target 

location is specified (Case K) 

 

Chapter 2: Sign control charts 
 

2.1. The Shewhart-type control chart 

 

2.1.1. Introduction 

 

The sign test is one of the simplest and broadly applicable nonparametric tests (see, e.g., 

Gibbons and Chakraborti, 2003) that can be used to test hypotheses (or find confidence intervals) 

for the median (or any specified percentile) of a continuous distribution. In this thesis, we will 

only consider the 50th percentile, i.e. the median. The fact that the sign test is applicable for any 

continuous population is an advantage to quality practitioners. Suppose that the median of a 

continuous process needs to be maintained at a specified value 0θ . Amin et al. (1995) presented 

Shewhart-type nonparametric charts for this problem using what are called “within group sign” 

statistics. This is called a sign chart (also referred to as the SN chart). 

 

2.1.2. Definition of the sign test statistic 

 

Let inii XXX ,...,, 21  denote the thi  ,...)2,1( =i  sample or subgroup of independent 

observations of size 1>n  from a process with an unknown continuous distribution function F . 

Let 0θ  denote the known or specified value of the median when the process is in-control, then 0θ  

is called the target value. Compare each ijx  ),...,2,1( nj =  with 0θ . Record the difference 

between 0θ  and each ijx  by subtracting 0θ  from ijx . There will be n  such differences, 0θ−ijx  

),...,2,1( nj = , in the thi  sample. Let +n  denote the number of observations with values greater 

than 0θ  in the thi  sample. Let −n  denote the number of observations with values less than 0θ  in 

the thi  sample.  Provided there are no ties we have that nnn =+ −+ . 
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Define 

 �
=

−=
n

j
iji xsignSN

1
0 )( θ  (2.1)  

where )(xsign  = -1, 0, 1 if 0<x , 0= , 0> .  

 

Then iSN  is the difference between +n  and −n  in the thi  sample, i.e. iSN  is the 

difference between the number of observations with values greater than 0θ  and the number of 

observations with values less than 0θ  in the thi  sample.  

 

Define 

 
2

nSN
T i

i

+
= , (2.2) 

assuming there are no ties within a subgroup. The random variable iT  is the number of sample 

observations greater than or equal to 0θ  in the thi  sample. In (2.2) the statistic iT  is expressed in 

terms of the sign test statistic iSN . Using the relationship in (2.2), the sign test statistic iSN  can 

be expressed in terms of the statistic iT  (if there are no ties within a subgroup) and we obtain 

 nTSN ii −= 2 . (2.3) 

This relationship is evident from the fact that 

 ( ) nTxxsignSN i

n

j
ij

n

j
iji −=−−=−= ��

==

21)(2)(
1

0
1

0 θψθ   

where 0)( =xψ , 1 if 0≤x , 0> .   

 

In the literature the statistic iT  is also well-known under the name sign test statistic (see, 

for example, Gibbons and Chakraborti (2003)). For the purpose of this study, iSN  will be 

referred to as the sign test statistic. 
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Zero differences 

 

For a continuous random variable, X , the probability of any particular value is zero; thus, 

0)( == aXP  for any a . Since the distribution of the observations is assumed to be continuous, 

0)0( 0 ==−θijXP . Theoretically, the case where 0)( 0 =−θijxsign  should occur with zero 

probability, but in practice zero differences do occur as a result of, for example, truncation or 

rounding of the observed values. A common practice in such cases is to discard all the 

observations leading to zero differences and to redefine n as the number of nonzero differences. 

 

2.1.3. Plotting statistic 

 

Sign control charts are based on the well-known sign test. A control chart is a graph 

consisting of values of a plotting (or charting) statistic and the associated control limits. The 

plotting statistic for the sign chart is �
=

−=
n

j
iji xsignSN

1
0 )( θ  for ,...3,2,1=i  .  

 

Distributional properties of the charting statistic 

 

The random variable iT  has a binomial distribution with parameters n  and 

)( 0θ≥= ijXPp , i.e. ),(~ pnBINTi . Hence, we can find the distribution of iSN  via the 

relationship given in (2.3). 
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Table 2.1. Moments and the probability mass function of the iT  and iSN  statistics, respectively. 

 Ti SNi 

Expected value npTE i =)(  

)12(

)2(

)(

−=
−=
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nTE

SNE

i

i

 

Variance ( ) )1(var pnpTi −=  

)1(4

)2var(

)var(

pnp

nT

SN

i

i

−=
−=  

Standard deviation )1()( pnpTstdev i −=  
)1(2

)(

pnp

SNstdev i

−=
 

Probability mass function 
(pmf) 

( ) ( ) tnt
i pp

t
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�
��
�

�
=== )1(  
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( )
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i

 

 

The probability distributions of iT  and iSN  are both symmetric* as long as the median 

remains at 0θ . In this case: 

• the probability distributions are referred to as the in-control probability distributions; 

• 5.0)( 0 =≥= θijXPp ; and 

• since the in-control distribution of the plotting statistic iSN  is symmetric, the control 

limits will be equal distances away from 0. 

 

Figure 2.1 illustrates for 10=n  that the in-control probability distributions of iT  and iSN  are 

symmetric about their means, that is, iT  is symmetric around its mean given by 

55.010 =×=× pn  and iSN  is symmetric around its mean given by 

( ) 015.0210)12( =−×=−pn . 

 

                                                 
* Ti and SNi are symmetric about np and zero, respectively, as long as the median remains at 

0θ . 
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Figure 2.1. The in-control probability distribution of iT  and iSN  for 10=n . 

 

2.1.4. Determination of control limits 

 

In order to find the control limits and study chart performance, the distribution of iSN  is 

necessary; this can be most easily obtained using the relationship nTSN ii −= 2 . Since the in-

control distribution of iT  is binomial with parameters n  and 5.0 , it follows that the in-control 

distribution of iSN  is symmetric about 0 and hence the control limits and the center line of the 

two-sided nonparametric Shewhart-type sign chart (for the median) are given by 

 

cLCL

CL

cUCL

−=
=

=
0  (2.4) 

where },...,2,1{ nc ∈ . 

 

 If the plotting statistic iSN  falls between the control limits, that is, cSNc i <<− , the 

process is declared to be in-control, whereas if the plotting statistic iSN  falls on or outside one of 
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the control limits, that is, if cSN i −≤  or cSN i ≥ , the process is declared to be out-of-control. In 

the latter case corrective action and a search for assignable causes is necessary. 

 

 Take note that iT  can also be calculated and plotted against the control limits. This is 

done by assuming that the LCL  is equal to some constant a  and that the UCL  is equal to some 

constant b , i.e. the control limits are given by: bUCL =  and aLCL = . Since the in-control 

probability distribution of iT  is symmetric when working with the median, that is, 

)()( anTPaTP ii −=== , a sensible choice for b  is therefore an − .  

 

 The control limits and the center line of the nonparametric Shewhart chart (for the 

median) using iT  as the plotting statistic are given by 

 

aLCL

npCL

anUCL

=
=

−=
   

where a  denotes a positive integer which is selected such that UCLLCL < . 

 

 Although both iT  and iSN  can be calculated for each sample and be compared to the 

control limits, the statistic iSN  has the advantage of keeping the control limits symmetric around 

zero. Therefore, the plotting statistic iSN  is calculated and used as the plotting statistic. The 

terms ‘plotting statistic’ and ‘charting statistic’ will be used interchangeably throughout this text. 

 

 The question arises: When using iSN  as the plotting statistic, what should the values of 

the control limits be set equal to? In other words, what is the value of the charting constant c ? 

Specifying control limits is one of the critical decisions that must be made in designing a control 

chart. By moving the control limits farther away from the center line, we decrease the risk of a 

type I error – that is, the risk of a point falling beyond the control limits, indicating an out-of-

control condition when no assignable cause is present. However, widening the control limits will 

also increase the risk of a type II error – that is, the risk of a point falling between the control 

limits when the process is really out-of-control. If we move the control limits closer to the center 

line, the opposite effect is obtained: The risk of type I error is increased, while the risk of type II 
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error is decreased. Consequently, the control limits are chosen such that if the process is in-

control, nearly all of the sample points will fall between them. In other words, the charting 

constant c  is typically obtained for a specified in-control average run length, which, in case K, is 

equal to the reciprocal of the nominal FAR , α . Thus, using the symmetry of the binomial 

distribution, c  is the smallest integer such that ( )
20

α
θ ≤≥ cSNP i . For example, using Table G of 

Gibbons and Chakraborti (2003) we give some  ( )tTP ≥
0θ  values in Table 2.2 that may be 

considered “small” in a SPC context. The charting constant c  is obtained using ntc −= 2  (recall 

that the sign test statistic iSN  is expressed in terms of the statistic iT   by the relationship 

nTSN ii −= 2 ). The false alarm rate is obtained by adding the probability in the left tail, 

( )tnTP −≤
0θ , and the probability in the right tail, ( )tTP ≥

0θ , i.e. =FAR  

( ) ( )tTPtnTP ≥+−≤
00 θθ . Since the probability distribution of iT  is symmetric (as long as the 

median remains at 0θ ), the FAR  is also obtained using ( )tTPFAR ≥=
0

2 θ . For example, for 

5=n  we get 5=t  and thus 5=c  for a FAR  of 0624.0)0312.0(2 =  and this is the lowest FAR  

achievable. However for 10=n  the FAR  drops to 0.0020 if 10=c . It should be noted that the 

lowest attainable FAR  is always obtained when tn = .   

 

Table 2.2.  FAR  and 0ARL  of a sign control chart for various values of n  = t . 

n 5 6 7 8 9 10 
)(

0
tTP ≥≥≥≥θθθθ  0.0312 0.0156 0.0078 0.0039 0.0020 0.0010 
)(ααααFAR  0.0624 0.0312 0.0156 0.0078 0.0040 0.0020 

0ARL  16.00 32.00 64.00 128.00 256.00 512.00 
 

Looking at the attainable FAR  and 0ARL  values shown in Table 2.2, we see that unless 

the sample size is at least 10, the sign chart would be somewhat unattractive (from an operational 

point of view) in SPC applications, where one often stipulates a large in-control average run 

length, as large as 370 or 500, and a small FAR , as small as 0.0027. If, for example, the FAR  is 

too ‘large’, which is the case for ‘small’ sample sizes, many false alarms will be expected by this 

chart leading to a possible loss of time and resources. Then again, the sign chart is the simplest of 

nonparametric charts that works under minimal assumptions. In fact, from the hypothesis testing 
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literature, it is known that the sign test (and so the chart) is more robust and efficient when the 

chance distribution is symmetric like the normal but with heavier tails such as the double 

exponential. 

 

Example 2.1 

A Shewhart-type sign chart for the Montgomery (2001) piston ring data 

 

We illustrate the Shewhart-type sign chart using a set of data from Montgomery (2001; 

Tables 5.1 and 5.2) on the inside diameters of piston rings manufactured by a forging process. A 

part of this data, fifteen prospective samples (Table 5.2) each of five observations, is used here. 

The rest of the data (Table 5.1) will be used later. We assume that the underlying distribution is 

symmetric with a known median 740 =θ mm. From Table G (see Gibbons and Chakraborti 

(2003)) we obtain 5=t  (when 5=n ) for an achieved false alarm rate of 0624.0)0312.0(2 = . 

Therefore, 5552 =−×=c  and the control limits and the center line of the nonparametric 

Shewhart sign chart are given by 5=UCL , 0=CL  and 5−=LCL . 

 

Panel a of Table 2.3 displays the sample number. The two rows of each cell in panel b 

shows the individual observations and )( 0θ−ijxsign  values, respectively. The iSN  and iT  values 

are shown in panel c and panel d, respectively. 

 

As an example, the calculation of 1SN  (found in Table 2.3) is given. 

)()()()()( 0150140130120111 θθθθθ −+−+−+−+−= xsignxsignxsignxsignxsignSN   
)7474()7473.986()7474.030()7474.015()7474.012( −+−+−+−+−= signsignsignsignsign

)0()014.0()03.0()015.0()012.0( signsignsignsignsign +−+++=  

.2
01111

=
+−++=
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Table 2.3. Data and calculations for the Shewhart sign chart*. 

Panel a Panel b Panel c Panel d 
Sample 
number 

Individual observations 
)( 0θθθθ−−−−ijxsign  iSN  iT  

1 74.012† 
1 

74.015 
1 

74.030 
1 

73.986 
-1 

74.000 
0 2 3 

2 73.995 
-1 

74.010 
1 

73.990 
-1 

74.015 
1 

74.001 
1 1 3 

3 73.987 
-1 

73.999 
-1 

73.985 
-1 

74.000 
0 

73.990 
-1 -4 0 

4 74.008 
1 

74.010 
1 

74.003 
1 

73.991 
-1 

74.006 
1 3 4 

5 74.003 
1 

74.000 
0 

74.001 
1 

73.986 
-1 

73.997 
-1 0 2 

6 73.994 
-1 

74.003 
1 

74.015 
1 

74.020 
1 

74.004 
1 3 4 

7 74.008 
1 

74.002 
1 

74.018 
1 

73.995 
-1 

74.005 
1 3 4 

8 74.001 
1 

74.004 
1 

73.990 
-1 

73.996 
-1 

73.998 
-1 -1 2 

9 74.015 
1 

74.000 
0 

74.016 
1 

74.025 
1 

74.000 
0 3 3 

10 74.030 
1 

74.005 
1 

74.000 
0 

74.016 
1 

74.012 
1 4 4 

11 74.001 
1 

73.990 
-1 

73.995 
-1 

74.010 
1 

74.024 
1 1 3 

12 74.015 
1 

74.020 
1 

74.024 
1 

74.005 
1 

74.019 
1 5 5 

13 74.035 
1 

74.010 
1 

74.012 
1 

74.015 
1 

74.026 
1 5 5 

14 74.017 
1 

74.013 
1 

74.036 
1 

74.025 
1 

74.026 
1 5 5 

15 74.010 
1 

74.005 
1 

74.029 
1 

74.000 
0 

74.020 
1 4 4 

 

The sign chart is shown in Figure 2.2 with 5=UCL , 0=CL  and 5−=LCL . 

 

                                                 
* See SAS Program 1 in Appendix B for the calculation of the values in Table 2.3. 
† The two rows of each cell in panel b shows the ijx  and )( 0θ−ijxsign  values, respectively, for example,  

012.7411 =x  

1)( 011 =− θxsign  
is presented as 

74.012 

1 
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Figure 2.2. Shewhart-type sign control chart for Montgomery (2001) piston ring data. 

 

Observations 12, 13 and 14 lie on the upper control limit which indicates that the process 

is out-of-control starting at sample 12.  It appears most likely that the process median has shifted 

upwards from the target value of 74 mm. Corrective action and a search for assignable causes is 

necessary. 

 

Control charts are often compared on the basis of various characteristics of the run length 

distribution, such as the ARL . One prefers a “large” in-control average run length (denoted 

0ARL ) and a “small” out-of-control ARL  (denoted δARL ) under a shift. Amin et al. (1995) 

compared the ARL  of the classical Shewhart X  chart and the Shewhart-type sign chart for 

various shift sizes and underlying distributions. One practical advantage of sign charts, and of all 

nonparametric charts (if, of course, their assumptions are satisfied), is that the FAR  (and the 

0ARL ) remains the same (eg. 0624.0=FAR  and 160 =ARL  for 5=n ) for all continuous 

distributions. This is so because the in-control run length distribution is the same for every 

continuous distribution, for nonparametric charts, by definition. This does not hold for parametric 

charts (except for EWMA charts), and, as a result, parametric charts (again, with the EWMA 

chart being the exception) do not enjoy the same kind of robustness properties as nonparametric 
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charts do. It should be noted that the EWMA control chart can be designed so that it is robust to 

the normality assumption. On this point, Borror, Montgomery and Runger (1999) showed that the 

0ARL  of the EWMA chart is reasonably close to the normal-theory value for both skewed and 

heavy-tailed symmetric non-normal distributions. 

 

2.1.5. Run length distribution 

 

The number of subgroups or samples that need to be collected (or, equivalently, the 

number of plotting statistics that must be plotted) before the next out-of-control signal is given by 

a chart is called the run length. The run length is a random variable denoted by N . A popular 

measure of chart performance is the ‘expected value’ or the ‘mean’ of the run length distribution, 

called the average run length ( ARL ). Various researchers, see for example, Barnard (1959) and 

Chakraborti (2007), have suggested using other characteristics for assessment of chart 

performance, for example, the standard deviation of the run length distribution ( SDRL ), the 

median run length ( MRL ) and/or other percentiles of the run length distribution. This 

recommendation is warranted seeing as (i) the run-length can only take on positive integer values 

by definition, (ii) the shape of this distribution is significantly right-skewed and (iii) it’s known 

that in a right-skewed distribution the mean is greater than the median and thus is usually not a 

fair representation of a typical observation or the center.   

 

Since the observations plotted on the control chart are assumed to be independent, the 

number of points that must be plotted until the first plotted point plots on or exceeds a control 

limit is a geometric random variable with parameter p , where p  denotes the probability of a 

success (or, equivalently, the probability of a signal). Therefore, Signal))((~ PGEON  where 

pP =Signal)( . The well-known properties of the geometric distribution are given in panel a of 

Table 2.4 and we use the fact that if q denotes the probability of no signal then 

1Signal) No(Signal)( =+=+ qpPP , i.e. pq −= 1 . The properties of the run length N  are 

derived using the well-known properties of the geometric distribution and they are displayed in 

panel b of Table 2.4. 
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Table 2.4. The properties of the geometric and run length distribution. 

a b 
 )(~ pGEOX  ))((~ SignalPGEON  

Expected value 
p

XE
1

)( =  
)Signal(

1
)(

P
ARLNE ==  

Variance ( )
2var

p
q

X =  
( )2)Signal(

)Signal(1
)var(

P

P
N

−=  

Standard deviation 
p
q

Xstdev =)(  
)Signal(

)Signal(1
P

P
SDRL

−
=  

Probability mass 
function (pmf) 

1)1()()( −−=== xppxXPxf  
for ,...3,2,1=x  
 

1))Signal(1)(Signal()( −−== aPPaNP  
for ,...3,2,1=a  

Cumulative 
distribution 

function (cdf) 

xpxXPxF )1(1)()( −−=≤=  
for ,...3,2,1=x  

aPaNP ))Signal(1(1)( −−=≤  for 
,...3,2,1=a  

 

The thρ100  )10( << ρ  percentile is defined as the smallest l  such that the cdf, given by 

lPlNP )Signal(1(1)( −−=≤  for ,.....2,1=l , at the integer l  is at least ( )%100 ρ× , that is,  

 }))Signal(1(1:min{ ρ≥−−= jPjl  for ,...2,1=j  (2.5) 

which reduces to finding the smallest positive integer l  such that 

 
))Signal(1ln(

)1ln(
P

l
−

−≥ ρ
. (2.6) 

 

The run length distribution can be described via percentiles, for example, using the 5th, 

25th (the first quartile, 1Q ), 50th (the median run length, MRL ), 75th (the third quartile, 3Q ) and 

the 95th percentiles by substituting ρ  in expression (2.6) by 0.05, 0.25, 0.50, 0.75 and 0.95, 

respectively. 
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2.1.6. One-sided control charts 

 

A lower one-sided chart will have a LCL  equal to some constant value with no UCL , 

whereas an upper one-sided chart will have an UCL  equal to some constant value with no LCL . 

One-sided control charts are particularly useful in situations where only an upward (or only a 

downward) shift in a particular process parameter is of interest. For example, we might be 

monitoring the breaking strength of material used to make parachutes. If the breaking strength of 

the material decreases it might tear at a critical time, whereas if the breaking strength of the 

material increases it is beneficial to the user, since the material would, most likely, not tear while 

being used. In such a scenario a lower one-sided chart will be sufficient, since we are only 

interested in detecting a downward shift in a process parameter.  

