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Abstract 
 
Data mining has become a commonly used method for the analysis of organisational 

data, for purposes of summarizing data in useful ways and identifying non-trivial 

patterns and relationships in the data. Given the large volumes of data that are 

collected by business, government, non-government and scientific research 

organizations, a major challenge for data mining researchers and practitioners is how 

to select relevant data for analysis in sufficient quantities, in order to meet the 

objectives of a data mining task. This thesis addresses the problem of dataset 

selection for predictive data mining. Dataset selection was studied in the context of 

aggregate modeling for classification.  

 

The central argument of this thesis is that, for predictive data mining, it is possible to 

systematically select many dataset samples and employ different approaches 

(different from current practice) to feature selection, training dataset selection, and 

model construction. When a large amount of information in a large dataset is utilised 

in the modeling process, the resulting models will have a high level of predictive 

performance and should be more reliable. Aggregate classification models, also 

known as ensemble classifiers, have been shown to provide a high level of predictive 

accuracy on small datasets. Such models are known to achieve a reduction in the 

bias and variance components of the prediction error of a model. The research for 

this thesis was aimed at the design of aggregate models and the selection of training 

datasets from large amounts of available data. The objectives for the model design 

and dataset selection were to reduce the bias and variance components of the 

prediction error for the aggregate models. 

 

Design science research was adopted as the paradigm for the research. Large 

datasets obtained from the UCI KDD Archive were used in the experiments. Two 

classification algorithms: See5 for classification tree modeling and K-Nearest 
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Neighbour, were used in the experiments. The two methods of aggregate modeling 

that were studied are One-Vs-All (OVA) and positive-Vs-negative (pVn) modeling. 

While OVA is an existing method that has been used for small datasets, pVn is a new 

method of aggregate modeling, proposed in this thesis. Methods for feature selection 

from large datasets, and methods for training dataset selection from large datasets, 

for OVA and pVn aggregate modeling, were studied. 

 

The experiments of feature selection revealed that the use of many samples, robust 

measures of correlation, and validation procedures result in the reliable selection of 

relevant features for classification. A new algorithm for feature subset search, based 

on the decision rule-based approach to heuristic search, was designed and the 

performance of this algorithm was compared to two existing algorithms for feature 

subset search. The experimental results revealed that the new algorithm makes 

better decisions for feature subset search.  The information provided by a confusion 

matrix was used as a basis for the design of OVA and pVn base models which are 

combined into one aggregate model. A new construct called a confusion graph was 

used in conjunction with new algorithms for the design of pVn base models. A new 

algorithm for combining base model predictions and resolving conflicting predictions 

was designed and implemented. Experiments to study the performance of the OVA 

and pVn aggregate models revealed the aggregate models provide a high level of 

predictive accuracy compared to single models. Finally, theoretical models to depict 

the relationships between the factors that influence feature selection and training 

dataset selection for aggregate models are proposed, based on the experimental 

results. 
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Chapter 1  

Introduction 
 

‘Into thy presence we come, not by the works we have done, but by the grace and the 

grace alone, into thy presence we come.’ (Benjamin Dube, 2007) 

 

The rate of growth in data volumes stored by organisations continues to grow at a 

phenomenal rate. For many organisations, the amount of data stored in the data 

warehouses is in the region of many terabytes. At the extreme end, there are 

organizations whose data warehouse sizes are in the region of 50 terabytes or more. 

Data warehouses and business intelligence tools for data analysis have become a 

necessity in many organizations due to the ever increasing competitive nature of 

doing business in the information age.  

 

Real-time data warehousing is not uncommon. Given the large volumes of data that 

are collected by business, government, non-government and scientific research 

organizations, a major challenge for data mining researchers and practitioners is how 

to select sufficient amounts of data for analysis, in order to meet the objectives of a 

data mining task. As second major challenge is design of fast methods of data 

analysis. The central argument of this thesis is that there is a need to employ 

methods of dataset selection that provide as much information as possible to the 

data mining algorithms. The dataset selection methods need to be coupled with fast 

and reliable methods of data analysis for the creation of reliable data mining models. 

The thesis concentrates on predictive data mining algorithms for classification tasks. 

Methods for feature selection, dataset selection, and model construction, are 

proposed and studied. It is argued and demonstrated that these methods result in the 

construction of reliable, high performance classification models for data mining from 

very large datasets. 

 

1.1 Motivation for the research  
 

Data mining is commonly defined as a collection of methods for the analysis of 

observational data (Hand et al, 2001; Smyth, 2001). The methods used in data 
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mining for purposes of data analysis originate mainly from the fields of Computer 

Science, Statistics and Operations Research. Several researchers (e.g. Giudici, 

2003; Smyth, 2001; Hand, 1999) have observed that data mining lies at the interface 

between Computer Science and Statistics. More recently, Olafsson et al (2008) have 

discussed the contributions of Operations Research to data mining. Formally, Hand 

et al (2001) have defined data mining as follows. 

 

‘Data mining is the analysis of (often large) observational datasets, to find unsuspected 

relationships, and to summaries the data in novel ways that are both understandable 

and useful to the data owner.’ 

 

From the Computer Science perspective, the main contribution to the field of data 

mining has been algorithms from the area of machine learning. The algorithms that 

originate from machine learning are employed in the implementation of local and 

global models from observational data (Giudici, 2003; Smyth, 2001). From Statistics, 

the parent field for data analysis, the main contribution has been the large body of 

knowledge on the summarisation of data that is generated by stochastic processes, 

estimation of descriptive and predictive models for stochastic processes, and the 

evaluation of the estimated models (Giudici, 2003; Smyth, 2001). From Operations 

Research the most distinctive contribution has been optimisation methods that can 

be employed in various modeling activities and especially in the selection of the best 

model from a set of possible models (Olafsson et al, 2008; Osei-Bryson, 2004, 2007, 

2008; Fu et al, 2003, 2006).  

 

The research for this thesis was directed at the selection of training data from large 

datasets for purposes of aggregate modeling. Aggregate modeling is concerned with 

the creation of many base models which are then combined into one aggregate 

model. From a computational perspective, it can be argued that the processing time 

complexity of most machine learning algorithms employed in data mining is typically 

non-linear. This property of machine learning algorithms places a limit  on the amount 

of data that can be processed in order to provide results within a reasonable and 

acceptable amount of time. The time complexity of machine learning algorithms for 

data mining is not the only issue to consider when faced with large data volumes. 

From a statistical perspective, it is not desirable to use a very large amount of data in 

the process of estimating one model. In the past there have been several negative 

comments, especially originating from the Statistics community, directed at various 
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research directions in data mining. In 1998, Hand (1998) made the following 

observation. 

 

‘..the term data mining is … synonymous with data dredging.. and has been used to 

describe the process of trawling through data in the hope of identifying patterns. It has 

a derogatory connotation because a sufficiently exhaustive search will certainly throw 

up some patterns of some kind … the object of data analysis is not to model the 

fleeting random patterns of the moment, but to model  the underlying structures which 

give rise to consistent and replicable patterns. ..the term data mining conveys the 

sense of naïve hope vainly struggling against the cold realities of chance.’ 

 

Both the computational perspective and the statistical perspective as discussed 

above, point to the need for data reduction. It is the author’s opinion that research 

efforts should be directed towards the study of methods for the selection of relevant 

data that can be used to create models that provide a high level of predictive 

performance. 

 

The problem that the work reported in this thesis aims to solve is the design of 

methods for training dataset selection, for purposes of creating many base models 

which can be combined into one aggregate model. Such an aggregate model should 

provide a higher level of predictive performance compared to a single model created 

from a single training dataset. This approach should lead to the usage of significantly 

large amounts of data while at the same time avoiding the computational and 

statistical problems highlighted above. The idea of using aggregate models is not 

new. As far back as 1996, Breiman (1996) proposed bootstrap aggregation as a 

method of improving predictive accuracy for models constructed from small datasets. 

At the present time, there are many research efforts directed at the design of 

aggregate predictive models.  

 

1.2 Current debates and practices in data mining from 
large datasets 
 

One approach that has been investigated by researchers in predictive data mining is 

the use of very large training datasets obtained from very large datasets. Training 

datasets of several millions records have been processed using very powerful 

machines (Chawla et al, 2001; Hall et al, 2000). The rationale behind this approach is 
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that when very large amounts of data are processed, then as much as possible of the 

information gathered about a subject area is incorporated in the model construction. 

An obvious disadvantage is that the model construction process takes a very long 

time. A second and more serious disadvantage may be explained through statistical 

theory. Smyth (2001), Hand et al (2001), and Hand (1998) have cautioned that when 

training datasets are very large it becomes very difficult to distinguish between noise 

and real structure in the data. 

 

Another explanation of this disadvantage comes from the machine learning literature. 

Dietterich (1995) has observed that for classification problems, a predictive model 

which has a very high level of training accuracy is not necessarily reliable when put 

to practical use. The main purpose of predictive modeling is to process data in order 

to find relationships that can be generalized. If an inductive algorithm is used to 

create a predictive model from a very large amount of data it will minimize the 

training error. However, there is a very high risk that it will fit the predictive model to 

the noise in the training data by memorizing peculiarities of the training data rather 

than finding a general predictive rule. This phenomenon is called overfitting (Smyth, 

2001; Dietterich, 1995). Prediction models based on very large amounts of data 

should therefore be treated with caution. 

 

A second approach to predictive data mining from large datasets is to take a single 

sample from a very large dataset and use it for model construction. Additional 

samples are then taken for validation and testing (Domingos, 2001; Kohavi et al, 

2004; Provost et al, 1999; John & Langley, 1996). This approach has also received 

much attention from theoretical research in statistical pattern recognition and 

machine learning, for example, Valiant (1984). The main advantage of this approach 

is that the training sample is typically much smaller than the large dataset, and so, is 

much faster to process. An obvious disadvantage is that the bulk of the data is 

discarded and only a small fraction of the data is used for making decisions about 

feature selection, model structure and model performance. A second disadvantage is 

that sampling results in stochasticity. If another random sample were to be taken, the 

selected features, model structure and measured performance may be significantly 

different.  

 

A third approach to predictive data mining from large datasets is to partition a large 

dataset, construct a predictive model based on each partition and then combine the 

different models into one aggregate model (Chawla et al, 2001; Hall et al, 2000; 
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Chan & Stolfo, 1998). One obvious advantage of this approach is that partitioning 

attempts to use as much of the available data as possible. Several researchers who 

have studied aggregate modeling from large datasets (e.g. Chawla et al, 2001; Hall 

et al, 2000; Chan & Stolfo, 1998) have argued that the performance of an aggregate 

model normally exceeds that of a single model constructed from a single large 

training sample. On the other hand, other researchers (e.g. Hall et al, 2000; Ali & 

Pazzani, 1996) have argued that there are various domains where partitioning does 

not result in any performance gains and may in fact result in loss of accuracy.  

 

The use of aggregate models has been studied by many researchers (e.g. Osei-

Bryson et al, 2008; Sun & Li, 2008; Ooi et al, 2007; Neagu et al, 2006; Kim et al, 

2002; Chan & Stolfo, 1998; Breiman, 1996; Krogh & Veldelsby, 1995; Kwok & Carter, 

1990) even though these studies have not always been in the context of very large 

datasets. A large body of literature and evidence exists to support the claims that 

aggregate modeling often leads to improved predictive performance. Given the 

foregoing observations, it is the author’s opinion that studies in dataset selection from 

large datasets should be directed towards improving the predictive accuracy of 

aggregate models. 

 

1.3 Scope of the research 
 

The title of this thesis makes reference to the term, predictive data mining. It is 

therefore important for the author to highlight the difference between predictive and 

non-predictive data mining. 

 

Data mining tasks may be broadly divided into four categories, namely: exploratory 

data analysis (EDA), local methods for pattern detection and rule extraction, 

descriptive modeling, and predictive modeling (Hand et al, 2001). Exploratory data 

analysis is concerned with the exploration of data without any prior clearly articulated 

idea of what one is looking for, or any plan of what output needs to be generated. 

Pattern detection and rule discovery activities are concerned with the identification of 

regions of the instance space whose characteristics significantly differ  from those of 

the other regions (e.g. association rule mining) or locating patterns of interest in data 

as is done in text mining (Hand et al, 2001). The objective of descriptive modeling is 

to create a model that describes the data or the process that generates the data 

(Hand et al, 2001). Examples of this include density estimation (estimation of the 
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overall probability distribution), cluster analysis (identification of naturally occurring 

groups in the data), segmentation (division of data into groups based on specified 

criteria) and, dependency modeling (description of the relationship between 

variables). For predictive modeling, the purpose is to create a model that may be 

used for the prediction of the value of the dependent variable, given the values of the 

independent (predictor) variables.  

 

The term predictive data mining refers to data mining methods that create predictive 

models (Hand et al, 2001). Predictive models may be constructed to predict the 

values of a quantitative variable as in regression or to predict the values of a 

qualitative variable as in classification. The research reported in this thesis is 

primarily concerned with classification problems. As discussed in the last section, 

there is a large body of evidence to support the claim that aggregate modeling has 

the potential to improve classification performance. The scope of the research 

reported in this thesis is directed at classification methods that employ aggregate 

modeling. 

 

In the data mining literature, Giudici (2003) has made a distinction between 

computational data mining and statistical data mining. The distinguishing 

characteristic between computational and statistical data mining is that while 

statistical data mining methods assume a specific probability distribution for the 

process that generates the data, computational data mining methods make no 

specific assumptions about the probability distribution for the data generating 

process. However for computational data mining and machine learning, there is the 

(not always stated) assumption that the data generating process is governed by a 

fixed but unknown probability distribution (Mitchell, 1997). The research reported in 

this thesis is aimed at computational data mining. 

 

1.4 The claims of the thesis 
 

The central argument of this thesis is that it is possible for predictive data mining to 

systematically select many dataset samples and employ different approaches 

(different from current practice) to feature selection, training dataset selection, and 

model construction. When a large amount of information in the large dataset is 

utilised in the modeling process, the resulting models should have a high level of 

predictive performance and should be reliable. 
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Ngwenyama (2007) has identified seven categories of scientific research claims. The 

first four claims identified by Ngwenyama (2007) are: (1) a scientific problem that has 

been solved (2) a general contribution to science (3) extension of a body of 

knowledge and (4) appropriateness of the research methodology.  Ngwenyama 

(2007) has used the argumentation model by the philosopher Toulmin (Toulmin et al, 

1979; Toulmin, 1958) to analyse the four categories of scientific research claims. In 

Toulmin’s argumentation model (Toulmin et al, 1979; Toulmin, 1958) claims are 

supported by data (observations / evidence) and warrants. The data (observations / 

evidence) are the grounds on which the claim stands. Warrants consist of general 

rules of inference and existing theories that serve as bridges or connections between 

the data (observations / evidence) and the claims. Warrants are supported by 

backings which are the known authoritative sources from which the warrants are 

drawn. The claims of this thesis are presented in terms of Ngwenyama’s (2007) 

categorisation and Toulmin’s (1958) argumentation model. The scientific problem 

that has been solved and the general contributions to science are presented in this 

section. The extensions to the body of knowledge and the research paradigm are 

presented in the next two sections. 

 

The first claim that is made in this thesis is that aggregate classification models 

based on One-versus-All (OVA) modeling (Ooi et al, 2007; Rifkin & Klautau, 2004) 

and positive-Versus-negative (pVn) modeling can be used to increase the amount of 

relevant data in the training datasets. Increasing training data through OVA and pVn 

modeling results in improved predictive performance compared to the use of a single 

model. OVA modeling involves the decomposition of a k-class prediction task into k 

2-class prediction tasks. pVn modeling involves the decomposition of a k-class 

prediction task into j (j<k) prediction tasks. OVA and pVn aggregate models differ 

from the aggregate models commonly discussed in the literature (e.g. Osei-Bryson et 

al, 2008; Kim et al, 2002; Chan & Stolfo, 1998; Breiman, 1996; Krogh & Veldelsby, 

1995; Kwok & Carter, 1990; Hansen & Salamon, 1990). Firstly, the aggregate models 

discussed in the literature cited above do not employ problem decomposition. 

Secondly, the training datasets used for the base models that constitute such 

aggregate models generally re-use the small amount of available data. The methods 

proposed in this thesis for the implementation of OVA and pVn aggregate models do 

not re-use training data, but rather, use a different training dataset for each base 

model. These methods result in high coverage of the instance space while at the 

same time avoiding the problems of data dredging and overfitting. Traditionally, data 
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dredging and overfitting are associated with the usage of large training datasets for 

single models. High coverage of the instance space provides more information for 

the prediction task which in turn results in high predictive performance.  

 

The second claim of this thesis is that the performance of aggregate models can be 

improved when the training samples for the base models are purposefully designed 

to reduce the bias and variance components of the prediction error. The bias 

component of the prediction error reflects the level of error in the estimation process 

of the model. The variance component reflects the sensitivity of the model to the 

training sample used to estimate the model (Friedman, 1997; Geman et al, 1992). 

 

The warrants and backing for the first and second claim are as follows: Based on 

statistical theory a random / stochastic process can be studied using many small 

samples of the data generated by the process in order to establish the underlying 

structure of that process. Secondly, theories have been formulated in machine 

learning and statistical pattern recognition to explain how prediction errors arise. 

Based on these theories, it is possible to select training datasets in such a way that 

the chances of error are significantly reduced. There have been various research 

efforts that use several samples in model construction and feature selection. Breiman 

(1996) has studied the use of many bootstrap samples from small datasets to 

implement classifier committees.  Freund and Schapire (1997) have studied boosting 

through the sequential creation of many small training samples, where each 

successive training sample consists of a larger number of training instances that are 

difficult to predict correctly. Studies have been reported on dataset selection methods 

which are guided by information on the characteristics of the instance space (Chan & 

Stolfo, 1998; Kubat & Matwin, 1997). All the above studies have demonstrated that 

purposeful training dataset selection for base models can result in major 

improvements in the predictive performance of aggregate models. 

 

The third claim of this thesis is that the use of many (relatively) small samples to 

measure correlations between the variables for the prediction task leads to a more 

reliable selection of the relevant features for the prediction task. The fourth claim of 

this thesis is that, when the domain-specific definitions of the strength of association 

between variables are incorporated into the feature selection decisions, good subsets 

of predictive features will be selected for the prediction task. 
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The warrants and backing for the third and fourth claims are as follows. Statistical 

theory tells that, when the correlation between two random variables is measured 

using one sample then if the sample is small, a small or large correlation coefficient 

could be purely due to chance (Smyth, 2001). On the other hand if the sample is 

large, a small correlation coefficient may appear to be statistically significant even 

though it has no practical significance (Cohen, 1988). For purposes of measuring the 

correlations between the predictive variables and the class variable, Bi et al (2003) 

have studied the use of many bootstrap samples for micro-array datasets, in order to 

achieve reliable feature subset selection. Even though the studies by Bi et al (2003) 

have been conducted on small datasets, the results of their studies indicate that 

there are benefits in using many small samples to establish feature relevance for 

prediction tasks. Research has been conducted on the incorporation of user 

preferences in algorithms for predictive modeling. Osei-Bryson (2004) has proposed 

the incorporation of user preferences in decision tree selection. Ooi et al (2007) and 

Yu and Liu (2004) have proposed the incorporation of user-specified preferences in 

feature selection methods. The foregoing observations provide motivation for the 

incorporation of domain-specific definitions of feature relevance into feature selection 

algorithms. 

 

The fifth and final claim of this thesis is that research into aggregate model 

construction methods using different methods of sample composition and feature 

selection should lead to useful theories for the improvement of aggregate model 

performance. When the data available for model construction is small, as was 

typically the case in the past, statisticians invented effective methods of model 

construction, validation and testing (Mitchell, 1997; Cohen, 1995). Bootstrap 

sampling for example, is useful for purposes of creating several large samples which 

have the same statistical properties as the small sample from which they are 

generated (Cohen, 1995).  

 

In this thesis the author further argues that, since at the present time very large 

amounts of data are available for data mining, it is productive to investigate (new) 

ways of predictive model construction coupled with new ways of dataset selection. It 

is the author’s opinion that the following issues have not been sufficiently studied by 

researchers: 

 

(1)  The use of many samples drawn from very large datasets for purposes of feature 

selection. 
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(2) The use of sampling in conjunction with partitioning for purposes of dataset 

selection and aggregate model construction. 

(3) The design of training dataset samples aimed at reducing bias and variance in the 

prediction error without the need to re-use training data.  

 

The author further argues that when very large amounts of data are available, data 

mining researchers have at their disposal a great opportunity to conduct empirical 

studies of the factors, and the relationships between the factors that affect various 

aspects of predictive model design and construction.  In the data mining literature, 

there seems to be a scarcity of clearly articulated theoretical models based on 

empirical studies that can help to explain the relationships between the factors that 

determine: (1) the quality of selected feature subsets, (2) the quality of selected 

dataset samples and, (3) the predictive performance of aggregate models.  It should 

be pointed out however that for aggregate model construction, several researchers 

have conducted studies on various factors that affect aggregate model performance 

in the context of small datasets. Examples of these studies are Kwok and Carter 

(1990), Ali and Pazzani (1996), Breiman (1996), and Ho (1998).  

 

The investigations of this thesis were directed at dataset selection methods from 

large datasets for purposes of aggregate model implementation. The main research 

question for the thesis was as follows: 

 

What methods of dataset selection can be used to obtain as much information as 

possible from large datasets while at the same time using training datasets of small 

sizes to create predictive models that have a high level of predictive performance? 

 

The investigation of the answers to the above question was conducted using the 

design science research paradigm which is described briefly in the following section 

and in detail in chapter 4. The design science research paradigm enabled the author 

to generate experimental evidence (data) to support the claims presented in this 

section.  

 

1.5 Research paradigm 
 

The research paradigm used for this research is design science research as 

described by March and Smith (1995), Hevner et al (2004), Vaishnavi and Kuechler 
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(2004/5), and Manson (2006). Design science research involves two distinct steps. In 

the first step, an artifact is created. In the second step, an analysis of the usage and 

performance of the artifact is conducted. The purpose of the analysis is to 

understand, explain, and possibly improve on one or more aspects of the artifact 

(Vaishnavi & Kuechler, 2004/5). 

 

In the context of information systems, artifacts may be models (abstractions and 

representations), methods (algorithms and practices) and instantiations 

(implemented and prototype systems) (Hevner et al, 2004). Manson (2006) has 

summarised these views by observing that design science research is a process of 

using knowledge to design and create useful artifacts, and then using rigorous 

methods to analyse why, or why not, a particular artifact is effective. Scientific 

research is about generating knowledge. A design science research effort should 

therefore make a contribution to the knowledge base of the field. More specifically, 

the contributions of design science research could be: 

(1) Constructs. These are the components of the conceptual vocabulary of the 

domain. 

(2) Models.  These are propositions expressing the relationships between the 

constructs / concepts of the research domain. 

(3) Methods. This is the ‘how-to’ knowledge. It is specified in the form of steps used 

to perform a given task. 

(4) Instantiations. This is the operationalisation of the constructs, models and 

methods to demonstrate that the models and methods can be implemented in a 

working system. 

(5) Better theories.  

 

Design science research was found to be appropriate for this thesis because the 

central argument is based on the development of methods for feature and training 

dataset selection as well as the design and creation of predictive models.  

 

1.6 Research contributions 
 

It was stated in the last section that design science research should make a 

contribution to the knowledge base of the field. The claims of the research 

contributions of this thesis to the knowledge base of predictive data mining are 

summarised in this section in terms of the expectations of design science research 
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outputs. Two additional components in Toulmin’s (1958) argumentation model are 

qualifiers and rebuttals. Qualifiers are used to limit the strength of a claim and 

rebuttals provide an elaboration for the qualifiers. A detailed discussion of the claims 

of the research contributions and, the qualifiers and rebuttals identified by the author 

are presented in chapter 11 of this thesis. 

 

1.6.1 Methods and instantiations 
 

Methods for feature selection from large datasets were studied. The studies involved 

testing methods of reliable feature selection that  involve the use of robust measures 

of correlation, the use of many samples to measure correlations, and the use of 

statistical tests, such as the t-test and fake variables, for the validation of selected 

features. Arising from these studies, recommendations are given in this thesis on 

how to conduct reliable ranking of predictive features when large datasets are 

available. 

 

A new search algorithm for feature subset selection  is proposed. This algorithm uses 

the domain-specific knowledge of the meanings of the terms strong correlation and 

weak correlation in order to select the best subset of features for a list of ranked 

features. It is claimed in this thesis that the proposed method makes better decisions 

compared to two feature subset selection algorithms proposed in the literature, 

namely: Correlation-based Feature Selection (Hall, 1999, 2000) and Differential 

Prioritisation (Ooi et al, 2007). 

 

The implementation of One-versus-All (OVA) aggregate classification models in the 

presence of large datasets was studied. A new method of determining composition of 

the training dataset for each base model is proposed. A new method of aggregate 

model implementation, named positive-Vs-negative (pVn) classification is proposed. 

An algorithm is proposed for the determination of the classes to be included in each 

base model. A method of determining the sample composition for the training dataset 

of each base pVn model is proposed. An algorithm for combining base model 

predictions and resolving conflicting predictions is proposed. 
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1.6.2 Constructs, models and better theories 
 

Theoretical models are propositions expressing the relationships between the 

constructs / concepts of the research domain. For feature selection, a model was 

created to combine the work of various researchers. This model was extended by the 

author to explain how the definition of feature relevance, the methods used to 

measure correlations, and the number of dataset samples used, all combine to affect 

the quality of selected feature subsets. For aggregate model construction, the work of 

Ho (1998), Freund and Schapire (1997), Ali and Pazzani (1996), Breiman (1996), 

Kwok and Carter (1990), and Hansen and Salamon (1990), was used as a basis to 

construct a theoretical model that explains the relationships between the factors that 

affect aggregate model performance. This model was extended by the author to 

explain how dataset partitioning methods, learning task complexity, overlap between 

learning tasks, overlap between training instances, and the quality of the selected 

features affect the performance of aggregate models. The experimental results were 

used to demonstrate the relationships between the various factors that affect 

predictive model performance.  

 

1.7 Overview of the thesis 
 

Chapters 2, 3 and 4 provide the background to the research. Chapter 2 provides a 

discussion of the dataset selection problem for predictive data mining. The chapter 

provides a background to this problem, giving examples of several application 

domains where very large datasets are to be found. A review of literature on current 

methods of selecting training set data from very large datasets for purposes of 

classifier construction is given. Theoretical methods as well as empirical methods are 

discussed. The discussion of this chapter also covers single model and aggregate 

model construction, since the problems of dataset selection and model construction 

are related. Chapter 3 provides an overview of the feature selection problem for 

classification tasks in predictive data mining. A review of the available methods for 

feature selection from small datasets is provided. The weaknesses of these methods 

are also highlighted. Robust measures of correlation are discussed briefly. In chapter 

4, the research questions, the central argument of the thesis, and the research 

paradigm and research methods, are discussed in detail. 
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Chapters 5, 6, 7, 8 and 9 provide the details of the empirical studies that were 

conducted. Further details of the experimental results are provided in the 

appendices. In chapter 5, the experimental results on feature subset selection are 

presented. The experimental results demonstrate that the use of many samples 

results in more reliable feature selection. The results also demonstrate that the use of 

domain-specific knowledge will lead to better feature subset selection when heuristic 

subset feature selection is employed. Based on the experimental results of chapter 5 

and the existing literature, a theoretical model for the factors that influence the quality 

of feature selection is proposed in chapter 10. 

 

Chapter 6 provides a discussion of the methods that were used in the experiments 

for aggregate model design, training dataset design and selection, partitioning and 

sampling, and base model design and aggregation. The studies to evaluate the 

performance of the proposed methods are presented in chapters 7, 8 and 9. 

 

Chapter 7 provides a discussion of the empirical study of the use of OVA modeling. It 

is demonstrated that the use of OVA base models where each base model uses a 

different training set of the same size as a single model can lead to significant 

improvements in predictive performance. It is further demonstrated that, by 

establishing the nature of the instance space and then determining which regions of 

the instance space to take samples from for each OVA base model, a level of 

predictive accuracy that is higher than that of a single k-class model can be obtained. 

Based on the experimental results of chapter 7 and the existing literature, a 

theoretical model for the factors that influence the performance of aggregate models 

is proposed in chapter 10. 

 

Chapter 8 presents a discussion of the new method of aggregate model 

implementation called positive-Vs-negative (pVn) classification, as well as the 

proposed methods for determining the class and sample composition for each pVn 

base model. Experimental results of the studies to demonstrate the performance of 

pVn modeling are presented. The experimental results demonstrate that, for the 

datasets used in the experiments, pVn aggregate modeling provides a high level of 

predictive accuracy. The experimental results of chapter 8 are used in chapter 10 to 

enhance the theoretical model for the factors that influence the performance of 

aggregate models. Chapter 9 provides an in-depth analysis of the OVA and pVn 

aggregate models operating under different conditions.  
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Chapter 10 presents the recommendations for dataset selection based on the 

experimental results for the thesis. Chapters 11 and 12 provide discussions and 

conclusions for the thesis as well as suggestions for future work. Chapter 11 provides 

a discussion of the contributions of this thesis to the knowledge base of the field of 

predictive data mining using aggregate classification models. The discussion of the 

contributions is presented in terms of the outputs of design science research. 

Chapter 12 provides conclusions for the thesis as well as suggestions for future work. 
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Chapter 2  

Dataset Selection and Modeling from 
Large Datasets 
 

This chapter provides a discussion of the dataset selection problem for predictive 

data mining. The discussion provides a background to the dataset selection problem, 

giving examples of application domains where very large datasets are to be found. A 

review of the literature on current methods of selecting training set data from very 

large datasets for purposes of classification modeling is given. Theoretical methods 

as well as empirical methods are discussed.  Since dataset selection and model 

construction are intimately linked, the discussion in this chapter also addresses 

single model and aggregate model construction. The strengths and shortcomings of 

the theoretical and empirical methods are highlighted. The chapter ends with a 

discussion of research directions that, in the author’s opinion, are useful to pursue in 

order to  effectively  answer the research question which was  presented in chapter 

1. 

 

This chapter is organised as follows: Section 2.1 provides motivation for the dataset 

selection problem with examples of four application domains for data mining. 

Sections 2.2 and 2.3 respectively introduce the classification modeling problem and 

dataset selection problem. Sections 2.4 and 2.5 respectively provide a review of  

theoretically based and empirically based  methods for  training dataset selection for 

single model construction. Section 2.6 gives a discussion of existing methods for 

training dataset selection for multiple model construction. Conceptual views of 

classification modeling and the sources of classification error are respectively 

discussed in sections 2.7 and 2.8. The limitations of current training dataset selection 

methods and the proposed methods of training dataset selection are respectively 

presented in sections 2.9 and 2.10. Section 2.11 concludes the chapter. 

 

2.1 The need for dataset selection 
 

Modern data warehouses store very large volumes of data. In many areas where 

data mining is applied, very large amounts of data are collected. There are many 

application areas where data mining from large datasets is applied. These areas 
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include scientific applications (Fayyad et al, 1996), forensic data mining for purposes 

of predicting telephone fraud (Hand, 1999), credit card fraud (Chan & Stolfo, 1998), 

computer network intrusion detection (Lee & Stolfo, 2000), web usage mining for 

analysing and predicting customer purchases behaviour (Theusinger & Huber, 2000; 

Kohavi et al, 2004), and customer relationship management (Rygielski et al, 2002; 

Kohavi et al, 2000; Berry & Linoff, 2000). This section provides examples of 

application areas where very large datasets for data mining are encountered. 

Customer Relationship Management (CRM) is discussed in section 2.1.1. Web 

usage mining and electronic commerce are discussed in section 2.1.2. Forensic data 

mining is discussed in section 2.1.3. Scientific applications of data mining are 

discussed in section 2.1.4.  

 

2.1.1 Customer Relationship Management - CRM 
 

Customer Relationship Management (CRM) (Giudici, 2003; Rygielski et al, 2002; 

Bose, 2002; Berry & Linoff, 2000) is a collection of business activities specifically 

aimed at maintaining good relationships with the business customers. CRM involves 

the formulation and implementation of strategies to encourage customer loyalty in 

order for a business to obtain as much value as possible from the customers. 

Statistically driven CRM (Giudici, 2003) involves the collection, storage and analysis 

of data about customer interactions with a business in order to obtain a better 

understanding of customer behaviour. A better understanding of customer behaviour 

enables businesses to provide better services and product offerings to the customers 

(Giudici, 2003; Rygielski et al, 2002; Bose, 2002). 

 

 Rygielski et al (2002) have argued that, in order for a business to succeed with 

CRM, the business needs to capture and analyse massive amounts of customer 

data, analyse the data and transform the analysis results into actionable information. 

Rygielski et al (2002) have also argued that the analysis of customer data using 

predictive data mining, especially to extract rules, is an essential component of CRM 

for the modern business. The use of electronic commerce has made it much easier 

to collect massive amounts of data about customer purchasing behaviour in data 

warehouses. The availability of large volumes of data on customer purchasing 

activities has given rise to research interest in the area of web usage mining for e-

commerce. Typical usage of data mining for CRM includes the analysis of customer 
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attrition, churn, propensity to purchase and customer lifetime value (Giudici, 2003; 

Rygielski et al, 2002). 

 

2.1.2 Web usage mining and electronic commerce 
 

For electronic commerce, since data collection is an automated process, data 

volumes can grow very rapidly. One interesting application area which has emerged 

for e-commerce data is clickstream analysis (Kohavi et al, 2004; Theusinger & 

Huber, 2000). Clickstream analysis is used to study user navigation patterns at a 

website.  The study of user navigation patterns at a website can expose structural or 

usability problems for a website, which in turn provide useful information for 

improving the website design. Such a study will also identify which click sequences 

lead to purchases (Theusinger & Huber, 2000).  Kohavi et al (2004) have observed 

that websites that have 30 million page views per day will need to store in the region 

of 10 billion records of clickstream data each year. Linden et al (2003) have reported 

that Amazon.comTM conducts electronic trading with more than 29 million customers 

per month and stocks several million catalogue items at any given time. The 

collection of large amounts of web navigation and purchases data  creates major 

challenges for clickstream analysis, for e-traders such as Amazon.comTM. Web 

usage mining applications make explicit the fact that it may be  practically impossible 

to process all of the available data for real-life e-commerce applications of data 

mining. 

 

2.1.3 Forensic data mining 
 

Forensic data mining involves processing large amounts of data in order to identify 

criminal activities such as credit card fraud (Chan & Stolfo, 1998; Hand, 1999) and 

computer network intrusion (Lee & Stolfo, 2000). Chan and Stolfo (1998) have 

reported studies conducted on data for credit card transactions. Chan and Stolfo 

(1998) have observed that, for the credit card fraud detection domain, there may 

typically be millions of transactions occurring every day. Hand (1999) has reported 

that 350 million transactions are recorded annually by UK’s largest credit company. 

Hand (1999) has further discussed the need for real-time data analysis for fraud 

detection and has argued that, since banking transactions happen all the time, 

models created, say weeks or months after the fact are useless.  There is a need to 
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constantly create new and up-to-date models. Hand (1999) has further reported that 

by 1999 AT&TTM was recording 200 million call detail records per day. Phua et al 

(2005) have reported that descriptive modeling (e.g. cluster analysis), predictive 

modeling (classification and regression), and pattern detection and rule extraction 

(e.g. association rules) are all data mining methods that are commonly employed in 

fraud detection. Scalability of these methods is therefore a serious issue for fraud 

detection, and dataset selection becomes a necessity. 

 

For modern computer networks large volumes of data are collected and stored in 

server log files to record all user connections to each server in the network. The 

users who access the network servers may be authentic users, or may be malicious 

criminal entities. The data stored in the server log files may be used to create 

predictive models that are used as network intrusion detection systems (IDS)  (Lee &  

Stolfo, 2000; Stolfo et al, 2000). Lee et al (2000) have observed that the volumes of 

data stored in server log files are typically huge, as computer networks can 

experience several million connections on some days due to denial-of-service 

attacks. 

 

2.1.4 Scientific applications of data mining 
 

Fayyad et al (1996) have presented various case studies of the application of data 

mining to scientific data. Fayyad et al (1996) have observed that the main challenge 

for the application of data mining to scientific data that is automatically collected by 

scientific instruments is that these instruments can easily generate terabytes of data 

at rates as high as several gigabytes per hour. One interesting example is the 

Palomar Observatory Sky Survey that was conducted over a period of six years 

(Fayyad et al, 1996). The data collected consisted of 3TB of image data containing 2 

billion sky objects. The basic problem here was to create a survey catalogue 

recording the (predictive) features of each object with its class: star or galaxy. Fayyad 

et al (1996) have stated that the problem was solved using decision tree learning with 

multiple trees, and rule extraction with statistical optimisation. 

 

A second interesting example of the application of data mining to scientific data is the 

analysis of geoscience data for purposes of earthquake detection. Stolorz and Dean 

(1996) have discussed the Quakefinder system which detects and measures tectonic 

activity in the earth’s crust by examining satellite data. The Quakefinder system 
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processes massive datasets on a 256-node CrayTM T3D parallel supercomputer to 

ensure fast turnaround of results for scientists. It is generally not possible for a 

predictive data mining algorithm to process all of the data for scientific applications 

where data is automatically collected by measuring instruments. Supercomputers are 

however used in order to process as much of the data as possible. 

 

2.2 Classification modeling from very large datasets 
 

Classification modeling is the process of creating a model which predicts the values 

of a qualitative variable called the class variable.  There are two approaches that 

have been proposed in the literature for the construction of predictive classification 

models from very large datasets. The first approach to modeling is concerned with 

constructing one model using a single sample whose performance is estimated to be 

as good as that of a model that would be obtained from the whole dataset. The 

second approach to modeling is concerned with the partitioning of a large dataset 

into many small subsets which can be efficiently processed, possibly in parallel, 

creating a base model from each subset of data, and then combining the base 

models into an aggregate model.  The predictive performance of the aggregate 

model is expected to be at least as good and in several cases superior to that of a 

single model. Aggregate model construction methods are generally concerned with 

increasing accuracy compared with the use of a single predictive model. Several 

methods for aggregate model construction are directly concerned with the parallel 

processing of the dataset using massively parallel machines in order to ensure that 

all the data, or as much as of the data as possible, is used in model construction. 

This section provides a formal definition of the classification problem and the 

terminology for classification modeling. Methods for single model construction from 

large datasets as well as the methods for aggregate model construction from small 

datasets and from very large datasets are discussed. The terminology for 

classification modelling is presented in section 2.2.1. The classification modeling 

problem is discussed in section 2.2.2. Single model and aggregate construction are 

respectively discussed in sections 2.2.3 and 2.2.4. Serial and parallel aggregation, 

and model testing are respectively discussed in sections 2.2.5 and 2.2.6. 
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2.2.1 Terminology for classification modeling 
 

A dataset for predictive modeling may be described as an N x (d+1) data matrix. In 

the data matrix each row represents (d+1) measurements on a real-life object so that 

the N rows in the data matrix represent N real-life objects (Hand et al, 2001). The 

rows of the data matrix are commonly called patterns (Liu & Motoda, 1998), 

examples (Mitchell, 1997), instances or cases (Hand et al, 2001). The columns of the 

data matrix are commonly called variables, features or attributes (Hand et al, 2001; 

Mitchell, 1997). For predictive modeling the first d columns are called the predictor 

variables or features and the (d+1)st column is called the predicted variable. Specific 

to classification modeling, the predicted variable is called the class variable. The d-

dimensional space defined by the variables is commonly called the measurement 

space (Hand, 1997) or instance space (Mitchell, 1997). Within this d-dimensional 

space, each object (instance) corresponds to one point and the object has an 

associated class label specified by the (d+1)st column (class variable). In this thesis 

the term instance is used to refer to the objects, the term feature is used to refer to a 

predictor variable, the term class variable has the usual meaning and, the term 

variable is used to refer to a random variable in the generic sense. The term instance 

space is used to refer to the d-dimensional space defined by the predictor variables.  

 

The variables for the data matrix may be quantitative or qualitative (Giudici, 2003; 

Hand et al, 2001). A quantitative variable has numeric values that are either discrete 

or continuous. The values of a quantitative discrete variable have a finite number of 

levels. The values of a quantitative continuous variable come from the domain of real 

numbers. A qualitative variable has values that are either nominal or ordinal. The 

values of a qualitative nominal variable have a finite number of categories which do 

not possess an ordering. The values of a qualitative ordinal variable have a finite 

number of categories which possess an ordering (Giudici, 2003; Hand et al, 2001). 

The term categorical variable is also used in the literature to refer to a qualitative 

variable (Giudici, 2003; Hand et al, 2001). The terms quantitative variable, 

quantitative feature, qualitative variable, and qualitative feature were adopted for this 

thesis. 

 

In the literature on machine learning and data mining, various names are used to 

refer to predictive models for classification. A predictive classification model that is 

created from a single training sample using a single classification algorithm is called 

a classifier. When several classifiers are created from one or more training datasets 
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for purposes of combining them into one predictive model, these classifiers are called 

base classifiers or base models. A classifier that is created by combining several 

base classifiers is referred to using various terms. Breiman (1996) has used the term 

aggregation to refer to the process of combining classifier predictions, and the term 

aggregate predictor to refer to the model that results when several classifiers are 

combined into one model. The terms ensemble and ensemble classifier have been 

used by Hansen and Salamon (1990) to refer to combinations of artificial neural 

networks and are very commonly used in the current machine learning and data 

mining literature. The term committee of classifiers, originating from work on query by 

committee, has also been used to refer to ensemble classifiers.  The term multiple 

model is also commonly used (Sun & Li, 2008; Ali & Pazzani, 1996; Kwok & Carter, 

1990). In this thesis a decision was made to use the terms single model, base model, 

and aggregate model.  The term single model is used to refer to a classifier created 

by one algorithm from a single training dataset. The term aggregate model is used to 

refer to a classification model that is created by combining several base models.  The 

terms single model and aggregate model were chosen as it was felt that they capture 

more precisely, and clearly contrast the structures of the models to which they refer. 

 

In the literature on ensemble classification the terms complementary classifiers and 

complementarity are used to refer to base classifiers which make uncorrelated errors 

(e.g. Martínez-Muñoz et al, 2009). Base model diversity is a property that is related to 

complementarity. The term syntactic diversity is also used in the literature to refer to 

base model diversity (e.g. Ho, 1998; Ali & Pazzani, 1996; Krogh & Vedelsby, 1995; 

Kwok & Carter, 1990; Hansen & Salamon, 1990). Syntactic diversity refers to the 

level of structural differences between the base models that constitute an aggregate 

model. Martínez-Muñoz et al (2009) have observed that base model diversity is a 

necessary but not sufficient condition for complementarity. The term syntactic 

diversity is used in this thesis to refer to base model diversity. The term competence 

is used in the literature (e.g. Ali & Pazzani, 1996) to refer to the high predictive 

performance or high predictive expertise of base models. The terms competence and 

high expertise are used synonymously in this thesis. 

 

In machine learning literature, the terms generalisation error and generalisation 

accuracy are used to refer to the error and accuracy rates of a classifier on data that 

was not used in training the classifier (Mitchell, 1997). In statistics and data mining 

literature the terms prediction error and prediction accuracy are used to refer to the 

error and accuracy of a predictive model. In this thesis the terms prediction error and 

 
 
 



  23 

prediction accuracy were adopted. The term predictive performance is used to 

generally refer to various measures of performance including prediction error and 

prediction accuracy. Performance measures for classification models are presented 

in chapter 4. 

 

The term bias appears in machine learning and statistics literature with different 

meanings. In statistics literature the term bias refers to estimation bias which is the 

error in the estimation of a parameter or a model (Mitchell, 1997). In machine 

learning literature the term bias has been adopted with the same meaning as used in 

statistics (Mitchell, 1997; Geman et al, 1992). In machine learning the terms inductive 

bias and preference bias refer to the set of methods used by an inductive algorithm 

to select a hypothesis (model) from the set of all possible hypotheses (models)  in the 

hypothesis space (model space) (Mitchell, 1997). In this thesis the term bias is used 

with the statistical meaning and the term inductive bias is used with the machine 

learning meaning. The term search bias is used to refer to the preferences of a 

heuristic search procedure. 

 

2.2.2 The classification modeling problem   
 

This research is specifically concerned with classification modeling. Classification 

modeling is the process of creating a model to be used for the prediction of the 

values of a qualitative variable, given the values of the predictive features. For 

applied data mining, classification modeling is part of a whole process which involves 

business understanding, data understanding and preparation, model creation, model 

assessment and deployment.  The Cross-Industry Standard Process for Data Mining 

(CRISP-DM) is a process model that has been widely adopted for applied data 

mining (Shearer, 2000). CRISP-DM provides recommendations for the phases to be 

conducted for data mining projects. Within CRISP-DM the two phases that are 

directly related to predictive modeling are data preparation and modeling.  For 

predictive classification modeling, these two phases involve (among others) the 

following activities: (1) data selection (2) data construction (e.g. creation of the class 

variable) (3) feature selection (4) model construction (5) estimation of model 

performance (Shearer, 2000). 

 

It has been illustrated by the examples of the last section that for many application 

areas, data already exists in large quantities. Data selection is concerned with the 
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selection of instances and features that have some relevance to the prediction task. 

Feature selection is concerned with the selection of the most useful features for the 

prediction task. Classification modeling often requires the construction of a class 

variable using information derived from other variables based on the objectives of the 

classification task. Classification modeling involves the estimation of a mapping m  

(or hypothesis h ) from an instance x = )...,( 1 dxx  in the d-dimensional instance space 

to the values of the class variable which consists of classes },...,{ kcc1  (Hand et al, 

2001). The two conceptual views of classification are discussed later in this chapter. 

 

2.2.3 Single model construction 
 

Methods for single model construction from large datasets are motivated by the 

learning curve. Several researchers have argued that the empirical estimation of 

training and predictive accuracy achievable from a given large dataset and a given 

learning algorithm may be done using learning curves (Provost et al, 1999; John & 

Langley 1996; Catlett 1991).  A learning curve shows the relationship between 

sample size (x axis) and the accuracy of the model (y axis) produced by an inductive 

algorithm. Learning curves typically have three sections as shown in figure 2.1. The 

leftmost section has a steep slope, the middle section has a more gentle slope, while 

the rightmost section is a plateau (Provost et al, 1999; Catlett 1991).  These three 

properties of the learning curve have been used as justification that a single model 

constructed from a large sample should provide a sufficient level of predictive 

accuracy (Provost at al, 1999; John & Langley, 1996; Catlett, 1991). 

 

John and Langley (1996), Provost et al (1999) and others have conducted empirical 

studies and devised methods for establishing the sample size minn  needed to obtain 

maximum accuracy for a given dataset and algorithm. Extrapolation of learning 

curves (ELC) is one method that has been used to fit learning curves (Frey & Fisher 

1999).  For ELC, training sets of increasing size are used to fit a parametric learning 

curve, which is an estimate of the algorithm’s accuracy as a function of training set 

size. 

 

 

 
 
 



  25 

 
Figure 2.1   A typical learning curve 
 

2.2.4 Aggregate model construction 
 

The idea of using an aggregate model originates from the work of Breiman (1996) on 

bagging predictors. Breiman (1996) has demonstrated that, by creating classifiers 

from many bootstrap samples of a small dataset, prediction performance may be 

greatly improved. Bootstrap samples are created by using sampling with replacement 

in order to create many training datasets each with the same size as the original 

dataset. Hand et al (2001) have observed that model aggregation has conceptual 

similarities with Bayesian model-averaging. For Bayesian model-averaging all 

models in the model space are used in order to maximise predictive accuracy. The 

vote of each model is weighted by the posterior probability of that model, given the 

training data (Domingos, 2000b; Ali & Pazzani, 1996). Since the generation of all 

models is intractable, all implementations of aggregate modeling have to be 

approximations, and bagging predictors are an example of such an approximation 

(Ali & Pazzani, 1996). 

 

Chawla et al (2001) have proposed a method of improving classifier accuracy by 

partitioning a large dataset, constructing a base model with all the data from each 

partition, and combining the base models into an aggregate model. Chawla et al 

(2001) have concluded that such a strategy leads to a higher level of predictive 

performance compared to the use of a single model constructed from the whole 

dataset. Chawla et al (2001) have argued that bagging is not suitable for very large 

datasets. In their experiments with various ways of partitioning a dataset, Chawla et 

al (2001) have concluded that disjoint partitioning results in the best performance. It 

should be highlighted that Chawla et al (2001) used a supercomputer with a 

accuracy 

n min N 
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massively parallel architecture and it took ten hours to create an aggregate model for 

a 3.6 million record dataset with 304 features. 

 

Hall et al (2000) have conducted experiments that are fairly similar to those of 

Chawla et al (2001), using the same architecture as that used by Chawla et al 

(2001). The main difference in the studies is that Hall et al (2000) have used four 

very large datasets (1.6, 3.2, 6.4 and 51 million instances) in their experiments 

compared to Chawla et al (2001) who have used one very large dataset (3.6 million 

instances). Hall et al (2000) have observed that for different datasets, different 

amounts of partitioning provide different levels of accuracy. Hall et al (2000) have 

reported that accuracy will actually decrease when partitioning is applied to very 

large datasets where very small classes are present in the data. Partitioning of such 

datasets causes the very small classes to appear as noise. The main conclusion 

made by Hall et al (2000) is that the use of disjoint partitions of a very large dataset 

may result in a model with the same accuracy as that obtained without any 

partitioning. Hall et al (2000) have further concluded that the use of overlapping 

subsets, in a manner similar to bagging, may provide an increased level of accuracy.  

 

Ali and Pazzani (1996) have studied the use of aggregate models on data originating 

from many different domains. The objective of Ali and Pazzani’s (1996) study has 

been to explain why there is a significant variation in prediction error reduction from 

domain to domain when aggregate models are used. Ali and Pazzani (1996) have 

tested twenty nine (29) datasets and found that aggregate models provide significant 

prediction error reduction on only half of these datasets. Ali and Pazzani (1996) have 

made four main conclusions from their study. The first conclusion is that aggregate 

models are better at reducing prediction error on domains for which the prediction 

error is already very low, than on domains that have noisy data. The second 

conclusion is that aggregate models improve prediction performance in those 

domains with many irrelevant features. The third conclusion is that as the number of 

irrelevant features increases, the performance of aggregate models decreases. The 

fourth conclusion is that when the prediction errors made by the base models are 

strongly correlated, the aggregate model does not provide any prediction 

performance improvements. 

 

Several authors (e.g. Ho, 1998; Krogh & Vedelsby, 1995; Kwok & Carter, 1990; 

Hansen & Salamon, 1990) have argued that when aggregate models exhibit 

syntactic diversity, then major improvements in prediction performance should be 
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realised. On the other hand, Ali and Pazzani (1996) have argued that the accurate 

models that can be learned for several domains are syntactically similar, so that 

increasing syntactic diversity does not result in improvements. Ali and Pazzani (1996) 

have further argued that in order to minimize aggregate model prediction error, it is 

necessary to balance increased diversity with competence, that is, ensure that the 

base models are all competent, and have a very high level of training accuracy.  

 

Ho (1998) has discussed the use of decision forests for the improvement of decision 

tree accuracy. For a decision forest, an aggregate model is constructed through 

random sampling of the feature space. Each classification tree that is constructed is 

capable of (an expert in) classification of instances that reside in the instance space 

defined by that subset of features which has been randomly selected. The combined 

performance of the decision forest is then higher than that of a single decision tree 

that is created to predict in the instance space defined by all the features of the 

dataset. The experiments conducted by Ho (1998) on feature space partitioning have 

been based on small datasets. Ho’s (1998) method however shows promise for a 

divide-and-conquer approach for very large datasets of high dimensionality. The 

method demonstrates that syntactic diversity can be achieved through variation of 

the feature space for each base model. 

 

Chan and Stolfo (1998) have proposed a method of aggregate model construction 

that addresses the problem of handling large two-class datasets with skewed class 

distributions. Chan and Stolfo (1998) have compared their method to that of using a 

single model and have concluded that their method provides superior performance. A 

more detailed discussion of Chan and Stolfo’s (1998) method is given in section 2.6 

where the methods that combine dataset sampling and partitioning are discussed. 

 

Boosting (Freund & Schapire, 1997) is a method of aggregate model construction 

which combines training set selection with aggregate model creation. For boosting, a 

sequence of base models is created, with each base model in the sequence having a 

higher level of competence at the classification of ‘difficult’ instances. In this context a 

‘difficult’ training instance is one that cannot be classified correctly by all preceding 

base models in the sequence. A more detailed discussion of boosting is provided in 

section 2.6 of this chapter. 
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2.2.5 Serial and parallel model aggregation 
 

In general all aggregate models consist of two components. The first component is 

the set of base models. The second component is the combination algorithm. A 

combination algorithm may perform parallel combination or serial combination of the 

predictions of the base models. The methods for aggregate model construction which 

were discussed in the last section employ a parallel combination algorithm. The 

method of parallel combination consists of two steps. In the first step, all the base 

models make their individual predictions. In the second step, the combination 

algorithm selects that prediction with the strongest supporting evidence. Kittler (1998) 

has observed that base model combination methods for parallel aggregation fall into 

two categories. The first category involves discrete classification (Fawcett, 2004, 

2006) where only the class labels for the classes predicted by the base models are 

available.  For this category, a voting scheme based on the majority rule (Breiman, 

1996; Hansen & Salamon, 1990) is appropriate for the combination of base model 

predictions. The majority rule is implemented by selecting that class which is 

predicted by the majority of base models. 

 

The second category involves probabilistic classification (Fawcett, 2004, 2006) where 

probabilistic scores for each class are provided by the base models. Given the base 

models ��� � � � ��, and the classes ��� � � � ��, let the probabilistic scores assigned to a 

query instance �	 by models  ��� � � � �� for classes  ��� � � � ��, be denoted by the 

values 
��
���� ���, � � �� � � � �� � � �� � � � �.  Kittler (1998) has discussed four different 

rules that can be used to combine the 
��
���� ���� scores in order to select the 

winning class. The product rule involves the multiplication of the scores for each 

class to obtain the combined class score �����  for each class, where ����� is defined 

as (Kittler, 1998) 
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and selecting the class with the largest value of ����� defined as (Kittler, 1998) 
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The sum rule involves the summation of the scores for each class to obtain the 

combined class score ����� defined as (Kittler, 1998) 
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and selecting the class with the largest value of ����� as defined by equation (2.2). 

The max rule involves the selection of the class with the largest score defined as 

(Kittler, 1998) 
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and selecting the class with the largest value of ����� as defined by equation (2.2). 

The min rule involves the selection of the class with the smallest score defined as 

(Kittler, 1998) 
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and selecting the class with the largest value of ����� as defined by equation (2.2). 

Ho (1998), and Kwok and Carter (1990) have implemented the sum rule for decision 

tree base models by computing the arithmetic mean of the scores for each class and 

selecting that class with the largest arithmetic mean score. Berry and Linoff (2000: pg 

217) have provided an illustrative example of how the product rule may be 

implemented. 

 

More recently, a second method of base model combination called serial combination 

has been proposed (Sun & Li, 2008; Neagu, 2006; Kim et al, 2002). Serial 

combination is a multi-step process. In the first step the base models are arranged in 

a series. In order to classify a new instance, the instance is passed to the first base 

model in the series. If the base model makes a ‘credible prediction’, then the process 

stops otherwise the instance is passed to the next base model in the series. In 

general, if a base model makes a ‘credible prediction’ the process stops otherwise 

the instance is passed to the next base model in the series (Sun & Li, 2008).The 

meaning of a ‘credible prediction’ may be defined and implemented in a variety of 

ways. Sun & Li (2008) have used the following definition and implementation. For 

each class, the base model that has the highest predictive accuracy on that class is 
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identified. When a base model predicts a class that it is best at predicting, the base 

model has made a ‘credible prediction’, otherwise the prediction is considered to be 

‘not credible’. Sun and Li (2008) have demonstrated that their method of serial 

combination produces an aggregate model whose performance on each class is as 

good as the performance of the best base model on the class.  

 

For the research reported in this thesis, the method of parallel combination was 

studied. In chapter 10, a comparison is made between the advantages of serial 

combination and the advantages of the methods proposed in this thesis. 

 

2.2.6 Model testing 
 

Traditionally, the three methods of model testing in machine learning and statistical 

pattern recognition are, the hold-out method, K-fold cross validation, and the 

bootstrap method (Mitchell, 1997; Moore & Lee, 1994). These methods of model 

testing were designed for model construction from small datasets, and primarily 

address the problem of data shortage. For the hold-out method the available data is 

split into a training set and a test set (hold-out set). The test set is used to estimate 

the predictive accuracy. The test set may be ½, �, or ¼ of the available data. For, 

K-fold cross validation, the available dataset consisting of n instances is divided into 

K subsets of equal size. For each of the K subsets, the remaining K-1 subsets are 

combined into the training set, and the remaining subset is used to estimate the 

error. For K << n, the entire process is typically iterated many times (e.g. 100) and 

the results are averaged. When K = n, the leave-one-out (LOO) method is obtained. 

For the bootstrapping method, a training set of size n is chosen randomly with 

replacement, which means that each item may appear more than once in the training 

set. Only those items that do not appear in the training set are used for the test set 

and only once each. This process is iterated many times (e.g. 200) and the error 

rates are averaged (Moore & Lee, 1994).  

 

Testing models in the presence of large volumes of data continues to be done using 

either K-fold cross validation or the hold-out method. K-fold cross validation is used 

to establish the accuracy on the training data. When only one model is being 

considered, the hold-out method is used to create two datasets, one for training and 

one for measuring the predictive accuracy of the final model. When several models 

are constructed with the objective of selecting the best one, the hold-out method is 
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used to create three datasets, one for training, one for validation, and one for 

measuring the predictive accuracy of the final model that is selected. The validation 

dataset is used to determine which of the many models has the best predictive 

performance. Given the stochastic behaviour of predictive models, several samples 

taken from the validation and test datasets are used for both the validation and 

testing steps and the results are averaged. Several researchers have argued that 

predictive accuracy should not be the only measure of model performance (Osei-

Bryson, 2004, 2007; Giudici, 2003; Hand, 1997). Various measures of classification 

model performance are discussed in chapter 4. 

 

2.3 The dataset selection problem 
  

It was stated in section 2.2.2 that data preparation is one of the phases of the 

CRISP-DM model for applied data mining (Shearer, 2000). Within CRISP-DM, data 

preparation involves three steps namely data selection, data construction, and 

feature selection, among others. Data selection is concerned with the identification 

and selection of sufficient quantities of good quality data that is relevant to the data 

mining goals (Shearer, 2000). Data records (instances) as well as relevant attributes 

(features) are identified and selected during this step. Data construction is concerned 

with the creation of any necessary new features, for example, the class variable for 

classification (Shearer, 2000). 

 

The data selected during the data preparation phase as prescribed in the CRISP-DM 

model is commonly pre-processed further when the modeling task is to create 

predictive models. Firstly, it is important to select training data so that overfitting of 

predictive models is avoided (Smyth, 2001; Dietterich, 1995). This is accomplished 

through data reduction. Hand et al (2001) have advised that one approach to 

reducing the amount of training data when the objective of data mining is to create 

models, is through sampling from the very large dataset. A second approach that is 

suggested by Hand et al (2001) is the use of sufficient statistics. Hand et al (2001) 

have provided least squares regression as an example of modeling where the use of 

sufficient statistics is enough to estimate the regression coefficients. For least 

squares regression, the sufficient statistics are the sum for each variable, sum of 

squared values for each variable, and sum of products for the values of the 

regression variables. Note that regression models are predictive. For classification, 

there are algorithms for which the usage of sufficient statistics seems feasible. The 
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Naïve Bayes classifier (Mitchell, 1997) is characterised by two types of probabilities: 

the probability of the class and the probability of a variable value given the class. For 

the creation of a Naïve Bayes classifier, the data records could be replaced by the 

probability values.  

  

Secondly, pre-processing may be done to make the data suitable for a classification 

algorithm. For example, artificial neural networks (Engelbrecht, 2002; Bishop, 1995) 

require normalised data, and K-nearest neighbour algorithms (Cover & Hart, 1995) 

perform best with normalised data. Thirdly, pre-processing may also be done to 

increase the likelihood that the classification algorithm will produce a classification 

model with high predictive performance. This third type of pre-processing involves 

selecting the most relevant training data for the classification task (e.g. Blum & 

Langley, 1997), or altering the probability distribution of the training data when data 

has a skewed class distribution (e.g. Chan & Stolfo, 1998; Kubat & Matwin, 1997). 

Fourthly, pre-processing is done to further select the most relevant features for the 

prediction task. 

 

The dataset selection problem addressed in this thesis was concerned with the 

selection of relevant features and relevant training data for the construction of many 

base models that make up an aggregate model. The use of aggregate models was 

studied for purposes of increasing the amount of (relevant) training data while at the 

same time avoiding the problem of overfitting. Training dataset selection was directed 

at classification algorithms for which data appears in raw form (at the instance level) 

to the algorithm. The next two sections provide a discussion of dataset selection 

methods that have been found appropriate for the modeling methods discussed in 

the last section, and for which training data must be presented to the algorithm at the 

instance level as opposed to a summarised (aggregated) level. Feature selection 

methods are discussed in chapter 3. 

 

2.4 Theoretical methods for single sample selection 
 

Predictive data mining has its roots in the fields of machine learning and statistical 

pattern recognition. The purpose of this section is to discuss the theories of machine 

learning and statistical pattern recognition which have been proposed for purposes of 

characterising the behaviour of algorithms that create predictive classification models 

through a process of induction from supplied example data. These theories may be 
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used to estimate a sufficient sample size, or sample complexity, for achieving a given 

level of accuracy for a single predictive classification model. The important lessons to 

be learned from the theories on sample complexity, as well as the weaknesses of 

these theories, are highlighted in this section. The probably approximately correct 

learning theory is presented in section 2.4.1. The theory on the Hoeffding-Chernoff 

bounds is discussed in section 2.4.2. 

