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Summary

Keywords: speaker independent speech recognition, telephone auto attendant, dia-

logue, grammar, whole word hidden Markov modelling, Mel frequency cepstral coeffi-

cients, Viterbi search, level building algorithm, noise compensation

This dissertation details the implementation of a real-time, speaker-independent tele-

phone auto attendant from first principles on limited quality speech data. An auto

attendant is a computerized agent that answers the phone and switches the caller

through to the desired person's extension after conducting a limited dialogue to deter-

mine the wishes of the caller, through the use of speech recognition technology.

The platform is a computer with a telephone interface card. The speech recognition

engine uses whole word hidden Markov modelling, with limited vocabulary and con-

strained (finite state) grammar. The feature set used is based on Mel frequency spaced

cepstral coefficients. The Viterbi search is used together with the level building algo-

rithm to recognise speech within the utterances. Word-spotting techniques including a

"garbage" model, are used. Various techniques compensating for noise and a varying

channel transfer function are employed to improve the recognition rate. An Afrikaans

conversational interface prompts the caller for information.

Detailed experiments illustrate the dependence and sensitivity of the system on its pa-

rameters, and show the influence of several techniques aimed at improving the recog-

nition rate.

 
 
 



Samevatting

Sleutelwoorde: Spreker-onafhanklike spraakherkenning, telefoonoutomaat, dialoog,

grammatika, heelwoord verskuilde Markov modellering, Mel frekwensie kepstrale

koeffisiente, Viterbi soektog, vlakbou algoritme, ruiskompensasie

Hierdie verhandeling beskryf die implementering van 'n intydse, spreker-onafhanklike

telefoonoutomaat vanaf eerste beginsels. 'n Telefoonoutomaat is 'n geoutomatiseerde

antwoorddiens wat die inbeller na 'n gevraagde persoon se uitbreiding deurskakel. Die

outomaat bepaal met wie die inbeller wil praat deur 'n beperkte dialoog te voer en van

spraakherkenning tegnologie gebruik te maak.

Die implementeringsplatform is 'n rekenaar met 'n telefoon koppelvlakkaart. Die

spraakherkenner gebruik heelwoord verskuilde Markov modelle met 'n beperkte wo-

ordeskat en 'n begrensde grammatika om relatief swak kwalitiet spraak te herken.

Die kenmerke van die spraak wat gebruik word vir herkenning is Mel frekwensie-

gespasieerde kepstrale koeffisiente. Die Viterbi soektog saam met die vlakbou ("level

building") algoritme word gebruik om die woorde te herken. Verskeie tegnieke word

probeer om te kompenseer vir ruis en 'n varierende kanaal. 'n Afrikaanse dialoog

(spraakkoppelvlak) lei die oproepvloei.

Eksperimentele result ate wat die stelsel se afhanklikheid en sensitiwiteit vir sy param-

eters beskryf, word gegee. Die resultate dien ook om die invloed van die verskillende

tegnieke wat gebruik is om die herkenner te verbeter, te kwantifiseer.
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Chapter 1

Introduction

The system implemented and studied in this dissertation is a telephone auto-attendant.

The definition of an auto-attendant in this context is a system that is able to attend

to incoming telephone calls without human intervention. The specific task undertaken

is that of an auto-receptionist, in other words a system that, with the aid of a con-

versational interface, tries to determine with whom a caller wishes to speak, and puts

the call through if a name was successfully negotiated. The conversational interface is

implemented in the Afrikaans language spoken in South Africa.

The system is implemented on a personal computer equipped with an industry standard

telephone line interface. The telephone line interface digitises audio waveforms from

the analogue telephone line so that the speech waveforms can be processed by the

computer. Speech recognition technology lies at the heart of the system, enabling

the transformation of the digitised speech waveforms into representations the software

can understand and interpret. Conversational feedback in the form of pre-recorded

questions and responses is provided.

The auto-attendant was developed as a real-world implementation of leading edge

speech recognition theory. The motivations for this work are:

 
 
 



Chapter 1

• to determine the performance of a speech recognition system with the low band-

width audio provided by the telephone system,

• to show that current computer hardware technology is fast enough for real-time

speech processing and recognition, and

Some of the characteristics of a system like this, are not only that there are in the

order of 50 different vocabulary words to be recognised, but because these words are

the names of people (with whom the callers are often unfamiliar), the pronunciation

of the names varies greatly. A substantial amount of data is therefore necessary to

train such a system. Even though many of the pronunciations are clearly incorrect,

they were the natural response of the caller reading the name of the callee, and must

therefore be regarded as a valid pronunciation.

Similar work has been done in the past, notably the last few years since computer hard-

ware has started to approach acceptable performance for real-time speech recognition.

Section 1.2 details these developments.

A system must be implemented which can interface a computer with a telephone line.

This system must be able to playback and record data to and from the telephone line.

A conversational interface must guide the caller into giving the name of a person he

wishes to speak to (the system must thus act as a telephone auto attendant). The

name must be recognised from the incoming wave data, and, if the computer has a

sufficiently high confidence that the recognition was correct, the extension number of

the person must be looked up, and the call must be forwarded to that number. If

the recognition confidence is not high enough, the system must prompt the caller into

confirming (medium confidence) or repeating (low confidence) the answer.

 
 
 



Experiments need to be performed off-line on pre-recorded telephone speech data to

compare the performance of several techniques to enhance the speech recognition rate.

A large number of projects dealing with telephone speech recognition and the develop-

ment of auto attendants exist worldwide:

Chien and Wang[l] researched methods of improving automatic speech recognition for

telephone quality speech, and developed the phone-dependent channel compensated

hidden Markov model (PDCC-HMM) for speech recognition. Their method involves

taking into account the average channel transfer function during training so that no

additional computation is necessary when the system is in the on-line mode. For this,

they assume that the overall transfer function of the telephone channel does not have

a large variance.

Guojun et al.[2] developed an automatic telephone operator that routed calls based

on recognizing the callee's name. They required a fixed format firstname surname

combination, and achieved 99% recognition in their preliminary results using a small

data set.

Fraser et al.[3] developed a system named "Operetta" which had a more sophisticated

conversational interface, allowing user friendliness of call handling. Operetta could

handle eight simultaneous telephone calls using low-cost technology.

Koumpis et al.[4] developed an auto attendant system for the Technical University

of Crete. They used a phoneme based recogniser, and achieved 97.5% correct name

retrieval for a dictionary of 350 names and services. Their system used the commercial

Nuance Communications' speech recognition engine, and the dictionary of names and

services was created using strings of phonemes.

 
 
 



Kellner et aI.[5] from Philips developed an automatic telephone switchboard and di-

rectory information system. This system combined state-of-the-art speech recognition

and language understanding to deliver a system which could understand very complex

dialogues, and provide the user with a variety of information or switch the call through

to a desired party. With a database of over 600 names, they achieved a dialogue success

rate (i.e. the dialogue concluded successfully, often with retry attempts included) of

95% overall.

Schramm et aI.[6], building on the previously mentioned Philips work, developed an

advanced system to deal with large scale directory assistance. A two-stage approach

was used, where the first stage asked for a city name (in Germany), and the second stage

prompted the user for a last name and first name. The largest of the directories was

for the city of Berlin, containing 1.3 million entries. They showed that for cooperative

users more than 90% of all simple requests can be automated successfully. If the last

name was not recognised accurately, the caller would be asked to spell out the name.

After this dissertation was started, computers started becoming powerful enough to

warrant commercial exploitation of speech recognition. The result is that several com-

mercial software developers' toolkits (SDK's) have been developed, enabling applica-

tion developers to build telephone based speech recognisers and interactive systems

with minimum effort. At least two such SDK's are currently available from Nuance 1

and Speechworks 2. However, none of the commercially available systems currently

offer Afrikaans, or any other official South African language (other than English) as a

language option.

lwww.nuance.com
2www.speechworks.com
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1.3 Approach

Our group decided to use the hardware of an industry leader in telephone speech

interfacing, to ensure reliability and quality of speech data. A Dialogic D/21H card

was used together with a Pentium 133Mhz class computer for the hardware platform

of our system.

A decision was made to implement the speech recognition using whole word hidden

Markov models, partly because no labeled phonemic database existed for the South

African accent.

Initially it was decided to use and modify (as necessary) the OGI CSLU3 speech toolkit

with the Dialogic card in the Solaris operating system. After encountering some dif-

ficulties, our group decided to implement our own object oriented speech toolkit, the

Hidden Markov Toolkit for Speech Recognition (HMTSR4). During the course of this

dissertation this toolkit was further enhanced by adding features such as support for

additional wave file formats, support for creating and using finite state grammar net-

works and the inclusion of duration modeling. Support for various noise compensation

techniques was also added.

For the purpose of this dissertation, HMTSR had to be ported to the Microsoft Win-

dows NT platform because of limitations in the Dialogic support for Solaris5. Software

was then written to integrate the HMTSR toolkit with the Dialogic drivers, and con-

trol the flow of the conversational interface and telephone line control with some state

machines.

For the purpose of recording training data, the system was configured so that it did

not perform recognition, but rather prompted callers to say the names of people. This

30regon Graduate Institute Center for Spoken Language Understanding. Toolkit available from

website: http://cslu. cse.ogi .edu/toolkit/
4Seewebsite http://www.ee.up.ac.za/ee/pattern...recogni tion..page/HMTSR/HMTSR-Q.2. tgz
5As well as the lack of support at that stage for Linux drivers.
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training data was then labeled (i.e. the precise beginning and ending of each word

stored along with a name) so that it could be used for training the hidden Markov

model representations.

Testing of the system was performed off-line with pre-recorded utterances, so that any

modifications to the system or parameters could be tested against consistent speech

data.

This dissertation makes the following contributions to the field of automatic speech

recogni tion:

• The process of building a speech recognition system from first principles is ex-

plained in detail.

• The performance sensitivity with regard to different techniques and system pa-

rameters is shown, giving a comparative basis of the merits of each approach.

• The system is the first of its kind known to be developed in the Afrikaans lan-

guage.

• The HMTSR package which was developed by our group provided the function-

ality to train HMM models from speech data, and perform a level-building search

with an FSN grammar on a speech utterance. For the purposes of this disserta-

tion, I added the capabilities to optionally perform Cepstral Mean Subtraction,

Spectral Mean Subtraction, duration modeling (instead of using state transition

probability matrix), normalisation of confidence measure (using a garbage model)

and robust start/end point detection. Furthermore, I wrote a graphical program

(using the Qt widget set in linux) to create and manipulate the FSN grammars,
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and integrated the file format into HMTSR. I also co-authored6 a windows pro-

gram to ease labeling of the data, as well as providing the ability to compare

labeled test data and the transcribed output of the recognition engine. I ported

HMTSR to Microsoft Windows NT, and integrated it into software I developed

to interface to the Dialogic card, which spawns the conversational interface state

machine in a thread so that multiple simultaneous calls can be handled.

• Background Theory

This chapter provides the necessary technical information needed to understand

the auto-attendant system. Since speech recognition is an application of pattern

recognition, many of the fundamentals of pattern recognition apply. Feature

extraction needs to be performed on the raw speech signal to provide distinctive

information for the pattern recognition process.

A suitable pattern comparison technique needs to be found, as well as a method

for "training" the system with existing speech data.

Several techniques for optimising system performance are also considered.

• System

The hardware and software architecture of the system is provided, from a top-

down overview to implementation details and specific parameters employed.

• Experiments

A chapter on experimental work details the data sets used as well as experiments
6The other programmer was Janus Brink.