 

For the sign control chart, if we are only interested in detecting a downward shift we will 

use a lower one-sided sign control chart with cLCL −=  and no upper control limit. 

Consequently, if the plotting statistic iSN  falls on or below the LCL  the process is declared to be 

out-of-control. On the other hand, if we are only interested in detecting an upward shift we will 

use an upper one-sided sign control chart with cUCL =  and no lower control limit. 

Consequently, if the plotting statistic iSN  falls on or above the UCL  the process is declared to be 

out-of-control. 

 

2.1.6.1. Lower one-sided control charts 

 

Result 2.1: Probability of a signal 

 

The probability that the control chart signals, that is, the probability that the plotting 

statistic iSN  is smaller than or equal to the lower control limit, can be expressed in terms of 

)( 0θ≥= ijXPp , the sample size n  and the constant c . Let )Signal(LP  denote the probability of 

a signal, where superscript L  refers to the lower one-sided chart. The probability of a signal is 

then given by 
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     )()()Signal( cSNPLCLSNPP i
L

i
LL −≤=≤= )2( cnTP i

L −≤−= �
�

�
�
�

� −≤=
2

cn
TP i

L . (2.7) 

Note that (2.7) can be solved by using the cdf of a Binomial distribution. 

  

The probabilities, )Signal(LP ’s, were computed using Mathcad (see Mathcad Program 2 

in Appendix B). In doing so, we kept in mind that we ultimately wanted to use the iT  statistic in 

the calculation of )Signal(LP , because then we could use the cdf of a Binomial distribution to 

find )Signal(LP . Therefore, the probability of a signal for the lower one-sided sign chart was 

computed using 

 ini
a

i
i

L
i

LL pp
i

n
aTPLCLTPP −

=

−��
�

�
��
�

�
=≤=≤= � )1()()()Signal(

0

. (2.8) 

The results are given in Tables 2.5, 2.6 and 2.7 for 5=n , 10=n  and 15=n , respectively, for 

9.0)1.0(1.0=p  and na )1(0= . The shaded column ( 5.0=p ) contains the value of the in-control 

average run length ( 0ARL ) and the false alarm rate ( FAR ), whereas the rest of the columns 

( 5.0≠p ) contain the values of the out-of-control average run length ( δARL ) and the probability 

of a signal (when the process is considered to be out-of-control). 

 

Result 2.2:  Average run length 

 

Since the run length has a geometric distribution (recall that ))Signal((~ LPGEON  the 

expected value of this specific geometric distribution will be equal to 
)Signal(

1
LP

. The ARL  is 

the mean of the run length distribution. Therefore, we have that  

 
)Signal(

1
)(

L
L

P
NEARL == . (2.9) 
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Result 2.3:  Standard deviation of the run length 

 

Since the run length has a geometric distribution (see Result 2.2) the standard deviation 

will be equal to 
)Signal(

)Signal(1
L

L

P

P−
. Therefore, we have that  

 
)Signal(

)Signal(1
)(

L

L
L

P

P
NSDRL

−
= . (2.10) 

 
Example 2.2 
 

For a sample size of 10 ( 10=n ), 5.0=p  and 2=a , we can calculate the probability of a 

signal and the average run length using (2.8) and (2.9), respectively, and we obtain =)Signal(LP  

055.0)5.01()5.0(
10 10

2

0

=−��
�

�
��
�

� −

=
� ii

i i
 and 29.18

055.0
1 ==LARL . 

 

2.1.6.2. Upper one-sided control charts 

 

Result 2.4:  Probability of a signal 

 

The probability that the control chart signals, that is, the probability that the plotting 

statistic iSN  is greater than or equal to the upper control limit, can be expressed in terms of 

)( 0θ≥= ijXPp , the sample size n  and the constant c . Let )Signal(UP  denote the probability 

of a signal, where superscript U  refers to the upper one-sided chart. The probability of a signal is 

then given by 

 )()()Signal( cSNPUCLSNPP i
U

i
UU ≥=≥= �

�

�
�
�

� +≥=
2

cn
TP i

U
�
�

�
�
�

� −+≤−= 1
2

1
cn

TP i
U . (2.11) 

Note that (2.11) can be solved by using the cdf of a Binomial distribution. 

  

The probabilities, )Signal(UP ’s, were computed using Mathcad (see Mathcad Program 1 

in Appendix B). In doing so, we kept in mind that we ultimately wanted to use the iT  statistic in 
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the calculation of )Signal(UP , because then we could use the cdf of a Binomial distribution to 

find )Signal(UP . Therefore, the probability of a signal for the upper one-sided sign chart was 

computed using 

 ini
n

ani
i

U
i

UU pp
i

n
anTPUCLTPP −

−=

−��
�

�
��
�

�
=−≥=≥= � )1()()()Signal( . (2.12) 

The results are given in Tables 2.5, 2.6 and 2.7 for 5=n , 10=n  and 15=n , respectively, for 

9.0)1.0(1.0=p  and na )1(0= . The shaded column ( 5.0=p ) contains the value of the in-control 

average run length ( 0ARL ) and the false alarm rate ( FAR ), whereas the rest of the columns 

( 5.0≠p ) contain the values of the out-of-control average run length ( δARL ) and the probability 

of a signal (when the process is considered to be out-of-control). 

 

Result 2.5:  Average run length 

 

Since the run length has a geometric distribution (recall that ))Signal((~ UPGEON  the 

expected value of this specific geometric distribution will be equal to 
)Signal(

1
UP

. The ARL  is 

the mean of the run length distribution. Therefore, we have that  

 
)Signal(

1
)(

U
U

P
NEARL == . (2.13) 

 

Result 2.6:  Standard deviation of the run length 

 

Since the run length has a geometric distribution (see Result 2.5) the standard deviation 

will be equal to 
)Signal(

)Signal(1
U

U

P

P−
. Therefore, we have that  

 
Signal)(

)Signal(1
)(

U

U
U

P

P
NSDRL

−
= . (2.14) 
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Example 2.3 
 

For a sample size of 10 ( 10=n ), 5.0=p  and 2=a , we can calculate the probability of a 

signal and the average run length using (2.12) and (2.13), respectively, and we obtain 

055.0)5.01()5.0(
10

)Signal( 10
10

210

=−��
�

�
��
�

�
= −

−=
� ii

i

U

i
P  and 29.18

055.0
1 ==UARL . 

 

Application 

 

The average run length values for the lower and upper one-sided Shewhart sign charts are 

calculated by evaluating expressions (2.8) and (2.9) for the lower one-sided chart and expressions 

(2.12) and (2.13) for the upper one-sided chart using 10,5=n  and 15 , respectively. These values 

are shown in Table 2.5, Table 2.6 and Table 2.7, respectively.* As mentioned previously, the 

shaded column ( 5.0=p ) contains the value of the in-control average run length ( 0ARL ) and the 

false alarm rate ( FAR ), whereas the rest of the columns ( 5.0≠p ) contain the values of the out-

of-control average run length ( δARL ) and the probability of a signal (when the process is 

considered to be out-of-control). 

 

                                                 
* Table 2.5, Table 2.6 and Table 2.7 should preferably be studied together. 
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Table 2.5. The average run length for the one-sided Shewhart sign chart with 5=n .** 
Up  0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 ARL  

P(Signal) Lp  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0 1.69 
0.590 

3.05 
0.328 

5.95 
0.168 

12.86 
0.078 

32.00 
0.031 

97.66 
0.010 

411.52 
0.002 

3125.00 
0.000 

100000.00 
0.000 

1 1.09 
0.919 

1.36 
0.737 

1.89 
0.528 

2.97 
0.337 

5.33 
0.188 

11.49 
0.087 

32.49 
0.031 

148.81 
0.007 

2173.91 
0.000 

2 1.01 
0.991 

1.06 
0.942 

1.19 
0.837 

1.47 
0.683 

2.00 
0.500 

3.15 
0.317 

6.13 
0.163 

17.27 
0.058 

116.82 
0.009 

3 1.00 
1.000 

1.01 
0.993 

1.03 
0.969 

1.10 
0.913 

1.23 
0.813 

1.51 
0.663 

2.12 
0.472 

3.81 
0.263 

12.28 
0.081 

4 1.00 
1.000 

1.00 
1.000 

1.00 
0.998 

1.01 
0.990 

1.03 
0.969 

1.08 
0.922 

1.20 
0.832 

1.49 
0.672 

2.44 
0.410 

a 

5 1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

 

                                                 
** See Mathcad Programs 1 and 2 in Appendix B for the calculation of the values in Table 2.5. 
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Table 2.6. The average run length for the one-sided Shewhart sign chart with 10=n .†† 
Up  0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 ARL  

P(Signal) Lp  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0 2.87 
0.349 

9.31 
0.107 

35.40 
0.028 

165.38 
0.006 

1024.00 
0.001 

9536.74 
0.000 

169350.88 
0.000 

9765625.00 
0.000 

10000000000.00 
0.000 

1 1.36 
0.736 

2.66 
0.376 

6.70 
0.149 

21.57 
0.046 

93.09 
0.011 

596.05 
0.002 

6959.63 
0.000 

238185.98 
0.000 

109890109.89 
0.000 

2 1.08 
0.930 

1.48 
0.678 

2.61 
0.383 

5.98 
0.167 

18.29 
0.055 

81.34 
0.012 

628.78 
0.002 

12832.62 
0.000 

2676659.53 
0.000 

3 1.00 
0.987 

1.14 
0.879 

1.54 
0.650 

2.62 
0.382 

5.82 
0.172 

18.26 
0.055 

94.41 
0.011 

1156.93 
0.001 

109629.89 
0.000 

4 1.00 
0.998 

1.03 
0.967 

1.18 
0.850 

1.58 
0.633 

2.65 
0.377 

6.02 
0.166 

21.12 
0.047 

157.00 
0.006 

6807.23 
0.000 

5 1.00 
1.000 

1.01 
0.994 

1.05 
0.953 

1.20 
0.834 

1.61 
0.623 

2.73 
0.367 

6.65 
0.150 

30.49 
0.033 

611.64 
0.002 

6 1.00 
1.000 

1.00 
0.999 

1.01 
0.989 

1.06 
0.945 

1.21 
0.828 

1.62 
0.618 

2.85 
0.350 

8.27 
0.121 

78.15 
0.013 

7 1.00 
1.000 

1.00 
1.000 

1.00 
0.998 

1.01 
0.988 

1.06 
0.945 

1.20 
0.833 

1.62 
0.617 

3.10 
0.322 

14.25 
0.070 

8 1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
0.998 

1.01 
0.989 

1.05 
0.954 

1.18 
0.851 

1.60 
0.624 

3.79 
0.264 

9 1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
0.999 

1.01 
0.994 

1.03 
0.972 

1.12 
0.893 

1.54 
0.651 

a 

10 1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

 

                                                 
†† See Mathcad Programs 1 and 2 in Appendix B for the calculation of the values in Table 2.6. 
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Table 2.7. The average run length for the one-sided Shewhart sign chart with 15=n .‡‡ 
Up  0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 ARL  

P(Signal) Lp  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0 4.86 
0.206 

28.42 
0.035 

210.63 
0.005 

2126.82 
0.000 

32768.00 
0.000 

931322.57 
0.000 

69691719.38 
0.000 

30517578125.00 
0.000 

999999999999987.00 
0.000 

1 1.82 
0.549 

5.98 
0.167 

28.35 
0.035 

193.35 
0.005 

2048.00 
0.000 

39630.75 
0.000 

1935881.09 
0.000 

500288165.98 
0.000 

7352941176470.50 
0.000 

2 1.23 
0.816 

2.51 
0.398 

7.88 
0.127 

36.88 
0.027 

270.81 
0.004 

3585.46 
0.000 

114687.42 
0.000 

17528764.00 
0.000 

115727346371.95 
0.000 

3 1.06 
0.944 

1.54 
0.648 

3.37 
0.297 

11.05 
0.091 

56.89 
0.018 

518.73 
0.002 

10910.04 
0.000 

988871.98 
0.000 

2938272765.74 
0.000 

4 1.01 
0.987 

1.20 
0.836 

1.94 
0.515 

4.60 
0.217 

16.88 
0.059 

106.98 
0.009 

1487.58 
0.001 

80245.85 
0.000 

107571980.98 
0.000 

5 1.00 
0.998 

1.07 
0.939 

1.39 
0.722 

2.48 
0.403 

6.63 
0.151 

29.56 
0.034 

273.78 
0.004 

8831.92 
0.000 

5358475.36 
0.000 

6 1.00 
1.000 

1.02 
0.982 

1.15 
0.869 

1.64 
0.610 

3.29 
0.304 

10.52 
0.095 

65.61 
0.015 

1273.91 
0.001 

351310.79 
0.000 

7 1.00 
1.000 

1.00 
0.996 

1.05 
0.950 

1.27 
0.787 

2.00 
0.500 

4.69 
0.213 

19.99 
0.050 

235.86 
0.004 

29739.88 
0.000 

8 1.00 
1.000 

1.00 
0.999 

1.02 
0.985 

1.11 
0.905 

1.44 
0.696 

2.56 
0.390 

7.63 
0.131 

55.37 
0.018 

3219.26 
0.000 

9 1.00 
1.000 

1.00 
1.000 

1.00 
0.996 

1.04 
0.966 

1.18 
0.849 

1.68 
0.597 

3.59 
0.278 

16.38 
0.061 

444.51 
0.002 

10 1.00 
1.000 

1.00 
1.000 

1.00 
0.999 

1.01 
0.991 

1.06 
0.941 

1.28 
0.783 

2.06 
0.485 

6.09 
0.164 

78.61 
0.013 

11 1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
0.998 

1.02 
0.982 

1.10 
0.909 

1.42 
0.703 

2.84 
0.352 

18.00 
0.056 

12 1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
0.996 

1.03 
0.973 

1.15 
0.873 

1.66 
0.602 

5.43 
0.184 

13 1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.01 
0.995 

1.04 
0.965 

1.20 
0.833 

2.22 
0.451 

14 1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
0.995 

1.04 
0.965 

1.26 
0.794 

a 

15 1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

1.00 
1.000 

 

 

                                                 
‡‡ See Mathcad Programs 1 and 2 in Appendix B for the calculation of the values in Table 2.7. 
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2.1.7. Two-sided control charts 

 

Result 2.7: Probability of a signal 

 

The probability that the control chart signals, that is, the probability that the plotting 

statistic iSN  is greater than or equal to the UCL , or smaller than or equal to the LCL , can be 

expressed in terms of )( 0θ≥= ijXPp , the sample size n  and the constant c . The probability of 

a signal is then given by 

 �
�

�
�
�

� −≤+�
�

�
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� −+≤−=<−<−−=
2

1
2

1)2(1)Signal(
cn

TP
cn

TPcnTcPP iii .  (2.15) 

Note that (2.15) can be solved by using the cdf of a binomial distribution. 

 

Result 2.8: Average run length 

 

Since the run length has a geometric distribution we have that  

 
)Signal(

1
)(

P
NEARL == . (2.16) 

Compare expression (2.16) to expressions (2.9) and (2.13). 
 

Result 2.9: Standard deviation of the run length 

 

Since the run length has a geometric distribution we have that 

 
Signal)(

)Signal(1
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P

P
NSDRL

−
= . (2.17) 

Compare expression (2.17) to expressions (2.10) and (2.14). 
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2.1.8. Summary 

 

In Section 2.1 we have described and evaluated the nonparametric Shewhart-type sign 

control chart. Generally speaking, when the underlying process distribution is either asymmetric 

or symmetric with heavy tails, sign charts are more efficient while the reverse is true for normal 

and normal-like distributions with light tails. One practical advantage of the nonparametric 

Shewhart-type sign control chart is that there is no need to assume a particular parametric 

distribution for the underlying process (see Section 1.4 for other advantages of nonparametric 

charts). 

 

2.2. The Shewhart-type control chart with warning limits 

 

2.2.1. Introduction 

 

It is known that standard Shewhart charts are efficient in detecting large process shifts 

quickly, but are insensitive to small shifts (see, for example, Montgomery (2005)). Additional 

supplementary rules have been suggested to increase the sensitivity of standard Shewhart charts 

to small process shifts. Shewhart (1941) gave the first proposal in making the standard Shewhart 

chart more sensitive to small process shifts by proposing that additional sensitizing tests should 

be incorporated into the standard Shewhart chart. Various rules or ‘tests for special causes’ have 

been considered in the literature for parametric control charts; see for example, the rules 

associated with the Shewhart control chart in Nelson (1984) and in the Western Electric 

handbook (1956). See also the discussion in Montgomery (2001).  

 

Runs rules can be used to increase the sensitivity of standard Shewhart charts. Denote 

each runs rule by ),,,( lknrR  where a signal is given if r  out of the last n  points fall in the 

interval ),( lk , where nr ≤  are integers and lk < . The well-known standardized Shewhart X  

control chart is denoted by )},3,1,1()3,,1,1({ ∞∪−−∞ RR , since the standardized Shewhart X  

control chart signals if any charting statistic (1 out of 1 point) falls in the interval )3,( −−∞  or if 

any charting statistic (1 out of 1 point) falls in the interval ),3( ∞ . 

 
 
 



 39 

Page (1955) considered a Markov-chain approach for simple combinations of runs rules. 

Amin et al. (1995) considered Shewhart-type sign charts with warning limits and runs rules. Page 

(1962), Weindling, Littauer and Oliveira (1979) and Champ and Woodall (1987) studied the 

properties of X  charts with warning limits.  

 

Incorporating the runs rules )},,1,1(),,1,1({ ∞∪−∞ UL aRaR  into the Shewhart sign chart is 

similar to using action limits where action will be taken if any 1 point falls outside the action 

limits. Incorporating the two runs rules )},,,(),,,({ LLUU warrRawrrR ∪  into the Shewhart sign 

chart is similar to using warning limits where action will be taken if  r  successive points fall 

between the warning and action limits, that is, action will be taken if r  successive points fall 

between Uw  and Ua  or action will be taken if r  successive points fall between La  and Lw . 

Hence, rule A  follows: Action will be taken if r  successive points fall between Uw  and Ua , or 

if r  successive points fall between La  and Lw , or if any point falls outside the action limits. Let 

L  denote the ARL  of rule A . Assume that the upper action and upper warning limits are equal 

to some constants represented by a  and w , respectively, that is, aaU =  and wwU = . In the case 

of the Shewhart-type sign control chart with warning limits, sensible choices for the lower action 

and lower warning limits are a−  and w− , respectively, that is, aaL −=  and wwL −= . The 

latter choices are sensible, since the in-control distribution of iSN  is symmetric about zero (see 

Section 2.1.3). 

  

In Section 2.2.3.1 two runs rules are incorporated into the upper one-sided Shewhart sign 

chart. Similarly, in Section 2.2.3.2 two runs rules are incorporated into the lower one-sided 

Shewhart sign chart. The average run lengths are computed for the upper and lower charts, 

respectively. Finally, in Section 2.2.4 two runs rules are incorporated into the two-sided Shewhart 

sign chart.  
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2.2.2. Markov chain representation 

 

A Markov chain representation of a Shewhart chart supplemented with runs rules is used 

for calculating the probability that any subset of runs rules will give an out-of-control signal. In 

this section some basic concepts of matrices and transition probabilities are given and explained. 

An illustrative example follows in the next section, i.e. Section 2.2.3.1. 