 

2.4.1 Probably Approximately Correct (PAC) learning  
 

The probably approximately correct (PAC) theoretical model of learning proposed by 

Valiant (1984) and discussed by Mitchell (1997) has been designed for purposes of 

characterising algorithms that learn target concepts by generating a hypothesis h 

from a set H of all possible hypotheses that belong to some concept class. The 

learning algorithms use training instances drawn at random according to some 

unknown, but fixed, probability distribution. PAC is concerned with the identification 

of classes of hypotheses that can and cannot be learned from a polynomial number 

of instances. Within the PAC theory various measures of hypothesis space 

complexity have been proposed for purposes of establishing bounds for the number 

of training instances required for achieving a given level of accuracy for inductive 

learning algorithms. Within the PAC framework, a learning algorithm that finds the 

hypothesis Hh ∈  with the minimum training error is called an agnostic (or robust) 

learner. For a hypothesis space H, it is guaranteed with probability )( δ−1 , that an 

agnostic learner will output a hypothesis Hh ∈ , which has a prediction error rate of 

at most ε . This guarantee will hold provided that n, the size of the training sample 

used to generate h, conforms to (Mitchell, 1997) 
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Equation (2.6) is applicable to classes of hypotheses for which |H|, the size of the 

hypothesis space, is finite.  One major problem with the sample complexity estimates 

based on equation (2.6) is that the size of the hypothesis space is not always easy to 

estimate. As an example, for decision trees the hypothesis space is the set of all 

possible decision trees that can be created from the given dataset. A second problem 

is that the instances in the training sample are assumed to be independent and 
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identically distributed, a requirement that is extremely difficult to satisfy. A third 

problem is that the hypothesis space may be infinite in size. For infinite hypothesis 

spaces, a useful measure of the complexity of H is its Vapnik-Chervonenkis 

dimension, VC(H) (Vapnik & Chervonenkis, 1971). VC(H) is the size of the largest 

subset of instances that can be shattered (split in all possible ways) by H.  An 

alternative upper bound for the sample complexity n, under the PAC model is given 

by (Mitchell, 1997) 
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One major problem with the sample complexity estimates based on equation (2.7) is 

that it is not always easy to estimate the VC dimension for a given classification 

algorithm. Additionally, the VC dimension might be infinite, as is the case for a fully 

grown decision tree. In artificial neural network learning, however, the application of 

the VC dimension has been used successfully. A general criticism of the use of 

equations (2.6) and (2.7) is that they provide a training sample size estimation which 

is usually excessively large. 

 

2.4.2 The Hoeffding-Chernoff bounds 
 

The Hoeffding-Chernoff theorems (Hoeffding, 1963) have been proposed by several 

researchers (e.g. Watanabe, 2005; Domingo et al, 2002; Kiniven & Manila, 1993) as 

an alternative method for training sample size estimation.  Kiniven and Manila (1993) 

have discussed the use of concentration bounds (Hoeffding-Chernoff bounds) for 

determining sufficient sample sizes for a specified level of accuracy, when 

determining the truth of universal  sentences expressed as first order logic formulae. 

Toivonen (1996) has discussed the use of these bounds for sample size estimation in 

association rule mining. The major criticism of the usage of the Hoeffding-Chernoff 

bounds is similar to that of PAC estimates. The sample sizes they estimate are 

usually excessively large. 

 

Watanabe (2005) and Domingo et al (2002) have proposed an adaptive sampling 

scheme, which incorporates the use of the sample size bounds stated by the 

Hoeffding-Chernoff theorems.  Watanabe (2005) and Domingo et al (2002) have 

argued that the methods they have proposed preserve the theoretical guarantees 
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(level of accuracy and confidence in the level of accuracy) of the theorems while at 

the same time providing good and practical estimates of sample sizes.  

 

2.5 Empirical methods for single sample selection 
 

For the empirical estimation of a sufficient training sample size, three approaches 

have been reported in the literature. A sufficient training sample size is one which 

provides a level of predictive accuracy that is comparable to processing the whole 

dataset. The first approach to empirical sample size estimation involves taking 

progressively larger samples from a large dataset until the sufficient sample size has 

been reached (Provost et al 1999; John & Langley 1996). The second approach is 

based on the assumption that a sample that has statistical similarity to the whole 

dataset is a sufficient sample. Statistical similarity is measured in terms of the 

descriptive statistics for the dataset variables (Lutu & Engelbrecht 2006; John & 

Langley 1996). The third approach to the empirical estimation of sufficient sample 

sizes is to select samples based on the characteristics of the instance space (Palmer 

& Faloutsos, 2000; Kubat & Matwin, 1997). The three approaches are discussed in 

this section. Dynamic sampling and progressive sampling methods are discussed in 

section 2.5.1 and 2.5.2 respectively. Static sample size estimation is presented in 

section 2.5.3. Density-biased sampling and one-sided sampling are respectively 

discussed in sections 2.5.4 and 2.5.5. 

 

2.5.1 The Dynamic Sampling method 
 

John and Langley (1996) have proposed a method they call dynamic sampling, which 

combines database sampling with the estimation of classifier accuracy. The method 

is most efficiently applied to classification algorithms which are incremental, for 

example, Naïve Bayes and artificial neural network algorithms such as 

backpropagation. John and Langley (1996) have defined the concept of ‘probably 

close enough’ (PCE), which they use for determining when a training sample size 

provides an accuracy that is probably good enough. ‘Good enough’ in this context 

means that there is a small probability δ that the classification algorithm could do 

better by using the entire dataset. The smallest sample size n, is chosen from a 

dataset of size N, so that δε ≤>− ))()(( naccuracyNaccuracyPr , where 
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accuracy(n) is the accuracy after processing a sample of size n, and ε is a parameter 

that describes what ‘close enough’ means. 

 

Dynamic sampling works by gradually increasing the sample size n until the PCE 

condition is satisfied. accuracy(n) is estimated by taking a new sample from the 

database, classifying all instances in the sample and measuring the accuracy.  

accuracy(N) is estimated using the method of Extrapolation of Learning Curves 

(ELC).  In their study, John and Langley (1996) have compared the accuracy of static 

and dynamic sampling for the Naïve Bayes classifier, and have concluded that the 

use of dynamic sampling results in the selection of a single sample which provides a 

level of accuracy that is very close to that obtained when the whole large dataset is 

used for classifier construction. 

 

2.5.2 The progressive sampling method 
 

Provost et al (1999) have proposed progressive sampling as an alternative method 

for the empirical estimation of sufficient training sample sizes. Provost et al (1999) 

have addressed the issue of convergence, where convergence means that a learning 

algorithm has reached its plateau of accuracy. In order to detect convergence, 

Provost et al (1999) have defined the notion of a sampling schedule as a sequence 

}...,{ ,. innn 10  of sample sizes to be provided to an inductive algorithm. Provost et al 

(1999) have argued that schedules where the sample size ni increases geometrically 

as },...,,.,{ 00
2

00 nananan i are asymptotically optimal. Progressive sampling is similar 

to the adaptive sampling method of John and Langley (1996), except that a non-

linear increment for the sample size is used. Provost et al (1999) have handled the 

problem of convergence detection by using a method called Linear Regression with 

Local Sampling (LRLS).   LRLS fits a linear regression line in the neighbourhood of 

ni, the  size of the last training sample obtained. If the slope of the line is sufficiently 

close to zero, then convergence is detected.  Provost et al (1999) have reported 

experimental results which show that geometric progressive sampling far 

outperforms dynamic sampling. 
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2.5.3 Static sample size estimation 
 

John and Langley (1996) and Provost et al (1999) have made a distinction between 

static and dynamic sampling for data mining. For static sampling, nmin, the smallest 

sample size needed to achieve maximum accuracy, is determined on the basis of a 

sample’s statistical similarity to the whole large dataset. Statistical similarity is 

measured in terms of the descriptive statistics for the dataset variables. Lutu and 

Engelbrecht (2006) have studied the selection of samples based on statistical validity 

and concluded that statistical validity is not a sufficient test for dataset selection. Lutu 

and Engelbrecht (2006) have concluded that there is a statistically significant 

performance difference between small statistically valid samples and large 

statistically valid samples. One important difference they have identified is 

information content as measured using the entropy function. 

 

2.5.4 Density-biased sampling 
 

Palmer and Faloutsos (2000) have proposed density biased sampling as a suitable 

method for sampling from large datasets in which clusters of differing sizes occur.   

Palmer and Faloutsos (2000) have argued that for such datasets, uniform sampling 

fails to represent small clusters (small groups) of interesting instances in the instance 

space. For density biased sampling, the aim is to sample so that within each cluster, 

instances are selected uniformly to obtain a training sample that is density preserving 

and biased by cluster size.  Density preserving in this context means that the 

expected sum of weights of the sampled instances for each cluster is proportional to 

the cluster’s size. The method of density-biased sampling is used to select instances 

to be included in the dataset based on the density of the various regions of the 

instance space. The purpose is to ensure that all regions of the instance space are 

equally represented in the selected dataset.  

 

2.5.5 One-sided sampling  
 

One-sided sampling is a training sample selection method that has been proposed by 

Kubat and Matwin (1997) for the selection of training instances based on the class 

distributions in the different regions of the instance space. Kubat and Matwin (1997) 

have argued that one-sided sampling is suitable for datasets with skewed class 
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distributions.  For datasets with skewed class distribution, Kubat and Matwin (1997) 

have argued that the training datasets should be selected based on where the 

decision boundaries of the classes lie in the instance space. For 2-class problems 

with positive and negative instances for the concept to be learned, Kubat and Matwin 

(1997) have identified four types of negative instances as follows: 

(1) Noisy instances. These are instances that incorrectly have the negative class 

label. 

(2) Borderline instances. These are instances that are located very close to the 

decision boundary between the positive and negative class. 

(3) Redundant instances. These are instances that lie far away from any decision 

boundary. 

(4) Safe instances. All the instances that do not fall into any of the above categories 

are safe instances. 

 

For the one-sided sampling method, instances that fall in categories (1), (2) and (3) 

above are removed from the training dataset. The rationale for one-sided sampling is 

that when one-sided samples are used for training, then the regions of class 

confusion are removed from the training data. Therefore classifiers based on 

discriminative classification should not experience any class confusion. Kubat and 

Matwin (1997) have demonstrated that this scheme produces good training datasets 

for the k-Nearest Neighbour and decision tree classifiers. One obvious problem with 

one-sided sampling is that when borderline negative instances (category 2) are 

removed from the training dataset, the resulting predictive model has limited 

information to predict instances that are located in the borderline regions. However, 

the results of the studies conducted by Kubat and Matwin (1997) may be used to 

argue that purposeful dataset selection, based on the characteristics of the instance 

space, may lead to the selection of training datasets that result in a higher level of 

predictive accuracy compared to training datasets obtained through pure random 

sampling. 

 

2.6 Methods for selecting multiple training datasets  
 

The construction of aggregate models requires the use of several training datasets. 

Each training dataset is used to construct one base model, and the base models are 

then combined into one aggregate model. For small datasets, methods such as 

bootstrapping and boosting have been devised for purposes of increasing the 
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number of training instances available for base model creation. Breiman (1996) has 

investigated the use of bootstrap sampling of small datasets in order to create the 

training datasets for the base models. Traditionally, boosting has been used in 

statistical modeling to improve model performance. Boosting involves the use of 

several variations of one training dataset to create several base models (Giudici, 

2003; Freund & Schapire, 1997). For large datasets, partitioning and sampling have 

been used to create training datasets for base models. Chawla et al (2001) have 

investigated the partitioning of a large dataset in order to create several training 

datasets for the base models. Chan and Stolfo (1998) have investigated combining 

dataset partitioning with sampling in order to create the base models. In this section, 

the methods proposed in the literature, for obtaining multiple training datasets 

(samples) for aggregate model construction are discussed. The methods for 

bootstrap sampling and boosting of small datasets are presented in section 2.6.1. 

Partitioning of large datasets and the methods for combining partitioning and 

sampling from large datasets are respectively discussed in sections 2.6.2 and 2.6.3. 

 

2.6.1 Bootstrap sampling and boosting of small datasets 
 

For small datasets, Breiman (1996) has proposed the use of bootstrap sampling 

(Cohen, 1995) in order to create the required number of training datasets. Bootstrap 

samples are created by using sampling with replacement in order to create many 

training datasets each with the same size as the original dataset. Breiman (1996) has 

recommended that at least 30 training datasets should be generated and used to 

create the base models of an aggregate model when bootstrap sampling is applied to 

a small dataset. 

 

Boosting is a statistical approach to model construction which aims to direct the 

largest effort of model construction towards the more difficult aspects of the process 

to be modeled. Giudici (2003) has observed that early versions of boosting fitted 

models on several versions of the training dataset, where the observations with the 

poorest fit received the largest weight. For classification modeling, Adaboost 

(Schapire, 2003; Freund & Schapire, 1997) is a boosting algorithm which creates 

many base classifiers that are finally combined into one prediction model. At each 

iteration of Adaboost, the training instances that are misclassified by the most 

recently created base classifier are assigned larger weights in the training set for the 

next base classifier. For classification, this means that the instances are replicated in 
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the next training set in proportion to the assigned weights. The rationale behind 

training dataset selection by Adaboost is to increase the representation of the 

instances that come from those regions of the instance space that are very difficult to 

model and predict.  

 

The method of bootstrap sampling is commonly used in statistics to create larger 

datasets that have the same statistical properties as the small dataset from which the 

bootstrap sample is obtained (Cohen, 1995). In the context of aggregate model 

creation, bootstrap sampling provides a large amount of data for purposes of creating 

the base models. When large amounts of data are available, bootstrap sampling 

obviously becomes unnecessary. Boosting, as implemented in Adaboost, aims to 

increase coverage of the difficult regions of the instance space when there is a 

shortage of data, as is the case for small datasets. The studies reported in this thesis 

demonstrate that, first of all, the use of aggregate models as is done in bootstrap 

aggregation also provides performance improvements over single models when large 

amounts of data are available.  Secondly, when large amounts of data are available, 

it is possible to increase coverage of the difficult regions of the instance space 

without using the methods of Adaboost, and without using all of the available data. 

 

2.6.2 Partitioning of large datasets 
 

For very large datasets, the training datasets are typically obtained by dividing the 

large dataset into several partitions. The most common approach to dataset 

partitioning for data mining is to use horizontal partitioning. For horizontal partitioning, 

a criterion is applied to assign each instance of the dataset to one of P partitions. The 

partitioning criteria that have been studied include disjoint partitioning and overlapped 

partitioning. For disjoint partitioning every instance in the dataset (of size N ) appears 

in exactly one partition (Chawla et al, 2001; Hall et al, 2000). The original dataset is 

divided into PT partitions each of size (N /PT) so that each instance appears in 

exactly one partition (Chawla et al, 2001).  

 

For overlapped partitioning an instance may appear in more than one partition 

(Chawla et al, 2001; Hall et al, 2000; Breiman, 1996). Each partition is created 

independently of the others using either random sampling with replacement or 

random sampling without replacement. Randomly selected instances are added to 

the partition until the partition is of size (N /PT). If sampling is done with replacement 
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some replication of instances within each partition and across the PT partitions will 

occur. If sampling is done without replacement, replication of instances within 

partitions does not occur (Chawla et al, 2001). 

 

2.6.3 Combining dataset sampling and partitioning 
 

Chan and Stolfo (1998) have reported experiments conducted on data for credit card 

transactions for purposes of identifying fraudulent transactions. Data for credit card 

transactions typically has a skewed class distribution with the fraudulent transactions 

having a representation in the range of 1% to 5% of the whole dataset (Chan & Stolfo 

1998).  In their studies, Chan and Stolfo (1998) have addressed the problem of 

creating training datasets with balanced class distributions and then creating base 

models from each training dataset. In order to create the training datasets, they have 

proceeded as follows. First, the whole dataset is partitioned according to the two 

classes {normal, fraudulent} to create two partitions NORMAL and FRAUDULENT. 

Since fraudulent is the minority class and the objective of partitioning is to balance 

the class distributions, the NORMAL partition is further divided into smaller partitions

JNORMALNORMAL,...,1 . The training datasets for the base classifiers are then 

constructed by combining each of the small partitions JNORMALNORMAL...,1  with 

the partition FRAUDULENT.  In other words, each of the training datasets has all the 

minority class instances and (1/J)th  of the majority class instances. Chan & Stolfo 

(1998) have concluded that compared to simple random sampling, this method of 

constructing training datasets results in better predictive performance for datasets 

with skewed class distributions. 

 

 

2.7 Conceptual views of classification modeling 
 

There are two well accepted (conceptual) views of classification, namely: 

discriminative classification and probabilistic classification (Hand et al, 2001).  It is 

important to briefly discuss these views of classification modeling in order to establish 

the extent to which methods of data selection from large datasets attempt, or should 

attempt to satisfy the objectives of these views. Sections 2.7.1 and 2.7.2 respectively 

provide a discussion of discriminative and probabilistic classification modeling. A 
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concise definition of decision boundaries for classification that was adopted for the 

experiments of this thesis is given in section 2.7.3. Section 2.7.4 provides a 

discussion of training dataset selection methods aimed at supporting the objectives 

of classification modeling. 

 

2.7.1 Discriminative classification  
 

For discriminative classification (Hand et al, 2001), a classification model provides a 

mapping, m , from an instance x = )...,( 1 dxx in the d-dimensional instance space to a 

set of classes }.,...,{ 1 kcc  The d-dimensional instance space is viewed as consisting 

of regions with labels for each of the k classes. The mapping, m , defines the various 

regions of the instance space. For each class ic , the union of all the regions with that 

class label is called the decision region for the class. The mapping may also be 

interpreted as a definition of the decision boundaries between the decision regions. 

For real life classification problems, the classes are usually not perfectly separable in 

the d-dimensional instance space so that there are regions of class confusion for the 

mapping, m . Discriminative models handle the problem of class confusion by 

assigning a probability for each class to each decision region in the instance space. 

In the process of classification, a new instance x is assigned to the most probable 

class for the region in which it falls. The classification modeling problem may 

therefore be defined as a process of estimating the decision boundaries as closely as 

possible, with the objective of minimizing class confusion in each decision region. 

Examples of classifiers that follow this approach are decision trees for classification 

(Quinlan, 1993; Quinlan, 1986; Breiman et al, 1984), artificial neural networks 

(Engelbrecht, 2002; Bishop 1995), and K Nearest Neighbour (Cover & Hart 1967). 

 

2.7.2 Probabilistic classification 
 

Probabilistic models for classification are based on the assumption that, for all 

instances x = ),...,( 1 dxx belonging to class kc , there is a probability distribution or 

density function governing the characteristics of the class kc . For example, the 

probability distribution functions for a multivariate dataset with quantitative features 

might be multivariate normal with estimated means and variances for the features 
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(Hand et al, 2001). If the means associated with the different classes are far enough 

apart and the variances are small, then the classes will be well separated. In 

practice, the appropriate functional forms for describing the probability distributions 

for the classes are not known. However, it is possible to estimate from the data the 

prior probabilities )( ir cp  for each class, and the posterior probabilities 

)),...,(|( . dir xxcP 1 of instance x = ),...,( 1 dxx belonging to class ic . The posterior 

probabilities )),...,(|( . dir xxcP 1  can be viewed as carving the instance space into at 

least k decision regions and at the same time defining the decision boundaries for the 

classes. An examples of a modeling method based on probabilistic classification is 

the Naïve Bayes classifier. 

 

One distinguishing characteristic between discriminative classification modeling and 

probabilistic classification modeling is that probabilistic models are created by 

computing the prior and posterior probabilities that determine whether an instance 

belongs to a given class. On the other hand, for discriminative modeling probabilities 

are used when the most likely class must be assigned to an instance x. For 

probabilistic classification, the training datasets should have the same probability 

distributions as the parent dataset, but for discriminative classification this limitation 

does not hold. 

 

2.7.3 Definition of decision boundaries and class confusion regions 
 

One of the training dataset selection methods proposed in this thesis is based on the 

identification of decision boundaries for classification and those regions where 

predictive models confuse one class for another class (confusion regions). From a 

probabilistic view of classification modeling, Hand et al (2001) have defined a 

decision boundary between two classes ic and jc as a ‘contour’ or ‘surface’ in the 

instance space which has 

 

5.0),(),( == �������� jri cPc��               (2.8) 
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where �����,( ir cP  is the prior probability that instance x has the class label ic  and 

���������jr cP (  is the prior probability that instance x has the class label jc . The ‘contour’ 

defined by equation (2.8) is depicted in figure 2.2 as the bold curve. 

 

 
Figure 2.2: Confusion region for two classes 
 

Based on Hand et al’s (2001) definition of a decision boundary, the confusion region 

for classes ic and jc was formulated by the author as follows: On either side of the 

decision boundary there are two regions 21,g and 12,g where the two classes ic and jc

occur together as depicted in figure 2.2. The region 21,g  is characterised by three 

inequalities: ��� � �������� ,(,( jir ccP > , ������ << ����,( jc0  and ����<< ����,(. ir cP50 . The 

region 12,g  is characterised by the three inequalities: ��� � �������� ,(,( ijr ccP > , 

������ << ����,( ic0  and ����<< ����,(. jr cP50 . The confusion region for classes ic and 

jc is composed of the regions 21,g and 12,g . Regions 1g  and 2g  in figure 2.2 represent 

the instance space regions where there is no class confusion between the two 

classes. 

 

2.7.4 Selection of training data to support the objectives of 
classification 
 

The dataset selection methods based on theoretical bounds such as the PAC 

theorems (Valiant, 1984) and Hoeffding-Chernoff theorems (Hoeffding, 1963) directly 

g1 
g2,1 

c1, c2 c1, c2 c2 c1 

g1,2 g2 
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support the objectives of probabilistic classification. The dataset selection methods 

that employ the learning curve to empirically estimate the sufficient sample size (Lutu 

& Engelbrecht, 2006; Provost et al 1999; John & Langley, 1996) also support the 

objectives of probabilistic classification. These dataset selection methods attempt to 

obtain the minimum amount of data selected randomly across the instance space. 

The selected data enables a classification algorithm to create a predictive model 

based on data that reflects the natural probability distributions of the classes and 

variable values. 

 

Density biased sampling (Palmer & Faloutsos, 2000) and one-sided sampling (Kubat 

& Matwin, 1997) directly support the objectives of discriminative classification for 

single model construction. These methods have the primary objective of ensuring 

that those regions in the instance space where prediction is difficult are sufficiently 

represented in the training datasets. Breiman’s (1996) method of bootstrapping a 

dataset to create many training datasets, Freund and Schapire’s (1997) method of 

boosting with many training datasets, and Chan and Stolfo’s (1998) method of 

partitioning and sampling also support discriminative classification.  All these 

methods attempt to establish the decision boundaries for the classes by using as 

many training datasets as possible. Additionally, Freund and Schapire’s (1997) 

boosting method attempts to create the highest possible coverage of the decision 

boundary regions. Partitioning methods that process the whole dataset (Chawla et al, 

2001; Hall et al, 2000) do not appear to be directed at any specific view of 

classification. There is, perhaps, the un-stated assumption that the large dataset is 

still a very large sample of the real-world data that could be collected for the 

application domain. 

 

2.8 Sources of classification error 
 

It is important to briefly examine the sources of error in predictive classification 

modeling. Surely if the reasons why errors arise are known, it becomes possible to 

design data selection methods that have the potential to produce training datasets 

which minimize the prediction errors. This section provides a discussion of the 

components of prediction error and factors that influence these components. A 

discussion of how training datasets can be selected to reduce prediction errors is 

also provided. The components of prediction error and factors that influence these 

errors are respectively discussed in sections 2.8.1 and 2.8.2. Methods for selecting 
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training data for purposes of reducing predictive classification errors are discussed in 

section 2.8.3. 

 

2.8.1 Bias, variance and intrinsic errors in classification 
 

For statistical regression modeling and artificial neural network modeling where the 

objective function to be minimized is the mean squared error, the prediction error has 

been decomposed into three components, namely bias, variance and intrinsic error 

(Giudici, 2003; Geman et al, 1992). For classification modeling in machine learning 

where the objective function to be minimized is the 0-1 loss function, the prediction 

error has been decomposed into the same three components (van der Putten & van 

Someren, 2004; James, 2003; Domingos, 2000a; Friedman, 1997; Breiman, 1996; 

Kohavi & Wolpert, 1996; Dietterich & Kong, 1995). A prediction error has a cost 

(penalty) of 1 and a correct prediction has a cost of 0 for the 0-1 loss function. 

 

The bias of a predictive model reflects how closely, on average, the (estimated) 

predictive model is able to approximate the target function. Bias reflects the error in 

the estimation process for the model and is due to the algorithm or inference method 

as well as the domain for the modeling task (van der Putten & van Someren, 2004; 

Giudici, 2003; Hand et al, 2001; Friedman, 1997). The variance reflects the sensitivity 

of the (estimated) predictive model to the training sample that is used to create the 

model. Low variance means that the (estimated) model is more stable to the 

variations introduced by sampling to obtain the training data (Giudici, 2003; Hand et 

al, 2001; Friedman, 1997). The phenomenon of overfitting which is discussed in the 

next section is also responsible for the variance error (van der Putten & van 

Someren, 2004). A simple model will have small variance, but large bias. A very 

complex model will have small bias, but large variance (Giudici, 2003).  

 

The third component of the prediction error is called intrinsic error (van der Putten & 

van Someren, 2004; Friedman, 1997; Kohavi & Wolpert, 1996). For a given training 

dataset and classification algorithm, there exists a hypothetical least-error rate 

classifier known as the Bayes optimal classifier with an error rate known as Bayes 

optimal error rate (Mitchell, 1997; Breiman et al, 1984). The Bayes optimal classifier 

combines predictions of all possible models (hypotheses) weighted by their posterior 

probabilities in order to calculate the most probable prediction for a new instance 

(Mitchell, 1997). Bayes optimal error rate is the intrinsic error component of the 
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prediction error and is an irreducible component of the prediction error (van der 

Putten & van Someren, 2004; Friedman, 1997; Kohavi & Wolpert, 1996). 

 

2.8.2 Factors that influence the components of prediction error 
 

Figure 2.3 shows the components of prediction error, the factors that cause these 

prediction errors and the relationships between the components and the factors, as 

discussed in section 2.8.1. Variance error is caused by sampling variation in the 

training datasets as well as overfitting of models to training data. For purposes of 

dataset selection from large datasets it is useful to establish how variance errors can 

be reduced through the avoidance of overfitting. A predictive model which has a high 

level of predictive accuracy on the training data and a low predictive accuracy on the 

test data is called an overfitted model (Mitchell, 1997; Hand, 1997; Dietterich, 1995). 

The causes of overfitting and their relationship to variance error are depicted in figure 

2.3. Overfitting arises due to one or a combination of the following reasons. Firstly, 

when a large number of model parameters is used in the model, the functional form 

(or structure) of the model becomes very complex. 

 

For classification, examples of model parameters are the nodes of a classification 

tree and the nodes and connections of an artificial neural network (Engelbrecht, 

2002; Hand, 1997). Secondly, when the size of the training dataset is too small 

and/or does not provide a representative sample for the estimation of the target 

function then model parameters cannot be accurately estimated (Mitchell, 1997). 

Thirdly, when the size of the training dataset is very large, it becomes very difficult to 

distinguish between noise and real structure in the data (Hand et al, 2001; Smyth, 

2001; Cohen, 1995). The model is then fitted to the noise and phantom structure in 

the data. The first two causes of overfitting as discussed above occur most 

commonly when small datasets are used for training, and it could be argued that 

these causes of overfitting could be removed by using sufficiently large training 

datasets. However several researchers have cautioned against the use of very large 

training datasets (Hand et al, 2001; Smyth, 2001; Hand, 1998). 
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Figure 2.3: Components of prediction error and factors that influence prediction error 
 

In statistical data analysis, the terms massive search and data dredging refer to the 

practice of processing as much data as possible in order to uncover evidence in 

support of a hypothesis (Hand et al, 2001; Smyth, 2001; Hand, 1998). The following 

quote is taken from Hand et al (2001): 

 

In the 1960s, as computers were increasingly applied to data analysis problems, it was 

noted that if you searched long enough, you could always find some model to fit a 

dataset arbitrarily well. 

 

Smyth (2001) has warned against problems of massive search as practiced, for 

example, in association rule mining. Smyth (2001) has argued that even on purely 

random data where each item’s values are generated randomly and independently of 

other items, a massive search for item associations will ‘discover’ significant 

associations between the items. These observations can also be extended to 

predictive modeling. The main problem here is that it becomes more difficult to 

distinguish between noise and real structure in the data when datasets are very large 

(Smyth, 2001; Hand et al, 2001; Cohen, 1995). It is argued in this thesis that one of 

the objectives of training dataset selection from large datasets should be to minimize 

the effects of noise and phantom structure in the modeling process. This in turn will 

lead to a reduction in the variance component of the prediction error. 
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2.8.3 Selection of training data to reduce classification error 
 

Figure 2.3 also depicts the methods for prediction error reduction as reported in the 

literature. Van der Putten and van Someren (2004) have argued that variance error 

can be reduced through the use of methods that select the best predictive features. 

Methods for feature selection are discussed in chapter 3. The impact of overfitting 

due to noise and/or phantom structure can be reduced through the use of relatively 

small samples from a dataset. Cohen (1995) has advised that sampling reduces the 

effects of noise. The use of relatively small training datasets should lead to the 

reduction of variance error as long as the samples provide good coverage of the 

instance space. Several researchers have conducted studies to demonstrate that 

aggregate models based on bagging (bootstrap aggregation) (Breiman, 1996) and 

boosting (Freund & Schapire, 1997) achieve variance reduction (Friedman, 1997; 

Kohavi & Wolpert, 1996; Dietterich & Kong, 1995). Dietterich and Kong (1995) have 

also demonstrated that bias reduction can be achieved through the use of simple 

models plus increased representation of decision boundary instances as is done for 

boosting algorithms. 

 

2.9 The limitations of current methods of dataset selection 
 

The dataset selection methods discussed in this chapter for selecting training data 

from large datasets may be divided into three categories. The methods in the first 

category select and use all of the data in the belief that maximum accuracy will be 

achieved by processing all the data (Chawla et al, 2001; Hall et al, 2000). For the 

implementation of these methods, partitioning has been used in order to achieve 

parallel execution and fast computation of classification algorithms on massively 

parallel supercomputers. One obvious problem with this approach is that overfitting 

will occur when millions of records are used to create a predictive model. A second 

problem is that there is no clear explanation in the reported studies on how this 

approach is expected to reduce prediction error. It is the author’s opinion that the 

objective here is to provide a very high coverage of the instance space. However, 

given the caution by Smyth (2001) concerning chance structure in very large 

datasets, one is led to conclude that high coverage of the instance space has its 

limits.  
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The methods in the second category select a subset of the data with the expectation 

that there is a minimum sample size, nmin, beyond which no further gains in predictive 

accuracy are possible (Lutu & Engelbrecht, 2006; Provost et al, 1998; John & 

Langley, 1996; Toivonen, 1996). The rationale behind this approach is that small 

training sets are preferred when it is prohibitively expensive to process very large 

datasets in reasonable time. This approach works well for single model construction. 

However, given the strong evidence of the superior performance of aggregate 

models, there is a need in the field of data mining to direct more research effort 

towards training dataset selection for aggregate model construction. 

 

The methods in the third category attempt to create training datasets with balanced 

class distributions (Chan & Stolfo, 1998). These methods support training dataset 

selection for aggregate model construction. Additionally, the methods are aimed at 

solving the specific problem of creating predictive models from large datasets with 

skewed class distributions. 

 

 

2.10 Proposed approach to selection of training data from 
very large datasets 
 

It is the author’s opinion that when large amounts of data are available, it is 

productive to use as much data as possible, while at the same time avoiding the 

problems of overfitting and the modeling of chance or phantom structure in the large 

datasets. The discussions in this chapter have revealed that, by reducing the bias 

and variance components of the prediction error, a good predictive model is 

obtained. This assertion is strongly supported by the success of bootstrap 

aggregation (Breiman, 1996) and boosting (Freund & Schapire, 1997) for small 

datasets. These methods are known to reduce the bias and variance components of 

the prediction error (van der Putten & van Someren, 2004; Friedman, 1997; Kohavi & 

Wolpert, 1996; Dietterich & Kong, 1995). Additionally, at the present time, there are 

many research efforts being undertaken in the area of aggregate model construction. 

These research efforts are largely motivated by the success of bootstrap 

aggregation. This section provides a discussion of the training dataset selection 

approach that was studied for this thesis, for purposes of achieving bias and variance 

reduction. The proposed methods for variance reduction are discussed in section 

2.10.1. The proposed methods for bias reduction are discussed in section 2.10.2. 
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2.10.1 Variance reduction methods 
 

Variance reduction can be achieved through at least four methods. The first method 

of variance reduction involves the use of many training datasets to create base 

models for aggregation through voting. For large datasets, this can be achieved by 

obtaining many randomly selected training samples from the large dataset. Each 

training sample is then used to create one base model. The second method of 

variance reduction is to provide as much coverage as possible of the decision 

boundary regions, as is done in boosting. For large datasets, this can be achieved by 

ensuring that the training datasets have many instances drawn from the decision 

boundary regions. The third method of variance reduction is through the avoidance of 

overfitting. For large datasets, the use of relatively small randomly selected training 

samples results in the reduction of the amount of noise (incorrect data values) and 

the effects of chance structure in the data. The fourth method of variance reduction is 

to select a good set of predictive features (van der Putten & van Someren, 2004). 

 

The combination of the above four methods, namely: selection of many training 

datasets for the base models, provision of high coverage of the decision boundary 

regions, and the usage of relatively small training samples for the base models and, 

feature selection should lead to a significant reduction of the variance component of 

the prediction error. This approach to dataset selection was adopted for this thesis. 

For this proposed approach, productive usage of large amounts of data is achieved 

by ensuring that each of the training datasets for the base models is taken from a 

different region of the instance space. This approach should result in the usage of 

large amounts of data in the training process, without creating the problems of 

overfitting. 

 

2.10.2 Bias reduction methods 
 

Bias reduction can be achieved through at least three methods. The first method of 

bias reduction is through sampling to reduce the effects of noise in the training data. 

The second method of bias reduction is through making improvements to the 

algorithm for purposes of reducing bias. The third method of reducing bias is due to 

Dietterich and Kong (1995). Dietterich and Kong (1995) have argued that the 
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decomposition of a k-class problem into a number of 2-class problems whose 

solution is then converted back (combined) into the k-class solution, results in the 

correction for bias errors in the classification algorithm (Dietterich & Bakiri, 1995). 

Two of the three methods discussed above were combined for the proposed 

methods of training dataset selection. The two methods used for bias reduction were 

boosting of training datasets and decomposition of k-class problems into 2-class 

problems and j-class (j < k) problems. 

 

2.11 Conclusions 
 

The need for dataset selection has been made explicit, using examples of several 

application domains where data is collected in massive quantities. The examples 

have covered both business and scientific application areas. Methods for predictive 

modeling for classification using very large datasets have been discussed. These 

include the use of a single model and the use of aggregate models for prediction. 

The discussion has revealed that the methods available for aggregate model 

construction may result in an increase in prediction performance, but this is not 

guaranteed for every domain. Methods for training dataset selection have been 

discussed. The methods include single sample selection to obtain one dataset for 

training, dataset partitioning, and, a combination of partitioning and sampling to 

obtain several training datasets for base models. Additionally, for a given dataset, 

there may be other objectives, such as balancing the class distribution, which will 

determine the data selection method.  

 

 A discussion of the problems associated with the use of very large training datasets 

has been given, and reasons have been given on why it is not desirable to use very 

large training datasets. The various sources of classification error have been 

discussed. Prediction error is traditionally decomposed into two components: bias 

and variance. Methods of reducing bias and variance through dataset selection have 

been discussed. Finally, the proposed general approach to training dataset selection 

from large datasets in order to reduce bias and variance has been given in the last 

section. The next chapter presents a discussion of feature selection from very large 

datasets. The research methods that were used for the studies reported in this thesis 

are presented in chapter 4. 
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Chapter 3  

The Feature Selection Problem 
 

Feature selection should be treated as an integral part of dataset selection. It was 

pointed out in the last chapter that the use of a good set of predictive features leads 

to the reduction of the variance component of the prediction error. This chapter 

provides an overview of the feature selection problem for classification tasks in 

predictive data mining. A review of the available methods for feature selection from 

small datasets is provided. The methods discussed fall into two categories. The 

methods in the first category have been studied by researchers in the context of 

small datasets. The methods in the second category have been studied to 

specifically address feature selection for data mining for high dimensional datasets 

and for large datasets. The dangers of using a single sample to determine relevant 

features are highlighted. An analysis is conducted of commonly used methods of 

measuring class-feature correlations and more robust measures of class-feature 

correlations are discussed. Existing methods for validation of correlation values are 

also discussed. 

 

This chapter is organised as follows: The need for feature selection is discussed in 

section 3.1. Methods for implicit and explicit feature selection are respectively 

discussed in sections 3.2 and 3.3. Merit measures for heuristic feature subset search 

are given in section 3.4. Sections 3.5 and 3.6 respectively provide a discussion of 

correlation measurement and validation methods for correlations. Section 3.7 

concludes the chapter. 

 

3.1 The need for feature selection 
 

The problem of feature subset selection is concerned with finding a subset of the 

original features of a dataset, such that an induction algorithm running on data 

containing only the selected features will generate a predictive model that has the 

highest possible accuracy. It is essential to select a subset of those features which 

are most relevant to the prediction problem and are not redundant (Hand et al, 2001; 

Hall, 1999, 2000; Liu & Motoda, 1998; Blum & Langley, 1997; Aha & Bankert, 1996).  
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Feature selection is central to training dataset selection since one of the motivating 

factors for training dataset selection is to improve predictive accuracy through 

variance reduction. This section provides a discussion of the need for feature 

selection as well as definitions of relevance and redundancy as reported in the 

literature on feature selection for machine learning and data mining. Section 3.1.1 

provides definitions of feature relevance and redundancy.  Section 3.1.2 discusses a 

major problem for predictive modeling called the curse of dimensionality. 

 

3.1.1 Feature relevance and redundancy 
 

It is generally agreed that a predictive model should be constructed using a subset of 

features which are most relevant to the prediction problem and are not redundant 

(Hand et al, 2001; Hall, 1999, 2000; Liu & Motoda, 1998; Blum & Langley, 1997; Aha 

& Bankert, 1996). Blum and Langley (1997) have provided definitions of relevance, 

strong relevance and weak relevance. A feature if  is relevant if a change in the 

feature’s value can result in a change in the value of the predicted (class) variable. A 

feature  if  is strongly relevant if the use of if  in the predictive model eliminates the 

ambiguity in the classification of instances. A feature if  is weakly relevant if  if  

becomes strongly relevant when a subset of the features is removed from the set of 

available features.  By implication, a feature is irrelevant if it is not strongly relevant 

and it is not weakly relevant. Koller and Sahami (1996) have provided a definition of 

redundancy for a feature. A feature if  is redundant relative to the class variable C 

and a second feature jf if if  has stronger predictive power for jf than for the class 

variable C. Koller and Sahami (1996) have used the term Markov blanket to refer to 

the above relationship between the features jf and if , that is jf  is a Markov 

blanket for if . 

 

For purposes of making feature selection decisions however, many researchers (e.g. 

Ooi et al, 2007; Yu & Liu, 2004; Blum & Langley, 1997; Hall, 1999,2000) have 

interpreted a relevant feature as one which is highly correlated with the class 

variable. Ooi et al (2007) and Hall (1999, 2000) have interpreted a redundant feature 

as one which is highly correlated with all the other features. Yu and Liu (2004) and, 
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Koller and Sahami (1996) have however implemented the above definition of 

redundancy (based on the Markov blanket property) in feature selection. 

 

3.1.2 The curse of dimensionality 
 

Hand et al (2001) have discussed the problem of the curse of dimensionality. This 

problem is defined as the exponential rate of growth of the number of unit cells in the 

instance space as the number of predictive features increases. The curse of 

dimensionality reduces the density of instances in the instance space. Recall from 

section 2.2.1 that the instance space is the d-dimensional space defined by the d 

predictor variables.  Reduction of the density of instances in the instance space 

causes instances to appear to be very far away from each other. This makes it 

difficult for discriminative classification algorithms to establish decision regions and 

decision boundaries for classes. It also becomes more difficult for probabilistic 

classification models to estimate probability densities in the different regions of the 

instance space.  

 

The reduction of the number of features reduces the size of the instance space, and 

therefore also decreases the complexity of the prediction problem. Secondly, 

according to the PAC theory (Mitchell, 1997), as the hypothesis space size 

decreases in size, so does the sample complexity.  

 

3.2 Implicit feature selection 
 

Decision tree algorithms have the capability to implicitly identify the most predictive 

features as the tree is constructed.  In addition, a decision tree is normally pruned so 

that it retains only those features which provide statistically significant predictive 

power (Osei-Bryson, 2004, 2007; Breiman et al, 1984). Kohavi and John (1997) have 

reported feature selection studies which have revealed that decision tree algorithms 

are not always able to eliminate irrelevant features. The studies reported by Kohavi 

and John (1997) on credit approval and diabetes datasets from the UCI Machine 

Learning repository (Ascuncion & Newman, 2007; Blake & Merz, 1998) have shown 

that the performance of decision trees constructed by the C4.5 algorithm deteriorates 

significantly when a single irrelevant feature is added to the dataset. Langley (1994) 

has observed that artificial neural networks (ANNs) and the Naïve Bayes (NB) 
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algorithms also perform an implicit ranking as they build classifiers. ANNs and NB 

assign larger weights to the more relevant features and smaller weights to the less 

relevant ones. A very important point to emphasize here is that, even though many 

inductive algorithms perform implicit feature selection, all induction algorithms do 

benefit from explicit feature selection, before the algorithm is presented with the data.  

 

3.3 Explicit feature selection  
 

Explicit feature selection involves the use of a separate step to select those features 

that are considered relevant for a predictive modeling task. Specific to data mining 

there may be hundreds or thousands of features in a dataset. All potentially relevant 

features must be identified first. The identification is typically done by a domain 

expert (Guyon & Elisseef, 2003). The task of the domain expert is to select those 

variables that are known to have a bearing on the domain for the prediction task. As 

an example, van der Putten and van Someren (2004) have quoted the winner of the 

COIL 2000 competition who stated that only the variables representing wealth and 

personal behaviour of individuals were useful for the competition dataset. After the 

initial selection of features, a second step is conducted so that the most effective 

(predictive) features are selected from the pool of potentially relevant features 

(Guyon & Elisseef, 2003). Section 3.3.1 presents the categories of feature selection 

methods. Wrapper methods are discussed in section 3.3.2. Methods that use pure 

ranking are presented in section 3.3.3. Heuristics search methods and relevance and 

redundancy analysis methods are respectively discussed in sections 3.3.4 and 3.3.5. 

Feature selection methods for large datasets are discussed in section 3.3.6. 

 

3.3.1 Categories of feature selection methods 
 

Feature selection methods may be categorized as wrapper or filtering methods (Hall, 

1999; Kohavi & John, 1997). Wrapper methods incorporate model construction with 

feature selection, and select that subset of features which provides a model with the 

highest predictive performance (Blum & Langley, 1997; Kohavi & John, 1997). 

Filtering methods on the other hand, select feature subsets without constructing 

predictive models from these features (Ooi et al, 2007; Yu & Liu, 2004; Guyon & 

Eliseeff, 2003; Hall, 1999; Blum & Langley, 1997). Three filtering methods are 

discussed in this section. The first method called pure ranking, involves sorting the 
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list of features in descending order of relevance and then selecting the top w features 

or selecting features whose level of relevance is above a user specified threshold (Yu 

& Liu, 2004). The second method, called feature subset search, involves a forward 

search or backward search based on a list of ranked features in order to determine 

the best subset of features which maximises relevance and minimises redundancy 

(Ooi et al, 2007; Hall, 1999, 2000; Blum & Langley, 1997). The third filtering method 

involves relevance and redundancy analysis as two distinct steps (Yu & Liu, 2004). 

The rest of this section provides a discussion of wrapper and filtering methods for 

feature selection. 

 

3.3.2 Feature selection using wrapper methods  
 

Wrapper methods incorporate model construction with feature selection (Blum & 

Langley, 1997; Kohavi & John, 1997). For wrapper methods, different feature subsets 

are selected, a predictive model is constructed for each feature subset and the 

feature subset which produces the model with the highest predictive performance is 

selected. The accuracy for different feature subsets is measured using 10-fold cross 

validation (Blum & Langley, 1997). Wrapper methods have typically been used for 

small datasets with a small number of features. It has been argued that wrapper 

methods are not suitable for large datasets as encountered in data mining (Hall, 

1999) or datasets of high dimensionality (Yu & Liu, 2004) due to the intensive 

computational requirements. Even though the research reported in this thesis 

focussed on filtering methods, it is the author’s opinion that when many samples are 

used for model construction and testing for the wrapper approach then more reliable 

feature selection should be achieved.  

 

3.3.3 Feature selection based on pure ranking 
 

Feature ranking involves two steps. In the first step, a value is assigned to each 

feature to indicate its level of relevance to the prediction task. In the second step, the 

list of features is sorted and the top w features are selected. A commonly used 

measure of relevance is the correlation of the feature to the class. To compute the 

correlation between a numeric-valued feature and the class variable, Pearson’s 

correlation coefficient is commonly used (Ooi et al, 2007; Hall, 1999, 2000). To 

compute the correlation between a qualitative feature and the class variable, the 
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symmetrical uncertainty coefficient may be used (Yu & Liu, 2004; Hall, 1999, 2000). 

Guyon and Elisseeff (2003) and Bekkerman et al (2003) have observed that various 

feature selection algorithms include feature ranking as a preliminary step. The 

purpose of this preliminary step is to identify those features that have the potential to 

appear in the final subset of selected features. Various feature selection methods, on 

the other hand, simply use feature ranking as the selection method (Guyon & 

Elisseeff, 2003). 

 

3.3.4 Feature selection based on heuristic search  
 

Heuristic search (Luger & Stubblefield, 1993; Pearl, 1984) is the process of 

intelligently narrowing the search through a potentially very large search space of 

solutions in order to identify a satisfactory solution. At every decision point in the 

search, a heuristic search procedure employs a merit (heuristic) measure to 

determine the best path to expand in the search space. For the problem of feature 

subset search the space of all possible problems is the set of all possible 

combinations (the power set) of the features in the set of candidate features. The 

candidate features are those features that have been pre-selected through a process 

of ranking as discussed in section 3.3.1. Each state in the search space specifies a 

possible subset of features (Blum & Langley, 1997).  

 

Algorithms for feature subset search are classified as forward selection or backward 

selection algorithms. The initial state for forward selection algorithms is one where no 

feature has been selected. For backward elimination algorithms on the other hand, 

the initial state is one where all features are selected. A hill-climbing search is 

commonly conducted. The state which currently maximises the measure of merit is 

selected for further expansion. Commonly used measures include information gain 

and merit measures based on the class-feature and feature-feature correlations (Ooi 

et al, 2007; Hall, 1999, 2000). For forward search, stopping criteria include stopping 

when addition of a new feature does not result in any significant increase in the 

employed measure (Hall, 1999, 2000), or when a pre-specified number of features 

has been selected (Ooi et al, 2007). 
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3.3.5 Feature selection using relevance and redundancy analysis 
 

Yu and Liu (2004) have proposed the method of relevance and redundancy analysis 

for feature selection aimed at datasets of very high dimensionality. Yu and Liu (2004) 

have argued that heuristic subset search and wrapper methods are not feasible for 

high dimensional datasets due to the quadratic time complexity of heuristic search 

algorithms. The feature selection method proposed by Yu and Liu (2004) consists of 

two distinct steps, namely relevance analysis and redundancy analysis. For 

relevance analysis class-feature correlations are used as a basis to eliminate all 

features whose level of correlation to the class variable is below a user-specified 

threshold. The features selected in the relevance analysis step are used as input to 

the redundancy analysis step. Redundancy analysis aims to select those features 

that are relevant with respect to the class variable and are not redundant with respect 

to any other relevant feature. For each relevant feature if , every feature 
jf which 

has a smaller class-feature correlation than if  (lower relevance than if ), but has a 

high feature-feature correlation with if  (more strongly correlated to if  than to the 

class variable) is eliminated.  

 

Yu and Liu (2004) have demonstrated that even though this method has quadratic 

time complexity in the worst case, in practice the time complexity is close to linear 

time when many redundant features are present. The studies reported in this thesis 

were limited to datasets of moderately high dimensionality. It will be useful in future to 

study how the validation methods proposed in this thesis can be adapted to feature 

selection for very high dimensional datasets. 

 

3.3.6 Feature selection for large datasets 
 

For feature selection for small datasets all the instances in the dataset are used in 

the selection process. Feature selection from large datasets poses new challenges 

for feature selection. A dataset may be large because it consists of a large number of 

instances, or a large number of potentially predictive features, or both. From a 

computational perspective, the time complexity of feature selection algorithms makes 

it infeasible to use all of the data in a large dataset (Liu & Setiono, 1998a, 1998b). 

From a statistical perspective, the problems of massive search (Smyth, 2001) which 

were discussed in chapter 2 make it infeasible to use all of the data. Liu and Setiono 
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(1998a, 1998b) have proposed a stochastic (probabilistic) method of feature 

selection for large datasets of high dimensionality. The method employs random 

feature subset generation and evaluation in conjunction with dataset sampling. At 

each step of the process a sample of dataset instances is created and a subset of 

randomly selected features is generated and evaluated. The process stops when the 

selected feature subset is established to be optimal.  

 

3.4 Merit measures for heuristic search of feature subsets  
 

Heuristic search for feature selection was discussed in section 3.3.2. Suppose that at 

the current step of heuristic search, w-1 features 11 −wff ..,  have been selected from 

the candidate set of features W  and 1|| −−= wWu  features are still unselected. In 

order to select the next feature wf , feature subsets uifffFS wwi ..1},,..,{ 11 == −  are 

created so that for each subset iFS  the feature wf  is one of the u  features that are 

still unselected. A mathematical function is typically used to compute a measure of 

merit which guides the heuristic search in the selection of the best feature subset
*FS . The correlation-based feature selection (CFS) method proposed by Hall (1999, 

2000) uses the merit measure defined as 
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               (3.1) 

 

where  
____

cfcorr  is the mean correlation between each feature and the class variable, 

_____

ffcorr is the mean correlation between the features in subset FS  and, w is the 

number of features in the subset FS. The numerator on the right hand side of 

equation (3.1) measures the level of relevance of the feature subset, while the 

denominator measures the level of redundancy of the feature subset. The differential 

Prioritisation (DP) method, proposed by Ooi et al (2007) uses the merit measure 

defined as 

αα −= 1).()(
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and || fifjcorr is the magnitude of the correlation between two features. The first term 

on the right hand side of equation (3.2) measures the level of relevance, while the 

second term measures the level of redundancy of the feature subset. The parameter 

α is used to control the levels feature relevance and redundancy based on the user’s 

preference. The merit measures of equations (3.1) and (3.2) both reflect the fact that 

the subset of selected features should have a high level of relevance and a low level 

of redundancy. The main difference between the two equations is that the relative 

importance of relevance and non-redundancy are fixed in equation (3.1) while 

equation (3.2) allows the analyst to specify the relative importance of relevance and 

non-redundancy through the parameterα . 

 

The correlation coefficients cfcorr and ffcorr are computed using either Pearson’s 

correlation coefficient for quantitative features or the symmetrical uncertainty 

coefficient for qualitative features. For two quantitative features X and Y, the 

correlation is measured using Pearson’s correlation coefficient, which is defined as  
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where 
_

x and 
_

y are the sample means for X and Y respectively, XS and YS  are the 

sample standard deviations for X and Y, and n is the size of the sample used to 

compute the correlation coefficient. 

 

In general, the level of association between two qualitative variables X and Y can be 

established using measures derived from Pearson’s 2χ statistic, such as the φ

statistic and Cramer’s V statistic (Giudici, 2003). These measures of association 

have a similar interpretation as a correlation coefficient for quantitative features 

(Giudici, 2003). The symmetrical uncertainty (SU) coefficient derived from the 

entropy function is an alternative measure of association between two qualitative 

features and also has a similar interpretation as a correlation coefficient for 

quantitative variables (Yu & Liu, 2004; Hall, 1999, 2000). The symmetrical 

uncertainty coefficient SU given in equation (3.5) is defined in terms of E(X) and E(Y) 
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(the entropy in X and Y respectively) and E(X|Y) (the entropy of X conditioned on Y).  

The definitions for E(X), E(X|Y) and other related definitions of entropy are given in 

appendix B. The SU coefficient is defined as 

           

�
	



�
�




+
−=

)()(
)|()(

.
YEXE

YXEXE
xSU 02

               (3.5) 

 

The details for the computation of Pearson’s 2χ  statistic, the φ statistic and Cramer’s 

V statistic are given in appendix B. The SU coefficient was used in the experiments 

for this thesis as it is more commonly used in feature selection studies (Yu & Liu, 

2004; Hall, 1999, 2000). 

 

When one feature X is qualitative and the other feature Y is quantitative, a weighted 

Pearson’s correlation is used. If the qualitative feature X has V levels, VLL ...1 , then V 

binary features VBB ...1  are created through a process called binarisation. Each of the 

binary features is then correlated with the quantitative feature Y. The binary feature 

iB  is assigned the value 1 when X has level iL  and 0 otherwise. The weighted 

correlation coefficient between X and Y is computed as  

 

 YBii
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i
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                (3.6) 

 

where )( ir LXP = is the prior probability that X has the level iL and YBicorr ,  is the 

correlation coefficient between a binary feature and the variable Y. 

 

The computation of correlation coefficients using equations (3.6) is feasible for 

qualitative features with few distinct levels. If a qualitative feature has many levels 

(e.g. 20 and above) then the number of binary features to be created becomes 

excessively large, which in turn increases the computational time for the correlation 

coefficients. Equation (3.6) is especially useful for computing correlations between 

quantitative features and the class variable. Since many classification tasks have few 

classes the computations for equation (3.6) do not pose a problem. 
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3.5 Measuring correlations 
 

In general, there are three common methods of measuring the correlation between 

two quantitative random variables X and Y: Pearson’s correlation coefficient, 

Spearman’s rho, and Kendall’s tau (Wilcox, 2001). Each of these correlation 

measures is exactly zero when X and Y are independent, and have values that range 

between -1 and +1 to indicate the level and direction of the correlation. Pearson’s 

correlation coefficient is commonly used to estimate the magnitude of the association 

between the features and the class for a dataset (Ooi et al, 2007; Hall, 1999, 2000). 

The main advantage of Pearson’s correlation is that it is very efficient to compute, 

compared to the other correlation measures. However, for many datasets used in 

data mining the meaning of Pearson’s correlation coefficient may not be what one 

expects. The problems associated with Pearson’s correlation coefficient and the 

advantages of using robust measures of correlation are discussed in this section. 

The problems associated with Pearson’s correlation coefficient and robust measures 

of correlation are respectively presented in sections 3.5.1 and 3.5.2. 

 

3.5.1 Problems with Pearson’s correlation coefficient 
 

Pearson’s product moment correlation coefficient for a data sample is computed as 

shown in equation (3.4). The computation involves the sample mean, sample 

variance and sample covariance. Furthermore, the sample mean, variances and 

covariances can be computed in a single pass of the dataset. Wilcox (2001) has 

observed that Pearson’s correlation coefficient is the best estimator of the correlation 

between the random variables X and Y when X and Y have normal probability 

distributions. Wilcox (2001) has defined the finite sample breakdown point of a 

statistic computed from a sample as the smallest proportion of outliers in the sample 

required to make the value of the statistic arbitrarily large or arbitrarily small. Wilcox 

(2001) has demonstrated that the finite sample breakdown point for the sample mean 

and sample variance is 1/n, where n is the sample size. This means that a single 

outlier can cause these measures to be arbitrarily large or small. For Pearson’s 

correlation coefficient, Wilcox (2001) has also demonstrated that a single outlier can 

mask an otherwise strong association between X and Y.  

 

The above observations by Wilcox (2001) have serious implications for feature 

selection methods based on Pearson’s correlation coefficient. First of all, highly 
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predictive features may be discarded, simply because the presence of outliers 

causes the computed sample correlation coefficient to be small, or worse still, to be 

insignificant. Secondly, non-linear associations will produce very small correlation 

coefficients, which will cause otherwise relevant features to be discarded. In a 

nutshell, in the presence of outliers and non-linear associations, and this should  be 

expected in data mining, Pearson’s correlation coefficient will provide a feature 

ranking which is incorrect. When this is the case, there is an increased risk of 

creating a model that has poor predictive performance. The reader will recall that the 

use of poor predictors results in an increase in the inherent error or variance 

component of the prediction error. Wilcox (2001) has made a strong point that: ‘if we 

are told r (Pearson’s sample correlation coefficient), and nothing else, we cannot 

deduce much about the details of how X and Y are related’. A third problem with 

Pearson’s correlation (and other correlation measures) is that the two random 

variables X and Y may be strongly associated for some of the values and not for the 

whole range of values. When this is the case, computing the correlation coefficient 

between X and Y based on the whole range of each of the variables, will provide very 

small correlation coefficient values which will lead  to the assumption that there is no 

association between the variables. 

 

3.5.2 Robust measures of correlation 
 

Wilcox (2001) has discussed three ways of handling outliers when computing sample 

correlations. The first method is to compute a winsorised Pearson’s correlation 

coefficient, the second method is to use Spearman’s rho correlation coefficient, and 

the third method is to use Kendall’s tau correlation coefficient. To winsorise the 

values of a random variable X, the smallest z% and largest z% of values in the 

sample are altered. The alteration involves replacing each of the small values with 

the smallest of the unaltered values, and replacing the large values with the largest 

unaltered value (Wilcox, 2001). For correlation computations, the values of both X 

and Y must be winsorised, prior to computing the sample means, variances and 

covariance. The problem with computing the trimmed means and winsorised 

variances is that the values of the variables must be sorted first. For a multivariate 

dataset with d variables 22 dd +  sorting operations must be conducted for the 

computation of the class-feature and feature-feature correlations. These intensive 

computations can be avoided by using Spearman’s rho or Kendall’s tau correlation 

coefficients. 
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For Spearman’s rho, the values of X and Y are converted to ranks, 1,..n. Spearman’s 

rho is then computed with Pearson’s correlation formula using the rank values. This 

way, the effect of outliers is avoided. Even though this method eliminates the 

problem of outliers, its computational requirements are not modest. It is still 

necessary to sort the values of X and Y. For multivariate data, 22 dd +  sorting 

operations are still needed for the X,Y pairs. For Kendall’s tau computations are 

needed for the probabilities cπ  and dπ .  cπ  is the probability that, given two random 

pairs of values ),( 11 yx  and ),( 22 yx , when 21 xx >  then 21 yy > , and when 21 xx <  

then 21 yy < . cπ  is called the probability of concordance between the random 

variables X and Y. dπ  is the probability that the opposite is the case, and is called 

the discordance between X and Y. The value of Kendall’s tau is computed as 

DC ππτ −= . The probabilities cπ  and dπ  are estimated by comparing all possible 

sets of pairs of values of the variables X and Y, that is, 21 /)( −n  pairs.  Kendall’s tau 

is computationally more efficient than Spearman’s rho since Kendall’s tau does not 

require sorted data. The method is also a good alternative to Pearson’s coefficient 

when outliers and non-linearity are present. However, the computational time 

complexity for Kendall’s tau is still quadratic in n, the size of the sample used to 

estimate the correlations. 

 

3.6 Validation methods for feature selection 
 

Guyon and Elisseeff (2003) have defined feature validation methods as those 

methods that are used to determine the number of significant features, guide and halt 

the feature subset search or, evaluate the final performance of the models based on 

the selected features. The discussion in this section is concerned with methods for 

determining the validity of the decision to select a given feature for inclusion in the 

set of predictive features. Section 3.6.1 discusses the need for validation of class-

feature and feature-feature correlation coefficients.  The practical significance of 

correlation coefficients is discussed in section 3.6.2. Validation methods based on 

hypothesis testing and based on fake variables are respectively discussed in 

sections 3.6.3 and 3.6.4. 
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3.6.1 The need for validation of correlation coefficients 
 

In general, filtering methods rank features based on the correlation or some other 

measure, with the class. The higher the measure the more predictive a feature is 

assumed to be. Smyth (2001) has argued that a large correlation coefficient between 

the random variables X and Y in a given data sample could be purely due to chance. 

If the feature-class correlations were measured on a different sample, the correlation 

coefficient would take on different values. The same argument applies to any 

measurement that is taken on a data sample. Measures such as the class-feature 

correlation coefficient cfcorr and the feature-feature correlation coefficient ffcorr , 

which appear in equations (3.1), (3.2) and (3.3) are therefore random variables with 

associated probability distributions. It is essential to establish the validity of these 

correlation measures before they are used in feature ranking and subset selection. 

One validation method for feature correlations that has been reported in the literature 

is the use of fake variables (Guyon & Elisseeff, 2003; Bi et al, 2003; Stoppiglia et al, 

2003). A fake variable or probe, is a variable whose values are generated purely at 

random. Such values should not have any correlation with the class variable. When 

measuring correlations using either Pearson’s r or Kendall’s tau, any features with a 

correlation value that is lower than that of the fake variables should be discarded. 

 

3.6.2 Practical significance of correlation coefficients 
 

It was pointed out in section 3.1 that feature relevance and redundancy are typically 

defined in terms of the strength of correlations. Blum and Langley (1997) have 

defined a relevant feature as one which is highly correlated with the class variable. 