 
 
 



performed to optimise system parameters and to benchmark system performance.

The performance sensitivity of the system to the different methods and parame-

ters is determined from these experiments .

• Conclusion

A conclusion is given which summarizes the work done and provides details of

future work that evolves from this dissertation .

• Appendix

The appendix contains detailed descriptions of the source code implementation.

 
 
 



Chapter 2

Background Theory

2.1 System overview

The framework of the telephone speech recognition engine is provided here, enabling

the reader to tie up the theory with the various system components.

The input to the system is analogue speech data from a telephone line. This input data

is converted into digital form by a special analogue to digital converter card adapted

to a telephone connection (see Figure 2.1).

This raw digital waveform data then needs to be analysed and processed to extract

only the distinguishing characteristics from the data, reducing the sheer volume of data

and easing the task of the classifier in the speech recognition algorithm. This process

is called feature extraction.

The system needs to be trained to recognise speech, and for this the features of a

training set are provided to a training algorithm. Once the system has been trained,

it can recognise utterances that are similar to the training set.
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Various preprocessing techniques can be utilised to improve the feature set, e.g. filter-

ing out noise, and a few of these techniques are discussed. A conversational interface

prompts the caller into giving people's names, and a finite state grammar network as-

sists the classifier in recognising the utterances. If a callee name is correctly recognised,

the telephone call is forwarded to the appropriate telephone number via the PABX.

In off-line mode, pre-recorded training and testing data can be used to form a basis for

performing experiments to compare different speech recognition techniques. Some tech-

niques to improve the efficiency (speed and accuracy) of the training and recognition

algorithms are also described in this chapter.

2.2 Telephone quality speech

The telephone system in South Africa utilises copper pairs to carry analogue signals

from each telephone point to a Central Office. From here the telephone signals are

usually digitised to 8 bit resolution at 8kHz sampling frequency and routed to the

destination where the digital signal is converted into an analogue signal again. This

digitisation process leads to two problems:

 
 
 



Furthermore, due to a combination of filters, transformers and signal transducers in

various parts of the telephone system, non-linearities and a lower bandwidth limit of

about 300Hz are also imposed on the signal.

The effective voice channel of the telephone system can be approximated by a non-

linear bandpass filter with lower and upper cut-offs of 300Hz and 3.7kHz respectively,

and with 8-bit quantisation noise.

2.3 Cepstra as features for speech recognition

Due to the local stationarity of the speech signal, short-time spectral estimates of

a speech signal are used in speech recognition applications as a basis for extracting

features from the continuous signal (from Rabiner et al. [7]). A short-time spectrum

is normally obtained by placing a data window on the sample sequence, and the re-

sultant spectral estimate is considered a snapshot of the speech characteristics at a

particular instant t. This method effectively discretises the continuous speech signal.

This spectral representation is denoted by S(w, t) to emphasise the time variability of

the speech. The data window slides across the signal sequence, producing a series of

short-time spectral representations, S(w, t)~=o'

A relatively robust, reliable feature set for speech recognition can be found by comput-

ing the cepstral coefficients of a speech window. The complex cepstrum of a signal is

defined as the Fourier transform of the log of the signal spectrum. For a power spec-

trum (magnitude-squared Fourier transform) S(w), which is symmetric with respect to

w = 0 and is periodic for a sampled data sequence, the Fourier series representation of

logS(w) can be expressed as

 
 
 



00

logS(w) = L cne-jnw

n=-oo

The cepstral coefficients are therefore coefficients of the Fourier transform represen-

tation of the log magnitude spectrum. This representation of the speech spectrum

provides a good representation of the local spectral properties of the signal for the

given analysis frame. The cepstral coefficients thus give a feature vector for a given

speech window. The lower index coefficients represent the spectral envelope, whereas

the higher index coefficients represent the pitch and excitation signals [8].

The following equation shows that the Co coefficient is directly proportional to the

energy underneath the log power spectrum:

Co = j1r logS(w) dw.
-1r 2n

• variances essentially inversely proportional to the square of the coefficient index

(E{ c~} ex n\)'

Spectral transitions are believed to play an important role in human speech perception.

This leads to the idea [8]that an improved representation can be obtained by extending

the analysis to include information about the temporal cepstral derivative. Both first

and second order temporal derivatives have been investigated and found to improve

the performance of speech-recognition systems. To introduce temporal order into the

cepstral representation, we denote the mth cepstral coefficient at time t by cm(t), where

 
 
 



t refers to the analysis speech frame in practice. The cepstral time derivative is ap-

proximated as follows[7, p. 116]: The time derivative of the log magnitude spectrum

has a Fourier series representation of the form

~[logIS(ejW t)l] = ~ acm(t) e-jwm.
at ' ~ at

m=-oo

Since cm(t) is a discrete time representation, using a first- or second-order difference

equation is inappropriate to approximate the derivative, as it is too noisy. The par-

tial derivative acm(t)/at can be approximated by an orthogonal polynomial fit (least

squares estimate) over a finite length window:

where J.1, is an appropriate normalization constant and (2K+l) is the number of frames

over which the computation is performed. Typically a value of K = 3 has been found

appropriate for computation of the first-order temporal derivative.

2.3.1 Optimal encoding of temporal information

Other research by Milner [9] indicates that a polynomial approximation for temporal

derivatives does not optimally encode the temporal information. He calculates a tem-

poral transformation matrix H, so that the dot product of M (a matrix consisting

of M rows of successive cepstral column feature vectors) and H gives the generalised

feature matrix V.

He shows that it is important that the columns of H are orthogonal to decorrelate

the columns of V (thus extracting temporal information). He goes on to show several

 
 
 



different H matrices that can effectively perform transformations to M to extract

temporal information. For example, to generate static, first and second order cepstral

derivatives (based on, in his case, a regression analysis), the matrix H would be,

o 0

o 1

H= 1 0

o -1

o 0

100
o 0 0

-2 0 0
o 0 0

1 0 0

with the stack width, M, set to 5. The Oth column of the resulting feature matrix, V,

is the static cepstrum, the 1st column is the first derivative, and the 2nd column gives

the second derivative.

His research shows that to optimally encode the temporal information, the covariance

matrix of M needs to be diagonalised, and this is achieved by the Karhunen- Loeve

Transform (KLT) matrix. By pooling together many examples from the speech train-

ing data, the covariance of the stacked cepstral coefficients can be determined. The

KLT transform matrix, H, is given by the eigenvectors of the covariance matrix. The

eigenvectors which form the KLT basis functions (columns ofthe H matrix) are ranked

in terms of their eigenvalues (i.e. the Oth KLT basis function corresponds to the eigen-

vector which has the largest eigenvalue).

Using this KLT transform was shown by Milner to have a performance increase over

using standard first and second order temporal derivatives, but unfortunately this

research was discovered after the experiments in Chapter 4 had already been completed.

This method can be considered for future work. Calculation of the KLT transform

matrix is a computationally intensive task, but only needs to be performed once on the

training data, so it does not affect the real-time operation of the system.

 
 
 



Psychophysical studies [7, p. 183] have shown that human perception of the frequency

content of sounds, either for pure tones or for speech signals, does not follow a linear

scale, e.g. a 4kHz sine audio wave is not perceived as being twice as high as a 2kHz

tone. This has led to the idea of defining subjective pitch of pure tones. Thus for each

tone with an actual frequency, J, measured in Hz, a subjective pitch is measured on

a scale called the "mel" scale. As a reference point, the pitch of a 1kHz tone, 40dB

above the perceptual hearing threshold, is defined as 1000 mels. Other subjective pitch

values are obtained by adjusting the frequency of a tone such that it is half or twice

the perceived pitch of a reference tone (with a known mel frequency).

FREQUENCY (Hz)
o 2000 4000 6000 8000 10,000 12,000

lOGARITHMIC
FREQUENCY

SCALE

12000

J: 1500
~
Q..

o
10 100 1000

FREQUENCY (Hz)

Figure 2.2 shows subjective pitch as a function of frequency. The upper curve shows

the relationship of the subjective pitch to frequency on a linear scale; it shows that

subjective pitch in mels increases less rapidly as the stimulus frequency is increased

 
 
 



linearly. The lower curve, on the other hand, shows the subjective pitch as a function

of the logarithmic frequency; it indicates that the subjective pitch is essentially linear

with the logarithmic frequency beyond about 1000Hz.

Hidden Markov models (HMM) [7,10] of the acoustic feature vectors form the basis of

most modern speech recognition systems. They have a number of desirable qualities

which will be detailed in this section. Hidden Markov modelling finds its basis in

statistical signal modelling, which is a widely used practice in pattern recognition. The

HMM method provides a natural and highly reliable way of modelling and recognizing

speech for a wide range of applications and integrates well into systems incorporating

both task syntax and semantics. HMMs will be discussed only in the context of speech

recognition, although they have much wider application, and were in fact not originally

developed for speech recognition in particular.

An observable Markov model is a system that may be described as being in one of a set

of N distinct states, which at regularly spaced, discrete times may undergo a change

of state (possible back to the same state) according to a set of probabilities associated

with each state (Figure 2.3).

The time instants associated with the state changes are denoted by t = 1,2, ... , and

the actual state at time t is given by qt. A state in a discrete-time, first-order Markov

chain has a probabilistic dependence only on the preceding state, i.e.,

Only the Markov processes where this probability is independent of time are considered

for speech recognition (i.e. the probability to go to the next state is only based on the

current state and not on the history). Thus, the transition probabilities aij are given

by
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aij ~ 0, Vj,i (2.6)
N

Laij = 1, Vi (2.7)
j=l

(2.8)

to conform to standard stochastic constraints. The model described above is an ob-

servable Markov process because the output of the process is the set of states at each

instant of time, where each state corresponds to an observable event. An example of

such a Markov process is a simple traffic light, where the observable states are [green,

orange, redj,1 and a possible transition matrix A could be given by

0.6 0.4 0

A = {aij} = 0 0.4 0;6

0.5 0 0.5

indicating that green cannot go to red, orange cannot go to green, and red cannot go to

orange. Given this model, we can determine things such as the probability of a certain

sequence of events, or what the probability is of a system staying in a certain state for

a specified time.

Hidden Markov models extend observable Markov models by including the case in which

the observation is a probabilistic function of the state instead of a directly observable

event. That is, the resulting model is a doubly embedded stochastic process with an

underlying stochastic process that is not directly observable (it is hidden), but can only

be observed through another set of stochastic processes that produce the sequence of
1We could extend this to include flashing red for error, or blank for failure
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observations. An example related to the speech recognition problem at hand can be

given as follows: imagine that every possible sound that can be made by humans can

be described by a finite set of numbers, each number corresponding to a single sound. 2

A hidden Markov model for a word ideally consists of as many states as are required to

describe each transition from one sound to another through the word from beginning

to end. The observation sequence produced by this model is a series of equally time

spaced numbers, e.g.

To match a particular word model to an observation sequence entails finding the prob-

ability of observing that sequence given a model with observation output probability

at each state, and a given state transition matrix. Note that, as in this example, most

HMM based speech recognizers use a strict left to right transition model (also called a

Bakis model). This left-right model allows for auto-transitions and transitions to the

next sequential state only. This configuration matches the left-right temporal property

of a spoken word.

• N, the number of states in the model. The number of states in a model cannot

necessarily be deduced from the observation sequence by looking at the number

of transitions. The states are labeled {I, 2, ... ,N}, and the state at time t is

denoted by qt .