 

Let ijp  represent the probability that the process will, when in state i , next make a 

transition to state j . Since probabilities are non-negative, 0≥ijp . Let TPM denote the matrix of 

one-step transition probabilities. The abbreviation TPM will be used throughout the text for 

transition probability matrix which is given by  

�
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ppp

ppp

ppp

ppp

pTPM
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10

10

11110

00100

)1()1( ][   for  ni ,...,1,0=  and nj ,...,1,0=  with 2≥n . 

The thi  row, ),...,,( 10 inii ppp , contains all the transition probabilities to go from state i  to one of 

the states in Ω , where Ω  denotes the state space, i.e. },...,1,0{ n=Ω . We have that 

 �
Ω∈

∀=
j

ij ip 1  (2.18) 

since it’s certain that starting in state i  the process will go to one of the states in one step. 
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2.2.3. One-sided control charts 

 

2.2.3.1. Upper one-sided control charts 

 

The upper one-sided Shewhart sign chart, described previously, is efficient in detecting 

large process shifts quickly. Since it is known to be inefficient in detecting small process shifts, 

an upper warning limit is drawn below the upper action limit to increase its sensitivity for 

detecting small shifts. 

 

Define rule UA  as: ‘Action will be taken if r  successive points fall between Uw  and Ua  

(denoted by ),,,( UU awrrR ) or if any point falls above Ua (denoted by ),,1,1( ∞UaR )’. Clearly, 

rule UA  is created to detect upward shifts. Let UL  denote the ARL  of rule UA . UL  can be 

calculated by enumerating the possible combinations of the positions of the plotted points and 

treating them as the states of a discrete Markov process. The following set of rules is used: 

{ ),,1,1(),,,( ∞∪ uuu aRawrrR }. The 3 mutually exclusive intervals (also referred to as zones) 

which are considered are given by: 

 

Zone 0Z  = the interval ),( Uw−∞  

Zone 1Z  = the interval ),[ UU aw  

Zone 2Z = the interval ),[ ∞Ua  

 
These zones are graphically represented in Figure 2.3.

 
 
 



 42 

 

   

Figure 2.3. A control chart partitioned into 3 zones*. 

 

),,,( uu awrrR : The chart will signal if any r  successive points fall in Zone 1Z ; or 

),,1,1( ∞uaR : The chart will signal if any 1 point falls in Zone 2Z . 

 

Classification of states 

 

If a state is entered once and can’t be left, the state is said to be absorbent. As a result, the 

probability of going from an absorbent state to the same absorbent state is equal to one. The 

transient (non-absorbent) states are the remaining states of which the time of return or the number 

of steps before return is uncertain. 

 

Table 2.8. Classifications and descriptions of states. 

State 
number Description of state 

Absorbent (A)/ 
Non-absorbent 

(NA) 
0 1 point plots in Zone 0Z  NA 
1 1 point plots in Zone 1Z  NA 
2 2 successive points plot in Zone 1Z  NA 
3 3 successive points plot in Zone 1Z  NA 
�  �  �  

1−r  1−r  successive points plot in Zone 1Z  NA 

r  r  successive points plot in Zone 1Z  or 1 point plots in Zone 2Z  A 

                                                 
* Any point plotting on a line is to be taken as plotting into the adjacent more extreme zone of the chart. 
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Let ip  denote the probability of plotting in Zone iZ  for 2,1,0=i . Therefore: 

0p  is the probability of plotting in Zone 0Z ; )(0 Ui wSNPp <= ; 

1p  is the probability of plotting in Zone 1Z ; )(1 UiU aSNwPp <≤= ; and 

2p  is the probability of plotting in Zone 2Z ; )(2 Ui aSNPp ≥= . 

Clearly, �
=

=++=
2

0
210 1

i
i pppp , since the statistic must plot in one of the 3 zones. The 

transition probability matrix, ][ ijpTPM = , for ri ,...,2,1,0=  and rj ,...,2,1,0=  is given by 
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From expression (2.18) we have �
Ω∈

∀=
j

ij ip 1 . This is easily proven for ri ,...,2,1,0= . 

For example, for 0=i  we have that  100 210
0

0 =+++++=�
=

pppp
r

j
j � . The rest of the 

calculations follow similarly. Table 2.9 illustrates that the TPM can be partitioned into 4 sections. 

 

Table 2.9. Transition probabilities for a Markov chain with one absorbing state. 

 States at time t + 1 States at time t + 1 
States 
at time 

t 

0 
(N
A) 

1 
(NA) 

2 
(NA) … r - 1 

(NA) 
r 

(A) 
0 

(NA) 
1 

(NA) 
2 

(NA) … r - 1 
(NA) 

r 
(A) 

0 
(NA) 0p  1p  0 … 0 2p  

1 
(NA) 0p  0 1p  … 0 2p  

2 
(NA) 0p  0 0 … 0 2p  

�  �  �  �  … �  �  
r - 1 
(NA) 0p  0 0 … 0 21 pp +

 

rrQ ×  1×r
p  

r 
(A) 0 0 0 … 0 1 

= 

r×1'0  111 ×  
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where the sub-matrix rrQ ×

�
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p

p

pp

pp

 is called the essential transition probability 

sub-matrix and it contains all the transition probabilities of going from a non-absorbent 

(transient) state to a non-absorbent state, Q ( )NANA →: . 
1×r

p ( )'
21222 ppppp += �  

contains all the transition probabilities of going from each non-absorbent state to the absorbent 

states, p ( )ANA →: . r×1'0 ( )0000 �=  contains all the transition probabilities of going 

from each absorbent state to the non-absorbent states, '0  ( )NAA →: . '0  is a row vector with all 

its elements equal to zero, since it is impossible to go from an absorbent state to a non-absorbent 

state, because once an absorbent state is entered, it is never left. 111 ×  represents the scalar value 

one which is the probability of going from an absorbent state to an absorbent state, 1 ( )AA →: . 

Therefore, 

 =+×+ )1()1( rrTPM
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1|'0

|

r
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. (2.19) 

 

Let U
iL  denote the run length of the upper one-sided chart with initial state i  for 

1,...,2,1,0 −= ri . To calculate the probability mass function, define the 1×r  vector U
hL  by 
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Brook and Evans (1972) showed that these vectors can be calculated recursively using 

1)(1 QILU −=  

and               (2.20) 

 U
h

U
h LQL 1−=  for ,...3,2=h  
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where 1 is a 1×r  column vector of s'1 , I  is the rr ×  identity matrix and Q  is the rr ×  

essential transition probability sub-matrix obtained from the partitioned TPM. 

 

Multiplying out the matrices in (2.20) we get expressions for U
iL  for 1,...2,1 −= ri . 

U
i

UU
i LpLpL 11001 +++=   for  )2,...,2,1,0( −= ri  

and  (2.21) 

 UU
r LpL 001 1+=− . 

 

These equations may be solved recursively for U
r

U LL 11 ,..., −  in terms of UL0 : 

UUUUU

UUUUU

UUUU

UUUU

UUU

LpLpppLpppLpL

LpLppLpppLpL

LpLpppLpL

LpLppLpL

LpLpL

3
3

100
2

1
2

10011000

3100
2

10011000

2
2

10011000

21001000

11000

1

)1(1

1

)1(1

1

++++++=

++++++=

++++=

++++=

++=

 

UrrUUUU

UrUUUU

U
r

rUUUU

LppppLpppLpppLpL

LpppLpppLpppLpL

LppLpppLpppLpL

00
1

1
1

1
3

100
2

1
2

10011000

00
1

1
3

100
2

1
2

10011000

1
1

1
3

100
2

1
2

10011000

...1

)1(...1

...1

−−

−
−

−

+++++++++=

+++++++++=

++++++++=

�

  

1
1

3
1

2
1100

1
100

2
1001000 ...1... −− +++++=−−−−− rUrUUUU ppppLppLppLppLpL  (2.22) 

It can be proven by induction on r  that 
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expression (2.22) can be simplified to  
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Expression (2.23) of this thesis is given in Amin et al. (1995) and determined in Page 

(1962). Expression (2.23) is a closed form expression of the in-control average run length of a 

one-sided chart with warning and action limits in the positive direction only. 

 

 Therefore, the in-control average run length of the one-sided (upper or positive direction) 

chart with warning limit Uw  and control limit (action limit) at Ua  is given by (2.23) where  

 �
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The derivations of (2.24) and (2.25) are given below. 
 
Derivation of expression (2.24): 
 

)(
0

Ui wSNP

p

<=
 

by using the relationship between iSN  and iT  (recall that nTSN ii −= 2 ) we obtain 
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given that iT  is binomially distributed with parameters n  and )( 0θ≥= ijXPp  we obtain 
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since the upper warning limit is equal to some constant w , i.e. wwU =  (see Section 2.2.1) we 
obtain 
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Derivation of expression (2.25): 
 

)(
1

UiU aSNwP

p

<≤=
 

by using the relationship between iSN  and iT  (recall that nTSN ii −= 2 ) we obtain 
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given that iT  is binomially distributed with parameters n  and )( 0θ≥= ijXPp  we obtain 
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since the upper action and warning limits are equal to constant values represented by a  and w , 

respectively, i.e. aaU =  and wwU =  (see Section 2.2.1), we obtain 
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  The in-control average run length of the one-sided (lower or negative direction) chart with 

warning limit at Lw  and control limit (action limit) at La  can be found by replacing 0p  and 1p  

by 0q  and 1q  where )(0 Li wSNPq >=  and ).(1 LiL wSNaPq ≤<=  The in-control average run 

length for the two-sided chart, denoted 0L , can then be obtained using a result in Roberts (1958), 

LU LLL 000

111 += . The lower one-sided and two-sided charts with warning limits are discussed in 

detail in Sections 2.2.3.2 and 2.2.4 respectively. 

 

The in-control average run length for the upper one-sided control chart with both warning 

and action limits is calculated for a specific example ( 10=n , 5.0=p ) by evaluating expressions 

(2.23), (2.24) and (2.25). These values are shown in Table 2.10. Amin, Reynolds and Bakir 
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(1995) studied Shewhart charts with both warning and action limits. They constructed a table 

containing the values of UL0  for Shewhart charts using the sign statistic when 10=n  and 

5.0=p . The values of UL0  were noted for 10  and  8=Ua , 8)2(0=Uw  and 7,...,3,2=r . Table 

2.10 is similar to the table constructed by Amin, Reynolds and Bakir (1995). Note that the values 

of UL0  can also be constructed for other values of rwan UU  and ,, . 

 

Table 2.10. Values of UL0  for Shewhart charts with both warning and action limits when 10=n  

and 5.0=p .* 

 8====Ua  10====Ua  

Uw  

r  

0 2 4 6 2 4 6 8 

2 4.1 9.2 30.2 79.4 9.6 38.6 269.2 933.7 
3 7.9 23.0 70.1 92.4 27.8 194.7 890.3 1023.0 
4 13.5 44.7 88.4 93.1 73.0 593.7 1015.8 1024.0 
5 21.2 66.9 92.3 93.1 175.4 911.2 1023.6 1024.0 
6 31.0 81.5 93.0 93.1 364.4 1002.8 1024.0 1024.0 
7 42.2 88.5 93.1 93.1 609.8 1020.3 1024.0 1024.0 

 

Studying Table 2.10 we observe the following. For values of Uw  close to Ua  and r  

reasonably large, the introduction of warning lines will have little effect on UL0 . The reason being 

that if  Uw  is close to Ua , the probability of having r  successive points plot in this small interval 

),[ Uu aw  is small. As an example, the calculation of the in-control average run length for 10=n , 

5.0=p , 8=Ua , 2=Uw  and 6=r  will be given. By substituting these values into equations 

(2.23), (2.24) and (2.25) we obtain  
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* See Mathcad Program 3 in Appendix B for the calculation of the values in Table 2.10. This table also appears in 
Amin, Reynolds and Bakir (1995), page 1606, Table 2. 
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2.2.3.2. Lower one-sided control charts 

 

The lower one-sided Shewhart sign chart, described previously, is efficient in detecting 

large process shifts quickly. Since it is known to be inefficient in detecting small process shifts, a 

lower warning limit is drawn above the lower action limit to increase its sensitivity for detecting 

small shifts. 

 

Define rule LA  as: ‘Action will be taken if r  successive points fall between La  and Lw  

(denoted by ),,,( LL warrR ) or if any point falls below La  (denoted by ),,1,1( LaR −∞ )’. Clearly, 

rule LA  is created to detect downward shifts. Let LL  denote the ARL  of rule LA . LL0  can be 

computed similarly as UL0  (see equation (2.23)) with 0p  and 1p  being replaced by 0q  and 1q , 

where 0q  denotes the probability that a given sample point falls above Lw  and 1q  denotes the 

probability that a given sample point falls between La  and Lw . Therefore, we have that  
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Compare expressions (2.27) and (2.28) to (2.24) and (2.25). 
 

The in-control average run length for the lower one-sided control chart with both warning 

and action limits is calculated for a specific example ( 10=n , 5.0=p ) by evaluating expressions 

(2.26), (2.27) and (2.28). These values are shown in Table 2.11. 
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Table 2.11. Values of LL0  for Shewhart charts with both warning and action limits when 10=n  

and 5.0=p .* 

 8====La  10====La  

Lw  
 
r  

0 2 4 6 2 4 6 8 

2 4.1 9.2 30.2 79.4 9.6 38.6 269.2 933.7 
3 7.9 23.0 70.1 92.4 27.8 194.7 890.3 1023.0 
4 13.5 44.7 88.4 93.1 73.0 593.7 1015.8 1024.0 
5 21.2 66.9 92.3 93.1 175.4 911.2 1023.6 1024.0 
6 31.0 81.5 93.0 93.1 364.4 1002.8 1024.0 1024.0 
7 42.2 88.5 93.1 93.1 609.8 1020.3 1024.0 1024.0 

 

Studying Table 2.11 we observe the following. For values of Lw  close to La  and r  

reasonably large, the introduction of warning lines will have little effect on LL0 . The reason being 

that if Lw  is close to La , the probability of having r  successive points plot in this small interval 

],( LL wa  is small. As stated earlier, due to the symmetry of the Binomial distribution we have 

that if aaU =  then let aaL −=  and if wwU =  then let wwL −= . As a result the values of LL0  

and the values of UL0  are equal. 

 

As an example, the calculation of the in-control average run length for 10=n , 5.0=p , 

8=La , 2=Lw  and 6=r  will be given. By substituting these values into equations (2.26), 

(2.27) and (2.28) we obtain  
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* See Mathcad Program 3 in Appendix B for the calculation of the values in Table 2.11. 
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2.2.4. Two-sided control charts 

 

Roberts (1958) provided a method of approximating the ARL of the two-sided Shewhart 

chart with both warning and action limits. The ARL for each separate one-sided Shewhart chart 

was calculated and then combined by applying equation (2.29) 

 
LU LLL 000

111 += . (2.29) 

(See Appendix A Theorem 1 for a step-by-step derivation of equation (2.29)). Equation (2.29) 

can be re-written as 

 
UL

UL

LL
LL

L
00

00
0 +

=  (2.30) 

where 0L  denotes the ARL of a two-sided chart. In practice some observations can be tied with 

the specified median. If the number of such cases, within a sample, is small (relative to n) one can 

drop the tied cases and reduce n accordingly. On the other hand, if the number of ties is large, 

more sophisticated analysis might be necessary. 

 

The in-control average run length for the two-sided control chart with both warning and 

action limits is calculated by evaluating expression (2.30). These values are shown in Table 2.12 

for 10=n , 5.0=p , 8=a  and 10, 8)2(0=w  and 7,...,3,2=r . 

 

Table 2.12. Values of 0L  for Shewhart charts with both warning and action limits when 10=n  

and 5.0=p .* 

 8====a  10====a  
w  
 
r  

0 2 4 6 2 4 6 8 

2 2.1 4.6 15.1 39.7 4.8 19.3 134.6 466.9 
3 4.0 11.5 35.0 46.2 13.9 97.4 445.2 511.5 
4 6.7 22.4 44.2 46.5 36.5 296.8 507.9 512.0 
5 10.6 33.5 46.2 46.5 87.7 455.6 511.8 512.0 
6 15.5 40.7 46.5 46.5 182.2 501.4 512.0 512.0 
7 21.1 44.2 46.5 46.5 304.9 510.2 512.0 512.0 

                                                 
* See Mathcad Program 3 in Appendix B for the calculation of the values in Table 2.12. 
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Studying Table 2.12 we observe the following: For values of w  close to a  and r  

reasonably large, the introduction of warning limits will have little effect on 0L . The reason being 

that if w  is close to a  (and, consequently, w−  is close to a− ), the probability of having r  

successive points plot in the small interval ),[ aw  or ],( wa −−  is small. These procedures can’t be 

meaningfully illustrated using the data of Montgomery (2001) because the sample size n = 5 used 

there is too small. It may be noted that the highest possible 0L  values for the basic (without 

warning limits) two-sided sign chart can be seen to be 12 −n  (see Amin, Reynolds and Bakir 

(1995) pp. 1609-1610 and their Appendix on pp. 1620-1621 for a detailed discussion on and a 

proof that max 1
0 2 −= nL ). Thus, achievable values of 0L  are too small for practical use, unless n  

is about 10. In Table 2.13, the charting constants, i.e. the warning and action limits, are shown, 

along with the achieved ARL values, for the in-control and one out-of-control case. The ARL 

values for the two-sided sign chart, without the warning limits, are shown in each case, within 

parentheses, for reference.  

 

Table 2.13. In-control ARL values for the two-sided sign chart with and without warning limits 

for 10=n *. 

 2====r  3====r  6====r  
 w = 7 and a = 10 

5.0====p  
(in-control) 

208.97 
(512.00) 

476.03 
(512.00) 

511.99 
(512.00) 

6.0====p  
(out-of-control) 

35.03 
(162.60) 

103.28 
(162.60) 

162.17 
(162.60) 

 w = 7 and a = 8 
5.0====p  

(in-control) 
42.86 

(46.55) 
46.37 

(46.55) 
46.55 

(46.55) 
6.0====p  

(out-of-control) 
16.37 

(20.82) 
20.16 

(20.82) 
20.82 

(20.82) 
 

It is seen that adding warning limits to a control chart decreases its average run length.  

For example, adding a warning limit at 7 to the basic sign chart with an action limit at 10 

decreases the 0ARL  approximately 59% (from 512 to 208.97), when 2=r , 7% (512 to 476.03) 

when 3=r  and 0.002% (512 to 511.99) when 6=r , respectively.  The out-of-control average 

                                                 
* See Mathcad Program 3 in Appendix B for the calculation of the values in Table 2.13. 
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run length is decreased by approximately 79% (from 162.6 to 35.03) when 2=r , 36% (from 

162.6 to 103.28) when 3=r  and 0.26% (from 162.6 to 162.17) when 6=r , respectively. Note 

that although the out-of-control average run length is reduced significantly (which means a 

quicker detection of shift) by the addition of warning limits, the 0ARL  is also reduced 

significantly.  This poses a dilemma in practice, since it is desirable to have a high 0ARL  and a 

low FAR, so one would need to strike a balance.  One possibility is to use warning limits closer to 

the action limits. For example, from the second panel of Table 2.13, we see that adding a warning 

limit at 7 to the sign chart with an action limit of 8, decreases the 0ARL  by only 8% (from 46.55 

to 42.86) when 2=r  and has little effect on 0ARL  when r  is reasonably large. Amin et al. 

(1995) concluded that for the upper one-sided Shewhart-type sign chart, introduction of warning 

limits will have little effect on the in-control average run length, but can significantly reduce the 

out-of-control average run length for small shifts when the warning limits are chosen close to the 

action limits and r  is reasonably large.  Similar conclusions are expected to hold for two-sided 

charts. 