Hall (1999) and Ooi et al (2007) have defined a redundant feature as one that is 

highly correlated with other features. Cohen (1988) has observed that different fields 

of study and research define the quantitative adjectives for correlations, namely 

small, medium, large, differently. In the physical sciences where the variable values 

are obtained from high precision instruments, a correlation coefficient of 0.9 is 

considered small (Cohen, 1988). In Economics, a correlation coefficient of 0.6 is 

considered small (Coetsee, 2007).  

 

For the field of Behavioural Sciences research, Cohen (1988) has suggested the 

following approach to interpreting the magnitude of a correlation. A value in the range 

[0.10, 0.30) indicates a small/weak correlation. A value in the range [0.30, 0.50) 
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indicates a medium correlation. A value in the range [0.50, 1.00] indicates a 

large/strong correlation. Cohen (1988) has argued that these criteria are suitable for 

the social sciences, since for this field of research there is always a large number of 

complicating factors in the experimental setup and the measuring instruments used 

to collect data. One implication of Cohen’s (1988) criteria for interpreting correlations 

is that correlation values of less than 0.10 have no practical significance, even 

though such correlation coefficients might appear to be statistically significant, 

especially for very large samples. 

 

3.6.3 Validation based on hypothesis testing for correlation 
coefficients 
 

In many fields of scientific enquiry, it is common practice to establish the statistical 

significance of the correlation coefficient, r, using Student’s t-test for correlations 

(Wilcox, 2001; Kanji, 1999). One can then test the null hypothesis: 0H : ‘the 

correlation between the two variables is zero’, and the alternative hypothesis aH : 

‘the correlation between the two variables is not zero’. If the null hypothesis 0H  is 

rejected, then one concludes that the two variables have a statistically significant 

(linear) relationship indicated by the direction and magnitude of the correlation 

coefficient r. The T statistic used for testing 0H and aH as defined above is  

 

21
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n

rT
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−=                    (3.7) 

 

where n is the sample size used to estimate r. Under normality and when the 

population correlation 0=ρ  the quantity T has a Student’s t distribution with n-2 

degrees of freedom. Even though this is a fairly popular test in many research areas, 

the author is not aware of any reported usage of this test in feature selection for 

computational data mining. 

 

To test the hypothesis crH =:0 , that is,  the correlation coefficient is some value c 

other than zero, Fisher’s transform is used to convert the correlation coefficients into 

the Z statistic as follows (Cohen, 1995; Cohen, 1988):  
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In equation (3.8) Z(r) is Fisher’s Z transform of r and is computed as   
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where )(rzσ  is the estimated standard error of the sampling distribution of Z(r) and is 

computed as  )3(/1 −n , where n is the number of values used to compute r.  Z(c) is 

Fisher’s Z transform of c and can be similarly computed. 

 

3.6.4 Validation based on fake variables 
 

 Stoppiglia et al (2003) have proposed the use of probes (fake variables) for 

determining the cut-off point between relevant and irrelevant features. A probe is a 

random variable whose values may be generated from any probability distribution. 

Stoppiglia et al (2003) have argued that, since such a random variable should not 

have any significant correlation to the target function, it should be ranked last if an 

infinitely large amount of data were available. However, since the amount of data is 

finite, the probe should appear somewhere in the ranked list and all features that are 

ranked below the probe should be discarded. Since the probe is a random variable, 

its rank in the list of features is also a random variable. The decision to keep or 

discard features based on the probe’s value should be based on the probability that 

this feature’s ranking is higher or lower than that of the probe.  Stoppiglia et al (2003) 

have recommended that the designer of the model should choose a tolerable risk of 

selecting or discarding the feature based on the ranking of the probes. 

 

Bi et al (2003) have reported studies on feature selection for micro-array datasets. Bi 

et al (2003) have observed that the feature selection process can be very unstable in 

the sense that each time a feature set is selected it consists of totally different 

features.  Since micro-array datasets are typically small, Bi et al (2003) have used 

bootstrap samples and merged the results from these samples. Bi et al (2003) have 

used 3 fake variables drawn randomly from Gaussian distributions and have 

discarded all variables that are less relevant than one of the fake variables. It should 
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be noted however, that since fake variables are also random variables, one should 

expect that the ranking of the fake variable will vary from sample to sample. 

 

3.7 Conclusions 
 

The need for feature selection for predictive data mining has been discussed in this 

chapter. Feature selection methods for implicit and explicit feature selection have 

been presented. Implicit feature selection is performed by the induction algorithm, 

while explicit feature selection is performed by an algorithm whose sole purpose is to 

select the best features for a given prediction task. Methods for measuring class-

feature correlations have been discussed and the problems inherent in these 

methods have been highlighted. 

 

Filtering methods are heavily dependent on the class-feature and feature-feature 

correlation measures. Many researchers have used Pearson’s correlation coefficient 

to establish class-feature and feature-feature correlations. Even though this is the 

most reliable and efficient way of measuring linear correlations, it is not the most 

appropriate measure when correlations are non-linear, and when outliers are 

present. It is useful to study more robust measures of correlation for feature 

selection.  

 

The validation methods for selected feature subsets that have been reported are 

based on the use of fake variables. These methods have been studied in the domain 

of micro-array datasets, where the datasets are typically small: less than 200 

instances. Given that fake variables are random variables, it is useful to conduct 

studies on how probes will perform in the presence of much larger datasets, and to 

devise methods of using probes to select reliable feature subsets. In many fields of 

research, hypothesis testing is used to establish the statistical significance of a 

correlation coefficient. There are no reported studies of this nature for feature 

selection for computational predictive data mining. It is the author’s belief that, when 

large amounts of data are available, opportunities arise for researchers to conduct 

studies of this nature. 

 

Filtering methods conduct feature subset selection based on a general definition of 

relevance, redundancy and correlation strength, even though different application 

domains have different interpretations of what it means for two variables to be highly 
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correlated. Algorithms are needed that can incorporate domain-specific definitions of 

feature relevance and redundancy. Even though many studies have been reported 

on feature selection for small datasets, to the author’s knowledge there are very few 

reported studies (e.g. Liu & Setiono, 1998) that specifically address feature selection 

from very large datasets. It is the author’s opinion that it is useful to conduct more 

studies of feature selection methods that can make use of the large amounts of 

available data in order to perform reliable measurement and validation of class-

feature correlations and as a result, provide reliable feature subsets.  

 

Chapter 2 presented a discussion of current methods of training dataset selection 

from large datasets. It was argued that in the presence of very large datasets it is 

useful to conduct studies of dataset selection methods aimed at reducing the bias 

and variance components of the prediction error, without having to re-use the training 

data. One method of reducing variance errors is the selection of a good set of 

predictive features. In this chapter, current methods of feature selection have been 

discussed and it has been argued that it is useful to conduct studies of feature 

selection methods that make use of the large amounts of available data to perform 

reliable measurements and validation of class-feature correlations. The next chapter 

presents a discussion of the research methods used for the studies in this thesis. The 

studies on feature selection methods are presented in chapter 5. The studies on 

training dataset selection are presented in chapters 6, 7, 8 and 9. 
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Chapter 4  

Research Methods 
 

‘It is better to have an approximate answer to the right question than a precise answer 

to the wrong question which can be made…precise’ (John Tukey) 

 

The discussion in chapters 2 has made it clear that, first of all, it is necessary to 

conduct training dataset selection from large datasets for purposes of computational 

efficiency.  Secondly, it is beneficial to study methods for selection of training data 

based on the characteristics of the instance space. Thirdly, the point has been made 

that the use of aggregate models has the potential to increase predictive accuracy 

since aggregate models are aimed at the reduction of the variance component of the 

prediction error. The use of training dataset selection methods aimed at the reduction 

of the bias and variance components of the prediction error should result in predictive 

models with a higher level of performance, compared to models created from data 

selected purely at random. The discussion of chapter 3 has made it clear that many 

samples should be used for the measurement and validation of the correlations for 

the dataset features in order to ensure reliable feature selection for large datasets.   

 

The purpose of this chapter is to explain how methods that address the above issues 

were studied. Detailed discussion of the research questions and objectives, the 

central argument of the thesis and, the research paradigm that was followed, are 

given in sections 4.1, 4.2 and 4.3 respectively. The datasets used for the 

experiments and the sampling procedures used are discussed in sections 4.4 and 

4.5 respectively.  The data mining algorithms used in the experiments, the methods 

used to evaluate model performance and, the software used for the experiments are 

given in sections 4.6, 4.7 and 4.8 respectively. Section 4.9 gives a summary of the 

chapter. 

 

4.1 Research questions and objectives 
 

The discussions in chapters 2 and 3 led the author to pose the following main 

research question: 
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What methods of training dataset selection can be used to obtain as much 

information as possible from large datasets while at the same time using training 

datasets of small sizes to create predictive models that have a high level of predictive 

performance? 

 

Based on the main research question and the literature review given in chapters 2 

and 3, the primary objectives for conducting the research were to investigate 

promising methods for the following: 

 

(1)  Reliable feature selection from large datasets using as much data as is feasible. 

 

(2)  Design of aggregate models which can make use of large amounts of training 

data while avoiding the problem of modeling phantom structure (i.e. structure that 

occurs purely due to chance as discussed in section 2.8.2). 

 

(3) Design and selection of training datasets for base models aimed at increasing 

predictive accuracy through the reduction of bias and variance of the prediction error. 

 

(4) Creation of a theoretical model that helps to explain the factors that affect the 

quality of selected features and the relationships between these factors. 

 

(5)  Creation of a theoretical model that helps to explain the factors that affect the 

performance of aggregate models and the relationships between these factors. 

 

4.2 The central argument for the thesis  
 

The central argument of this thesis is that, for predictive data mining, it is possible to 

systematically select many dataset samples and employ different approaches 

(different from current practice) to feature selection, training dataset selection, and 

model construction. When a large amount of information in a large dataset is utilised 

in the modeling process, the resulting models will have a high level of predictive 

performance and should be more reliable. 

 

Feature selection has been traditionally done based on a single randomly selected 

sample of the data. In the presence of very large amounts of data, many samples 

can be used in order to more reliably measure and validate the correlations between 

 
 
 



  73 

the potential predictive features and the class (predicted) variable.  The construction 

of base models that make up an aggregate model requires the use of a separate 

training dataset for each base model. It has been argued that syntactic diversity in 

the base models is a key factor in increasing aggregate model performance. For 

small datasets it is difficult to create sufficiently large training datasets that are also 

highly diverse. Breiman (1996) has attempted to achieve diversity through bootstrap 

sampling. With large amounts of data, it is easier to create diverse training datasets, 

since there is plenty of data to choose from. Through the use of boosting, Freund and 

Schapire (1997) have attempted to replicate the training instances that come from 

those regions of the instance space that are difficult to predict correctly. With large 

amounts of data, it is easier to obtain many instances that come from the difficult 

regions. Very large datasets provide far better coverage of the instance space, 

compared to small datasets. Examination of the structure of the instance space 

should lead to a better understanding of the prediction task at hand.  This 

understanding should lead to better decisions for the sample composition of the 

training datasets for base models.  

 

4.3 The research paradigm and methodology 
 

The research paradigm used for this research is design science research as 

described by March and Smith (1995), Hevner et al (2004), Vaishnavi and Kuechler 

(2004/5) and Manson (2006). In this section, the design science research paradigm 

and methodology are briefly discussed. The design science research paradigm and 

the outputs of design science research are respectively presented in sections 4.3.1 

and 4.3.2. Artifact evaluation and theory building, and the justification for adopting 

design science research for this thesis are respectively discussed in section 4.3.3 

and 4.3.4. The different types of theories for data mining are discussed in section 

4.3.5. 

 

4.3.1 The design science research paradigm 
 

The design science research paradigm originates from engineering and the physical 

sciences (March & Smith, 1995). Design science (Simon, 1996) and design science 

research (March & Smith, 1995) are concerned with the design and study of artifacts. 
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Hevner et al (2004) have provided the following definition for Information Systems 

artifacts: 

 

‘.. innovations that define ideas, practices, technical capabilities, and products, through 

which the analysis, design, implementation, and use of information systems can be 

effectively and efficiently accomplished.’ 

 

Design science research involves two distinct steps as depicted in figure 4.1. In the 

first step, an artifact is created. In the second step, an analysis of the usage and 

performance of the artifact is conducted. The purpose of the analysis is to 

understand, explain, and possibly improve on one or more aspects of the artifact 

(Vaishnavi & Kuechler, 2004/5). According to Hevner et al (2004), in the context of 

information systems, artifacts may be models (abstractions and representations), 

methods (algorithms and practices) and instantiations (implemented and prototype 

systems). Design science research is a problem solving paradigm which seeks to 

create innovations in terms of ideas, practices, technical capabilities, and products. 

Through these innovations, the analysis, implementation, and usage of information 

systems can be effectively accomplished. Another view of design science research is 

due to March and Smith (1995). March and Smith (1995) have defined design 

science research and design science as activities aimed at the creation of things that 

serve human purposes. Design science and design science research are therefore 

technology-oriented and their outputs are assessed against criteria of value/utility.  

 

 
Figure 4.1:  A general model for generating knowledge in design science research  
(adopted from Vaishnavi & Keuchler (2004/5) and Manson (2006) ) 
 

Manson (2006) has summarised these views by observing that design science 

research is a process of using knowledge to design and create useful artifacts, and 

then using rigorous methods to analyse why, or why not, a particular artifact is 
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effective. Figure 4.1 shows a general model for generating knowledge in design 

science research, and reflects Manson’s (2006) observations. 

 

4.3.2 The outputs of design science research 
 

Table 4.1 gives a list of the outputs of design science research. Scientific research is 

about generating knowledge. In terms of generating new knowledge, for design 

science research new knowledge is generated in terms of the new constructs, new 

models, new methods (the how-to knowledge), and the better theories that arise out 

of the design and evaluation activities. Constructs are the core vocabulary that is 

used to express the concepts of a field. Knowledge is created when statements or 

propositions are made to express the relationships between various constructs of the 

field. Better theories, in terms of the models, will result if the models are rigorously 

tested in order to establish the existence of the relationships.   

 

Table 4.1: Outputs of design science research: Adapted from Vaishnavi & Kuechler (2004/5)  
 Output Description 

 
1 

 
constructs 

Conceptual vocabulary of a domain. Constructs make up the language 
used to define and communicate problems and solutions. 

 
2 

 
models 

A set of propositions or statements expressing relationships between 
constructs 

 
3 

 
Methods 

 
a set of steps used to perform a task: how-to knowledge 

 
4 

 
Instantiations 

Operationalisation of constructs, models and methods. Demonstration 
that the models and methods can be implemented in a working system. 

 
5 

 
Better theories 

 
Artifact construction as analogous to experimental natural science 

 

4.3.3 Artifact evaluation and theory building 
 

March and Smith (1995) have defined theories as ‘deep, principled explanations of 

phenomena’. Cohen (1995) has argued that theories may also be ‘propositions from 

which we can derive testable hypotheses’. Table 4.1  shows that one of the outputs 

of design science research should be ‘better theories’, that is, some improvements 

should be made to the existing theories of the field. Cohen (1995:ch.9) has provided 

guidelines for generalisation and theory building in Artificial Intelligence (AI) research. 

Cohen (1995) has stated that, for AI research there are six possible types of 

contributions as shown in figure 4.2. The cells 3,4,5,6 (P-S, P-G, E-S, E-G) in figure 

4.2 represent research activities that result in the creation of new scientific theories. 

Cells 3 and 4 (P-S and P-G) represent the creation of predictive theories. Predictive 
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theories attempt to predict (hypothesize on) the behaviour of a specific system or a 

class of systems. According to Cohen (1995), system behaviour is typically predicted 

in terms of the features of the system architecture (structure), the features of the 

tasks that the system can perform, and the features of the environment in which the 

system operates. Cells 5 and 6 (E-S and E-G) represent the creation of explanatory 

theories. Explanatory theories attempt to explain the hypothesized behaviour of a 

specific system or class of systems. 

 

 
Figure 4.2: Relationship between understanding, generalisation and scientific theories. 
Adapted from Cohen (1995) 
 

According to Cohen (1995) progress in science is gradually achieved by moving from 

descriptions of specific systems to providing causal explanations for systems in 

general as depicted in figure 4.2. Specific to design science research, March and 

Smith (1995) have observed that progress in design science is achieved when 

existing technologies are replaced by more effective ones. For the scope of this 

research, ‘general’ systems were viewed as systems for dataset selection for 

predictive data mining. A system for dataset selection for discriminative classification 

modeling was viewed as a ‘specific’ system as depicted in figure 4.2. The dashed line 

in figure 4.2 indicates the scope of scientific progress addressed in this thesis based 

on Cohen’s (1995) definitions. The scope of design science progress claimed in this 

thesis is described in detail in chapter 11. 

 

In the process of formulating predictive and explanatory theories, the Scientific 

Method of Peirce and Popper (Ngwenyama & Osei-Bryson, 2010; Oates, 2006) may 
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be followed for purposes of building theories based on empirical studies. This method 

involves observation, hypothesis generation, experiment design, and testing the 

validity of the hypotheses. Figure 4.3 shows the steps of the scientific method based 

on the discussion by Ngwenyama and Osei-Bryson (2010). Empirical observation 

involves the gathering of data/information about the phenomenon of interest. 

Hypothesis generation is when the researcher puts forward several hypotheses that 

could explain the phenomenon. Experiment design involves the design of 

experiments to test the logical consequence (validity) of the hypotheses. In the 

empirical testing step, the experiments are conducted in order to collect 

observations/data which is then analysed in order to establish whether or not the 

hypotheses are valid. The building of new theories arises from the outcomes of the 

empirical testing step. The empirical research reported in this thesis resulted in the 

formulation of a number of predictive theories which are presented in chapter 11. The 

scientific method was followed in the design and evaluation steps within the design 

science research paradigm. 

 

 
Figure 4.3: Steps of the scientific method.  
 

4.3.4 Justification for adopting the design science research 
paradigm 
 

This thesis is concerned with the investigation of methods for selecting features and 

training datasets from large amounts of data and the use of the selected data to 

create predictive models which can achieve a high level of accuracy and stability. 

The design and evaluation activities for the research are therefore the design and 

evaluation of feature selection methods, training set selection methods, and 

associated methods for model construction and testing. The use of design science 
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research enabled the author to systematically evaluate the hypothesised methods of 

feature selection, dataset selection, and model construction, and to systematically 

test hypothesised relationships between factors that affect the quality of selected 

features and training datasets. Based on existing literature, the author was able to 

construct models of known factors that affect the quality of selected features and 

training datasets, and to extend these models based on the results obtained from the 

experiments that were conducted for this research. 

 

4.3.5 Theories for data mining 
 

The foregoing discussion is aimed at the development of empirically derived theories 

for data mining. It was noted in chapter 1 that the parent fields of data mining are 

Computer Science and Statistics (Smyth, 2001). More recently, Olafsson et al (2008) 

have discussed the contributions by Operations Research to the field of data mining. 

While Statistics and Operations Research are founded on mathematical theories, in 

general for Computer Science, there are two types of possible theories: mathematical 

theories and empirical theories (Simon, 1996). Simon (1996) has observed that there 

are many aspects of computer systems that are so complex that there are no feasible 

mathematical theories that can be developed to describe their design and behaviour. 

Specific to machine learning, there are many mathematical theories that have been 

developed. However, Dietterich (1997) has observed that many problems in machine 

learning will only be solved through empirical studies, and not through mathematical 

formulations. The theories discussed in chapter 2, on sample complexity for inductive 

algorithms are a case in point. It was stated in chapter 2 that these theories provide 

unrealistic estimates for the sample complexity. Cohen (1995) has provided 

comprehensive guidelines on how to conduct empirical research in artificial 

intelligence and how to generate empirical theories from the empirical studies. 

 

4.4 The datasets used in the experiments 
 

The datasets used for the experiments were obtained from the UCI KDD Archive 

(Bay et al, 2000; Hettich & Bay, 1999), and the UCI Machine Learning Repository 

(Ascuncion & Newman, 2007; Blake & Merz, 1998).  This section provides the 

motivation for the choice of datasets, brief descriptions of the datasets, past usage of 

the datasets, and pre-processing that was performed on two of the datasets. The 
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descriptive statistics for the selected datasets are provided in appendix C. The 

reasons for selecting the datasets for the experiments of this thesis are presented in 

section 4.4.1. Dataset pre-processing is discussed in sections 4.4.2 and 4.4.3. 

 

4.4.1 Choice of datasets and past usage  
 

Typical empirical studies on aggregate modelling for small datasets have been 

conducted using small numbers of datasets. The exception is Ali and Pazzani’s 

(1996) studies where 29 datasets have been used. Table 4.2 provides some 

examples of studies where small datasets have been used. Experimental studies on 

dataset selection and aggregate modelling from large datasets have also been 

conducted using small numbers of datasets.  

 

Table 4.2: Examples of datasets used in data mining and machine learning studies 
 
Author(s) 

 
Nature / scope of study 

 
Dataset description 

Ooi et al (2007) 
 
 

OVA classification and feature 
selection 

8 small datasets of sizes between 60 and 257 
instances, and large number of dimensions 
ranging between 1,741 and 12,011 

Chawla et al 
(2001) 

Dataset partitioning and 
aggregate modeling using 
massively parallel super 
computers 

4 small datasets of size less than 20,000 
instances and  
2 large datasets of size 299,186 and 3.6 million 
instances 

Hall et al (2000) Dataset partitioning and 
aggregate modelling 
using massively parallel super 
computers 

4 very large datasets of sizes 1.6, 3.2, 6.4 and 
51 million instances 

Chan and Stolfo 
(1998) 
 

Dataset partitioning, sampling 
and aggregate modelling  

1 large dataset for credit card fraud detection. 
500,000 instances 
 

Ho (1998) Dataset partitioning with 
random feature subsets 

4 small datasets of sizes between 3,186 and 
14,500 instances 

Ali and Pazzani 
(1996) 

Factors that affect performance 
improvements for aggregate 
models  

29 small datasets of sizes between 150 and 
8,200 instances 

Breiman (1996) Bootstrap aggregation for 
classification and regression 

12 small datasets of sizes between 351 and 
1,395 instances 

Kwok and Carter 
(1990) 

aggregate modeling for 
decision trees 

2 small datasets of sizes 446 and 5,516 
instances 

 

The examples given in table 4.2 indicate that studies have been conducted using 

one, two or four large datasets. Studies on extremely large datasets with instances in 

excess of one million have been conducted using supercomputers with massively 

parallel architectures (Chawla et al, 2001; Hall et al, 2000). Based on the foregoing 

observations and the time and computational resources available to the author, a 
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decision was made to use two small datasets and two large datasets for the 

experiments for this thesis. 

 

Table 4.3 gives the characteristics and past usage of the datasets used in the 

experiments for this thesis. The mushroom and abalone datasets (Ascuncion & 

Newman, 2007; Blake & Merz, 1998) are very commonly used in machine learning 

research. The wine quality dataset (Cortez et al, 2009; Ascuncion & Newman, 2007) 

has been used by Cortez et al (2009) for predictive modeling of wine quality. The 

mushroom dataset has originally been used for concept learning research by 

Schlimmer (1987) and Iba et al (1988).  The mushroom dataset was selected for this 

research as the dataset which consists of only qualitative features, in order to study 

the behaviour of correlation measures for qualitative features. The abalone dataset 

has originally been used by Waugh (1995) for cascade-correlation. The original 

abalone dataset has 29 classes. Clark et al (1996) have created a three-class 

version of this dataset for their comparative study of artificial neural network 

algorithms. The three-class version of the abalone dataset was used for the 

experiments reported in this thesis. The wine quality dataset was selected for 

purposes of establishing whether the proposed training instance selection methods 

can also be applied to small datasets. A second reason for selecting the abalone and 

wine quality datasets was because these datasets have low levels of classification 

accuracy and can therefore be used to demonstrate increases in predictive 

performance (Cohen, 1995). 

 

The two large datasets that were used for the experiments are forest cover type and 

KDD Cup 1999 (Bay et al, 2000; Hettich & Bay, 1999). These two datasets were 

chosen for the experiments because they are large datasets, and have large 

numbers of features. Tables 4.3, 4.4 and 4.5 show the important statistics for these 

datasets. The forest cover type dataset is a good example of data mining for a 

scientific application. This dataset consists of data describing the forest cover type for 

each of 581,012 forest cells, each measuring 30x30 meters. The prediction task for 

the forest cover type dataset is to predict one of seven forest cover types based on 

the soil type, wilderness area type, elevation (altitude) and other variables. Blackard 

(1998) has used this dataset to study the differences in predictive performance 

between artificial neural networks and discriminant analysis. The KDD Cup 1999 

dataset is a typical example of data for forensic data mining. This dataset is a 

common benchmark for the evaluation of computer network intrusion detection 
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systems (IDS). The dataset consists of a wide variety of network intrusions, 

simulated for a military computer network environment.  

 

 

Table 4.3: The datasets used for the experiments  
Dataset Description Past usage 

Size Features & classes 
Forest cover 
type 

 
581,012 
 

54 features 
10 continuous, 44 binary, 7 classes 

Comparison of ANNs and 
discriminant analysis 
(Blackard, 1998) 

KDD Cup 1999  
Training dataset  
(10% version)  

 
494,022 

41 features 
34 continuous, 7 qualitative, 23 classes 

 
Intrusion detection 
(Stolfo et al, 2000) 

KDD Cup 1999  
Test dataset  

 
311,029 

41 features 
34 continuous, 7 qualitative, 40 classes 

Wine quality 
(white) 

 
4,898 

11 continuous-values features, 
7 classes 

Prediction of wine quality 
scores assigned by wine 
tasters. (Cortez et al, 2009) 

Abalone  
(3 class) 

 
4,177 

features: 8 features 
7 continuous, 1 qualitative, 3 classes 

Prediction of the age of 
abalone 

Mushroom  
8,146 

22 qualitative features 
2 classes 

Prediction of edibility of 
mushrooms 

 

Table 4.4: Class counts for the forest cover type dataset 
Class Type of forest cover Count 
1 Spruce / Fir 211,840 

2 Lodgepole pine 283,301 

3 Ponderosa pine 35,754 

4 Cottonwood / Willow 2,747 

5 Aspen 9,493 

6 Douglas - fir 17,367 

7 Krummholz 20,510 
TOTAL  581,012 

 

The dataset was provided by the USA DARPA and MIT Lincoln Labs (Lee et al, 

2002),  and was later pre-processed for the KDD Cup 1999 competition by the 

Columbia IDS Group (Stolfo et al, 2000). Two versions of this dataset are provided at 

the UCI KDD archive. The smaller version, which consists of ten percent of the 

instances of the original version, was used for the experiments. Four main categories 

of attacks are present in the dataset: denial-of-service (DOS), unauthorized access 

from a remote machine (R2L), unauthorized access to super-user privileges (U2R), 

and probing attacks (PROBE) (Laskov et al, 2005; Lee & Stolfo, 2001; Stolfo et al, 

2000).  
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Table 4.5: Class counts for the KDD Cup 1999 training (10% version) and test sets  

Attack Type 
Class count 

AttackType 
Class count 

Training set Test set Training set Test set 
apache2   794 portsweep 1,040 354 

back 2,203 1,098 processtable   759 

buffer_overflow 30 22 ps   16 

ftp_write 8 3 rootkit 10 13 

guess_passwd 53 4,367 saint   736 

httptunnel   158 satan 1,589 1,633 

imap 12 1 sendmail   17 

ipsweep 1,247 306 smurf 280,790 16,4091 

land 21 9 snmpgetattack   7,741 

loadmodule 9 2 snmpguess   2,406 

mailbomb   5,000 spy 2   

mscan   1,053 sqlattack   2 

multihop 7 18 teardrop 979 12 

named   17 udpstorm   2 

neptune 107,201 58,001 warezclient 1,020   

nmap 231 84 warezmaster 20 1,602 

normal 97,278 60,593 worm   2 

perl 3 2 xlock   9 

phf 4 2 xsnoop   4 

pod 264 87 xterm   13 

  TOTALS 494,021 311,029 
 

4.4.2 Dataset pre-processing to balance class distributions 
 

The KDD Cup 1999 dataset is not amenable to classifier construction without pre-

processing (Laskov et al 2005; Leung & Leckie, 2005). Laskov et al (2005) have 

observed that the KDD Cup 1999 dataset suffers from two major flaws in the 

distribution of the classes in the dataset. First of all, approximately 80% of instances 

correspond to attacks. Secondly, the distribution of the attack instances is highly 

unbalanced. Laskov et al (2005) have observed that Probes and DOS attacks 

dominate the class distribution, while more dangerous attacks such as phf and imap 

are severely under-represented. Researchers who have used the KDD Cup 1999 

dataset (e.g. Shin & Lee, 2006; Laskov et al, 2005; Leung & Lecki, 2005) have 

typically pre-processed the dataset to balance the distribution of the attack types and 

service types, and to reduce the number of instances for attacks in comparison to 

normal connections. Laskov et al (2005), for example, have reduced the number of 

attack instances to five percent (5%). 
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Table 4.6: Reduction of the over-representation of (service, attack type) values in the KDD 
Cup 1999 training and test datasets 
Dataset Service 

name 
Class name Instance 

type 
Count  
before 

Count  
after 

 
Training 
set 

private neptune attack 101,317 500 
ecr_i smurf attack 280,790 1,000 
http normal normal 61,887 5,000 

smtp normal normal 9,598 5,000 
 
Test set 

private neptune attack 54,739 500 
private smurf attack 164,091 1,000 
private snmpgetattack attack 7,733 2,500 
smtp mailbomb attack 5,000 2,500 
private normal normal 12,808 2,500 

 

Two approaches have been used by researchers to construct classification models 

from the KDD Cup 1999 dataset. For the first approach, the attack types that appear 

in the data are used as the classes (Laskov et al, 2005; Lee & Stolfo, 2000; Fan et al, 

2000). For the second approach, the main categories: NORMAL, DOS, PROBE, R2L 

and U2R are used as the classes (Shin & Lee, 2006). The main problem with using 

the first approach is that there are attack types that are severely under-represented 

as can be seen in table 4.6. Secondly, there are attack types that appear in the test 

set but not in the training set. The problem of under-representation is slightly reduced 

in the second approach. The problem of classes which appear in the test set and not 

the training set is partially eliminated when the second approach is used, since all 

such attacks belong to the R2L category. 

 

For the experiments reported in this thesis, pre-processing of the dataset was done 

as follows. The instances for the (service, attack type) values that are severely over-

represented were reduced as shown in table 4.6. The objective of the reduction was 

to ensure that the frequency of attacks for each over-represented attack type is 

reduced to make that frequency comparable to the other attack types for that service. 

The reduction was achieved using sequential random sampling of the instances that 

are over-represented. The training and test datasets were further pre-processed to 

add a new class variable with values NORMAL, DOS, PROBE, R2L and U2R. Table 

4.7 shows the resulting attack type and class distributions after the pre-processing, 

for the dataset used for training. The test dataset was further pre-processed to 

remove all attack types that do not appear in the training data. This was motivated by 

the following observations as stated by Lee and Stolfo (2000). 

 

The two main intrusion detection techniques are misuse detection and anomaly 

detection. Misuse detection systems use patterns of well known attacks to identify 

 
 
 



  84 

known intrusions. On the other hand, anomaly detection systems detect and report 

activities that significantly differ from established normal usage profiles (Lee & Stolfo 

2000).  Since classification modeling is based on inductive learning, classification 

models created for intrusion detection systems should be created for misuse 

detection. For this reason, attack types that do not appear in the training data were 

removed from the test data. Table 4.8 shows the resulting class distribution of the 

test dataset after this phase of pre-processing. The entries for TestA in column 7 of 

table 4.8 indicate the number of instances that were removed because the attack 

type does not appear in the training data. 

 

Table 4.7: Class counts for the final version of the KDD Cup 1999 training dataset 

Class 
Type of 
connection AttackType 

AttackType 
count Class count 

 
 
 
 
DOS 

 
 
 
 
Denial of service 

back 2,203 

10,851 

land 21 
neptune 6,384 
pod 264 
smurf 1,000 
teardrop 979 

NORMAL normal normal 35,794 35,794 
 
 
PROBE 
 

 
 
Probing prior to 
attack 

ipsweep 1247 

4,107 

nmap 231 
portsweep 1,040 
satan 1,589 

 
 
 
 
 
R2L 
 

 
 
 
 
 
Unauthorised 
access from a 
remote machine 

ftp_write 8 

1,126 

guess_passwd 53 
imap 12 
multihop 7 
phf 4 
spy 2 

warezclient 1,020 
warezmaster 20 

 
 
U2R 
 

 
Unauthorised 
access to 
superuser 
privileges 

buffer_overflow 30 

52 

loadmodule 9 
perl 3 
rootkit 10 

TOTALS    51,930 51,930 
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Table 4.8: Class counts for the final version of the KDD Cup 1999 test dataset 

Class AttackType 
AttackType 
count 

Class 
count Class AttackType Attack count 

Class 
count 

 
 
 
 
 
 
 
 
DOS 
 

apache2 794 

  
  
  
  
  
  
  
  
  
10023 

 
 
 
 
 
 
 
 
 
R2L 
 

httptunnel 
TestA:    158 
TestB:        0 

  
  
  
  
  
  
  
  
TestA: 
 11,114 
 
TestB: 
5,995 

back 1,098 imap 1 
land 9 multihop 18 

mailbomb 2,500 named 
TestA:      17 
TestB:       0 

neptune 3,762 phf 2 

pod 87 sendmail 
TestA:     17 
TestB:      0 

processtable 759 snmpgetattack 
TestA : 2508 
TestB:     0 

smurf 1,000 snmpguess 
TestA:  2406 
TestB:        0 

teardrop 12 warezmaster 1,602 
udpstorm 2 worm 2 

NORMAL normal 50,285 50285 xlock 
TestA:       9 
TestB:       0 

PROBE 
 

ipsweep 306 
  
  
  
  
  

4166 

xsnoop 
TestA:       4 
TestB:       0 

mscan 1,053  
 
 
U2R 
 

buffer_overflow 22 
  
  
  
  
  
  

70 

nmap 84 loadmodule 2 
portsweep 354 perl 2 
saint 736 ps 16 
satan 1,633 rootkit 13 

R2L 
 

ftp_write 3   
  

sqlattack 2 
guess_passwd 4,367 xterm 13 

  
TOTALS (TestA) 75,658 75,658 
TOTALS (TestB) 70,539 70,539 

 

4.4.3 Dataset pre-processing to normalise feature values 
 

The KDD Cup 1999 dataset contains features from various numeric-valued domains. 

Table 4.9 shows a selected sample of features as well as the minimum and 

maximum values of the features for the KDD Cup 1999 dataset. As can be seen in 

table 4.9, the KDD Cup 1999 dataset has features with a narrow value range (e.g. 

[0,1] for DstHostSrvSerrorRate) as well as features with a very wide value range (e.g. 

[0, 693375640] for SrcBytes). K-Nearest neighbour (KNN) is one of the classification 

algorithms that were used in the experiments. The KNN algorithm computes 

distances between instances using a distance measure from the class of the 

Minkowski norms (Doherty et al, 2007) of which the Euclidean distance measure is 

the most common. The computation of the Euclidean distance using features from 

very widely varying ranges of values such as found in the KDD Cup 1999 dataset will 

result in the large-valued features dominating the result of the computed distance, 

and so masking the effects of the small-valued features.  
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Table 4.9: Range of values for features in the KDD Cup 1999 dataset 

Feature Minimum value Maximum value 

NumCompromised 0 884 

WrongFragment 0 3 

DstHostSrvSerrorRate 0 1 

Hot 0 30 

DstHostSerrorRate 0 1 

NumRoot 0 993 

Counted 0 511 

DstBytes 0 5,155,468 

SrcBytes 0 693,375,640 

SrvCount 0 511 

NumFailedLogins 0 5 

NumFileCreations 0 28 

Duration 0 58,329 
 

Doherty et al (2007) have conducted experiments which show that normalisation of 

data values for a dataset may eliminate this problem. For this reason, the numeric-

valued features of the KDD Cup 1999 dataset were normalised in the pre-processing 

step for the KNN algorithm. Secondly, the normalised values were mapped into the 

range [0, 1000] to avoid the effects of rounding when fractional values are multiplied 

together. 

 

4.5 Sampling methods 
 

All the experiments reported in this thesis involved the use of simple random 

sampling. Simple random sampling is the process of selecting a sample of the 

population units while giving every member of the population an equal chance of 

being selected (Rao, 2000). Simple random sampling may be done with replacement 

(SRSWR) or without replacement (SRSWOR).  For SRSWOR, every population unit 

gets only one chance of being considered for selection. For SRSWR, every 

population unit gets many chances of being considered for selection. Sequential 

random sampling, described in the next section, was used to implement both SRWR 

and SRWOR for the large datasets used in the experiments. Sequential random 

sampling is discussed in section 4.5.1. The shuffling of data prior to sampling is 

discussed in section 4.5.2. 
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4.5.1 Sequential random sampling 
 

Olken and Rotem (1995) and Olken (1993) have studied the use of sequential 

random sampling from databases. For sequential random sampling, the problem is to 

draw a random sample of size n without replacement, from a file containing N 

records. The simplest sequential random sampling method is due to Fan et al (1962) 

and Jones (1962), and proceeds as follows: An independent uniform random variate 

from the uniform interval [0,1]  is generated for each record in the file to determine 

whether the record should be included in the sample. If �� records have already been 

chosen from among the first t records in the file, the (t+1)st record is chosen with 

probability  )/( sizesize RMRQ ,  where )( tsize nnRQ −= is the number of records that still 

need to be chosen for the sample, and   )( tNRMsize −= is the number of records in 

the file still to be processed.  Olken (1993) has used these methods to study 

database sampling.  

 

4.5.2 Obtaining random samples from datasets 
 

The records for each of the large datasets used in the experiments were randomised 

(shuffled) prior to sampling. The reason for shuffling the data was to remove any 

possible ordering in the dataset and to maximise the randomness of the order in 

which the instances appear. Sequential random sampling was then used to achieve 

simple random sampling, either from the whole dataset or from partitions of the 

dataset. In order to create bootstrap samples, the sequential random sampling 

procedure was repeated several times on the dataset, with a different random seed 

for each iteration. The shuffling and sampling from the datasets were implemented 

using stored procedures in a Microsoft SQL Server database. 

 

4.6 The data mining algorithms used in the experiments 
 

The two classification algorithms used for the experiments are decision tree for 

classification and K-Nearest Neighbour (KNN) classification. Decision tree 

classification (Quinlan, 1993; Quinlan, 1986; Breiman et al, 1984), which constructs 

classification models, has the desirable property that it attempts to identify the most 

relevant features. The KNN algorithm (Cover & Hart, 1967) is very different from the 
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decision tree algorithms, as it does not perform feature selection of any kind, and 

therefore benefits the most from feature selection. Wu et al (2008) have reported that 

the decision tree algorithms as implemented in C4.5 (Quinlan, 1993; Quinlan, 1986) 

and CART (Breiman et al, 1984) as well as the KNN classification algorithm (Cover & 

Hart, 1967), are among the top ten algorithms used in data mining research. This 

section provides a brief description of the classification tree and KNN classification 

algorithms. Classification tree algorithms are discussed in section 4.6.1. KNN 

classification is discussed in section 4.6.2. 

 

4.6.1 Classification trees 
 

A classification tree algorithm creates a tree-structured model for the prediction of a 

qualitative variable called the class variable. In the classification tree model each leaf 

node provides information about the class to be assigned to instances that fall in that 

node. A classification tree algorithm recursively partitions a set of training data, using 

one predictive feature at a time, to create training dataset partitions. A classification 

tree is constructed, along with the partitioning process, based on the generated 

training dataset partitions. The heuristic used to guide the partitioning process uses a 

class impurity measure. At each decision point (for partitioning), all remaining 

features are evaluated. The feature that produces the partitions with the lowest class 

impurity is selected for partitioning. The selected feature then becomes the test for 

the decision/classification tree node with its values labeling the branches of the node. 

Commonly used class impurity measures are the chi-square (CHAID) criterion 

(Giudici, 2003), the two-ing criterion (Breiman et al, 1984), the Gini index of diversity 

(Breiman et al, 1984), and the entropy function (Quinlan, 1986). 

        

The partitioning process should ideally stop when each partition is pure, that is, it 

consists of training instances all of the same class. In practice, however, pruning 

methods are used to halt the partitioning when it is no longer statistically valid to 

continue (Quinlan, 1993; Breiman et al, 1984). Breiman et al (1984) have observed 

that the tree growing procedures result in trees that are much larger than the data 

warrant. For example, if splitting is carried out to the point where each terminal node 

contains only one data case, then each node is classified by the case it contains, and 

the error on the training data is zero. This is an extreme case of overfitting which was 

discussed in chapter 2. On the other hand, when a tree is too small, then useful 

classification information in the training data has been ignored. This results in a high 
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rate of classification error on the training data and a high predictive error rate on 

future instances. To determine the optimally-sized tree, a three step procedure is 

used (Osei-Bryson, 2004; Breiman et al, 1984).  The first step is to grow a tree that is 

as large as possible. In the second step, the tree is pruned upward from the leaf 

nodes until the root is reached. In the third step, an independent sample of test data 

is used to estimate the predictive accuracy of all the pruned trees. The tree with the 

highest accuracy on the test data is selected as the optimally-sized tree. Optimisation 

methods from Operations Research have also been proposed for the selection of the 

optimal-size classification tree based on multiple objectives (Osei-Bryson, 2004). For 

the final classification tree that is used for classification, each leaf node has an 

assigned posterior probability for each class. In the prediction process, when a query 

instance lands at a given leaf node, the class with the highest probability at that node 

is predicted for the query instance (Osei-Bryson, 2004; Quinlan, 2004). 

 

4.6.2 K-Nearest Neighbour classification 
 

The K-Nearest Neighbour (KNN) classification algorithm originates from the field of 

statistical pattern recognition (Cover & Hart, 1967). The inductive bias of the KNN 

algorithm corresponds to an assumption that the classification of an instance q���� , will 

be most similar to the classification of other instances that are nearby in terms of 

Euclidean distance. K-nearest neighbour classification uses a lazy algorithm which 

only constructs a classifier in the form of a target function, only when a new instance 

for classification is presented. The target function may be either discrete or real 

valued. If the target function is discrete valued then it is of the form CRf d →: , 

where d is the number of predictive features and C is the finite set },...,{ kcc1  of the 

classes in the training data.  For the simplest implementation of the KNN algorithm, 

the target function is estimated by computing a score for each class and returning 

that class that most frequently occurs among the K-nearest instances, based on the 

Euclidean distance. The score computed by the KNN algorithm is also the posterior 

probability )|( qir cP ����  that the query instance q���� belongs to class ic . The computation 

of the Euclidean distance between query (test) instance q����  and training instance x is  

      

                     

 
dist(x, xq) =  2
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1
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��
�
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where d is the number of predictive features for the instance space. Since many 

datasets have qualitative features, special treatment is needed for the qualitative 

nominal and qualitative ordinal values when computing Euclidean distance.  A 

common approach is to define the quantity )( qii xx −  for qualitative (nominal and 

ordinal) values as follows (Mitchell, 1997): 

 
 

4.7 Measures of model performance 
 

Evaluation is a crucial part of design science research. The measures for evaluating 

predictive model performance are discussed in section 4.7.1. Statistical methods for 

comparing two models on performance are discussed in section 4.7.2. ROC and lift 

chart analysis are discussed in section 4.7.3. 

 

4.7.1 Measures of predictive performance 
 

It was stated in chapter 1 that statisticians have invented effective methods of model 

construction, validation and testing for small datasets. Model validation and testing, 

using small amounts of data, has typically been done in the past using cross 

validation, the hold out method, or the bootstrap method (Mitchell, 1997; Hand, 1997; 

Moore & Lee, 1994). These methods were discussed in chapter 2. Even though the 

predictive performance of a model is very commonly reported in terms of predictive 

accuracy, especially in machine learning literature, various measures exist for more 

detailed analysis of the predictive capabilities of a model (Giudici, 2003; Hand et al, 

2001; Hand, 1997). By generating a confusion matrix, performance measures can be 

computed for a given classification model. Table 4.9 shows a theoretical confusion 

matrix for a 2-class problem with two class labels positive and negative (Giudici, 

2003; Hand, 1997). For a given validation dataset or test dataset, the value TP 

represents the number of positive instances that are correctly predicted as positive 

instances.  The value FN represents the number of positive instances that are 

incorrectly predicted as negative instances. The value FP represents the number of 

)( qii xx −
   = 

0 if the qualitative values are identical 

1 if the qualitative values are different 

(4.2) 
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negative instances that are incorrectly predicted as positive instances. The value TN 

represents the number of negative instances that are correctly predicted as negative 

instances. In general, a confusion matrix can be created for any k-class (k > 1) 

classification model. From the TP, FN, FP and TN values, various performance 

measures can be derived (Giudici, 2003; Kubat & Matwin, 1997; Hand, 1997).  

 

Table 4.10 gives the definitions and computation of the performance measures for a 

2-class model. These performance measures provide useful information which can 

be used to compare classification models and to select the model that has the best 

predictive performance on the test data. The counts FN and FP represent levels of 

class confusion. The value FN represents the level to which instances of the positive 

class are mis-classified as negative instances and FP represents the level to which 

instances of the negative class are mis-classified by the model as positive instances.  

 

Table 4.9: Theoretical confusion matrix for a 2-class model 
 
Actual class 

Predicted class  
Totals positive negative 

positive TP FN Pos = TP + FN 

negative FP TN Neg = FP + TN 

Totals TP + FP FN + TN Pos + Neg 

 

Table 4.10: Measures of performance derived from a confusion matrix 
Measure 

 
 
Computation 
 (in terms of table 4.9) Name Description 

 
symbol 

Error error rate error (FN + FP) / (Pos + Neg) 
 

Accuracy Accuracy accuracy (TP + TN) / (Pos + Neg) 
 

Sensitivity 
 

True positive rate  TPRATE TP / (TP + FN) 

Specificity 
 

True negative rate  TNRATE TN / (FP + TN) 

Precision 
 

Correct positive prediction rate Precision TP / (TP + FP) 

Type I error rate False negative rate FNRATE FN / (TP + FN) 
 

Type II error rate False positive rate FPRATE FP / (FP + TN) 
 

Y rate 
 

Positive prediction rate YRATE (TP + FP) / (Pos + Neg) 

 

The concepts of positive instances and negative instances for k-class prediction 

tasks were interpreted as follows in this thesis. Each class ic  was treated as the 

positive class in contrast to all the other k-1 classes which were treated as the 
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negative classes. This resulted in the creation and analysis of k confusion matrices 

with one 2 x 2 confusion matrix for each (positive) class. 

 

The error and accuracy measures have a straight forward interpretation. In this 

thesis, the accuracy (rather than the error) is reported for all experiments on 

predictive performance. For a 2-class problem, the sensitivity or true positive rate is 

the error rate on the test instances that belong to the positive class. For 2-class 

problems, the specificity or true negative rate is the error rate on the test instances 

that belong to the negative class. The false negative rate (type I error rate) is the rate 

at which a model fails to classify positive instances as positive. The false positive rate 

(type II error rate) is the rate at which a model fails to classify negative instances as 

negative. The YRATE is used for lift analysis as discussed in section 4.7.3. 

 

4.7.2 Statistical test to compare model performance 
 

For purposes of comparing the performance of two predictive models AM  and BM , a 

common approach is to establish the performance of each model on several test 

problems and compute the values of selected measures, or, all of the measures 

presented in the last section. Most commonly, in machine learning, the predictive 

accuracy or error rate are computed. Statistical tests are then used to compare the 

values of the measures on the test problems in order to establish if one model 

provides a higher level of predictive performance. Suppose that models AM  and 

BM  are each tested on a set of n problems, },...,{ 1 AnAA problemproblemPSet =

for model AM  and },...,{ 1 BnBB problemproblemPSet =  for model BM . For 

statistical testing, when the sample size n is large (n � 30), the Z test for normal 

distributions is used to compare the mean values of the performance measures. 

When n is small (5� n<30), Student’s t test is used to compare the mean values 

(Cohen, 1995).  

 

There are two types of t-tests for comparing sample means. For the first t-test, called 

the two sample t test (Cohen, 1995), the problem sets APSet  and BPSet  are 

different. For the second t-test, called the paired sample t test (Cohen, 1995), the 

problem sets APSet  and BPSet  are identical. The models AM  and BM  are each 

tested on each problem, Aiproblem , and the statistical test is based on the 
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difference in performance on each of the test problems. The paired sample t-test has 

more statistical power than the two sample t-test since it controls for (minimises) the 

variance due to the test problems (Cohen, 1995). The paired sample t-test was used 

for all the experiments in this thesis to compare model performance. In order to 

establish whether model AM  provides a higher level of predictive performance 

compared to model BM , the following null hypothesis 0H  and two-tail alternative 

hypothesis aH  were tested:  

 
0:,0:0 ≠= δδ µµ aHH                 (4.3) 

 
where Aµ  and Bµ  represent the hypothesised mean values for one of the 

performance measures presented in the last section and BA µµµδ −=  represents 

the mean difference. 

 

The F-test for variances (Cohen, 1995) was used in this thesis to compare the single 

and aggregate models in terms of variability of predictive performance. Cohen (1995: 

pg 205) has advised that comparison of performance variance for two models can be 

used to establish whether one model exhibits more erratic (or more coherent) 

behaviour compared with the other model. When two models have equal mean 

predictive performance then the model with more coherent performance should be 

preferred (Cohen, 1995). For the F-test of variances, the null hypothesis H0 is that 

there is no significant difference in the performance variances of both models. 

 

When an experiment is conducted, the probability of obtaining a particular sample 

result given the null hypothesis 0H  is called the p value. There are two methods of 

conducting statistical inference with p values. With the first, more traditional method, 

the researcher decides on the level of significance at which the null hypothesis will be 

rejected. Conventionally, a significance level of 0.05 (p = 0.05) is used. If the p value 

for a test is less than 0.05, then the null hypothesis is rejected (Montgomery et al, 

2004; Cohen, 1995). For the second method, various levels of the p value are used 

to determine the outcome of the test, as shown in table 4.11 (Stirling, 2008). The 

second method of interpreting p values was adopted for the experiments of this 

thesis. 
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Table 4.11: Interpretation of p values for statistical tests 
 
p value 

 
Interpretation 

p < 0.01 Strong evidence for the rejection of 0H  

0.01 < p � 0.05 Moderate evidence for the rejection of 0H  

0.05 < p � 0.1 Marginal or weak evidence for the rejection of 0H  

p > 0.1 No evidence to support the rejection of 0H  

 

4.7.3 Analysis of performance using ROC curves and lift charts 
 

Receiver Operating Characteristic (ROC) curves and lift charts are commonly used 

as graphic representations of predictive model performance for 2-class prediction 

tasks (Giudici & Figini, 2009; Witten & Frank, 2005; Giudici, 2003; Berry & Linoff, 

2000). A probabilistic classification model will typically assign a class and a score for 

the class. Most commonly, the score is the posterior probability that a test instance 

belongs to the predicted class (Giudici & Figini, 2009; Witten & Frank, 2005; Giudici, 

2003; Berry & Linoff, 2000). ROC analysis and lift analysis are concerned with the 

selection of the model with the optimal performance based on the cut-off point λ that 

is used to decide when an instance should be declared positive or negative. A cut-off 

point is the score value )( �� ��conf  for which λ≥)( �� ��conf implies that the predicted 

class for instance ���� is the positive class. ROC and lift analysis can also be used to 

determine which of two models provides a higher level of predictive performance as 

discussed below. 

 

The Receiver Operating Characteristic (ROC) curve construct originates from signal 

detection applications where there is a signal transmitter and a signal receiver for a 

given (possibly noisy) transmission channel.  A ROC curve is used to specify the 

relationship between the hit rate (correct detection) and the miss rate (false alarm 

rate) for the signal receiver (Witten & Frank, 2005). For classification modeling, a 

ROC curve is created using the information in a 2-class confusion matrix. More 

precisely, a ROC curve is a plot on a 2-dimensional Cartesian plane with the x and y 

values defined as (Vuk & Curk, 2006; Fawcett, 2001, 2004, 2006; Ferri et al, 2003; 

Hand & Till, 2001): 

 

)(),( λλ TPRATEyFPRATEx ==                (4.4) 
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where )(λFPRATE and )(λTPRATE are respectively the false positive and true 

positive rates obtained when the cut-off value of λ is used. In order to understand the 

purpose of ROC analysis for classification modeling, it is useful to make a distinction 

between a discrete classifier and a probabilistic classifier. A discrete classifier 

assigns a class label to a test (or query) instance for a fixed threshold value (Fawcett, 

2001, 2004, 2006). A probabilistic classifier on the other hand has the ability to 

assign a class label and a (probabilistic) score to a test (or query) instance for 

different threshold values. Stated differently, a probabilistic classifier operates in 

ROC space (Fawcett, 2001, 2004, 2006) which is the 2-dimensional plane defined by 

equation (4.4). A discrete classifier corresponds to exactly one point in the ROC 

space of a probabilistic classifier. 

 

Figure 4.5 shows the Cartesian plane for the ROC space with a ROC curve example. 

A ROC curve represents relative tradeoffs between the benefits (true positives) and 

the costs (false positives) of using a given probabilistic classifier (Fawcett, 2006).  

 

 
Figure 4.5: ROC space and AUC 
 

For a given probabilistic classifier, each cut-off value of λ  corresponds to a single 

point in the ROC space as defined in equation (4.4). The ROC curve joins these 

points for ∞<<∞− λ . The point (0,0) represents a classifier which never gives a 

positive prediction. The point (1,1) represents a classifier which always gives a 

3λ  

1λ  
2λ  

)(λTPRATE  

aboveAUC

belowAUC

0 1 

0 

1 

)(λFPRATE  
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positive prediction. The point (0,1) represents a perfect classifier which never issues 

incorrect predictions. For the ROC curve example shown in figure 4.5, the 

relationship between the cut-off values is: 123 λλλ >> , that is, the higher the cut-off 

value, the lower the FPRATE and TPRATE. A 45 degree line is normally plotted on 

the ROC plane to represent the ROC curve for classification in the absence of a 

model (random guessing). Any ROC point which lies below the 45 degree line 

represents a model which performs worse than random guessing. 

 

An important statistic provided by the ROC curve is the Area Under the ROC curve 

(AUC). The AUC is the area between the x-axis, y-axis and the ROC curve (Fawcett 

2001, 2004, 2006; Vuk & Curk, 2006; Ferri et al, 2003). This is the sum of the areas 

labelled aboveAUC  and belowAUC  in figure 4.5. The area belowAUC  has a fixed value 

of 0.5. Fawcett (2006) has observed that the area aboveAUC  is related to the Gini 

concentration coefficient (Breiman et al, 1984) as: 

 

aboveAUCGini x2=                  (4.5) 

 

Hand and Till (2001) have observed that the total area under the curve is related to 

the Gini concentration coefficient as: 

 

)(21 x abovebelow AUCAUCGini +=+             (4.6) 

 

The definition of the Gini concentration coefficient is given in appendix B. The AUC is 

equivalent to the probability that a classifier will rank a randomly chosen positive 

instance higher than a randomly chosen negative instance (Fawcett, 2006). The AUC 

is also equivalent to the statistical Wilcoxon test of ranks (Fawcett, 2006; Hand & Till, 

2001; Hanley & McNeil, 1982). Given two classifiers, the classifier with the larger 

AUC value provides a higher level of predictive performance. When the ROC curves 

of the two classifiers lie above the 45 degree line the performance difference is 

determined by the aboveAUC  area. For this reason, all discussions of the AUC 

provided in chapter 9 refer to the aboveAUC  area. 

 

Two-class ROC analysis is concerned with the computation of the AUC, which is 

computed in a straight-forward manner by calculating the area under the ROC curve 
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in the 2-diminsional Cartesian plane defined by equation (4.4). For k-class (k > 2) 

prediction tasks, ROC analysis is concerned with the computation of the Volume 

Under the ROC Surface (VUS). Computation and visualisation of the VUS is a non-

trivial task. Two surrogate measures for the VUS, which have been proposed by 

Hand and Till (2001) and Provost and Domingos (2001) are discussed in chapter 9 of 

this thesis. The ROC (VUS) analysis results for the models studied in the 

experiments for this thesis are also presented in chapter 9. 

 

The lift chart construct originates from the domain of predictive modeling for 

marketing and sales. For purposes of targeting customers in Marketing, the lift factor 

represents the expected increase in response rates when a model is used compared 

to the situation when no model is used to determine the customers to be targeted  

(Witten & Frank, 2005; Berry & Linoff, 2000). In order to plot a lift chart, the scores 

(probability values) assigned by the model on the test data are sorted into ascending 

(or descending) order and then grouped into deciles. A score for each group (decile) 

is then computed as the mean score within each group (Giudici & Figini, 2009; Witten 

& Frank, 2005; Giudici, 2003; Berry & Linoff, 2000). More precisely, a lift chart is a 

plot on a 2-dimensional Cartesian plane with the x and y values defined as (Vuk & 

Curk, 2006): 

 

)(),( λλ TPRATEyYRATEx ==                (4.7) 

 

The lift factor for each decile is computed as the ratio between the score assigned by 

the model and the score when no model is used (random guessing). The lift chart is 

plotted with the deciles on the horizontal axis and the cumulative lift factor values on 

the vertical axis. A baseline line that represents random guessing is also plotted. As 

for ROC curves, the area between the base line and the cumulative lift curve 

indicates the quality of the model. The larger the area, the better the model. A 

discussion of why lift analysis was not used is provided in chapter 6. 

 

4.8 Software used for the experiments 
 

Various software packages were used for the experiments as shown in table 4.12. 

The datasets were stored in a Microsoft SQL Server database. Storing the datasets 

in a database made it especially easy to establish the composition of each dataset, 

and to pre-process the KDD Cup 1999 dataset, using SQL statements and stored 
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procedures. Dataset sampling was implemented using stored procedures 

implemented in the Microsoft SQL Server procedural language.  

 
Table 4.12: Software used for the experiments 
 
Task / Activity 

 
Software 

 
Dataset storage and retrieval 

 
MS SQL Server 2000 

 
Dataset sampling  

Stored procedures implemented in the  MS SQL Server procedural 
language 

 
Measurement of correlation 
coefficients 

 
Specialised code implemented in Borland C++ Builder 5 

 
Feature subset search  

 
Specialised code implemented in Borland C++ Builder 5 

 
KNN classification (modeling) 

 
Specialised code implemented in Borland C++ Builder 5 

 
Classification tree modeling 

 
See 5 – Windows version of the C5.0 classifier 

 
Aggregate modeling 

 
Specialised code implemented in Borland C++ Builder 5 

 
ROC analysis 

 
Specialised code implemented in Borland C++ Builder 5 

 
Statistical hypothesis testing 

 
SPSS versions 15 and 17 

Generation of descriptive 
statistics for datasets 

 
SPSS versions 15 and 17, MS  SQL Server 2000 SQL, Ms Excel 
2003 

 
Various activities 

 
MS Excel 2003 

 

The See5 classifier (Quinlan, 2004), which is the MS Windows version of the C5.0 

classifier for Unix, was used for classification tree construction. SPSS versions 15 

and 17 for MS Windows were used for conducting the Student’s t-tests for the 

statistical analysis of model performance. Specialised applications were created in 

Borland C++ Builder 4 and 5 for measuring class-feature and feature-feature 

correlation coefficients, feature selection, the KNN classifiers, aggregate model 

classifiers, and ROC analysis. It should be pointed out that statistical software 

provides functions for correlation measurement and ROC analysis. However 

specialised software was implemented in order to speed up the experiments.  

 

4.9 Chapter summary  
 

The main research questions, central argument of this thesis, and research methods 

have been presented and justified in this chapter. The design science research 

paradigm in conjunction with the scientific method were used as a conceptual 

framework for the research. The datasets used for the experiments were obtained 

from the UCI KDD Archive and UCI Machine Learning repository. The descriptive 
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statistics of the datasets, as well as the pre-processing that was done on the 

datasets have been discussed. Sequential random sampling was used to obtain 

random samples from large datasets. The algorithms that were used for modeling, 

namely: classification tree and K-Nearest Neighbour, have been presented. The 

measures of predictive performance that were used in the experiments have been 

discussed. Finally, the software used for the experiments has been presented. In the 

next four chapters, the experiments that were conducted, the results that were 

obtained and the proposed methods for feature and dataset selection are presented. 

The theoretical models that were deduced from the experimental results are 

discussed in chapter 10.   
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Chapter 5  

Feature Selection for Large Datasets 
 

.. the object of data analysis is not to model the fleeting random patterns of the 

moment, but to model the underlying structures which give rise to consistent and 

replicable patterns. ..’ (Hand, 1998) 

 

It was stated in chapters 2 and 3 that the selection of a good subset of predictive 

features results in the reduction of the variance component of a predictive model. To 

the author’s knowledge, there are very few reported studies on research that 

addresses feature selection in the presence of large datasets. One such study has 

been reported by Liu and Setiono (1998a, 1998b). Research has been reported on 

validation of class-feature correlation coefficients using fake variables (Stoppiglia et 

al, 2003; Bi et al, 2003). Since this method of validation has only been applied to 

small datasets, it is useful to establish whether the use of fake variables for validation 

can be effectively applied to feature selection from large datasets. It was also argued 

in chapter 3 that algorithms that conduct feature subset search should use clearly 

specified definitions of feature relevance. 

 

The purpose of this chapter is to report the experimental results of the study of 

feature subset selection in the presence of sampling from large datasets. 