• M, the number of distinct observation symbols per state, or, in other words, the

discrete alphabet size. The individual symbols are labeled V = {VI, V2,' .. , Vm}.

aij = P[qt+l = jlqt = i], I ::;i, j ::;N,--------------
2Note that this can be approximated in reality by using a vector quantizer codebook, although this

does result in serious performance degradation compared to continuous densities.

 
 
 



This describes a left-right model without skipping transitions, i.e. the state

can only go to the next sequentially numbered state, or stay within itself, as is

commonly used in speech recognition. As will be seen in Section 2.9, a transition

matrix is not optimal for speech recognition.

7ri = {o, i =1= 1

1, i = 1

for a strict left-right model, to ensure that the model starts in the first state.

(The probability for a model to be in state i initially is given by 7rd

As has previously been mentioned, observations with a discrete probability density lead

to a serious performance degradation for speech recognition, since we are dealing with

a continuous signal from which feature vectors can be extracted. It would be advan-

tageous to use HMMs with continuous observation densities to model the continuous

signal representations directly.

To use a continuous observation density, a probability density function (pdf) must

be chosen which has parameters that can be estimated consistently from the training

data. The most general representation of the pdf, for which the parameter estimation

equations can be expressed analytically, is a finite mixture of Gaussian pdf's of the

form
M

bj(o) = LCjkW(O, /Ljb Ujk),
k=l

 
 
 



where ° is the observation vector being modelled, Cjk is the mixture coefficient for the

kth mixture in state j and W is a Gaussian probability density function with mean

vector #-tjk and covariance matrix Ujk for the kth mixture component in state j. The

mixture gains Cjk satisfy the stochastic constraint

The pdf in Eq. (2.10) can be used to approximate with arbitrary precision any finite

continuous density function, making it suitable for the speech recognition problem.

Three problem formulations exist with regard to HMMs that are of interest to the

speech recognition problem:

1. Given an observation sequence 0 = (01'" OT) and a number of models, how

does one compute the probability of each model, so that the most likely model

to give that observation sequence can be found? This has direct application in

recognizing a feature sequence of a spoken word.

2. Given the observation sequence and a model, how does one choose a state se-

quence q = (qlq2 ... qT) that best explains the observation (i.e. the optimal state

sequence)? There is no "correct" state sequence, so an optimimality criterion is

used to solve this problem. This has application in continuous speech recognition

to find optimal state sequences, and is discussed in Section 2.7, and forms part

of both the training and the recognition.

3. How does one adjust the model parameters to maximise the probability of an

observation sequence given the model P( Ol>')? The observation sequence used

21
'60 ~5 II ~

6\~Lt'3~4~

 
 
 



to adjust the model parameters is called a "training" sequence. This is an impor-

tant problem for speech recognition since it allows one to optimally adapt model

parameters to observed training data, giving the best model for a real speech

signal during training. Section 2.6 shows how the "expectation-maximization"

method can be used to iteratively select these model parameters, given one or

more training sequences.

2.6 Expectation-Maximisation

The most difficult problem in HMMs is to determine a method to adjust the model

parameters to satisfy a certain optimization criterion. There is no analytical way to

solve for these parameters to maximize the probability of the observation sequence, but

an iterative procedure known as the Baum- Welch [7] method can be used to choose

the maximum likelihood (ML) parameters.

We define ~(i, j) as the probability of being in state i at time t, and state j at time

t + 1, given the model and observation sequence, and can be written as:

~(i, j) = P(qt = i, qt+l = jIO,,x)
at (i)aijbj (Ot+1),Bt+l (j)

EJ:1 Ef=1 at(i)aijbj(oHd,Bt+l (j)

(2.12)

(2.13)

where at(i) is defined as the probability of the partial observation sequence °1°2' .. 0t

(until time t) in state i at time t, and ,Bt(i) is defined as the probability of the partial

observation sequence from t + 1 to the end, given state i at time t.

If we define 'Yt(i) as the probability of being in state i at time t given the entire

observation sequence and the model, we can relate 'Yt(i) to ~t(i, j) by summing over j,

giving
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'Yt(i) = L~t(i,j)
j=l

If we sum 'Yt(i) over the time index t, we get a quantity that can be interpreted as the

expected (over time) number of transitions made from state i (if we exclude t = T).

Similarly, summation of ~t(i,j) over t = 1 to t = T - 1 can be interpreted as the

expected number of transitions from state i to state j. Using this knowledge, we can

get a set of reasonable reestimation formulas for 1f, A, and B:

expected number of transitions from state i to state j
o'ij = --------------------

expected number of transitions from state i

E'i=~l~t(i,j)
- "T-l (")L.."t=1 'Yt 1,

lj.(k) = expected number of times in state j and observing symbol Vk

J expected number of times in state j

_ E~=lOt=Vk'Yt(j)
E'i=l 'Yt(j)

If we define the current model as A = (A, B, 1f) and use that to compute the right

hand side of Eqs. (2.15)-(2.18), and we define the reestimated model as .:\= (.ii, f3, if)

as determined from the left-hand side of Eqs. (2.15)-(2.18), then it has been proven

by Baum et at. that either the initial model A defines a critical point of the likelihood

function, in which case .:\= A, or model .:\ is more likely than model A in the sense

that P(OI.:\) > P(OIA); i.e. we have found a new model from which the observation

sequence is more likely to have been produced. If we iteratively use this procedure, we

can improve the probability of 0 being observed from the model until some limiting

 
 
 



point is reached. The final result of this reestimation procedure is a maximum likelihood

estimate of the HMM.

- L;=l 'Yt(j, k)Ot
JLjk = ",T (.)

L..d=l 'Yt J, k

where 'Yt(j, k) is the probability of being in state j at time t with the kth mixture

component accounting for 0t, i.e.

These equations can be interpreted as follows: The reestimation formula for ejk is

the ratio between the expected number of times the system is in state j using the

kth mixture component, and the expected number of times the system is in state j.

The reestimation formula for the mean vector JLjk weights each numerator term by

the observation, thereby giving the expected value of the portion of the observation

vector accounted for by the kth mixture component. The covariance matrix Ujk is also

weighted by the observation vector.

As previously mentioned, left-right or Bakis models are commonly used for speech

recognition. Due to the transient nature of the states within a model of this form,

only a small amount of observations are available for any state. Therefore, to have

 
 
 



sufficient data to make reliable estimates of all model parameters, one has to use

multiple observation sequences.

Since the reestimation formulas rely on previous values of the HMM parameters, a

question that arises is "How does one choose initial estimates of the HMM parameters

so that the local maximum obtained after reestimation is equal to or as close as possible

to the global maximum of the likelihood function?"

Experience has shown that either random (subject to the stochastic and nonzero re-

straints) or uniform initial estimates of the 7f and A parameters are adequate for giving

estimates of these parameters in almost all cases. However, for the B parameters, expe-

rience has shown that good initial estimates are essential in the continuous-distribution

case [7, p. 370].

A procedure for providing good initial estimates of the B parameters has been devised

and is called the segmental K-means training procedure [7, p. 382]. This iterative

procedure also requires an initial model estimate but this can be chosen either randomly

or based on any available model appropriate to the data.

The set of training observation sequences is segmented in states, based on the cur-

rent model A. This sequence is achieved by finding the optimal state sequence, via

the Viterbi algorithm, and then backtracking along the optimal path. The result of

segmenting each of the training sequences is, for each of the N states, a maximum like-

lihood estimate of the set of the observations that occur within each state j according

to the current model.

Since we are using continuous observation densities, a segmental K-means procedure

is used to cluster the observation vectors within each state j into a set of M clusters

using a Euclidean distortion measure. Each cluster represents one of the M mixtures

 
 
 



of the bj (Ot) density. From the clustering, a set of updated model parameters is derived

as follows:

Cjm = number of vectors classified in cluster m of state j divided by

the number of vectors in state j

{Ljm = sample mean of the vectors classified in cluster m of state j

Ujm = sample covariance matrix of the vectors classified in

cluster m of state j

Based on this state segmentation, when using a transition matrix, updated estimates

of the aij coefficients can be obtained by counting the number of transitions from state

i to state j and dividing it by the number of transitions from state i to any state

(including itself).

An updated model ~ is obtained from the new model parameters, and the formal

reestimation procedure (Equations (2.20), (2.21) and (2.22)) is used to reestimate all

model parameters. The resulting model is then compared to the previous model by

computing a distance score that reflects the statistical similarity of the HMMs. If the

model distance exceeds a threshold, then the old model>. is replaced by the reestimated

model and the overall training loop is repeated. If the model distance falls below the

threshold, then model convergence is assumed and the final model parameters are

saved.

The way in which the "optimal" state sequence associated with any given observation

sequence is calculated is dependent on the definition of the optimal state sequence, i.e.

 
 
 



an optimality criterion needs to be specified. The most widely used criterion in speech

recognition is to maximize P(qIO, >'), which is equivalent to maximizing P(q, 01>'). A

formal technique called the Viterbi algorithm exists for finding this single best state

sequence, and is formulated as follows [7]:

To find the single best state sequence, q = (q1q2 ... qT), for the given observation

sequence 0 = (0102 ... Or), we need to define the quantity

b"t(i) = max P[q1q2' .. Qt-1, Qt = i, 0102' .. Otl>.]·
Ql,Q2,···,qt-l

that is, b"t(i) is the highest probability along a single path at time t which accounts for

the first t observations and ends in state i. By induction we get

To retrieve the actual state sequence, we need to keep track of the argument that

maximized Eq. (2.25) for each t and j. We can do this via the array 'ljJ(j). The

complete procedure for finding the best sequence can be stated as follows (using the

log to reduce the number of multiplications required):

7ri = log(7ri),l ~ i ~N

bi(Ot) = log[bi(Ot)),l ~ i ~N, 1 ~ t ~ T

b(i) = 109(b"l(i)) = 7ri + bi(Ol),l ~ i ~N

'ljJ1(i) = 0,1 ~ i ~N
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P* = max [6T(i)]
l~i~N

q;' = arg max [6T(i)]
l~i~N

The preprocessing step needs to be performed only once and saved, thus the cost is

negligible. The rest of the calculations required are in the order of N2T additions.

2.8 Level building algorithm

The Viterbi method on its own works well for doing isolated word recognition, i.e.

matching a single spoken word to one of several word models. For many applications,

notably those referred to as "command-and-control" applications, this approach works

well and is appropriate. However, for the purpose of this dissertation, the recognition

engine needs to be able to cope with a sequence of words from a limited recognition

vocabulary, and thus using the Viterbi method alone will not suffice.

To formulate the problem at hand we need to make some definitions [7]. Assume that

we are given the sequence of feature vectors (extracted from the speech signal, e.g.

Mel-scaled cepstra) T = t(l), t(2), ... , t(M), and we also have the HMM word models

(~,i = Lv) for each of V vocabulary words.
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The connected word-recognition problem can be summarised by the question: Given

a fluently spoken sequence of words, how can we determine the optimum match in

terms of concatenation of word models? That is, how do we find R* (the best possible

sequence of reference patterns) that best matches T (the test pattern)?

• The number of words, L, in the string is not usually known (although often upper

and lower bounds exist).

• The word utterance boundaries are unknown, except for the beginning of the first

word and the end of the last word.3

• The word boundaries are fuzzy and not uniquely identifiable. It is difficult to

automatically find accurate word boundaries because of sound coarticulation, i.e.

the ending sound of one word is "morphed" into the beginning sound of the next

word when spoken fluently.