 

Up to this point we have discussed methods to increase the sensitivity of standard 

Shewhart control charts to small process shifts. Another method is to extend the existing charts 

by incorporating various signaling rules involving runs of the plotting statistic. The signaling 

rules considered include the following: A process is declared to be out-of-control when (a) a 

single point (charting statistic) plots outside the control limit(s) (1-of-1 rule)  (b) k consecutive 

points (charting statistics) plot outside the control limit(s) (k-of-k rule) or (c) exactly k  of the last 

w points (charting statistics) plot outside the control limit(s)  (k-of-w rule). We can consider these 

signaling rules where both k  and w  are positive integers with wk ≤≤1  and 2≥w . Rule (a) is 

the simplest and is the most frequently used in the literature.  Thus, the 1-of-1 rule corresponds to 

the usual control chart, where a signal is given when a plotting statistic falls outside the control 

limit(s). Rules (a) and (b) are special cases of rule (c); rules (b) and (c) have been used in the 

context of supplementing the Shewhart charts with warning limits and zones.  
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Example 2.4 

A two-sided Shewhart chart incorporating the 2-of-2 rule with one absorbing state that 

corresponds to the out-of-control signal 

 

In this example, a control chart is viewed as consisting of the zones shown in Figure 2.4. 

 

 

Figure 2.4.  A control chart partitioned into 5 zones. 

 

Let ip  denote the probability of plotting in Zone iZ  for 5,4,3,2,1=i . To illustrate the 

calculation of signal probabilities, the following set of rules is used: 

 

)},,1,1(),,2,2(),,2,2(),,1,1({ ∞∪∪∪−∞ UUULLL aRawRwaRaR . 

 

),,1,1( LaR −∞ : The chart will signal if any 1 point falls in Zone 1Z  (below LCL ). 

),,2,2( LL waR : The chart will signal if any 2 successive points fall in Zone 2Z . 

),,2,2( UU awR : The chart will signal if any 2 successive points fall in Zone 4Z . 

),,1,1( ∞UaR : The chart will signal if any 1 point falls in Zone 5Z  (above UCL ). 
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Table 2.14. Classifications and descriptions of states. 

State 
number Description of state 

Absorbent (A)/ 
Non-absorbent 

(NA) 
0 No points beyond any of the control limits. Point plots in Zone 3Z  NA 

1 Point plots in Zone 2Z  NA 
2 Point plots in Zone 4Z  NA 

3 
Point plots below La  or above Ua  or 2 successive points fall between 

Uw  and Ua  or 2 successive points fall between Lw  and La . 
A 

 

Clearly, 154321

5

1

=++++=�
=

pppppp
i

i , since the statistic must plot in one of the 5 

zones. The transition probabilities are given in the transition probability matrix, ][ ijpTPM = , for 

3,2,1,0=i  and 3,2,1,0=j . 
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From (2.18) we have �
Ω∈

∀=
j

ij ip 1 . This is easily shown for 3,2,1,0=i . For example, 

for 0=i  we have that 151423

3

0
0 =++++=�

=

pppppp
j

j . The rest of the calculations follow 

similarly. Table 2.15 illustrates that the TPM can be partitioned into 4 sections. 
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Table 2.15. Transition probabilities of the 2-of-2 rule for a Markov chain with one absorbing 

state. 

 States at time t + 1 States at time t + 1 
States 

at 
time 

t 

0 
(NA) 

1 
(NA) 

2 
(NA) 

3 
(A) 

0 
(NA) 

1 
(NA) 

2 
(NA) 

3 
(A) 

0 
(NA) 3p  2p  4p  51 pp +  

1 
(NA) 3p  0 4p  251 ppp ++  

2 
(NA) 3p  2p  0 451 ppp ++  

33×Q  
13×

p  

3 
(A) 0 0 0 1 

= 

31'0 ×  111 ×  

 

Brook and Evans (1972) showed that the ARL for initial state i  can be calculated by 

adding the elements in the thi  row of 1
3333 )( −

×× − QI . Making use of 1)( −− QI  is typically done in 

stochastic processes where one works with recurrence and first passage times (see, for example, 

Bartlett (1953)). 
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The ARL for initial state i  can be calculated by adding the elements in the thi  row of 
1

3333 )( −
×× − QI  for 3,2,1=i . 
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Example 2.5 

A two-sided Shewhart chart incorporating the 2-of-2 rule with more than one absorbing 

state that corresponds to an out-of-control signal. 

 

This example is similar to the previous example in having three transient states, but 

differs from the previous example by having more than one absorbing state. By changing the 

classification of the states, the generalization to more than one absorbing state is considered. We 

need to introduce a rule number and this is done by adding a subscript to each rule, i.e. in general 

we have that ),,,( lknrR  which now becomes ),,,( lknrR j  where j denotes the rule number. This 

modification allows for a separate absorbing state, jA , that is associated with each of the runs 

rules, ),,,( lknrR j . This modification of Champ and Woodall’s (1987) method was done by 

Champ and Woodall (1997). As a result, we have the following rules with the corresponding 

absorbing states (see Figure 2.4 for the partitioning of the control chart into 5 zones): 

 

• ),,1,1(1 LaR −∞  associated with absorbing state 1A : The chart will signal if any 1 point 

falls in Zone 1Z  (below LCL ). 

• ),,2,2(2 LL waR  associated with absorbing state 2A : The chart will signal if any 2 

successive points fall in Zone 2Z . 

• ),,2,2(3 UU awR  associated with absorbing state 3A : The chart will signal if any 2 

successive points fall in Zone 4Z . 

• ),,1,1(4 ∞UaR  associated with absorbing state 4A : The chart will signal if any 1 point falls 

in Zone 5Z  (above UCL ). 
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Table 2.16. States and next-state transitions by zones. 

 Zones  

State 
number 

State 
vector 

Z1 
],( La−∞−∞−∞−∞  

Z2 
],( LL wa  

Z3 
),( UL ww  

Z4 
),[ UU aw  

Z5 
),[ ∞∞∞∞Ua  

Absorbent (A)/ 
Non-absorbent 

(NA) 
0 (0,0) 1A  (1,0) (0,0) (0,1) 4A  NA 
1 (1,0) 1A  2A  (0,0) (0,1) 4A  NA 
2 (0,1) 1A  (1,0) (0,0) 3A  4A  NA 
3 1A  1A  1A  1A  1A  1A  A 
4 2A  2A  2A  2A  2A  2A  A 
5 3A  3A  3A  3A  3A  3A  A 
6 4A  4A  4A  4A  4A  4A  A 

 

Each non-absorbing state in Table 2.16 is represented by a vector of 0’s and 1’s. The 

vector indicates by the 1’s only those observations that may contribute to an out-of-control 

signal. Let ip  denote the probability of plotting in Zone iZ  for 5,4,3,2,1=i . Clearly, 
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=++++=�
=

pppppp
i

i , since the statistic must plot in one of the 5 zones. The 

transition probabilities are given in the transition probability matrix, ][ ijpTPM = , for 6,...,1,0=i  

and 6,...,1,0=j . 
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From (2.18) we have �
Ω∈

∀=
j

ij ip 1 . This is easily shown for 6,...,1,0=i . For example, for 0=i  

we have that 100 51423

6

0
0 =++++++=�

=

pppppp
j

j . The rest of the calculations follow 

similarly. Table 2.17 illustrates that the TPM can be partitioned into 4 sections. 
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Table 2.17. Transition probabilities of the 2-of-2 rule for a Markov chain with more than one 

absorbing state. 

 States at time t + 1 States at time t + 1 
States 
at time 

t 

0 
(NA) 

1 
(NA) 

2 
(NA) 

3 
(A) 

4 
(A) 

5 
(A) 

6 
(A) 

0 
(NA) 

1 
(NA) 

2 
(NA) 

3 
(A) 

4 
(A) 

5 
(A) 

6 
(A) 

0 
(NA) 3p  2p  4p  1p  0 0 5p  

1 
(NA) 3p  0 4p  1p  2p  0 5p  

2 
(NA) 3p  2p  0 1p  0 4p  5p  

33×Q  43×C  

3 
(A) 0 0 0 1 0 0 0 
4 

(A) 0 0 0 0 1 0 0 
5 

(A) 0 0 0 0 0 1 0 
6 

(A) 0 0 0 0 0 0 1 

 
= 

34×Z  44×I  

 

where the essential transition probability sub-matrix 
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C  contains all the transition probabilities of going 

from each non-absorbent state to the absorbent states, ( )ANAC →: . 
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34Z  contains 

all the transition probabilities of going from each absorbent state to the non-absorbent states, 

( )NAAZ →: . The Z  matrix is the zero matrix, since it is impossible to go from an absorbent 

state to a non-absorbent state, because once an absorbent state is entered, it is never left. 
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44I  contains all the transition probabilities of going from an absorbent state to 

an absorbent state, ( )AAI →: . A square matrix of this form is called the identity matrix. 
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1TPMTPM =  represents the probability that the process will, when in state i , next make 

a transition to state j , in one step. Consider the matrix, nTPM  (read: “TPM  to the power of 

n ”), the non-absorbing state i  and the absorbing state j . The thj  component of nTPM  is the 

probability that a signal will be caused by the thj  set of runs rules that can cause a signal on or 

before the thn  sampling stage given the chart begins in non-absorbing state i . For that reason, an 

equation for nTPM  is desired. In addition, we will show that ��
�

�
��
�

�
=

∞→ IZ

BZ
TPM n

n
lim  where the 

elements of the matrix B  are the probabilities that the chart will go from a non-absorbent state 

(where no signal is given) to an absorbent state (where a signal is given) in n  transitions. We are 

interested in the matrix B , because the thji ),(  element of B  is the long run proportion of times 

the thj  set of runs rules causes the chart to signal given the chart starts in a non-absorbing state 

i . 
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continuing in this way, we obtain 
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This expression can be simplified by applying the following Corollary. 

 

Corollary 2.1 
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where ( ) 43
1

333343 ×
−

××× −= CQIB . 
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3333lim ××∞→
= ZQ n

n
, because the elements of nQ 33×  are the transition probabilities that the chart will go 

from a non-absorbent state to a non-absorbent state in n  transitions. These probabilities will tend 

to 0 as n  tends to infinity, because once the system has moved from a non-absorbent state to an 

absorbent state, that absorbent state can’t be left, i.e. the system will not be able to move back to 

a non-absorbent state. 

 

Recall that we are interested in the matrix B , because the thji ),(  element of B  is the 

long run proportion of times the thj  set of runs rules causes the chart to signal given the chart 

starts in a non-absorbing state i . 
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The effort in inverting ( )QI −  could be substantial and therefore some type of statistical 

software package is desirable. Using Mathcad’s Symbolics →Evaluate →Symbolically we can 

easily calculate the inverse of ( )QI −  and multiply the two matrices,  ( ) 1−− QI  and C , to get an 

expression for the matrix B . The long run signal probabilities are given by 

3332312423222114131211 ,,,,,,,,,, bbbbbbbbbbb  and 34b . Since these are all very long 

expressions, only one will be given and explained: 
4332432342

421
11 1

)1)(1(
pppppppppp

ppp
b

−−−−−
++

=  

is the long run proportion of times that the runs rule 1R  causes the chart to signal when the chart 
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starts in state 1. In general: ijb  is the long run proportion of times that the runs rule jR  causes the 

chart to signal when the chart starts in state i . 

 

2.2.5. Summary 

 

The necessary steps for calculating the probability that any subset of runs rules will give 

an out-of -control signal: 

 

STEP 1: Classification of states: 

� State number 

� Description of state 

� Absorbent (A) / Non-absorbent (NA) 

 

STEP 2: Setting up the transition probability matrix ][ ijpTPM =  

STEP 3: Partitioning of the transition probability matrix into 4 sections ��
�

�
��
�

�
==

IZ

CQ
pTPM ij ][  

� )(: NANAQ →  

� )(: ANAC →  

� )(: NAAZ →  

� )(: AAI →  

 

STEP 4: Obtain 1)( −− QI  

 

STEP 5: Calculate CQIB 1)( −−=  

 

STEP 6: Interpret B . ijb  is the long run proportion of times that the runs rule jR  causes the 

chart to signal when the chart starts in state i . 
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2.3. The tabular CUSUM control chart 

 

2.3.1. Introduction 

 

Cumulative sum (or CUSUM) control charts were first introduced by Page (1954) 

(although not in its present form) and have been studied by many authors, for example, 

Barnard (1959), Ewan and Kemp (1960), Johnson (1961), Goldsmith and Whitfield (1961), 

Page (1961), Ewan (1963), Van Dobben de Bruyn (1968), Woodall and Adams (1993) and 

Hawkins and Olwell (1998). Montgomery (2005) related CUSUM ideas to other SPC 

methodologies. 

 

The statistical design of CUSUM charts 

 

While the Shewhart-type charts are widely known and most often used in practice 

because of their simplicity and global performance, other classes of charts, such as the 

CUSUM charts are useful and sometimes more naturally appropriate in the process control 

environment in view of the sequential nature of data collection. The CUSUM chart 

incorporates all the information in the sequence of sample values by plotting a function of the 

cumulative sums of the deviations of the sample values from a target value. For example, 

suppose that samples of size 1=n  are collected and let jx  denote the thj  observation. The 

case of individual observations occurs very often in practice, so that situation will be treated 

first. Later we will see how to modify these results for subgroups. Then if 0θ  is the target 

value, the CUSUM chart is formed by plotting iC  where 

.)()()()( 100

1

1
00

1
−

−

==

+−=−+−=−= �� ii

i

j
ji

i

j
ji CxxxxC θθθθ  

 

The upper one-sided CUSUM works by accumulating deviations from K+0θ  that are 

above target. For the upper one-sided CUSUM chart we use 

 ])(,0max[ 01 KxCC iii −−+= +
−

+ θ     for ,...3,2,1=i  (2.31) 

to detect positive deviations from 0θ . A signaling event occurs for the first i  such that 

HCi ≥+ . 
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The lower one-sided CUSUM works by accumulating deviations from K−0θ  that are 

below target. For the lower one-sided CUSUM chart we use 

 ])(,0min[ 01 KxCC iii +−+= −
−

− θ     for ,...3,2,1=i  (2.32) 

or 

 ])(,0max[ 0

*

1

*
KxCC iii −−−= −

−
− θ     for ,...3,2,1=i  (2.33) 

to detect negative deviations from 0θ . A signaling event occurs for the first i  such that 

HCi −≤−  (if expression (2.32) is used) or HCi ≥−*
 (if expression (2.33) is used). For a 

visually appealing chart, expression (2.32) will be used to construct the lower one-sided 

CUSUM.  

 

The two-sided CUSUM chart signals for the first  i  at which either one of the two 

inequalities is satisfied, that is, either HCi ≥+  or HCi −≤− . Both K  and H  are non-

negative integers and they are needed in order to implement the CUSUM chart. Details 

regarding how to choose these constants are given in Section 2.3.1 in the sub-section called 

Recommendations for the design of the CUSUM control chart. 

 

Note that both +
iC  and −

iC  accumulate deviations from the target value 0θ  that are 

greater than K . Originally, Page (1954) set the starting values equal to zero, that is, 00 =+C  

and 00 =−C . Later on, Lucas and Crosier (1982) recommended setting the starting values 

equal to some nonzero value to improve the sensitivity of the CUSUM at process start-up. 

This is referred to as the fast initial response (FIR) or head start feature. 

 

The standardized CUSUM 

 

The variable ix  can be standardized by subtracting its mean and dividing by its 

standard deviation, that is,  

 
( )

σ
θ0−

= i
i

x
y . (2.34) 

The resulting standardized upper one-sided CUSUM is given by 

 ],0max[ 1 kySS iii −+= +
−

+     for ,...3,2,1=i  (2.35) 

while the resulting standardized lower one-sided CUSUM is given by 
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 ],0min[ 1 kySS iii ++= −
−

−     for ,...3,2,1=i  (2.36) 

or 

 ],0max[
*

1

*
kySS iii −−= −

−
−   for ,...3,2,1=i  (2.37) 

 

The two-sided standardized CUSUM is constructed by running the upper and lower 

one-sided standardized CUSUM charts simultaneously and signals at the first i  such that 

si HS ≥+  or si HS −≤− *. Both k  and sH  are non-negative integers and they are needed in 

order to implement the standardized CUSUM chart. As mentioned previously, details 

regarding how to choose these constants are given in Section 2.3.1 in the sub-section called 

Recommendations for the design of the CUSUM control chart. 

 

The unstandardized CUSUM iC  and the standardized CUSUM iS  contains the same 

information. The question arises: Should unstandardized or standardized data be used? 

Unstandardized data has the advantage that the units of the vertical axis are in their original 

measurements which makes interpretation easier. Standardized data has the advantage that 

different CUSUM charts can be compared. 

 

The CUSUM for monitoring the process mean and other sample statistics 

 

A CUSUM chart for monitoring the process mean can be obtained by replacing ix  in 

expression (2.34) with the sample average ix  and by replacing σ  by nσ . It is also 

possible to develop CUSUM charts for other sample statistics, for example, standard 

deviations and defects. These CUSUM charts for other sample statistics have been studied by 

many authors, for example, Lucas (1985), Gan (1993) and White, Keats and Stanley (1997). 

 

Recommendations for the design of the CUSUM control chart 

 

Phase II CUSUM charts should be designed on the basis of ARL performance. The 

parameters K  and H  are obtained for a specified in-control average run length. Both 

                                                 
* The vertical axis of the standardized CUSUM will be measured in multiples of the standard deviation ( σ ) of 
the data, whereas the vertical axis of the unstandardized data will be measured in the same units of X, for 
example, in meters, millimeters, ect. To avoid confusion, H and Hs will be used to denote the decision intervals 
for the unstandardized and standardized CUSUM charts, respectively. 
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parameters are non-negative integers. Let σ  denote the standard deviation of the sample 

variable used in forming the cumulative sum. Parametric CUSUM charts (see Page (1954)) 

are used for detecting shifts in a normal mean based on the cumulative sum of differences 

from target. Let σhH =  and σkK =  where h  is usually taken to be equal to 4 or 5 and k  is 

usually taken to equal 0.5 (see Montgomery (2005) page 395). By choosing 4=h  or 5=h  

and 5.0=k  (the values most commonly used in practice) we generally get a good average run 

length performance for parametric CUSUM charts. In the next section we will show that 

choosing 4=h  or 5=h  and 5.0=k  is not recommended for nonparametric CUSUM charts, 

since it usually gives a poor in-control average run length performance. Since we will not be 

using σ4=H  or σ5  and σ5.0=K  for nonparametric control charts, we will denote the 

decision interval and reference value by h  and k, respectively, from this point forward. 

 

The proposed nonparametric CUSUM chart 

 

Amin, Reynolds and Bakir (1995) proposed a nonparametric CUSUM chart for the 

median (or any other percentile) of any continuous population based on sign statistics. Recall 

that for the thi  random sample the plotting statistic in the Shewhart-type chart was 

�
=

−=
n

j
iji xsignSN

1
0 )( θ . The chart proposed by Amin et al. (1995) instead uses the cumulative 

sum of the statistic iSN  with a stopping rule. They also calculated the ARL of the chart using 

a Markov chain approach where the transition probabilities are calculated via the distribution 

of the sign statistic, which is of course binomial.  The procedure is distribution-free since the 

in-control distribution of iSN  does not depend on the underlying distribution for all 

continuous distributions. A CUSUM sign chart can be obtained by replacing iy  in 

expressions (2.35), (2.36) and (2.37) with iSN . In other words, for the upper one-sided 

CUSUM sign chart we use  

 ],0max[ 1 kSNSS iii −+= +
−

+     for ,...3,2,1=i  (2.38) 

to detect positive deviations from the known target value 0θ . A signaling event occurs for the 

first i  such that hS i ≥+ .  