Experimental results are reported on studies that were conducted on two correlation 

measures, two validation methods for correlations, and three algorithms for feature 

subset selection. Hand (1998) has made the insightful observation about data 

analysis as quoted at the beginning of this chapter, and it is in the spirit of this 

observation that experiments for this chapter were designed and conducted. It is 

argued in this chapter that statistical methods can be used to make inferences on the 

expected values of the feature correlations for large datasets when many samples 

are used. The use of many samples for correlation measurement should lead to 

better decisions for feature selection since the correlation values obtained are more 

reliable. It is further argued that features that are selected when domain-specific 

definitions of feature relevance are incorporated into the feature selection procedures 

are the best features for the prediction task at hand. In the context of processing 

large datasets in data mining, the following research questions are answered in this 

chapter: 
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1. How can class-feature correlations be measured in order to produce a reliable 

ranking of features for a dataset? 

2. What methods of validation for feature correlations result in reliable feature 

selection? 

3. How can domain-specific definitions of feature relevance be incorporated into 

feature selection procedures? 

 

The rest of this chapter is organised as follows. Section 5.1 gives a summary of the 

feature selection problem.  Section 5.2 presents the different approaches to feature 

selection that were studied. Empirical studies of feature ranking, feature subset 

search and predictive performance of selected feature subsets are respectively 

discussed in sections 5.3, 5.4 and 5.5. The discussion of the experimental results 

and conclusions are respectively given in sections 5.6 and 5.7. 

 

5.1 The feature selection problem revisited 
 

It was stated in chapter 3 that the initial selection of features is typically done by a 

domain expert, based on the data mining task at hand. Subsequent to this, a process 

of selecting the most relevant features and eliminating redundant features must be 

conducted. It is this process which is addressed in this chapter. Further, Guyon and 

Elisseeff (2003) have observed that there is not just the one method of feature 

selection that suits all datasets, all algorithms and all data mining tasks. With Guyon 

and Elisseeff’s (2003) observations in mind, the methods discussed in this chapter 

were directed at large datasets of moderately high dimensionality. 

 

It was also stated in chapter 3 that filtering methods are preferred to wrapper 

methods for data mining for reasons of efficiency. The measurement of class-feature 

and feature-feature correlations is at the core of many filtering methods for feature 

selection.  In the experiments reported for this chapter, many of the correlation 

measures commonly used in filtering methods for feature selection (Yu & Liu, 2004; 

Hall, 1999, 2000) were adopted to establish feature relevance and redundancy in the 

presence of sampling. For feature relevance, these measures are based on the 

strength of the correlation between a feature and the class variable. For redundancy, 

the measures are based on the strength of the correlations between the features. 

The correlation measures were presented in chapter 3. While studies of feature 
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selection most commonly use one sample (i.e. the whole dataset) to establish the 

feature correlation values, the studies reported in this chapter were directed at using 

many samples to establish the correlation values for the dataset features. 

 

5.2 Alternative approaches to feature selection for large 
datasets 
 

When large datasets are available the question arises as to whether relevant 

features should be selected based on the whole dataset, one sample from the 

dataset, or several samples taken from the dataset. When a dataset is very large, it is 

not feasible to compute correlation values using all the available data. If only one 

sample is taken there is a great risk of making the wrong decisions about which 

features are the most relevant.  Based on Hand’s (1998) observations as quoted at 

the beginning of this chapter, the purpose of feature selection should not be to 

identify the best features for the specific training sample that has been chosen (or 

happens to be available) for model creation, but rather to identify the best features for 

model creation regardless of the specific training sample that is chosen. In other 

words, the objectives of feature selection should be directed at the data generating 

process and not solely at the data sample that happens to be available. In attempting 

to answer the question:  

 

How can class-feature correlations be measured in order to produce a reliable 

ranking of features for a dataset? 

 

the author hypothesised that the use of many samples to measure class-feature and 

feature-feature correlations should provide reliable estimates of these correlations. In 

order to provide evidence to support this hypothesis, the following alternatives were 

considered and studied: 

 

Alternative 1 

Use one small sample (e.g. 100 or 500 instances) to measure correlations and select 

the features, and assume that these will be the relevant features for the instance 

space and prediction task regardless of the specific training sample used for 

classification model construction. The motivation for this alternative is that, first of all, 

the computation of correlation values from small samples is faster than for large 

samples. Secondly, statistical theory points to the fact that relationships that appear 
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to be strong in small samples are generally stronger than relationships which only 

appear in large samples of data. The foregoing observation can be used to argue 

that features that have strong correlations in small samples are the strongest 

predictors and will have globally predictive power. The term globally predictive is 

used to mean that a feature will have predictive power in all regions of the instance 

space.  

 

Alternative 2 

Use one large sample (e.g. 1000 instances) to measure correlations and select the 

features and assume that these will be relevant features for the instance space and 

prediction task regardless of the specific training sample used for classification model 

construction. The rationale here is that those features which are not strongly 

predictive may be eliminated when a small sample is used. The use of a large 

sample increases the chances of identifying more features for the prediction task. 

 

Alternative 3 

Use many small samples of one size to select the features and assume that these 

will be relevant features for the instance space and prediction task regardless of the 

specific training sample used for classification model construction. The rationale here 

is the same as for alternative 1. Additionally, taking the mean values of the 

correlations measured on many samples, and using statistical inference to select 

features is more reliable than the use of a single sample correlation. 

 

Alternative 4 

Use many large samples of one size to select the features and assume that these will 

be relevant for the instance space and prediction task regardless of the specific 

training sample used for classification model construction. Again, taking the mean 

values of the correlations measured on many samples, and using statistical inference 

to select features is more reliable than using a single sample correlation. 

 

The next section provides the experimental results for the investigation of the above 

four alternatives.  

 

 

 

 

 
 
 



  104 

5.3 Empirical study of feature ranking methods for large 
datasets   
 

For feature ranking the selection criteria are applied to each feature, without any 

consideration of the contribution of the other features to the prediction performance.  

The ranking criteria reported in this section are based on feature correlation 

measures. The results of the experiments that were conducted on feature selection 

based on pure ranking of features are reported in this section. The experimental 

procedures that were used are given in section 5.3.1. A comparison of Pearson’s and 

Kendall’s correlation measures is given in section 5.3.2. Sections 5.3.3 and 5.3.4 

respectively provide the experimental results and discussions for feature ranking 

based on a single samples and feature ranking based on many samples.   

 

5.3.1 Experimental procedure for the study of feature ranking 

 

The datasets presented in chapter 4 were used for the experiments. The sequential 

random sampling method (SRS), described in chapter 4, was used to obtain random 

samples. Probes (fake variables) with values drawn from both Gaussian and uniform 

distributions were used. Probes may be added to the datasets prior to taking samples 

for feature selection. However, adding probes to a very large dataset is a 

computationally lengthy and unnecessary process. The probes can be added during 

or after the sampling step. The generation of pseudo-random numbers is a process 

of sampling from the specified distribution (Thomas et al, 2007). The sampling 

approach used for the experiments was to first take samples from the large dataset 

and then sample from the chosen probability distributions for the probes (fake 

variables). Three types of probes were used with values drawn from a Gaussian 

distribution, a uniform distribution, and uniform binary distribution. For the Gaussian 

probe, the Marsaglia-Bray algorithm was used to generate the pseudo-random 

numbers (Thomas et al, 2007). For the uniform probes, the Borland C++ function for 

generating random numbers was used. The datasets that were used in the 

experiments for this thesis contain quantitative (discrete and continuous), and 

qualitative (nominal and ordinal) features. The forest cover type and KDD Cup 1999 

also contain binary (quantitative discrete) features. Furthermore, even though the 

correlation values (for quantitative features) and symmetrical uncertainty (SU) 

coefficient values (for qualitative features) are comparable, the functions used to 
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compute the correlations are different. The functions for computing Pearson’s 

correlation Kendall’s correlation and SU coefficients were presented in chapter 3. It is 

statistically meaningful to compare a true binary feature with a fake binary feature 

and a true qualitative feature with a fake qualitative variable. For this reason one 

Gaussian and two uniform probes were used. Table 5.1 shows the characteristics of 

the probes used for the datasets. 

 

Table 5.1 Characteristics of the probes for the datasets 
 
Probe name 

Value 
range 

 
Description 

Probe1GaussCont 0- 999 Gaussian distribution with mean = 500, stdev = 100 

Probe2UniformCont 0-999 uniform distribution 

Probe3UniformBin 0,1 uniform distribution with binary values 

 
 

Class-feature and feature-feature correlation coefficients were computed from 

samples drawn from a large dataset, for both the true features and the probes (fake 

variables). Two methods were studied for computing correlations: Pearson’s 

correlation coefficient and Kendall’s tau correlation coefficient. Two criteria were 

studied for feature ranking selection: statistical significance with the t-test on mean 

values for correlations and symmetrical uncertainty (SU) coefficients, and statistical 

significance based on probes. Two algorithms, See5 for classification trees and 

Nearest Neighbours (5NN) were used for comparison.  It should be noted that these 

two classification algorithms differ significantly in their treatment of predictive features 

during model construction. The 5NN algorithm does not have the ability to rank 

features or select relevant features, while the classification tree algorithm performs 

an implicit ranking of features and also performs tree pruning to ensure that only 

statistically significant information provided by the features is used in the final 

classification tree. 

 

5.3.2 Comparison of Pearson’s and Kendall’s correlation measures  
 

For the comparison of Pearson’s and Kendall’s correlation coefficients, experiments 

were conducted to compare the mean values of the class-feature correlations using 

10 samples to compute each mean value. Correlation values for the top 10 variables 

are shown in table 5.2. Table 5.2 shows the class-feature correlation values for the 

three datasets: Forest cover type, KDD Cup 1999 and Abalone3C. For each dataset, 

the top 10 features as ranked by Kendall’s tau are shown. It should be noted that the 
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forest cover type dataset has 54 features, the KDD Cup 1999 dataset has 41 

features, and the abalone3C dataset has eight features. Only the top 10 features for 

the forest cover type and KDD Cup 1999 datasets are shown in table 5.2 for 

purposes of concise presentation, and for illustration of the differences between the 

Pearson’s r and Kendall’s tau coefficients. 

 

Table 5.2 Comparison of mean values for Kendall’s tau and Pearson’s r   
 
 
 
 
Dataset 

 
 
 Top 10 features as 
ranked by Kendall’s 
tau  

 Mean values for correlation coefficients for 10 test samples 
Sample size = 1000 Sample size = 500 

Kendall's tau 
Corresponding 
Pearson's r 

 
Kendall's tau 

Corresponding 
Pearson's r 

 
Forest  
cover type 

WildernessArea4 0.86 0.22 0.81 0.22 

SoilType12 0.70 0.14 0.72 0.16 

SoilType1 0.69 0.08 0.44 0.06 

SoilType38 0.68 0.12 0.60 0.12 

SoilType39 0.68 0.11 0.58 0.11 

SoilType2 0.64 0.07 0.58 0.09 

SoilType4 0.64 0.10 0.57 0.11 

SoilType6 0.60 0.08 0.56 0.09 

SoilType22 0.59 0.14 0.57 0.14 

SoilType10 0.58 0.13 0.47 0.11 
      
 
KDDCup99 

SerrorRate 0.92 0.51 0.87 0.45 

NumCompromised 0.92 0.23 0.85 0.26 

SrvSerrorRate 0.91 0.50 0.90 0.43 

WrongFragment 0.90 0.21 0.81 0.18 

DstHostSrvSerrorRate 0.85 0.50 0.83 0.43 

DstHostSrvRerrorRate 0.85 0.34 0.76 0.27 

SrvRerrorRate 0.85 0.35 0.80 0.28 

Hot 0.84 0.11 0.78 0.14 

DstHostSerrorRate 0.84 0.51 0.81 0.44 

RerrorRate 0.82 0.34 0.76 0.27 
      
Abalone 3C 
(all features) 

Diameter 0.50 0.41 0.50 0.41 

Shellweight 0.52 0.40 0.53 0.40 

Height 0.51 0.37 0.52 0.39 

WholeWeight 0.49 0.38 0.50 0.38 

VisceraWeight 0.49 0.38 0.49 0.38 

ShuckledWeight 0.45 0.34 0.45 0.34 

Length 0.17 0.14 0.18 0.15 

Gender (qualitative) 0.12 0.12 0.13 0.13 

 
 

The mean correlation values shown in  table 5.2 for sample sizes of 500 and 1000 

indicate that for the forest cover type and KDD Cup 1999 datasets the class-feature 

correlations as measured by Kendall’s tau are generally much larger than the class-

feature correlations measured using Pearson’s correlation coefficient. Secondly, 
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even among the top 10 features out of 54 features for forest cover type, the two 

features SoilType1 and SoilType2 have strong class-feature correlations based on 

Kendall’s tau but have insignificant correlations based on Pearson’s r. A feature 

ranking method based on Pearson’s r would eliminate the features SoilType1 and 

SoilType2. Thirdly, for both forest cover type and KDD Cup 1999 the feature rankings 

based on Kendall’s tau are different from the rankings based on Pearson’s r.  

 

The reader will recall from chapter 3 that the point was made that Wilcox (2001) has 

cautioned against the interpretation of Pearson’s r for measuring correlations when 

there is no guarantee that the correlation between two variables is linear, and when 

outliers have not been given special treatment. A small Pearson’s correlation 

coefficient between two variables does not necessarily mean that the two variables 

are not strongly correlated. It could be the case that the correlation is not linear or the 

correlation is masked by the presence of outliers in the data. On the other hand, 

Kendall’s tau is a robust measure of correlation which will provide reliable correlation 

values even when the correlation is not linear and even when outliers are present in 

the data (Wilcox, 2001). For the Abalone3C dataset, the results of table 5.2 indicate 

that the differences between the class-feature correlations measured with Kendall’s 

tau and Pearson’s r are marginal and the feature rankings based on both correlation 

measures are nearly the same. Based on Wilcox’s (2001) observations, it can be 

deduced that Pearson’s r is a suitable correlation measure for the Abalone3C dataset 

because there are no outliers in the data and the predictive features are linearly 

correlated to the class variable. It can be deduced from table 5.2 that Pearson’s r is 

not a suitable correlation measure for the forest cover type and KDD Cup 1999 

datasets because the datasets either have outliers or the correlations between the 

features and the class variables are non-linear. 

 

Table 5.3 and tables D.1, D.4 and D.7 of appendix D respectively give the number of 

features that would be selected for the forest cover type, KDD Cup 1999 and 

Abalone 3C datasets based on the Students t-test of means. The test was conducted 

to determine the features whose mean class-feature correlation coefficient is greater 

than or equal to 0.1. The reader will recall from the discussion of chapter 3 that 

Cohen (1998) has advised that a correlation value with a magnitude in the interval [0, 

0.1) has no practical significance in any domain for data analysis and a correlation 

value with a magnitude in the interval [0.1, 1.0] may have practical significance. For 

the forest cover type dataset only 6 out of 54 features would be selected based on 
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Pearson’s r. Based on the foregoing observations all subsequent experiments for 

feature selection were based on Kendall’s tau as the correlation measure. 

 

Table 5.3 Comparison of the number of selected features for Kendall’s tau and Pearson’s r   
 
Dataset 
(no. of features) 

 
Sample  
size 

Number of features with a mean corrcf or mean SU coefficient  that is 
significant (corrcf >= 0.1, significance level 0.01) 
 
Kendall’s tau 

 
Pearson’s r 

Forest cover type 
(54) 

500 35 6 
1000 38 6 

KDDCup99 
(41) 

500 36 26 
1000 30 21 

Abalone (3 class) 
(8) 

500 6 5 
1000 7 5 

 

5.3.3 Feature ranking based on a single sample  
 

The problems and consequences of using a single small or large sample are 

investigated and made explicit in this section. Ten small samples, 10 medium 

samples, and 10 large samples were taken from the forest cover type dataset using 

sequential random sampling (SRS). Table 5.4 shows the number of features selected 

for each sample by the Gaussian probe and Z-test based on class-feature 

correlations measured using Kendall’s tau. For the probes, the selection criterion is a 

class-feature correlation coefficient greater than that of the Gaussian probe. The 

number of features selected by the uniform probe and uniform-binary probe are given 

in tables D.1, D.4 and D.7 of appendix D. Since only one correlation value is 

available for each  predictive feature for these experiments, the Z-test for a single 

correlation value was used to test the hypothesis that the class-feature correlation 

value is greater or equal to 0.1, that is, features that have a correlation value which is 

of practical significance (Cohen, 1988). The Z-test for a single correlation 

measurement was discussed in chapter 3. The first problem that can be deduced 

from table 5.4 is that sample sizes of 100 result in very few features being selected.  

The second problem is that the number of selected features varies from sample to 

sample. Smyth (2001) has argued that if a single sample is used to measure 

correlations between variables, then features may be lucky (or unlucky) in the sample 

and get selected (or eliminated) based on the single correlation measurement.  

 

It could be argued that as sample sizes get larger the variability in the measured 

correlation coefficient will decrease. However, even for sample sizes of 1000 which is 

large for statistical hypothesis testing, one can see from table 5.4 that the variability 

in the number of features selected is still high. A second problem that arises when a 
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single sample is used for feature selection is illustrated in table 5.5.  Table 5.5 shows 

the class-feature correlation values for four of the features in the KDD Cup 1999 

dataset, as measured using Kendall’s tau with samples of size 1000. It can be 

deduced from table 5.5 that a feature (e.g. NumFailedLogins) can have no 

correlation, small correlation, medium correlation, or high correlation with the class 

variable depending on the sample that is used, even when the sample size for 

correlation measurements is large. Alternatives 1 and 2 as stated in section 5.2 were 

discarded  due to the three problems discussed above and no further studies of 

correlation measurement with small sample sizes (size = 100) were conducted. 

 

Table 5.4: Number of selected features based on single samples for forest cover type  

 
 
 

Sample 
ID 

Number of relevant features with a significant class-feature Kendall’s tau 
correlation selected by the Gaussian probe and Z-test for forest cover type 

size = 100 size = 500 size = 1000 

Gaussian 
Probe 

Z-test 
|corrcf | >= 

0.1 

Gaussian 
Probe 

Z-test  
|corrcf | 
>= 0.1 

Gaussian 
Probe 

Z-test 
|corrcf | >= 

0.1 
S1 35 22 46 31 46 35 
S2 34 14 46 37 43 40 
S3 30 13 46 34 43 35 
S4 35 18 47 36 48 39 
S5 39 16 46 34 49 41 
S6 30 23 42 32 49 37 
S7 34 15 42 32 48 38 
S8 35 21 47 33 46 34 
S9 34 16 46 34 48 37 
S10 35 19 39 32 49 41 

 

Table 5.5: Kendall’s correlations for four features for KDD Cup 1999  

Feature 
Sample ID corrcf 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Mean Stdev 
NumFailedLogins 0.33 0.58 0 0 0.58 0.39 0 0.33 0.49 0.33 0.30 0.23 
NumShells 0.21 0.21 0.42 0 0.34 0.32 0 0 0.2 0.35 0.20 0.16 
NumAccessFiles 0.35 0 0 0.33 0.43 0.22 0 0 0 0.44 0.18 0.20 
SUAttempted 0 0.21 0 0 0 0 0 0 0 0 0.02 0.07 

 

5.3.4 Feature ranking based on many samples  
 

The rationale behind using many samples is that the use of one sample will lead to 

misleading conclusions as demonstrated above in section 5.3.3. Taking the mean 

over the correlation values for many samples should provide a more reliable estimate 

of the correlation values. Smyth (2001) has argued that a feature may be highly 

correlated with the class for a given sample, simply because it is lucky in that 

particular sample. In fact, the results of section 5.3.3 have illustrated this point 

precisely. The use of many samples for correlation measurement also enables the 
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validation of selected feature subsets using more robust (less prone to error) 

statistical methods. For 4 datasets, 10 medium sized samples (size = 500) and 10 

large samples (size=1000) were used to compute the Kendall’s tau and the SU 

coefficient for the class-feature associations. Two criteria were used for feature 

selection. The first criterion was to select features based on the confidence interval of 

the mean correlation value of the probe. If a feature has a confidence interval whose 

lower and upper values are both greater than the lower and upper values of the 

confidence interval for the probe then the feature is selected, otherwise it is rejected. 

The second criterion was to use Student’s t-test on the mean value of Kendall’s tau 

or SU coefficient at the 0.01 significance level.   

 

Table 5.6: Number of selected features based on 10 samples  
 
 
 

Dataset 
(no. of 

features) 

 
 
 

Sample 
size 

Number of relevant features with mean corrcf   (Kendall’s tau) or 
mean SU that is statistically significant. Number of samples = 10 

Selection based on probes t-test for 
(corrcf>=0.1 or 

SU>=0.1 
at the 0.01  level) 

Probe1 
(Gaussian) 

Probe2 
(uniform-

cont) 

Probe3 
(uniform-bin) 

Forest cover 
(54) 

500 47 47 44 35 
1000 49 48 47 38 

KDDCup99 
(41) 

500 36 36 36 34 
1000 36 36 35 30 

Abalone 
(8) 

500 8 8 8 6 
1000 8 8 8 7 

Mushroom(22) 500 21 15 14 2 
 
 
Table 5.6 shows the results for the number of selected features based on two criteria. 

The two uniform probes selected approximately the same number of features. The 

Gaussian probe selected approximately the same number of features as the uniform 

probes, except in the case of the mushroom dataset. The t-test is very strict as it 

selects the smallest number of features. The details of the features selected by the 

Gaussian probe for the forest cover type and KDD Cup 1999 are given in tables D.2 

and D.5 of appendix D.  

 

For the experiments of this section many samples were used to measure class-

feature correlations and to conduct validation for the selected features using probes 

and the t-test for mean correlation values. The experimental results demonstrated 

that for medium sized samples (size = 500) and large sized samples (size = 1000) 

each validation method selects nearly the same number of features. However, 

different validation methods select different numbers of features. The Gaussian 
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probe is the least strict of all the methods as it generally selects more features. The t-

test is the most strict as it generally selects the smallest number of features.  

 

Based on the results of table 5.6, alternatives 3 and 4 as stated in section 5.2 

provided useful options for correlation measurement, feature ranking and validation. 

For validation based on probes the variability in the number of selected features is 

low for both medium size (500) and large size (1000) samples even though the 

Gaussian probe does not work well for the mushroom dataset (all features are 

qualitative). Performance of the feature subset search algorithms based on the 

features selected in this section as inputs, are discussed in the next section. 

 

5.4 Empirical study of feature subset search 
 

Feature subset search is the process of searching for an optimal subset of features 

based on specified criteria. A common criterion is to select that subset of features 

(from a set of identified relevant features) that maximises relevance and minimises 

redundancy in the selected subset. Feature subset search methods and examples of 

the merit measures that are employed in heuristic search for feature subsets were 

discussed in detail in chapter 3. The experiments reported in this section are for 

feature subset selection using forward search. Forward search algorithms that 

employ the correlation-based feature selection (CFS) merit measure (Hall, 1999) and 

differential prioritisation (DP) measures (Ooi et al, 2007) were implemented and 

tested using the features selected in the last section as inputs. Section 5.4.1 provides 

a discussion and analysis of the implementation of feature relevance and redundancy 

definitions by the CFS (Hall, 1999) and DP (Ooi et al, 2007) search procedures. The 

weaknesses of the merit measures employed by the CFS and DP search procedures 

are made explicit. A new algorithm for feature subset search is proposed in section 

5.4.2 and the algorithm’s feature selection performance is compared to the CFS and 

differential prioritisation methods. 
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5.4.1 Implementation of feature relevance and redundancy 
definitions 
 

A good feature ranking method should be followed by a good search procedure. A 

good feature subset search procedure should not have a search bias which forces it 

to prefer an irrelevant feature to a relevant one. 

 

When the search bias is based on precise and domain-specific definitions of weak, 

medium, and strong feature correlations then the selected feature subset should be 

the best for that application domain (Lutu & Engelbrecht, 2010). If fake variables are 

included in the initial feature set, then they should only be used to indicate when the 

search should stop. In other words, if the search procedure finds that the best feature 

to select at a given point is a fake variable, then the search procedure should 

terminate. Possible terminating criteria in the presence of fake variables (probes) 

should then be: (1) stop when a pre-specified number of features have been selected 

or (2) stop when a probe is encountered as the next best choice.  

 

Definitions of feature relevance (Blum & Langley, 1997) and feature redundancy 

(Koller & Sahami, 1996) were given in chapter 3. It was also stated in chapter 3 that 

many implementations of feature selection implement the meanings of relevance and 

redundancy using the level of class-feature and feature-feature correlations. For 

feature selection implementations it is generally accepted that a relevant feature is 

one which is highly correlated with the class variable and a redundant feature is one 

that is highly correlated with other features (Ooi et al, 2007; Yu & Liu, 2004;  Hall, 

1999, 2000). Table 5.7 provides a summary of common interpretations of levels of 

class-feature and feature-feature correlations for purposes of identifying relevant and 

redundant features. One problem with heuristic procedures for feature subset search, 

for example DP (Ooi et al, 2007) and CFS (Hall, 1999, 2000) is that the merit 

measures they use do not have sufficient precision to distinguish between high 

correlation as opposed to not-high correlation. It is demonstrated later in this section 

that there are several situations where the CFS search procedure (Hall,1999, 2000) 

and DP search procedure (Ooi et al,2007) prefer features with very low feature-

feature correlations at the cost of eliminating features with high class-feature 

correlations.  
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Table 5.7:  Interpretation of levels of feature correlations for heuristic search 
 
Situation 

class-feature 
correlation for 
feature f 

 mean feature-feature 
correlation of  selected 
features if f is added to 
selected features 

Interpretation according to 
the literature 

s1 not high not high f is irrelevant 

s2 not high High f is redundant 

s3 High not high f is relevant  

s4 High High f is redundant 

 

Experiments for feature subset selection were conducted on the forest cover type 

and KDD Cup 1999 datasets since these are large datasets with large numbers of 

features as commonly encountered in predictive data mining (Hand et al, 2001; 

Hand, 1998). The purpose of the experiments was to establish the behaviour of the 

CFS and differential prioritization algorithms for feature subset search. Table 5.8 

shows a partial trace of the computations of the CFS search procedure for the 

datasets. For one iteration of the CFS algorithm (column 5), the CFS algorithm 

selects the best feature (column 2) based on the value of the CFS merit measure 

(column 6). The CFS merit measure (discussed in chapter 3) is computed using the 

mean values of the class-feature and feature-feature correlations for the candidate 

feature subsets. For each iteration, columns 3 and 4 of table 5.8 show the value of 

the class-feature correlation for the selected feature and total feature-feature 

correlation for the subset of selected features. 

 

For the situations depicted in table 5.7, when making a choice between a feature 

whose situation is s1 and one whose situation is s3, CFS chooses the situation s1 

feature. For the forest cover type features, at iteration number 26, it would be 

preferable to choose one of SoilType13 or SoilType39 instead of the binary-valued 

probe since each of these features has a high class-feature correlation and its 

selection would result in a low level of feature-feature correlation for the selected 

features. At iteration 39 it would be better to choose SoilType13 or SoilType39 

instead of SoilType 25. Similarly, at iteration number 21 for the KDD Cup 1999 

dataset, it should be preferable to choose one of DstHostSrvSerrorRate, 

DstHostSrvRerrorRate or Count, instead of the Gaussian probe for the same reasons 

as stated above. The search bias of the CFS search procedure forces it to choose 

the Gaussian probe instead, since CFS does not have sufficient information to make 

the distinctions that are made in table 5.7. 
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Table 5.8:  Trace of the CFS search procedure for the forest cover type and KDD Cup 1999  

 
Dataset 

  
Selected feature F 

class-
feature 
correlation 
(corrcf) 
for f 

Total feature-
feature 
correlation 
(corrff ) for  
selected 
features 

  
Iteration 

  
Merit 

 
 
Forest cover 
type 

Probe3UniformBin 0.051 10.752 26 1.518 
Probe2UniformCont 0.044 10.752 27 1.509 
Probe1GaussCont 0.037 10.752 28 1.499 
SoilType20 0.161 11.352 29 1.489 
SoilType25 0.08 11.569 30 1.48 
SoilType13 0.527 14.095 31 1.471 
SoilType15 0.028 14.095 32 1.462 
SoilType39 0.676 17.99 33 1.447 

      
 
 
KDD Cup 
1999 

Probe1GaussCont 0.032 12.589 21 1.309 
Probe2UniformCont 0.028 12.589 22 1.299 
SUAttempted 0.021 12.589 23 1.289 
Land 0.001 12.589 24 1.276 
IsHostLogin 0 12.589 25 1.263 
DstHostSrvSerrorRate 0.855 17.715 26 1.25 
DstHostSrvRerrorRate 0.847 23.547 27 1.237 
Count 0.631 28.713 28 1.22 

 

Figures 5.1 and 5.2 respectively show the plots of the merit measures when the 

forward search procedure was implemented with the CFS merit measure, and when 

it was implemented with the differential prioritization (DP) measure. For the DP 

measure figures 5.1 and 5.2 show the plots of merit values for 50.=α  (DP050 

Merit), 750.=α  (DP075 Merit) and 950.=α  (DP095 Merit). The plots show the 

values of the merit measures for each iteration of the search procedure until all 

features have been processed. A disturbing observation is that it is not obvious from 

the plots when the search procedure should terminate. Hall (1999) has stated that in 

the presence of feature interactions, CFS may fail to select the optimal subset of 

features. The discussion of detailed executions of the CFS search procedure 

provided earlier in this section demonstrated that the CFS merit measure can favour 

noise over true features. For the differential prioritisation measure, the stopping 

criterion is easier to determine, since Ooi et al (2007) have stated that one objective 

of the search procedure which uses this measure is to identify a pre-specified 

number of features. For the differential prioritisation measure it is difficult to justify the 

choice of the α value in relation to any precise definition of relevance and 

redundancy unless domain-specific information is available. 
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Figure 5.1: Merit values for the forest cover type dataset without  pre-selection 
 

 
Figure 5.2: Merit values for  the KDD Cup 1999 dataset without feature pre-selection  
 

The experimental results reported in this section have revealed two weaknesses of 

the merit measures employed by the CFS and differential prioritisation search 
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procedures. Firstly, the mathematical functions used as merit measures sometimes 

select pure noise in preference to predictive features. Secondly, the stopping criteria 

for the two search procedures can be difficult to establish for some datasets. This 

was found to be the case for the forest cover type dataset and for the KDD Cup 1999 

dataset. Based on the foregoing observations the author was led to hypothesise that 

the use of more precise definitions for interpretation of correlation values should 

eliminate the above problems that arise with the CFS and differential prioritisation 

merit measures. 

 

5.4.2 A reliable search procedure for feature subset search 
 

One possible solution to the problems exhibited by the CFS and DP merit measures 

is to use a feature selection criterion that precisely implements a given definition of 

relevance and redundancy. The definition of feature relevance should be supplied by 

domain experts in terms of what values of correlations are considered to be low, 

medium and high. The idea of incorporating user supplied domain knowledge in 

model construction is not new. Osei-Bryson (2004) has proposed the incorporation of 

user-specified preferences and value functions in the post pruning of classification 

trees. Yu and Liu (2004) have proposed the incorporation of user-specified threshold 

values of class-feature correlations for feature relevance analysis and selection. The 

method of differential prioritisation proposed by Ooi et al (2007) enables a user to 

control the levels of feature relevance and redundancy for the selected feature 

subset. 

 

Formal definitions of feature relevance and redundancy were given in chapter 3. For 

feature selection based on relevance and redundancy analysis, Yu and Liu (2004) 

have defined four categories of features, namely (1) irrelevant, (2) weakly relevant 

and redundant, (3) weakly relevant and non-redundant, and (4) strongly relevant. Yu 

and Liu (2004) have argued that the optimal subset of features should consist of  

features that fall in categories 3 and 4, that is, weakly relevant and non-redundant, 

and strongly relevant. The four categories of features proposed by Yu and Liu (2004) 

are based on Blum and Langley’s (1997) definition of feature relevance and Koller 

and Sahami’s (1996) definition of redundancy as discussed in chapter 3. 

 

A feasible refinement of the feature relevance and redundancy definitions of table 5.7 

is shown in table 5.9 for purposes of heuristic feature subset search. The refinement 
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is based on all possible combinations of the levels insignificant, low, medium and 

high correlation for class-feature and feature-feature correlations. Columns 5 and 6 

respectively show the interpretation of each combination and the source of motivation 

for the interpretation. Column 2 shows the symbols used to label the distinct 

interpretations of the correlation level combinations. The categorisation suggests that 

unselected features fall into one of six categories at the time when the search 

algorithm needs to make a decision as to which feature to select next for inclusion in 

the set of already selected features. The six categories denoted by A,B,C,D,E and F 

correspond to the interpretations strongly relevant (category A), relevant (category 

B), weakly relevant (category C), weakly redundant (category D), redundant 

(category E), and irrelevant (category F). 

 

Yu and Liu (2004) have defined four categories of features for relevance and 

redundancy analysis, as discussed earlier in this section. For the proposed 

categorisation of table 5.8 two categories (weakly redundant and redundant) are 

used to represent redundant features and two categories (relevant and strongly 

relevant) are used to represent strongly relevant features. The motivation for using 

six categories was to provide the heuristic search procedure with the ability to make 

higher precision distinctions between features compared to the level of precision 

provided by the CFS and DP measures. 

 

As an example of the interpretation of the correlation levels insignificant, low, medium 

and high shown in table 5.9, Cohen’s (1988) proposal for the interpretation of 

correlation coefficients for behavioural sciences research could be used. The reader 

will recall that according to Cohen’s (1988) definitions, a correlation coefficient in the 

range [0,0.1) indicates a correlation with no practical significance (insignificant). A 

correlation coefficient in the range [0.1, 0.3) indicates a low correlation. A correlation 

coefficient in the range [0.3, 0.5) indicates a medium correlation, and a correlation 

coefficient in the range [0.5, 1.0] indicates a strong (high) correlation. The 

categorisation of table 5.9 can then be used as follows. When the input variables to 

the search procedure are pre-selected, for example, using the t-test or a probe, then 

(situation sp1, category F) will not arise during the search. If there is no pre-selection 

of features, then the situation (situation sp1, category F) may arise. The merit 

measure should then be replaced by clear logic which implements the interpretation 

of class-feature and feature-feature correlations based on table 5.9 It should be 

noted that the categories are dynamic, that is, the category of a given feature will 
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change based on the currently selected features since the mean correlation with 

already selected features (column 4 of table 5.9) is not a static quantity. 

 

Table 5.9: Proposed definition of feature relevance and redundancy based on user specified 
levels  
Situation 
(new 
interpre- 
tation) 

 
Category 

class-
feature 
correlation 
for f: 

)( fcorrcf  

 mean correlation  
with selected 
features: 

)(
_____

fcorrff  

Proposed  
new 
interpretation 

Source of  
motivation for 
interpretation 
of category 

sp1 F insignificant any level irrelevant  
 
(Blum & 
Langley, 1997)  
and  
(Yu & Liu,2004) 

sp2 C Low   insignificant   weakly relevant 

sp3 C Low Low weakly relevant 

sp4 C Low   Medium  weakly relevant 

sp5 F Low    High    irrelevant 

sp6 B Medium  insignificant relevant  

sp7 B Medium Low relevant 

sp8 D Medium  Medium  weakly redundant  
 

(Koller  & 
Sahami,1996) 
and 
(Yu & Liu,2004) 

sp9 E Medium  High   redundant  

sp10 A High   Insignificant   strongly relevant 
 

(Blum & 
Langley, 1997) 
and 
(Yu & Liu,2004) 

sp11 A High  Low strongly relevant 

sp12 D High   Medium  weakly redundant  (Koller & 
Sahami,1996) 
and  
(Yu & Liu,2004) 

sp13 E High    High   redundant  

 

A new search algorithm was designed to use the categorisation shown in table 5.9 to 

conduct a search for the best subset of features. In general, a heuristic search 

procedure creates a search tree whose nodes represent various states of the search 

space (Luger & Stubblefield, 1993; Pearl, 1984). The heuristic search procedure will 

expand that node which is most promising based on the value of a heuristic (merit) 

measure. Typical implementations of heuristic search employ several lists to record 

the current state of the search tree. The new algorithm, which is given in figure 5.3, 

uses a list called FEATURES to hold all currently unselected features, a list called 

CHILDREN to hold all the nodes for features that are candidates for selection, and a 

list called SELECTED to hold all currently selected nodes. Initially, the SELECTED 

list holds the feature with the highest cfcorr value. When making a decision on the 

next feature to include in the SELECTED list, the algorithm will prefer a strongly 

relevant feature, if such a feature exists. If there are no strongly relevant features at 

that point, the algorithm will prefer a relevant feature. If there are no strongly relevant 
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or relevant features at that point, the algorithm will prefer a weakly relevant feature. If 

there are no strongly relevant, relevant or weakly relevant features at that point, the 

algorithm will prefer a weakly redundant feature. If there is no feature which falls in 

one of the categories strongly relevant, relevant, weakly relevant or redundant, the 

algorithm terminates. The motivation for allowing the algorithm to select weakly 

redundant features is due to the fact that Guyon & Elisseeff (2003) have reported 

experiments which demonstrate that feature interactions are not necessarily harmful.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3:  Decision rule-based algorithm based on definitions of relevance and redundancy 
 

 

 

Initialise 

Step 1:  Place all features and their correlations on the FEATURES list 

Step 2:  Create a node for the feature with the highest cfcorr  and place the node on the SELECTED 

list 

Process: 

Step 3:  If the FEATURES list is not empty, create a node for each feature on FEATURES and place it 

on the CHILDREN list. If the FEATURES list is empty, go to step 11. 

Step 4:  For each node on the CHILDREN list, establish the cfcorr  and mean ffcorr  with already 

selected features on SELECTED. 

Step 5:  Assign a category to each node on the CHILDREN list, based on table 5.9. 

Step 6:  Delete from the CHILDREN list any node which belongs to the E and F categories. This leaves 

the categories strongly relevant (A), relevant (B), weakly relevant (C )  and weakly redundant (D). 

Step 7:  If the CHILDREN list has only one feature in category A (strongly relevant), put it on 

SELECTED and delete it from the FEATURES list and go to step 3. 

If there is more than one feature in category A, then call function GetBestInCat  to select the best one. 

Go to step 3. Otherwise go to step 8. 

Step 8:  If the CHILDREN list has only one feature in category B (relevant),  put it on SELECTED and 

delete it from the FEATURES list and go to step 3. 

If there is more than one feature in category B, then call function GetBestInCat  to select the best one 

and go to step 3. Otherwise go to step 9. 

Step 9:  If the CHILDREN list has only one feature in category C (weakly relevant), put it on SELECTED 

and delete it from the FEATURES list and go to step 3. 

If there is more than one feature in category C, then call function GetBestInCat  to select the best one. 

Go to step 3. Otherwise go to step 10. 

Step 10:  If the CHILDREN list has only one feature in category D (weakly redundant), put it on 

SELECTED and delete it from the FEATURES list and go to step 3. 

If there is more than one feature in category D, then call function GetBestInCat  to select the best one 
and go to step 3. Otherwise go to step 11. 
Step 11:  Terminate the search procedure and return the nodes on SELECTED as the selected features. 
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At the time of selecting a feature for inclusion in the SELECTED list, if more than one 

feature fall in the preferred category, the algorithm uses the decision rules shown in 

table 5.10 to choose between two features, 1f  and 2f . The rules of table 5.10 are 

implemented in the function Better_than(f1,f2) which returns true if 1f  is better than 

2f  (i.e. the decision should be to choose 1f ). Figure 5.4 shows the algorithm for the 

function GetBestInCat(CT) for searching for the best feature of the CT category. This 

function utilises the function Better_than(f1,f2).  

 

 
Figure 5.4: The algorithm GetBestInCat(CT) to select  the best features in one category 
 

Table 5.10: Decision rules for choosing between two features of the same category 

Class-feature correlation 
mean feature-feature 
correlation 
with selected features 

Decision Reason 

)()( 21 fcorrfcorr cfcf >  

 
 

)()( 21 fcorrfcorr ffff ≤  choose 1f  
prefer feature with higher 
class-feature & lower 
feature-feature correlation 

)()( 21 fcorrfcorr ffff >  choose 2f  
prefer feature with lower 
feature-feature correlation 

)()( 21 fcorrfcorr cfcf <  
)()( 21 fcorrfcorr ffff <  chose  2f  prefer feature with higher 

class-feature correlation 
 )()( 21 fcorrfcorr ffff ≥  choose 2f  

)()( 21 fcorrfcorr cfcf =  )()( 21 fcorrfcorr ffff <  choose 1f  prefer feature with lower 
feature-feature correlation )()( 21 fcorrfcorr cfcf =  )()( 21 fcorrfcorr ffff >  choose 2f  

)()( 21 fcorrfcorr cfcf =  )()( 21 fcorrfcorr ffff =  break tie 
randomly 

identical levels of relevance 
& redundancy 

 

The results for the feature subset search for the KDD Cup 1999 and forest cover type 

datasets are respectively listed in tables 5.11 and 5.12. The tables show the search 

results when the input list consists of all features, including probes. The summary 

results for the four datasets used in the experiments are given in table 5.13. The 

results of tables 5.11 and 5.12 show that the search algorithm does not select any 

probes.  

1.  first =  index of first node in  category CT 

2. best = CHILDREN[first] 

3. count = number of nodes on the CHILDREN list 

4. For (i=first+1; i < count, i++) 

          feature = CHILDREN[i] 

           if (feature belongs to category CT) and Better_than(feature, best) 

                    best = feature 

   end-for 

4.  Return best 
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Table 5.11:  Output of the decision rule-based search algorithm without feature pre-selection 
for KDD Cup 1999 

Feature Category  Selection Reason )( fcorrcf  

mean 

)( fcorrff  

Number 
of elected 
features 

SerrorRate     0.916 0 1 

DstHostRerrorRate A Strongly relevant 0.805 0.272 2 

NumRoot A Strongly relevant 0.677 0.281 3 

WrongFragment A Strongly relevant 0.901 0.281 4 

Flag B Relevant 0.428 0 5 

NumFailedLogins B Relevant 0.303 0 6 

DstHostSerrorRate A Strongly relevant 0.835 0.278 7 

DstHostSrvCount B Relevant 0.313 0.227 8 

SrvCount B Relevant 0.423 0.268 9 

DstHostCount B Relevant 0.368 0.258 10 

Hot A Strongly relevant 0.845 0.289 11 

Service C Weakly relevant 0.236 0 12 

NumAccessFiles C Weakly relevant 0.177 0 13 

NumCompromised A Strongly relevant 0.915 0.298 14 

Counted A Strongly relevant 0.631 0.281 15 

ProtocolType C Weakly relevant 0.151 0 16 

SrvDiffHostRate B Relevant 0.455 0.286 17 

SrcBytes B Relevant 0.49 0.297 18 

RootShell C Weakly relevant 0.108 0 19 

NumShells C Weakly relevant 0.204 0.098 20 

NumFileCreations C Weakly relevant 0.297 0.139 21 

DstHostSrvRerrorRate A Strongly relevant 0.847 0.295 22 

DstHostSameSrcPortRate C Weakly relevant 0.284 0.262 23 

DstHostDiffSrvRate C Weakly relevant 0.144 0.268 24 

DstHostSameSrvRate C Weakly relevant 0.224 0.296 25 

Duration C Weakly relevant 0.254 0.361 26 

DstBytes D Weakly redundant 0.584 0.332 27 

DstHostSrvDiffHostRate D Weakly redundant 0.439 0.352 28 

DstHostSrvSerrorRate D Weakly redundant 0.855 0.42 29 

DiffSrvRate D Weakly redundant 0.727 0.444 30 

SrvRerrorRate D Weakly redundant 0.845 0.456 31 

RerrorRate D Weakly redundant 0.822 0.482 32 

 
Secondly, the algorithm never selects irrelevant or redundant features as defined in 

table 5.9. Thirdly, for forest cover type the algorithm selects nearly the same number 

of features when pre-selection is done using probes as shown in table 5.13. Table 

5.13 provides a summary of the number of features selected by the decision rule-

based algorithm for different input feature sets that were generated in the 

experiments of the last section. The results for the features selected by the validation 

and ranking methods were given in table 5.6. The results of table 5.13 show that the 

t-test is far more restrictive compared to the pre-selection of features using probes. A 

comparison of tables 5.6 and 5.13 shows that the decision rule-based search 

algorithm selects nearly all the features that are pre-selected by the t-test.  
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Table 5.12: Output of the decision rule-based search algorithm without feature pre-selection 
for forest cover type 

Feature Category  Selection Reason )( fcorrcf  

mean 

)( fcorrff  

Selected 
feature 
count 

WildernessArea4     0.855 0 1 

SoilType2 A Strongly relevant 0.642 0.243 2 

SoilType40 A Strongly relevant 0.547 0.146 3 

SoilType38 A Strongly relevant 0.676 0.162 4 

SoilType4 A Strongly relevant 0.638 0.164 5 

SoilType1 A Strongly relevant 0.686 0.178 6 

SoilType3 A Strongly relevant 0.548 0.185 7 

SoilType6 A Strongly relevant 0.603 0.192 8 

SoilType13 A Strongly relevant 0.527 0.199 9 

SoilType39 A Strongly relevant 0.676 0.283 10 

SoilType21 B Relevant 0.322 0 11 

SoilType35 B Relevant 0.443 0.02 12 

SoilType12 A Strongly relevant 0.704 0.286 13 

SoilType34 B Relevant 0.4 0.021 14 

SoilType19 B Relevant 0.351 0.02 15 

SoilType22 A Strongly relevant 0.593 0.287 16 

SoilType18 B Relevant 0.44 0.04 17 

SoilType26 B Relevant 0.431 0.038 18 

SoilType17 B Relevant 0.433 0.066 19 

SoilType10 A Strongly relevant 0.579 0.295 20 

SoilType5 B Relevant 0.36 0.066 21 

SoilType16 B Relevant 0.329 0.084 22 

SoilType11 B Relevant 0.476 0.162 23 

WildernessArea2 B Relevant 0.391 0.221 24 

SoilType30 B Relevant 0.34 0.266 25 

SoilType14 C Weakly relevant 0.231 0 26 

SoilType8 C Weakly relevant 0.176 0 27 

SoilType37 C Weakly relevant 0.126 0 28 

SoilType9 C Weakly relevant 0.283 0.018 29 

SoilType28 C Weakly relevant 0.215 0.018 30 

SoilType27 C Weakly relevant 0.147 0.017 31 

SoilType23 B Relevant 0.399 0.293 32 

SoilType20 C Weakly relevant 0.161 0.052 33 

SoilType24 C Weakly relevant 0.259 0.203 34 

SoilType31 C Weakly relevant 0.223 0.25 35 

HorizDistToFire C Weakly relevant 0.156 0.263 36 

HorizDistToRoad C Weakly relevant 0.158 0.266 37 

Slope C Weakly relevant 0.124 0.283 38 

SoilType33 C Weakly relevant 0.183 0.323 39 

SoilType32 C Weakly relevant 0.207 0.349 40 

Elevation C Weakly relevant 0.277 0.377 41 

SoilType29 C Weakly relevant 0.295 0.465 42 

 

The point was made in the last section that the t-test is more strict than the probes at 

eliminating irrelevant features. When there is no pre-selection of features for the input 

to the decision rule-based search algorithm, or when the input consists of features 
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pre-selected using the Gaussian probe, the decision rule-based search algorithm 

eliminates a larger number of the input features compared to when the input features 

are pre-selected by the t-test. A tentative conclusion that can be made from this 

observation is that the probes admit some features that are possibly irrelevant. A 

more detailed discussion of this issue is given later in this chapter. 

 

Table 5.13: Features selected by the decision rule-based algorithm for sample sizes of 1000 
Dataset 
(number of features) 

Number of features selected by the decision rule algorithm when the input  is 
pre-selected using: 
no pre-selection Gaussian 

probe 
Uniform 
probe 

Uniform-
bin probe 

t-test  
(sig =0.01) 

Forest cover type (54) 42 41 41 41 36 
KDD Cup 1999 (41) 32 34 34 34 30 
Abalone      (8) 3 3 3 3 2 
Mushroom  (22) 14 14 14 14 - 
 

5.5 Predictive performance for features selected with 
different methods 
 

Classifiers were constructed to compare the predictive performance of the features 

selected by the different methods of feature selection. The 5NN and See5 

classification tree algorithms were used for classification. In this section the results 

and analysis of the predictive performance of the classifiers are reported. Section 

5.5.1 provides a description of the experimental procedures. The Predictive 

performance of the forest cover type and KDD Cup 1999 classifiers are respectively 

given in sections 5.5.2 and 5.5.3. Predictive performance results for the small dataset 

classifiers (abalobe3C and mushroom) are presented in section 5.5.4. 

 

5.5.1 Experimental procedure for classifier creation and testing 
 

The point was made in section 5.2 that the objective of feature selection should not 

be to identify the best features for the training sample that has been chosen (or 

happens to be available) but rather to identify the best features for model creation for 

any sample taken from the instance space for the prediction task. This observation 

was based on Hand’s (1998) advice quoted at the beginning of this chapter. Based 

on the foregoing observation, training samples much larger than the samples used 

for feature selection were used for the experiments. Classification models were 

created for purposes of testing the predictive performance of the feature subsets 

selected by the feature selection methods presented in sections 5.3 and 5.4. Two 
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classification algorithms 5NN and See5, were used in the experiments. For each 

dataset the same training set (samples) and same test set (samples) were used for 

5NN and See5 classification. Predictive accuracy (on instances not seen during 

training) was established on 10 test sets for each classifier. 

 

In section 5.3 feature ranking was reported for four datasets, two sizes of samples 

(500 and 1000) for measuring correlations and  four validation methods (three probes 

and t-test). In section 5.4 feature subset search was reported for the decision rule-

based algorithm for four datasets, five types of input features (no pre-selection, three 

probes and t-test) selected using sample sizes of 1000 to measure correlations. To 

conduct experiments to test all the feature ranking methods on two algorithms would 

require 4 x 2 x 4 x 2 = 64 classifiers to be created. To generate test results for 10 test 

sets (samples) for each classifier would result in 640 test runs. To conduct 

experiments to test feature subsets selected with the decision rule-based algorithm 

would require 5 x 4 x 2 = 40 classifiers. The generation of test results for 10 test sets 

(samples) for each classifier would result in 400 test runs. Additionally, four 

classifiers must be created with all the features (no selection) and tested on 10 test 

sets for comparison with the classifiers created with selected feature subsets, which 

results in an additional 40 test runs. The total number of test runs would then be 640 

+ 400 + 40 = 1080. If two types of class distributions are used, as was done for the 

experiments, this number would double to 2160. 

 

To avoid the factorial explosion in the number of test runs as described above, 

researchers are advised to sample from the space of all possible factor combinations 

(Cohen, 1995:pg 88). The decision made for the experiments was as follows: Only 

feature subsets selected using correlations measured with samples of size 1000 

were used. For feature ranking methods feature subsets selected by one probe were 

used (Gaussian probe for forest cover type, KDD Cup 1999 and abalone3C, and 

uniform probe for mushroom). These were compared to classifiers constructed with 

all the features. Classifiers were also constructed for feature subsets selected by the 

decision rule-based method with one type of input (no pre-selection of features). For 

the forest cover type dataset (the largest dataset) two sample sizes of 6000 and 

12000 instances were used. For the other three (smaller datasets), one sample size 

was used. Additionally, for the large datasets classifiers were created for two types of 

class distributions to illustrate the difficulty of establishing the true positive rates 

(TPRATE) for individual classes when the parent dataset class distribution is used in 
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the presence of minority classes. This resulted in the number of test runs being 

reduced to 400. 

 

5.5.2 Classification results for forest cover type 
 

Classifiers were constructed to compare the predictive performance obtained when 

the feature sets selected by the different methods as discussed in section 5.5.1 are 

used. Tables 5.14 shows the classification results for the forest cover type dataset 

samples on two class distributions. Column 4 gives the classification results for tests 

based on the class distribution of the parent dataset. 10-fold cross validation was 

used to measure the predictive accuracy. Column 5 shows the classification results 

for tests based on an equal class distribution. Ten test samples were used to 

measure the predictive accuracy. The results are shown for two sample sizes (6000 

and 12000). For each sample size the predictive accuracy on all the classes is shown 

for all features (54), features selected by the Gaussian probe (49), and features 

selected by the decision rule based search algorithm (42).  

 

Table 5.14: Predictive accuracy for forest cover type based on two class distributions 
 
 
Algorithm 

 
Feature selection 
method 
(number of features) 

 
 
 
Sample 
size 

Mean predictive  accuracy and 
95% CI of mean  
10-fold cross 
validation 
parent dataset 
distribution 

10 test sets 
equal class 
distribution 

 
 
5NN 
(nearest 
neighbours) 

All features 
 (54) 

6000 71.2 ± 1.1 75.1 ± 1.4 
12000 76.2 ± 0.8 80.1 ± 1.0 

Gaussian probe 
(49) 

6000 71.5 ± 1.1 75.1 ± 1.1 
12000 76.1 ± 0.8 79.4 ± 0.8 

Decision rule search 
(42) 

6000 68.5 ± 1.4 71.6 ± 1.2 
12000 70.4 ± 1.1 74.4 ± 0.9 

 
See5  
(classification 
tree) 

All features 
(54) 

6000 74.8 ± 1.2 73.6 ± 0.9 
12000 74.5 ± 0.8 76.6 ± 0.9 

Gaussian probe 
(49) 

6000 73.8 ± 1.2 73.6 ± 0.9 
12000 75.4 ± 1.1 76.5 ± 0.9 

Decision rule search 
(42) 

6000 72.8 ± 0.8 72.3 ± 0.7 
12000 74.5 ± 0.6 76.9± 1.0 

 

Table 5.15 gives the results of the statistical tests to compare the predictive 

performance of  the classifiers based on the parent dataset class distribution. The 

paired samples t-test is not applicable in this case since there are no paired tests, so 

the independent samples t-test was used to compare the performance of two 

classifiers. The independent samples t-test revealed that the predictive performance 

of the 5NN classifiers constructed with all 54 features and those constructed with 49 

features as selected by the Gaussian probe do not statistically differ in predictive 
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accuracy, for all sample sizes. However, the classifiers constructed with 42 features 

(as selected by the decision rule-based search) have a predictive performance that is 

significantly lower than that when all 54 features are used. For the classifiers 

constructed using the See5 classification tree algorithm, there is no statistically 

significant difference between using all features (54) and features selected by the 

Gaussian probe (49). There was also no significant difference between using all 

features (54) and features selected by the decision rule search algorithm (42).  

 

Table 5.15: Statistical tests to compare the accuracy of forest cover type classifiers for 
different feature subsets for parent dataset class distribution 
 
 
Algorithm 

Groups for independent 
samples t-test, sample size,  
number  of features 

 
Student’s independent samples  t-test (9df) 
(equal variances not assumed) 

Group A 
(mean & CI) 

Group B 
(mean & CI) 

95% CI of mean 
difference 

p-value 
(2 tails) 

Group A better 
than Group B? 

 
 
 
 
5NN 
(nearest 
neighbour) 

 
6000;   54 
(71.2 ± 1.1) 

 
6000;   42 
(68.5  ± 1.4) 

 
 
[1.8, 3.8] 

 
 

0.000 

 
 

yes 
 
12000; 54 
(76.2 ± 0.8 ) 

 
12000; 42 
(70.4 ± 1.1) 

 
 
[5.2, 6.4] 

 
 

0.000 

 
 

yes  
 
6000; 54 
(71.2 ± 1.1) 

 
6000; 49 
(71.5 ± 1.1) 

 
 
[-1.0, 0.5] 

 
 

0.468 

 
 

no 
 
12000; 54 
(76.2 ± 0.8 ) 

 
12000; 49 
(76.1 ± 0.8) 

 
 
[-0.4, 0.6] 

 
 

0.640 

 
 

no 
 
 
 
See5 
(classification 
tree) 

 
6000;   54 
(74.8 ± 1.3) 

 
6000;   42 
(72.8  ± 0.8) 

 
 
[0.3, 3.6] 

 
 

0.019 

 
 

yes 
 
12000; 54 
(74.5 ± 0.8) 

 
12000; 42 
(74.5  ± 0.6) 

 
 
[-1.0, 1.0] 

 
 

0.952 

 
 

no 
 
6000; 54 
(74.7 ± 1.2) 

 
6000; 49 
(73.8 ± 1.2) 

 
 
[-0.9, 2.8] 

 
 

0.283 

 
 

no 
 
12000; 54 
(74.5 ± 0.8) 

 
12000; 49 
(75.4  ±  1.1 ) 

 
 
[-2.4, 0.5] 

 
 

0.176 

 
 

no 
 

Table 5.16 shows the results for the Student’s paired samples t-test for the predictive 

accuracy on the 10 test sets. Columns 2 and 3 respectively provide the description of 

the classifiers that were compared. A specification of the training set size for the 

classifier, the size of the feature set that was used for the classifier and the mean 

predictive accuracy of the classifier on 10 test samples are given. Column 4 gives the 

95% confidence interval of the mean difference for the predictive accuracy of the two 

classifiers specified in columns 2 and 3. Columns 5 and 6 respectively give the p-

value for the paired samples t-test and the interpretation of the p-value based on the 

reasoning given in table 4.11 of chapter 4. 
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For the 5NN classifiers created with training sample sizes of 6000 and 12000 

instances, the 54-feature classifiers provided a higher level of predictive accuracy 

compared to the 42-feature classifiers.  The 49-feature classifiers provided a higher 

level of predictive accuracy than the 42-feature classifiers. These results indicate that 

the decision rule-based algorithm based on Cohen’s (1998) thresholds for 

insignificant, low, medium and high correlations eliminates some features which have 

predictive power for the 5NN algorithm. For the 5NN classifiers created with training 

samples of 6000 and 12000 instances there is no statistically significant difference in 

predictive accuracy between the 54-feature classifiers and the 49-feature classifiers. 

These results indicate that the Gaussian probe eliminates only features with no 

predictive power for 5NN. 

 

For the See5 classifiers created with training sample sizes of 6000 instances, the 54-

feature classifiers provided a higher level of predictive accuracy than the 42-feature 

classifiers. The 49-feature classifiers also provide a higher level of predictive 

accuracy that the 42-feature classifiers. For classifiers created with training sample 

sizes of 12000 instances there was no statistically significant difference in predictive 

accuracy between the 54-feature and 42-feature classifiers, and between the 54-

featute and 42-feature classifiers. These results indicate that for the See5 classifiers 

the 42 features selected by the decision rule-based algorithm based on Cohen’s 

(1998) guidelines are sufficient for prediction with very large samples (e.g. 12000 

instances). 

 

A detailed analysis of the 5NN and See5 classifiers was conducted for the classifiers 

of sample size 12000 in order to establish the TPRATE values for the individual 

classes. The analysis results are given in table 5.17. The analysis was done to 

compare the predictive performance of the 49 features selected by the Gaussian 

probe and the 42 features selected by the decision rule-based search algorithm. The 

results of the Student’s paired samples t-test for the 5NN classifiers indicate that for 

three of the classes (1, 2, 7) there is no statistically significant difference between 

using 49 features and 42 features for 5NN classification. However, for four of the 

classes (3, 4, 5, 6) there is a statistically significant increase in the TPRATE values 

when 49 features are used. The results of the Student’s paired samples t-test for the 

See5 classifiers indicate that there is no statistically significant difference between 

using 49 features and 42 features for five of the classes (2, 3, 4, 5, 6). The TPRATE 

for the 49-feature classifier is statistically significantly higher than that for the 42-
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feature classifier for class 1. The TPRATE for the 42-feature classifier is statistically 

significantly much higher than that for the 49-feature classifier for class 7. 

 

Table 5.16: Statistical tests to compare the accuracy of forest cover type classifiers for 
different feature subsets for equal class distribution 
 
 
Algorithm 

Groups for paired tests 
sample size;  
number  of features 

Student’s paired t-test 
(9df) 

Group A 
(mean & CI) 

Group B 
(mean & CI) 

95% CI of mean 
difference 

p value 
(2 tails) 

Group A better 
than Group B? 

 
 
 
 
 
5NN 
(nearest 
neighbours) 
 

 
6000;   49 
(75.1 ± 1.1) 

 
6000;   42 
(71.6 ± 1.2) 

 
 
[1.7, 5.2] 

 
 
0.002 

 
 
yes 

 
12000; 49 
(79.4 ± 0.8) 

 
12000; 42 
(74.4 ± 0.9) 

 
 
[3.6, 6.3] 

 
 
0.000 

 
 
yes 

 
6000;   54 
(75.1 ± 1.4) 

 
6000;   42 
(71.6 ± 1.2) 

 
 
[1.9, 5.0] 

 
 
0.000 

 
 
yes 

 
12000; 54 
(80.1 ± 1.0) 

 
12000; 42 
(74.4 ± 0.9) 

 
 
[4.2, 7.2] 

 
 
0.000 

 
 
yes 

 
6000; 54 
(75.1 ± 1.4) 

 
6000; 49 
(75.1 ± 1.1) 

 
 
[-1.5, 1.4] 

 
 
0.451 

 
 
no 

 
12000; 54 
(80.1 ± 1.0) 

 
12000; 49 
(79.4 ± 0.8) 

 
 
[-0.6, 1.8] 

 
 
0.290 

 
 
no 

 
 
 
See5 
(classification 
tree) 
 

 
6000;   49 
(73.6 ± 0.9) 

 
6000;   42 
(72.3 ± 0.7) 

 
 
[0.3, 2.3] 

 
 
0.014 

 
 
yes 

 
12000; 49 
(76.5 ± 0.9) 

 
12000; 42 
(76.9 ± 1.0) 

 
 
[-1.3, 0.5] 

 
 
0.324 

 
 
no 

 
6000;   54 
(73.6 ± 0.9) 

 
6000;   42 
(72.3 ± 0.7) 

 
 
[0.3, 2.3] 

 
 
0.014 

 
 
yes 

 
12000; 54 
(76.6 ± 0.9) 

 
12000; 42 
(76.9 ± 1.0) 

 
 
[-1.2,0.6] 

 
 
0.490 

 
 
no 

 
6000; 54 
(73.6 ± 0.9) 

 
6000; 49 
(73.6 ± 0.9) 

 
 
no variance 

 
no 
variance 

 
 
no 

 
12000; 54 
(76.6 ± 0.9) 

 
12000; 49 
(76.5 ± 0.9) 

 
 
[-0.01, 0.3] 

 
 
0.495 

 
 
no 

 

When samples are randomly selected from a large dataset and the class-feature 

correlations are measured, the correlation values obtained reflect the predictive 

power of the features over the whole instance space. This is called global predictive 

power in this thesis. If a large dataset was clustered and samples taken from each 

cluster to measure the class-feature correlations, then the correlation values obtained 

would reflect the predictive power of the features for a given cluster. Features that 

have significant class-feature correlations only for a cluster and not for the whole 

instance space are said to be locally predictive within that cluster. This is called local 

predictive power in this thesis.  
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Table 5.17: Statistical tests to compare TPRATE performance of forest cover type classifiers 
for different feature subsets for training sample size 12000 
 
 
Algorithm 

Groups for paired tests 
sample size;  
number of features 

Student’s paired t-test 
(9df) 

 
Group A 
(12000;49) 

 
Group B 
(12000;42) 

95% CI of mean 
difference 

p value 
(2 tailed) 

Group A better 
than Group B? 