• For a set of V word models, and for a given value of L (the number of words in the

string, if known), there are VL possible combinations of composite matching pat-

terns; for anything but extremely small values of V and L the exponential num-

ber of composite matching patterns implies that the connected word-recognition

problem cannot be solved by exhaustive means.

A non-exhaustive matching algorithm is required to solve the connected word-recognition

problem efficiently. Fortunately algorithms exist with which to do this. In particular,

the level building algorithm will be discussed in this text.
3The beginning and end of the utterance could be silence or noise, but that can also be classified

as a word model.

 
 
 



Assume there are L word patterns in R*, where L varies between the minimum and

maximum possible values. The best possible sequence of reference patterns R* is given

by a concatenation of L reference patterns:

An approach to calculate R* efficiently, called the Level-Building algorithm, has been

devised [7, pp. 400-422].The basic approach is as follows: At the first "level", a Viterbi

alignment is performed with each reference model to the test sequence. The range

of starting frames (initial state) is 1 to T - Nv, where Nv is the number of states in

each reference model, and T is the number of frames in the test sequence. The range

of ending frames (final state) for each Viterbi alignment is given by Nv to T. These

parallelogram style ranges result from the strict left-right limitation of the Bakis model

HMMs. This first level results in probability estimates at the final state for each model

at test frames Ni to T. Over all the models, a minimum starting frame for the next

level is determined by the model with the smallest number of states, say Nm. The

model with the highest probability at each point in the range Nm to T is stored along

with the probability value, and this vector is the result of the first "level." At the next

level, the calculation is picked up starting from time point Nm where the previous level

ended. Each reference model is again aligned with the rest of the test sequence, with

the probabilities accumulating from the best models at each point from the previous

level. After the second level, the new starting point will be 2Nm. At the end of each

level, the best scores and models are stored, as well as a backpointer indicating the

source point that value was calculated from. After the iteration has gone through all

the levels, the highest total accumulated probability at frame T over all levels is found

(since the best matching sequence can also be less than L concatenated word models).

By using the backpointer, the best reference frame sequence which resulted in this

score can be found.

 
 
 



Figure 2.4 shows the resulting trellis shaped grid of results obtained for a particular

reference model during the level building computation.

t T
TEST FRAME

2.8.1 Frame synchronous approach

The standard level-building approach requires that the entire set of feature vectors T

be known before recognition can start, which implies that it is not possible to start the

recognition before the speaker has finished the utterance. An alternative approach is

to use a method known as the frame synchronous level-building approach [11]. As its

name suggests, this method can do most of the calculations frame by frame, making it

useful for real-time implementations. For the case of HMMs using Viterbi alignment to

eventually find the optimum path through the trellis of output observation probability

densities, this approach can be simplified to merely calculating the output probability

density for each incoming test frame for every state of each model, and storing the

partially calculated accumulated Viterbi score. These calculations form the bulk of the

computational cost of this speech recognition approach, and can be done with each
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incoming frame, assuming enough computational power exists in the processor. At the

end of the utterance the relatively low computational cost of backtracking and finding

the highest accumulated scores on each "level" can be done to find the best overall

matching sequence of concatenated word models.

2.9 Duration modelling

A major weakness of conventional HMMs is that they implicitly model state durations

by a Geometric distribution, which is usually inappropriate. Erroneous recognition

with HMM based systems is often associated with unreasonable occupancy durations

of the (phoneme-like) states from which the model is built up.

Each state in a left-right (Bakis) HMM has an auto-transition probability aii, and a

probability to go to the next state. The sum of these two probabilities is necessarily 1.

Assuming that the model stays in this state, on average, for a duration T, the Geometric

distribution p(T) is given by p(T) = aii(l - aii)' Figure 2.5 shows the relative decay

over time for two cases, one with a high auto-transition probability, and one with a low

auto-transition probability. It is obvious that for a high auto-transition probability,

the decay is relatively slow, and this is in direct contrast with the actual probability

of durations of acoustic events, which drop rapidly to zero when the duration is either

too short or too long.

This exponential durational model imposes little limitation on how long an utterance

can occupy a certain state in the model. This freedom often creates false alarms

and/or substitutions by allowing an utterance to virtually skip over the unsuitable

states, while lingering unreasonably long in more suitable states [12]. In an improved

model for speech structure, duration is incorporated explicitly by specifying probability

distribution functions for the occupancy durations of states. Although this intuitively

will lead to better recognition results, computational and memory requirements may
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be adversely affected. A method for implementing duration modelling with negligible

overhead needs to be used to keep the system fast enough for real-time recognition.

Several methods of state duration modelling have been proposed in the literature to

enhance the performance of HMM based speech recognition systems:

• The simplest state duration modelling technique is to have an upper and lower

bound on the allowed state durations, and to disallow paths in the Viterbi search

that exceed these specifications .

• In the Ferguson model [13] each state i has an associated discrete state duration

probability density di(r),r = 1,2, ... , r:nax where r:nax is the largest duration al-

lowed. Ferguson incorporated the estimation of di(r) into the Baum-Welch rees-

timation algorithm. This method has two disadvantages, namely the excessive

computational overhead that it imposes, and the excessive amounts of training

data that might be required to estimate all the duration parameters: each state

 
 
 



i has 7:nax duration parameters and sufficient statistics on each duration 7 need

to be collected at each state i so as to estimate di (7) reliably .

• Russel & Moore [14] and Levinson [15] used parametric state duration distri-

butions (Poisson and gamma distributions respectively) to solve the problem of

requiring large amounts of training data. Their methods still imposed excessive

computational requirements.

• Rabiner et at. [16] suggested a postprocessor approach in order to incorporate

duration modelling in a computationally efficient way. Besides real-time diffi-

culties, a major disadvantage of the backtracking approach is that the duration

contribution to the standard Viterbi metric is only added after candidate paths

have been collected. This could mean that the correct path might not be one of

those candidates.

Burshtein [17]has suggested a practical approach to duration modelling that avoids the

above mentioned problems. He proposes a modified Viterbi algorithm that incorporates

duration modelling, and has essentially the same computational requirements of the

conventional Viterbi algorithm.

Since his method also relies on a parametric distribution, he performed experiments

dedicated to finding the most appropriate distribution for state durations. He com-

pared histograms of state durations to a Gaussian distribution, gamma distribution

and a geometric distribution (to show how inaccurate this implicit duration model

is), and found the gamma distribution to most accurately describe the state duration

(Figure 2.6).

He shows that the gamma distribution is capable of describing both the monotonic

character of the geometric distribution, and the unimodal character of the Gaussian

distribution. In addition, unlike the Gaussian distribution, the gamma distribution

is one-sided; i.e. it assigns zero probability to negative 7'S, which is appropriate for

duration distributions. Finally, the gamma distribution possesses a slower decay rate,
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,,2
e-ax which is more appropriate for duration modelling than the fast e-~ decay of the

Gaussian distribution.

where a > 0 and p > o. K is a normalizing term calculated so that the sum of p( r)

from 0 to 00 equals 1. The parameters a and p can easily be estimated by noting

that the mean and variance of the gamma distribution are given by E {r} = pia and

V AR{ r} = pi a2• a and p can thus be estimated using the empirical expectation E( r)
-----and empirical variance VAR(r) of the duration by

~ E(r)a = _

VAR(r)

~ E2(r)
p = ----- .

VAR(r)

The modified Viterbi algorithm keeps track of the duration Ds(t) of each state s at

time t. Let Ms denote the time at which the peak value of the gamma distribution

occurs, at state s, and let l(u) = log p(u), where pO here is the gamma density. The

duration penalty, P, of making a transition from state s at time t to state s at time

t + 1 is given by:

0 ifDs(t) < Ms and s = s

P=
l(Ds(t + 1)) -l(Ds(t)) ifDs(t) ~ Ms and s = s

(2.33)
l(Ds(t)) ifDs(t) < Ms and s::j:. s

l(Ms) if Ds(t) ~ Ms and s ::j:.s.

The motivation is the following: before the duration is Ms, we do not penalize for

remaining in the same state, unlike the conventional Viterbi algorithm (P = 0 in

Eq.(2.33)). After the duration is Ms, we penalize gradually, unlike the backtracking

 
 
 



approach of Rabiner et al. mentioned earlier (P = I(Ds(t+ 1)) -1(Ds (t)) in Eq.(2.33)).

If the next state is different to the current state and the duration is less than Ms, the

penalty is I(Ds(t)). If moving to a new state and the duration is greater or equal to

Ms, the penalty is fixed at I(Ms)'

The duration penalty is incorporated into the Viterbi algorithm instead of using the

log state transition probability penalty aij in Eq.(2.28). For greater computational

efficiency, the I (u) function can be stored in a lookup table for each state of each

HMM, thus trading a relatively small amount of memory for a large computational

saving.

It was found in practice that it is unnecessary to iteratively update the duration model-

ing parameters during training. Instead, the models are trained with the standard tran-

sition matrix reestimation formulas (Eq.(2.16)). After the models have been trained,

each model is Viterbi aligned to all its training examples, and the empirical mean and

variance of the durations of each state for each model are obtained as described below.

The sum of each state's durations (over all the training examples for each HMM) is

stored as stateduTl and the sum of the squares of the durations is stored as stateduTsq'

These values can be used to calculate the empirical mean and variance values of dura-

tion for each state:

j; (r) = stateduT
examples

VAR( r) = stateduTsq - j;2 (r),
examples

A _

where examples is the number of training examples for each hmm. E(r) and V AR(r)

can now be substituted into Eqs.(2.31) and (2.32) to obtain the values of 0- and p needed

to calculate the discrete gamma distribution (Eq.(2.30)). This method is less compu-

tationally intensive and easier to implement than recursively updating the duration

modeling parameters, and results in values that accurately model the state durations.

 
 
 



2.10 Channel compensation techniques

Environmental robustness and speaker independence are important issues of current

speech recognition research. Normalisation methods might make use of the model but

primarily influence the signal such that important information is kept and unwanted

distortions are cancelled out.

When using the telephone system, the overall channel transfer function can differ from

connection to connection. These variations can be due to the physical wires in different

parts of the connection, different microphones and speakers, codecs such as GSM and

others4 and analogue to digital as well as digital to analogue converters in the signal

path. These variations lead to degradation in speech recognition performance. To try

to improve the performance in the presence of such a varying channel, a method needs

to be used to try to compensate for the transfer function of the channel, effectively

normalising the speech to the channel transfer function. Most modern speech recogni-

tion systems use a channel normalisation approach called Cepstral Mean Subtraction

to compensate for the accoustic channel, as well as the speaker.

Cepstral Mean Subtraction[19] (CMS) is a simple but effective channel normalisation

technique. Many adaptation methods require an adaptation method that has to be

trained. In contrast to this, CMS is purely signal based and tries to eliminate disturbing

channel and speaker effects before the signal is used to train a recogniser. It is also a

very convenient technique to use if cepstra are already being used as the features for a

recogniser.

4Telephone network providers are starting to use the internet as part of their core network in

some countries. Telkom is also considering Voice-Over-IPto be an essential element of their Next

Generation Network.

 
 
 



When a speech signal passes a linear time invariant channel, this convolutional distor-

tion becomes multiplicative in the spectral domain, and additive in the log-spectral

domain. Since the cepstrum is just a linear transformation of the log-spectrum, both

can be regarded equally in this context. eMS deals with channel effects, such as the

use of different microphones on differing telephone brands, or the use of a cellphone.