 

For a lower one-sided CUSUM sign chart we use  

 ],0min[ 1 kSNSS iii ++= −
−

−     for ,...3,2,1=i  (2.39) 
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or 

 ],0max[
*

1

*
kSNSS iii −−= −

−
−     for ,...3,2,1=i  (2.40) 

to detect negative deviations from the known target value 0θ . A signaling event occurs for the 

first i  such that hS i −≤−  (if expression (2.39) is used) or hS i ≥−*
 (if expression (2.40) is 

used).  

 

The corresponding two-sided CUSUM chart signals for the first i  at which either one 

of the two inequalities is satisfied, that is, either hS i ≥+  or hS i −≤− . Starting values are 

typically chosen to equal zero, that is, 000 == −+ SS .  

 

The constants k  and h  are obtained for a specified in-control average run length. In-

control average run length ( 0ARL ), standard deviation of the run length ( 0SDRL ), th5 , th25  

(the first quartile, 1Q ), th50  (the median run length, 0MRL ), th75  (the third quartile, 3Q ) and 

th95  percentile values will be computed and tabulated for various values of h  and k  later on.   

 

2.3.2. One-sided control charts 

  

2.3.2.1. Upper one-sided control charts 

 

Various expressions for the exact run length distribution and its parameters have been 

given for the normal theory one-sided CUSUM procedure by, for example, Ewan and Kemp 

(1960), Brook and Evans (1972), Woodall (1983) and Hawkins and Olwell (1998). Many 

authors have presented various approximations for the run length distribution and its 

parameters for the one-sided CUSUM procedure. A Markov chain representation of the one-

sided CUSUM procedure based on integer-valued cumulative sums is presented in this 

section. The number of states included in the Markov chain is minimized in order to make the 

methods as efficient as possible. 
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Markov chain approach 

 

Brook and Evans (1972) and Amin et al. (1995) considered a method for evaluating 

the exact average run length and its moments for the upper one-sided CUSUM chart by 

treating the cumulative sum as a Markov chain with the state space a subset of },...,2,1,0{ h . 

Markov techniques have a great advantage as they are adjustable to many runs related 

problems and they often simplify the solutions to the specific problems they are applied on. 

Fu, Spiring and Xie (2002) presented three results that must be satisfied before implementing 

the finite-state Markov chain approach. 

 

Let +
tS  be a finite-state homogenous Markov chain on the state space +Ω  with a TPM 

such that (i) },...,,{ 110 −+
+ =Ω srςςς  where hsr =<<<= −+ 110 ...0 ςςς  and 1−+srς  is an 

absorbent state; (ii) the TPM is given by ][ ijpTPM =  for 1,...,1,0 −+= sri  and 

1,...,1,0 −+= srj  where r denotes the number of non-absorbent states and s the number of 

absorbent states, respectively, and (iii) the starting value should be in the “dummy” state with 

probability one, that is, 1)( 00 ==+ ςSP , to ensure the process starts in-control . Assume that 

the Markov chain +
tS  satisfies conditions (i), (ii) and (iii), then from Fu, Spiring and Xie 

(2002) and Fu and Lou (2003) we have 

 1)()0|( 1
0 QIQSnNP n −=== −+ ξ  (2.41) 

 ( ) ( ) 11−−= QINE ξ   (2.42) 

 ( ) ( )( ) 122 −−+= QIQINE ξ  (2.43) 

 ( ) ( ) ( )( ) ( )( )21222 11)()var( −− −−−+=−= QIQIQINENEN ξξ  (2.44) 

 ( )( ) ( )( )212 11)var( −− −−−+== QIQIQINSDRL ξξ  (2.45) 

where the essential transition probability sub-matrix Q  is the rr ×  matrix that contains all the 

transition probabilities of going from a non-absorbent state to a non-absorbent state, I  is the 

rr ×  identity matrix, ξ  is a r×1  row vector with 1 at the st1  element and zero elsewhere and 

1 is an 1×r  column vector with all elements equal to unity. See Theorem 2 in Appendix A 

for the derivations done by Fu, Spiring and Xie (2002) and Fu and Lou (2003). 
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The time that the procedure signals is the first time such that the finite-state Markov 

chain +
tS  enters one of the absorbent states where the state space is given by 

},...,,{ 110 −+
+ =Ω srςςς , 00 =+S  and  

 { }{ }kSNShS ttt −+= +
−

+
1,0max,min . (2.46) 

 

The state corresponding to a signal by the CUSUM chart is called an absorbent state. 

Clearly, there is only one absorbent state, since the chart signals when +
tS  falls on or above h, 

i.e. 1=s . 

 

The distribution of tSN  can easily be obtained from the binomial distribution (recall 

that nTSN ii −= 2  i∀ , where iT  is binomially distributed with parameters n  and 

)( 0θ≥= ijXPp ) . The binomial probabilities are given in Table G of Gibbons and 

Chakraborti (2003) and can easily be calculated using some type of statistical software 

package, for example, Excel or SAS. 

 

Example 2.6 

An upper one-sided CUSUM sign chart where the sample size is odd ( 5====n ) 

 

The statistical properties of an upper one-sided CUSUM sign chart with a decision 

interval of 4 ( 4=h ), a reference value of 1 ( 1=k ) and a sample size of 5 ( 5=n ) is 

examined. For n  odd, the reference value is taken to be odd, because this leads to the sum 

( )� − kSN i  being equal to even values which reduces the size of the state space for the 

Markov chain. This will halve the size of the matrices of transition probabilities. For 4=h  

we have that the state space is }4,2,0{},,{ 210 ==Ω+ ςςς  with h=<<= 2100 ςςς . The state 

space is calculated using equation (2.46) and the calculations are shown in Table 2.18. 
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Table 2.18. Calculation of the state space when 4=h , 1=k  and 5=n . 

tSN  kSNS tt −−−−++++++++
−−−−1  {{{{ }}}}kSNS tt −−−−++++++++

−−−−1,0max  {{{{ }}}}{{{{ }}}}kSNShS ttt −−−−++++==== ++++
−−−−

++++
1,0max,min  

-5 -6* 0 0 
-3 -4 0 0 
-1 -2 0 0 
1 0 0 0 
3 2 2 2 
5 4 4 4 

 

Table 2.19. Classifications and descriptions of the states. 

State number Description of the state Absorbent (A)/ Non-absorbent (NA) 
0 0=+

tS  NA 

1 2=+
tS  NA 

2 4=+
tS  A 

 

From Table 2.19 we see that there are two non-absorbent states, i.e. 2=r , and one 

absorbent state, i.e. 1=s . Therefore, the corresponding TPM will be a 33)()( ×=+×+ srsr  

matrix. It can be shown (see Table 2.20) that the TPM is given by 

�
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1|00
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pQ

ppp

ppp

ppp

TPM  

where the essential transition probability sub-matrix )(:22 NANAQ →×  is an 22 ×=× rr  

matrix, )(:
12

ANAp →
×

 is an 121)1( ×=×−+ sr  column vector, )(:'0 21 NAA →×  is a 

21)1(1 ×=−+× sr  row vector and )(:1 11 AA →×  represents the scalar value one. 

 

The one-step transition probabilities are calculated by substituting tSN  in expression 

(2.46) by nT −2  and substituting in values for h , k , +
tS  and +

−1tS . The calculation of the 

one-step transition probabilities are given in Table 2.20 for illustration. 

 

The probabilities in the last column of the TPM can also be calculated using the fact 

that �
Ω∈

=
j

ijp 1 i∀  (see equation (2.18)). Therefore, 

                                                 
* Note: Since only the state space needs to be described, +

−1tS  can be any value from +Ω  and we therefore take, 

without loss of generality, 01 =+
−tS . Any other possible value for +

−1tS  would lead to the same +Ω . 
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32
1

32
5

32
26

010002 )(1)(1 =+−=+−= ppp ; 

32
6

32
10

32
16

111012 )(1)(1 =+−=+−= ppp ; and 

1)00(1)(1 212022 =+−=+−= ppp . 

Since it is easier to calculate the probabilities in the last column of the TPM using the latter 

approach, it will be used throughout the text from this point forward. 

 

Table 2.20. The calculation of the transition probabilities when 4=h , 1=k  and 5=n . 
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0= * 0
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 )4|4( 1
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=== −tt SSP

p
  

1= † 
 

Using the TPM the ARL  can be calculated using ( ) 11−−= QIARL ξ . A well-known 

concern is that important information about the performance of a control chart can be missed 

when only examining the ARL (this is especially true when the process distribution is 

skewed). Various authors, see for example, Radson and Boyd (2005) and Chakraborti (2007), 

have suggested that one should examine a number of percentiles, including the median, to get 

the complete information about the performance of a control chart. Therefore, we now also 

consider percentiles. The 100 thρ  percentile is defined as the smallest integer l  such that the 

                                                 
* The probability equals zero, because it is impossible to go from an absorbent state to a non-absorbent state. 
† The probability equals one, since the probability of going from an absorbent state to an absorbent state is equal 
to one (once an absorbent state is entered, it is never left). 
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cdf is at least ( )%100 ρ× . Thus, the 100 thρ  percentile l  is found from ρ≥≤ )( lNP . The 

median ( th50  percentile) will be considered, since it is a more representative performance 

measure than the ARL (see the discussion in Section 2.1.5). The first and third quartiles ( th25  

and th75  percentiles) will also be considered, since it contains the middle half of the 

distribution. The ‘tails’ of the distribution should also be examined and therefore the th5  and 
th95  percentiles are calculated. The calculation of these percentiles is shown in Table 2.21 for 

illustration purposes. The first column of Table 2.21 contains the values that the run length 

variable ( N ) can take on. 

 

Table 2.21. Calculation of the percentiles when 4=h , 1=k  and 5=n *. 

N )( lNP ≤≤≤≤  The 5th, 25th, 50th, 75th and 95th percentiles 
1 0.0313  
2 0.0859 =05.0ρ 2 (smallest integer such that the cdf is at least 0.05) 
3 0.1420  
4 0.1954  
5 0.2456  
6 0.2928 =25.0ρ  6 (smallest integer such that the cdf is at least 0.25) 
7 0.3370  
8 0.3784  
9 0.4173  

10 0.4537  
11 0.4878  
12 0.5198 =5.0ρ 12 (smallest integer such that the cdf is at least 0.5) 
13 0.5499  
14 0.5780  
15 0.6044  
16 0.6291  
17 0.6523  
18 0.6740  
19 0.6944  
20 0.7135  
21 0.7314  
22 0.7482  
23 0.7639 =75.0ρ 23 (smallest integer such that the cdf is at least 0.75) 
24 0.7787  
25 0.7925  
26 0.8055  
27 0.8176  
28 0.8290  
29 0.8397  
30 0.8497  
�  �   

48 0.9530 =95.0ρ 48 (smallest integer such that the cdf is at least 0.95) 
49† 0.9559  

                                                 
* See SAS Program 2 in Appendix B for the calculation of the values in Table 2.21. 
† The value of the run length variable is only shown for some values up to N=49 for illustration purposes. 
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The formulas of the moments and some characteristics of the run length distribution 

have been studied by Fu, Spiring and Xie (2002) and Fu and Lou (2003) – see equations 

(2.41) to (2.45). By substituting )01(
21

=
×

ξ , ��
�

�
��
�

�
=× 1016

526

32
1

22Q  and ��
�

�
��
�

�
=× 1

1
1 12   into these 

equations, we obtain the following: 

 

( ) ( ) 62.1611 =−== −QINEARL ξ  

( ) ( )( ) 59.516122 =−+= −QIQINE ξ  

( ) ( ) 51.15)()( 22 =−== NENENVarSDRL  

2  percentile 5 05.0 == ρth  

6  percentile 25 25.0 == ρth  

12  percentile 50 Median 5.0 === ρth  

23  percentile 75 75.0 == ρth  

48  percentile 95 95.0 == ρth  

 

Other values of h, k and n were also considered and the results are given in Table 2.22. 

 

Table 2.22. The in-control average run length ( +
0ARL ), standard deviation of the run length 

( SDRL ), th5 , th25 , th50 , th75  and th95  percentile* values for the upper one-sided CUSUM 

sign chart when 5=n †. 

h k 2 3 or 4 

1 
5.33 
4.81 

(1, 2, 4, 7, 15) 

16.62 
15.51 

(2, 6, 12, 23, 48) 

3 
32.00 
31.50 

(2, 10, 22, 44, 95) 

‡ 

 

                                                 
* The three rows of each cell shows the +

0ARL , the SDRL , and the percentiles ( 5ρ , 25ρ , 50ρ , 75ρ , 95ρ ), 
respectively. 
† See SAS Program 2 in Appendix B for the calculation of the values in Table 2.22. 
‡ Since the decision interval is taken to satisfy knh −≤  there are open cells in Table 2.22. 
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Note that the summary measures for odd values of h  will be equal to the summary 

measures of the subsequent even integer. More on this later (refer to example (2.8)). Values of 

k  and h  are restricted to be integers so that the Markov chain approach could be employed to 

obtain expressions for the exact run length distribution and its parameters. In order to allow 

for the possibility of stopping after one sample, i.e. issuing a signal, the values of h  is taken 

to satisfy knh −≤ .  

  

The five percentiles (given in Table 2.22) are displayed in boxplot-like graphs for 

various h  and k  values in Figure 2.5. It should be noted that these boxplot-like graphs differ 

from standard box plots. In the latter case the whiskers are drawn from the ends of the box to 

the smallest and largest values inside specified limits, whereas, in the case of the boxplot-like 

graphs, the whiskers are drawn from the ends of the box to the 5th and 95th percentiles, 

respectively. In this thesis “boxplot” will refer to a boxplot-like graph from this point forward. 

  

Figure 2.5 clearly shows the effects of h  and k  on the run length distribution and it 

portrays the run length distribution when the process is in-control. We would prefer a 

“boxplot” with a high valued (large) in-control average run length and a small spread. 

Applying this criterion, we see that the “boxplot” corresponding to the )3,2(),( =kh  

combination has the largest in-control average run length, which is favorable, but it also has 

the largest spread which is unattractive. The “boxplot” furthest to the right is exactly opposite 

from the “boxplot” furthest to the left. The latter has the smallest spread, which is favorable, 

but it also has the smallest in-control average run length, which is unattractive. In conclusion, 

no “boxplot” is optimal relative to the others.  
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Figure 2.5. Boxplot-like graphs for the in-control run length distribution of various upper 

one-sided CUSUM sign charts when 5=n .  The whiskers extend to the 5th and the 95th  

percentiles.  The symbols “ ”, “ ” and “ ” denote the ARL, SDRL* and MRL, 

respectively. 

 

Example 2.7 

An upper one-sided CUSUM sign chart where the sample size is even (n=6) 

 

The statistical properties of an upper one-sided CUSUM sign chart with a decision 

interval of 4 ( 4=h ), a reference value of 2 ( 2=k ) and a sample size of 6 ( 6=n ) is 

examined. For n  even, the reference value is taken to be even, because this leads to the sum 

( )� − kSN i  being equal to even values which reduces the size of the state space for the 

Markov chain. For 4=h  we have that the state space is }4,2,0{},,{ 210 ==Ω+ ςςς  with 

h=<<= 2100 ςςς . The state space is calculated using equation (2.46) and the calculations 

are shown in Table 2.23. 

                                                 
* For ease of interpretation, the standard deviation (as measure of spread) is included in the (location) measures 
of percentiles. 
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Table 2.23. Calculation of the state space when 4=h , 2=k  and 6=n . 

tSN  kSNS tt −−−−++++++++
−−−−1  {{{{ }}}}kSNS tt −−−−++++++++

−−−−1,0max  {{{{ }}}}{{{{ }}}}kSNShS ttt −−−−++++==== ++++
−−−−

++++
1,0max,min  

-6 -8* 0 0 
-4 -6 0 0 
-2 -4 0 0 
0 -2 0 0 
2 0 0 0 
4 2 2 2 
6 4 4 4 

 

Table 2.24. Classifications and descriptions of the states. 

State number Description of the state Absorbent (A)/ Non-absorbent (NA) 
0 0=+

tS  NA 

1 2=+
tS  NA 

2 4=+
tS  A 

 

From Table 2.24 we see that there are two non-absorbent states, i.e. 2=r , and one 

absorbent state, i.e. 1=s . Therefore, the corresponding TPM will be a 33)()( ×=+×+ srsr  

matrix. It can be shown (see Table 2.25) that the TPM is given by 
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pQ

ppp
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TPM  

where the essential transition probability sub-matrix )(:22 NANAQ →×  is an 22 ×=× rr  

matrix, )(:
12

ANAp →
×

 is an 121)1( ×=×−+ sr  column vector, )(:'0 21 NAA →×  is a 

21)1(1 ×=−+× sr  row vector and )(:1 11 AA →×  represents the scalar value one. The one-

step transition probabilities are calculated by substituting tSN  in expression (2.46) by nT −2  

and substituting in values for h , k , +
tS  and +

−1tS . The calculation of the one-step transition 

probabilities are given in Table 2.25 for illustration. 

 

                                                 
* Note: Since only the state space needs to be described, +

−1tS  can be any value from +Ω  and we therefore take, 

without loss of generality, 01 =+
−tS . Any other possible value for +

−1tS  would lead to the same +Ω . 
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Table 2.25. The calculation of the transition probabilities when 4=h , 2=k  and 6=n . 

64
57

1

00

)4(

)2(

)02(

)0}20,0(max{

)0}}20,0max{,4(min{

)0|0(

=
≤=

≤=
≤−=

=−+=
=−+=

=== −

TP

SNP

SNP

SNP

SNP

SSP

p

t

t

t

t

tt

 

64
6

1

01

)5(

)4(

)22(

)2}2,0(max{

)2}}20,0max{,4(min{

)0|2(

=
==

==
=−=

=−=
=−+=

=== −

TP

SNP

SNP

SNP

SNP

SSP

p

t

t

t

t

tt

 64
1

64
6

64
57

0100

02

)(1

)(1

=
+−=
+−= pp

p

 

64
42

1

10

)3(

)0(

)0},0(max{

)0}}22,0max{,4(min{

)2|0(

=
≤=

≤=
==

=−+=
=== −

TP

SNP

SNP

SNP

SSP

p

t

t

t

tt

 

64
15

1

11

)4(

)2(

)2},0(max{

)2}}22,0max{,4(min{

)2|2(

=
==

==
==

=−+=
=== −

TP

SNP

SNP

SNP

SSP

p

t

t

t

tt

 64
7

64
15

64
42

1110

12

)(1

)(1

=
+−=
+−= pp

p

 

)4|0( 1

20

=== −tt SSP

p
 

0= * 0

)4|2( 1

21

=
=== −tt SSP

p

 
1

)(1 2120

22

=
+−= pp

p

 

 

The formulas of the moments and some characteristics of the run length distribution 

have been studied by Fu, Spiring and Xie (2002) and Fu and Lou (2003) – see equations 

(2.41) to (2.45). By substituting )01(
21

=
×

ξ , ��
�

�
��
�

�
=× 1542

657

64
1

22Q  and ��
�

�
��
�

�
=× 1

1
1 12  into these 

equations, we obtain the following: 

 

( ) ( ) 68.3811 =−== −QINEARL ξ  

( ) ( )( ) 19.2918122 =−+= −QIQINE ξ  

( ) ( ) 71.37)()( 22 =−== NENENVarSDRL  

3  percentile 5 05.0 == ρth  

12  percentile 25 25.0 == ρth  

27  percentile 50 Median 5.0 === ρth  

53  percentile 75 75.0 == ρth  

114  percentile 95 95.0 == ρth  

 
                                                 
* The probability equals zero, because it is impossible to go from an absorbent state to a non-absorbent state. 
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Other values of h, k and n were also considered and the results are given in Table 2.26. 