 
 
 
 
 
 
 
 
5NN 
(nearest 
neighbours) 
 

 
All classes-A 
(79.4 ± 0.8) 

 
All classes-B 
(74.4 ± 0.9) 

 
 
[3.6, 6.3] 

 
 
0.000 

 
 
yes 

 
Class 1-A 
(60.6 ± 3.0) 

 
Class 1-B 
(60.4 ± 4.0) 

 
 
[-6.3, 6.7] 

 
 
0.473  

 
 
no 

 
Class 2-A 
(46.2 ± 3.1) 

 
Class 2-B 
(47.8 ± 4.4) 

 
 
[-4.4, 1.2] 

 
 
0.224 

 
 
no 

 
Class 3-A 
(67.2 ± 4.0) 

 
Class 3-B 
(54.4 ± 2.1) 

 
 
[7.7, 17.9] 

 
 
0.000 

 
 
yes 

 
Class 4-A 
(97.4 ± 0.4) 

 
Class 4-B 
(90.4 ± 3.0) 

 
 
[3.3, 10.7] 

 
 
0.002 

 
 
yes 

 
Class 5-A 
(97.6 ± 0.8) 

 
Class 5-B 
(93.8 ± 0.9) 

 
 
[2.5, 5.1] 

 
 
0.000 

 
 
yes 

 
Class 6-A 
82.0 ± 2.9) 

 
Class 6-B 
(72.2 ± 2.9) 

 
 
[5.1, 14.5] 

 
 
0.000 

 
 
yes 

 
Class 7-A 
(94.8 ± 1.0) 

 
Class 7-B 
(92.4 ± 4.1) 

 
 
[-2.0, 6.8] 

 
 
0.250 

 
 
no 

 
 
 
 
 
 
 
 
 
See5 
(classification 
tree) 
 
 

 
All classes-A 
(76.5  ± 0.9) 

 
All classes-B 
(76.9 ± 1.0) 

 
 
[-1.3,0.5] 

 
 
0.324 

 
 
no 

 
Class 1-A 
(61.4  ± 4.1) 

 
Class 1-B 
(57.4 ± 3.4) 

 
 
[1.3, 6.7] 

 
 
0.008 

 
 
yes 

 
Class 2-A 
(61.2  ± 3.0) 

 
Class 2-B 
(63.8 ± 3.0) 

 
 
[-5.2, 0.2] 

 
 
0.050 

 
 
no 

 
Class 3-A 
(64.8  ±3.4) 

 
Class 3-B 
(60.8 ± 3.3) 

 
 
[-0.4, 8.4] 

 
 
0.034 

 
 
yes 

 
Class 4-A 
(96.6  ± 1.0) 

 
Class 4-B 
(96.8 ± 1.0) 

 
 
[-2.2, 1.8] 

 
 
0.414 

 
 
no 

 
Class 5-A 
(84.0  ± 1.7) 

 
Class 5-B 
(86.2 ± 2.4) 

 
 
[-5.2, 0.8] 

 
 
0.128 

 
 
no 

 
Class 6-A 
(79.8  ± 2.5) 

 
Class 6-B 
(77.8 ± 3.3) 

 
 
[-0.1, 2.1] 

 
 
0.062 

 
 
yes 

 
Class 7-A 
(87.6  ± 3.4) 

 
Class 7-B 
(95.6 ± 1.6) 

 
 
[-11.2, -4.8] 

 
 
0.000 

 
 
no 

 

The observations for the test results of tables 5.16 and 5.17 led the author to 

hypothesise as follows:  If a large dataset has features that only have local predictive 

power, such features will have small class-feature correlations and will therefore 

appear to be non-relevant when one of the validation methods (Student’s t-test of 
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means) and decision rule-based search algorithm studied in this chapter are used. 

This hypothesis was not tested in this thesis, and is left for future work. 

 

5.5.3 Classification results for KDD Cup 1999  
 

5NN and See5 classification models were also constructed for the KDD Cup 1999 

dataset. The challenge for the KDD Cup 1999 dataset is to achieve a high level of 

accuracy on the attack classes R2L and U2R on the test dataset. The KDD Cup 1999 

test dataset was presented in chapter 4. Classification performance results for this 

dataset are most commonly presented in terms of the TPRATE values for the classes 

(Lee et al, 2002; Lee & Stolfo, 2000). The predictive performance results are 

therefore presented here in terms of the accuracy on all classes as well as the 

TPRATE values for each of the 5 classes.  Table 5.18 shows the predictive 

performance of the classifiers. The performance results are shown for 10-fold cross 

validation on the training set, and for 10 test samples drawn from the test dataset.  

 

For 10-fold cross validation, a training sample of 4500 instances was used. For the 

minority class, U2R, all 52 instances of that class were included in the sample. For 

the remaining four classes, sequential random sampling was used. For the classifiers 

based on an equal distribution of the classes, a training sample of 4500 instances 

was created with 1000 instances from each of the four classes NORMAL, DOS, 

PROBE and R2L, and 500 instances for the class U2R. The 500 instances of the 

class U2R were obtained using bootstrap sampling of the 52 instances that appear in 

the training dataset. The aim was to try as much as possible to achieve an equal 

distribution, but a decision was made not to bootstrap the U2R class beyond ten 

times the actual size. The test samples were created by taking all 70 instances of the 

class U2R in the test dataset and using sequential random sampling to obtain 70 

instances for each of the remaining classes. 

 
From table 5.6 it can be deduced that the 3 probes select nearly the same numbers 

of features for the KDD Cup 1999 dataset. The results of table 5.13 show that all 

input feature subsets result in nearly the same number of features being selected, 

with the decision rule-based search algorithm selecting the smallest number of 

features. Classifiers were constructed with all the 41 features (all features) and with 

the 32 features selected by the decision rule based search algorithm. Classifiers 

were not constructed with the 36 features selected by the Gaussian probe as initial 
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exploratory studies (Cohen, 1995) revealed that the predictive performance of 41 

features is not significantly different from that of the 32 features.  

 
 
 
Table 5.18: Predictive performance of KDD Cup 1999  
 
 
Algorithm 
(training 
sample size) 

 
Feature selection 
method  
(number of features) 

 
 
Class 

Natural distribution  
mean TPRATE% 
for 10-fold cross 
validation 

Equal class 
distribution 
mean TPRATE% 
for 10 test sets 

 
 
 
 
5NN 
(nearest 
neighbours) 
(size = 4500) 
 

All features 
(41) 

All classes 
(accuracy) 

 
97.0 ± 0.5  

 
73.5 ± 0.9 

NORMAL 98.4 85.6 ± 3.2 
DOS 97.5 67.3 ± 5.0 
PROBE 60.0 95.9 ± 1.2 
R2L 61.9 73.1 ± 2.2 
U2R 65.2 45.7 ± 0.0 

Decision rule 
(32) 

All classes 
(accuracy) 

 
96.4 ± 0.5  

 
69.9 ± 1.3 

NORMAL 98.2 84.7 ± 3.2 
DOS 97.0 67.1 ± 4.8 
PROBE 94.7 95.9 ± 1.2 
R2L 72.3 70.3 ± 3.3 
U2R 38.0 31.4 ± 0.0 

 
 
 
See5 
(classification 
tree) 
(size = 4500) 
 
 

no selection  
(41) 

All classes 
(accuracy) 

 
98.6 ± 0.5 

 
66.3 ± 1.2 

NORMAL 99.6 97.3 ± 1.1 
DOS 99.5 74.3 ± 6.2 
PROBE 98.2 86.2 ± 2.2 
R2L 76.5 25.4 ± 2.3 
U2R 71.2 48.6 ± 0.0 

Decision rule 
(32) 

All classes 
(accuracy) 

 
97.5 ± 0.5 

 
66.3 ± 1.2 

NORMAL 99.3 97.3 ± 1.1 
DOS 96.3 74.3 ± 6.2 
PROBE 98.4 86.2 ± 2.2 
R2L 68.4 25.4 ± 2.3 
U2R 65.4 48.6 ± 0.0 

 
 

From the 10-fold cross validation results of table 5.18 it can be deduced that 

predictive accuracy does not differ significantly for the 41-feature and 32-feature 5NN 

classifiers. The 5NN classifier TPRATE values for the classes NORMAL and DOS do 

not differ significantly. There are significant differences in the 5NN classifier TPRATE 

values for the classes PROBE, R2L and U2R. The 10-fold cross validation results for 

the See5 classifiers indicate that the TPRATE values for the majority classes 

(NORMAL, DOS, PROBE) are nearly identical. The See5 TPRATE values for the 41-

feature classifiers are significantly higher than those for the 32-feature classifier for 

the minority classes (R2L, U2R). Overall, it is difficult to establish differences in 

performance when the parent dataset class distribution of the KDD Cup 1999 dataset 

is used. 
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A training dataset of size 4500 randomly selected instances was created to with a 

class distribution that is very close to an equal class distribution. An equal class 

distribution is one where instances from all the classes appear in equal proportions in 

a dataset. One thousand instances were selected for each of the classes, NORMAL, 

DOS, PROBE and R2L. The 52 instances for the minority class (U2R) were 

bootstrapped to 500 instances. Test samples of 350 instances with an equal class 

distribution were created.  

 

Table 5.19: Statistical tests to compare the performance of KDD Cup 1999 classifiers for 
different feature subsets 
 
 
Algorithm 
(training size) 

Groups for the paired tests 
training sample size; 
number of features 

Student’s paired t-test 
(9df) 

 
Group A 
(4500;41) 

 
Group B 
(4500;32) 

95% CI of mean 
difference 

p value 
(2 tailed) 

Group A better 
than Group B? 

 
 
 
 
 
5NN 
(nearest 
neighbour) 
 
(size=4500) 
 

 
All classes-A 
(73.5 ± 0.9) 

 
All classes-B 
(69.9 ± 1.3) 

 
 
[3.1, 4.1] 

 
 
0.000 

 
 
yes 

 
NORMAL-A 
(85.6 ± 3.2) 

 
NORMAL-B 
(84.7 ± 3.2) 

 
 
[0.1, 1.6] 

 
 
0.026 

 
 
yes  

 
DOS-A 
(67.3 ± 5.0) 

 
DOS-B 
(67.1 ± 4.8) 

 
 
[-0.4, 0.8] 

 
 
0.492 

 
 
no 

 
PROBE-A 
(95.9 ± 1.2) 

 
PROBE-B 
(95.9 ± 1.2) 

 
 
[-0.01, 0.03] 

 
 
0.342 

 
 
no 

 
R2L-A 
(73.1 ± 2.2) 

 
R2L-B 
(70.3 ± 3.3) 

 
 
[0.5, 5.1] 

 
 
0.020 

 
 
yes 

 
U2R-A 
(45.7 ± 0.0) 

 
U2R-B 
(31.4 ± 0.0) 

 
 
no variance 

 
 
no variance 

 
 
no variance 

 
 
 
See5 
(classification 
tree) 
 
 (size=4500) 
 

 
All classes-A 
(66.3 ± 1.2) 

 
All classes-B 
(66.3 ± 1.2) 

 
 
no variance 

 
 
no variance 

 
 
no 

 
NORMAL-A 
(97.3 ± 1.1 

 
NORMAL-B 
(97.3 ± 1.1) 

 
 
no variance 

 
 
no variance 

 
 
no 

 
DOS-A 
(74.3 ± 6.2 

 
DOS-B 
(74.3 ± 6.2) 

 
 
no variance 

 
 
no variance 

 
 
no 

 
PROBE-A 
(86.2 ± 2.2 

 
PROBE-B 
(86.2 ± 2.2) 

 
 
no variance 

 
 
no variance 

 
 
no 

 
R2L-A 
(25.4 ± 2.3) 

 
R2L-B 
(25.4 ± 2.3) 

 
 
no variance 

 
 
no variance 

 
 
no 

 
U2R-A 
(48.6 ± 0.0) 

 
U2R-B 
(48.6 ± 0.0) 

 
 
no variance 

 
 
no variance 

 
 
no  

 

5NN and See5 classifiers were constructed from the training dataset of 4500 

instances and tested on 10 test sets. Table 5.18 provides a summary of the 

classification results for the 41-feature and 32-feature classifiers. Table 5.19 shows 
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the results of the Student’s paired samples t-test to compare the 41-feature and 32-

feature classifiers. The results indicate that there is no statistically significant 

difference in the TPRATE values for both the 5NN and See5 classifiers the DOS and 

PROBE classes. The TPRATE values for the NORMAL and R2L classes are 

marginally higher for the 41 feature classifiers compared to the 32 features classifier. 

The 5NN classifier TPRATE for the U2R class is 14.3% higher for the 41-feature 

classifier compared to the 32-feature classifier. However, due to lack of variance, the 

paired t-test could not be applied. The See5 classifier TPRATE values for all classes 

for the 41-feature and 32-feature classifiers are equal. Again, due to the absence of 

variance, the paired samples t-test is not applicable. 

 

The foregoing discussion led the author to hypothesise as follows: It is possible that 

features that are predictive of minority and severely under-represented classes will 

be eliminated when class-feature correlations are measured for all classes using 

instances randomly selected to represent the whole instance space. Such features 

are eliminated because the class-feature correlations cannot be reliably estimated. 

This is the case for the U2R class. This hypothesis was not tested for this thesis and 

is left for future work.  

 

5.5.4 Classification results for the small datasets 
 

Classifiers were constructed for the abalone3C and mushroom datasets to compare 

the predictive performance obtained when there is no feature selection and when the 

features selected by the decision rule-based algorithm are used. The results of table 

5.13 show that for the abalone3C dataset the probes did not eliminate any features. 

For the mushroom dataset the number of features selected by the decision rule-

based algorithm is the same as the number of features selected by the uniform-

binary probe. 5NN and See5 classifiers were constructed for both datasets using 10-

fold cross validation on randomly selected training samples from the datasets.  The 

training sample size used for abalone3C was 3000 instances. Training sample sizes 

of 600 and 3000 instances were used for the mushroom dataset since training 

sample sizes of 3000 instances produced a ceiling effect (Cohen, 1995). A ceiling 

effect is encountered when the performance level of a system on a given task is so 

high that it is not possible to demonstrate performance improvements with any 

intervention (Cohen, 1995).  Experiments with 10 test sets were not conducted as 

was done for the large datasets since the abalone3C and mushroom datasets have 
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balanced class distributions. Tables 5.20 show the classification results for the two 

datasets. 

 

The predictive accuracy for each dataset is shown for all features and for features 

selected by the decision rule based search algorithm. The 5NN 8-feature classifiers 

provided a higher level of predictive accuracy compared to the 3-feature classifiers 

for the abalone3C dataset. Clearly the 95% confidence intervals for the mean 

predictive accuracy for these classifiers do not overlap.  

 

Table 5.20: Predictive accuracy for the small datasets based on the parent dataset class 
distribution 
 
Dataset 
(training set 
size) 

 
 
Classifier 

Feature selection 
method 
(number of features) 

Mean predictive  accuracy 
& 95% CI of mean with 
10-fold cross validation 

 
 
 
 
Abalone3C 
(3000) 

5NN 
(nearest neighbours) 

All features 
 (8) 

 
59.8 ± 2.1 

Decision rule search 
(3) 

 
52.3 ± 3.2 

 
See5  
(classification tree) 

All features 
(8) 

 
63.3 ± 1.3 

Decision rule 
(3) 

 
56.7 ± 1.6 

 
 
 
 
Mushroom 
(3000) 

 
5NN 
(nearest neighbours) 

All features 
(22) 

 
97.9 ± 1.4 

Decision rule search 
(14) 

 
97.6 ± 2.1 

See5  
(classification tree) 

All features 
(22) 

 
100 

Decision rule search 
(14) 

 
99.9 ± 0.0 

Mushroom 
(600) 

5NN 
(nearest neighbours) 

All features 
(22) 

 
96.7 ± 2.1 

Decision rule search 
(14) 

 
95.8 ± 2.8 

See5  
(classification tree) 

All features 
(22) 

 
99.2  ± 0.6 

Decision rule search 
(14) 

 
99.2  ± 0.9 

 

The See5 8-feature classifiers also provided a higher level of predictive accuracy 

compared to the 3-feature classifiers for the abalone3C dataset.  The 22-feature and 

14-feature See5 and 5NN classifiers created with training sample sizes of 600 and 

3000 provided the same level of very high predictive accuracy the mushroom 

dataset. Clearly the 95% confidence intervals of mean accuracy for the classifiers 

overlap. This is a ceiling effect which makes it difficult to make any conclusions on 

this dataset. The same ceiling effect was observed for both the mushroom 5NN 22-

feature and 14-feature classifiers created with training sample sizes of 600 and 3000.  
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Table 5.21 gives the results of Student’s independent samples t-test for means for 

the two datasets. The groups compared for each dataset were the 10-fold cross 

validation results when all features were used and when the features selected by the 

decision rule-based algorithm were used.  

 

Table 5.21: Statistical tests to compare the predictive performance of small dataset classifiers  
Dataset 
(training 
sample  size) 

 
 
Classifier 

Groups for independent samples  
tests; number  of features 

Student’s independent samples  t-test 
(18df, equal variances assumed) 

Group A 
(mean & CI) 

Group B 
(mean & CI) 

95% CI of 
mean 
difference 

p value 
(2 tails) 

Group A 
better than 
Group B? 

 
 
 
 
 
 
Abalone3C 
(3000) 
 
 

 
 
 
 
 
 
5NN 
 

 
All-classes; 8 
(59.8 ± 2.1) 

 
All-classes; 3 
(52.3 ± 3.2) 

 
 
[3.4, 11.6] 

 
 
0.001 

 
 
yes 

 
Class-young; 8 
(74.1 ± 4.5 ) 

 
class-young,3 
(73.7 ± 6.2) 

 
 
[-7.8, 8.7] 

 
 
0.912 

 
 
no 

 
Class-middle; 8 
(43.1 ± 4.9) 

 
Class-middle;3 
(51.1 ± 6.5) 

 
 
[-16.8, 0.7] 

 
 
0.70 

 
 
no 

 
Class-old; 8 
(61.5 ± 3.4) 

 
Class-old; 3 
(37.2 ± 6.7) 

 
 
[16.3, 32.4] 

 
 
0.000 

 
 
yes 

 
See5 
 

 
All-classes; 8 
(63.3 ± 1.3) 

 
All-classes; 3 
(56.7 ± 1.6) 

 
 
[4.3, 8.8] 

 
 
0.000 

 
 
yes 

 
Class-young; 8 
(74.0) 

 
Class-young;3 
(74.5) 

 
based on arithmetic 
comparison of TPRATE 

 
 
no 

 
Class-middle; 8 
(47.6) 

 
Class-middle;3 
(20.4) 

 
based on arithmetic 
comparison of TPRATE 

 
 
yes 

 
Class-old; 8 
(67.3) 

 
Class-young;3 
(72.7) 

 
based on arithmetic 
comparison of TPRATE 

 
 
no 

 
 
Mushroom 
(3000) 
 
 

 
5NN 
 

 
All-classes; 22 
(97.9 ± 1.4) 

 
All-classes; 14 
(97.6 ± 2.1) 

 
 
[-2.5, 3.0] 

 
 
0.856 

 
 
no 

 
See5 
 

 
All-classes; 22 
(100 ± 0.0) 

 
All-classes; 14 
(99.9 ± 0.0) 

 
 
[-0.3, 0.1] 

 
 
0.230 

 
 
no 

 
Mushroom 
(600) 

 
5NN 

 
All-classes; 22 
(96.7 ± 2.1) 

 
All-classes; 14 
(95.8 ± 2.8) 

 
 
[-3.0, 4.7] 

 
 
0.652 

 
 
no 

 
See5 

 
All-classes; 22 
(99.2  ± 0.6) 

 
All-classes; 14 
(99.2  ± 0.9) 

 
 
[-1.1, 1.1] 

 
 
0.970 

 
 
no 

 

Student’s paired samples t-test for means is not applicable here as cross validation 

tests were not paired. The class TPRATE values for the abalone3C classifiers are 

also given. TPRATE values are not given for the mushroom classes as there were no 

(interesting) differences in the TPRATE values for the different feature subsets. The 

statistical tests on the TPRATE values for the abalone3C 5NN classifiers indicate 

that the performance of the 8-feature and 3-feature classifiers does not differ 

significantly for the classes young and middle. For the 8-feature and 3-feature See5 
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classifiers the TPRATE values for the classes young and old do not differ 

significantly, but the TPRATE for the class middle is much higher for the 8-feature 

classifier.  

 

The abalone3C dataset is a major challenge for feature subset search algorithms 

which attempt to maximise class-feature association and minimise feature-feature 

association. Table D.8 of appendix D gives the feature-feature correlation values for 

this dataset. It is clear from table D.8 that generally all the abalone3C features are 

strongly correlated with each other. The results of table 5.21 clearly indicate that the 

use of eight features (all features) provides a higher level of predictive performance 

compared to the use of a subset of the features. Obviously, the feature interactions 

for abalone3C have predictive power for the class variable. 

 

5.6 Discussion  
 

This section provides a discussion of the experimental results of this chapter. The 

discussion is divided into three subsections covering correlation measurement, 

feature subset selection and the problems associated with the measurement of class-

feature correlations for feature selection. The recommendations for feature selection 

from large datasets are given in chapter 10 where the general discussion of the 

research findings is provided. Section 5.6.1 provides a discussion of correlation 

measures and feature ranking. A discussion of feature subset selection is given in 

section 5.6.2. Section 5.6.3 discusses the problems associated with the global 

measurement of class-feature and feature-feature correlations. 

 

5.6.1 Correlation measures and feature ranking 
 

When there are no outliers in the data and associations between variables are linear 

Pearson’s correlation coefficients are suitable for measuring correlations (Wilcox, 

2001) and determining feature ranking for feature selection. This was demonstrated 

with the abalone3C dataset experiments of section 5.3.2. When data contains 

outliers or when the association between variables is non-linear, robust measures of 

association will provide more accurate estimates of correlation values (Wilcox, 2001).  

The experimental results of section 5.3.2 and 5.3.4 demonstrated that Kendall’s 

correlation coefficient is a more accurate measure of correlation compared to 
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Pearson’s correlation coefficient for the large datasets used in the experiments. 

However, this does not exclude the possibility that Pearson’s correlation coefficients 

could work well for some large datasets. 

 

Robust measures for correlations (e.g. Kendall’s tau) should be the preferred 

measure for ranking numeric features in feature selection for purposes of estimating 

the class-feature and feature-feature correlations, when the expense of removing 

outliers becomes prohibitive.  Given a d-dimensional instance space and a sample 

size of n instances for correlation measurement, computation of Kendall’s tau (and 

generally any robust correlation measure) has a larger time complexity of ).( 2ndO  

compared to Pearson’s ).( ndO for the computation of class-feature correlations. The 

computation of feature-feature correlations has a time complexity of ).( 22 ndO  for 

Kendall’s tau (and generally any robust correlation measure) and ).( ndO 2 for 

Pearson’s correlation coefficients. The extra computation time is worthwhile, since it 

allows more accurate feature rankings, even when moderately small sample sizes 

are used for the correlation estimates. If, on the other hand, there is sufficient 

computing power, then the winsorised Pearson’s correlation coefficient (Wilcox, 

2001) discussed in chapter 3 may be used for correlation measurement. 

Computation of winsorised Pearson’s correlation coefficients will remove the effect of 

outliers but will not solve the problem of non-linear associations (Wilcox, 2001). 

 

The experimental results further demonstrated that, a correlation coefficient is a 

random variable in the presence of sampling. This was demonstrated by the results 

of table 5.5 for the KDD Cup 1999 dataset and in fact Smyth (2001) has discussed 

this problem. When feature ranking and validation is based on correlations measured 

for one sample the feature ranking and number of selected features will vary from 

sample to sample. This was demonstrated in table 5.4. Based on the foregoing 

observations, feature rankings should not be based on a single sample, but rather on 

the mean values of the coefficients measured with many samples.  

 

From a statistical perspective, using many (relatively) small randomly selected 

samples from very large datasets makes it possible to accurately and more efficiently 

estimate class-feature and feature-feature correlations.  This was demonstrated in 

section 5.3.4. The samples used for feature ranking for large datasets should not be 

very small. When samples are small, the variability of the correlation coefficients can 
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change dramatically from sample to sample causing the confidence intervals of the 

mean correlation coefficients to be wide. It then becomes difficult to trust the feature 

ranking even when the rankings are based on mean values. This problem is 

demonstrated in table D.1 of appendix D for the forest cover type dataset samples of 

size 100. 

 

Probes (fake variables) provide useful information for elimination of irrelevant 

features. It was empirically found that the three probes used generally eliminated the 

same (number of) features for the forest cover and KDD Cup 1999 datasets. The 

Gaussian probe did not work well for the mushroom dataset (all features are 

qualitative). However, the uniform and uniform-binary probe both eliminated nearly 

the same number of features for the mushroom dataset. None of the probes 

eliminated any features for the abalone3C dataset.  Probes are random variables. 

The use of the confidence interval of the mean for a probe provided a better criterion 

for feature elimination.  It was empirically found that probes also selected several 

features whose correlation values are not of practical significance, as defined by 

Cohen (1988). However, these features were found to have a small amount of 

predictive ability for the forest cover type dataset. Statistical significance with the t-

test for means selected features that have predictive power. However, for all datasets 

the t-test eliminated features with no practical significance, even though these 

features have a small amount of predictive ability. 

 

5.6.2 Feature subset selection 
 

Feature selection methods that search for the best subset of features depend on an 

initial ranking of features. If this ranking is not accurate, then the search method will 

not select the best subset of features. The experimental results of section 5.3.4 

demonstrated that the use of mean values of correlation coefficients for feature 

ranking and validation provided more accurate input values for feature subset 

selection. The experimental results of section 5.4.1 demonstrated that a 

mathematical function (merit measure) will not necessarily always precisely reflect 

the definition of what is required for feature subset selection. It was demonstrated 

that the search procedure can select irrelevant features in preference to more 

relevant features. The use of decision rules in place of a merit measure provides an 

alternative method of implementing the definition of feature relevance and 

redundancy to a search algorithm. The experimental results of section 5.4.2 
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demonstrated that irrelevant features were not selected when decision rules were 

used in place of mathematical functions.  

 

The results of section 5.5.4 provided evidence to support the observation that 

apparently redundant features can have predictive power. This was the case for the 

abalone3C dataset. Cohen (1995:pg 68) has discussed two types of relationships 

between random variables. A simple relationship between two variables X and Y can 

be expressed in the form X influences Y (or X is correlated with Y). An interaction 

relationship involves three variables and is expressed in the form iX  and jX  in 

concert influence Y. The feature selection methods proposed in this chapter are not 

capable of detecting feature interactions. 

 

5.6.3 Problems associated with the global measurement of 
correlations 
 

For the empirical studies reported in section 5.4 some of the eliminated features were 

those features that are either good predictors for one or more of the classes in the 

dataset, or good predictors of some local areas of the instance space, or both. It was 

observed that one or more of the eliminated features for the KDD Cup 1999 dataset 

were those features that could be good predictors for the minority and severely 

under-represented class (U2R). It was hypothesised that if a large dataset is pre-

processed to create clusters prior to feature selection then the above problems 

should not arise. The study of this hypothesis was left for future work. 

 

5.7 Conclusions 
 

The first research question that was addressed in this chapter was: How can class-

feature correlations be measured in order to produce a reliable ranking of features for 

a dataset? The method that was studied and demonstrated to work well is to use 

many samples to measure correlations coupled with a robust measure of correlation. 

The samples should be large enough to avoid large variability in the measured 

correlation values as discussed in section 5.6.1. The mean values of the correlations 

should then be used to conduct validation and feature ranking for the prediction task. 
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The second research question that was addressed in this chapter is:  What methods 

of validation for feature correlations result in reliable feature selection? The 

experimental results reported in this chapter have demonstrated that a comparison of 

mean values of class-probe and class-feature correlations provides useful 

information for more accurately determining which features have no relevance to the 

classification task. A second method of validation that was studied is the use of 

Student’s t-test of means to determine the practical significance of class-feature 

correlations. The experimental results indicated that the t-test method of validation 

eliminated several features which have predictive power. 

 

The third research question that was addressed in this chapter is: How can domain-

specific definitions of feature relevance be incorporated into feature selection 

procedures? The method that was studied was to incorporate domain-specific 

definitions of the meaning of insignificant, low, medium and high correlation, in terms 

of the ranges of values that should be interpreted as insignificant, low, medium and 

high correlations. A new algorithm was designed, implemented and used for the 

selection of the best subset of features. The algorithm used decision rules based on 

the definitions of values for insignificant, low, medium and high correlations based on 

Cohen’s (1988) definition. Experiments using the decision rule-based algorithm 

demonstrated that the algorithm selected good feature subsets which have global 

predictive power. The experimental results have also demonstrated that selecting 

features based on the measurement of class-feature correlations for samples 

obtained from all the regions of the instance space does not necessarily result in the 

selection of all the features that have predictive power. This problem was left for 

future research. The next three chapters provide a discussion of the studies that 

were conducted for training dataset selection.   
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Chapter 6  

Methods for Dataset Selection and Base 
Model Aggregation 
 

‘Where you lead me I will follow, where you lead me I will follow, wherever you lead me 

I will follow. I will be with you always. Ngiyakuthanda moya oyingcwele…’ (Benjamin 

Dube, 2007) 

 

It was stated in chapter 2 that a limited amount of research on the combination of 

dataset partitioning, sampling and aggregate model construction from large datasets 

has been reported in the literature. To the author’s knowledge, only one research 

effort by Chan and Stolfo (1998) has been reported. Chan and Stolfo’s (1998) studies 

were aimed at improving predictive performance of 2-class datasets with skewed 

class distributions. It was argued in chapter 2 that, when large datasets are available, 

training datasets can be designed to achieve bias and variance reduction of the 

prediction error, without having to re-use training data. It was also argued in chapter 

2 that more information is made available to the modeling process when a large 

amount of data is used in the training process. 

 

The purpose of this chapter is to present the two proposed methods for combining 

dataset partitioning, sampling and aggregate model construction for large datasets. 

The methods used in the experiments for the evaluation of aggregate model 

performance are also presented. The proposed methods are specifically aimed at 

multi-class prediction tasks. The proposed methods were designed to support two 

types of base models: One-Versus-All (OVA) models and positive-Versus-negative 

(pVn) models. OVA modeling (Ooi et al, 2007; Rifkin & Klautau, 2004) is discussed in 

this chapter and the performance evaluation of this method is presented in chapter 7. 

pVn modeling is a new method of aggregate model construction, proposed in this 

thesis. pVn modeling is introduced in this chapter and the performance evaluation of 

this method is presented in chapter 8. The main difference between OVA and pVn 

modeling is that each OVA base model is designed to predict one of the k classes 

while each pVn base model is designed to predict more than one of the k classes. 
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 It is claimed in this thesis that the proposed methods have the potential to provide a 

high level of predictive accuracy through the implementation of highly diverse and 

competent base models that are designed to provide high predictive performance 

when combined into an aggregate model. Syntactic diversity and high expertise of 

base models were discussed in chapter 2. Syntactic diversity refers to level of 

structural differences between the base models that constitute the aggregate model. 

High expertise refers to the level of predictive accuracy of the base models. The 

higher the predictive accuracy the higher the expertise. In the context of having large 

amounts of data available for the modeling process, the methods presented in this 

chapter are aimed at providing answers to the following questions: 

 

1. How should training datasets be designed in order to create base models that are 

syntactically diverse and highly expert at prediction for aggregate models? 

 

2. How should training datasets for the base models be designed in order to achieve 

high accuracy for the aggregate model? 

 

The rest of this chapter is organised as follows: Problem decomposition for OVA and 

pVn modeling is discussed in section 6.1. A recap of methods for improving 

predictive performance is given in section 6.2. Methods for training and test dataset 

selection are discussed in section 6.3. Methods for creation and testing of OVA and 

pVn models are presented in sections 6.4. Section 6.5 provides a summary of the 

chapter. 

 

6.1 Problem decomposition for OVA and pVn modeling 
 

Problem decomposition is the process of converting a classification task into several 

classification sub-problems (Ooi et al, 2007; Dietterich & Kong, 1995). It was stated 

in the last section that problem decomposition has the potential to reduce the bias 

component of the prediction error (Dietterich & Kong, 1995). The two methods of 

problem decomposition that were studied are discussed in this section. The methods 

are One-versus-all (OVA) classification and positive-versus-negative (pVn) 

classification. OVA classification is discussed in section 6.1.1 and pVn classification 

is discussed in section 6.1.2. 
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6.1.1 Problem decomposition for OVA modeling 
 

OVA classification (Ooi et al, 2007; Rifkin & Klautau, 2004) is a method of 

classification where a k-class prediction problem is decomposed into k sub-problems 

for classification. OVA classification is commonly used for (binary) support vector 

machines (SVMs) (Boser et al, 1992) for creating classifiers from multi-class 

datasets. Given a classification problem with k classes, kcc ,...,1 , OVA classification 

involves the creation of k sub-problems kovaova ,...,1 . For each sub-problem, iova , 

the task is to create a base classifier, iOVA , that differentiates between instances of 

class ic and instances that belong to all the other classes. In other words, each base 

classifier specialises in the prediction of one class. The base classifiers, 

kOVAOVA ,...,1 , are combined into one aggregate model using the method of 

parallel aggregation that was discussed in section 2.2 of chapter 2. 

 

OVA classification was selected as one of the problem decomposition methods to be 

studied for the following reasons: Firstly, OVA classification enables the creation of 

base models where each base model is an expert on classification for one specific 

class. Secondly, since each OVA classifier solves a 2-class problem, the training 

sample size required to achieve a high level of accuracy is reduced. This is an 

implication of the Probably Approximately Correct (PAC) learning theory which was 

discussed in section 2.4 of chapter 2. Equation (2.1) of section 2.4 specifies the 

theoretical relationship between the samples (complexity) size n, classification 

accuracy ε−1 , and hypothesis space size |H| . For a fixed level of classification 

accuracy, reduction of the hypothesis space size |H| results in a reduction in the 

samples size required to achieve a given level of classification accuracy. 

 

6.1.2 Problem decomposition for pVn modeling 
 

Positive-Versus-negative (pVn) classification is a proposed modification of OVA 

classification proposed in this thesis.  For pVn classification, each base model 

specializes in the prediction of a subset of classes, instead of just one class, as is the 

case for OVA classification. For pVn classification, a k-class prediction problem is 
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decomposed into a set of sub-problems, lpvnpvn ...,1 , (l< k). For each sub-problem, 

the task is to create a base classifier ipVn which specializes in the prediction of j 

classes (j < k), which are a subset of the k classes. The j classes are referred to as 

the positive classes. All the other classes whose instances are included in the 

training dataset for the pVn model are collectively referred to as the negative classes. 

The name positive-Versus-negative (pVn) was used to represent the fact that a pVn 

base model can predict the positive classes in contrast to other classes which are 

simply treated as negative classes. The pVn models are combined into one 

aggregate model using the method of parallel aggregation. 

 

The initial motivation for pVn modeling was as follows: If a multi-class problem has 

many classes, then many OVA base classifiers must be created. If on the other hand, 

each of the base models is specialized on more than one class, the number of base 

models to be created is reduced. After the OVA and pVn modeling experiments 

reported in chapters 7 and 8 were conducted, it became clear that pVn modeling 

solves other problems which are discussed in chapter 8. 

 

6.2 Methods for improving predictive performance 
 

The methods for improving predictive performance were discussed in detail in 

chapter 2. A summary of these methods is given in this section, and details are 

provided for the objectives for the methods that were studied for training dataset 

selection. Section 6.2.1 provides a discussion of the methods for bias and variance 

error reduction for small datasets. Section 6.2.2 provides a discussion of the methods 

for bias and variance error reduction for large datasets. High competence and 

syntactic diversity are discussed in section 6.2.3. 

 

6.2.1 Reduction of bias and variance errors for small datasets 
 

It was stated in chapter 2 that the three major factors that affect the predictive 

performance of a model are the bias, variance, and intrinsic error components of the 

prediction error. The bias of a predictive model reflects the error in the estimation 

process for the model (Giudici, 2003; Friedman, 1997; Geman et al, 1992). The 

variance reflects the sensitivity of the predictive model to the sample used to create 
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the model (Giudici, 2003; Friedman, 1997; Geman et al, 1992). The intrinsic error is 

the irreducible component of the prediction error. Various methods of bias and 

variance reduction were discussed in detail in section 2.11 of chapter 2. For small 

datasets, bias and variance reduction have been achieved primarily through two 

methods. The first method involves the creation of many base models through the re-

use of the training data either through bootstrap sampling (Breiman, 1996) or re-

using those training instances that are difficult to predict (Freund & Schapire, 1997). 

The second method involves the use of many base models, each with a different 

structure, in order to achieve syntactic diversity (Ho, 1998; Ali & Pazzani, 1996; 

Krogh & Vedelsby, 1995; Kwok & Carter, 1990; Hansen & Salamon, 1990). 

Additionally, various methods for base model aggregation have been studied (Ooi et 

al, 2007; Sun & Li, 2008; Ali & Pazzani, 1996). 

 

6.2.2 Reduction of bias and variance errors for large datasets 
 

The studies reported in the next two chapters were aimed at the design of aggregate 

models and the selection of training datasets for the base models, with the objective 

of reducing the bias and variance components of the prediction error. The training 

dataset selection methods used for aggregate modeling from small datasets were 

adapted in this thesis for the selection of training datasets when large amounts of 

data are available. While the dataset selection methods for small datasets have 

relied on the re-use of training data, there is generally no need to re-use training data 

for large datasets, except in those cases where one or more classes are severely 

under-represented in the dataset. In such cases, bootstrap sampling was employed 

for the studies of chapter 7 and 8, to increase the number of instances for the 

severely under-represented classes. 

 

The following methods for bias and variance reduction were incorporated into the 

base model design and training dataset selection for the studies reported in chapter 7 

and 8 of this thesis: 

 

(1) Variance reduction through the use of a different training sample for each of the 

base models. The objective here was to use as much training data as possible in 

order to achieve a high level of coverage of the instance space. 
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(2) Variance reduction through the use of relatively small training samples (relative to 

the size of the large dataset) for each of the base models. The objective here was to 

reduce the effects of noise, and chance or phantom structure in the data (Smyth, 

2001) as discussed in chapter 2. 

 

(3) Bias and variance reduction through the use of training datasets with a sample 

composition aimed at providing a high level of coverage of the decision boundary 

regions of the instance space. The objective here was to provide as much data as 

possible for the regions where it is difficult to make correct predictions. A second 

objective was to ensure that the predictive performance does not degrade due to 

conflicting base model predictions when base models are combined into an 

aggregate model. 

 

(4) Variance reduction through the selection of good feature subsets. These studies 

were reported in chapter 5. 

 

(5) Bias reduction through the decomposition of k-class problems into 2-class 

problems as is done for OVA classification, and j-class (j<k) problems which was 

implemented using the proposed method of pVn classification. 

 

6.2.3 High competence and syntactic diversity of base models 
 

Several researchers have argued that syntactic diversity of base models may lead to 

a higher level of predictive accuracy for the aggregate model (Sun & Li, 2008; Ho, 

1998; Ali & Pazzani, 1996; Krogh & Vedelsby, 1995; Kwok & Carter, 1990; Hansen & 

Salamon, 1990). Several researchers have also argued that a higher level of 

predictive performance may be achieved by making each member of the aggregate 

model as competent as possible (Sun & Li, 2008; Ho, 1998; Ali & Pazzani, 1996). 

Furthermore, Chan and Stolfo (1998) have demonstrated that the use of carefully 

designed samples from partitions, and creation of aggregate models from the 

samples, may result in an increased level of predictive performance of 2-class 

datasets with skewed class distributions.  

 

It is the author’s opinion that syntactic diversity and high competence of the base 

models, both lead to a reduction in the bias and variance components of the 

prediction error.  Syntactic diversity should lead to a reduction in variance errors 
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(errors due to sampling variations) since the modeling process is conducted using a 

large amount of information on the data generating process. Syntactic diversity 

should also lead to a reduction in variance (sensitivity to the sample used for 

training), since several samples are used in the modeling process. High competence 

should lead to a reduction in bias since the methods used in the estimation process 

of a highly competent model will necessarily minimize the errors in the model 

estimation process.  

 

For the achievement of syntactic diversity and high competence of the base models, 

the following methods were incorporated in the base model design and training 

dataset selection: 

 

(1) Syntactic diversity through the use of base models where each base model 

predicts a different set of classes. 

 

(2) Syntactic diversity through the use of a training sample with a different 

composition for the training samples of the other base models. 

 

(3) High competence through the use of base models where each model is 

specialized on a simpler hypothesis space with fewer classes than for the single k-

class model. 

 

(4) High competence through the design of training samples to provide a high 

coverage of those regions of the instance space where correct prediction is difficult. 

 

6.3 Design and selection of training and test datasets  
 

This section provides a detailed discussion of the method of training dataset 

selection that were adopted for the experiments of chapters 7 and 8 for OVA and pVn 

modeling. The methods were designed to achieve three main objectives. The first 

objective was to maximise diversification of the base models. The second objective 

was to maximise individual expertise of the base models. The third objective was to 

ensure that when base models are combined into one aggregate model, the class 

confusion (occurrence of conflicting predictions) is minimised. Section 6.3.1 provides 

a discussion of the strategy that was adopted for base model design, training and 

test data selection, and model testing.  Section 6.3.2 provides a discussion of the 
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motivation for the sample composition of the training and test datasets.  Section 6.3.3 

presents the methods employed for large dataset partitioning and sampling. Section 

6.3.4 provides a discussion of the sampling process from the dataset partitions.  

 

6.3.1 Strategy for dataset selection and model creation 
 

Seven distinct steps were identified for purposes of predictive model design, training 

dataset selection, model creation, and testing. The steps are shown in figure 6.1. 

Step 1 involves the design of the base models. Step 2 involves the selection of the 

relevant feature set for each base model. Step 3 involves making a decision on the 

partitions that should be created, and then creating the partitions. Steps 2 and 3 

could be interchanged. Feature selection is done to ensure that irrelevant features 

are removed in order to make the individual base models as competent as possible. 

Step 4 involves the selection of training data and test data. Step 5 involves the 

creation, validation and testing of each base model. Step 6 involves the combination 

of the predictions of the base models. Step 7 involves the measurement of the 

performance gains realized from using an aggregate model versus a single model. 

 

 
Figure 6.1 Steps for dataset partitioning, model creation and testing 
 

6.3.2 Motivation for the sampling methods 
 

It is important to make a decision on the class distribution of the training set and test 

set samples when sampling is employed. Two alternatives exist: The first alternative 

is to select samples which have the same class distribution as the large dataset from 

which the samples are drawn. The assumption here is that the class distribution of 

Step 1: Design the base models 

Step 2:  Select the relevant feature sets for the training datasets 

Step 3: Decide on, and create the dataset partitions  

Step 4:   Select the training datasets and test datasets from the partitions 

a. Create training and test data partions 

b. Create training datasets 

c. Create test datasets 

Step 5:  Create, validate and test each of the base models  

Step 6:  Combine the predictions of the base models 

Step 7:   Measure the performance gain for using an aggregate model versus  a single model  
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the large dataset is a true representation of the class distribution of the population. 

The second alternative, called oversampling (Berry & Linoff, 2000) is to use a 

different class distribution in the samples. One common motivation for employing 

oversampling is to increase the coverage of the minority classes that appear in the 

large dataset. 

 

Berry and Linoff (2000) have cautioned against the use of oversampling and argued 

that oversampling changes the meaning of the scores (class posterior probabilities) 

that are assigned to the predictions by a probabilistic classifier. Recall from chapter 4 

that a classification algorithm outputs a prediction for a test or query instance in the 

form of a pair (class, score). Berry and Linoff (2000) have advised that the lift factor 

which was discussed in chapter 4 should be interpreted with care when oversampling 

is used. Provost and Fawcett (2001) on the other hand, have cautioned against the 

assumption that the class distribution for the large dataset is always a true 

representation of the population class distribution. Provost and Fawcett (2001) have 

argued that, firstly, the true class distribution is rarely ever known precisely for most 

domains. Secondly, the class distribution for a large dataset is subject to change for 

many application domains. Provost and Fawcett (2001) have provided the example 

of fraud detection as a domain where the class distribution for large datasets 

changes often. 

 

Recall from chapter 2 that boosting is a statistical method for modeling which aims to 

increase the coverage of those regions of the instance space where correct 

prediction is more difficult. Boosting will necessarily result in changes to the class 

distribution of the training dataset to make it different from the class distribution of the 

large dataset. Given the foregoing discussion of Berry and Linoff (2001), and Provost 

and Fawcett (2001), the author made a decision to use boosted training samples with 

a class distribution determined by the base model design. Test samples with an 

equal class distribution for all the classes were used. The motivation here was that 

the performance of single and aggregate models should be compared class by class 

for the same number of test instances of each class. The net result of the adopted 

approach is oversampling. For purposes of measuring model performance, 

calculation of lift factors was avoided and ROC analysis was used instead. Recall 

from chapter 4 that ROC analysis is not dependent on the class distribution of the 

training and test data. 
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6.3.3 Partitioning and sampling for dataset selection 
 

The proposed methods of dataset selection involve the use of stratified sampling 

(Berry & Linoff, 2000; Rao, 2000) in order to obtain the required sample composition 

for the training and test datasets. Stratification is achieved through the creation of 

large dataset partitions (strata) with each partition (stratum) consisting of instances of 

one class. Training datasets are then created by taking random samples from each 

partition (stratum) with each class having a different level of representation in each of 

the training datasets. The level of representation of a given class is based on the 

objectives of model creation. These objectives are further elaborated on later in this 

chapter. The proposed method of training dataset selection was used to support two 

different types of aggregate classification models: OVA classification and positive-Vs-

negative (pVn) classification.  

 

 
Figure 6.2:  Partitioning and sampling process for base model training dataset selection 
 

Figure 6.2 shows the approach that was studied for creating the partitions and 

obtaining samples from the partitions. This corresponds to steps 3 and 4 of figure 

6.1. In step 3 the large dataset is partitioned into k (k  > 2) partitions, where each 
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partition consists of instances of the same class. Step 4 involves various activities. 

The first activity is to sub-divide each partition into a training data and test data 

partition. The second activity is to create training datasets for the base models by 

selecting instances from the partition determined by the base model design. The third 

activity is to create test datasets by selecting instances from each partition. Simple 

random sampling was used for selecting instances from the partitions.  

 

Each of the model training sets for OVA classification consists of instances from the 

class it is designed to be expert at predicting, as well as instances from some or all 

the other classes. Re-labeling was done to assign all the negative instances to a 

single class, so that each OVA training sample consists of instances of two classes. 

Each of the base model training sets for pVn classification is composed of instances 

from the p (positive) classes in equal proportions, and n (negative) classes in equal 

proportions. The proportions of the positive and negative samples were different. Re-

labeling was done to assign all the negative instances to a single class. Details of 

how sampling was done are given in the next section. 

 

6.3.4 Sampling from dataset partitions  
 

Samples were taken from the partitions (strata) for the implementation of step 4 of 

figure 6.1.  It is important to make decisions concerning the proportions of instances 

(of each class) in each of the base model training samples. When one-class 

partitions are created there may be great variation in the sizes of the partitions, with 

the partitions for the majority classes being very large and the partitions for the 

minority classes being very small. The number of training instances required from 

each one-class partition was calculated and then simple random sampling was used 

to obtain the instances from that partition. Details of the calculation of the required 

number of instances are given in chapters 7 and 8. A situation may arise when the 

partition size is smaller than the required number of instances for datasets with 

skewed class distributions. When this is the case, the solution that was used in the 

experiments of chapters 7 and 8 was to obtain a bootstrap sample from the partition 

(Rao, 2000). Bootstrap sampling (Breiman, 1996; Cohen, 1995) is a statistical 

method that is used to generate a large amount of data from a small dataset using 

simple random sampling with replacement (SRSWR) (Rao, 2000). Test data sets 

were created using simple random sampling from the test data partitions (strata). 

Each test dataset was created with an equal (balanced) class distribution. 
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6.4 Methods for creating and testing OVA and pVn models 
 

Steps 5, 6 and 7 of figure 6.1 involve the creation and testing of the base models, 

aggregation of the base models, and testing of predictive performance of the 

aggregate models. The methods used to implement steps 5, 6 and 7 are presented in 

this section. Section 6.4.1 provides a discussion of the implementation of the OVA 

and pVn base models and a discussion of the outputs generated by the base models. 

Section 6.4.2 provides a discussion of the methods that were used to implement the 

aggregate models. The algorithms for model aggregation are presented in section 

6.4.3. The experimental procedure for model aggregation is given in section 6.4.4. 

The methods for measuring performance gains due to aggregate models are 

presented in section 6.4.5.  

 

6.4.1 Design and implementation of OVA and pVn base models 
 

 Base models were designed, created and tested for each dataset. The design 

objectives discussed in section 6.2 were adopted for each set of base models that 

make up an aggregate model. The details of OVA and pVn base model design and 

testing are given in chapters 7 and 8 respectively. Test datasets were created to 

include positive instances for the class(es)  that a base model  predicts, as well as 

negative instances from all the other classes. The same test sets were used for 

testing all the base models, as depicted in figure 6.3. 

 

A predictive classification model may output a prediction pred, for a test or query 

instance in the form 

 

),( ii confcpred =                  (6.1) 

 

where ic  is the predicted class, iconf  is the level of confidence that the test or query 

instance belongs to the predicted class and is defined as 

 

)|( qiri cPconf ����=                  (6.2) 
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where  q����  is the test or query instance and )|( qir cP ����  is the posterior probability that 

the instance q����  belongs to class ic . The value of iconf  is referred to as the score 

that is assigned by the predictive model for purposes of ROC and lift analysis (Giudici 

& Figini, 2009; Witten & Frank, 2005; Giudici, 2003; Berry & Linoff, 2000). 

 

Each leaf node of a classification tree stores the posterior probability for prediction of 

each class at that node. The class with the highest posterior probability is the 

predicted class for test or query instances that land at that leaf node. The See5Sam 

tool which is part of the See5 classification software (Quinlan, 2004) that was used 

for the experiments reported in chapters 5, 7 and 8 outputs a prediction as indicated 

in equation (6.1). 

 

The 5NN classifier which was used for the experiments of chapters 5, 7 and 8, 

outputs a prediction pred, in the form of a triple 

 

),,( iii recdistconfcpred =                             (6.3) 

 

where ic  is as defined above, and  iconf , the probability that the test or query 

instance belongs to the predicted class is defined as 

 

5
||

)(
U

cPconf iri ==                                                   (6.4) 

 

where the numerator |U|  represents the count of nearest neighbours that belong to 

the predicted class and the denominator is the total number of neighbours used for 

deciding the predicted class (which is 5 for 5NN). The quantity irecdist  is the sum of 

reciprocal distances for the neighbours that belong to the predicted class and is 

defined as  

 

�
∈

=
Ux q

i dist
recdist

),( ��������

1

             (6.5) 

where ),( ��������qdist  is the Euclidean distance between the test or query instance and 

one of the nearest neighbours. The possible values for iconf  are 0.4, 0.6, 0.8 and 

1.0 for the 5NN classifier. These values correspond to the number of nearest 
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neighbours for the predicted (winning) class. For two nearest neighbours of the 

predicted class iconf =0.4. For three nearest neighbours of the predicted class iconf

=0.6. For four nearest neighbours of the predicted class iconf =0.8. For five nearest 

neighbours of the predicted class iconf =1.0.  

 

6.4.2 Implementation of OVA and pVn aggregate models 
 

When multiple base models are used, each model will declare a given test or query 

instance as belonging to a class ci. The purpose of the aggregation step is to 

examine all the predictions of the individual base models and select that class with 

the strongest supporting evidence. The parallel method of aggregation, discussed in 

section 2.2.5, was used in the experiments. Recall that all the base model predictions 

for parallel aggregation are considered at the same time and the best prediction is 

selected based on the level of confidence in the prediction. The methods for 

combining base model predictions when each base model is capable of predicting 

any of the k classes for a prediction task were discussed in section 2.2.5.  

 

Recall that these methods include (1) majority voting (2) the product rule (3) the sum 

rule (4) the max rule, and (5) the min rule. The product rule and sum rule are not 

directly applicable to OVA and pVn base models for the following reasons: Since 

each OVA base model can predict only one of the k classes and each pVn base 

model can predict only a subset of the classes, it is not possible to have a meaningful 

majority vote for any given class. It is also not possible to generate a meaningful 

mathematically combined probabilistic score for each class when OVA or pVn base 

models are used. The max rule and min rule can however be applied to OVA and 

pVn base model predictions as discussed below. 

 

When OVA or pVn base models assign a single score to each prediction, as is the 

case for the See5 algorithm, then the output of a parallel aggregation algorithm, 

based on the max rule, is a pair defined as 

 

kjconfcconfcconf jji ≤∈= )},,(),...,,{(), 11
*

�
��������                            (6.6) 

 
where  
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},...,max{ 1
*

ji confconfconf =                          (6.7) 

 

and k is the number of classes for the prediction task, and *
ic is the predicted class 

which has the largest value *
iconf . Equations (6.6) and (6.7) are sufficient for 

determining the prediction for the See5 classification tree aggregate models. The 

domain of possible values for iconf  is small for the 5NN models, having 0.4, 0.6, 0.8 

and 1.0 as the possible values.  The small domain of values results in a high 

probability of tied iconf  values for the base model predictions. In order to break ties, 

equation (6.5) was used to compute recdist values and the tied prediction with the 

highest recdist value was selected as the best prediction for the 5NN aggregate 

model. The interpretation of the recdist values is as follows: If base model predictions 

have a tied iconf  value, then select the model which used the shortest Euclidean 

distances to determine the predicted class. The output of the 5NN aggregation 

algorithm is a triple defined as: 

 

)},,(),...,,,{(), 111
**

jjjii recdistconfcrecdistconfcrecdist ∈= ����������	
� �
	   

         (6.8) 

 

where pred, k, *
ic and *

iconf have the same interpretation as before and *
irecdist is the 

reciprocal distance for the best tied or untied prediction. It should be noted that Ooi et 

al (2007) have used the recdist values as a measure of the level of confidence in a 

5NN prediction. The problem with Ooi et al’s (2007) approach is that recdist values 

do not have a straightforward interpretation for ROC analysis. 

 

6.4.3 Algorithms for model aggregation 
 

The algorithm of figure 6.3 was used to implement the combination (aggregation) 

decisions for the See5 OVA and pVn aggregate models using the max rule. A base 

model may predict class ic  or the class ‘other’ to indicate that a test instance belongs 

to one of the other classes. The value iconf  in figure 6.3 is the posterior probability 

)|( qir cP ����  for the predicted class as defined in equation (6.2) for See5. The value 

‘none’ indicates that there was no valid prediction. That is, all base models predicted 
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the class ‘other’. A base model predicts ‘other’ to indicate that the class for the query 

or test instance is not a class that it is designed to predict. In step 3 of the algorithm 

in figure 6.3, ties are broken randomly, since there is no other value that can be used 

to resolve a tie.  

 

 
Figure 6.3: Algorithm for combining See5 base model predictions  
 

It was stated in section 6.4.2 that the prevalence of tied predictions (tied on the iconf  

values) is high for the 5NN base models. The strategy that was used for the 

implementation of the algorithm that determines all the tied predictions involves the 

generation of the complete search space of all possible ties. The generation of all 

possible ties is a combinatorial search problem (Luger & Stubblefield, 1993) requiring 

the generation of the number of states given by 

 

�
=

−=
k

j

jjkStates
1

)(                   (6.9) 

 

where k is the number of classes for the prediction task. For prediction tasks with a 

small number for classes the combinatorial explosion of equation (6.9) does not pose 

a major problem. For example, a prediction task with 5 classes will have 22 possible 

tied predictions. The derivation of equation (6.9) is given in appendix E. Figure 6.4 

gives the data structures and algorithms for the functions that were used to combine 

the 5NN base model predictions.  

1. If only one base model predicts a class  ic , and all the other base models predict 

‘other’, then the prediction is ic  

2. If more than one base model predicts a class ic , then select the class ic  which is 

predicted with the largest value of iconf . 

3. If there is a tie on iconf between winning classes then break the tie randomly 

4. If all base models predict the class ‘other’, then the prediction is ‘none’ 
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Figure 6.4: Algorithm for combining 5NN base model predictions 
 

Data structures: 

Prediction:  a base model prediction stored as a tuple  

                    (modelname, modelnumber, predictedclass, score, recdist)   

State:          a search space state which holds data on tied predictions in the form  

      (tiedcount, tiedmodels, tiedscore, bestclass, bestrecdist)  

     OPEN,CLOSED, CHILDREN: list used by BreadthFirstGenerate algorithm to  

     generate the complete search space 

TIED:       List used to hold the states for predictions that are actually tied 

PREDICTIONS:  list to hold the predictions for all the models. 

  

Algorithm for CheckTies( ): 

1. Call BreadthFirstGenerate( ) to generate the list of all states for possible tied predictions 

consisting of j, j-1, …, 2 tied predictions. Save the states on the CLOSED list. 

2. For each state on the CLOSED list: 

a. Check if there is a tie in the iconf scores for all the predictions in the state. 

b. If there is a tie, record the tied score, largest recdist and prediction with largest recdist  

c. Copy the state to the TIED list 

3. Delete from TIED every  state whose nodes are all contained in another state on TIED 

4. Select besttiedstate as the state on TIED with the highest score. Break ties using recipdist 

5. Return besttiedstate 

 

Algorithm for CombinePredictions( ): 

1. Assign a unique number to each of the j (j � k) base models 

2. Store the predictions for the j base models in the PREDICTIONS list 

3. If all base models predict the class ‘other’, then the prediction is ‘none’ 

4. Check for  2-way tied predictions 

5. If there are no 2-way ties 

select prediction with largest iconf  score on the PREDICTIONS list as bestprediction 

6. else 

a. Call CheckTies( ) to search for the tied state with the largest number of 

predictions. Call this besttiedstate 

b. besttiedpred = prediction in besttiedstate with largest recipdist 

c. select prediction with largest score on the PREDICTIONS list. Call this 

bestuntiedpred 

d. if (score for bestuntiedpred > score for besttiedpred) 

bestprediction =  bestuntiedpred  

e. else 

                                   bestprediction = besttiedpred  

7. Return bestprediction 

 

 
 
 



  158 

The function CheckTies( ) uses the BreadthFirstGenerate( ) to generate all the 

possible ties for base models identified as 1,2,..,j (j � k). The BreadthFirstGenerate( ) 

algorithm is based on a breadth-first search strategy (Luger & Stubblefield, 1993) and 

is given in appendix E. For each possible tied state, if there is an actual tie on the 

iconf  scores for the predictions, the state is recorded in the TIED list. The tied state 

with the highest score is then selected as the best tie. The function 

CombinePredictions( ) places all predictions on the PREDICTIONS list. If all the base 

models predict the class ‘other’ then there is no valid prediction for the aggregate 

model. The function CombinePredictions( ) checks if there are any 2-way ties (ties 

involving two predictions). If there are no 2-way ties then there cannot be any 3-way, 

4-way or higher order ties. When there are no tied predictions, the prediction with the 

highest iconf  score is selected as the prediction for the aggregate model. If 2-way 

ties exist, CombinePredictions( ) calls CheckTies( )  to locate the tied predictions with 

the highest iconf  score. The iconf  score for the tied predictions is then compared 

with the highest iconf  score for untied predictions. If the tied predictions have a 

higher iconf  score, the tied prediction with the highest value of recdist is selected as 

the aggregate model prediction.  

 

6.4.4 Experimental procedure for testing aggregate models 
 

The experimental set up for OVA and pVn base model aggregation is shown in figure 

6.5.  The base models shown in figure 6.5 may be either all OVA models or all pVn 

models. Ten test sets were used to measure model performance. Each test set was 

applied to each of the base models and the test (prediction) results were written to a 

text file. The test results for each test set were combined into a single file and then 

used as input to the algorithm for combining the predictions of the base model into 

one prediction for each test instance. 
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Figure 6.5:  Experimental method for aggregate model implementation for one test set 
 

6.4.5 Measurement of performance gains for OVA and pVn 
aggregate models 
 

Prediction performance gains for aggregate models are typically established through 

comparison with single models (Ali & Pazzani, 1996). A detailed discussion of the 

statistical tests used to compare model performance was given in section 4.7 of 

chapter 4. Given two predictive models, AM  and BM , Student’s paired sample t-test 

was used to establish whether model AM  provides a higher level of predictive 

accuracy than model BM .  More precisely, if Aµ and Bµ are the mean values for 

predictive accuracy for models AM  and BM  respectively, the following hypotheses 

were tested: 00 =− BAH µµ:  and 0≠− BAaH µµ: . When the null hypothesis is 

rejected and the mean difference is positive, this gives an indication that the 

predictive performance of model AM  is generally higher than the performance of 

model BM . The mean difference provided by the paired samples t-test, gives an 

indication of the level of magnitude by which one model is better than the other.  