For speech recognition, a short time analysis is performed, resulting in the speech

spectrum St (w) and the measured spectrum It (w) after modification by the channel

transfer function C (w) (which is assumed not to be a function of time), where

and where Yt(w) is the log-spectrum or cepstrum (the cepstrum is just a linear trans-

formation of the log-spectrum, so both can be treated equally in this context), given

by

The assumption of a constant channel C(w) allows to compensate for it by subtracting

the mean of the measured cepstrum, leading to a cepstral mean subtracted feature Zt:

This shows that a speech mean St is also subtracted. We can now use Zt as the input

feature vector for training and performing recognition, with the effect of the channel

transfer function essentially eliminated.

 
 
 



Several variations of Cepstral Mean Subtraction have been developed to try and solve

some of the problems that arise from using it:

1. Standard CMS: taking Zt = Yt - Yt as new input feature, Westphal [19] studied

the effect of CMS on several cases (continuous speech, between-word pauses, and

silence) assuming static noise. For segmented speech without many pauses, the

compensation works well although some noise dependence is introduced. For

the pause case, a shift is introduced that is proportional to the channel. In

conversational speech there is a greater variance of the pause proportion that

will reduce the desired channel compensation.

2. Speech-based Cepstral Mean Substraction (SCMS) [19]: To try to overcome the

dependence on the pause proportion, SCMS estimates the mean only on speech

frames (Zt = Yt - mspe) using

LtWt' Yt
mspe = ""'LJtWt

where Wt is the probability p(speechIYt) or the output of a speech detector (1

for speech, 0 for pause). Experiments suggest that it is only really worthwhile to

employ this method in cases where there are relatively long between-word silences.

For speech utterances it is therefore easier to strip off the (longer) initial and final

silences, and then use standard CMS on the speech. Normal between word pauses

are too short to make using SCMS worth the extra overhead.

CMS deals with channel distortion, which introduces convolutional noise to the signal.

A method is also needed to get rid of additive spectral noise, to eliminate any slow

time varying signals and DC offsets, and background noise (car engine noise, constant

babble, white noise).

 
 
 



There are several variants of spectral subtraction, similar to CMS, that try to com-

pensate for the additive spectral noise [20]. One approach estimates the noise power

spectrum, and subtracts this from the entire speech utterance. This approach gives

rise to a number of problems. Firstly, because noise is estimated during pauses, the

performance of the spectral subtraction system relies upon a robust noise/speech clas-

sification system. If a misclassification occurs, this may result in a mis-estimation of

the noise model and thus a degradation of the speech estimate. Spectral subtraction

may also result in negative power spectrum values, reset to non-negative values in a

variety of ways. This results in residual noise often called musical noise.

Continuous spectral subtraction continuously updates an estimate of the average of the

long term spectrum (since speech changes rapidly, the average over a long period should

closely match the spectrum of the additive noise signal). In an off-line recogniser, the

average of an entire utterance can be calculated before recognition if the utterance is

not longer than a few seconds. In this case, the compensation method becomes known

as Spectral Mean Subtraction (SMS).

SMS [20] simply involves calculating the average (over time) power spectrum by adding

the power spectra of all the frames in the utterance, and then dividing by the number

of frames. This average power spectrum is then subtracted from each frame. Within

this framework occasional negative estimates of the power spectrum occur. To make

the estimates consistent, some artificial flooring is required, yielding musical noise as

previously mentioned. This musical noise is caused by the remaining isolated patches

of energy in the time frequency representation.

Much effort has been put into reducing this musical noise. One effective way is smooth-

ing over time of the short-time spectra. This has the contrary effect, however, of

introducing echoes.

While reducing the average level of the background noise substantially, plain SMS has

been found in the literature to be rather ineffective in improving intelligibility and

 
 
 



quality for broadband background noise, and thus not very effective for improving

speech recognition. This has been reaffirmed by the experiments in Section 4.6.

This chapter on theory has provided the necessary background information for describ-

ing the implementation of the telephone speech recognition system.

 
 
 



Chapter 3

Telephone speech recognition

system

The ultimate goal of our system is to act as an automatic telephone receptionist,

prompting the caller into giving the name of the person (within the department) to

whom they'd like to speak, and forwarding the call.

Two major parts comprise the system, namely hardware necessary for implementation,

and the software which performs the recognition and controls the flow of events during

a call. These two parts will be discussed in detail in this chapter.

 
 
 



The relatively slow! CPU speed encouraged careful and intelligent optimisation of the

speech recognition software.

The Dialogic model D/21H telephone card enables two telephone lines to be connected

to the computer, although only one was ever tested in practice. It interfaces to the

PC on the PCI (Peripheral Component Interconnect) bus, providing facilities such

as analogue-to-digital and digital-to-analogue conversion of the telephone speech, ring

detection, dial-tone detection and DTMF (Dual Tone Multi Frequency signalling, in

common use for telephone systems) encoding and decoding.

The telephone interface card was connected to the PABX at the campus of the Univer-

sity of Pretoria. This particular PABX has the facility of being able to forward a call

by sending what is known as a hookfl.ash (putting the phone "on-hook" for approxi-

mately lOOms, then taking it "off-hook" again) followed by the four digit internal (to

the University of Pretoria) telephone number sent via DTMF. Since the recommended

maximum rate of DTMF digit transmission is 10 per second (i.e. lOOmsper digit), the

whole process of forwarding a call takes approximately 500ms.

The software which performs the sound data processing, feature extraction, model

training and level-building search was developed in-house at the University of Pretoria

by the Pattern Recognition Group. The software toolkit (named the "Hidden Markov

Toolkit for Speech Recognition" , HMTSR2) was developed in Gnu C++ in the Linux

operating system using an extensive object-oriented approach, described in detail later

lcompared to the leading-edge Intel processors in 1999, 550MHz Intel Pentium III, 5 to 8 times

faster. At the beginning of 2001, 1.2Ghz processors were available.
2See website http://www.ee.up.ac.za/ee/pattern.recogni tion-page/HMTSR/HMTSR-O.2. tgz
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The telephone speech recognition system was necessarily developed on a Windows NT

4.0 platform, since at the time of development no Linux drivers existed for the Dialogic

card3. A Windows NT Gnu C++ compatible compiler along with libraries emulating

Unix system calls had been developed by Cygnus Solutions, and HMTSR was ported

into the Windows environment using this tool, with some modifications. HMTSR thus

formed the backend of the telephone speech recogniser. The Dialogic API (Application

Programmer's Interface) libraries had to be ported (they were originally written for

Microsoft Visual C++) to be compatible with Cygwin with some major modifications

relating to the way threads are handled under NT. A console application was written

to handle incoming calls (multiple, i.e. 2 for the D/21H card, calls can be handled

simultaneously), a thread being spawned for each incoming call. The thread takes care

of the conversational interface with the caller by prompting him, and detecting when he

has finished speaking. Speech to be recognised is passed to the HMTSR level-building

search, and action is taken depending on the transcription of the models found in the

search.

3.2.1 Hidden Markov Toolkit for Speech Recognition

The HMTSR toolkit comprises a number of classes (Object Oriented Programming) to

facilitate speech processing and hidden Markov modelling of raw waveform data, and

these classes are all grouped together as a library. The library provides the following

functionality:

• Perform feature extraction (pre-emphasis, hamming window, mel-spaced filter

banks, mel-cepstra).

3Dialogic released Linux drivers for this card in July 2000.

 
 
 



• Dealing with the transcriptions of labeled training data, as well as storing tran-

scriptions of recognised data.

The process by which a matrix of cepstral coefficients (vector of coefficients over time)

is extracted from a raw sound wave file can be summarised as follows (Figure 3.3).

The input data consists of a vector of floating point values (representing the sound

wave file, values normalised between 0 and 1) with a corresponding length (number

of samples) and a sample rate (8kHz for the telephone speech recognition system).

This data is divided into a number of windows, determined by two parameters, namely

window size and jramestep. The windowsize determines the number of samples (the

unit of the window size parameter is seconds, so the actual number of samples can

only be calculated given the sample rate) used for every cepstral calculation, and the

jramestep determines the offset from the current position where the next windowsize

samples begin. The jramestep parameter is usually less than windowsize so that there

is some overlap between adjacent windows. For example, for windowsize = 16ms and

jramestep = 10ms, the first cepstral coefficient vector will be calculated from the first

16ms of speech, and the second vector will encompass 10ms to 26ms of the speech
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segment. The total number of windows in a given length of speech data is therefore

given by:
n _ windowsamples-jramesamples

samples 2
nwindows = jramesamples

where windowsamples and jramesamples are calculated from the sample rate as

follows:

Since a fast Fourier transform can only be calculated for lengths of data that are powers

of two, the next power of two, that is larger than windowsamples, is determined. This

gives the size of the Fourier transform vector.

Preemphasis is performed on each window. Preemphasis is typically a first-order FIR

filter used to spectrally flatten the signal (i.e. lessen the effect of spectral tilt) and make

it less susceptible to finite precision effects later in the signal processing. The output

of the preemphasis network is related to the input s( n) by the difference equation

Each frame (consisting of window samples samples) is now windowed so as to minimize

signal discontinuities at the beginning and end of each frame. A window is used

to taper the signal to zero at the beginning and end of each frame. There are a

number of functions which achieve this, the most popular one being the Hamming

window(Figure 3.1), which has the form

 
 
 



w(n) = 0.54 - 0.46 . cos ( . d 21rn 1 ),0 :::;n :::;windowsamples - 1.
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The power spectrum of this windowed frame is now calculated to Iitsize elements.

The DC component of the power spectrum is set to zero, and the power spectrum

vector is then passed through a mel frequency spaced triangular filter bank, the centre

frequencies of which are determined by

(
---i±!...-

liltercentrei = 700 * (1 + sampleratej1400) nfilters ) - 700,0 :::;i < l/ilters.

where nfilters is another system parameter. For the default case where samplerate is

8kHz and nfilters = 12, the centre frequencies are located at

Hertz respectively, and the base corners of the triangles as indices into the power

spectrum vector are determined by:
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Figure 3.2: A filter-bank design in which each filter has a triangle bandpass frequency re-

sponse with bandwidth and spacing determined by a constant mel frequency

interval, from [7, p. 190].

The energy underneath each triangular filter in the filter bank is summed, and nfilters

energy values are returned. The In of each of these values is taken, after which a discrete

cosine transform is performed, resulting in melorder (another system parameter) mel

frequency scaled cepstral coefficients, mfcCi,O ::;i < melorder. Liftering is applied to

normalise the contribution from each cepstral term with the algorithm:

Temporal derivatives (so-called delta features) are optionally calculated next using

polynomial approximation. Depending on the delta order (only first and second order

delta parameters are considered), the feature vector doubles or triples in size per frame.

For the optional case where Spectral Mean Subtraction is performed, the power spec-

trum vectors for the whole utterance are calculated, a mean derived, and the mean

 
 
 



is subtracted with artificial flooring from each power spectrum vector. The artificial

flooring employed assumes the following logic: if the mean spectral value is less than

the spectral value, the result is 0.1 . spectralvalue, else spectralvalue - meanvalue.

Several values (including 0) of this constant were tried, with 0.1 giving the best results.

For the cases of generating the feature cache and model training, Cepstral Mean Sub-

traction is optionally performed on this feature matrix since only whole words are being

considered. In the case where a search on an utterance has to be performed, the initial

and ending silences are first trimmed off (clarified further on) before CMS is performed.

After this entire procedure has been followed on a raw wave sound utterance, the feature

matrix (cepstral coefficients vs. frame (time)) is ready to be used by the hidden Markov

modelling routines. Figure 3.3 summarises the feature extraction process.