 

Table 2.26. The in-control average run length ( +
0ARL ), standard deviation of the run length 

( SDRL ), th5 , th25 , th50 , th75  and th95  percentile* values for the upper one-sided CUSUM 

sign chart when 6=n †. 

h k 2 3 or 4 5 or 6 

0 
2.91 
2.36 

(1, 1, 2, 4, 8) 

5.92 
4.96 

(1, 2, 4, 8, 16) 

10.66 
8.80 

(2, 4, 8, 14, 28) 

2 
9.14 
8.63 

(1, 3, 6, 12, 26) 

38.68 
37.71 

(3, 12, 27, 53, 114) 

‡ 

4 
64.00 
63.50 

(4, 19, 45, 89, 191) 
  

 

The five percentiles (given in Table 2.26) are displayed in boxplot-like graphs for 

various h  and k  values in Figure 2.6. Recall that we would prefer a “boxplot” with a high 

valued (large) in-control average run length and a small spread. Applying this criterion, we 

see that the “boxplot” corresponding to the )4,2(),( =kh  combination has the largest in-

control average run length, which is favorable, but it also has the largest spread which is 

unattractive. The “boxplot” furthest to the right is exactly opposite from the “boxplot” furthest 

to the left. The latter has the smallest spread, which is favorable, but it also has the smallest 

in-control average run length, which is unattractive. In conclusion, no “boxplot” is optimal 

relative to the others.  

                                                 
* The three rows of each cell shows the +

0ARL , the SDRL , and the percentiles ( 5ρ , 25ρ , 50ρ , 75ρ , 95ρ ), 
respectively. 
† See SAS Program 2 in Appendix B for the calculation of the values in Table 2.26. 
‡ Since the decision interval is taken to satisfy knh −≤  there are open cells in Table 2.26. 
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Figure 2.6. Boxplot-like graphs for the in-control run length distribution of various upper 

one-sided CUSUM sign charts when 6=n .  The whiskers extend to the 5th and the 95th 

percentiles. The symbols “ ”, “ ” and “ ” denote the ARL, SDRL* and MRL, 

respectively. 

 

                                                 
* For ease of interpretation, the standard deviation (as measure of spread) is included in the (location) measures 
of percentiles. 
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On the performance side, note that the largest in-control average run length that the 

upper one-sided CUSUM sign chart can obtain is n2 . Therefore, for a sample size of 6 the 

largest +
0ARL  equals 6426 =  (this is obtained when 2=h  and 4=k ). For this case we find 

the ��
�

�
��
�

�
=

10
64

1
64

63

TPM  and as a result the in-control average run length equals 

( ) 641)1(11 1
64

631
0 =×−×=−= −−+ QIARL ξ . Since the largest +

0ARL  is only 64 for 6=n , 

many false alarms will be expected by this chart leading to a possible loss of time and 

resources. Larger sample sizes should therefore preferably be taken when implementing the 

upper one-sided CUSUM sign chart. 

 

....................................................................................................................................................... 

Example 2.8 

An upper one-sided CUSUM sign chart with a decision interval of 4 (h=4), a reference 

value of 1 (k=1) and a sample size of 5 (n=5) 

 

In the previous two examples it can be seen that summary measures for odd values of 

h  will be equal to the summary measures of the subsequent even integer. This will be 

illustrated by the use of an example. 

 

For the upper one-sided CUSUM sign chart with a decision interval of 4 ( 4=h ), a 

reference value of 1 ( 1=k ) and a sample size of 5 ( 5=n ) the TPM was given by 

�
�
�

�

�

�
�
�

�

�

=
100
32

6
32

10
32

16

32
1

32
5

32
26

TPM  (see example (2.6). By keeping the reference value and the sample 

size fixed and changing h  to an odd integer ( 3=h ) we obtain the same TPM and therefore 

we obtain the same summary measures. Stated differently, the summary measures of h  odd 

( 3=h ) will be equal to the summary measures of the subsequent even integer ( 4=h ). 

 

……………………………………………………………………………………………........... 

 

We’ve considered sample sizes of 5=n  and 6 and established that larger sample sizes 

should preferably be taken when implementing the upper one-sided CUSUM sign chart. 

Therefore, a larger sample size ( 10=n ) is considered and the results are given in Table 2.27. 
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Table 2.27. The in-control average run length ( +
0ARL ), standard deviation of the run length 

( SDRL ), th5 , th25 , th50 , th75  and th95  percentile* values for the upper one-sided CUSUM 

sign chart when 10=n †. 

h k 3 or 4 5 or 6 7 or 8 

2 
14.34 
13.58 

(1, 5, 10, 20, 41) 

36.81 
35.48 

(3, 12, 26, 51, 108) 

91.59 
89.45 

(7, 28, 64, 126, 270) 

4 
77.97 
77.29 

(5, 23, 54, 108, 232) 

464.86 
463.68 

(25, 135, 323, 644, 1390) 
 ‡ 

6 
929.97 
929.37 

(48, 268, 645, 1289, 2785) 
  

 

Table 2.27 gives values of +
0ARL  for various values of h  and k  when the sample size 

is equal to 10. Amin, Bakir and Reynolds (1995) provided a similar Table (see Table 5 on 

page 1613) containing the in-control run length summary values for the upper one-sided 

CUSUM sign chart ( +
0ARL ) for a range of k  and h  values when 10=n . 

 

The five percentiles (given in Table 2.27) are displayed in boxplot-like graphs for 

various h  and k  values in Figure 2.7. Recall that we would prefer a “boxplot” with a high 

valued (large) in-control average run length and a small spread. Applying this criterion, we 

see that the “boxplot” corresponding to the )6,3(),( =kh  or )6,4(),( =kh  combination has 

the largest in-control average run length, which is favorable, but it also has the largest spread 

which is unattractive. The “boxplot” furthest to the right is exactly opposite from the 

“boxplot” furthest to the left. The latter has the smallest spread, which is favorable, but it also 

has the smallest in-control average run length, which is unattractive. In conclusion, no 

“boxplot” is optimal relative to the others.  

 

 

 

                                                 
* The three rows of each cell shows the +

0ARL , the SDRL , and the percentiles ( 5ρ , 25ρ , 50ρ , 75ρ , 95ρ ), 
respectively. 
† See SAS Program 2 in Appendix B for the calculation of the values in Table 2.27. 
‡ Since the decision interval is taken to satisfy knh −≤  there are open cells in Table 2.27. 
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Figure 2.7. Boxplot-like graphs for the in-control run length distribution of various upper 

one-sided CUSUM sign charts when 10=n .  The whiskers extend to the 5th and the 95th 

percentiles. The symbols “ ”, “ ” and “ ” denote the ARL, SDRL* and MRL, 

respectively. 

                                                 
* For ease of interpretation, the standard deviation (as measure of spread) is included in the (location) measures 
of percentiles. 
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Example 2.9 

An upper one-sided CUSUM sign chart for the Montgomery (2001) piston ring data 

 

We conclude this sub-section by illustrating the upper one-sided CUSUM sign chart 

using a set of data from Montgomery (2001; Table 5.2) on the inside diameters of piston rings 

manufactured by a forging process. The dataset contains 15 samples (each of size 5). We 

assume that the underlying distribution is symmetric with a known target value of 

740 =θ mm. 

 

 Let 3=k . Once k is selected, the constant h should be chosen to give the desired in-

control average run length performance. By choosing 2=h  we obtain an in-control average 

run length of 32 which is the highest in-control average run length attainable when 5=n  (see 

Table 2.22). 

 

The plotting statistics for the Shewhart sign chart ( iSN  for 15,...,2,1=i ) are given in 

the second row of Table 2.28. The upper one-sided CUSUM plotting statistics ( +
iS  for 

15,...,2,1=i ) are given in the third row of Table 2.28. 

 

Table 2.28. iSN  and +
iS  values for the piston ring data in Montgomery (2001)*. 

Sample No: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
iSN  2 1 -4 3 0 3 3 -1 3 4 1 5 5 5 4 

++++
iS  0 0 0 0 0 0 0 0 0 1 0 2 4 6 7 

 

To illustrate the calculations, consider sample number 1. The equation for the plotting 

statistic +
iS  is 0]1,0max[]320,0max[],0max[ 101 =−=−+=−+= ++ kSNSS  where a 

signaling event occurs for the first i  such that hS i ≥+ , that is, 2≥+
iS . The graphical display 

of the upper one-sided CUSUM sign chart is shown in Figure 2.8. 

 

                                                 
* See SAS Program 3 in Appendix B for the calculation of the values in Table 2.28. 
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Figure 2.8. The upper one-sided CUSUM sign chart for the Montgomery (2001) piston ring 

data. 

 

The upper one-sided CUSUM sign chart signals at sample 12, indicating a most likely 

upward shift from the known target value 0θ . The action taken following an out-of-control 

signal on a CUSUM chart is identical to that with any control chart. A search for assignable 

causes should be done, corrective action should be taken (if required) and, following this, the 

CUSUM is reset to zero. Different control charts are compared by designing the control charts 

to have the same 0ARL  and then evaluating the δARL . The control chart with the lower 

δARL  is the preferred chart. These procedures can not be meaningfully illustrated using the 

data from Montgomery (2001) because the sample size 5=n  used here is too small. It may 

be noted that the highest +
0ARL  is 32 for 5=n . Thus, achievable values of +

0ARL  are too 

small for practical use, unless n is ‘large’. 
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2.3.2.2. Lower one-sided control charts 

 

Analogous to the previous section, a Markov chain representation of the one-sided 

CUSUM procedure based on integer-valued cumulative sums is presented in this section. The 

number of states included in the Markov chain is minimized in order to make the methods as 

efficient as possible. The time that the procedure signals is the first time such that the finite-

state Markov chain −
tS  enters the state 0ς  where the state space is given by 

},...,,{ 110 −+
− =Ω srςςς  with 0... 10 =<<=− −+srh ςς ,  00 =−S  and  

 { }{ }kSNShS ttt ++−= −
−

−
1,0min,max . (2.47) 

Clearly, there is only one absorbent state, since the chart signals when −
tS  falls on or below 

h− , i.e. 1=s . 

 

The distribution of tSN  can easily be obtained from the binomial distribution (recall 

that nTSN ii −= 2  i∀ , where iT  is binomially distributed with parameters n  and 

)( 0θ≥= ijXPp ) . The binomial probabilities are given in Table G of Gibbons and 

Chakraborti (2003) and can easily be calculated using some type of statistical software 

package, for example, Excel or SAS. 

 

Example 2.10 

A lower one-sided CUSUM sign chart where the sample size is odd ( 5====n ) 

 

The statistical properties of a lower one-sided CUSUM sign chart with a decision 

interval of 4 ( 4=h ), a reference value of 1 ( 1=k ) and a sample size of 5 ( 5=n ) is 

examined. For n  odd, the reference value is taken to be odd, because this leads to the sum 

( )� − kSN i  being equal to even values which reduces the size of the state space for the 

Markov chain. For 4=h  we have =Ω−  =},,{ 210 ςςς }0,2,4{ −−  with 0210 =<<=− ςςςh . 

The state space is calculated using equation (2.47) and the calculations are shown in Table 

2.29. 
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Table 2.29. Calculation of the state space when 4=h , 1=k  and 5=n . 

tSN  kSNS tt ++++++++−−−−
−−−−1  {{{{ }}}}kSNS tt ++++++++−−−−

−−−−1,0min  {{{{ }}}}{{{{ }}}}kSNShS ttt ++++++++−−−−==== −−−−
−−−−

−−−−
1,0min,max  

-5 -4* -4 -4 
-3 -2 -2 -2 
-1 0 0 0 
1 2 0 0 
3 4 0 0 
5 6 0 0 

 

Table 2.30. Classifications and descriptions of the states. 

State number Description of the state Absorbent (A)/ Non-absorbent (NA) 
0 0=−

tS  NA 

1 2−=−
tS  NA 

2 4−=−
tS  A 

 

From Table 2.30 we see that there are two non-absorbent states, i.e. 2=r , and one 

absorbent state, i.e. 1=s . Therefore, the corresponding TPM will be a 33)()( ×=+×+ srsr  

matrix. It can be shown (see Table 2.31) that the TPM is given by 
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where the essential transition probability sub-matrix )(:22 NANAQ →×  is an 22 ×=× rr  

matrix, )(:
12

ANAp →
×

 is an 121)1( ×=×−+ sr  column vector, )(:'0 21 NAA →×  is a 

21)1(1 ×=−+× sr  row vector and )(:1 11 AA →×  represents the scalar value one. 

 

The one-step transition probabilities are calculated by substituting tSN  in expression 

(2.47) by nT −2  and substituting in values for h , k , −
tS  and −

−1tS . The calculation of the 

one-step transition probabilities are given for illustration in Table 2.31. 

 

                                                 
* Note: Since only the state space needs to be described, −

−1tS  can be any value from −Ω  and we therefore take, 

without loss of generality, 01 =−
−tS . Any other possible value for −

−1tS  would lead to the same −Ω .     
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Table 2.31. The calculation of the transition probabilities when 4=h , 1=k  and 5=n . 
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The formulas of the moments and some characteristics of the run length distribution 

have been studied by Fu, Spiring and Xie (2002) and Fu and Lou (2003) – see equations 

(2.41) to (2.45). By substituting )01(
21

=
×

ξ , ��
�

�
��
�

�
=×

32
10

32
16

32
5

32
26

22Q  and ��
�

�
��
�

�
=× 1

1
1 12  into these 

equations, we obtain the following: 

 

( ) ( ) 62.1611 =−== −QINEARL ξ  

( ) ( )( ) 59.516122 =−+= −QIQINE ξ  

( ) ( ) 51.15)()( 22 =−== NENENVarSDRL  

2  percentile 5 5 == ρth  

6  percentile 25 25 == ρth  

                                                 
* The probability equals zero, because it is impossible to go from an absorbent state to a non-absorbent state. 
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12  percentile 50 Median 50 === ρth  

23  percentile 75 75 == ρth  

48  percentile 95 95 == ρth  

 

The in-control average run length values, standard deviation of the run length values 

and percentiles for the lower one-sided CUSUM sign chart are exactly the same as for the 

upper one-sided CUSUM sign chart, since the one-step transition probabilities matrices are 

the same (compare the transition probabilities matrices of examples 2.6 and 2.10). Therefore, 

we obtain Result 2.10: 

 

Result 2.10: 

 

The in-control average run length ( +
0ARL ), standard deviation of the run length ( SDRL ), 

th5 , th25 , th50 , th75  and th95  percentile values tabulated for the upper one-sided CUSUM sign 

chart will also hold for the lower one-sided CUSUM sign chart. 

 

 

Example 2.11 

A lower one-sided CUSUM sign chart for the Montgomery (2001) piston ring data 

 

We conclude this sub-section by illustrating the lower one-sided CUSUM sign chart 

using a set of data from Montgomery (2001; Table 5.2) on the inside diameters of piston rings 

manufactured by a forging process. The dataset contains 15 samples (each of size 5). We 

assume that the underlying distribution is symmetric with a known target value of 

740 =θ mm. 

 

From Table 2.22 it can be seen that the in-control average run length equals 32 when 

2=h  and 3=k  (recall that this is the largest possible in-control average run length value 

that the chart can obtain, since 3225 = ). The plotting statistics for the Shewhart sign chart 

( iSN  for 15,...,2,1=i ) are given in the second row of Table 2.32. The lower one-sided 

CUSUM plotting statistics ( −
iS  for 15,...,2,1=i ) are given in the third row of Table 2.32. 
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Table 2.32. iSN  and −
iS  values for the piston ring data in Montgomery (2001)*. 

Sample No: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
iSN  2 1 -4 3 0 3 3 -1 3 4 1 5 5 5 4 

−−−−
iS  0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 

 

To illustrate the calculations, consider sample number 1. The equation for the plotting 

statistic −
1S  is  

 0]5,0max[]320,0max[],0max[ 101

**

=−=−−=−−= −− kSNSS  (2.48)  

or  

 0]5,0min[]320,0min[],0min[ 101 ==++=++= −− kSNSS . (2.49) 

 

A signaling event occurs for the first i  such that hS i ≥−*

, that is, 2
*

≥−
iS  if 

expression (2.48) is used or hS i −≤− , that is, 2−≤−
iS  if expression (2.49) is used. 

 

The graphical display of the lower one-sided CUSUM sign chart (using expression 

(2.49)) is shown in Figure 2.9 and does not signal. 
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Figure 2.9. The lower one-sided CUSUM sign chart for the Montgomery (2001) piston ring 

data. 

                                                 
* See SAS Program 3 in Appendix B for the calculation of the values in Table 2.32. 
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2.3.3. Two-sided control charts 

 

Various authors have studied the two-sided CUSUM scheme, for example, Kemp 

(1971) gives the average run length of the two-sided CUSUM scheme in terms of the average 

run lengths of the two corresponding one-sided schemes. Lucas and Crosier (1982) used a 

Markov chain representation of the two-sided CUSUM scheme to determine the run length 

distribution and the average run length. In this thesis, the approach taken by Brook and Evans 

(1972) for the one-sided CUSUM scheme is extended to the two-sided CUSUM scheme. A 

Markov chain representation of the two-sided CUSUM scheme based on integer-valued 

random variables will be presented. This is done since the nonparametric statistics that are the 

building blocks of the CUSUM scheme are discrete random variables.  The number of states 

included in the Markov chain is minimized by taking the reference value k  so that the state 

space of the Markov chain is a set of even numbers. This reduces the size of the TPM and 

thus eliminates unnecessary calculations in order to make the methods as efficient as possible. 

 

Recall that for the upper one-sided CUSUM sign chart we use  

 { }},0max{,min 1
+
−

+ +−= ttt SkSNhS  for ,...2,1=n  (2.50) 

For a lower one-sided CUSUM sign chart we use  

 { }},0min{,max 1
−
−

− ++−= ttt SkSNhS  for ,...2,1=n  (2.51) 

For the two-sided scheme the two one-sided schemes are performed simultaneously. The 

corresponding two-sided CUSUM chart signals for the first t  at which either one of the two 

inequalities is satisfied, that is, either hSt ≥+  or hSt −≤− . Starting values are typically chosen 

to equal zero, that is, 000 == −+ SS . The two-sided scheme signals at 

{ }hShStN ttt
−≤≥= −+ or:min  where h  is a positive integer.  

 

The two-sided CUSUM scheme can be represented by a Markov chain with states 

corresponding to the possible combinations of values of +
tS  and −

tS . The states corresponding 

to values for which a signal is given by the CUSUM scheme are called absorbent states. 

Clearly, there are two absorbent states since the chart signals when +
tS  falls on or above h  or 

when −
tS  falls on or below h− , i.e. 2=s . Recall that r denotes the number of non-absorbent 
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states and, consequently, the corresponding TPM is an )()( srsr +×+ , i.e. an 

)2()2( +×+ rr  matrix. 

 

The time that the procedure signals is the first time such that the finite-state Markov 

chain enters the state 0ς  or 1−+srς  where the state space is given by Ω  = −+ Ω∪Ω  = 

},...,,{ 110 −+srςςς  with hh sr =<<=− −+ 10 ... ςς . 