 

Ali and Pazzani (1996) have conducted studies on different methods of combining 

the results from various classification models, and have proposed the following 

measures for computing the error reduction that is realised due to the use of 

aggregate model: 
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Measure 1: compute the error difference Derror  as 

ASD errorerrorerror −=                (6.10) 

 

Measure 2: compute the error ratio Rerror  as 

SAR errorerrorerror =                (6.11)

  

where Serror  is the predictive error of a single model, and Aerror is the predictive 

error of the aggregate model obtained from the base models. The larger the error 

difference, the greater the error reduction due to the aggregate model. The larger the 

error ratio the greater the error reduction. Ali and Pazzani (1996) have advised that 

the error ratio is a better measure as it reflects the fact that it becomes very difficult to 

achieve error reduction using aggregate models when a single model has a very low 

prediction error. When the mean values of the errors are used in equation (6.10), the 

equation has a similar interpretation to the mean difference computed by the paired 

samples t-test.  

 

For purposes of measuring the performance improvements due to the aggregate 

models, the Ali and Pazzani (1996) measures were re-interpreted by the author of 

this thesis as shown in table 6.1.  

 

Table 6.1 Interpretation of Ali and Pazzani (1996) measures 

Ali & Pazzani 
Measure 

Name 
used 
in thesis 

Re-interpretation and computation of the measures used in the 
thesis based on accuracy and TPRATE: 
 
accuracy = (1 – error) 

 
FNRATE =  (1 – TPRATE) 

Error difference =  

AS errorerror −  
 
Diff(A,S) SA accuracyaccuracy −  SA TPRATETPRATE −  

 
Error ratio = 

SA errorerror /  

 
Ratio(A,S) 

 

)(
)(

S

SA

accuracy
accuracyaccuracy

−
−

1
 

 

)1(
)(

S

SA

TPRATE
TPRATETPRATE

−
−

 

 

The measure Diff(A,S) represents the performance increase in either the accuracy or 

TPRATE measures due to the aggregate model. The measure Ratio(A,S) represents 

the fraction (of maximum possible improvement) by which the aggregate model 

increases the accuracy or TPRATE. A value of Ratio(A,S) = 0 indicates that there is 

no increase in the accuracy or TPRATE. A value of Ratio(A,S) = 1 indicates that the 
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accuracy or TPRATE of the aggregate model is at its maximum value of 1 (or 100%). 

A negative value for Ratio(A,S) indicates deterioration in performance. 

 

Student’s paired samples t-test, the Diff(A,S) measure, and the Ratio(A,S) measure 

were all used to determine performance improvements due to the aggregate model 

for the experiments of chapters 7 and 8. Mean values for the accuracy and TPRATE 

values were used to compute the Diff(A,S) and the Ratio(A,S) measures. 

 

ROC analysis and lift-factor analysis are commonly used to assess the performance 

of a predictive classification model and compare different models as discussed in 

section 4.7.3. It was also noted in section 6.3.2 that lift-factor analysis is difficult to 

interpret when oversampling is used as was done for this thesis. Multi-class ROC 

analysis (Fawcett, 2001, 2004, 2006; Provost & Domingos, 2001; Hand & Till, 2001) 

was used to analyse and compare the performance of the k-class single and 

aggregate models. 

 

6.5 Chapter summary 
 

The methods used for base model design and implementation, dataset partitioning 

and sampling, training dataset selection, base model aggregation, and performance 

measurement have been presented in this chapter. The next two chapters report the 

experimental results of the implementation of these methods for OVA and pVn 

modeling.  
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Chapter 7  

Evaluation of Dataset Selection for One-
Versus-All Aggregate Modeling 
 

It was stated in chapter 6 that the proposed methods of training dataset selection 

were aimed at supporting the creation of aggregate models for multi-class prediction 

tasks. For such models, the two proposed methods for creating the base models are 

One-Versus-All (OVA) and positive-Versus-negative (pVn) classification. The 

experiments to study OVA base model design, training dataset selection for OVA 

base models and the performance of OVA base models and aggregate models are 

presented in this chapter. Questions 1 and 2 below were posed in chapter 6. The 

studies reported in this chapter are aimed at providing answers to these questions, in 

the context of OVA modeling.  

 

1. How should training datasets be designed in order to create base models that are 

syntactically diverse and highly expert at prediction for aggregate models? 

 

2. How should training datasets for the base models be designed in order to achieve 

high accuracy for the aggregate model? 

 

This chapter is organised as follows: Section 7.1 provides a discussion of OVA 

modeling. Experiments to study 5NN OVA model performance and See5 OVA model 

performance are respectively discussed in sections 7.2 and 7.3. Sections 7.4 and 7.5 

respectively provide a discussion and conclusions for the chapter. 

 

7.1 OVA modeling 
 

This section provides the motivation for OVA modeling. The methods for creating 

OVA aggregate models are also presented. The motivation for OVA modeling is 

discussed in section 7.1.1. The design of training samples for OVA base models is 

presented in section 7.1.2. The experimental procedure for this chapter is presented 

in section 7.1.3. 
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7.1.1 Motivation for OVA modeling 
 

It was stated in chapter 6 that OVA classification was selected as one of the problem 

decomposition methods to be studied, for several reasons. Firstly, by definition OVA 

classification enables the creation of base models where each base model is an 

expert on classification for one specific class. Secondly, since each OVA classifier 

solves a 2-class problem, the training sample size required to achieve a high level of 

accuracy is reduced. This is an implication of the Probably Approximately Correct 

(PAC) learning theory as discussed in section 6.1 of chapter 6.  

 

A third reason for selecting OVA modeling is as follows: It was stated in section 2.8 

that increasing the amount of training data for the modeling process results in the 

reduction of the variance component of the prediction error. However, an excessively 

large training dataset results in overfitting and modeling of phantom structure. If 

several moderately sized training datasets are used for the modeling process, then 

the amount of training data is increased while at the same time overfitting is avoided. 

The use of OVA base models enables the above approach. 

 

7.1.2 Sample composition for OVA base model training datasets 
 

The methods for training sample selection for base models was discussed in section 

6.3.3 and illustrated in figure 6.2. It should be highlighted here that each base model 

was created with a different training set from the other base models. Two options for 

sample composition for a dataset with k classes were studied for OVA base models 

design. The options cover the use of un-boosted and boosted OVA base models. 

The boosted OVA base models were designed based on information obtained from a 

confusion matrix for a single k-class model. The confusion matrix was discussed in 

section 4.7 of chapter 4.  The two options that were studied are as follows: 

 

Option 1 

Use 50% of instances from the class ic that the OVA classifier specialises in and for 

each of the other classes use 50/(k-1)% instances. This option results in the creation 

of un-boosted OVA base models. This option was used to test whether the increase 

in the quantity of training data through OVA modeling provides increased predictive 

performance. 
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Option 2 

Use 50% of instances from the class ic  that the OVA classifier specialises in and for 

each of the j (j < k) classes which are predominantly confused with class ic , based 

on the values in the confusion matrix, use 50 / (j-1)% instances. Recall that the 

confusion matrix was discussed in chapter 4. Option 2 results in the creation of 

boosted OVA base models. This option was used to test whether the use of boosting 

in addition to increasing the quantity of training data through OVA modeling provides 

additional increases in predictive performance. 

 

7.1.3 Experiment design for the study of OVA modeling 
 

Three categories of experiments on OVA aggregate modeling were conducted as 

follows: 

 

(1) To compare the performance of un-boosted OVA models with single k-class 

models for both 5NN and See5 classification. 

(2) To compare the performance of boosted OVA models with single k-class models 

for both 5NN and See5 classification. 

(3) To compare the performance of un-boosted OVA models with boosted models for 

both 5NN and See5 classification. 

 

The methods for OVA base model design and implementation, dataset partitioning 

and sampling, training dataset selection, model aggregation, and analysis of model 

performance were presented in chapter 6. These methods were used for the 

experiment categories listed above. The forest cover type and KDD Cup 1999 

datasets were used for the experiments. The 5NN and See5 algorithms were used 

for the creation of the base models.  

 

7.2 Experiments to study OVA models for 5NN 
classification 
 

The empirical studies of 5NN OVA classification based on the experiment design of 

section 7.1.3 are discussed in this section. Section 7.2.1 reports the experiments to 

compare the predictive performance of single models with un-boosted 5NN OVA 

models. The process that was followed for the design of boosted OVA models is 
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discussed in section 7.2.2. Section 7.2.3 presents experimental results to compare 

the predictive performance of single, un-boosted and boosted 5NN OVA models. 

 

7.2.1 Predictive performance of un-boosted 5NN OVA models  
 

The predictive performance of un-boosted OVA base models and aggregate models 

is presented in this section. The training sets for the un-boosted OVA base models 

were designed using option 1 of section 7.1.3. A training sample size of 4000 was 

used for OVANORMAL, OVADOS, OVAPROBE, and OVAR2L for the KDD Cup 

1999 base models. A training set size of 1000 was used for the OVAU2R model in 

order to limit the amount of bootstrap sampling for the U2R class. Table 7.1 gives the 

experimental results for the predictive performance of 5NN un-boosted base models 

for the forest cover type and KDD Cup 1999 datasets. Columns 3 and 4 respectively 

show the mean and 95% confidence interval for the TPRATE and TNRATE 

measures as percentages.  

 

Table 7.1: Predictive performance of 5NN OVA un-boosted base models 
Dataset, 
Training sample 
size, 
Test set size 

 
 
Base model name 

Mean performance for base models  

Mean TPRATE% Mean TNRATE% 

 
 
Forest cover type 
(12000) 
(350 x 10) 

OVA1-unboosted 91.8 ± 2.5 85.0 ± 0.8 
OVA2-unboosted 83.8 ± 2.6 80.5 ± 1.1 
OVA3-unboosted 90.4 ± 1.1 85.3 ± 0.9 
OVA4-unboosted 95.6 ± 1.5 94.3 ± 0.6 
OVA5-unboosted 99.6 ± 0.5 90.8 ± 0.8 
OVA 6-unboosted 98.4 ± 1.0 84.6 ± 0.8 
OVA7-unboosted 99.2 ± 0.6 93.7 ± 0.5 

    
 
KDD Cup 1999 
(4000) 
(350 x 10) 

OVANORMAL-unboosted 99.3  ± 0.6 73.0 ± 1.5 
OVADOS-unboosted 69.1  ± 4.5 97.8 ± 0.7 
OVAPROBE-unboosted 95.9 ± 1.2 88.5 ± 3.4 
OVAR2L-unboosted 76.7 ± 2.8 82.0 ± 1.6 
OVAU2R-unboosted 54.3 ± 0.0 97.7 ± 0.6 

 

The results of table 7.1 indicate that the forest cover type base models have very 

high TPRATE and TNRATE values and are therefore highly competent at predicting 

the classes they are designed to predict. It remains to be seen if combining these 

highly competent base models into an aggregate model provides performance gains. 

The OVANORMAL and OVAPROBE base models for the KDD Cup 1999 dataset 

have very high TPRATE and TNRATE values while the OVADOS, OVAR2L and 

OVAU2R have much lower values. 
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The 5NN OVA base models were combined into aggregate models. The predictions 

of the individual 5NN OVA models on each test instance were combined into a single 

prediction using the algorithm of figure 6.4 presented in section 6.4.3. Recall that the 

algorithm in figure 6.4 uses the probabilistic scores assigned by the base models to 

determine the best prediction. When there is more than one prediction with the 

highest probabilistic score (tied scores) the distances to the nearest neighbours are 

used to break the tie. Single k-class models were created and also tested on the 

same instances as the aggregate models. The single 7-class model for forest cover 

type was created from a training dataset of 12000 instances with an equal class 

distribution for all the classes.  

 

The KDD Cup 1999 single 5-class model was created from a training dataset of 4000 

instances. The training dataset for the KDD Cup 1999 single model was composed of 

500 instances for the class U2R and 3500 instances for the remaining four classes in 

equal proportions. Table 7.2 shows the results for the 5NN single and un-boosted 

OVA aggregate models for the forest cover type and KDD Cup 1999 datasets. The 

details for predictive accuracy and TPRATE values for the single and aggregate 

models for the forest cover type dataset are given in the appendix tables F.1 and F.2. 

The details for predictive accuracy and TPRATE values for the single and aggregate 

models for the KDD Cup 1999 dataset are given in the appendix tables F.9 and F.10. 

 

Table 7.2: Predictive performance of 5NN single and un-boosted OVA aggregate models 
 
 
Dataset,  
(training set size),  
(test set size) 

 
 
 
Class 

 
Mean predictive performance of  models 

Single model un-boosted 
OVA aggregate model 

Mean TPRATE% Mean TPRATE% 
 
Forest cover type 
(12000) 
(350 x 10) 

ALL(accuracy) 74.7 ± 1.0 80.5 ± 0.9 
1 62.8 ± 3.4 70.0 ± 4.3 
2 48.8 ± 2.8 58.4 ± 2.7 
3 56.8 ± 4.1 71.8 ± 1.9 
4 92.4 ± 1.8 89.8 ± 1.9 
5 91.2 ± 2.0 95.8 ± 3.1 
6 75.0 ± 2.1 80.8 ± 4.5 
7 96.0 ± 1.3 96.6 ± 0.6 

    
 
KDD Cup 1999 
(4000) 
(350 x 10) 

ALL (accuracy) 68.5 ± 1.4 72.4  ±1.1 
NORMAL 84.4 ± 3.1 92.7  ±2.8 
DOS 66.3 ± 5.0 66.0  ±4.4 
PROBE 95.7 ± 1.2 95.2  ±1.0 
R2L 64.7 ± 3.6 65.4  ±3.6 
U2R 31.6 ± 0.3 42.6 ± 0.4 

 

Student’s paired samples t-test and the Diff(A,S) and Ratio(A,S) measures discussed 

in section 6.4 were used to compare the performance of the single models with that 
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of the aggregate models. Tables 7.3 and 7.4 respectively give the results of the 

statistical tests for the forest cover type and KDD Cup 1999 datasets. The paired t-

test results of table 7.3 indicate that for the forest cover type dataset, the un-boosted 

aggregate model provides statistically significant increases in accuracy and the 

TPRATE values for five out of seven classes. The Diff(A,S) measure indicates an 

increase in accuracy of 5.8%. The increases in the class TPRATE values range 

between 4.6% and 15%. The Ratio(A,S) measure indicates a relative improvement of 

0.2 for the accuracy and relative improvements that range between 0.2 and 0.5. 

Recall that the maximum improvement as measured by Ratio(A,S) is 1.0. 

 

Table 7.3: Statistical tests to compare the performance of 5NN single and un-boosted OVA 
aggregate models for forest cover type 
Group names and 
mean accuracy / TPRATE% for 10 
test sets 

 
Student’s paired t-test (9 df) 

Performance 
improvement measures 

Group A 
un-boosted 
aggregate model 

Group S 
single  
model 

95% CI of 
mean 
difference 

P value 
(2 tail) 

Group A 
better than 
Group S? 

 
Diff(A,S)% 

 
Ratio(A,S) 

All classes-A 
(80.5 ± 0.9) 

All classes-S 
(74.7 ± 1.0) 

 
[ 4.1, 7.5] 

 
0.000 

 
yes 

 
5.8 

 
0.2 

Class1-A 
(70.0 ± 4.3) 

Class1-S 
(62.8 ± 3.4) 

 
[0.9, 13.5] 

 
0.029 

 
yes 

 
7.2 

 
0.2 

Class2-A 
(58.4 ± 2.7) 

Class2-S 
(48.8 ± 2.8) 

   
[6.3, 12.9] 

 
0.000 

 
yes 

 
9.6 

 
0.2 

Class3-A 
(71.8 ± 1.9) 

Class3-S 
(56.8 ± 4.1) 

 
[11.8, 18.3] 

 
0.000 

 
yes 

 
15.0 

 
0.3 

Class4-A 
(89.8 ± 1.9) 

Class4-S 
(92.4 ± 1.8) 

 
[-4.6, -0.6] 

 
0.018 

 
no 

 
-2.6 

 
-0.3 

Class5-A 
(95.8 ± 3.1) 

Class5-S 
(91.2 ± 2.0) 

 
[0.8, 8.4] 

 
0.022 

 
yes 

 
4.6 

 
0.5 

Class6-A 
(80.8 ± 4.5) 

Class6-S 
(75.0 ± 2.1) 

 
[0.5, 11.1] 

 
0.036 

 
yes 

 
5.8 

 
0.2 

Class7-A 
(96.6 ± 0.6) 

Class7-S 
(96.0 ± 1.3) 

 
[-1.2, 2.4] 

 
0.468 

 
no 

 
0.6 

 
0.1 

 

The paired t-test results of table 7.4 indicate for the KDD Cup 1999 dataset that the 

un-boosted aggregate model provides statistically significant increases in accuracy 

and the TPRATE values for two out of five classes. The Diff(A,S) measure indicates 

an increase in accuracy of 3.9%. The increases in the class TPRATE values are 

8.3% for class NORMAL and 11% for class U2R. The Ratio(A,S) measure indicates a 

relative improvement of 0.1 for the accuracy and relative improvements of 0.2 for the 

class U2R and 0.5 for the class NORMAL. Overall, the use of OVA base models 

based on option 1 of section 7.1.2 for training dataset selection, provides significant 

improvements in predictive performance. Recall that the training set for each un-

boosted OVA base model is composed of 50% for the class that the base model 

predicts and 50% for all the other classes combined. 

 

 
 
 



  168 

Table 7.4: Statistical tests to compare the performance of 5NN single and un-boosted OVA 
aggregate models for KDD Cup 1999 
Group names and 
mean accuracy / TPRATE%  
for 10 test sets 

 
Student’s paired t-test  (9 df) 

Performance 
improvement measures 

Group A 
Aggregate model 

Group S 
Single model 

95% CI of 
mean 
difference 

P value 
(2 tail) 

Group A 
better than 
Group S? 

 
Diff(A,S)% 

 
Ratio(A,S) 

All classes-A 
(72.4±1.1) 

All classes-S 
(68.5±1.4) 

 
[2.6, 5.0] 

 
0.000 

 
yes 3.9 0.1 

NORMAL-A 
(92.7±2.8) 

NORMAL-S 
(84.4±3.1) 

 
[5.0, 11.6] 

 
0.000 

 
yes 8.3 0.5 

DOS-A 
(66.0±4.4) 

DOS-S 
(66.3±5.0) 

 
[-2.6, 2.0] 

 
0.790 

 
no -0.3 0.0 

PROBE-A 
(95.2±1.0) 

PROBE-S 
(95.7±1.2) 

 
[-1.4, 0.3] 

 
0.164 

 
no -0.5 -0.1 

R2L-A 
(65.4±3.6) 

R2L-S 
(64.7±3.6) 

 
[-1.9, 3.3] 

 
0.560 

 
no 0.7 0.0 

U2R-A 
(42.6±0.4) 

U2R-S 
(31.6±0.3) 

 
[10.3, 11.8] 

 
0.000 

 
yes 11.0 0.2 

 

7.2.2 Design of boosted 5NN OVA base models  
 

The results of section 7.2.1 have demonstrated that un-boosted OVA base models 

result in improvements in predictive performance. Boosting was discussed in 

sections 2.8.2 and 2.10.2 as a method of bias error reduction. Option 2 of section 

7.1.2 involves the use of boosted base models. The author hypothesised that 

boosting of OVA base models should lead to further improvements in predictive 

performance compared to un-boosted models. Recall from chapter 2 that boosting is 

a statistical technique for directing the greatest effort towards those areas of the 

instance space where prediction is most difficult. It was further hypothesised that 

examination of the confusion matrix for the single k-class model should provide 

information about those areas of the instance space where correct prediction is most 

difficult to achieve. Confusion matrices were discussed in section 4.7. 

 

It was further hypothesized that a predictive model makes incorrect decisions in 

those regions which are class boundary regions in the instance space. The term 

confusion regions, was used by the author to refer to these regions. Confusion 

regions were discussed in section 2.7. Table 7.5 shows the confusion matrix for the 

single k-class model for the forest cover type dataset based on 5 test sets. For 

simplicity of presentation only the counts for the off-diagonal cells are shown in the 

confusion matrix. 
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Table 7.5: Confusion matrix for the 5NN single model for the forest cover type dataset 
Single model confusion matrix, training size =12000, test set size = 250 per class 

Total confusion Actual 
class 

Predicted class 
Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 SUMS PCNT 

Class 1   38 2  10 1 49 100 40 
Class 2 38   16 1 53 12 7 127 50.8 
Class 3  3   41 6 65  115 46 
Class 4   8    14  22 8.8 
Class 5  2 8    6  16 6.4 
Class 6  4 37 25 10    76 30.4 
Class 7 4 3       7 2.8 

 
 

A confusion matrix can be used to identify the existence or possible absence of a 

confusion region between the decision regions of any two classes.  Identification of 

the confusion regions was done based on the confusion matrices, using the following 

simple deductive logic: 

(1) Given two classes ic  and jc , if  the entry ),( ji cc  in the confusion matrix is zero, 

then ic  and jc do not have a common boundary in the instance space, and so, do not 

share a confusion region 

(2) If the entry ),( ji cc for two classes ic  and jc  is non-zero, then the two classes 

share a common decision boundary in the instance space, and the value in the cell 

),( ji cc  indicates the intensity of the class confusion between the two classes. 

 

The confusion matrix of table 7.5 indicates for the 5NN single model of the forest 

cover type dataset that class 1 gets predominantly confused with classes 2 and 7. On 

the other hand class 2, is never confused with classes 3, 4 or 6. Class 7 is 

predominantly confused with classes 1 and 2, but is never confused with classes 3, 

4, 5 or 6. The following strategy could be used to reduce the confusion between class 

1 and class 2: Select the training set sample for OVA1 with class 1 as the positive 

instances and classes 2 and 7 as negative instances. This should provide higher 

instance space coverage of the confusion regions between classes 1 and 2, and 

classes 1 and 7. In other words, the training sample for the OVA1 base model is 

boosted so that there are more instances for the classes that are difficult to separate.  

 

Table 7.6 shows the sample composition that was used for the OVA base models for 

the forest cover type training datasets for purposes of reducing class confusion. The 

entries in the second column have the following interpretation. If the counts of 
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confusion matrix cells ),( ji cc and ),( ij cc  are high then ic  is predominantly confused 

with jc . The rationale behind the training sample composition for base model iOVA 

was to ensure that training instances of the classes appearing in column 2 are 

included in the training dataset as negative instances. The number of positive and 

negative instances should be equal as was done for the un-boosted models.  

 

Table 7.6: 5NN training sample composition to reduce class confusion for forest cover type  

Class  
Predominantly 
Confused with 

Training sample composition for OVA base model  
Percentage of 
positive instances Percentage of negative instances 

C1: C2, C7 C1: 50 C2: 25,   C7: 25 
C2 C1,C3,C5 C2: 49 C1:17,    C3:17,    C5: 17 
C3 C2,C4,C6 C3: 49 C2:17,    C4:17,     C6: 17 
C4 C3,C6 C4: 50 C3: 25,   C6: 25 
C5 C2 C5: 50 C2: 50 

C6 C3,C4,C5 C6: 49 C3:17,  C4: 17,  C5: 17 

C7 C1,C2 C7: 50 C1: 25,   C7: 25 
 

Table 7.7 shows the confusion matrix for the KDD Cup 1999 dataset for the single 

model with a training set size of 4000 instances. Based on the information in the 

confusion matrix, training set samples for OVA base models were designed to 

provide a higher coverage of the confusion regions. The training set sample design is 

shown in table 7.8. It should be noted that the sample composition for the 

OVANORMAL base model is the same as for the un-boosted base model. 

 

Table 7.7: Confusion matrix for the 5NN single model for the KDD Cup 1999 dataset 
Single model, training size = 4000, test set size =  350 instances per class 

Actual class 
Predicted class Total confusion 
NORMAL DOS PROBE R2L U2R SUM PCNT 

NORMAL   13 29 4 2 48 13.7 

DOS 13   91 14 3 121 34.6 

PROBE 11     4 15 4.3 

R2L 107 1    6 114 32.6 

U2R 170   69   239 68.3 
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Table 7.8: Training sample composition to reduce class confusion for 5NN models for KDD 
Cup 1999 

Class  
Predominantly 
Confused for: 

Training sample composition for OVA base models  
Percentage of 
positive 
instances 

Percentage of negative 
instances 

Training 
sample 
size 

NORMAL R2L,U2R, DOS,PROBE NORMAL: 50 
R2L:12.5, U2R:12.5, 
DOS:12.5, PROBE:12.5 4000 

DOS NORMAL,PROBE, R2L DOS: 49 
NORMAL:17, PROBE: 17, 
R2L:17 4000 

PROBE NORMAL, DOS, U2R PROBE: 49 
NORMAL:17, DOS:17, 
U2R:17 4000 

R2L NORMAL R2L: 50 
 
NORMAL:50 4000 

U2R NORMAL, R2L U2R: 50 
 
NORMAL:25, R2L:25 1000 

 

7.2.3 Predictive performance of boosted 5NN OVA models  
 

Boosted 5NN base models were created based on the sample designs shown in 

tables 7.6 and 7.9 for the forest cover type and KDD Cup 1999 datasets. 

Implementation of the aggregate models based on the boosted base models as 

shown in table 7.6 and 7.8 did not result in performance improvements over the 

single models. However, the approach of using a combination of boosted and un-

boosted base models resulted in performance improvements for the forest cover type 

aggregate model. The base models used for the boosted version of the OVA 

aggregate models for the forest cover type and KDD Cup 1999 datasets are given in 

table 7.9. The rationale for choosing boosted base models was as follows: If a 

boosted base model had a higher TPRATE value than the un-boosted version, the 

boosted version was selected. This was the case, for example, for the OVA4 forest 

cover type base model. If a boosted base model had a TPRATE comparable (equal) 

to that of the un-boosted version then the boosted base model was included in the 

aggregate model. If a performance improvement was realized, then the boosted base 

model was retained, otherwise it was replaced with the un-boosted version. 

 

Table 7.10 shows the predictive performance results for the single, un-boosted and 

boosted OVA aggregate models based on the boosted OVA base models for the 

forest cover type and KDD Cup 1999 datasets. The details for predictive accuracy 

and TPRATE measure for the boosted OVA aggregate models for the forest cover 

type and KDD Cup 1999 datasets are respectively given in appendix tables F.3 and 

F.11  
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Table 7.9: Predictive performance of 5NN OVA boosted base models 
Dataset, 
Training sample 
size, Test set size 

 
Base model name 

Mean performance for base models  

TPRATE% TNRATE% 
Forest cover type 
(12000) 
(350 x 10) 

OVA1-unboosted 91.8 ± 2.5 85.0 ± 0.8 
OVA2-unboosted 83.8 ± 2.6 80.5 ± 1.1 
OVA3-unboosted 90.4 ± 1.1 85.3 ± 0.9 
OVA 4-boosted 100.0 ± 0.0 96.3 ± 0.6 
OVA 5-boosted 99.6 ± 0.5 89.0 ± 0.9 
OVA 6-boosted 94.2 ± 0.9 87.3 ± 1.3 
OVA 7-unboosted 99.2 ± 0.6 93.7 ± 0.5 

    
KDD Cup 1999 
(4000) 
(350 x 10) 

OVANORMAL-unboosted 99.3 ± 0.6 73.0 ± 1.5 
OVADOS-boosted 68.3 ± 4.8 97.3 ± 0.8 
OVAPROBE-unboosted 95.9 ± 1.2 88.5 ± 3.4 
OVAR2L-boosted 68.2 ± 3.3 82.0 ± .2 
OVAU2R-unboosted 54.3 ±0.0 97.7 ±0.6 

 

Table 7.10: Predictive performance of 5NN single, un-boosted and boosted OVA aggregate 
models 
 
 
Dataset,  
(training set 
size),  
(test set size) 

 
 
 
 
Class 

 
Mean predictive performance of  models 
 
 
single model 

un-boosted  
OVA aggregate 
model 

boosted 
OVA aggregate 
model 

Mean TPRATE% Mean TPRATE% Mean TPRATE% 
 
Forest cover 
type 
(12000) 
(350 x 10) 

ALL(accuracy) 74.7 ± 1.0 80.5 ± 0.9 82.0 ± 0.6 
1 62.8 ± 3.4 70.0 ± 4.3 70.0 ± 4.3 
2 48.8 ± 2.8 58.4 ± 2.7 62.0 ± 3.4 
3 56.8 ± 4.1 71.8 ± 1.9 71.0 ± 1.3 
4 92.4 ± 1.8 89.8 ± 1.9 100.0 ± 0.0 
5 91.2 ± 2.0 95.8 ± 3.1 97.0 ± 0.9 
6 75.0 ± 2.1 80.8 ± 4.5 77.6 ± 2.0 
7 96.0 ± 1.3 96.6 ± 0.6 96.6 ± 0.6 

     
 
KDD Cup 1999 
(4000) 
(350 x 10) 

ALL (accuracy) 68.5 ± 1.4 72.4  ±1.1 71.0 ±1.2 
NORMAL 84.4 ± 3.1 92.7  ±2.8 92.4 ±3.0 
DOS 66.3 ± 5.0 66.0  ±4.4 66.0 ±5.1 
PROBE 95.7 ± 1.2 95.2  ±1.0 95.4 ±1.2 
R2L 64.7 ± 3.6 65.4  ±3.6 60.9 ±3.8 
U2R 31.6 ± 0.3 42.6 ± 0.4 40.5 ±1.4 

 

Table 7.11 shows the results of the statistical tests to compare the predictive 

performance of the single, un-boosted and boosted OVA aggregate models for the 

forest cover type dataset. The paired t-test results of table 7.11 compare the boosted 

OVA aggregate model with the single model. The results indicate that the boosted 

aggregate model provides statistically significant increases in accuracy for the forest 

cover type dataset. The boosted model also provides increased TPRATE values for 

six out of seven classes. The Diff(A,S) measure indicates an increase in accuracy of 

7.3%. The increases in the class TPRATE values range between 2.6% and 14.2%. 

The Ratio(A,S) measure indicates a relative improvement of 0.3 for the accuracy and 
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relative improvements that range between 0.1 and 1.0. Recall that a Ratio(A,S) value 

of 1.0 indicates maximum improvement. 

 

Table 7.11: Statistical tests to compare the 5NN single, un-boosted and boosted OVA 
aggregate models for forest cover type 
Group names and mean 
accuracy / TPRATE for 10 test 
sets 

 
Student’s paired t-test (9 df) 

Performance 
improvement measures 

Group A 
aggregate 
model 

Group B 
single  
model 

95% CI of 
mean 
difference 

P value 
(2 tail) 

Group A 
better than 
Group B? 

 
Diff(A,B)% 

 
Ratio(A,B) 

boosted 
All classes-A 
(82.0 ± 0.6) 

single 
All classes-S 
(74.7 ± 1.0) 

 
[5.8, 8.8] 

 
0.000 

 
yes 

 
7.3 

 
0.3 

boosted 
Class1-A 

(70.0 ± 4.3) 

single 
Class1-S 

(62.8 ± 3.4) 

 
[0.9, 13.5] 

 
0.029 

 
yes 

 
7.2 

 
0.2 

boosted 
Class2-A 

(62.0 ± 3.4) 

single 
Class2-S 

(48.8 ± 2.8) 

   
[9.8, 16.6] 

 
0.000 

 
yes 

 
13.2 

 
0.3 

boosted 
Class3-A 

(71.0 ± 1.3) 

single 
Class3-S 

(56.8 ± 4.1) 

 
[9.8, 18.6] 

 
0.000 

 
yes 

 
14.2 

 
0.3 

boosted 
Class4-A 

(100.0 ± 0.0) 

single 
Class4-S 

(92.4 ± 1.8) 

 
[5.5, 9.7] 

 
0.000 

 
yes 

 
7.6 

 

 
1.0 

boosted 
Class5-A 

(97.0 ± 0.9) 

single 
Class5-S 

(91.2 ± 2.0) 

 
[3.8, 7.8] 

 
0.000 

 
yes 

 
5.8 

 
0.7 

boosted 
Class6-A 

(77.6 ± 2.0) 

single 
Class6-S 

(75.0 ± 2.1) 

 
[1.2, 4.0] 

 
0.002 

 
yes 

 
2.6 

 
0.1 

boosted 
Class7-A 

(96.6 ± 0.6) 

single 
Class7-S 

(96.0 ± 1.3) 

 
[-1.2,2.4] 

 
0.468 

 
no 

 
0.6 

 
0.1 

       

boosted 
All classes-A 
(82.0 ± 0.6) 

un-boosted 
All classes-A 
(80.5 ± 0.9) 

 
[0.5,2.7 ] 

 
0.009 

 
yes 

 
1.5 

 
0.1 

boosted 
Class1-A 

(70.0 ± 4.3) 

un-boosted 
Class1-A 

(70.0 ± 4.3) 

 
no variance 

 
no variance 

 
no 

 
0.0 

 
0.0 

boosted 
Class2-A 

(62.0 ± 3.4) 

un-boosted 
Class2-A 

(58.4 ± 2.7) 

   
[1.8,5.4] 

 
0.001 

 
yes 

 
3.6 

 
0.1 

boosted 
Class3-A 

(71.0 ± 1.3) 

un-boosted 
Class3-A 

(71.8 ± 1.9) 

 
[-3.1,1.5] 

 
0.443 

 
no 

 
-0.8 

 
0.0 

boosted 
Class4-A 

(100.0 ± 0.0) 

Class4-A 
(89.8 ± 1.9) 

 
[8.0,12.4] 

 
0.000 

 
yes 

 
10.2 

 
1.0 

boosted 
Class5-A 

(97.0 ± 0.9) 

un-boosted 
Class5-A 

(95.8 ± 3.1) 

 
[-2.9,5.3] 

 
0.520 

 
no 

 
1.2 

 
0.3 

boosted 
Class6-A 

(77.6 ± 2.0) 

un-boosted 
Class6-A 

(80.8 ± 4.5) 

 
[-7.7,1.2] 

 
0.137 

 
no 

 
-3.2 

 
-0.2 

boosted 
Class7-A 

(96.6 ± 0.6) 

un-boosted 
Class7-A 

(96.6 ± 0.6) 

 
no variance 

 
no variance 

 
no 

 
0.0 

 
0.0 
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The paired t-tests to compare the boosted and un-boosted aggregate models 

indicate for the forest cover type dataset that the boosted aggregate model provides 

statistically significant increases in accuracy. The boosted model also provides 

increased TPRATE values for two out of seven classes. The Diff(A,S) measure 

indicates an additional increase in accuracy of 1.5%, due to boosting. The increases 

in the class TPRATE values are 3.6% for class 2 and 10.2% for class 4. The 

Ratio(A,S) measure indicates a relative improvement of 0.1 for the accuracy and 

relative improvements  of 0.1 for class 1 and 1.0 for class 4. 

 

Table 7.12 shows the results of the statistical tests to compare the predictive 

performance of the boosted and un-boosted OVA aggregate models for the KDD Cup 

1999 dataset. A comparison of the test results of tables 7.4 and 7.12 indicates that 

the use of un-boosted 5NN OVA base models results in performance improvements 

over the single model for the KDD Cup 1999 dataset. However, there are no 

performance gains released due to boosting of 5NN OVA base models for the KDD 

Cup 1999 dataset. 

 

Table 7.12: Statistical tests to compare the 5NN single, un-boosted and boosted OVA 
aggregate models for KDD Cup 1999 
Group names and  mean accuracy 
/ TPRATE for 10 test sets 

 
Student’s paired t-test  (9 df) 

Performance improvement 
measures 

Group A 
aggregate 
model 

Group B 
single  
model 

95% CI of 
mean 
difference 

P value 
(2 tail) 

Group A 
better than 
Group B? 

 
Diff(A,B)% 

 
Ratio(A,B) 

boosted 
All classes-A 

(71.0±1.2) 

un-boosted 
All classes-A 

(72.4±1.1) 

 
[-2.1, -0.6] 

 
0.002 

 
no 

 
-1.3 

 
0.0 

boosted 
NORMAL-A 
(92.4±3.0) 

un-boosted 
NORMAL-A 
(92.7±2.8) 

 
[-0.9, 0.4] 

 
0.343 

 
no 

 
-0.3 

 
0.0 

boosted 
DOS-A 

(66.0±5.1) 

un-boosted 
DOS-A 

(66.0±4.4) 

 
[-1.5, 1.5] 

 
0.988 

 
no 

 
0.0 

 
0.0 

boosted 
PROBE-A 
(95.4±1.2) 

un-boosted 
PROBE-A 
(95.2±1.0) 

 
[-0.2, 0.7] 

 
0.168 

 
no 

 
0.3 

 
0.1 

boosted 
R2L-A 

(60.9±3.8) 

un-boosted 
R2L-A 

(65.4±3.6) 

 
[-7.4, -1.7] 

 
0.005 

 
no 

 
-4.6 

 
-0.1 

boosted 
U2R-A 

(40.5±1.4) 

un-boosted 
U2R-A 

(42.6±0.4) 

 
[-4.1, -0.2] 

 
0.031 

 
no 

 
-2.2 

 
0.0 
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7.3 Experiments to study OVA models for See5 
classification 
 

The empirical studies of See5 OVA classification based on the experiment design 

presented in section 7.1.3 are discussed in this section. Section 7.3.1 reports the 

experiments to compare predictive performance of single models with un-boosted 

See5 OVA models. The design of boosted OVA models is discussed in section 7.3.2. 

Section 7.3.3 presents experimental results to compare predictive performance of 

single, un-boosted and boosted See5 OVA models. 

 

7.3.1 Predictive performance of un-boosted See5 OVA models 
 
The training datasets that were used for the un-boosted 5NN OVA base models were 

also used for the experiments to compare See5 single and un-boosted OVA 

aggregate models. Table 7.13 gives the experimental results for the predictive 

performance of See5 OVA un-boosted base models. Columns 3 and 4 respectively 

show the mean and 95% confidence interval for the TPRATE and TNRATE 

measures as percentages.  

 

Table 7.13: Predictive performance of See5 OVA un-boosted base models 
Dataset, 
Training sample 
size, 
Test set size 

 
 
Base model name 

Mean performance for base models  

Mean TPRATE% Mean TNRATE% 

Forest cover type 
(12000) 
(350 x 10) 

OVA1-unboosted 92.6 ± 2.3 82.7 ± 0.7 
OVA2-unboosted 85.6 ± 1.7 82.0 ± 0.7 
OVA 3-unboosted 93.2 ± 1.7 86.8 ± 0.5 
OVA 4-unboosted 99.0 ± 0.9 95.9 ± 0.6 
OVA 5-unboosted 98.6 ± 1.3 93.7 ± 0.7 
OVA 6-unboosted 92.2 ± 1.9 88.0 ± 0.5 
OVA 7-unboosted 99.6 ± 0.5 96.1 ± 0.5 

    
KDD Cup 1999 
(4000) 
(350 x 10) 

OVANORMAL-unboosted 98.4 ± 0.7  82.7  ± 0.9 
OVADOS-unboosted 53.2 ± 4.6 99.6  ± 0.1 
OVAPROBE-unboosted 88.6 ± 1.3 90.3  ± 1.0 
OVAR2L-unboosted 37.4 ± 3.6 88.9  ± 0.8 
OVAU2R-unboosted 65.7  ± 0.0 96.8  ± 0.8 

 

The results of table 7.13 indicate that the forest cover type base models have very 

high TPRATE and TNRATE values and are therefore highly competent at predicting 

the classes they are designed to predict. It remains to be seen if combining these 

highly competent base models into an aggregate model provides performance gains. 
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The OVANORMAL and OVAPROBE base models for KDD Cup 1999 have high 

TPRATE and TNRATE values. While OVADOS, OVAR2L and OVAU2R have high 

TNRATE values, the TPRATE values for these base models are low. 

 

The See5 OVA base models were combined into aggregate models. The predictions 

of the individual See5 OVA base models on each test instance were combined into a 

single prediction using the combination algorithm of figure 6.3 that was presented in 

section 6.4.3. Recall that the algorithm in figure 6.3 uses the probabilistic scores 

assigned by the base models to determine the best prediction. Single k-class models 

were created and also tested on the same instances as the aggregate models. Table 

7.14 shows the results for the single and aggregate models for the forest cover type 

and KDD Cup 1999 datasets. The details for predictive accuracy and TPRATE 

measure for the forest cover type single and aggregate models are respectively given 

in appendix tables F.5 and F.6. The details for predictive accuracy and TPRATE 

measure for the KDD Cup 1999 single and aggregate models are respectively given 

in appendix tables F.13 and F.14. 

 

Table 7.14: Predictive performance of See5 single and un-boosted OVA aggregate models 
 
Dataset,  
(training set size),  
(test set size) 

 
 
 
 
Class 

Mean predictive performance of  models 
Single model un-boosted 

OVA aggregate model 
Mean TPRATE% Mean TPRATE% 

 
Forest cover type 
(12000) 
(350 x 10) 

ALL(accuracy) 76.9 ± 1.0 75.3 ± 0.7 
1 57.4 ± 3.4 60.6 ± 2.6 
2 63.8 ± 3.0 49.8 ± 3.6 
3 60.8 ± 3.3 64.0 ± 1.8 
4 96.8 ± 1.0 86.6 ± 1.7 
5 86.2 ± 2.4 94.4 ± 1.8 
6 77.8 ± 3.3 79.2 ± 2.0 
7 95.6 ± 1.6 92.8 ± 2.5 

    
 
KDD Cup 1999 
(4000) 
(350 x 10) 

ALL (accuracy) 63.8 ± 1.3 63.3 ± 1.2  
NORMAL 86.0 ± 3.1 98.3 ± 0.7 
DOS 82.0 ± 3.8 50.1 ± 4.4 
PROBE 36.8 ± 2.4 88.0 ± 1.3 
R2L 37.7 ± 3.3 34.3 ± 3.3 
U2R 77.1 ± 0.0 45.7 ± 0.0 

 

Student’s paired samples t-test and the Diff(A,S) and Ratio(A,S) measures were 

used to compare the performance of the single models with that of the aggregate 

models. Tables 7.15 and 7.16 respectively give the results of the statistical tests for 

the forest cover type and KDD Cup 1999 datasets. The results of the paired samples 

t-tests for the forest cover type models indicate that there is a general degradation in 

performance due to the use of the un-boosted aggregate model. The accuracy and 

TPRATE values for 6 out of 7 classes are lower for the un-boosted OVA aggregate 
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model compared to the single model. The statistical tests of table 7.16 indicate that 

there is no overall improvement in accuracy due the un-boosted OVA aggregate 

model. However, there is a significant improvement in the TPRATE values for the 

NORMAL and PROBE classes. 

 

Table 7.15: Statistical tests to compare the performance of See5 single and un-boosted OVA 
aggregate models for forest cover type 
Group names and mean accuracy /  
TPRATE for 10 test sets 

 
Student’s paired t-test (9 df) 

Performance 
improvement measures 

Group A 
un-boosted 
aggregate model 

Group S 
single  
model 

95% CI of 
mean 
difference 

P value 
(2 tail) 

Group A 
better than 
Group S? 

 
Diff(A,S)
% 

 
Ratio(A,S) 

All classes-A 
(75.3±0.7) 

All classes-S 
(76.9 ± 1.0) 

 
[-2.5, -0.8] 

 
0.002 

 
no 

 
-1.6 

 
-0.1 

Class1-A 
(60.6±2.6) 

Class1-S 
(57.4 ± 3.4) 

 
[-1.1, 7.5] 

 
0.125 

 
no 

 
3.2 

 
0.1 

Class2-A 
(49.8±3.6) 

Class2-S 
(63.8 ± 3.0) 

   
[-17.6, -10.4] 

 
0.000 

 
no 

 
-14 

 
-0.4 

Class3-A 
(64.0±1.8) 

Class3-S 
(60.8 ± 3.3) 

 
[-1.3, 7.7] 

 
0.141 

 
no 

 
3.2 

 
0.1 

Class4-A 
(86.6±1.7) 

Class4-S 
(96.8 ± 1.0) 

 
[-12.5, -7.0] 

 
0.000 

 
no 

 
-10.2 

 
-3.2 

Class5-A 
(94.4±1.8) 

Class5-S 
(86.2 ± 2.4) 

 
[5.8, 10.6] 

 
0.000 

 
yes 

 
8.2 

 
0.6 

Class6-A 
(79.2±2.0) 

Class6-S 
(77.8 ± 3.3) 

 
[-2.1,4.9] 

 
0.390 

 
no 

 
1.4 

 
0.1 

Class7-A 
(92.8±2.5) 

Class7-S 
(95.6 ± 1.6) 

 
[-5.3, -0.4] 

 
0.029 

 
no 

 
-2.8 

 
-0.6 

 

Table 7.16: Statistical tests to compare the performance of See5 single and un-boosted OVA 
aggregate models for KDD Cup 1999 
Group names and  mean 
accuracy / TPRATE%  
for 10 test sets 

 
Student’s paired t-test  (9 df) 

Performance improvement 
measures 

Group A 
un-boosted 
aggregate 
model 

Group S 
single  
model 

95% CI of 
mean 
difference 

P value 
(2 tail) 

Group A 
better than 
Group S? 

 
Diff(A,S)% 

 
Ratio(A,S) 

All classes-A 
(63.3 ± 1.2) 

All classes-S 
(63.8 ± 1.3) 

 
[-2.0, 0.9] 

 
0.430 

 
no 

 
-0.5 

 
0.01 

NORMAL-A 
(98.3 ± 0.7) 

NORMAL-S 
(86.0 ± 3.1) 

 
[9.0, 15.6] 

 
0.000 

 
yes 

 
12.3 

 
0.9 

DOS-A 
(50.1 ± 4.4) 

DOS-S 
(82.0 ± 3.8) 

 
[-38.2, -25.5] 

 
0.000 

 
no 

 
-31.9 

 
-1.8 

PROBE-A 
(88.0 ± 1.3) 

PROBE-S 
(36.4 ± 2.4) 

 
[48.2, 54.9] 

 
0.000 

 
yes 

 
52.6 

 
0.8 

R2L-A 
(34.3 ± 3.3) 

R2L-S 
(37.7 ± 3.3) 

 
[-7.5, 0.5] 

 
0.082 

 
no 

 
-3.4 

 
-0.1 

U2R-A 
(45.7 ± 0.0) 

U2R-S 
(77.1 ± 0.0) 

 
no variance 

 
no variance 

 
no 

 
-31.4 

 
-1.4 
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7.3.2 Design of See5 boosted OVA base models  
 

Table 7.17 and 7.18 show the confusion matrices for the single models created from 

the training samples with an equal class distribution for the forest cover type and 

KDD Cup 1999 datasets. For simplicity of presentation, only the off-diagonal counts 

are given. A comparison of the confusion matrices for forest cover type for the 5NN 

and See5 models reveals that the nature of the class confusion is fairly similar for 

both models. However, there a significant change in the level of confusion between 

the PROBE and U2R classes of the KDD Cup 1999 dataset. The 5NN OVA training 

sample designs given in table 7.6 for forest cover type were also used for the 

implementation of the See5 OVA base models. The sample design for KDD Cup 

1999 See5 OVA base models is shown in table 7.19. It should be noted that the 

sample composition for the OVANORMAL, OVAPROBE and OVAR2L base models 

is the same as that for the un-boosted base models.  

 

Table 7.17: Confusion matrix for See5 classification tree single 7-class model for forest cover 
type  
See5 single model, training set size = 12000, test set = 250 per class 

Actual 
class 

Predicted class Total confusion 

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 SUMS PCNT 

Class 1   60     3 2 38 103 41.2 

Class 2 43   5   32 8 8 96 38.4 

Class 3       26 11 50   87 34.8 

Class 4     6         6 2.4 

Class 5   17 6     6   29 11.6 

Class 6   4 30 23 3     60 24 

Class 7 16             16 6.4 
 

Table 7.18: Confusion matrix for See5 classification tree single 5-class model for KDD Cup 
1999 
See5 single model, training set = 4000, test set size = 350 instances per class 

Actual class 

Predicted class Total confusion 

NORMAL  DOS PROBE R2L U2R SUM PCNT 

NORMAL    1 30 11 1 43 12.3 

DOS 32   15 10   57 16.3 

PROBE 4 17     198 219 62.6 

R2L 185   8   20 213 60.9 

U2R 70 10       80 22.9 
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Table 7.19: See 5 Training sample composition to reduce class confusion for KDD Cup 1999  

Class  
Predominantly 
Confused for: 

Training sample composition for OVA base models  
Percentage of 
positive instances 

Percentage of negative 
instances 

Training 
sample size 

NORMAL 
R2L,U2R, 
DOS,PROBE NORMAL: 50 

R2L:12.5, U2R:12.5, 
DOS:12.5, PROBE:12.5 4000 

DOS 
NORMAL,PROBE, 
R2L DOS: 49 

NORMAL:17. PROBE: 17, 
R2L:17 4000 

PROBE 
NORMAL, DOS, 
R2L,U2R PROBE: 50 

NORMAL:12.5, DOS:12.5, 
R2L:12.5, U2R:12.5 4000 

R2L 
NORMAL, 
DOS,U2R R2L: 49 

NORMAL:17, DOS:17, 
U2R:17 4000 

U2R 
NORMAL, DOS, 
PROBE, R2L U2R: 50 

NORMAL:12.5, DOS:12.5,  
PROBE: 12.5, R2L:12.5 1000 

  

The performance of the boosted base models and aggregate models is discussed in 

the next section. 

 

7.3.3 Predictive performance of boosted See5 OVA models  
 

Boosted See5 base models were created based on the training set designs of table 

7.6 for forest cover type and table 7.19 for the KDD Cup 1999 dataset. The TPRATE 

and TNRATE values for the base models are given in table 7.20. A comparison of the 

un-boosted base models of table 7.9 and the boosted base models of table 7.20 

reveals that the boosted base models generally have lower mean TPRATE values. 

 

Table 7.20: Predictive performance of See5 OVA boosted base models 
Dataset, 
Training sample size, 
Test set size 

 
 
Base model name 

Mean performance for base models  
 
Mean TPRATE% 

 
Mean TNRATE% 

Forest cover type 
(12000) 
(350 x 10) 

OVA1-boosted      75.0 ± 2.9 92.7 ± 0.7 
OVA2-boosted      81.4 ± 1.8 83.3 ± 0.9 
OVA3-boosted     85.8 ± 2.4 91.8 ± 0.7 
OVA4-boosted     99.0 ± 0.7 97.5 ± 0.4 
OVA5-boosted     96.4 ± 1.4 90.4 ± 0.7 
OVA6-boosted     93.2 ± 1.2 91.3 ± 0.8 
OVA7-boosted     97.6 ± 1.1 98.3 ± 0.3 

    
KDD Cup 1999 
(4000) 
(350 x 10) 

OVANORMAL-unboosted  99.3 ± 0.6 73.0 ± 1.5 
OVADOS-boosted        56.3 ± 4.3 88.5 ± 0.2 
OVAPROBE -unboosted    95.9 ± 1.2 88.5 ± 3.4 
OVAR2L-boosted          51.0 ± 4.4 88.2 ± 1.4 
OVAU2R-unboosted           54.3 ± 0.0 97.7 ± 0.6 

 

Boosted aggregate models were created using the base models of table 7.20. Table 

7.21 shows the predictive performance results for the See5 single, un-boosted and 

boosted OVA aggregate models for the forest cover type and KDD Cup 1999 

datasets. The details for predictive accuracy and TPRATE measures for the forest 

cover type boosted aggregate model are given in appendix tables table F.7. The 
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details for predictive accuracy and TPRATE measures for the KDD Cup 1999 

boosted aggregate model are given in appendix table F.15.Table 7.22 shows the 

results of the statistical tests to compare the predictive performance of the forest 

cover type single, un-boosted and boosted aggregate models.  

 

Comparison of the test results of tables 7.15 and 7.22 indicates that there is 

degradation in performance when un-boosted OVA base models are combined into 

an aggregate model. However, comparison of the forest cover type single and 

boosted OVA aggregate models indicates that there are significant performance 

improvements in the accuracy and TPRATE values for 3 out of 7 classes. The 

Diff(A,S) measure indicates an increase of 2.5% in accuracy and increases of 

TPRATE values of 2.2% (class 7), 6.0% (class 2),  and 7.6% (class 1). 

 

 

Table 7.21: Predictive performance of  See5 single, un-boosted and boosted OVA aggregate 
models 
 
Dataset,  
(training set 
size),  
(test set size) 

 
 
 
 
Class 

Mean predictive performance of  models 

 
 
single model 

un-boosted  
OVA aggregate 
model 

boosted 
OVA aggregate 
model 

Mean TPRATE% Mean TPRATE% Mean TPRATE% 
 
Forest cover 
type 
(12000) 
(350 x 10) 

ALL(accuracy) 76.9 ± 1.0 75.3 ± 0.7 79.4 ± 0.6 
1 57.4 ± 3.4 60.6 ± 2.6 65.0 ± 2.9 
2 63.8 ± 3.0 49.8 ± 3.6 69.8 ± 2.4 
3 60.8 ± 3.3 64.0 ± 1.8 63.2 ± 3.3 
4 96.8 ± 1.0 86.6 ± 1.7 95.4 ± 1.3 
5 86.2 ± 2.4 94.4 ± 1.8 88.4 ± 2.3 
6 77.8 ± 3.3 79.2 ± 2.0 76.0 ± 1.9 
7 95.6 ± 1.6 92.8 ± 2.5 97.8 ± 1.1 

     
 
KDD Cup 1999 
(4000) 
(350 x 10) 

ALL (accuracy) 63.8 ± 1.3 63.3 ± 1.2  61.7 ± 0.9 
NORMAL 86.0 ± 3.1 98.3 ± 0.7 99.2 ± 0.6 
DOS 82.0 ± 3.8 50.1 ± 4.4 56.3 ± 4.3 
PROBE 36.8 ± 2.4 88.0 ± 1.3 89.3 ± 1.4 
R2L 37.7 ± 3.3 34.3 ± 3.3 23.6 ± 3.4 
U2R 77.1 ± 0.0 45.7 ± 0.0 40.0 ± 0.0 

 

Table 7.23 shows the results of the statistical tests to compare the predictive 

performance of the single and boosted aggregate models for KDD Cup 1999. The 

results show that the predictive accuracy of the aggregate model on all the classes 

combined is not better than that of the single model. Secondly, the TPRATE values 

of the aggregate model on the classes DOS, PROBE and R2L are lower than the 

TPRATE values of the single model on the same classes. However, the aggregate 

model provides significant improvements on the TPRATE values for the classes 

NORMAL and U2R. Overall, both the Student’s paired t-test results and the Diff(A,S) 

and Ratio(A,S) measures demonstrate that there are no impressive gains to be 
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realized by using the aggregate model. This is in contrast to the forest cover type 

dataset where the aggregate model provides significant gains over the single model.   

 

Table 7.22: Statistical tests to compare the See5 single, un-boosted and boosted OVA 
aggregate models for forest cover type 
Group names and mean 
accuracy / TPRATE for 10 
test sets 

 
Student’s paired t-test (9 df) 

Performance 
improvement measures 

 
Group A 
model 

 
Group B 
model 

95% CI of 
mean 
difference 

P value 
(2 tail) 

Group A better 
than Group B? 

 
Diff(A,B)% 

 
Ratio(A,B) 

boosted 
All classes-A 
(79.4 ± 0.6) 

single 
All classes-S 
(76.9 ± 1.0) 

 
[1.6, 3.4] 

 
0.000 

 
yes 

 
2.5 

 
0.1 

boosted 
Class1-A 

(65.0 ± 2.9) 

single 
Class1-S 

(57.4 ± 3.4) 

 
[3.1, 12.1] 

 
0.004 

 
yes 

 
7.6 

 
0.2 

boosted 
Class2-A 

(69.8 ± 2.4) 

single 
Class2-S 

(63.8 ± 3.0) 

 
[2.4, 9.6] 

 
0.004 

 
yes 

 
6.0 

 
0.2 

boosted 
Class3-A 

(63.2 ± 3.3) 

single 
Class3-S 

(60.8 ± 3.3) 

 
[-0.9, 5.7] 

 
0.132 

 
no 

 
2.4 

 
0.1 

boosted 
Class4-A 

(95.4 ± 1.3) 

single 
Class4-S 

(96.8 ± 1.0) 

 
[-3.1, 0.3] 

 
0.088 

 
no 

 
-1.4 

 
-0.4 

boosted 
Class5-A 

(88.4 ± 2.3) 

single 
Class5-S 

(86.2 ± 2.4) 

 
[-1.9, 6.3] 

 
0.258 

 
no 

 
2.2 

 
0.2 

boosted 
Class6-A 

(76.0 ± 1.9 

single 
Class6-S 

(77.8 ± 3.3) 

 
[-4.0, 0.4] 

 
0.096 

 
no 

 
-1.8 

 
-0.1 

boosted 
Class7-A 

(97.8 ± 1.1) 

single 
Class7-S 

(95.6 ± 1.6) 

 
[0.6, 3.8] 

 
0.012 

 
yes 

 
2.2 

 
0.5 

       
boosted 

All classes-A 
(79.4 ± 0.6) 

un-boosted 
All classes-A 

(75.3±0.7) 

 
[ 3.7, 4.5] 

 
0.000 

 
yes 

 
4.1 

 
0.2 

 
boosted 
Class1-A 

(65.0 ± 2.9) 

un-boosted 
Class1-A 
(60.6±2.6) 

 
[1.7, 7.1] 

 
0.005 

 
yes 

 
4.4 

 
0.1 

boosted 
Class2-A 

(69.8 ± 2.4) 

un-boosted 
Class2-A 
(49.8±3.6) 

   
[16.5, 23.5] 

 
0.000 

 
yes 

 
20 

 
0.4 

boosted 
Class3-A 

(63.2 ± 3.3) 

un-boosted 
Class3-A 
(64.0±1.8) 

 
[-4.3, 2.7] 

 
0.619 

 
no 

 
-0.8 

 
0.0 

boosted 
Class4-A 

(95.4 ± 1.3) 

un-boosted 
Class4-A 
(86.6±1.7) 

 
[7.4. 10.2] 

 
0.000 

 
yes 

 
8.8 

 
0.7 

boosted 
Class5-A 

(88.4 ± 2.3) 

un-boosted 
Class5-A 
(94.4±1.8) 

 
[-9.0, -3.0] 

 
0.001 

 
no 

 
-6.0 

 
-1.1 

 
boosted 
Class6-A 

(76.0 ± 1.9 

un-boosted 
Class6-A 
(79.2±2.0) 

 
[-5.7, -0.8] 

 
0.016 

 
no 

 
-3.2 

 
-0.2 

boosted 
Class7-A 

(97.8 ± 1.1) 

un-boosted 
Class7-A 
(92.8±2.5) 

 
[2.3, 7.7] 

 
0.002 

 
yes 

 
5.0 

 
0.7 
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It was stated in sections 2.2.4 and 6.2.3 that syntactic diversity and high competence 

of base models should lead to performance improvements for an aggregate model. 

The statistical test results of table 7.16 indicate that the See5 un-boosted OVA 

aggregate models for the KDD Cup 1999 dataset did not provide a statistically 

significant increase in predictive accuracy. The statistical test results of table 7.23 

indicate that the See5 boosted OVA aggregate model resulted in a statistically 

significant reduction in predictive accuracy. Two problems were observed for the 

See5 OVA aggregate models for the KDD Cup 1999 dataset. The first problem was 

that only two base models (OVANORMAL and OVAPROBE) had a high level of 

competence, based on the results of tables 7.13 and 7.20.  

 

The second problem was that the prevalence of ‘no prediction’ was high for both the 

un-boosted and boosted aggregate models. Recall from section 6.4.3 that it is 

possible for all OVA base models to predict the class ‘other’. When this happens, 

then the aggregate model prediction is ‘none’ to indicate that there is no valid 

prediction. The prevalence of ‘none’ predictions for the un-boosted OVA aggregate 

model ranged between 11.4% and 13.4% on the ten test samples. Boosting had the 

desirable effect of reducing the ‘none’ prediction to between 5.4% and 7.7%. 

However, the rate of incorrect predictions also increased in the boosted version of 

the model. 

 

Both the See5 un-boosted and boosted base models for the forest cover type dataset 

had a high level of competence, based on the results of tables 7.13 and 7.20. The 

occurrence of ‘none’ predictions was very low for the forest cover type aggregate 

models, varying from 0.3% to 1.4% for the un-boosted model and 0.6% to 1.7% for 

the boosted model. The reduction in predictive performance for the See5 un-boosted 

OVA aggregate model is due to the occurrence of ‘none’ predictions and tied 

predictions which could not be resolved. The problem of unresolved tied predictions 

is further discussed in section 7.4. 
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Table 7.23: Statistical tests to compare the See5 single and boosted OVA aggregate models 
for KDD Cup 1999 
Group names and mean accuracy 
/ TPRATE  for 10 test sets 

 
Student’s paired t-test  (9 df) 

Performance 
improvement measures 

Group A 
boosted  
aggregate 
model 

Group S 
single  
model 

95% CI of 
mean 
difference 

P value 
(2 tail) 

Group A 
better than 
Group S? 