Finite State Network grammar

A graphical tool was developed in X-windows using the QT library to facilitate the

creation of finite state networks. Network nodes can be dynamically created and moved

around, and given properties such as model name, display name. Nodes can be con-

nected to other nodes, or themselves, and flags can be set indicating whether the node

is optional, initial (the start of a grammar path) or final (the end of a grammar path).

The tool writes to and reads from text files with the same lexical format as used by

the grammar class.

Many of the errors in the recognition process can be attributed to phrases that cannot

possibly be correct, and would immediately be seen as such by a human. In the context

of this system, this includes phrases with names and surnames from different people

mixed, phrases with repetitions of a word, and phrases that have an incorrect word

order. This can be remedied fairly easily by implementing a Finite State Network

(FSN) grammar, limiting the search to "possible" combinations. The topology of the
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• POSSIBLE START
o END

Other optional models are placed in the FSN to improve robustness. An initial silence

model is included, followed by a "breath-in" module to compensate for the fact that

many people inhale sharply just before uttering a phrase. An optional "breathout"

model follows the above mentioned grammar network.

Other possibilities exist, e.g. Title ---+ Name, but since this is very informal and un-

common, it is considered erroneous for the purpose of this system.
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The full grammar network (Figure 3.5) consists of the previously mentioned paths

for each callee in parallel, so that names, surnames and titles of different callees cannot

be confused.

The FSN grammar is implemented in the forward Viterbi search by adding either in(O)

(approximated by the largest negative number the PC can take) to the log probability

for an impossible transition, or in(l) to the log probability for a grammatically correct

transition. This is analogous to multiplying the probability by 1 or 0 if not working in

the in domain. In this way very little overhead is incurred on the search engine, but

drammatically improved recognition results can be obtained (see Section 4.4).

 
 
 



3.3 End point detection

End point detection entails finding the ends of an utterance, i.e. finding where in

temporal space the utterance starts, and where it ends. This can be done by the recog-

nition engine by incorporating an optional beginning and ending silence model, but

this gives rise to some complexities. Accurately detecting the endpoint is important,

since incorrect endpoint detection can greatly affect the performance of the recogniser

(see Figure 3.6).
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Figure 3.6: Contour of digit recognition accuracy (percent correct) as a function of endpoint

perturbation (in ms), from [7, p.144].

The beginning and ending silences' lengths can vary greatly. Since the silence model is

a single state model, the state duration modelling will apply to the entire silence. This

is not desired, so compensation must be made in the system to allow for HMMs to

which duration modelling does not apply. This unnecessary complexity can be avoided

by first applying end point detection to the utterance. Furthermore, the Viterbi search

 
 
 



together with the level-building algorithm take linearly longer with longer utterances,

and are potentially much slower than an algorithm which only has to find silence. Thus

by first removing the silence, large time savings can be made in the recognition process.

Optional noise models can still be incorporated in the recognition FSN, to compensate

for noise artifacts that may have been missed by the endpoint detection. In this way,

a "hybrid" two-stage speech endpoint detection system is implemented.

For speech produced in laboratory circumstances, i.e. carefully articulated and rela-

tively noise free, accurate detection of speech is a simple problem. In practice however,

one or more problems make accurate endpoint detection difficult. One particular class

of problems is those attributed to the speaker and manner of producing the speech.

For example, during articulation, the talker often produces sound artifacts, including

lip smacks, heavy breathing, and mouth clicks and pops.

I]:'~~h:;:Ii
1 Frame number
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The energy levels of the artifacts are often comparable to speech energy levels, ruling

out using an energy envelope threshold as an accurate means of speech detection.

To detect the silences, the HMM output probability for a silence model is considered

with an empirically determined threshold. If the utterance silence output probability

estimate falls below this threshold for an empirically determined number of frames

Tinitial in a moving average series, the speech is considered to start Tinitial frames back.

Similarly, if the silence output probability estimate is above the threshold for Tfinal

frames, the speech is considered to have ended Tfinal frames ago. By choosing Tinitial

and Tfinal carefully so as to easily include the shortest vocabulary word, yet exclude

between word pauses, we can eliminate most mouth clicks and pops and any other

short unwanted sounds. The procedure described here was implemented by me in the

system.

-1800 o 80
Utterance window

 
 
 



To facilitate more accurate system performance (in terms of the caller being put

through to the correct person), a conversational interface is needed to clarify any cases

where the recognition process did not generate a sufficiently high confidence measure

(see Section 4.8).

The system conversational interface follows the flow diagram which is depicted in Fig-

ure 3.9.

Play strict
"askname"

Play "RUsure"
/person name

 
 
 



1. The confidence level in recognising the utterance is below a certain threshold

(determined empirically). In this case, the prompt is repeated and the user

asked to repeat his answer. This could be due to excessive noise, and invalid

response or a speaker dependent problem (breathing noise, mouth pops/clicks,

strange accent).

2. The system recognises the utterance incorrectly, and since the confidence level

is not sufficiently high, the user is asked for confirmation. Assuming the yes/no

recogniser has an extremely high recognition performance4, the person will either

have to repeat his answer (a stricter prompt is played, specifying that the user

must say the name and surname of the callee), or his call will be forwarded.

3. The system recognises the phrase correctly, but since the confidence level is not

sufficiently high, the user is asked for confirmation, as in the previous case.

4. The system recognises the phrase incorrectly, and the caller is forwarded to the

wrong number as the confidence measure is sufficiently high.

5. The system recognises the phrase correctly, and the caller is forwarded to the

correct person. This is obviously the case the system strives to achieve most

often.

3.5 Dealing with extraneous speech

The conversational interface strives to prompt callers into giving only answers in the

correct grammatical format (e.g. Name Surname, or Yes/No), however the cases of

extraneous speech need to be taken into account. Some people respond to a prompt

like" Please say with whom you'd like to speaM' by replying: "I'd like to speak to so-

and-so please," even though they realise its a machine they're speaking to. The system

under normal conditions would expect a reply to be just the name5.

4High possibility since only two vocabulary words need to be distinguished.
5In any of the generally accepted name lexical formats.

 
 
 



To attempt to deal with this, a grammar FSN can be constructed using a so-called

garbage hidden Markov model to try and cater for any out-of-vocabulary (OOV) words.

The idea of the garbage model is to give a higher score in the Viterbi search than any

of the in-vocabulary models for an OOV word, whilst giving a lower score for an in-

vocabulary word than the correct corresponding model [21].

Several HMM structures for a garbage model have been tried in the literature, the best

result being achieved for a model with a single state and one or more mixtures.

To train this garbage model, all the vocabulary words are used together, based on the

assumption that there is enough variance between these words to make a good garbage

model.

Dealing with this extraneous speech has not been implemented in the online (real-time

recognition) version of the system. It was left out for performance considerations,

and it has been found in practice that the prompts are clear enough that the caller

usually only utters phrases in one ofthe correct grammar patterns. Off-line experiments

have been done to test the effectiveness of including a garbage model in the system

(see Section 4.9). This concludes the description of the telephone speech recognition

system that has been implemented. The next chapter details some experiments to test

the efficiency of various components of the system.

 
 
 



Chapter 4

Experiments

To test the system performance, and determine the sensitivity to methods used and

system parameter variations, experiments were performed. The experiments were done

with the system in off-line mode, using data previously recorded from the telephone

line. This was done so that all recognition results from the different methods and

parameter settings reflect the same data, allowing fair comparisons to be made.

4.1 Experimental data

Since the system uses the whole word recognition approach, only a limited number of

words can be recognised by the system. The words which the system recognises can

be seen in Table 4.1.

The name models (each first name is one word, and double surnames are also treated

as a single word model) that the system recognises can be seen in Table 4.2.

 
 
 



Total distinct words 42

Total num. people 18

Titles 5

The telephone system was initially set up to playa prompt, and then record an utter-

ance without performing any kind of recognition or giving any feedback to the user.

This was done so as to be able to record enough data to "bootstrap" the hmm models

with some seed data to be able to perform recognition. Once sufficient data (approxi-

mately eight words by different speakers per model was determined to be good enough)

had been recorded in this manner, the system was trained and put into "live" opera-

tion, where callers' utterances were recognised (and recorded), and the conversational

interface guided them to the point where their call was forwarded to the callee.

The system was left to run in this manner for a period of time, until sufficient data

(male and female) had been collected to perform meaningful experiments. The target

for data collection was set so that at least 16 spoken words per model were recorded.

Table 4.4 summarizes the data set.

Due to the nature of the data recording technique, it is difficult to establish exactly

how many different speakers there are in the data set, but it is estimated that there

are approximately 25 to 35 different speakers.

 
 
 



Total male utterances 179
Total female utterances 183
Num. labeled words 950

A "leave-one-out" experimental setup was used throughout the test. A total of five sets

of training/testing data was used. Each training set consists of ~ of all the data, with

the remaining iused for testing. In this way all the data can be used for testing and

training, but the test data never appears in the training set. An average performance

value is obtained over all five sets for each experiment to give the final result.

4.2 Adjustable system parameters

The system parameter set which can be optimised for maximum recognition perfor-

mance was discussed in detail in the previous chapter, and can be summarised as

follows:

• windowsize: Length of raw sound (in seconds) used to calculate each feature

frame (in the order of 10ms to 30ms).

• framestep: Length of raw sound (in seconds) to step. The difference windowsize-

jramestep determines the overlap between adjacent feature vectors (in the order

of 5ms to 30ms).

• MelOrder: The number of meI-scaled cepstral coefficients to calculate per frame

(in the order of 6 to 12).

 
 
 



• nfilters: Number of filters in the mel-scale filter bank. This value defaults to

1 5 . sampler ate
. 1000'

• EMiter: Number of expectation-maximisation iterations to perform. This value

defaults to 10, as the trained mean and variance values for the HMM mixtures

seem to stabilise after approximately 8 iterations.

• Delta order [9]: The order of the temporal cepstral derivative. May take on the

values 0 (no delta features), 1 or 2. For example, for a MelOrder of 8 and delta

of 2, the feature vector will be of length 24 per frame.

• nstates: The number of states to use in the hidden Markov word models. This can

actually be specified per model, so that different models have different number

of states to try and account for the varying number of sounds in words.

• nmixtures: The number of Gaussian mixtures to use per state in each model. The

number of mixtures can also be independently set for each state in each model if

desired.

• performDuration: Boolean flag to choose between using traditional state transi-

tion matrices resulting in implicit geometric state durations, or using lngamma

pdf based state duration modelling (see Section 2.9).

• performCMS: Boolean flag indicating whether or not to perform Cepstral Mean

Subtraction on the feature matrix.

• performSMS: Boolean flag indicating whether or not to perform Spectral Mean

Subtraction on the power spectrum.

 
 
 



Experimental results are shown where these parameters are varied to find the best

system performance. Since the parameter variations can influence each other (e.g. if

the window size is smaller, you might want to consider increasing nstates since more

features will be calculated per word), the parameters are varied individually, leading

to a large number of experiments, and extensive computation.

Some ofthe parameter variations were found not to have much influence on each other,

and these were kept at a fixed value during the iteration procedure, to try and keep

the computation realistic. The values in Table 4.5 were used.

performCMS on

performSMS off

Delta 2
pre-emph 0.98

perform Duration on

grammar full

EMiter 10

nfilters 12
V iterbiiter 10

The parameters in Table 4.6 were varied in the specified ranges. These ranges were ob-

tained through coarse initial experimentation to determine in what range the optimum

point occurs.