 

Example 2.12 

A two-sided CUSUM sign chart where the sample size is odd ( 5====n ) 

 

The statistical properties of a two-sided CUSUM sign chart with a decision interval of 

4 ( 4=h ), a reference value of 1 ( 1=k ) and a sample size of 5 ( 5=n ) is examined. For n  

odd, the reference value k is taken to be odd, because this leads to the sum ( )� − kSN i  being 

equal to even values which reduces the size of the state space for the Markov chain. This 

reduces the size of the TPM and thus eliminates unnecessary calculations in order to make the 

methods as efficient as possible. Let Ω  denote the state space for the two-sided chart. Ω  is 

the union of the state space for the upper one-sided chart }4,2,0{=Ω+  and the state space for 

the lower one-sided chart }0,2,4{ −−=Ω− . Therefore, Ω  = −+ Ω∪Ω  = }4,2,0{}0,2,4{ ∪−−  = 

}4,2,0,2,4{ −−  = },,,,{ 43210 ςςςςς  with hh =<<<<=− 43210 ςςςςς . 
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Table 2.33. Classifications and descriptions of the states. 

State number Values of the CUSUM statistic(s) Absorbent (A) 
Non-absorbent (NA) 

0 0=−
tS  and 0=+

tS  NA 

1 2=−
tS  or 2=+

tS * NA 

2 2−=−
tS  or 2−=+

tS † NA 

3 4=−
tS  or 4=+

tS ‡ A 

4 4−=−
tS  or 4−=+

tS § A 
 

From Table 2.33 we see that there are three non-absorbent states, i.e. 3=r , and two 

absorbent states, i.e. 2=s . Therefore, the corresponding TPM will be a 

55)()( ×=+×+ srsr  matrix. The layout of the TPM is as follows. There are three transient 

states and two absorbent states.  By convention we first list the non-absorbent states and then 

we list the absorbent states.  In column one we compute the probability of moving from state 

i  to state 0, for all i . Note that the process reaches state 0 when both the upper and the lower 

cumulative sums equal zero. In columns two and three, we compute the probabilities of 

moving from state i  to the remaining non-absorbent states, for all i . Finally, in the remaining 

two columns we compute the probabilities of moving from state i  to the absorbent states, for 

all i . Thus, the TPM can be conveniently partitioned into 4 sections given by 

�
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=
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=
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10

32
1

32
6

32
5

32
10

32
10

32
1

32
1

32
5

32
5

32
20

4443424140

3433323130

2423222120
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0403020100

55

|

|

10|000
01|000

|
|
|

IZ

CQ

ppppp

ppppp

ppppp

ppppp

ppppp

TPM  

                                                 
* Moving from state 0 to state 1 can happen when either the upper cumulative sum or the lower cumulative sum 
equals 2. But the lower cumulative sum can not equal 2 since by definition the lower cumulative sum can only 
take on integer values smaller than or equal to zero. Therefore, we only use the probability that the upper 
cumulative sum equals 2 in the calculation of the probabilities in the TPM. 
 
† Moving from state 0 to state 2 can happen when either the upper cumulative sum or the lower cumulative sum 
equals -2. But the upper cumulative sum can not equal -2 since by definition the upper cumulative sum can only 
take on integer values greater than or equal to zero. Therefore, we only use the probability that the lower 
cumulative sum equals -2 in the calculation of the probabilities in the TPM. 
 
‡ A similar argument to the argument in the first footnote on this page holds. Therefore, we only use the 
probability that the upper cumulative sum equals 4 in the calculation of the probabilities in the TPM. 
 
§ A similar argument to the argument in the second footnote on this page holds. Therefore, we only use the 
probability that the lower cumulative sum equals -4 in the calculation of the probabilities in the TPM. 
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where the essential transition probability sub-matrix )(:33 NANAQ →×  is an 33×=× rr  

matrix, )(:23 ANAC →×  is an 23×=× sr  matrix, )(:32 NAAZ →×  is an 32 ×=× rs  matrix 

and )(:22 AAI →×  is a 22 ×=× ss  matrix. 

 

The calculation of the elements of the TPM is illustrated next. Note that this 

essentially involves the calculation of the matrices Q  and C . First consider the transient 

states.  Note that the process moves to state 0, i.e., 0=j , when both the upper and the lower 

cumulative sums equal 0.  Thus the required probability of moving to 0, from any other 

transient state, is the probability of an intersection of two sets involving values of the upper 

and the lower CUSUM statistics, respectively. On the other hand, the probability of moving to 

any state 0≠j , from any other state, is the probability of a union of two sets involving values 

of the upper and the lower CUSUM statistics, respectively.  However, one of these two sets is 

empty so that the required probability is the probability of only the non-empty set. 

 

The calculation of the entry in the first row and the first column of the matrix Q , 00p , 

will be discussed in detail. This is the probability of moving from state 0 to state 0 in one step. 

As we just described, this can happen only when the upper and the lower cumulative sums 

both equal 0 at time t .  For the upper one-sided CUSUM 00p  is the probability that the upper 

CUSUM equals 0 at time t , given that the upper CUSUM equaled 0 at time 1−t , that is, 

)0|0( 1 == +
−

+
tt SSP . For the lower one-sided procedure 00p  is the probability that the lower 

CUSUM equals 0 at time t , given that the lower CUSUM equaled 0 at time 1−t , that is, 

)0|0( 1 == −
−

−
tt SSP . For the two-sided procedure the two one-sided procedures are performed 

simultaneously. Therefore we have that { } { }( )0|00|0 1100 ==∩=== −
−

−+
−

+
tttt SSSSPp .  

 
 
 



 95 

We have that  

{ } { }( )0|00|0 11

00

==∩=== −
−

−+
−

+
tttt SSSSP

p
 

this is computed by substituting in values for h , k , +
tS , +

−1tS ,  −
tS  and −

−1tS  into equations 

(2.50) and (2.51) 

{ }{ } { }{ }( )
{ } { }( )
( ) ( )( )
( ) ( )( )11

00101

0}01,0min{0}01,0max{

0}01,0min{,4max0}01,0max{,4min

−≥∩≤=
≥++∩≤−=

=++∩=+−=
=++−∩=+−=

tt

tt

tt

tt

SNSNP

SNSNP

SNSNP

SNSNP

 

recall that nTSNt −= 2  where T  is binomially distributed with parameters n  and 
)( 0θ≥= ijXPp  

( ) ( )( )
( ) ( )( )23

152152
≥∩≤=

−≥−∩≤−=
TTP

TTP
 

( )
32

20

32
102

)2(2
)3()2(

=
×=

==
=+==

TP

TPTP

 

since T  is binomially distributed with parameters 5=n  and 5.0=p . 

 

The remaining entries in the first column of the matrix Q  can be calculated similarly 

and we find that 32
10

10 =p  and 32
10

20 =p . 

 

Next we discuss the calculation of the entry in the first row and the second column of 

the matrix Q , 01p , in detail. This is the probability of moving from state 0 to state 1 in one 

step. This can happen when either the upper cumulative sum or the lower cumulative sum 

equals 2. But the lower cumulative sum can not equal 2 since by definition the lower 

cumulative sum can only take on integer values smaller than or equal to zero. Therefore 

although the required probability is the probability of the union of two sets involving values 

of the upper and the lower CUSUM statistics, one of these sets is empty so that the required 

probability is the probability of only the non-empty set. Hence, in this case, we will only have 

to calculate the upper one-sided probability. For the upper one-sided CUSUM, 01p  is the 

probability that the upper cumulative sum equals 2 at time t , given that the upper cumulative 

sum equaled 0 at time 1−t , that is, )0|2( 1 == +
−

+
tt SSP . We have that 
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)0|2( 1

01

=== +
−

+
tt SSP

p
  

{ }( )
( )
( )
( )3

21

2}01,0max{

2}01,0max{,4min

==
=−=

=+−=
=+−=

t

t

t

t

SNP

SNP

SNP

SNP

 

( )
( )4

352
==

=−=
TP

TP
 

32
5= . 

  

The remaining entries in the second column of the matrix Q  can be calculated 

similarly and we find that 32
10

11 =p  and 32
5

21 =p . 

 

Next we discuss the calculation of the entry in the first row and the third column of the 

matrix Q , 02p , in detail. This is the probability of moving from state 0 to state 2 in one step. 

This happens when only the lower cumulative sum moves to -2, since the upper cumulative 

sum can not move to -2. Recall that the upper cumulative sum can only take on integer values 

greater than or equal to zero. As in the case of 01p ,  this probability is also the probability of 

the union of two sets, involving values of the CUSUM statistics, one of which is empty, so 

that the required probability is the probability of only the non-empty set. Hence, in this case 

since the lower CUSUM is involved, we will only have to calculate the probability associated 

with the lower one-sided procedure. Now, for the lower one-sided procedure 02p  is the 

probability that the lower cumulative sum equals -2 at time t , given that the lower cumulative 

sum equaled 0 at time 1−t , that is, )0|2( 1 =−= −
−

−
tt SSP . We have that  

)0|2( 1

02

=−== −
−

−
tt SSP

p
 

{ }( )
( )
( )
( )3

21

2}01,0min{

2}01,0min{,4max

−==
−=+=

−=++=
−=++−=

t

t

t

t

SNP

SNP

SNP

SNP

 

( )
( )1

352
==

−=−=
TP

TP
 

32
5= . 
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The remaining entries in the third column of the matrix Q  can be calculated similarly 

and we find that 32
5

12 =p  and 32
10

22 =p . 

 

Next we discuss the calculation of the entry in the first row and the first column of the 

matrix C , 03p , in detail. This is the probability of moving from state 0 to an absorbent state, 

state 3, in one step. Again, this can happen when only the upper cumulative sum moves to 4, 

since the lower cumulative sum can not move to 4. Recall that the lower cumulative sum can 

only take on integer values smaller than or equal to zero. Therefore, once again the required 

probability is the probability of the union of two sets involving values of the CUSUM 

statistics, one of which is empty so that the probability is the probability of only the non-

empty set. Therefore we will only have to calculate the upper one-sided probability in this 

case. For the upper one-sided procedure 03p  is the probability that the upper cumulative sum 

equals 4 at time t , given that the upper cumulative sum equaled 0 at time 1−t , that is, 

)0|4( 1 == +
−

+
tt SSP . We have that  

)0|4( 1

03

=== +
−

+
tt SSP

p
 

{ }( )
( )
( )
( )
( )5

552

5

41

4}01,0max{,4min

≥=
≥−=

≥=
≥−=

=+−=

TP

TP

SNP

SNP

SNP

t

t

t

 

32
1= . 

 

The remaining entries in the first column of the matrix C  can be calculated similarly 

and we find that 32
6

13 =p  and 32
1

23 =p . 

 

Next we discuss the calculation of the entry in the first row and the last column of the 

matrix C , 04p , in detail. This is the probability of moving from state 0 to state 4 in one step. 

This can happen when only the lower cumulative sum moves to -4, since the upper cumulative 

sum can not move to -4. Recall that the upper cumulative sum can only take on integer values 

greater than or equal to zero. Therefore although the required probability is the probability of 

the union of two sets involving values of the upper and the lower CUSUM statistics, one of 

these sets is empty so that the required probability is the probability of only the non-empty 
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set. Therefore we will only have to calculate the lower one-sided probability. For the lower 

one-sided procedure 04p  is the probability that the lower cumulative sum equals -4 at time t , 

given that the lower cumulative sum equaled 0 at time 1−t , that is, )0|4( 1 =−= −
−

−
tt SSP . We 

have that 

)0|4( 1

04

=−== −
−

−
tt SSP

p
 

{ }( )
( )
( )
( )
( )0

552

5

41

4}01,0min{,4max

≤=
−≤−=

−≤=
−≤+=

−=++−=

TP

TP

SNP

SNP

SNP

t

t

t

 

32
1= . 

 

The remaining entries in the last column of the matrix C  can be calculated similarly 

and we find that 32
1

14 =p  and 32
6

24 =p . 

 

The run length distribution and its parameters 

 

The run length distribution and its parameters are calculated using the matrix Q . The 

ARL is given by ( ) 11−− QIξ  where )001(
31

=
×

ξ , 
�
�
�

�

�

�
�
�

�

�

=×

10510
51010

5520

32
1

33Q  and 
�
�
�

�

�

�
�
�

�

�

=×

1
1

1

1 13 . 

As a result, ( ) ( ) 31.811 =−== −QINEARL ξ . 

 

Let +ARL  and −ARL  denote the average run lengths of the upper and lower one-sided 

charts, respectively. The ARL  of the two-sided chart can be expressed as a function of the 

average run lengths of the one-sided charts through the expression  

 ( )−+

−+

+
=

ARLARL
ARLARL

ARL
))((

  (2.52) 

(see Theorem 1 in Appendix A for the proof of result (2.52)). 
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From the lower- and upper CUSUM sign sections we have that 62.16=+ARL  and 

62.16=−ARL . Using equation (2.52) we have that ( ) 31.8
62.1662.16

)62.16)(62.16( =
+

=ARL . 

 

Table 2.34. The in-control average run length ( 0ARL ), standard deviation of the run length 

( SDRL ), th5 , th25 , th50 , th75  and th95  percentile* values for the two-sided CUSUM sign chart 

when 5=n †. 

h k 2 3 or 4 

1 
2.67 
2.11 

(1, 1, 2, 3, 7) 

8.31 
7.16 

(1, 3, 6, 11, 23) 

3 
16.00 
15.50 

(1, 5, 11, 22, 47) 

‡ 

 

Analogous to what was done for the upper one-sided chart, the five percentiles (given 

in Table 2.34) are displayed in boxplot-like graphs for various h  and k  values in Figure 2.10. 

Recall that we would prefer a “boxplot” with a high valued (large) in-control average run 

length and a small spread. Applying this criterion, we see that the “boxplot” corresponding to 

the )3,2(),( =kh  combination has the largest in-control average run length, which is 

favorable, but it also has the largest spread which is unattractive. The “boxplot” furthest to the 

right is exactly opposite from the “boxplot” furthest to the left. The latter has the smallest 

spread, which is favorable, but it also has the smallest in-control average run length, which is 

unattractive. In conclusion, no “box plot” is optimal relative to the others.  

                                                 
* The three rows of each cell shows the ARL0, the SDRL , and the percentiles ( 5ρ , 25ρ , 50ρ , 75ρ , 95ρ ), 
respectively. 
† See SAS Program 2 in Appendix B for the calculation of the values in Table 2.34. 
‡ Since the decision interval is taken to satisfy knh −≤  there are open cells in Table 2.34. 
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Figure 2.10. Boxplot-like graphs for the in-control run length distribution of various two-

sided CUSUM sign charts when 5=n .  The whiskers extend to the 5th and the 95th 

percentiles. The symbols “ ”, “ ” and “ ” denote the ARL, SDRL* and MRL, 

respectively. 

 
                                                 
* For ease of interpretation, the standard deviation (as measure of spread) is included in the (location) measures 
of percentiles. 
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Other values of h, k and n were also considered and the results are given in Table 2.35. 

 

Table 2.35. The in-control average run length ( 0ARL ), standard deviation of the run length 

( SDRL ), th5 , th25 , th50 , th75  and th95  percentile* values for the two-sided CUSUM sign chart 

when 6=n †. 

h k 2 3 or 4 5 or 6 

0 
1.45 
0.81 

(1, 1, 1, 2, 3) 

2.96 
1.88 

(1, 2, 3, 4, 7) 

5.33 
4.22 

(1, 2, 4, 7, 14) 

2 
4.57 
4.04 

(1, 2, 3, 6, 13) 

19.34 
18.36 

(2, 6, 14, 26, 56) 

‡ 

4 
32.00 
31.50 

(2, 10, 22, 44, 95) 
  

 

 

 

                                                 
** The three rows of each cell shows the ARL0, the SDRL , and the percentiles ( 5ρ , 25ρ , 50ρ , 75ρ , 95ρ ), 
respectively. 
† See SAS Program 2 in Appendix B for the calculation of the values in Table 2.35. 
‡ Since the decision interval is taken to satisfy knh −≤  there are open cells in Table 2.35. 

 
 
 



 102 

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

(2, 0) (3, 0) (4, 0) (2, 2) (5, 0) (6, 0) (3, 2) (4, 2) (2, 4)

(h, k)

0

1

2

3

4

5

6

7

8

(2, 0) (3, 0) (4, 0)

(h, k)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11. Boxplot-like graphs for the in-control run length distribution of various two-

sided CUSUM sign charts when 6=n .  The whiskers extend to the 5th and the  

95th percentiles.  The symbols “ ”, “ ” and “ ” denote the ARL, SDRL* and MRL, 

respectively. 

                                                 
* For ease of interpretation, the standard deviation (as measure of spread) is included in the (location) measures 
of percentiles. 
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Table 2.36. The in-control average run length ( 0ARL ), standard deviation of the run length 

( SDRL ), th5 , th25 , th50 , th75  and th95  percentile* values for the two-sided CUSUM sign chart 

when 10=n †. 

h k 3 or 4 5 or 6 7 or 8 

2 
7.17 
6.39 

(1, 3, 5, 10, 20) 

18.41 
17.05 

(2, 6, 13, 25, 52) 

45.80 
43.63 

(4, 15, 32, 63, 133) 

4 
38.98 
38.30 

(3, 12, 27, 54, 115) 

232.43 
231.26 

(13, 68, 161, 322, 694) 

‡ 

6 
464.98 
464.39 

(24, 134, 322, 644, 1392) 
  

 

 

 

 

 

 

                                                 
* The three rows of each cell shows the ARL0, the SDRL , and the percentiles ( 5ρ , 25ρ , 50ρ , 75ρ , 95ρ ), 
respectively. 
† See SAS Program 2 in Appendix B for the calculation of the values in Table 2.36. 
‡ Since the decision interval is taken to satisfy knh −≤  there are open cells in Table 2.36. 
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Figure 2.12. Boxplot-like graphs for the in-control run length distribution of various two-

sided CUSUM sign charts when 10=n .  The whiskers extend to the 5th and the  

95th percentiles.  The symbols “ ”, “ ” and “ ” denote the ARL, SDRL* and MRL, 

respectively. 

                                                 
* For ease of interpretation, the standard deviation (as measure of spread) is included in the (location) measures 
of percentiles. 
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Example 2.13 

A two-sided CUSUM sign chart for the Montgomery (2001) piston ring data 

 

We conclude this sub-section by illustrating the two-sided CUSUM sign chart using 

the piston ring data set from Montgomery (2001). We assume that the underlying distribution 

is symmetric with a known target value of 740 =θ mm. Let 3=k . Once k is selected, the 

constant h should be chosen to give the desired in-control average run length performance. By 

choosing 2=h  we obtain an in-control average run length of 16 which is the highest in-

control average run length attainable when 5=n  (see Table 2.34). Table 2.37 shows the 

upper and lower sign CUSUM statistics, respectively. 

 

Table 2.37. One-sided sign ( +
iS  and −

iS ) statistics*. 

Sample 
number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

++++
iS  0 0 0 0 0 0 0 0 0 1 0 2 4 6 7 
−−−−
iS  0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 
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Figure 2.13. The two-sided CUSUM sign chart for the Montgomery (2001) piston ring data. 

 
                                                 
* See SAS Program 3 in Appendix B for the calculation of the values in Table 2.37. 
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The two-sided CUSUM sign chart signals at sample number 12, indicating a most like 

upward shift in the process median. The action taken following an out-of-control signal on a 

CUSUM chart is identical to that with any control chart. A search for assignable causes 

should be done, corrective action should be taken (if required) and, following this, the 

CUSUM is reset to zero.  

 

2.3.4. Summary 

 

While the Shewhart-type charts are widely known and most often used in practice 

because of their simplicity and global performance, other classes of charts, such as the 

CUSUM charts are useful and sometimes more naturally appropriate in the process control 

environment in view of the sequential nature of data collection. In this section we have 

described the properties of the CUSUM sign chart and given tables for its implementation. 

Detailed calculations have been given to help the reader to understand the subject more 

thoroughly. 