 
Diff(A,S)% 

 
Ratio(A,S) 

All classes-A 
(61.7 ±  0.9) 

All classes-S 
(63.8 ± 1.3) 

 
[-3.6,0.8] 

 
0.008 

 
no 

 
-2.1 

 
-0.01 

NORMAL-A 
(99.2 ± 0.6) 

NORMAL-S 
(86.0 ± 3.1) 

 
[9.9,16.4] 

 
0.000 

 
yes 

 
13.2 

 
0.9 

DOS-A 
(56.3 ± 4.3) 

DOS-S 
(82.0 ± 3.8) 

 
[-32.6,-18.6] 

 
0.000 

 
no 

 
-25.7 

 
-1.4 

PROBE-A 
(89.3 ± 1.4) 

PROBE-S 
(36.4 ± 2.4) 

 
[49.5,56.3] 

 
0.000 

 
yes 

 
52.9 

 
0.8 

R2L-A 
(23.6 ± 3.4) 

R2L-S 
(37.7 ± 3.3) 

 
-18.3,-10.0] 

 
0.000 

 
no 

 
-14.1 

 
-0.2 

U2R-A 
(40.0 ± 0.0) 

U2R-S 
(77.1 ± 0.0) 

 
no variance 

 
no variance 

 
no 

 
-37.1 

 
-1.6 

 

7.4 Discussion  
 

OVA modeling was studied as a method of problem decomposition with a potential to 

reduce the bias variance components of the prediction error. It has been 

demonstrated through the experimental results of this chapter that highly competent 

and syntactically diverse base models can be obtained through OVA modeling. 

Recall from chapter 2 and section 6.2 that several researchers (e.g. Sun & Li, 2008; 

Ho, 1998; Ali & Pazzani, 1996; Krogh & Vedelsby, 1995; Kwok & Carter; 1990; 

Hansen & Salamon, 1990) have argued that high competence and syntactic diversity 

of base models lead to aggregate models with improved predictive performance. The 

experiments reported in this chapter were conducted in order to establish: 

 

(1) Whether the use of OVA base models, each with a different training set, results in 

increased performance for an aggregate model. 

(2) Whether the use of boosting in addition to OVA base models results in additional 

increased performance for the aggregate model. 

 

Table 7.24 provides a summary of the conclusions from the OVA modeling 

experiments. The use of OVA modeling alone resulted in increased performance for 

the 5NN algorithm. The use of OVA modeling alone did not result in increased 

performance for the See5 algorithm. However, for the forest cover type dataset, the 

use of boosting in addition to OVA modeling resulted in increased performance for 

the See5 algorithm. 
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Table 7.24: Summary of the conclusions from the OVA modeling experiments 
 
 
Dataset 

 
 
Algorithm 

Is performance improvement realized for the 
aggregate model when the base models used are: 
 
un-boosted OVA? 

 
boosted OVA? 

Forest cover type 5NN yes yes 
See5 no yes 

KDD Cup 1999 5NN yes no 
See5 no no 

 

Recall that the combination algorithm for the 5NN aggregate models uses 

probabilistic scores as well as distances to the nearest neighbour in order to resolve 

tied predictions. On the other hand, the combination algorithm for See5 does not 

have a second measure available for resolving tied predictions, except to break ties 

randomly. It was observed by the author that even though the occurrence of tied 

predictions is rare for the See5 aggregate models, ties do occur. A sample of the 

output of the See5 combination algorithm is given in table 7.25 for the forest cover 

type un-boosted OVA aggregate model. Recall that an OVA base model predicts the 

one class it is designed to predict or it predicts the value 10 to represent ‘other’.  The 

instances in the first two rows are correctly predicted since there are no tied 

predictions with the highest score values. The third instance is incorrectly predicted 

as the tie between the class 1 and class 2 predictions cannot be correctly resolved. 

 

 

Table 7.25: Sample of the output for the See5 combination algorithm  
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e6
 

O
V

A
7  
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e7
 

pr
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te

d  
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tu

al
 

sc
or

e  

1 0.91 2 0.85 10 0.99 10 1 10 1 10 1 10 0.91 1 1 0.91 

1 0.91 10 0.85 10 0.99 10 1 10 1 10 1 10 1 1 1 0.91 

1 0.91 2 0.91 10 0.99 10 1 10 1 10 1 10 1 1 2 0.91 
 

7.5 Conclusions  
 

The first question posed in this chapter was: How should training datasets be 

designed in order to create base models that are syntactically diverse and highly 

expert at prediction for aggregate models? The experimental results have 

demonstrated that the use of OVA modeling results in base models that are highly 

expert in predicting instances in specific regions of the instance space. However, the 

experimental results also demonstrated that expertise of base models, as measured 
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in terms of the predictive accuracy of the individual models, is not always enough to 

guarantee high predictive performance of the aggregate model.  

 

The second question was: How should training datasets for the base models be 

designed in order to achieve high accuracy for the aggregate model?  The 

experimental results demonstrated that one limiting factor for the predictive 

performance of aggregate models, created through parallel combination of the base 

model predictions, is the level of conflicting predictions for the base models. The 

experimental results for the 5NN algorithm demonstrated that the use of un-boosted 

OVA aggregate models results in performance improvements. Recall that the 

algorithm that was used for the combination of predictions for the 5NN base models 

has the ability to resolve conflicting predictions which are tied on the scores. 

 

The experiments also demonstrated that when training datasets for base models are 

selected with the objective of minimising conflicting predictions, a high level of 

predictive performance may be realised. This was the case for the forest cover type 

5NN and See5 boosted OVA aggregate models. For the experiments reported in this 

chapter, the minimisation of class confusion was realised through boosting which 

was achieved through the selection of training datasets that provide a high coverage 

of the confusion regions for the classes. It was demonstrated that boosting can result 

in improvements to predictive performance when OVA base models have conflicting 

predictions.  

 

Further studies of the proposed training dataset selection method are reported in the 

context of pVn modeling in the next chapter. 
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Chapter 8  

Evaluation of Dataset Selection for 
Positive-Versus-Negative Aggregate 
Modeling 
 

 

It was stated in chapter 6 that the proposed methods of training dataset selection 

were aimed at supporting the creation of aggregate models for multi-class prediction 

tasks. The last chapter presented an evaluation of OVA modeling. This chapter 

presents the experiments to study training dataset selection for positive-Versus-

negative (pVn) models, a discussion of pVn model performance, and a comparison of 

predictive performance of single, OVA and pVn aggregate models. Recall that each 

pVn base model specialises in the prediction of a subset of the classes (the p-

classes). Also recall that the following two questions were posed in chapter 6, and 

answers to these questions were provided in chapter 7 for OVA classification: 

 

1. How should training datasets be designed in order to create base models that are 

syntactically diverse and highly expert at prediction for aggregate models? 

 

2. How should training datasets for the base models be designed in order to achieve 

high accuracy for the aggregate model? 

 

This chapter presents further studies for the purpose of answering the above 

questions in the context of pVn modeling. Section 8.1 provides a discussion of pVn 

modeling. Experiments to study 5NN pVn model performance and See5 pVn model 

performance are respectively discussed in sections 8.2 and 8.3. Section 8.4 provides 

a discussion of the statistical tests used to compare the predictive coherence of 

single, OVA and pVn models. Sections 8.5 and 8.6 respectively provide discussions 

and conclusions for the chapter. 
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8.1 pVn modeling 
 

The motivation for pVn modeling is presented in this section. The methods used for 

the design of pVn base models, and the creation and testing of pVn base models and 

pVn aggregate models are also discussed. Section 8.1.1 provides a discussion of the 

motivation for pVn modeling. The methods used to design the base models are 

discussed in section 8.1.2. The experiment design for the study of pVn modeling is 

presented in section 8.1.3.   

 

8.1.1 Motivation for pVn modeling 
 

pVn classification is a proposed modification of OVA classification. The initial 

motivation for using pVn base classifiers was given in chapter 6. Briefly stated, pVn 

modeling results in a reduction of the number of base models in comparison to OVA 

modeling. A further motivation for pVn modeling is as follows: The experimental 

results of chapter 7 demonstrated that there are datasets for which OVA base 

models do not result in aggregate models that provide a higher level of predictive 

accuracy. This is the case, for example, for the KDD Cup 1999 dataset where only 

the un-boosted 5NN model showed a small improvement in performance. It is useful 

to compare aggregate models based on OVA classification and with aggregate 

models based on pVn classification in order to establish whether pVn base models 

can result in predictive performance which is better than that of a single model which 

can predict any one of k (k > 2) classes. 

 

8.1.2 Design of pVn base models 
 

The following three questions need to be answered for pVn classification:  

 

(1)  What pVn models should be created? 

(2) Which classes should be the positive classes, and which classes should be the 

negative classes for each pVn base model? 

(3) What should be the class distribution for the positive and negative classes for the 

training dataset of each pVn base model? 
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An algorithm was designed by the author to provide answers to questions 1 and 2 

above. The algorithm uses the information in the confusion matrix for the single k-

class model to determine the number of models and the class composition of each 

pVn base model. This algorithm is presented in the next section. The methods used 

to answer question 3 above are also discussed in the next section. After the 

decisions have been made on the composition of the pVn base models, the training 

datasets must be selected. The selection process that was presented in chapter 6, 

and depicted in figure 6.2, was followed. The feature subset used for all pVn base 

models was the same as that for the single model, for both the 5NN and classification 

tree models. 

 

8.1.3 Experiment design for the study of pVn modeling 
 

Experiments were conducted to study the effectiveness of the proposed pVn base 

model design. The forest cover type and KDD Cup 1999 datasets were used for the 

experiments. The 5NN and See5 algorithms were used for the creation of the base 

models. The base models were combined into aggregate models using the 

combination algorithm in figure 6.3 (for See5 base models) and figure 6.4 (for 5NN 

base models). The analysis of pVn model performance was conducted as follows: 

 

(1) To compare the predictive performance of the single and pVn aggregate models 

for both 5NN and See5 classification. 

 

(2)  To compare the predictive coherence of single, OVA, and pVn aggregate models 

for both 5NN and See5 classification. 

 

Models were compared on predictive performance using the accuracy and class 

TPRATE measures as discussed in section 6.4.5. Student’s paired t-test and the 

Diff(A,S) and Ratio(A,S) measures discussed in section 6.4.5 were used to establish 

whether the aggregate models provide significant improvements in predictive 

performance. 
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8.2 Experiments to study pVn models for 5NN 
classification 
 

This section provides a discussion of the experiments on pVn classification for the 

5NN algorithm. Section 8.2.1 presents the methods for base model design and 

training dataset selection. Sections 8.2.2 and 8.2.3 respectively provide a discussion 

of the experimental results for base model and aggregate model performance. 

 

8.2.1 Design of training datasets for 5NN pVn base models 
 

Several interesting observations arose out of the experiments on OVA modeling. The 

following observations can be made for the forest cover type 5NN OVA aggregate 

models, based on table 7.6. A training sample of 50% class 1, 25% class 2 and 25% 

class 7 was used for the boosted OVA1 base model. A training sample of 25% class 

1, 25% class 2, and 50% class 7 was used for the boosted OVA7 base model. For 

both models, the main reason behind this decision was due to the fact that there is 

significant class confusion between classes 1, 2 and 7.  A question that comes to 

mind is: Would the performance of one base model, based on a sample with an 

equal class distribution for classes 1, 2, and 7 provided better performance than that 

of the two OVA base models, OVA1 and OVA7? In fact, the other OVA base models 

could be similarly combined based on the observations made from the confusion 

matrix of table 7.5.  

 

A structure that was referred to as a confusion graph was designed by the author for 

purposes of graphically representing the information in a confusion matrix. Figures 

8.1 and 8.2 respectively show the confusion graphs for the forest cover type and 

KDD Cup 1999 5NN single k-class models that were presented in section 7.2. The 

nodes in a confusion graph represent the classes for the prediction task. The arc 

),( ji cc  means that class ic  is predicted as class jc .  That is,  classes ic  and jc  

share a confusion region. The number in brackets in a node indicates the number of 

arcs connected to the node. The value labelling an arc represents the level of 

confusion between classes ic  and jc . This value comes from cell  ),( ji cc  of the 

confusion matrix. For simplicity of presentation, the arcs of the confusion graphs with 

values of 5 or less are shown as dashed lines and are not labeled. 
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Figure 8.1: Confusion graph for the 5NN single 7-class model for Forest cover type for 
training set size of 12000 instances 
 
 
 

 
Figure 8.2: Confusion graph for the 5NN single 5-class model for KDD Cup 1999  for  training 
set size of 4000 instances 
 

The algorithm shown in figure 8.3 was designed by the author for selecting classes to 

include in each of the pVn base models. The objectives of the algorithm are as 

follows: When selecting the positive (p) classes for each base model, include those 

classes that share confusion regions. Exclude those classes that do not share 
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confusion regions with all the selected classes. The motivation here is to identify 

groups of classes which should be modelled together. Each model based on a 

subset of classes needs negative instances. The negative instances should be drawn 

from those classes that have a confusion region with at least one of the positive 

classes included in the model.   

 

Table 8.1 provides a demonstration of the execution of the algorithm on the 

confusion graph of figure 8.1 for the forest cover type dataset. The last row of table 

8.1 indicates that four pVn base models are identified by the algorithm. These 

models are: M346 for the positive classes 3, 4 and 6, M127 for the positive classes 1, 

2 and 7, M125 for the positive classes 1, 2 and 5, and M2356 for the positive classes 

2, 3, 5 and 6. The algorithm was also applied to the confusion graph for the KDD Cup 

1999 single model shown in figure 8.2. The pVn base models that were identified are 

MNRU for the positive classes NORMAL, R2L and U2R, MNDR for the positive 

classes NORMAL, DOS and R2L, and MNDP for the positive classes NORMAL, 

DOS and PROBE. 

 

 
Figure 8.3: Algorithm for class selection for the pVn base models 
 

Table 8.2 shows the training set composition that was used to study the predictive 

performance of the pVn base models identified by the algorithm in figure 8.3 for the 

forest cover type and KDD Cup 1999 datasets. Each base model was composed of 

A. Make a copy of the confusion graph 

B. Repeat 

Step 1:    Select the node with the lowest connectivity and call it min,ic  

   (break ties randomly)  

Step 2:  Create a set whose members are min,ic  plus all the nodes connected to  

the node min,ic  

Step 3:    Delete all the arcs connected to min,ic  and delete min,ic  from the graph 

   Until there are no arcs left in the graph 

C. For each set created in step 2 of B above, if the set is a subset of another set, delete the  

    set (since its nodes are already included in another set) 

D. Assign each of the remaining sets as the positive classes for one model 

E.  For each model, determine the negative classes as follows: For each positive class in the   

     model, add all classes that have an arc to the class node, but are not one of the positive  

     classes of the model. 
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instances from the indicated classes and sample percentages for each class. The 

rationale behind the samples composition was to ensure that each of the positive 

classes has nearly the same number of instances as the other positive classes, and 

nearly the same number of instances as all the negative classes combined. The 

training sample size for the MNRU model was reduced to 1900 instances to avoid 

excessive bootstrapping of the U2R instances. 

 

Table 8.1: Trace of the class selection algorithm for the5NN forest cover type graph 
 
Iterations for steps B1, B2 and B3 
 
Iteration 

 
B1: selected  node 

 
B2: created set 

 
B3: deleted arcs and node 

1 min,ic = 4 class set: { 3, 4, 6 } arcs: { 3�4, 4�3, 6�4, 4�6 }  
node: 4 

2 min,ic = 7 class set:  {1, 2, 7 } arcs: { 1�7, 7�1, 2�7, 7�2 }   
node: 7 

3 min,ic = 1 class set:  {1, 2, 5 } arcs: { 1�5, 1�2, 2�1}             
node: 1 

4 min,ic = 5 class set: { 2, 3, 5, 6 } arcs: { 2�5, 5�2, 3�5, 5�3, 6�5, 5�6 } 
node:5 

5 min,ic = 6 class set: { 2,3,6 } arcs: { 2�6, 6�2, 3�6, 6�3 } 
node: 6 

6 min,ic = 3 class set: { 2, 3 } arcs: { 2�3, 3�2 } 
node: 3 

Final results of iterations of 
steps B1, B2, B3: { { 3, 4, 6 }, {1, 2, 7 }, {1, 2, 5 }, { 2, 3, 5, 6 }, { 2,3,6 }, { 2, 3 } } 

 
Steps C, D and E 
 
Step 

 
Action 

 
Results 

C Delete subsets of 
other sets 

deleted sets: {2,3} and {2,3,6} 
remaining sets: {  { 3, 4, 6 }, {1, 2, 7 }, {1, 2, 5 }, { 2, 3, 5, 6 } } 

 
D 

 
Assign positive 
classes 

M346:     positive classes =  { 3, 4, 6 } 
M127:     positive classes =  { 1, 2, 7 } 
M125:     positive classes =  { 1, 2, 5 } 
M2356:   positive classes =  { 2, 3, 5, 6 } 

 
 
 
 
E 

 
 
 
Determine negative 
classes 

M346:     negative classes = { 2, 5 } 
               2 borders with 3, 5 borders with 3 and 6 
M127:    negative classes: = { 3, 5, 6 } 
              3  borders with 2,  5 borders with 1 and 2, 6 borders with 2 
M125:    negative classes = {3, 6, 7}  
              3 borders with 2, 6 borders with 5,  7 borders with 1 and 2      
M2356:   negative classes = {1, 4, 7}  
               1 borders with 2, 4 borders with 3 and 6, 7 borders with 2  
               (but confusion level is very low) 

 
Algorithm 
output 

 
Model definitions 

M346:     positive classes = { 3, 4, 6 };      negative classes =  { 2, 5 } 
M127:     positive classes = {1, 2, 7 };       negative classes= { 3, 5, 6 } 
M125:     positive classes = {1, 2, 5 };       negative classes = {3, 6, 7 } 
M2356:   positive classes =  { 2, 3, 5, 6 }; negative classes= { 1, 4}                                           
                                                                  class 7 ignored 
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Table 8.2:  5NN training set composition for the pVn base models for forest cover type and 
KDD Cup 1999  
 
Dataset Model 

ID 

 
p (positive) classes n (negative classes) Training 

sample size Classes used sample 
percentage 

classes 
used 

sample 
percentage 

Forest 
cover  
type 

M125 C1,C2,C5 80: (27,27,26) C3,C6,C7 20: (7,7,6) 

12000 
M127 C1,C2,C7 80: (27,27,26) C3,C5,C6 20: (7,7,6) 

M2356 C2,C3,C5,C6 80: 
(20,20,20,20) C1,C4 20: (10,10) 

M346 C2,C3,C6 80: (27,27,26) C2,C5 20: (1,10) 
       
KDD 
Cup 
1999 

MNRU NORMAL, 
R2L,U2R 80: (27,27,26) DOS, 

PROBE 20: (10,10) 1900 

MNDR NORMAL,DOS, 
R2L 80: (27,27,26) PROBE, 

U2R 20: (10,10) 4000 

MNDP NORMAL,DOS, 
PROBE 80: (27,27,26) R2L, U2R 20: (10,10) 4000 

 

8.2.2 Predictive performance of the 5NN pVn base models 
 

The performance of the 5NN pVn base models for the forest cover type and KDD 

Cup 1999 dataset is shown in table 8.3. Columns 3 and 4 of table 8.3 show the mean 

TPRATE and mean TNRATE values for the base models. The TPRATE in this 

context is the predictive accuracy on the test instances for the p-classes while the 

TNRATE is the predictive accuracy on the test instances for the n-classes.  

 

Table 8.3: Predictive performance of 5NN pVn base models  
 
Dataset 
(Training  size) 
(test size) 

 
 
Base model 
ID 
 

Base model performance single model 
performance 

Mean 
TPRATE% 
(p instances) 

Mean 
TNRATE% 
(n instances) 

Mean 
TPRATE% 
for single model 
on p instances 

 
Forest cover type 
(12000) 
(350 x 10) 

M125 75.3 ± 2.3 85.1 ± 1.2 67.3 ± 7.3 

M127 74.4 ± 1.4 91.6 ±  0.7 66.9 ± 7.2 

M2356 57.9 ± 0.5 70.8 ± 3.5 67.1 ± 6.7 

M346 81.3 ± 1.5 94.1 ± 0.7 72.3 ± 5.6 

     

KDD Cup 1999 
(4000) 
(350 x 10) 

MNRU 76.3  ±0.8 97.4  ±1.0 60.2 ± 8.1 

MNDR 88.8  ±1.7 71.1  ±1.1 71.8 ± 3.9 

MNDP 74.4  ±5.5 68.9  ±7.4 82.1 ± 4.9 

 

Column 5 of table 8.3 shows the mean TPRATE values for the single 7-class model 

for forest cover type and the single 5-class model for KDD Cup 1999. The results of 

table 8.3 indicate that three out of four pVn models for forest cover type have a 

higher TPRATE value on the p-classes than for the single model. Two out of three 

pVn models for the KDD Cup 1999 dataset have a higher TPRATE value than the 

single 5-class model. It remains to be seen whether the aggregate model based on 
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these base models provide higher predictive performance compared to the single 

models. 

 

8.2.3 Predictive performance of the 5NN pVn aggregate models 
 

The pVn base models for forest cover type and KDD Cup 1999 were combined into 

aggregate models using the combination algorithm that was given in figure 6.4 of 

section 6.4.3. The experimental procedure that was used for aggregation was 

presented in section 6.4. Table 8.4 shows the results of the predictive performance of 

the 5NN aggregate model for the forest cover type pVn models. The details of 

predictive performance are given in table F.4. Table 8.4 also shows the results of the 

predictive performance of the 5NN single 7-class and OVA aggregate models of 

chapter 7 for the forest cover type dataset. Table 8.5 shows the results of the 

statistical tests used to compare the performance of the single 7-class model and the 

pVn aggregate model.  

 

Table 8.4: Mean Predictive performance of the 5NN single, OVA and pVn aggregate models 
for forest cover type 
 
 
Class name 

5NN Mean accuracy / TPRATE% (10 test sets of size 350) 
 
Single  
model 

un-boosted  
OVA aggregate 
model 

boosted  
OVA aggregate 
model 

pVn 
aggregate 
model 

All classes 74.7 ± 1.0 80.5 ± 0.9 82.0 ± 0.6 78.6 ± 1.2 

1 62.8 ± 3.4 70.0 ± 4.3 70.0 ± 4.3 67.8 ± 5.1 

2 48.8 ± 2.8 58.4 ± 2.7 62.0 ± 3.4 57.8 ± 2.1 

3 56.8 ± 4.1 71.8 ± 1.9 71.0 ± 1.3 65.0 ± 2.3 

4 92.4 ± 1.8 89.8 ± 1.9 100.0 ± 0.0 97.0 ± 1.2 

5 91.2 ± 2.0 95.8 ± 3.1 97.0 ± 0.9 94.2 ± 2.1 

6 75.0 ± 2.1 80.8 ± 4.5 77.6 ± 2.0 75.0 ± 2.9 

7 96.0 ± 1.3 96.6 ± 0.6 96.6 ± 0.6 93.2 ± 2.4 

 

The results of Student’s paired t-test and the Diff(A,S) and Ratio(A,S) performance 

improvement measures provide the following evidence: The pVn aggregate model 

has a higher level of performance compared to the single model. The aggregate 

model results in an accuracy increase of 3.9% for all classes combined. The Diff(A,S) 

measure indicates that the pVn aggregate model provides significant increases of 

3.0% to 9 % on the TPRATE for four out of seven classes, namely classes 2, 3, 4 

and 5. The Ratio(A,S) measure indicates increases between 0.2 and 0.6 for  classes 

2, 3, 4 and 5. However, for classes 1, 6 and 7 there are no statistically significant 

improvements in the TPRATE. The best 5NN OVA aggregate model for forest cover 
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type reported in chapter 7 provided a mean accuracy of 82.0±0.6 as shown in table 

8.4. The mean accuracy of the pVn aggregate model was 78.6±1.2. This leads to the 

conclusion that both the OVA and pVn aggregate models can provide improvements 

in predictive performance for the forest cover type dataset. 

 

Table 8.5: Statistical tests to compare the performance for 5NN single and pVn aggregate 
models for forest cover type 
Group names and  mean 
accuracy / TPRATE%  
for 10 test samples 

 
Student’s paired t-test (9 df) 

 
Performance improvement 
measures 

Group A 
Aggregate 
model 

Group S 
Single model 

95% CI of 
mean 
difference 

P value 
(2 tail) 

Group A 
better 
than 
Group S? 

 
 
Diff(A,S)% 

 
 
Ratio(A,S) 

All classes-A 
(78.6±1.2) 

All classes-S 
(74.7 ± 1.0) 

 
[2.5, 5.2] 

 
0.000 

 
yes 3.9 0.2 

Class1-A 
(67.8±5.1) 

Class1-S 
(62.8 ± 3.4) 

 
[-2.1, 12.1] 

 
0.146 

 
no 5.0 0.1 

Class2-A 
(57.8±2.1) 

Class2-S 
(48.8 ± 2.8) 

 
[4.9, 13.1] 

 
0.001 

 
yes 9.0 0.2 

Class3-A 
(65.0±2.3) 

Class3-S 
(56.8 ± 4.1) 

 
[3.7, 12.8] 

 
0.003 

 
yes 8.2 0.2 

Class4-A 
(97.0±1.2) 

Class4-S 
(92.4 ± 1.8) 

 
[3.1, 6.1] 

 
0.000 

 
yes 4.6 0.6 

Class5-A 
(94.2±2.1) 

Class5-S 
(91.2 ± 2.0) 

 
[1.5, 4.6] 

 
0.002 

 
yes 3.0 0.3 

Class6-A 
(75.0±2.9) 

Class6-S 
(75.0 ± 2.1) 

 
[-1.8, 1.8] 

 
1.000 

 
no 0.0 0.0 

Class7-A 
(93.2±2.4) 

Class7-S 
(96.0 ± 1.3) 

 
[-5.3, -0.4] 

 
0.029 

 
no -2.8 -0.7 

 

Table 8.6 shows the results of the Predictive performance of the 5NN pVn aggregate 

model for the KDD Cup 1999 dataset. The detailed results are given in the appendix 

table F.12. The results for the single 5-class and OVA aggregate models of chapter 7 

are also shown in table 8.6. Table 8.7 shows the results of the statistical tests used to 

compare the predictive performance of the single 5-class model and the pVn 

aggregate model. The results of Student’s paired samples t-test clearly indicate that 

the pVn aggregate model performance is much higher than that of the single 5-class 

model. The pVn model provided an increase of 11.8% in the mean accuracy for all 

the classes. The Ratio(A,S) measure indicates an increase of 0.4. The Diff(A,S) 

measure indicates an increase in the TPRATE ranging between 2.7% and 31% for 

four out of five classes. The Ratio(A,S) measure indicates high increases of between 

0.5 and 0.9.  
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Table 8.6: Mean Predictive performance of single, OVA and pVn aggregate 5NN models for 
KDD Cup 1999   
 
 
Class name 

5NN Mean accuracy / TPRATE% for 10 test sets of size 350 
 
Single  
model 

un-boosted 
OVA aggregate 
model 

boosted 
OVA aggregate 
model 

pVn 
aggregate 
model 

All classes 68.5 ± 1.4 72.4  ± 1.1 71.0 ± 1.2 80.3 ± 1.1 
NORMAL 84.4 ± 3.1 92.7  ± 2.8 92.4 ± 3.0 98.7 ± 0.9 
DOS 66.3 ± 5.0 66.0  ± 4.4 66.0 ± 5.1 97.3 ± 1.7 

PROBE 95.7 ± 1.2 95.2  ± 1.0 95.4 ± 1.2 98.4 ± 0.9 
R2L 64.7 ± 3.6 65.4  ± 3.6 60.9 ± 3.8 81.4 ± 4.1 
U2R 31.6 ± 0.3 42.6 ± 0.4 40.5 ± 1.4 25.7 ± 2.2 

 

Table 8.7 Statistical tests to compare the 5NN single and pVn aggregate models for KDD Cup 
1999 
Group name and mean 
accuracy / TPRATE%  
for 10 test sets 

 
Student’s paired t-test (9 df) 

Performance improvement  
measures 

Group A 
Aggregate 
model 

Group S 
Single model 

95% CI of 
mean 
difference 

p value 
(2 tail) 

Group A 
better than 
Group S? 

 
Diff(A,S)% 

 
Ratio(A,S) 

All classes-A 
(80.3 ±1.1) 

All classes-S 
(68.5 ±1.4) 

 
[10.1,13.4] 

 
0.000 

 
yes 

 
11.8 

 
0.4 

NORMAL-A 
(98.7 ±0.9) 

NORMAL-S 
(84.4 ±3.1) 

 
[10.9,17.8] 

 
0.000 

 
yes 

 
14.3 

 
0.9 

DOS-A 
(97.3 ± 1.7) 

DOS-S 
(66.3 ±5.0) 

 
[25.5,36.6] 

 
0.000 

 
yes 

 
31.0 

 
0.9 

PROBE-A 
(98.4 ±0.9) 

PROBE-S 
(95.7 ±1.2) 

 
[1.2,4.2] 

 
0.002 

 
yes 

 
2.7 

 
0.6 

R2L-A 
(81.4 ±4.1) 

R2L-S 
(64.7 ±3.6) 

 
[13.1,20.3] 

 
0.000 

 
yes 

 
16.7 

 
0.5 

U2R-A 
(25.7 ±2.2) 

U2R-S 
(31.6 ±0.3) 

 
[-8.4,-3.3] 

 
0.001 

 
no 

 
-5.9 

 
-0.1 

 

In comparison to the KDD Cup 1999 OVA aggregate models of chapter 7, the best 

OVA aggregate model had a mean predictive accuracy of 72.4±1.1 as shown in table 

8.6, while the pVn aggregate model has a mean predictive accuracy of 80.3±1.1. 

This comparison indicates that the pVn aggregate model has a much higher level of 

predictive performance. The foregoing observations provide evidence that pVn 

aggregate modeling can provide much higher performance improvements than OVA 

modeling. 

 

8.3 Experiments to study pVn models for See5 
classification 
 

pVn aggregate modeling was also tested using the See5 classification tree algorithm. 

A discussion of the experiments and the predictive performance of the See5 base 

models and aggregate models for the forest cover type and KDD Cup 19999 
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datasets are provided in this section. The training dataset design for the base models 

is presented in section 8.3.1. The predictive performance results for the base models 

and aggregate models are respectively presented in sections 8.3.2 and 8.3.3. 

 

8.3.1 Design of training datasets for pVn base models 
 

The confusion graphs for the forest cover type and KDD Cup 1999 See5 single 

models are shown in figures 8.4 and 8.5 respectively. The algorithm in figure 8.3 was 

used to determine the class composition of the pVn classification tree models for 

both the forest cover type and the KDD Cup 1999 datasets. It became evident that 

the algorithm in figure 8.3 is not suitable for determining the class composition for the 

KDD Cup 1999 dataset because the confusion graph for the KDD Cup 1999 See5 

single model is a maximally connected (fully interconnected) graph. When a 

maximally connected confusion graph is used as input to the algorithm of figure 8.3, 

the first iteration of step B will create a set of nodes which includes all the nodes in 

the graph. When step C is executed, all the sets of nodes created after the first 

iteration of step B will be deleted, since they will be subsets of the first set of nodes. 

A modification of the algorithm in figure 8.3 is given in figure 8.4. The motivation for 

the modification was to reduce the level of connectivity in the graph while at the same 

time retaining all the information about the regions with the highest levels of class 

confusion. The rationale behind step I of the algorithm in figure 8.4 is to ignore those 

regions that have low levels of confusion and favour those regions which have higher 

levels of class confusion. 

 

The application of step I of the algorithm in figure 8.4 to the confusion graph for the 

KDD Cup 1999 dataset resulted in the confusion graph of figure 8.5. The algorithm in 

figure 8.3 was applied to the confusion graph for the forest cover type dataset. The 

modified algorithm in figure 8.6 was applied to the confusion graph for the KDD Cup 

1999 dataset. The resulting pVn base model designs are shown in table 8.8. Column 

2 of table 8.8 shows the names of the pVn models. Each model is identified by the 

positive classes it is designed to predict. The training sample composition for each 

pVn base model is also shown in table 8.8. The training sample sizes for the MNRU 

and MNPU base models were reduced to 1900 instances to avoid excessive 

bootstrapping of the U2R instances. 
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Figure 8.4 Confusion graph for theSee5 single 7-class model for forest cover type for training 
set size of 12000 instances  
 

 
Figure 8.5: Confusion graph for the See5 single 5-class model for KDD Cup 1999 for training 
set size of 4000 instances 
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Figure 8.6: Modified algorithm for class selection for the pVn base models 
 

 
Figure 8.7: Simplified confusion graph for the See5 single 5-class model for KDD Cup 1999 
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I. Analyse the confusion graph as follows: 

     If  each node is fully connected to all the other nodes then 

            for each node 

                   delete the weakest  outgoing link (the outgoing arc  with the smallest weight)  

           end-for 

II. Process the confusion graph as follows: 

A. Make a copy of the confusion graph 

B. Repeat 

Step 1:    Select node with the lowest connectivity and call it min,ic   

                  (break ties randomly) 

Step 2:    Create a set whose member are min,ic  plus all the nodes connected to  

                  the node min,ic   

Step 3:    Delete all the arcs connected to min,ic  and delete min,ic  from the graph 

 

    Until there are no arcs left in the graph 

C. For each set of nodes created in step 2 of B above, if the set is a proper subset of  

    another set, delete the set. 

D. Assign each of the remaining sets as the positive classes for one model. 

E.  For each model, determine the negative classes. For each positive class in the model,  

     add all classes that have an arc to the class node, but are not one of the positive  

     classes for  the model. 
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Table 8.8:  Training set composition for theSee5 pVn base models  
 
Dataset Model 

ID 

p (positive) classes n (negative classed) Training 
sample  
size Classes used sample 

percentage 
classes 
used 

sample 
percentage 

Forest 
cover 
type 

M127 C1,C2,C7 80: (27,27,26) C3,C5,C6 20: (7,7,6) 

12000 M2356 C2,C3,C5,C6 80: (20,20,20,20) C1,C4 20: (10,10) 

M346 C2,C3,C6 80: (27,27,26) C2,C5 20: (7,7,6) 
       
KDD Cup 
1999 MNRU NORMAL, 

R2L,U2R 80: (27,27,26) DOS, 
PROBE 20: (10,10) 1900 

MNDP NORMAL, 
DOS, PROBE 80: (27,27,26) R2L, U2R 20: (10,10) 4000 

MNPU NORMAL, 
PROBE, U2R 80: (27,27,26) DOS,R2L 20: (10,10) 1900 

 

8.3.2 Predictive performance of the See5 pVn base models 
 

The performance of the See5 pVn base models for the forest cover type and KDD 

Cup 1999 dataset are shown in table 8.9. Columns 3 and 4 of table 8.9 show the 

mean TPRATE and mean TNRATE values for the base models. The TPRATE in this 

context is the predictive accuracy on the p-classes while the TNRATE is the 

predictive accuracy on the n-classes.  

 
Table 8.9: Predictive performance of See5 pVn base models  
Dataset 
(Training  
sample size) 

Base 
model 
ID 
 

Base model performance single model performance  

Mean TPRATE% 
(p instances) 

Mean TNRATE% 
(n instances) 

Mean TPRATE% 
(p instances) 

Forest cover type 
(12000) 

M127 76.7 ± 1.5 89.9 ± 0.9 72.3 ± 1.4 
M2356 76.8 ± 1.3 81.5 ± 2.0 72.2 ± 1.7 
M346 82.3 ± 0.9 96.9 ± 0.6 78.5 ± 1.8 

     
 
KDD Cup 1999 
(4000) 

MNRU 77.4 ± 2.6 84.7 ± 3.2 67.0 ± 1.6 
MNDP 91.1 ± 1.9 63.9 ± 1.3 68.1 ± 1.7 
MNPU 74.8 ± 0.4 77.3 ± 1.4 66.5 ± 1.3 

 
Column 5 of table 8.9 shows the mean TPRATE values for the single 7-class model 

on the p-classes for forest cover type, and the single 5-class model for KDD Cup 

1999. The results in table 8.9 indicate that the pVn base models M127, M2356 and 

M346 for forest cover type each have higher TPRATE values on their p-classes 

compared to the single 7-class model on the same classes. The pVn models MNRU, 

MNDP and MNPU for the KDD Cup 1999 dataset also have significantly higher 

TPRATE values on their p-classes compared to the single 5-class model.  
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8.3.3 Predictive performance of the See5 pVn aggregate models 
 

The pVn base models for the forest cover type and KDD Cup 1999 datasets were 

combined into aggregate models using the algorithm in figure 6.3. Table 8.10 shows 

the results of the predictive performance of the See5 pVn aggregate model for the 

forest cover type dataset. The detailed performance results are given in the appendix 

table F.8. Table 8.10 also gives the performance results for the single 7-class and 

OVA aggregate models of chapter 7. Table 8.11 shows the results of the statistical 

tests used to compare the performance of the single 7-class model and the pVn 

aggregate model.  

 

Table 8.10: Predictive performance of the See5 single, OVA and pVn models for forest cover 
type 
 
 
Class name 

See5 Mean accuracy / TPRATE% 
 
Single  
model 

un-boosted 
OVA aggregate  
model 

boosted 
OVA aggregate 
model 

pVn  
aggregate model 

All classes 76.9 ± 1.0 75.3 ± 0.7 79.4 ± 0.6 79.9  ± 1.0 
1 57.4 ± 3.4 60.6 ± 2.6 65.0 ± 2.9 64.6  ± 2.9 
2 63.8 ± 3.0 49.8 ± 3.6 69.8 ± 2.4 65.5  ± 4.2 

3 60.8 ± 3.3 64.0 ± 1.8 63.2 ± 3.3 71.8  ± 3.3 
4 96.8 ± 1.0 86.6 ± 1.7 95.4 ± 1.3 94.6  ± 1.7 
5 86.2 ± 2.4 94.4 ± 1.8 88.4 ± 2.3 88.6  ± 1.8 
6 77.8 ± 3.3 79.2 ± 2.0 76.0 ± 1.9 82.2  ± 2.6 
7 95.6 ± 1.6 92.8 ± 2.5 97.8 ± 1.1 92.0  ± 2.8 

 

The results of Student’s paired sample t-test and the Diff(A,S) and Ratio(A,S) 

performance improvement measures provide the following evidence: The pVn 

aggregate model has a significantly higher level of performance compared to the 

single model. The aggregate model results in an increase of 3% in accuracy for all 

classes combined. For the TPRATE values of the individual classes, the aggregate 

model provides a significantly higher level of performance with an increase in the 

TPRATE of 11% on class 3 and 7.2% on class 1. The aggregate model provided a 

performance improvement of 4.4% in theTPRATE for class 6. However, there is no 

statistically significant improvement in the TPRATE values for the remaining four 

classes. In fact, the single model provided higher TPRATE values on two of these 

classes. The best See5 OVA aggregate model for the forest cover type dataset that 

was reported in chapter 7 provided a mean accuracy of 79.4 ± 0.6 as shown in table 

8.10. The mean accuracy of the pVn aggregate model was 79.9 ± 1.0. This leads to 

the conclusion that both the OVA and pVn aggregate models can provide a 

comparable improvement in Predictive performance for the forest cover type dataset. 
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Table 8.11: Statistical tests to compare the performance for See5 classification tree single 
and pVn aggregate models for forest cover type 
Group mean accuracy / TPRATE% 
for 10 test sets 

 
Student’s paired t-test (9 df) 

Performance 
improvement measures 

Group A 
Aggregate 
model 

Group S 
Single model 

95% CI of 
mean 
difference 

P value 
(2 tail) 

Group A 
better 
than 
Group S? 

 
 
Diff(A,S)
% 

 
 
Ratio(A,S) 

All classes-A 
(79.9 ± 1.0) 

All classes-S 
(76.9 ± 1.0) 

 
[1.9, 4.0] 

 
0.000 

 
yes 

 
3.0 0.1 

Class1-A 
(64.6 ± 2.9) 

Class1-S 
(57.4 ± 3.4) 

 
[2.9,11.5] 

 
0.004 

 
yes 

 
7.2 0.2 

Class2-A 
(65.2 ± 4.2) 

Class2-S 
(63.8 ± 3.0) 

 
[-1.7, 4.5] 

 
0.334 

 
no 

 
1.4 0.0 

Class3-A 
(71.8 ± 3.3) 

Class3-S 
(60.8 ± 3.3) 

 
[6.8, 15.2] 

 
0.000 

 
yes 

 
11.0 0.3 

Class4-A 
(94.6 ± 1.7) 

Class4-S 
(96.8 ± 1.0) 

 
[-4.6, 0.2] 

 
0.066 

 
no 

 
-2.2 -0.7 

Class5-A 
(88.6 ± 1.8) 

Class5-S 
(86.2 ± 2.4) 

 
[-1.4, 6.2] 

 
0.188 

 
no 

 
2.4 0.2 

Class6-A 
(82.2 ± 2.6) 

Class6-S 
(77.8 ± 3.3) 

 
[1.2, 7.6] 

 
0.014 

 
yes 

 
4.4 0.2 

Class7-A 
(92.0 ± 2.8) 

Class7-S 
(95.6 ± 1.6) 

 
[-5.5, -1.7] 

 
0.002 

 
no 

 
-3.6 -0.8 

 

Table 8.12 shows the results of the Predictive performance of the pVn aggregate 

model for the KDD Cup 1999 dataset. The performance details are given in the 

appendix table F.16. The results for the single 5-class and OVA aggregate models 

are also shown in table 8.12. Table 8.13 shows the results of the statistical tests to 

compare the predictive performance of the single 5-class model and the pVn 

aggregate model. The results of Student’s paired t-test clearly indicate that the 

aggregate model performance is much higher than that of the single 5-class model. 

The Diff(A,S) and Ratio(A,S) measures indicate that the increase in the TPRATE for 

three of the classes is between 12.1% and 60.6%. The TPRATE increase for the 

PROBE class is 60.6%, which is remarkably high. Overall, the accuracy increase 

over all the classes is 15.2%.  

 

In comparison to the KDD Cup 1999 OVA aggregate model of chapter 7, the best 

See5 OVA aggregate model had a mean predictive accuracy of 61.7±0.9 as shown in 

table 8.12, while the pVn aggregate model has a mean predictive accuracy of 

79.0±2.1. This comparison clearly indicates that the pVn aggregate model has a 

much higher level of predictive performance. Again, this provides evidence that pVn 

aggregate modeling can provide much higher performance gains compared to OVA 

modeling. 
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Table 8.12: Predictive performance of See5 single, OVA and pVn aggregate models for KDD 
Cup 1999 
 
 
 
Class name 

See5 Mean accuracy / TPRATE (10 test sets of size 350) 
 
Single  
model 

un-boosted 
OVA aggregate 
model 

boosted  
OVA aggregate 
 model 

pVn  
aggregate  
model 

All classes 63.8 ± 1.3 63.3 ± 1.2  61.7 ± 0.9 79.0 ± 2.1 
NORMAL 86.0 ± 3.1 98.3 ± 0.7 99.2 ± 0.6 98.1 ± 0.6 
DOS 82.0 ± 3.8 50.1 ± 4.4 56.3 ± 4.3 68.4 ± 6.5 
PROBE 36.8 ± 2.4 88.0 ± 1.3 89.3 ± 1.4 97.0 ± 1.0 
R2L 37.7 ± 3.3 34.3 ± 3.3 23.6 ± 3.4 54.1 ± 6.9 
U2R 77.1 ± 0.0 45.7 ± 0.0 40.0 ± 0.0 77.1 ±  0.0 
 

Table 8.13 Statistical tests to compareSee5 single and pVn aggregate models for KDD Cup 
1999 
Group name and mean 
TPRAE% for 10  test samples 

 
Student’s paired t-test (9 df) 

Performance improvement 
measures 

Group A 
Aggregate 
model 

Group S 
Single model 

95% CI of 
mean 
difference 

p value 
(2 tail) 

Group A 
better than 
Group S? 

 
Diff(A,S)% 

 
Ratio(A,S) 

All classes-A 
(79.0 ± 2.1) 

All classes-S 
(63.8 ± 1.3) 

 
[12.8,17.5] 

 
0.000 

 
yes 

 
15.2 0.4 

NORMAL-A 
(98.1 ± 0.6) 

NORMAL-S 
(86.0 ± 3.1) 

 
[8.7,15.6] 

 
0.000 

 
yes 

 
12.1 0.9 

DOS-A 
(68.4 ± 6.5) 

DOS-S 
(82.0 ± 3.8) 

 
[-18.6,8.6] 

 
0.000 

 
no 

 
-13.6 -0.8 

PROBE-A 
(97.0 ± 1.0) 

PROBE-S 
(36.4 ± 2.4) 

 
[60.0,63.5] 

 
0.000 

 
yes 

 
60.6 0.97 

R2L-A 
(54.1 ± 6.9) 

R2L-S 
37.7 ± 3.3) 

 
[9.5,23.2] 

 
0.000 

 
yes 

 
16.4 0.3 

U2R-A 
(77.1 ± 0.0) 

U2R-S 
(77.1 ± 0.0) 

 
no variance 

no  
variance 

 
same 

 
0.0 0.0 

 

8.4 Comparison of performance variability for single and 
aggregate models 
 

Given two systems or methods, the system or method with more predictable 

behaviour should be preferred (Cohen, 1995:pg 205). In the context of predictive 

modeling, the method with predictive performance which has lower variability should 

be preferred to one which exhibits erratic performance. A model with low 

performance variability has more predictable behaviour. The F-test for variances 

which was discussed in chapter 4, was used to test the null hypothesis that the 

variance of predictive accuracy for a single k-class model is the same as that for the 

OVA or pVn aggregate model. There are two available rules for the rejection of the 

null hypothesis for the 2-tail F-test. The first rule states that the null hypothesis 

should be rejected if the p-value for the test is less than the critical p-value. The 

second rule states that the null hypothesis should be rejected if the value of the F-

statistic is greater or equal to the critical value of the F-statistic. The second rule was 
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used for the F-test inference given in table 8.14. The results of the F-tests indicate 

that, in general, there is no significant difference in performance variability between 

the single k-class models and OVA aggregate models, and between single k-class 

models and pVn aggregate models. This leads to the conclusion that both the single 

and aggregate models exhibit equal predictive coherence. 

 

Table 8.14: F- tests for comparison of performance variability for single and aggregate models 
 
 
 
Dataset 

 
 
 
Algorithm 

 Variance of  
predictive accuracy 

F-test for variance of accuracy on 10 test 

sets (9 x 9 df, 18.3=criticalF ) 

Single 
model (S) 
 

Aggregate 
model (A) 

F value = 
Max{VarA ,VarS}  / 
Min{VarA,VarS} 

p-value 
(F � f)  
1-tail 

A has 
same 
coherence  
as S? 

 
 
forest cover 
type 

 
5NN 

 
single  
(2.9) 

un-boosted OVA 
(2.3) 

 
1.26 

 
0.37 

 
yes 

boosted OVA 
(0.9) 

 
3.13 

 
0.05 

 
yes 

pVn 
(3.8) 

 
1.34 

 
0.33 

 
yes 

 
See5 

 
single  
(2.5) 

un-boosted OVA 
(1.1) 

 
2.17 

 
0.13 

 
yes 

boosted OVA 
(0.8) 

 
2.95 

 
0.06 

 
yes 

pVn 
(2.4) 

 
1.01 

 
0.49 

 
yes 

 
 
 
KDD Cup 
1999 

 
5NN 

 
single  
(4.9) 

un-boosted OVA 
(3.2) 

 
1.53 

 
0.27 

 
yes 

boosted OVA 
(3.9) 

 
1.28 

 
0.36 

 
yes 

pVn 
(3.4) 

 
1.47 

 
0.29 

 
yes 

 
See5 

 
single  
(4.7) 

un-boosted OVA 
(3.8) 

 
1.24 

 
0.38 

 
yes 

boosted OVA 
(2.0) 

 
2.42 

 
0.10 

 
yes 

pVn 
(11.9) 

 
2.52 

 
0.09 

 
yes 

 

The following general conclusions can be made from the statistical tests of chapter 7 

for the comparison means and the statistical tests of this chapter for the comparison 

of means and comparison of variances: Both OVA and pVn aggregate models 

provided a higher level of predictive performance compared to a single 7-class model 

for the forest cover type dataset. The single and aggregate models exhibited similar 

levels of predictive coherence, so that overall the aggregate models should be 

preferred to the single 7-class model. The pVn aggregate model provided a higher 

level of predictive performance compared to a single 5-class model for the KDD Cup 

1999 dataset. The level of predictive coherence is similar for the single and pVn 

aggregate model, so that the aggregate model should be preferred. 
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It should be emphasized that the variance shown in table 8.14 is not the same as the 

variance component of the prediction error. Recall from section 2.8 that variance 

error is defined as variability in prediction of an instance x from one training sample 

to the next. For a given algorithm and modeling method, the measurement of 

variance error requires the creation of many models each based on a different 

training sample. The variance error is then estimated using the same test set for the 

different models (Kohavi & Wolpert, 1996). 

 

8.5 Discussion 
 

The benefits of pVn modeling are summarised in this section. The performance of 

OVA and pVn models is compared to the performance of single models. The 

limitations of the proposed methods for training dataset selection are discussed. 

Section 8.5.1 provides a summary of the benefits of pVn modeling. Section 8.5.2 

presents a comparison of OVA and pVn modeling. Section 8.5.3 discusses the 

limitations of the proposed dataset selection methods. 

 

8.5.1 Dataset selection for pVn modeling 
 

pVn modeling was proposed as a method of problem decomposition with a potential 

to reduce the bias (errors in the model estimation process) and variance (sensitivity 

to the training sample) components of the prediction error. Secondly, the initial 

motivation for proposing pVn modeling was to reduce the number of base models as 

required for OVA modeling. The experimental results demonstrated that pVn 

modeling enables the creation of syntactically diverse and highly competent base 

models. The pVn models were designed based on the lessons learned from OVA 

modeling. Confusion graphs derived from confusion matrices were used as input to 

the proposed algorithm for determining the class composition for the pVn base 

models. The experimental results reported in this chapter have demonstrated that the 

design of the base models based on the proposed algorithms results in pVn base 

models that provide a high level of predictive performance when combined into an 

aggregate model. The pVn aggregate models provided a much higher level of 

predictive performance compared to a single k-class model for the two datasets and 

two algorithms used for the experiments. 
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8.5.2 Comparison of OVA and pVn modeling 
 

Table 8.15 provides a summary of the predictive performance of the OVA and pVn 

models for the datasets and algorithms used in the experiments. One small dataset, 

namely Wine quality (white) (Cortez et al, 2009) was also used to test performance of 

OVA and pVn dataset selection and modeling. The experimental results for the forest 

cover type and KDD Cup 1999 datasets were discussed in detail in chapter 7 and in 

this chapter. The details of the test results for the wine quality dataset are provided in 

appendix tables F.17 through F.26. 

 

Table 8.15: Summary of performance improvements for OVA and pVn models 
 
 
Dataset 
(size) 

 
 
Algorithm 

Is there a performance improvement compared to single model 
for the: 
un-boosted OVA  
aggregate model? 

boosted OVA  
aggregate model? 

pVn 
aggregate model? 

 
Forest cover type 
(large) 

 
5NN 

 
yes 

 
yes 

 
yes 

 
See5 

 
no 

 
yes 

 
yes 

 
KDD Cup 1999 
(large) 

 
5NN 

 
yes 

 
no 

 
yes 

 
See5 

 
no 

 
no 

 
yes 

 
Wine quality - 
white 
(small) 

 
5NN 

 
no 

 
no 

 
yes 

 
See5 

 
no 

 
no 

 
yes 

 

OVA modeling provided performance gains for the forest cover type dataset for both 

the 5NN and the See5 algorithms. The un-boosted version of OVA modeling 

provided a small performance improvement for KDD Cup 1999 for the 5NN algorithm. 

The boosted version of OVA modeling did not provide any performance gains for the 

KDD Cup 1999 dataset for the 5NN and See5 algorithms. OVA modelling did not 

provide any performance gains for the wine quality dataset. pVn modeling provided 

performance gains for the forest cover type, KDD Cup 1999 and wine quality 

datasets for both algorithms. The performance improvements for the pVn aggregate 

models were far more impressive for the KDD Cup 1999 dataset compared to the 

forest cover type and wine quality datasets. An examination of the confusion graphs 

of figures 8.1, 8.2, 8.4, 8.5 and 8.7 reveals that one main difference between the 

prediction tasks for forest cover type and KDD Cup 1999 is that there is one class 

(NORMAL) for the KDD Cup 1999 whose node is connected to all the other nodes 

(classes) in the graph. This is not the case for the forest cover type confusion graphs. 

This observation could help to explain why, for a dataset such as KDD Cup 1999, 

OVA modeling as proposed in chapter 7 does not provide significant performance 
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gains, while pVn modeling provides significant gains. Further studies are required 

before firm conclusions can be made. 

 

The F-tests for variance indicated that, in general, both OVA and pVn aggregate 

models exhibit the same level of predictive coherence. This leads to the conclusion 

that the OVA or pVn aggregate model should be preferred if such a model provides a 

higher level of mean predictive performance compared to a single k-class model. 

 

It was observed from the experiments on OVA and pVn modeling, that OVA and pVn 

modeling can be used to reduce the problems associated with creating predictive 

models from datasets with skewed class distributions, especially when one or more 

classes are severely under-represented in the dataset. This is the case, for example, 

for the U2R class in the KDD Cup 1999 dataset. For the 52 instance of the U2R 

class, a combination of bootstrap sampling, training sample design to include only 

the necessary classes in the OVA and pVn models, and reduction of the training 

sample size were implemented for the OVAU2R, MNPU and MNRU base models. 

This scheme resulted in performance improvements on the TPRATE for the U2R 

class for the OVA aggregate models using the 5NN algorithm. The U2R TPRATE for 

the single 5-class model was 31.6±0.3, for the un-boosted OVA aggregate model the 

TPRATE was 42.6±0.4, and for the boosted OVA aggregate model the TPRATE was 

40.5±1.4. However, for the See5 algorithm, the OVA and pVn aggregate models did 

not provide an increase in the TPRATE for the U2R class. 

 

8.5.3 Classification problems where proposed boosting methods 
are not appropriate 
 

Two-class problems are very common in data mining especially in business 

applications (Giudici & Figini, 2009; Witten & Frank, 2005; Giudici, 2003; Berry & 

Linoff, 2000). It was stated in chapter 2 that the OVA and pVn base model design 

and dataset selection methods proposed in this thesis are not appropriate for 2-class 

problems, but rather to k-class problems where k > 2. However if each of the classes 

for a 2-class problem is located in more than one contiguous region of the instance 

space, then it should be possible to apply the proposed methods to that dataset. For 

example, suppose that a 2-class dataset has classes 1c  and 2c  with the instances of 

class 1c  located in regions 1g  and 2g  while the instances of class 2c  are located in 
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regions 3g  and 4g . Classes  1c  and 2c  can be re-labelled as 42322111 gcgcgcgc ,,,  so 

that the classification task becomes a 4-class prediction problem to which the 

proposed methods can be applied. Liu and Motoda (1998) have observed that cluster 

analysis is commonly used as a pre-processing step in data mining. Samoilenko and 

Osei-Bryson (2008), and Osei-Bryson (2010) have observed that clustering is 

commonly used as a step prior to predictive modeling for purposes of improving the 

performance of predictive models. The author of this thesis hypothesised that 

identification of 1-class contiguous regions in the instance space of a 2-class problem 

can be achieved through cluster analysis. Experiments to test this hypothesis are left 

for future work. 

 

The datasets used for the empirical studies on boosting have the desirable property 

that their confusion matrices have off-diagonal entries ),( ji ccCM with 

kjki ,..,,,.., 11 ==  and ji ≠ which do not have an equal (or nearly equal) 

distribution of instances. In fact, some of the entries in the off-diagonal confusion 

matrix cells are zero. The proposed OVA and pVn base model design and training 

dataset selection for boosted OVA and pVn base models were based on this 

property. The training samples for each iOVA  boosted base model or ipVn  base 

model were designed as follows: Each training sample included only instances of the 

classes where the off-diagonal entries ),( ji ccCM  and )c,c(CM ij  for i � j in the 

matrix cells have large values, and to exclude instances of the classes with small or 

zero counts. There are k-class datasets for which the above property does not hold 

as shown in tables 8.16 and 8.17. 

 

Table 8.16: See5 single 3-class model confusion matrix for abalone3C  
Single model confusion matrix, training size = 3000, 10-fold cross validation 
Actual  
class 

Predicted class 

young middle old 

young  206 51 

middle 183   316 

old 74 272   

 

For such datasets the (off-diagonal) entries in the class confusion cells all have 

nearly the same instance counts. The 3-class abalone3C dataset is a case in point. 

The 3-class waveform dataset (Blake & Merz, 1998; Breiman et al, 1984) was also 

identified as fitting this category. The confusion matrices for these two datasets for 

the See5 classification algorithm are given in tables 8.16 and 8.17. 
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Table 8.17: See5 single 3-class model confusion matrix for waveform 
Single model confusion matrix, training size = 5000, 10-fold cross validation 
Actual  
class 

Predicted class 

Class 0 Class 1 Class 2 

Class 0   269 217 

Class 1 160  151 

Class 2 179 140   

 

The foregoing observations led the author to formulate the following property for k-

class confusion matrices: 

 

Sparse confusion matrix property: 

A k x k confusion matrix with exactly one off-diagonal cell having a zero count is 

minimally sparse. A k x k confusion matrix with all k(k-1) off-diagonal cells having  

zero counts is maximally sparse. A k x k confusion matrix with j off-diagonal cells, 

)( 11 −≤≤ kkj  having zero counts is a sparse confusion matrix.  

 

The implication of the above property is that there are classes in the dataset that do 

not share a common region of class confusion. The two large datasets that were 

used in the OVA and pVn studies for boosting training datasets both have the sparse 

confusion matrix property for the single k-class models. For this reason, it was 

possible to design boosted training datasets for OVA and pVn base models which 

resulted in increased predictive performance. It should be noted that it is possible 

that a non-sparse confusion matrix has off-diagonal cells with counts that are much 

smaller than the counts of all the other off-diagonal cells. Such a matrix can be 

converted into a sparse confusion matrix by setting the off-diagonal cell counts with 

small values to zero. 

 

8.6 Conclusions 
 

The first question that was posed for the studies on aggregate modeling and training 

dataset selection was: How should training datasets be designed in order to create 

base models that are syntactically diverse and highly expert at prediction for 

aggregate models? The experimental results reported in this chapter have 

demonstrated that the design of pVn models based on the information in the 

confusion matrix and confusion graph for a single k-class model and the new pVn 

model design algorithm presented in this chapter, results in the design of pVn base 
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models that are syntactically diverse and highly expert at prediction. The discussion 

of section 8.5.3 has however made it clear that the pVn and boosted OVA base 

model designs that are proposed are only applicable to datasets for which the single 

k-class predictive model has a sparse confusion matrix. 

 

The second question that was posed was:  How should training datasets for the base 

models be designed in order to achieve high accuracy for the aggregate model? The 

experimental results reported in this chapter have demonstrated that when pVn base 

models are designed as described above, the aggregation of such base models 

results in increased predictive performance. This was shown to be the case for the 

datasets and the algorithms that were used in the experiments. The experimental 

results also demonstrated that the predictive performance increases achieved 

through the proposed OVA and pVn aggregate modeling methods do not come at the 

cost of reduced coherence in the predictions. 

 

The models discussed in chapter 7 and this chapter were assessed for performance 

using mean values for accuracy and TPRATE values as well as the variance in 

accuracy. Evaluation of model performance using Receiver Operating Characteristic 

(ROC) analysis is presented in the next chapter. 
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Chapter 9 

ROC Analysis for Single and Aggregate 
Models 
 

Recall from section 4.7 that a discrete classifier simply assigns a class label to a test 

instance (Fawcett, 2001, 2004, 2006).The single, OVA aggregate and pVn aggregate 

models were treated as discrete classifiers for the predictive performance analysis 

reported in chapters 7 and 8. Even though the single, OVA aggregate and pVn 

aggregate models assign probabilistic scores to the test instances as discussed in 

section 6.4, the scores could not be used in the statistical tests used in chapters 7 

and 8 to compare model performance. Student’s paired samples t-test, the Diff(A,S) 

measure, and the Ratio(A,S) measures that were used to compare model 

performance do not provide the capability for the analysis of the probabilistic scores 

assigned to the model predictions. 

 

Receiver Operating Characteristic (ROC) curves and ROC analysis were discussed 

in section 4.7. ROC analysis enables the analysis of classifiers based on the scores 

that are assigned to the test instances. The classification models of chapters 7 and 8 

were treated as probabilistic classifiers for the ROC analysis reported in this chapter. 

The purpose of the ROC analysis was to answer the questions below in order to 

establish whether the aggregate models provide a better level of performance 

compared to the single models for different operating conditions:  

 

1. Do OVA aggregate models provide a higher level of predictive performance 

compared to single models for different operating conditions? 

 

2. Do pVn aggregate models provide a higher level of predictive performance 

compared to single models for different operating conditions? 

 

This chapter is organised as follows: Sections 9.1 and 9.2 respectively provide a 

discussion of 2-class and multi-class ROC analysis. Section 9.3 provides a 

discussion of ROC analysis for the 5NN single and aggregate models. Section 9.4 

provides a discussion of ROC analysis for the See5 single and aggregate models. 