The jramestep and window size parameters were varied together, since it was previ-

ously found that the best results are obtained if jramestep is equal to slightly more

than half of windowsize. Since jramestep is the increment for each successive start
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nmixtures 1,2,3

nstates 8,9,10,11,12

windowsize 8,12,16,20,30ms

frame step 5,7,10,12,19ms

MelOrder 6,8,10,12

of window size samples, this means that there is always an overlap with the previous

frame.

The best overall person recognition rate attained was 95.68%, with the parameter

values as given in Table 4.7.

nmixtures 1

nstates 10

windowsize 20ms

framestep 12ms

MelOrder 8

The worst overall person recognition rate attained with these parameter variations was

73.02%, with the parameter values as in Table 4.8.

The fact that the feature vectors will be large (MelOrder = 12) and that there are

three mixtures per model to train, implies that there is probably insufficient training

data available to successfully train the models, providing a possible explanation for the

poor results with these parameters. The small window size also means that at an 8kHz

sampling rate, there are only 64 samples per window, so the FFT results in frequency

components with frequency spacings of 125Hz. This means that the resolution for the
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nmixtures 3

nstates 11

windowsize 8ms

framestep 5ms

MelOrder 12

If we take the average recognition results over each parameter variation (e.g. average

of all the results where MelOrder = 8), we get the following (figures 4.1, 4.2, 4.3 and

4.4):

90.10%

89.89%

89.44%

88.23%

Although the parameters are interdependent, there is still a very close correlation

between the overall best and worst parameters sets, and the results of the above average

parameter variation scores. These "best" and "worst" parameter sets are used as a
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91.94%

90.46% 90.49%

88.56%

85.62%

7,12 10,16 12,20
framestep,w1ndowslze (ms)

91.16%

90.17%

89.92%

2
nmlxtures
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90.79%
90.39%

89.67%

89.12%

87.12%

10

nstates

baseline for the rest of the parameter and method variation experiments, each effect

(e.g. using eMS or not) being measured on both the best and worst sets to see the

effect.

It can also be seen that the recognition results do not seem to vary much with the

number of states, as long as there are enough states to model at least the minimum

number of distinct sounds in each word. Another experiment was performed where the

word models were categorised into long and shori words, with the long words having

50% more states than the short words. This also made no significant difference to the

recognition results, but when the experiment was repeated without duration modeling,

it became clear that a difference could be observed. Without duration modeling, the

number of states provides a crude lower duration limit due to the strict left-right nature

of the Bakis models, leading to a noticeable performance increase. With less states, it

is possible (in the absence of duration modeling) for the model to be in one particular

state for only one frame, but if there are more states than distinct sounds in the word,

there is a minimum duration time that will be spent in each sound model.

 
 
 



Experiments were also performed where the number of mixtures per state was var-

ied, i.e. instead of having 2 mixtures per state for each state in the model, different

variations were tried. The rationale behind this was that the initial and final states

are more likely to have problems with breath-in, breath-out or other noises, as well as

simply being prone to having the data affected by incorrect end-point detection (see

Section 3.3). The following variations were tried:

No significant differences in recognition performance were observed with either the

"best" or "worst" parameter sets previously determined, so this avenue of investigation

was not pursued further.

4.3 Effect of temporal derivative

To determine the effect of the temporal derivative on the recognition performance,

the system parameters in Table 4.5 were used, with Delta = 0 and Delta = 1. This

parameter set was used with the sets in Tables 4.7 and 4.8 to give the results as in

Table 4.9.

From this we can conclude that using a first or second order temporal derivative signif-

icantly reduces the recognition error rate (by 67%) for the "best" parameter case. The

first order temporal derivative slightly improves the recognition rate for the "worst"

parameter set, but the second order temporal derivative increases the error rate above

what it was without using it at all. Therefore, we can use Delta = 1 for good perfor-

mance and less computation.

 
 
 



best param (Delta = 0) 86.65%

best param (Delta = 1) 95.56%

best param (Delta = 2) 95.68%

worst param (Delta = 0) 77.08%

worst param (Delta = 1) 83.39%

worst param (Delta = 2) 73.02%

4.4 Effect of grammar

To determine the effect the grammar FSN has on recognition performance, experiments

were set up with less restrictive FSN grammars. Two different grammars were used,

one (general) which followed the pattern as shown in Figure 3.4, thereby allowing

unknown names to be found (i.e. different titles, names and surnames may be mixed),

and a second grammar (allwords) which allowed any number of words (titles, names

and surnames) in any order. The recognition experiment was repeated using again the

"best" and "worst" parameter sets, and comparing these to the results with the full

grammar (see Table 4.10).

param set full general allwords

best 95.68% 77.14% 19.18%

worst 73.02% 52.08% 9.92%

From these results it is clear that the incorporation of a restrictive FSN grammar

dramatically improves the recognition rate. As expected, on inspection of the error

phrases for the general grammar, the additional (compared to the full grammar)

errors were caused by the emergence of unknown names (e.g. "mevrou renier van-

 
 
 



leeuwen"). Closer inspection of the error cases for the allwords grammar revealed

that the majority of the additional (compared to the general grammar) erroneous

phrases did in fact contain the correct phrase, but extra words (usually short words)

were found at the beginning or end of the phrase (e.g. "prof prof botha" ). As the FSN

grammar becomes less constrained, the level-building search takes longer to execute,

since more possibilities arise.

4.5 Effect of Cepstral Mean Subtraction

To determine the effect of CMS on the recognition performance, the system parameters

in Table 4.5 were used, with Per formCMS = o. This parameter set was used with

the sets in Tables 4.7 and 4.8 to give the results in Table 4.11.

best param (Per formCMS = 0) 90.54%

best param (PerformCMS = 1) 95.68%

worst param (PerformCMS = 0) 69.1%

worst param (Per formCMS = 1) 73.02%

CMS leads to a 54% reduction in errors for the "best" parameter set, a significant

improvement. The telephone channel transfer function is highly variable, since phone

calls go through at least two AID and DI A conversions, as well as variable lengths of

copper wire, or they could even be made from a cellular phone, where codecs such as

GSM influence the overall channel transfer function. Using CMS to compensate for this

is a very successful technique. The error rate is also slightly improved for the "worst"

parameter set, which can be expected, since CMS does not increase the feature vector

size, but merely attempts to improve the features by compensating for channel effects.
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4.6 Effect of Spectral Mean Subtraction

To determine the effect of SMS on the recognition performance, the system parameters

in Table 4.5 were used, with Per jormSMS = 1. Since it is possible that CMS can have

an effect on the result, the tests were also run with Per j ormC M S = O. This parameter

set was used with the sets in Tables 4.7 and 4.8 to give the results in Table 4.12.

best param (Per jormSMS = 1) 90.65%

best param (Per jormSMS = 0) 95.68%

worst param (Per jormSMS = 1) 72.58%

worst param (Per jormSMS = 0) 73.02%

best param (Per jormSMS = 1, CMS = 0) 87.18%

best param (PerjormSMS = O,CMS = 0) 90.54%

worst param (PerjormSMS = 1,CMS = 0) 72.06%

worst param (PerjormSMS = O,CMS = 0) 69.1%

SMS always appears to diminish performance, except in the "worst" parameter case

without CMS, where performance is only slightly increased. Subtracting the mean of

the spectrum appears to have more of a detrimental effect on recognition performance

than a positive effect. This could be due to the "musical noise" mentioned in Sec-

tion 2.10.2, and the fact that most of the utterances do not exhibit audible constant

additive noise, which SMS was developed to counter. SMS does not appear to be a

very effective method for improving speech recognition in this system. Therefore, we

use CMS = 1 and SMS = 0 for best performance (95.7%).

 
 
 



Chapter 4

4.7 Effect of In(gamma) based state duration mod-

eling

To determine the effect of duration modeling on the recognition performance, the

system parameters in Table 4.5 were used, with Per formDuration = off. This

parameter set was used with the sets in Tables 4.7 and 4.8 to give the results in

Table 4.13.

best param (Per formDuration = off) 93.22%

best param (Per formDuration = on) 95.68%

worst param (Per formDuration = off) 80.8%

worst param (Per formDuration = on) 73.02%

As can be seen by these results, duration modeling improves the recognition rate slightly

for the "best" parameter set (error rate reduced by 36%), but significantly degrades

performance for the "worst" parameter set. This could be due to the fact that since

there are more states to train per model, there is less data available to train each

state, leading to inaccurate estimates of the duration parameters. Therefore, we use

Per f ormDuration = on for best performance.

The output of the level-building search gives a In(probability) score. Since this score

is strongly dependent on utterance length as well as a number of other factors, these

scores cannot be used as an absolute or even relative point of reference for deciding

whether the best utterance given by the level-building search was correctly recognised

or not.

 
 
 



In an attempt to alleviate this problem, an FSN grammar consisting only of the garbage

model was created, with the garbage model able to appear a number of times to make

up an utterance. Once a search has been run on an utterance using the normal grammar

FSN, another search can be done using this garbage FSN. The results relative to each

other do show a significant correspondence with regard to recognition accuracy. This

method can be used to generate a meaningful confidence measure by using the rules

given in Table 4.14. The confidence measure can in turn be used by the conversational

interface to decide the path of events to follow.

confidence decision

1. utterance > 10 . garbage accept

2. garbage < utterance < 10 . garbage confirm

3. utterance < garbage reject

Using these rules as a confidence measure, the classification of recognition results ob-

tained for the "best" and "worst" parameter sets can be seen in Table 4.15. These

results consider the case where a confirmation is necessary (i.e. case 2 in Table 4.14),

to be the same as an incorrect decision. Of course, the rules can be altered to change

the sensitivity of the system as desired, but ideally there should be more false rejections

than false acceptances, since a false acceptance is far worse than a false rejection.

The sum of false rejections and correct acceptance gives identical results to the previous

"best" and "worst" recognition rates (i.e. 95.68% and 73.02%), as can be expected.

These results show that this simple method does give a reliable confidence measure.

 
 
 



best: false rejection 5.2%

best: false acceptance 2.8%

best: correct rejection 1.7%

best: correct acceptance 90.3%

worst: false rejection 1.7%

worst: false acceptance 21.5%

worst: correct rejection 5.2%

worst: correct acceptance 71.6%

4.9 Experiments with extraneous speech

Off-line experiments were performed with speech data that contained extraneous speech.

A garbage model was trained to compensate for words not in the normal vocabulary

by using all 950 labeled words re-Iabeled as garbage, since the overall variance be-

tween words is very high. The HMM for the garbage model consisted of one state

and one mixture (this was found to give the best results), and a new grammar FSN

(extraneous) was created which added multiple optional garbage models to the start

and end of the full grammar for the level-building search .

• Ek wil met meneer ben vanleeuwen praat asseblief ("I would like to speak to

mister bert vanleeuwen please").

• Sit my deur na janus brink nou dadelik ("Put me through to janus brink imme-

diately").

 
 
 



number of utterances 36

person recognition 88.89%

Table 4.16: Extraneous speech recognition results

It can be seen that the recognition rate is still relatively high, but since the grammar is

much less constrained and the overall utterance length longer, the level-building search

takes much longer (in the order of 1 second on a Pentium III 550Mhz processor). On

closer inspection of the four error cases, one was found to have somebody laughing

loudly in the background during the crucial part of the utterance, and two more had

only the first name (i.e. no title or surname) in the utterance, in between extraneous

speech, leading to a greater chance of failure. This indicates (as can be expected) that

there is a higher chance of successfully recognizing a name within extraneous speech

when more of the name (e.g. title or surname) is specified.