 

2.4. The EWMA control chart 

 

2.4.1. Introduction 

 

The exponentially weighted moving average (EWMA) scheme was first introduced by 

Roberts (1959). In a subsequent article, Roberts (1966) compared the performance of EWMA 

charts to Shewhart and CUSUM charts. Various authors have studied EWMA charts (see for 

example Robinson and Ho (1978) and Crowder (1987)). EWMA charts have become very 

popular over the last few years. It is one of several charting methods aimed at correcting a 

deficiency of the Shewhart chart – insensitivity to small process shifts.  

 

An EWMA control chart scheme accumulates statistics ,...,, 321 XXX with the plotting 

statistics defined as  

 1)1( −−+= iii ZXZ λλ  (2.53) 

where 10 ≤< λ  is a constant called the weighting constant. The starting value 0Z  is often 

taken to be the process target value, i.e. 00 θ=Z . 
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The EWMA chart is constructed by plotting iZ  against the sample number i  (or 

time). If the plotting statistic iZ  falls between the two control limits, that is, 

UCLZLCL i << , the process is considered to be in-control. If the plotting statistic iZ  falls on 

or outside one of the control limits, that is LCLZ i ≤  or UCLZ i ≥ , the process is considered 

to be out-of-control. 

 

To illustrate that the plotting statistic iZ  is a weighted average of all the previous 

statistics, 1−iZ  may be substituted by 211 )1( −−− −+= iii ZXZ λλ  in equation (2.53) to obtain 

( )

( )
.)1()1()1(

)1()1()1(

)1()1(

)1()1(

3
3

2
2

1

32
2

1

2
2

1

21

−−−

−−−

−−

−−

−+−+−+=

−+−+−+=

−+−+=

−+−+=

iiii

iiii

iii

iiii

ZXXX

ZXXX

ZXX

ZXXZ

λλλλλλ
λλλλλλ

λλλλ
λλλλ

 

 

This method of substitution is called recursive substitution. By continuing the process 

of recursive substitution for piZ − , tp ,...,3,2= , we obtain 

 0

1

0

)1()1( ZXZ i
pi

i

p

p
i λλλ −+−= −

−

=
� . (2.54) 

We can see from expression (2.54) that iZ  can be written as a moving average of the current 

and past observations which has geometrically decreasing weights p)1( λλ −  associated with 

increasingly aged observations piX −  ( ,...2,1=p ). Therefore, the EWMA has been referred to 

as a geometric moving average (see, for example, Montgomery (2005)). 

 

If the observations ,...}2,1,{ =iX i  are independent identically distributed variables 

with mean µ  and variance 2σ , then the mean and the variance of the plotting statistic iZ  are 

given by 

 µµ == )( iZ ZE
i

  for  ,...2,1=i   

and  

 ( )i
Z i

222 )1(1
2

λ
λ

λσσ −−�
�

�
�
�

�

−
=   for  ,...2,1=i  .  
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The exact control limits and the center line of the EWMA control chart are given by 

 

( )

( )i

i

LLCL

CL

LUCL

2
0

0

2
0

)1(1
2

)1(1
2

λ
λ

λσθ

θ

λ
λ

λσθ

−−�
�

�
�
�

�

−
−=

=

−−�
�

�
�
�

�

−
+=

. (2.55) 

 

From (2.55) we see that we have two design parameters of interest, namely the 

multiplier L , ( 0>L ) and the smoothing constant λ . We also see that ( ) 1)1(1 2 →−− iλ  as i  

increases. Therefore, as i  increases the control limits will approach steady-state values given 

by 

 

 

�
�

�
�
�

�

−
−=

�
�

�
�
�

�

−
+=

λ
λσθ

λ
λσθ

2

2

0

0

LLCL

LUCL

. (2.56) 

The above-mentioned control limits are called steady-state control limits. 

 

Various authors recommend choosing the EWMA constants L  and λ  by minimizing 

the average run length at a specified shift for a desired in-control average run length. In 

general, values of λ  in the interval 25.005.0 ≤≤ λ  work well in the normal theory case with 

05.0=λ , 1.0=λ  and 2.0=λ  being popular choices. The 0ARL , standard deviation of the 

run length ( SDRL ), th5 , th25  (the first quartile, 1Q ), th50  (the median run length, MRL ), 

th75  (the third quartile, 3Q ) and th95  percentile values can be computed and tabulated for 

various values of L  and λ .   

 

Lucas and Saccucci (1990) have investigated some properties of the EWMA chart 

under the assumption of independent normally distributed observations. Lucas and Saccucci’s 

most important contribution is the use of a Markov-chain approach to evaluate the run-length 

properties of the EWMA chart. It is important to note that the successive observations are 

assumed to be independent over time in their evaluation. Lucas and Saccucci (1990) used a 

procedure similar to that described by Brook and Evans (1972) to approximate the properties 

of an EWMA scheme. They evaluate the properties of the continuous state Markov chain by 
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discretizing the infinite state transition probability matrix (TPM). This procedure entails 

dividing the interval between the upper control limit and the lower control limit into N 

subintervals of width δ2 . Then the plotting statistic, iZ , is said to be in the non-absorbing 

state j  at time i  if  

             δδ +≤<− jij SZS    for   1,...,2,1 −= Nj  

and 

 δδ +<<− jij SZS    for   Nj =   

where jS  denotes the midpoint of the thj  interval. Let r  denote the number of non-absorbing 

states. iZ  is said to be in the absorbing state if iZ  falls on or outside one of the control limits, 

that is, LCLZ i ≤  or UCLZ i ≥ . Clearly, there are 1+r  states, since there are r  non-

absorbing states and one absorbing state. Lucas and Saccucci (1990) have done a thorough 

job of evaluating the run length properties of the EWMA chart and provided helpful tables for 

the design of the EWMA chart. Additional tables are provided in the technical report by 

Lucas and Saccucci (1987). In their 1990 paper they concentrate on the average run length 

characteristics of various charting combinations. The authors conclude that EWMA 

procedures have average run length properties similar to those for CUSUM procedures. This 

point has also been made by various authors, for example, Ewan (1963), Roberts (1966) and 

Montgomery, Gardiner and Pizzano (1987). In this thesis, the approach taken by Lucas and 

Saccucci (1990) is extended to the use of the sign statistic resulting in an EWMA sign chart 

that accumulates the statistics ,...,, 321 SNSNSN  . 

 

2.4.2. The proposed EWMA sign chart 

 

A nonparametric EWMA-type of control chart based on the sign statistic can be 

obtained by replacing iX  in expression (2.53) with iSN  (recall that �
=

−=
n

j
iji xsignSN

1
0 )( θ ). 

The EWMA sign chart accumulates the statistics ,...,, 321 SNSNSN  with the plotting statistics 

defined as  

 1)1( −−+= iii ZSNZ λλ  (2.57) 

where 10 ≤< λ  and the starting value 0Z  is usually taken to equal zero, i.e. 00 =Z . 
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The expected value, variance and standard deviation of iSN  are found from the fact 

that the distribution of iSN  can easily be obtained from the distribution of the binomial 

distribution (recall that nTSN ii −= 2  if there are no ties within a subgroup, where iT  has a 

binomial distribution with parameters n  and )( 0θ≥= ijXPp ). The formulas for the 

expected value, variance and standard deviation of iSN  was derived in Section 2.1 and we 

obtained )12()( −= pnSNE i , )1(4)var( pnpSN i −=  and )1(2)( pnpSNstdev
iSNi −== σ , 

respectively. The starting value 0Z  can also be taken to be the expected value of iSN , 

therefore ( ) )12(0 −== pnSNEZ i  and in the in-control case where 5.0=p  we have 

0)15.02(0 =−×= nZ  for all n . 

 

From the similarity between the definitions of the normal EWMA scheme and the sign 

EWMA scheme, it follows that the exact control limits and the center line of the EWMA sign 

control chart can be obtained by replacing σ  in (2.55) with 
iSNσ  which yields 

 

( )

( )i
SN

i
SN

i

i
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CL
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2

2
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2
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0
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2

0
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λ
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�
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=

−−�
�

�
�
�

�

−
+=

. (2.58) 

 

It is important to note 0θ  in (2.55) is replaced by 0 in (2.58). This is because the 

EWMA sign chart is designed for the sign test statistic and not for the observations (the 

iX ’s). 

 

Similarly, the steady-state control limits can be obtained by replacing σ  in (2.56) 

with 
iSNσ  and 0θ  by zero which yields 

 

�
�

�
�
�

�

−
−=

�
�

�
�
�

�

−
=

λ
λσ

λ
λσ

2

2

i

i

SN

SN

LLCL

LUCL

. (2.59) 
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2.4.3. Markov-chain approach 

 

Lucas and Saccucci (1990) evaluated the properties of the continuous state Markov 

chain by discretizing the infinite state TPM. This procedure entails dividing the interval 

between the UCL  and the LCL  into N  subintervals of width δ2 . The width of each 

subinterval can be obtained by setting 
( )

N
LCLUCL −×=

2
1δ  and we get that the width of an 

interval equals 
( )

N
LCLUCL −=δ2 . Thus, the endpoints of the subintervals will be given by 

,LCL  
( )

N
LCLUCL

LCL
−+ , 

( )
,2

N
LCLUCL

LCL
−+ …, 

( )
,)1(

N
LCLUCL

NLCL
−−+ UCL , 

respectively (see Figure 2.14). In general, the endpoints of the thj  interval will be given by 

  

( ) ( ) ( )
.,)1(, �
�

�
�
�

� −×+−×−+=
N

LCLUCL
jLCL

N
LCLUCL

jLCLUCLLCL jj  

 

The midpoint of the thj  interval, jS , is easily obtained by taking the sum of the two 

endpoints of the thj  interval and dividing it by 2. Thus, we obtain 

 

 jS  

2
jj UCLLCL +

=  

( ) ( )

2

)1(
�
�

�
�
�

� −++�
�

�
�
�

� −−+
= N

LCLUCLj
LCL

N
LCLUCLj
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( )
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)12(

N
LCLUCLj −−=  
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Figure 2.14. Partitioning of the interval between the UCL  and the LCL  into N  subintervals. 

 

Then the plotting statistic, iZ , is said to be in the non-absorbing state j  at time i  if  

 δδ +≤<− jij SZS    for   1,...,2,1 −= Nj  (2.60)  

and 

 δδ +<<− jij SZS    for   Nj = .  (2.61) 

iZ  is said to be in the absorbing state if iZ  falls on or outside one of the control limits, that is, 

LCLZ i ≤  or UCLZ i ≥ . 

 

Let ijp  denote the probability of moving from state i  to state j  in one step. We have 

that =ijp ( )ijP statein|statetoMoving . To calculate this probability we assume that the 

plotting statistic is equal to iS  whenever it is in state i . For all j  non-absorbing we obtain 

( )ikjkjij SZSZSPp =+≤<−= −1|δδ . This is the probability that kZ  is within state j , 

conditioned on 1−kZ  being equal to the midpoint of state i . By using the definition of the 

plotting statistic given in expression (2.57) this transition probability can be written as 
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( )ikjkkjij SZSZSNSPp =+≤−+<−= −− 11 |)1( δλλδ  

( )δλλδ +≤−+<−= jikj SSSNSP )1(  
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Recall that nTSN kk −= 2  where kT  is binomially distributed with parameters n  and 

)( 0θ≥= ijXPp  
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. (2.62) 

 

The probability of transition to the out-of-control state can be determined similarly. 

For all j  absorbing we obtain 
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Since the values δ , λ , n , iS  and jS  are known constants the binomial probabilities 

in expressions (2.62) and (2.63) can easily be calculated using some type of statistical 

software package, for example, Excel or SAS. 
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Once the one-step transition probabilities are calculated, the TPM can be constructed 

and is given by 
�
�
�

�

�

�
�
�

�

�

−−−=
1|'0

| pQ

TPM  (written in partitioned form) where Q  is the matrix that 

contains all the transition probabilities of going from a non-absorbing state to a non-absorbing 

state. In other words, Q  is the transition matrix among the in-control states, Q ( )NANA →: . 

p  contains all the transition probabilities of going from each non-absorbing state to the 

absorbing states, p ( )ANA →: . '0 ( )0000 �=  contains all the transition 

probabilities of going from the absorbing state to each non-absorbing state, '0  ( )NAA →: . 1 

represents the scalar value one which is the probability of going from the absorbing state to 

the absorbing state, 1 ( )AA →: . 

 

Lucas and Saccucci (1990) have investigated some properties of the EWMA chart 

under the assumptions of independent normally distributed observations. From the similarity 

between the definitions of the normal EWMA scheme and the sign EWMA scheme, it follows 

that the formulas derived by Lucas and Saccucci (1990) can be extended to the use of the sign 

EWMA scheme. The formulas derived by Lucas and Saccucci (1990) have been studied by 

other authors, for example, Fu, Spiring and Xie (2002) and Fu and Lou (2003). The latter two 

used the moment generating function and the probability generating function, respectively, to 

derive expressions for the first and second moments of the run length variable N . See 

Theorem 2 in Appendix A for the derivations done by Fu, Spiring and Xie (2002) and Fu and 

Lou (2003). For the formulas refer to equations (2.41) to (2.45) of this thesis. 
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Example 2.14 

The EWMA sign chart where the sample size is even (n = 6) 

 

We consider the EWMA sign chart with a smoothing constant of 0.1 ( 1.0=λ ) and a 

multiplier of 3 ( 3=L ). The interval between the UCL  and the LCL  is divided into 4 

subintervals ( 4=N ). For a sample size of 6, the sign statistic iSN  can take on the values 

}6,4,2,0,2,4,6{ −−−  and the statistic iT  takes on the values }6,5,4,3,2,1,0{ . 

 

The steady-state control limits are given in (2.59) by 
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where 3=L , 1.0=λ ,  and 449.2=
iSNσ , since =

iSNσ =− )1(2 pnp  

449.2)5.01)(5.0(62 =− .  

 

Clearly, we only have to calculate the UCL  since UCLLCL −= . We have that 

686.1
1.02

1.0
449.23 =�

�

�
�
�

�

−
×=UCL . Therefore, 686.1−=LCL . 

 

This Markov-chain procedure entails dividing the interval between the UCL  and the 

LCL  into subintervals of width δ2 . Figure 2.15 illustrates the partitioning of the interval 

between the UCL  and the LCL  into subintervals. 
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Figure 2.15. Partitioning of the interval between the UCL  and the LCL  into 4 subintervals. 

 

From Figure 2.15 we see that there are 4 non-absorbing states, i.e. 4=r . The TPM is 

given by  
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The plotting statistic, iZ , is said to be in the non-absorbing state j  at time i  if 

δδ +≤<− jij SZS  for 3,2,1,0=j  where jS  denotes the midpoint of the thj  interval. Each 

sub-interval has a width of 843.02 =δ , therefore 4215.0=δ . 
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Table 2.38. Calculation of the one-step probabilities in the first row of the TPM. 

( )0|000 stateinstatetoMovingPp =  

( )0100 | SZSZSP kk =+≤<−= −δδ  

using expression (2.62) we obtain 
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with 4215.0=δ , 1.0=λ , 3=L  and 265.10 =S  
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( )0|101 stateinstatetoMovingPp =  

( )0111 | SZSZSP kk =+≤<−= −δδ  

using expression (2.62) we obtain 
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( )0|202 stateinstatetoMovingPp =  

( )0122 | SZSZSP kk =+≤<−= −δδ  

using expression (2.62) we obtain 
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( )0|303 stateinstatetoMovingPp =  

( )0133 | SZSZSP kk =+≤<−= −δδ  

using expression (2.62) we obtain 
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The calculations of the other transition probabilities can be done similarly. Therefore 

the TPM is given by 
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Other values of the multiplier (L) and the smoothing constant ( λ ) were also 

considered and the results are given in Tables 2.39 and 2.40*. 

 

Table 2.39. The in-control average run length ( 0ARL ), standard deviation of the run length 

( SDRL ), th5 , th25 , th50 , th75  and th95  percentile values† for the EWMA sign chart when 

6=n  and 5=N , i.e. there are 5 subintervals between the lower and upper control limit‡.  

 1====L  2====L  3====L  

05.0====λλλλ  
6.79 
8.56 

(1, 1, 3, 9, 24) 

22.86 
30.29 

(1, 3, 10, 31, 85) 

736.00 
827.24 

(4, 134, 472, 1051, 2393) 

1.0====λλλλ  
4.84 
5.36 

(1, 1, 3, 7, 16) 

83.69 
104.13 

(1, 6, 47, 121, 294) 

736.00 
819.78 

(4, 142, 477, 1049, 2377) 

2.0====λλλλ  
4.73 
5.08 

(1, 1, 3, 6, 15) 

34.12 
39.63 

(1, 5, 21, 49, 114) 

585.80 
608.31 

(9, 152, 398, 820, 1800) 
 

Similar tables can be constructed by changing the sample size (n), the number of 

subintervals between the lower and upper control limit (N), the multiplier (L) and the 

smoothing constant ( λ ) in the SAS program for the EWMA sign chart given in Appendix B. 

 

                                                 
* These results were calculated through the formulas given in equations (2.41) to (2.45). 
† The three rows of each cell shows the ARL0, the SDRL, and the percentiles ( 5ρ , 25ρ , 50ρ , 75ρ , 95ρ ) , 
respectively. 
‡ See SAS Program 4 in Appendix B for the calculation of the values in Table 2.39. 

 
 
 



 120 

Table 2.40. The in-control average run length ( 0ARL ), standard deviation of the run length 

( SDRL ), th5 , th25 , th50 , th75  and th95  percentile values* for the EWMA sign chart when 

10=n  and 5=N , i.e. there are 5 subintervals between the lower and upper control limit†.  

 1====L  2====L  3====L  

05.0====λλλλ  
25.47 
31.96 

(1, 2, 13, 37, 90) 

166.06 
207.27 

(1, 11, 93, 241, 585) 

1773.34 
2089.12 

(6, 228, 1087, 2557, 5970) 

1.0====λλλλ  
10.35 
11.02 

(1, 2, 7, 14, 33) 

75.61 
81.91 

(1, 16, 50, 107, 204) 

845.42 
890.53 

(9, 208, 570, 1188, 2624) 

2.0====λλλλ  
3.67 
3.68 

(1, 1, 2, 5, 11) 

25.47 
31.96 

(1, 2, 13, 37, 90) 

272.79 
305.97 

(1, 51, 176, 389, 886) 
 

From Tables 2.39 and 2.40 we see that the 0ARL , SDRL  and percentiles increase as 

the value of the multiplier (L) increases. In contrast, the 0ARL , SDRL  and percentiles 

decrease as the value of the smoothing constant ( λ ) increases. From Table 2.40 we find an 

in-control average run length of 272.79 for 10=n  when the multiplier is taken to equal 3 

( 3=L ) and the smoothing constant 0.2 ( 2.0=λ ). The chart performance is good, since the 

attained in-control average run length of 272.79 is in the region of the desired in-control 

average run length which is generally taken to be 370 or 500. 

 

2.4.4. Summary 

 

EWMA charts are popular control charts; they take advantage of the sequentially (time 

ordered) accumulating nature of the data arising in a typical SPC environment and are known 

to be efficient in detecting smaller shifts but are easier to implement than the CUSUM charts. 

We have described the properties of the EWMA sign chart and given tables for its 

implementation. Although a lot has been done over the past few years concerning EWMA-

type charts, more work is necessary on the practical implementation of the charts as well as 

on adaptations in case U. 

                                                 
* The three rows of each cell shows the ARL0, the SDRL, and the percentiles ( 5ρ , 25ρ , 50ρ , 75ρ , 95ρ ) , 
respectively. 
† See SAS Program 4 in Appendix B for the calculation of the values in Table 2.40. 
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