4.9.1 Case study

One of the utterances ("Ek wi! met meneer ben vanleeuwen praat asseblief") was used

to provide an illustration of the working of the level-building algorithm and Viterbi

alignment.

The utterance length was 2.18 seconds, giving 182 frames of features in total (with a

framestep of 12ms). The resultant final match consisted of six garbage models, followed

by meneer ben vanleeuwen followed by more garbage models, so that meneer, bert and

vanleeuwen were found on levels six, seven and eight of the level-building search (the

first level is marked zero). The transcription of the result showed that meneer went

from frame 33 to frame 59, ben went up to frame 80 and vanleeuwen carried on till

frame 115, which matches very well with the positions in the wave file if converted to

 
 
 



Figure 4.5 shows the outputs of the <5't(i) function (the data was modified slightly prior

to plotting by replacing the log(zero) values (represented by -9.9999998· 1010
) with

the lowest probability number in the rest of the search) during Viterbi alignment of

the aforementioned HMMs on levels six, seven and eight (see also Section 2.7 and

Figure 2.4). Notice that vanleeuwen has 10 states, and the other two models have only

6 states (this experiment was still run with the long/short word models mentioned in

Section 4.2.1), and that states 2 to N have probability log(zero) in the first N - 1

frames due to the left-right nature of the Bakis type HMMs.

Effect of gender on recognition performance

To see how much effect the gender of the speaker has on classification performance, the

female data in the training sets were relabelled so that the HMM model names were all

uppercase letters (this was done for backward-compatibility; to do a genderless search

one only has to perform case-insensitive comparisons between the recognised phrase

and the transcription). This of course also has the effect of reducing the training

data for male and female models compared to the genderless model, so one can expect

reduced recognition performance if the same parameter sets are used. A new optimum

parameter set could be calculated, but ideally the amount of training data should be

increased. The latter is not an easy option however, since many more utterances need

to be recorded and painstakingly labeled.

The FSN grammar was expanded to include all female model paths (identical except

for the model name case difference), so the level-building search on this experiment

set takes twice as long as normal, but the training time remains about the same, since

there are now twice as many HMMs, but each with (on average) half as much training

data.
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Figure 4.5: 8t(i) for HMMs meneer (top), bert (middle) and vanleeuwen (bottom) on levels

six, seven and eight of a level-building search with extraneous speech

 
 
 



parameter set recognition rate male class. accuracy female class. accuracy

best param 85.29% 72.62% 93.64%

worst param 41.28% 93.85% 91.78%

The results for overall recognition accuracy as well as gender classification accuracy

were determined, and can be seen in Table 4.17.

Since the number of male and female speakers were almost the same (179 vs. 183),

the classification results were relatively high (much greater than 50%, which would be

as good as chance), showing that the chosen features for recognition are not entirely

gender independent, and therefore probably not entirely speaker independent either.

The reason the cepstral coefficients were chosen as features was that in the literature

they were found to have a large degree of speaker independence. The fact that the

system works as well as it does for speakers that are not in the training set at all shows

that there is truth in this, but obviously there is still a degree of speaker dependence.

The leading edge dictation software available today still requires a large amount of

training for a specific speaker, and thereafter the recognition rates are very speaker

dependent. More research needs to be done on finding effective speaker independent

features.

Real-time performance

The telephone speech recognition system was implemented on a PC equipped with

an Intel Pentium 133MHz processor. It was found that the entire process of feature

extraction, performing the level-building search, deciding whether this was a good

enough match and subsequently dialing the call to forward it to the correct person

took less than 1 second for an average utterance length of over 2 seconds, quick enough
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Chapter 5

Summary and conclusion

5.1 Summary of work and results

The main goal of this dissertation was to implement a telephone speech recognition

system (with the specific task of a telephone auto-attendant) using state-of-the-art

algorithms, and to perform experiments with the system to determine performance

and compare some different techniques to enhance performance.

The hardware solution consisted of a Pentium 133MHz class computer using the Mi-

crosoft Windows NT operating system, with a Dialogic D21/H telephone interface

card.

A literature study was undertaken to determine which speech recognition algorithm to

use, and find out what techniques have been developed to enhance performance. Based

on this, a decision was made to use hidden Markov models to represent whole words

in continuous speech.

A speech toolkit (HMTSR) was developed by our research group during the course

of this dissertation, and a number of enhancements and modifications specific to this

 
 
 



project were made. This toolkit was ported to the Windows operating system, since

initially there was no Dialogic support for the Linux operating system. The toolkit

was integrated with the main state machine controlling the conversational interface,

and the Dialogic API was utilised to control the D21/H card so that waveform speech

data could be recorded and played back as desired.

Almost one thousand words in total were recorded and manually labeled to form the

training set. This training set could then be used as a basis for performing experiments

to compare different techniques, and assess system performance.

The system in operational on-line mode could then recognise spoken names with a

confidence measure, and forward the telephone call to the desired person's telephone

number.

Based on the experimental results in Chapter 4, the overall best person recognition

performance attained off-line was 95.68%, using the parameters as specified in Ta-

bles 4.5 and 4.7. The on-line system performed rapidly enough even on slow hardware

to attain "real-time" recognition.

• The process of implementing a speech recognition system from first principles

was detailed.

• It was shown how low quality telephone speech data can be successfully used in

a speech recognition system.

• The system performance sensitivity with regard to different implementation tech-

niques and system parameters was shown.

 
 
 



• The system is the first of its kind known to be developed in the Afrikaans lan-

guage.

Furthermore, the results of this work were also published and presented at various

conferences (PRASAI 1998 [22], PRASA 1999 [23] and AfriCon 1999 [24]).

A feature of the current system is the fact that it uses word-based recognition models

rather than phonemic models. This implies that it is labour intensive to add more

callees to the system: Each word in the new callee's name needs to be recorded by at

least ten different speakers, all the words carefully labeled in the .wav data files, new

HMMs trained and added to the system, as well as adding the new name to the full

grammar FSN.

To improve upon this restriction would mean using a sub-word unit based recognition

system. The commercially available systems use the latter approach, and are more

flexible in that they are not word-based, but rather based on the recognition of sub-

word units, so that any vocabulary of words can be constructed using the sub-word

units. However, the word-based approach is much less computationally intensive in

terms of searches, and requires far less training data to implement each individual

word model. A sub-word unit system requires massive amounts of carefully labeled

data to achieve sufficient accuracy, and these data sets come at a large price. The

search performed by sub-word unit systems also requires that words need to be found

in strings of sub-word units, as well as only allowing the correct words in the grammar.

The effective grammar models used thus need to be much more complex.

Using the KLT transform matrix to optimally encode temporal information (see sec-

tion 2.3.1) can also be considered for future work, since it improves recognition accuracy
1Pattern Recognition Association of Souto Africa
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over using standard first and second order temporal derivatives, with little or no ad-

ditional computational cost. This research by Milner [9] looks promising, but was

discovered only after the experiments had been completed, so was not investigated as

part of this dissertation.

Using whole word hidden Markov modeling for telephone speech recognition has given

very good recognition results. The use of a finite state grammar network has proven

particularly helpful. The inclusion of the temporal derivative in the feature set, noise

compensation by cepstral mean substraction and duration modeling have all helped

to reduce the error rate. The ability to discern the accuracy of a recognition search

was essential for the inclusion of a conversational interface, and the initial experiments

with extraneous speech look very promising. The result from the gender separation

experiment indicates that there is still a degree of speaker dependence in the feature

set, but despite this the overall recognition performance of the system is still very high

with speakers not in the training set.

A good telephone auto attendant can be on duty 24/7/52, handling one or a dozen

incoming lines with ease - always patient, always doing its best to get the caller to

the right extension - for a fraction of the cost of human staffing. An auto attendant

is such a simple idea, yet it's taken so long to reach fruition. There are currently only

a handful of companies providing commercial auto attendants, but the market is now

ready to accept them, and technology is now ready to provide reliable auto attendants.

 
 
 



Appendix A

HMTSR detailed description

The Hidden Markov Toolkit for Speech Recognition 1 developed by the Pattern Recog-

nition group at the University of Pretoria is written in C++ and makes extensive use

of object oriented programming techniques. The following classes form the core of

HMTSR:

cache: Facilitates cacheing the extracted feature vectors from the raw sound files

to speed up experiments and model training.

cluster: Implementation of the K-segmental means algorithm to cluster the feature

vectors for the specified number of mixtures in the HMM.

grammar: Implements a finite state network class, parsing the description from file

and creating the network structure in memory. This is used to restrict grammar in the

level-building search.

1See website http://www.ee.up.ac.za/ee/pattern...recogni tion-page/HMTSR/HMTSR-O.2. tgz
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math: Routines to calculate Fast Fourier Transform, Discrete Cosine Transform,

Inverse Discrete Cosine Transform, Power Spectrum.

mem: Routines for allocating and freeing memory regions for 2-dimensional,3-dimensional

and 4-dimensional arrays of arbitrary type.

processing: Algorithms implemented to calculate pre-emphasis, mel-spaced filter

banks, mel-cepstra, hamming window, based on parameters of the system such as win-

dowsize (in milliseconds), stepsize (milliseconds), how many mel-cepstral coefficients

to calculate. All the feature extraction is done by these routines. A raw soundfile is

passed in, and a matrix of cepstral coefficients vs time (frame) is returned. Can also

optionally perform Spectral Mean Subtraction, since this must be done on the power

spectrum of the signal before the mel-cepstra are extracted.

sound: Class that deals with audio file formats, to extract the raw audio data as an

array of floating point numbers from NIST, AIFC and raw data files. Supports various

sample rates, bits per sample and number of channels.

speech: Class to encapsulate sound and processing. A speech object is instanti-

ated with a filename as parameter, automatically retrieves the speech data from the

file, and performs feature extraction and manipulation, e.g. Cepstral Mean Subtraction

and temporal derivative calculation.

transcription: A class to deal with transcriptions of speech data, i.e. labeling

which HMM represents which section of speech. Converts this information to and from

the .lola2 file format.

hmm: This actually consists of a number of classes and utility functions.

2.lola comes from location label, a file format for labeled transcriptions found in the OGI CSLU

toolkit. See website http://cslu .cse. ogi. edu/toolkit/old/man/n/seglist .html for details of

the file format.

 
 
 



• logmath: Utility functions to perform log mathematics. Log mathematics is

used throughout the HMM calculations since it involves addition and subtraction

instead of multiplication and division, resulting in faster, more efficient code.

• state: This class represents a state of an HMM, containing all the mixtures of

that state with mixture weights, with all the means and variances of each mixture,

the transition probabilities (or state duration gamma pdf properties), function

to calculate the observation probability for the state (weighted sum of mixture

probabilities), as well as functions to update the state parameters iteratively.

• hmm: This class represents the hidden Markov model, consisting of state ob-

jects, transition probability matrix (or state duration parameters) and a model

name as well as a display name (e.g. the silence model has a blank display name).

The class has methods to perform vector quantization, expectation-maximization,

Viterbi alignment and duration parameter training.

• search:

modeling.

• model: The model class consists of a number of HMM objects. It is used to

group HMMs with similar parameters (in terms of number of states, mixtures

and feature dimension), and can parse a text file describing the model to create

the hmmobjects.

• duration: This class encapsulates a single gamma pdf precalculated array, and

the parameters (mean and variance), as well as functions to calculate lngamma

and the lngammapdj.
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