Section 9.5 concludes the chapter. 
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9.1 ROC analysis for 2-class predictive models 
 

Recall that ROC curves provided a graphic representation of predictive model 

performance for 2-class prediction tasks (Giudici & Figini, 2009; Witten & Frank, 

2005; Giudici, 2003; Berry & Linoff, 2000). A probabilistic classification model 

typically assigns a class and a score for the class. Most commonly, the score is the 

probability that a test instance belongs to the predicted class (Giudici & Figini, 2009; 

Witten & Frank, 2005; Giudici, 2003; Berry & Linoff, 2000). ROC analysis is 

concerned with the selection of the model with the optimal performance based on the 

cut-off point (threshold) λ that is used to decide when an instance should be 

declared positive or negative. A cut-off point (threshold) is the score value )( 

 

conf  

for which λ≥)( �� ��conf implies that the predicted class for instance ���� is the positive 

class. ROC analysis may also be used to determine which of two models provides a 

higher level of predictive performance as discussed in section 4.7. ROC analysis 

produces a statistic called the Area Under ROC curve (AUC). Recall from section 

4.7.3 that when the predictive performance of a probabilistic classifier is better than 

random guessing then ��
 � ��
�� !" # ��
$�!%�. ��
�� !"  and ��
$�!%� are 

respectively the area below and the area above the 45 degree line which represents 

random guessing in the 2-dimensional ROC plane. The AUC is also the probability 

that  a classifier will rank a randomly chosen positive instance higher than a randomly 

chosen negative instance (Fawcett, 2006). Given two probabilistic classifiers, the 

classifier with the larger AUC value has a higher level of predictive performance 

under different operating conditions.. 

 

9.2 ROC analysis for multi-class predictive models 
 

Computation of the AUC for 2-class classification models is a straight forward task. 

ROC analysis for k-class (k > 2) prediction tasks is concerned with the Volume Under 

the ROC Surface (VUS). Computation and visualisation of the VUS is a non-trivial 

task. Fawcett (2004, 2006) has discussed two approximations of the VUS measure 

that have been proposed by Hand and Till (2001) and Provost and Domingos (2001).  

The Hand and Till (2001) measure is defined as 
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where ),( ji ccAUC is the AUC value computed for the two class ROC curve for the 

classes ic  and jc  and k is the number of classes for the predictive model.  

 

The Provost and Domingos (2001: cited by Fawcett, 2004, 2006) measure is defined 

as 
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               (9.2) 

where ),( restcAUC i  is the AUC for class ic  compared to all the other k-1 classes 

and  )( ir cP  is the prevalence (prior probability) of class ic  in the training dataset(s). 

The Provost and Domingos (2001) measure is commonly called the one-versus-rest 

approximation of the VUS (Fawcett, 2001, 2004, 2006). The Provost and Domingos 

(2001) measure is easier to visualise and faster to compute. However, determining 

the prevalence (prior probability) )( ir cP of a class is a simple matter for a single 

predictive model. When base models are based on boosted training datasets and 

then combined into one aggregate model, the determination of )( ir cP is not straight 

forward any more. A modified version of the Provost and Domingos (2001) measure 

that was designed by the author of this thesis and used for the ROC analysis of this 

chapter is a simple mean value for the AUC and is defined as  

 

�
=

=
k

i
itotal restcAUC

k
AUC

1

),(
1

                (9.3) 

 

where ),( restcAUC i has the same meaning as before and  k is the number of 

classes for the multi-class (k-class) prediction task. The justification for computing the 

mean value of ),( restcAUC i  in equation (9.3) is as follows: The VUS estimates of 

equations (9.1) and (9.2) are based on the arithmetic combination of the AUC values 

for many 2-dimensional planes in multi-class ROC space. Equation (9.1) computes a 

mean value for 2/)1( −kk  such planes. Equation (9.2) computes a simple sum of 

weighted values of the AUC for k 2-dimensional planes. Given the foregoing 
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observations, computation of the mean AUC in equation (9.3) gives a useful estimate 

of the VUS, especially for purposes of comparing the performance of two multi-class 

probabilistic classifiers. 

 

Several values need to be computed in order to derive the approximation of the VUS. 

The values that were computed and the methods for computation of these values are 

given in table 9.1. Since 10 test sets were used to measure model performance, it 

was necessary to combine the test results for the TPRATE and FPRATE into 

summary measures for the 10 test sets. The mean TPRATE and mean FPRATE 

were computed for each threshold value for the probabilistic classifier. Fawcett 

(2004, 2005) calls this approach threshold averaging. 

 

Table 9.1: Computations for the estimation of the VUS 
 
Value 

 
Description 

 
Computation 

Mean ),,( λrestcTPRATE i  

Mean TPRATE for probabilistic 

classifier  ),( restcPC i  for 

threshold value λ  

Mean values computed using 10 
test sets 

Mean ),,( λrestcFPRATE i  

Mean FPRATE for probabilistic 

classifier ),( restcPC i  for 

threshold value λ  

Mean values computed using 10 
test sets 

 

),( restcAUC i  

AUC computed for the curve 
defined by the mean TPRATE 
and FPRATE values for 
probabilistic classifier 

),( restcPC i  for different λ  

values.  

Integration of the area between 
the curve and the 450 line in the 
2-dimensional ROC space. 
The λ  values for the 5NN 
probabilistic classifiers were: 
0.6, 0.8 and 1.0.  The values for 
See5 were: 0.5, 0.75 and 1.0. 

Mean totalAUC  
Estimation of VUS  
 Computed using equation (9.3) 

 

9.3 ROC analysis for 5NN models 
 

The ROC analysis results for the 5NN single and aggregate models for the forest 

cover type, KDD Cup 1999 and wine quality datasets are given in table 9.2. The 

details of the ROC analysis are given in the appendix tables G.2, G.3 and G.4. The 

aboveAUC  values and Gini concentration coefficients for the probabilistic classifiers 

are given in table 9.2 columns 3 to 10 for each class. The mean aboveAUC  and mean 

Gini values for the single k-class model and aggregate k-class models are also given 

in the table. Recall from sections 4.7.3 and 9.1 that  aboveAUC  is the area between 

the ROC curve and the 45 degree line and aboveAUCGini x2= . When the 2-
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dimensional ROC space is visualised as a grid of 100 cells with each cell having a 

width of 0.1 and a height of 0.1, then an increment of 0.01 in the AUC corresponds to 

an AUC increase of one such cell. This corresponds to a 2% increase in the area 

aboveAUC  whose maximum value is 0.5, and an increase of 4% in the Gini 

concentration coefficient whose maximum value is 1.0. 

 

Table 9.2: ROC analysis results for the 5NN single and aggregate models 
  
 
Dataset, 
algorithm 

Probabilistic 
classifier 
PC(ci,rest) 

 AUCabove and Gini concentration coefficient for model: 
single un-boosted 

OVA 
boosted OVA pVn 

A
U

C
ab

ov
e 

G
in

i  

A
U

C
ab

ov
e 

G
in

i  

A
U

C
ab

ov
e 

G
in

i  

A
U

C
ab

ov
e 

G
in

i  

 
 
Forest 
cover 
type, 
5NN 
  

PC(1,rest) 0.29 0.58 0.33 0.66 0.33 0.66 0.32 0.64 
PC(2,rest) 0.23 0.46 0.28 0.56 0.30 0.60 0.27 0.54 
PC(3,rest) 0.25 0.50 0.35 0.70 0.34 0.68 0.31 0.62 
PC(4,rest) 0.45 0.90 0.44 0.88 0.49 0.98 0.48 0.96 
PC(5,rest) 0.43 0.86 0.46 0.92 0.47 0.94 0.46 0.92 
PC(6,rest) 0.33 0.66 0.38 0.76 0.37 0.74 0.36 0.72 
PC(7,rest) 0.47 0.94 0.47 0.94 0.47 0.94 0.46 0.92 
Mean  0.35 0.70 0.39 0.78 0.40 0.80 0.38 0.76 

                    
  
 
KDD 
Cup 
1999, 
5NN  

PC(NORMAL,rest) 0.36 0.72 0.41 0.82 0.41 0.82 0.43 0.86 
PC(DOS,rest) 0.33 0.66 0.33 0.66 0.33 0.66 0.48 0.96 
PC(PROBE,rest) 0.44 0.88 0.44 0.88 0.44 0.88 0.49 0.98 
PC(R2L,rest) 0.30 0.60 0.29 0.58 0.27 0.54 0.38 0.76 
PC(U2R,rest) 

0.15 0.30 0.21 0.42 0.20 0.40 0.13 0.26 
Mean  0.32 0.64 0.33 0.66 0.33 0.66 0.38 0.76 

                    
 PC(4,rest) 0.04 0.08 0.04 0.08 0.04 0.08 0.03 0.06 

PC(5,rest) 0.15 0.30 0.17 0.34 0.18 0.36 0.16 0.32 
PC(6,rest) 0.03 0.06 0.04 0.08 0.06 0.12 0.12 0.24 
PC(7,rest) 0.09 0.18 0.11 0.22 0.12 0.24 0.10 0.20 
PC(8,rest) 0.04 0.08 0.04 0.08 0.04 0.08 0.05 0.10 
Mean  0.07 0.14 0.08 0.16 0.09 0.18 0.09 0.18 

 

The mean aboveAUC  values for the forest cover type models range between 0.35 and 

0.40. The boosted OVA aggregate model provided the best performance (0.40), 

followed by the un-boosted OVA aggregate model (0.39) followed by the pVn model 

(0.38). Since the single model has a mean aboveAUC  of 0.35, all forest cover type 

aggregate models provided an increased level of predictive performance over the 

single model. An examination of the performance on the individual classes reveals 

that the aggregate models provided increased performance levels on six out of the 

seven classes. There were no improvements on class 7.  
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The mean aboveAUC  values for the KDD Cup 1999 models range between 0.32 and 

0.38. The pVn aggregate model provided the best performance (0.38), followed by 

the un-boosted and boosted OVA aggregate models (0.33). Since the single model 

has a mean aboveAUC  of 0.32, the OVA models provided a very slight improvement in 

predictive performance. The pVn model provided a much higher performance 

improvement over the single model. The aboveAUC  values for the individual classes 

indicate that the KDD Cup 1999 pVn aggregate model provided increased 

performance levels on four out of the five classes. The un-boosted and boosted OVA 

aggregate models each provided increased performance levels on two out of five 

classes. 

 

The mean aboveAUC  values for the wine quality models are very small. The values 

range between 0.07 and 0.09. The boosted OVA and pVn aggregate models 

provided the best performance (0.09), followed by the un-boosted OVA aggregate 

models (0.08). Since the single model has a mean aboveAUC  of 0.07, the OVA and 

pVn models provided a slight improvement in predictive performance. The aboveAUC  

values for the individual classes indicate that the wine quality pVn aggregate model 

provided increased performance levels on four out of the five classes. The un-

boosted and boosted OVA aggregate models each provided increased performance 

levels on three out of five classes. 

 

9.4 ROC analysis for See5 models 
 

The ROC analysis results for the See5 single and aggregate models for the forest 

cover type, KDD Cup 1999, and wine quality datasets are given in table 9.3. The 

details of ROC analysis are given in the appendix tables G.5, G.6 and G.7. The 

aboveAUC  values for the probabilistic classifiers are given in table 9.2 columns 3 to 10 

for each class. The mean aboveAUC  and mean Gini values for the single k-class 

model and aggregate k-class models are also given in the table.  

 

The mean aboveAUC  values for the See5 forest cover type models range between 

0.36 and 0.38. The boosted OVA and pVn aggregate models provided the best 

performance (0.38), followed by the single model (0.37) followed by the un-boosted 
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OVA aggregate model (0.36). Since the single model has a mean aboveAUC  of 0.37, 

the boosted OVA and pVn aggregate models for forest cover type provided an 

increased level of predictive performance over the single model. The un-boosted 

OVA aggregate model did not provide any performance gains. An examination of the 

performance on the individual classes reveals that the boosted OVA aggregate 

model provided increased performance on five out of the seven classes. The pVn 

aggregate model provided increased performance on six out of the seven classes.  

 

Table 9.3: ROC analysis results for the See5 single and aggregate models 
 
 
 
 
Dataset, 
algorithm 
  

  
 
 
Probabilistic 
classifier 
 PC(ci,rest) 

AUCabove and Gini concentration coefficient for model: 

single 
  

un-boosted 
OVA 

boosted 
OVA 

pVn 
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i  
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Forest 
cover 
type, 
See5 
  
  

PC(1,rest) 0.27 0.54 0.28 0.56 0.30 0.60 0.31 0.62 
PC(2,rest) 0.29 0.58 0.22 0.44 0.30 0.60 0.30 0.60 
PC(3,rest) 0.29 0.58 0.30 0.60 0.30 0.60 0.34 0.68 
PC(4,rest) 0.46 0.92 0.43 0.86 0.47 0.94 0.47 0.94 
PC(5,rest) 0.42 0.84 0.45 0.90 0.42 0.84 0.43 0.86 
PC(6,rest) 0.37 0.74 0.36 0.72 0.36 0.72 0.39 0.78 
PC(7,rest) 0.47 0.94 0.45 0.90 0.48 0.96 0.45 0.90 
Mean  0.37 0.74 0.36 0.72 0.38 0.76 0.38 0.76 

          

KDD Cup 
1999, 
See5 
  

PC(NORMAL,rest) 0.38 0.76 0.44 0.88 0.41 0.82 0.40 0.80 
PC(DOS,rest) 0.40 0.80 0.25 0.50 0.27 0.54 0.34 0.68 
PC(PROBE,rest) 0.17 0.34 0.39 0.78 0.41 0.82 0.48 0.96 
PC(R2L,rest) 0.18 0.36 0.12 0.24 0.11 0.22 0.26 0.52 
PC(U2R,rest) 0.31 0.62 0.23 0.46 0.19 0.38 0.38 0.76 
Mean  0.29 0.58 0.29 0.58 0.28 0.56 0.37 0.74 

          

Wine 
quality 
white, 
See5 
  

PC(4,rest) 0.11 0.22 0.16 0.32 0.16 0.32 0.14 0.28 
PC(5,rest) 0.18 0.36 0.17 0.34 0.18 0.36 0.19 0.38 
PC(6,rest) 0.05 0.10 0.01 0.02 0.01 0.02 0.11 0.22 
PC(7,rest) 0.14 0.28 0.09 0.18 0.10 0.20 0.16 0.32 
PC(8,rest) 0.04 0.08 0.05 0.10 0.06 0.12 0.06 0.12 
Mean  0.10 0.20 0.10 0.20 0.10 0.20 0.13 0.26 

 

The mean aboveAUC  values for the See5 KDD Cup 1999 models range between 0.29 

and 0.37. The pVn aggregate models provided the best performance (0.37), followed 

by the single model and un-boosted OVA aggregate model (0.29) followed by the 

boosted OVA aggregate model (0.28). Since the single model has a mean aboveAUC  

of 0.29, the pVn aggregate models for KDD Cup 1999 provided an increased level of 
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predictive performance over the single model. The OVA aggregate models did not 

provide any performance gains. An examination of the performance on the individual 

classes reveals that the pVn aggregate model provided increased performance on 

four out of the five classes.  

 

The mean aboveAUC  values for the See5 wine quality models are very small. The 

single, un-boosted OVA, and boosted OVA models have values of 0.10 for the mean

aboveAUC . These results indicate that the OVA aggregate models did not provide any 

performance gains. The pVn aggregate model provided the best performance with a 

mean aboveAUC  value of 0.13 which indicates an increased level of predictive 

performance over the single model. An examination of the performance on the 

individual classes reveals that the pVn aggregate model provided increased 

performance on all five classes.  

 

9.5 Conclusions 
 

The single and aggregate models of chapters 7 and 8 were treated as probabilistic 

classifiers for the ROC analysis discussed in this chapter. The first question that was 

posed for this chapter was: Do OVA aggregate models provide a higher level of 

predictive performance compared to single models for different operating conditions? 

Performance improvements were realised for the 5NN OVA aggregate models and 

the See5 boosted aggregate model for the forest cover type dataset. No performance 

gains were realised for the See5 un-boosted OVA aggregate model. No performance 

gains were realised from the OVA aggregate models for the 5NN and See5 

algorithms for the KDD Cup 1999 and wine quality datasets.  

 

The conclusion from the foregoing observations is that OVA aggregate modeling as 

proposed in this thesis may or may not result in improved performance. Schaffer 

(1994) has observed that no single strategy for machine learning is better at 

generalisation (prediction) than all other strategies for all problem domains. The 

above conclusion should therefore be viewed in the context of Schaffer’s (1994) 

observation. The single model confusion matrices of the forest cover type 5NN and 

See5 models had higher levels of sparsity compared to the KDD Cup and wine 

quality single models. It can be concluded that OVA modeling, as proposed in this 
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thesis, provides performance improvements for a dataset whose confusion matrix 

has a high level of sparsity.  

 

The second question that was posed for this chapter was: Do pVn aggregate models 

provide a higher level of predictive performance compared to single models for 

different operating conditions? The pVn aggregate models provided performance 

improvements for the forest cover type, KDD Cup1999, and wine quality datasets for 

both the 5NN and See5 algorithms. It can be concluded that pVn modeling provides 

performance improvements as long as the single model for a dataset has the sparse 

confusion matrix property. 

 

In conclusion, the observations based on the ROC analysis of this chapter support 

the conclusions of chapter 7 and 8. The ROC analysis results have additionally 

demonstrated that OVA and pVn aggregate models can provide better predictive 

performance under different operating conditions compared to single models. Based 

on the conclusions of chapters 5, 7, 8 and this chapter, recommendations are given 

in the next chapter for dataset selection and aggregate modeling from large datasets. 
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Chapter 10  

Recommendations for Dataset Selection 
 

‘… the problems in science … on a deeper level  ... are directed towards a consensus, 

or rational agreement, between the parties concerned … ’ (Toulmin et al, 1979) 

 

The studies conducted on feature selection, training dataset selection, and aggregate 

modeling, the experimental results and analysis of the results were presented in 

chapters 5 to 9. This chapter provides an integrated discussion of the experimental 

results by giving a summary of the results. The chapter also provides theoretical 

models that were derived from the results and suggestions on how to conduct feature 

and training dataset selection for aggregate modeling from large datasets. Recall 

from section 4.3.5 that several researchers have argued for the need for empirically 

derived theories for computer systems (Simon, 1996), machine learning (Dietterich, 

1997) and artificial intelligence systems (Cohen, 1995). It is the author’s opinion that 

empirically derived theoretical models for data mining should provide value for 

researchers and practitioners in data mining. Recall that the main research question 

for the thesis was: 

 

What methods of dataset selection can be used to obtain as much information as 

possible from large datasets while at the same time using training datasets of small 

sizes to create predictive models that have a high level of predictive performance? 

 

The following sections provide several concise answers to this question. A summary 

of the methods that were used for the reduction of prediction error is given in section 

10.1. Theoretical models and recommendations for feature selection and training 

dataset selection are provided in sections 10.2 and 10.3 respectively. Section 10.4 

provides a summary of the chapter.  

 

10.1 Reduction of prediction error 
 

It was argued in chapter 2 that a high level of predictive performance should be 

achieved when training datasets are selected with the main objective of reducing 

prediction error. Chapter 2 provided a discussion of the components that make up 
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the predictive error, namely bias, variance and intrinsic error. The methods that have 

the potential to reduce the bias and variance error components were discussed in 

chapter 2. The use of simple models (Dietterich & Bakiri, 1995) and boosting (Freund 

& Schapire, 1997) are known to reduce the bias component of the prediction error. 

The use of aggregate modeling (Breiman, 1996) and the use of simple models (e.g. 

OVA base models) are known to reduce variance error. The use of good feature 

subsets for prediction (Dietterich & Kong (2005) and reduction of noise through 

sampling (Smyth, 2001) are known to reduce the variance error. 

 

The main objective of the experiments reported in chapters 5, 7 and 8 was to reduce 

the bias and variance components of prediction error using the methods stated 

above. This was achieved through: 

(1) The use of many (relatively) small samples for correlation measurement and base 

model construction. 

(2) The design of simple base models, each of which specialises in the prediction of 

a subset of the k classes (k > 2) for the prediction task and uses a different training 

dataset from the other base models. 

(3) The design of training datasets for base models, with the objective of increasing 

the coverage of those regions of the instance space where correct prediction is more 

difficult. 

 

10.2 Recommendations for feature selection 
 

This section provides a summary of the discussion of the studies that were 

conducted for feature selection as reported in chapter 5. A theoretical model of the 

factors that affect the quality of selected features is proposed and guidelines are 

provided on how to proceed with feature selection in the presence of large datasets. 

Section 10.2.1 provides a summary of the feature selection studies. Section 10.2.2 

provides guidelines for feature selection based on the reported experimental results. 

 

10.2.1 Summary of the feature selection experimental results 
 

The factors that affect the quality of selected features for single models were 

discussed in sections 5.6 and 5.7. In the context of this discussion, quality refers to 

the extent to which as many relevant features as possible are included, and as many 
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irrelevant and redundant features as possible are excluded from the selected subset 

of predictive features. The point was made in chapter 3 that existing literature in 

computational data mining indicates that most commonly a single sample of (all 

available) data is used to measure class-feature and feature-feature correlations for 

feature ranking. Probes (fake variables) have been used for the validation of class-

feature correlations. The experiments of chapter 5 demonstrated that class-feature 

correlations measured from samples of a large dataset can vary widely from sample 

to sample. The point was also made in chapter 3 that in computational data mining, 

mathematical functions are commonly used as heuristic measures by feature subset 

search algorithms. The experimental results of chapter 5 revealed that the use of 

mathematical functions as heuristic measures does not always result in the best 

decisions for the features to be included in the subset of the best predictive features. 

 

Based on the experimental results and conclusions of chapter 5, the following are 

research contributions of this thesis to the problem of feature selection: 

(1) Reliable methods of measuring class-feature and feature-feature correlations 

through the use of many samples. 

(2) Reliable feature ranking through the use of mean class-feature correlations 

values. 

(3) Reliable class-feature and feature-feature correlation validation through the use of 

mean values for the class-probe correlations to eliminate non-relevant features. 

(4) Usage of decision rules for heuristics evaluation of the best feature to select at a 

given decision point for a feature subset search algorithm. 

 

Arising from the discussions of chapter 3 and the experimental results of chapter 5, 

the theoretical model shown in figure 10.1 was developed for purposes of 

representing the relationships between the factors that have an effect on the quality 

of selected features for predictive classification modeling. The theoretical model of 

figure 10.1 offers a predictive theory of the outcome of feature selection as depicted 

in figure 4.2 of section 4.3.3. However, the model of figure 10.1 does not provide 

causal explanations as depicted in figure 4.2. Proper causation experiments, with 

experiment controls are needed in order to conclude beyond reasonable doubt that 

the relationships shown in figure 10.1 are due to the indicated factors and not fully or 

partially due to other factors (Cohen, 1995: ch.9).  
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Figure 10.1: Theoretical predictive model for feature selection using filtering methods 
 

The theoretical model of figure 10.1 predicts that the definitions of feature relevance 

and redundancy that are used in the procedures for the validation of the class-feature 

correlation coefficient estimate, will affect the outcome of the validation procedure. 

When feature ranking is all that is required, then the quality of the selected features 

will be affected by the outcome of the validation procedure. The definitions of feature 

relevance and redundancy will affect the behaviour of a feature subset search 

algorithm in terms of the final subset of selected features. The method used to 

measure the correlation coefficients, the sample sizes used, and the number of 

samples used, will all affect the estimate of the correlation coefficients, and in turn 

affect the feature ranking that is generated for input to the search algorithm. Finally, 

the quality of the feature subset selected by a search algorithm is influenced by the 

quality of the decisions made by the search algorithm. 

 

10.2.2 Guidelines for feature selection 
 

The steps shown in figure 10.2 are recommended for feature selection from large 

datasets of moderate dimensionality. 

quality of 
selected 
features 

search algorithm 
behaviour / decisions 
(Ooi et al, 2007; this 
thesis) 

 
feature correlation 
value estimates &  
feature ranking 
(this thesis) 

definition of feature 
relevance & redundancy 
(Koller & Sahami, 1996; 
Blum & Langley, 1997; 
Yu & Liu, 2004; this thesis) 

method of measuring 
correlations  
(Wilcox, 2001; this thesis) 

size of samples used to 
measure correlations  
(Smyth, 2001;  this thesis) 

number of samples used to 
measure correlations  
(this thesis) 

Validation for 
correlation coefficients 
(Stoppiglia et al, 2003; 
this thesis) 
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Figure 10.2: Recommended procedure for feature selection from large datasets 
 

If the feature selection task is to select a pre-specified number of features, then steps 

1 to 7 of figure 10.2 are recommended. If on the other hand, the task is to select the 

best subset of features, then steps 1 to 7 should be followed by steps 8 and 9. Step 9 

involves the search for the best feature subset. Suggestions on how to conduct steps 

1 to 7 using commonly available software (SPSS and MS Excel) are given in the 

appendix table H.1. The decision-rule base feature selection algorithm that was 

presented in chapter 5 is a good candidate for performing step 9. One alternative to 

Step 1: Obtain information on the meaning of low, medium and high correlation for the domain 

from where the data originates. If this information is not available, use Cohen’s (1988) guidelines. 

 

Step 2:  Take many small random samples and add one or more probes to each sample. Ten test 

samples of 1000 instances and at least one probe (Gaussian for quantitative continuous data, 

Uniform for quantitative discrete and qualitative data) provided useful information for the chapter 5 

experiments. 

 

Step 3:  Measure the class-probe, class-feature and feature-feature correlations using a robust 

measure of association, eg. Kendall’s tau or Pearson’s r with the outliers removed. 

 

Step 4: Compute the mean class-probe, class-feature and feature-feature correlations. If the 

confidence intervals of the means for the correlation values are large, go back to step 1 and 

increase the sample size. 

 

Step 5:  Conduct feature ranking based on the mean values of the class-probe and class-feature 

correlations. 

 

Step 6:  Use the probe method discussed in chapter 5 to eliminate all features whose ranking is 

below that of any of the probes from further consideration, as discussed in chapter 5. 

 

 Step 7: If the feature selection task is to select a pre-defined number of features (w), then select 

the top w features that have a correlation coefficient of practical significance for the problem 

domain and stop. Alternatively, a user-specified threshold for correlation values can be used to 

determine which features to select. 

 

Step 8: If the feature selection task is to identify the best subset of features then construct 

decision rules for the meanings of relevance and redundancy for the problem domain where the 

dataset originates. If this information is not available, use Cohen’s (1988) guidelines. 

 

Step 9: Conduct the feature subset search using the decision rules of step 8  to obtain the best 

feature subset. 
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the above approach is to conduct steps 1 to 7 of figure 10.2 followed by Yu and Liu’s 

(2004) method of redundancy analysis that was discussed in chapter 3. 

 

10.3 Recommendations for training dataset selection for 
aggregate modeling 
 

This section provides a summarised discussion of the studies that were conducted 

for OVA and pVn base model design and training dataset selection as well as the 

implications of the experimental results. A theoretical model that was developed for 

the factors that affect the quality of selected training datasets, based on existing 

literature is presented. An extension of the theoretical model based on the studies 

conducted for this thesis is proposed, and guidelines are provided on how to proceed 

with training dataset selection for aggregate model implementation in the presence of 

large datasets. Section 10.3.1 provides a summary of the training dataset selection 

experiments and the research contributions arising from the experiments. Section 

10.3.2 presents the theoretical model for training dataset selection. Parallel and serial 

aggregation methods are discussed in section 10.3.3. Guidelines for training dataset 

selection are provided in section 10.3.4. 

 

10.3.1 Summary of the training dataset selection experimental 
results 
 

Sections 7.4 and 7.5 provided the discussion and conclusions for the OVA model 

dataset selection experiments. Sections 8.5 and 8.6 provided the discussion and 

conclusions for the pVn model dataset selection experiments. Chapter 9 provided the 

results for ROC analysis to compare single models, OVA and pVn aggregate models. 

The main conclusions from chapters 7, 8 and 9 were that the proposed dataset 

selection methods for OVA and pVn aggregate modeling generally provided 

improvements in predictive performance. In summary, the main research 

contributions arising from the reported experiments are as follows: 

(1) The use of OVA modeling to increase the amount of training data used for 

modeling from large datasets, and to increase the level of predictive performance. 

(2) The use of pVn modeling to increase the amount of training data used for 

modeling from large datasets, and to increase the level of predictive performance. 

pVn modeling reduces the number of base models compared to OVA modeling. 
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(3) The use of a confusion matrix to provide information for the design of boosted 

OVA and pVn base models. 

(4) The use of a confusion graph as a graphical and mathematical representation of 

the information in a confusion matrix to be used as input to the algorithm for 

determining the positive and negative classes of pVn base models. 

(5) A definition of the sparse confusion matrix property which can be used to 

determine whether boosted OVA and pVn base models will provide performance 

improvements for a given dataset. 

(6) A base model combination algorithm for KNN OVA and pVn base model 

predictions. The algorithm resolves tied predictions. 

 

10.3.2 Theoretical model for training dataset selection 
 

A theoretical model to summarise the work on aggregate modeling as reported in 

chapter 2 was developed by the author. The theoretical model is shown in figure 

10.3. One major factor that affects the performance of aggregate models is syntactic 

diversity. Recall from chapter 2 that the term syntactic diversity refers to the level of 

dis-similarity between the base models that make up an aggregate model. Syntactic 

diversity has been achieved by researchers (as indicated in figure 10.3) either 

through variation of the learning task, or variation of the base model structure, or 

variation of the training datasets for base models. A second major factor that affects 

aggregate model performance is the predictive accuracy of the base models. Several 

researchers (as indicated in figure 10.3) have achieved a high level of base model 

predictive accuracy (Chan & Stolfo, 1998) or single model accuracy (Kubat & Matwin, 

1997) through sampling methods that balance the level of class representation for 

datasets with skewed class distributions. A second approach has been to vary the 

learning task and/or the base model structure.  

 

Syntactic diversity, predictive accuracy of the base models and the method of 

determining the winning class lead to a reduction of the bias and variance 

components of the prediction error of an aggregate model as depicted in figure 10.3. 

The level to which the bias and variance components of the prediction error are 

reduced affects the predictive performance of the aggregate model.  

 

The research for this thesis concentrated on the selection of training datasets from 

large amounts of data, with the objective of constructing aggregate models which 
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provide a high level of predictive performance. The methods of training dataset 

selection that were studied were aimed at achieving variation in the base model 

structures, variation in the training datasets for the base models, and balancing of the 

class representation in the base models. The theoretical model shown in figure 10.4 

is an extension of the model of figure 10.3, based on the studies conducted for this 

thesis. 

 

 
Figure 10.3: Theoretical predictive model for aggregate model performance based on existing 
literature 
 

The model of figure 10.4 predicts that the use of information about the structure of 

the instance space combined with information on the aggregation method should 

result in the design of a set of base models whose performance should ultimately 

result in high predictive performance. The design of the base models should 

influence the methods used to select the training sample for each base model from 

the large dataset. The methods of training dataset selection, based on the designed 

base models, should influence the level of balance of the classes in the training 

datasets, the level of variation in the training datasets for the base models, and the 

level of variation in the learning tasks and structures of the base models. This should 

in turn influence the predictive performance of each base model, and the syntactic 

diversity in the set of base models. The algorithm used for combining the base model 

predictions will affect the bias error of the aggregate model. 
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Figure 10.4: Extensions to the theoretical predictive model for aggregate model performance 
based on studies for this thesis 
 

10.3.3 Parallel versus serial aggregation of base models 
 

The method of parallel combination of base models was used to create the 

aggregate models for the experiments reported in this thesis. Serial combination 

(Sun & Li, 2008; Neagu et al, 2006; Kim et al, 2002) is the second method of base 

model aggregation which was discussed in chapter 2. Recall that serial combination 

is a multi-step process. In the first step the base models are arranged in a series. In 

order to classify a new instance, the instance is passed to the first base model in the 

series. If the base model makes a credible prediction, then the process stops, 

otherwise the instance is passed to the next base model in the series. In general, if a 

base model makes a credible prediction the process stops otherwise the instance is 

passed to the next base model in the series (Sun & Li, 2008). The base model which 

provides the highest predictive accuracy on a given class is considered to be the 

base model that makes a credible prediction for that class (Sun & Li, 2008). 

 

Sun and Li (2008) have conducted studies on the serial combination of base models, 

where each base model can make predictions for any of the classes and is 

constructed with a different classification algorithm. Two useful aspects of the base 

models were noted in the design and testing process for the pVn base models. First 
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of all, in general, a pVn base model was found to provide a higher level of accuracy 

on the positive classes that it predicts, compared to the single k-class model. 

Secondly, several of the classes for the prediction task can be predicted by more 

than one base model. Based on the foregoing observations the author hypothesized 

that the use of pVn base models in a serial combination scheme would provide 

performance improvements, especially for decision tree algorithms where no 

measures are available for resolving tied predictions. Studies to confirm this 

hypothesis were left for future work. 

 

10.3.4 Guidelines for OVA and pVn model design, training dataset 
selection and testing 
 

The steps given in figures 10.5 to 10.8 are recommended for the design of OVA and 

pVn aggregate models, training dataset design and selection for the models, and 

aggregate model creation and testing.  

 

 
Figure 10.5: Steps for the creation of a confusion matrix and confusion graph 
 

The steps are based on the observations from the experiments of chapters 7 and 8. 

The first phase involves the establishment of the class confusion in a single k-class 

Phase I: Steps to establish class confusion 
 

1. Partition the large dataset according to class, so that k partitions are created, one for 

each class. 

2. From each partition obtained in step 1, set aside the data for model testing. 

3. Decide on the sample size, n, for the creation of a single k-class model. 

4. To obtain the training dataset for the single class model, proceed as follows. For each 

class ic in the data, obtain a random sample of size kn /  from the corresponding 

partition. If the partition has a size less than kn / , use bootstrap sampling to obtain the 

required sample size. 

5. Combine all the samples obtained in step 4 to create the training dataset for the single k-

class model. This training dataset will have an equal class distribution. 

6. Create several test sets with an equal class distribution from the test data partitions.  

7. Create the single k-class model and test it with the test sets created in step 6 in order to 

generate a confusion matrix for the classes. 

8. Compute the predictive accuracy, TPRATE and TNRATE for each class in the single k-

class model on the test sets. 

9. If the confusion matrix is sparse, create a confusion graph from the confusion matrix. 

 
 
 



  230 

model. Figure 10.5 shows the recommended steps to be followed for the 

identification of the class confusion.  

 

 
Figure 10.6: Steps for the design, creation and testing of un-boosted OVA aggregate models 
 

 
Figure 10.7: Steps for the design, creation and testing of boosted OVA aggregate models 
 

Phase IIb: Boosted OVA model design, training dataset selection and 

testing 
If the single k-class model has a sparse confusion matrix, proceed as follows to create a boosted 

OVA aggregate model: 

1. For each class ic , determine from the confusion matrix or confusion graph which other 

classes are predominantly confused with ic .  

2. Design the class and training sample composition for each iOVA model so that class ic  has 

50% of the instances and the classes identified in step 1 have  50% of the instances. 

Consider apportioning the class representation based on the level of confusion, as discussed 

in chapter 7. 

3. Obtain the training samples for the OVA base models based on the design of step 2 by 

sampling from the partitions created in phase I. Use bootstrap sampling it the partition size is 

smaller than the required number of instances.  

4. Create the OVA base models and OVA aggregate model, and test the aggregate model using 

the test samples created in phase I. 

5. Compare the performance of the OVA aggregate model with that of the single k-class model 

on the test samples. 

Phase IIa: Un-boosted OVA model design, training dataset selection and 

testing 
 

To create an un-boosted OVA aggregate model, proceed as follows: 

1. Design the class and training sample composition for each iOVA model so that class ic  

has 50% of the instances and all the other classes combined have  50% of the instances. 

2. Obtain the training samples for the OVA base models based on the design of step 1 by 

sampling from the partitions created in phase I. Use bootstrap sampling if the partition size 

is smaller than the required number of instances.  

3. Create the OVA base models and OVA aggregate model, and test the aggregate model 

using the test samples created in phase I. 

4. Compare the performance of the un-boosted OVA aggregate model with that of the single 

k-class model on the test samples. 
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The steps given in figures 10.6 and 10.7 are recommended for purposes of creating 

OVA aggregate models. These steps should be conducted after the steps given in 

figure 10.5. For purposes of creating pVn aggregate models, the steps given in figure 

10.8 are recommended. These steps should be conducted after the steps given in 

figure 10.5. Suggestions on how to conduct the steps of figures 10.6, 10.7 and 10.8 

using commonly available software (SPSS and MS Excel) are given in the appendix 

table H.2.  

 
 

 
Figure 10.8: Steps for the design, creation and testing of pVn aggregate models 
 

10.5 Chapter summary 
 

A summary of the research contributions for feature selection, base model design 

and training dataset selection have been given in this chapter. Recommendations for 

feature selection and training dataset selection for OVA and pVn modeling from large 

datasets have also been presented. A detailed discussion of the research 

contributions in terms of the expectations for design science research is provided in 

the next chapter. 

Phase III: pVn model design, training dataset selection, and testing 
If the single k-class model has a sparse confusion matrix, proceed as follows to create a pVn model:  

 

1. Use the algorithms of figures 8.4 and 8.5 to establish the p-classes and n-classes for the 

base models, based on the confusion graphs created in phase I. 

2. Design  the training samples so that the p-classes combined have a high instance 

representation (eg. 80%) and the n-classes combined have a low instance representation 

(eg. 20%). 

3. Obtain the training datasets designed in step 2 through random sampling from the 

partitions created in phase I. 

4. Create the pVn base models and aggregate model and test the performance of the 

aggregate model using the test sets created in phase I. 
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Chapter 11  

Discussion of Research Contributions 
 

‘In theory every individual scientist is capable of being his/her most severe critic, and 

his/her own writings are expected to discuss with real care and seriousness the 

objections against his/her own novel ideas..’ (Toulmin et al, 1979) 

 

The research contributions for feature selection, base model design and dataset 

selection for aggregate modeling were summarised in sections 10.2.1 and 10.3.1. It 

was stated in chapter 4 that the design science research paradigm was used to guide 

the activities of the research, and the design science research process was 

discussed in detail in that chapter.  A brief discussion of the expected design science 

research outputs is provided in this chapter followed by the author’s self-assessment 

of how the research meets the expectations of design science research.  Sections 

11.1 and 11.2 respectively provide a discussion of the outputs of design science 

research and the recommendations for design science research evaluation. Section 

11.3 provides a discussion of the limitations of the methods proposed in this thesis. 

Section 11.4 provides a summary of this chapter. 

 

11.1 Outputs of design science research 
 

Hevner et al (2004) have stated that design science research for Information 

Systems must produce one or more artifacts. Recall from chapter 4 that Hevner et al 

(2004) have defined an artifact as: 

 

‘..innovations that define ideas, practices, technical capabilities, and products, through 

which the analysis, design, implementation, and use of Information Systems can be 

effectively accomplished.’ 

 

Hevner et al (2004) and March and Smith (1995) have further stated that the artifacts 

for design science research are constructs, models, methods, and instantiations. 

Vaishnavi and Kuechler (2004/5) have observed that in addition to the production of 

artifacts, design science research should produce better theories for the field of 

research. Constructs form the conceptual vocabulary of the field of study. Constructs 
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make up the language used to define and communicate the problems and solutions 

in the field of study. For design science research, the term ‘model’ is used to refer to 

the set of propositions that specify relationships between the constructs. Methods are 

definitions of the processes that need to be achieved. A method may be stated as a 

set of steps to perform a given task, or a method may be specified as a formal 

computational algorithm.  Instantiations are the actual implementations of the models 

and methods in order to demonstrate that they actually work. ‘Better theories’ provide 

an increased understanding arising from the study of the created artifacts. 

 

11.2 Evaluation of design science research 
 

The criteria provided by Hevner et al (2004) for the evaluation of design science 

research are discussed in this chapter together with the author’s self assessment of 

how the these criteria were met. The criteria for design science research evaluation 

are presented in section 11.2.1. Sections 11.2.2 through 11.2.6  provide a discussion 

of the author’s self-assessment based on Hevner et al’s (2004) assessment criteria.  

 

11.2.1 Criteria for design science research evaluation 
 

Manson (2006) has argued that criteria for the evaluation of research help 

researchers, reviewers, editors, and readers to understand the requirements for 

effective research. Hevner et al (2004) have provided seven guidelines for evaluating 

design science research as shown in table 11.1.  Even though Hevner et al (2004) 

have advised against mandatory use of these guidelines, the author is of the opinion 

that in the absence of alternative guidelines at her disposal, these guidelines are 

suitable for stating the research contributions and conducting a self-assessment of 

the work done. The extent to which requirement number 2 (problem relevance) was 

met, was discussed in chapters 1, 2 and 3 of this thesis. The research that was 

conducted is assessed in the following sections. 
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Table 11.1:  Criteria for the evaluation of design science research: adopted from Hevner et al 
(2004/5) 

Criterion / Requirement 
 
Description  
 

1. Design of an artifact 
Design science research for Information Systems must produce a useful 
artifact in the form of a construct, model, method or an  instantiation 
 

2. Problem relevance 
The problem that the design science research is aimed at solving, must 
be technology-based, important, and relevant to some business function. 
 

3. Design evaluation 
The utility, quality, and effectiveness of the designed artifact must be 
rigorously demonstrated using well executed methods of evaluation. 
 

4. Research contributions 

Design science research must provide clear and verifiable contributions in 
the areas of the design artifact, design foundations, and/or design 
methodologies 
 

5. Research rigor 
The researcher must demonstrate that rigorous methods were applied in 
both the construction and evaluation of the designed artifact. 
 

6. Design as a search 
process 

The researcher must demonstrate that the available means were utilized 
well, in order to reach the desired ends while satisfying the laws in the 
problem environment (Satisficing). 
 

7. Communication of the 
research 

Design science research must be presented effectively to the intended 
audience. 
 

 

11.2.2   Constructs, models and better theories 
 

Requirement number 1 in table 11.1 refers to the design of artifacts. Constructs and 

models are two of the artifacts that design science research must produce (Hevner et 

al, 2004). The author claims in this thesis that one construct that arose from this 

research is the concept of decision rule-based search for feature subset selection. 

The author further claims that two constructs that arose out of this research are: pVn 

modeling, confusion graphs and the associated sparse confusion matrix property for 

aggregate modeling. Theoretical models are propositions expressing the 

relationships between the constructs / concepts of the research domain. Theoretical 

models were developed to express the relationships between the factors that affect 

the quality of selected features, and the factors that have an influence on the 

outcome of training dataset selection for aggregate modeling. 

 

With reference to better theories, the experimental results were used to demonstrate 

the relationships between the various factors that affect predictive model 

performance. It will be necessary in future to conduct causation experiments (Cohen, 

1995) to provide proof of these relationships. 
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11.2.3 Methods and instantiations 
 

Methods and instantiations are two of the artifacts that design science research must 

produce (Hevner et al, 2004).  A summary of the research contributions and 

proposed methods for feature selection, base model design, training dataset 

selection, and model aggregation for large datasets was given in sections 10.2 and 

10.3. In this thesis, the author claims that the proposed methods and algorithms 

result in the selection of good feature ranking, good feature subset selection, design 

of highly competent base models, and selection of good training datasets for the 

base models. Furthermore, the proposed algorithm for model combination of 5NN 

base models (and KNN models in general) result in more effective resolution of 

conflicting predictions by the base models. Instantiation refers to the creation 

(implementation) of artifacts (constructs, models, methods) and demonstration that 

the artifacts can be implemented in a working system. All the methods and 

algorithms proposed in this thesis were implemented, tested and found to provide 

statistically significant improvements in predictive performance. 

 

11.2.4 Rigorous design evaluation 
 

Requirements number 3 and number 5 in table 11.1 are concerned with design 

evaluation, and the rigor that is applied to the evaluation processes. Hevner et al 

(2004) have stated that design evaluation involves the demonstration of utility, quality 

and effectiveness. Furthermore, the evaluation methods used to demonstrate (claim) 

the utility, quality and effectiveness of the methods and instantiations should also be 

evaluated. Hevner et al (2004) have further stated that designed artifacts should be 

evaluated using the methodologies that exist in the knowledge base for the field of 

research. 

 

The evaluation methods that are available for predictive data mining originate from 

the area of Statistics, Machine Learning and Operations Research and were 

discussed in section 4.7. These evaluation methods enable the researcher to: 

 

 
 
 



  236 

(1) Measure the predictive performance of a model in terms of overall predictive 

accuracy and error rate on all the classes, true positive, false positive, true negative, 

and false negative rates on each individual class.  

 

(2) Measure the performance gains of using an aggregate model compared to using 

a single model. 

 

(3) Conduct statistical tests, most commonly the Student’s t-tests on means and F-

tests on variance, to compare the predictive accuracy of two models.  

 

(4) Conduct in-depth model analysis using ROC curves. 

 

All the above methods were used for this thesis for the assessment of model 

performance. Machine learning research has traditionally concentrated on small 

datasets as exemplified by the datasets available from the UCI Machine Learning 

repository (Ascuncion & Newman, 2007; Blake & Merz, 1998). These datasets range 

in size from 100 instances to 10000 instances, and typically have a small number of 

predictive features. Researchers in machine learning have routinely used many small 

datasets (e.g. 30) to evaluate algorithm performance. However, as discussed in 

chapter 4, for experimental studies on aggregate modeling, bias and variance 

reduction, researchers have typically used small numbers of datasets ranging 

between two and nine datasets. The exception has been Ali and Pazzani (1996) who 

have used 30 small datasets. Performance evaluation using 30 small datasets can 

be feasibly conducted using a modest amount of time and computational resources. 

 

Data mining poses new challenges in terms of evaluation. Typically, very large 

datasets are used as exemplified by the datasets available from the UCI KDD archive 

(Bay et al, 2000; Hettich & Bay, 1999). Datasets for data mining research range in 

size from 0.1 million instances to several million instances. Additionally these 

datasets have large numbers of potentially predictive features. In the author’s 

opinion, the demonstration of rigor in evaluation, through the use of many very large 

datasets requires an excessively large amount of time and computational resources, 

which are not available to many researchers. In chapter 4 it was observed that 

experimental studies in dataset selection and aggregate modeling have been 

conducted by teams of researchers using between one and four very large datasets.  
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The author used a small number of datasets. Two small datasets (Abalone and 

Mushroom) and two large datasets (forest cover type and KDD Cup 1999) were used 

for feature selection. Two large datasets (forest cover type and KDD Cup 1999) and 

one small dataset (wine quality) were used for the training dataset selection and 

aggregate modeling studies. Twenty four models were created and tested for the 

three datasets, two algorithms, and four modeling methods. Many samples were 

taken from the large datasets, and the sample sizes used were larger than the typical 

dataset size for machine learning. Experiments were designed through the 

application of the scientific method and the evaluation methods listed above were 

employed. 

 

11.2.5 Rigor and design as a search process 
 

Requirements number 5 and number 6 in table 11.1 are concerned with the search 

process followed to arrive at good solutions for artifact design, and the rigor that is 

applied to the search process. Hevner et al (2004) have stated that rigor in the 

design process for design science research is derived from the effective use of the 

existing knowledge base (theoretical foundations and methodologies) of the field of 

research. A detailed assessment of the theoretical foundations of existing methods of 

dataset and feature selection was provided in chapters 2 and 3. A discussion was 

provided on how several existing theories can be applied to the task of designing 

feature selection and training dataset selection from large datasets for aggregate 

model implementation. The experiments presented in chapters 5, 7 and 8 were 

designed based on the assessments given in chapters 2 and 3 and the 

methodologies presented in chapter 4. 

 

Hevner et al (2004) and Simon (1996) have observed that the design of artifacts is a 

search process aimed at the discovery of an effective solution to a problem. Hevner 

et al (2004) and Simon (1996) have characterized the design process as a generate-

and-test cycle involving the generation of design alternatives and testing the 

alternatives against specific requirements. To the author’s understanding, the 

generate-and-test cycle discussed by Hevner et al (2004) and Simon (1996) is 

identical to the scientific method that was discussed in chapter 4, and depicted in 

figure 4.3. Hevner et al (2004) have observed that an un-guided search for design 

alternatives would be intractable. It is usually prudent to employ heuristic strategies in 

order to generate designs for satisfactory solutions. In the field of Operations 
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Research, this approach is called satisficing (Simon, 1996). Heuristic search and 

satisficing for the scientific method are achieved through the cycle of:         

(experiment-design)�(empirical-testing)�(empirical-observation)�(hypothesis- 

generation)�(experiment-design), as depicted in figure 4.3. The scientific method 

was followed for the studies reported in chapters 5, 7 and 8. 

 

11.2.6 Research contributions for design science research 
 

Requirement number 4 in table 11.1 is concerned with research contributions. 

Hevner et al (2004) have observed that any assessment of a research activity must 

answer the question: ‘What are the new and interesting contributions?’  Hevner et al 

(2004) have stated that design science research must provide one or more of the 

following contributions: design artifact, foundations and methodologies. For this 

thesis, the author claims that the design artifacts that were discussed in sections 

11.2.2 and 11.2.3 are research contributions to the field of predictive data mining. 

Foundations refer to the knowledge base of the field. The author further claims that 

the algorithms presented in chapters 5, 6 and 8 for feature selection and aggregate 

modelling are contributions to the field of predictive data mining.  

 

Table 11.2 provides a summary of the new algorithms proposed in this thesis. The 

guidelines for feature selection and training dataset selection, new modeling 

methods, and theoretical models discussed in chapter 10 are a research contribution 

to the field of predictive data mining.  

 

Table 11.2: Summary of new algorithms  
 
Algorithm category 

 
Location 

 
Description 

Feature selection  
Fig. 5.3 

Decision rule-base search algorithm  
for heuristic search of the best feature subset 

OVA modeling  
Fig. 6.3 

Algorithm for combining base model predictions for the 
See5 algorithm and for classification trees in general 

 
 
pVn modeling 

 
Fig. 6.4 

Algorithm for combining base model predictions for the 5NN 
algorithm and for the KNN algorithm in general 

 
Fig. 8.3 

 
Algorithm for class selection of pVn base model 

 
Fig. 8.6 

 
Modified algorithm for class selection for pVn base models 

 

Methodologies refer to the creative development and use of new evaluation methods 

and evaluation metrics. A modified version of Ali and Pazzani’s (1996) performance 

improvement measures were presented in chapter 6 and used extensively for 

chapters 7 and 8. A modified version of Provost and Domingo’s (2001) VUS estimate 
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was presented in section 9.2. In this thesis the author claims that these modified 

measures provide a modest extension to existing evaluation metrics for predictive 

modeling. 

 

11.3 Limitations of the proposed dataset selection 
methods 
 

Toulmin’s argumentation model (Toulmin el al, 1979; Toulmin, 1958) which explains 

the structure of claims in scientific discourse, and Ngwenyama’s (2007) analysis of 

scientific research claims were introduced in chapter 1. Recall that claims are 

supported by data (evidence), warrants (rules of inference) and backing (authoritative 

sources for warrants). Two additional components in Toulmin’s model are qualifiers 

and rebuttals. Qualifiers are used to limit the strength of a claim and rebuttals provide 

an elaboration for the qualifiers. The claims made in this thesis concern the 

effectiveness of feature selection and training dataset selection, and aggregate 

modeling methods as discussed in chapters 5 to 8 and summarised in chapter 10. 

 

A claim was made in chapter 5 that the use of many samples to measure class-

feature and feature-feature correlations is an effective method for the accurate 

measurement of these correlations. However, the datasets used in the studies were 

of moderately high dimensionality. In practice there are many problem domains for 

which the dimensionality of the datasets are extremely high. The use of many 

samples to measure correlations coupled with robust correlation measures with 

quadratic time complexity is a daunting task. This issue was not addressed in this 

thesis and is left for future work. The qualifier for the claim is that the proposed 

methods of using many samples to measure correlations are only appropriate when 

the dimensionality of a dataset is not very high. 

 

Claims were made in chapters 7, 8 and 9 that the proposed methods of base model 

design and training dataset selection for OVA and pVn modeling result in aggregate 

models that have a higher level of predictive performance compared to single k-class 

models. A qualifier was stated in section 8.5.3 that the proposed methods for boosted 

OVA and pVn model design are only appropriate when a dataset has a single k-class 

model confusion matrix with the sparse confusion matrix property. The situations 

where a non-sparse confusion matrix can be transformed into a sparse confusion 

matrix were also given in section 8.5.3. 
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11.4 Chapter Summary 
 

The research outputs and claims of contributions in this thesis were assessed in the 

context of design science outputs and research contributions. The limitations of the 

proposed methods were also discussed. The conclusions for the thesis are 

presented in the next chapter. 
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Chapter 12 

Conclusions 
 

‘You are my life. In you my peace, in you my joy, in you my strength, in you my God.’ 

(Benjamin Dube, 2007) 

 

12.1 Summary of the thesis 
 

The central argument of this thesis is that, it is possible for predictive data mining to 

systematically select many dataset samples and employ different approaches 

(different from current practice) to feature selection, training dataset selection, and 

model construction. When a large amount of information in the large dataset is 

utilised in the modeling process, the resulting models should have a high level of 

predictive performance and should be reliable. 

 

The discussions of chapters 2 argued that there is a need for methods for training 

dataset selection from large datasets, using as much data as possible with the 

objective of reducing the bias and variance components of the prediction error. The 

discussions of chapter 3 argued for the need for feature selection from large 

datasets, with the objective of using as much data as possible in order to reliably 

measure the class-feature and feature-feature correlations used in the feature 

selection process. 

 

The experimental results of chapter 5 demonstrated that the use of the mean values 

for the correlations, obtained through the use of many samples, robust measure of 

correlations, and validation methods such as the use of fake variables, results in the 

identification of features which are relevant for the prediction task. The experimental 

results of chapter 5 also revealed that the incorporation of domain-specific definitions 

of the meaning of low, medium and high correlation into a feature subset search 

procedure results in the selection of good feature subsets for the prediction task at 

hand. The experimental results of chapters 7, 8 and 9 demonstrated that the use of 

the proposed methods for base model design and training dataset selection for OVA 

and pVn aggregate modeling has the potential to produce models which have a 

higher level of predictive performance compared to single models. 
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12.2 Conclusions and reflection 
 

From a computational perspective it can be argued that the methods proposed in this 

thesis provide the following desirable outcomes: Firstly, the methods result in the use 

of large amounts of data which provide a large amount of information to the modeling 

process. Secondly, the methods for OVA and pVn modeling lead to the avoidance of 

un-necessary computations since the modeling effort is aimed at the creation of 

models that have a potential to increase predictive performance. From a statistical 

perspective it can be argued that the proposed methods provide the following 

desirable outcome: The methods result in the use of large amounts of data and at the 

same time avoid the problems of overfitting, data dredging and the modeling of 

phantom (chance) structure. From an Operations Research perspective it can be 

argued that the proposed methods provide the following desirable outcome: One of 

the uses of ROC analysis is used to determine the optimal operating point for a 

predictive model. The proposed OVA and pVn modeling methods have the potential 

to produce predictive models with higher optimal performance compared to single 

models. 

 

 It has been demonstrated that the use of large amounts of data with the methods 

proposed in this thesis, has the potential to provide predictive models with a high 

level of predictive performance. In general, no single method can be claimed to be 

suitable for all datasets and for all algorithms. Schaffer (1994) has argued that no 

single strategy for machine learning is better at generalisation (prediction) than all 

other strategies for all problem domains. In his study of noise-free datasets, Wolpert 

(1996) has demonstrated through the no free lunch theorems for machine learning 

that all algorithms are equivalent on average, in terms of predictive performance. The 

foregoing arguments can be easily extended to other computational domains. With 

the foregoing observations in mind, the author does not claim that the proposed 

methods will provide effective solutions for all data mining application domains. In 

order to establish the extent of applicability for the proposed methods additional 

empirical studies as discussed in the next section, will have to be conducted in 

future. 

 

 
 
 



  243 

12.3 Future work 
 

It was observed in chapter 5 that predictive features can be eliminated when robust 

correlation measures are used even when such features are good predictors for one 

or more local areas of the instance space. It will be useful in future to conduct studies 

for the identification of locally predictive features which are predictive of real structure 

as opposed to phantom (chance) structure. It was also observed in chapter 5 that 

predictive features for severely under-represented classes may be eliminated when 

robust correlation measures are employed. In future it will be useful to study feature 

selection methods that directly address this problem. 

 

 It was observed in chapters 5 and 10 that use of many samples to measure 

correlations coupled with robust correlation measures with quadratic time complexity 

is not a feasible approach for the estimation and validation of class-feature and 

feature-feature correlation coefficients for datasets of very high dimensionality. It will 

be useful in future to study feasible and reliable methods of correlation measurement 

for datasets of very high dimensionality.  

 

The confusion matrix was used for the experiments of chapters 7 and 8 as a basis for 

the identification of confusion regions for a classification task. It will be useful in 

future to investigate other methods for the identification of confusion regions. 

Confusion graphs were used as input to the algorithms for determining the design of 

pVn models. The weights for the arcs of the confusion graphs were not used in the 

algorithm’s decisions except in the case where a maximally connected graph had to 

be pre-processed.  It will be useful to investigate how the arc weights in a confusion 

graph can be used to fine tune the decisions of these algorithms. 

 

The dataset selection and aggregate modeling methods proposed in this thesis were 

directed at multi-class problems, and are not directly applicable to 2-class prediction 

problems unless a dataset is pre-processed through cluster analysis as discussed in 

section 8.5.3. It will be useful in future to investigate how the proposed OVA and pVn 

base model design and training dataset selection methods could be extended to 2-

class problems. 

 

It was stated in sections 8.5.3 that the proposed base model design and training 

dataset selection methods for boosted OVA and pVn aggregate models are only 
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applicable when the single k-class confusion matrix for a dataset has the sparse 

confusion matrix property. It will be useful to investigate different problem 

decomposition methods (different from OVA and pVn) for such datasets. For such 

problem decomposition methods it will be necessary to design training dataset 

selection methods for bias error reduction. 

 

It was observed in chapters 7 and 10 that if an algorithm for the combination of base 

model predictions is able to resolve conflicting (tied) predictions then a high level of 

predictive performance is realised for an aggregate model. This was shown to be the 

case for 5NN classification. It will be useful in future to investigate methods of 

resolving conflicting (tied) predictions for classification tree algorithms. 
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Appendices   
 

The appendices in this section provide definitions of the symbols used, general 

definitions of statistical measures and descriptive statistics for the datasets used in 

the experiments. Details of correlation measurements, details for the 5NN 

aggregation algorithm, and OVA and pVn model performance are provided. 

Information is also provided on suggestions on how to use commonly available 

statistical and database software to implement some of the steps for the proposed 

feature and training dataset selection methods. Finally, a list of publications and 

conference presentations arising from the research is given. The table below 

summarises the appendix contents. 

 

Table of appendices 
 
Appendix 

 
Title 
 

 
Description 

A Definition of symbols 
 

Definition of symbols used in the thesis 

B Definitions of statistical measures 
 

Definitions of statistical measures used in 
the thesis 

C Descriptive statistics for datasets 
 

Descriptive statistics for forest cover type, 
KDD Cup 1999, Abalaone3C and 
mushroom 

D Correlation measurements 
 

Details of correlation measurements and 
feature selection of chapter 4 

E  
Algorithm for 5NN aggregation 

Details of algorithm for the combination of 
5NN base model predictions 

F Predictive performance of  OVA 
and pVn models 
 

Detailed results for accuracy for single 
and aggregate models for chapters 7 and 
8. 

 
G 

ROC analysis details Computation of the AUC for one-versus-
rest ROC analysis. Details of AUC 
computation results. 

 
H 

Using statistical and database 
software to implement dataset 
selection methods 

Suggestions for using commonly 
available statistical and database 
software to implement dataset selection 

 
I 

Publications and Conference 
Presentations 
 

Publications and conference 
presentations arising out of the work 
reported in this thesis 
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Appendix A   

Definition of symbols 
 
Table A.1: Symbols used in the thesis 
Symbol Meaning 

accuracy The predictive accuracy of a model 

vi BB ,..,  Binary features created through the process of binarisation of a qualitative feature 

with v levels 

corr(X,Y) The sample correlation coefficient between two random variables X and Y 

)( fcorrcf  The sample correlation coefficient between a feature f and a class variable C 

)( fcorrff  The mean correlation between feature f and all other currently selected features 

kcc ,...,1  The k levels of a class variable (number of classes for a prediction task) 

C A class variable for classification 

conf  Probabilistic score assigned by a model to a class prediction as the level of 

confidence in the prediction 

d The number of predictive features (variables) that define the d-dimensional instance 

space for classification modeling 

δ−1  The probability of a learner being able to induce a hypothesis from data as in PAC 

error The prediction error of a model 

RD errorerror ,  Error difference and error ratio for measuring performance gains 

AS errorerror ,  Prediction errors of a single model and aggregate model respectively 

ε  Prediction error as in PAC 

E Entropy function 

f A feature (predictor) used in predictive modeling 

φ  The phi coefficient for measuring the level of association between two qualitative 

variables 

ig  A region of the instance space 

G The Gini  concentration coefficient 

h A hypothesis as defined in machine learning 

H A set of hypotheses as defined in machine learning 

0H and aH  The null hypothesis and alternative hypotheses for statistical hypothesis testing 

k Number of classes for a classification problem 

K Number of folds for cross validation 

VLL ,..,1  Levels of  a qualitative (nominal or ordinal) variable 

λ  Cut-off score value for ROC analysis 
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Table A.1 continued 

Symbol Meaning 

m A mapping or a function  

AM  General reference to a predictive model 

Aµ  The population mean value of predictive accuracy of a model A 

n  The size of a sample taken from a parent dataset 

nt For sequential random sampling, nt  is the number of records already selected 

N The size of the parent dataset / database from which samples are taken 

iova  The ith sub-problem for the prediction of class ic in OVA classification 

p Probability of obtaining an experimental result given that the null hypothesis is true 

(p value) 

P Percentage value for a confidence interval (P% confidence interval) 

rP  Probability 

PT The number of partitions of a parent dataset 

pred Output of a predictive model 

cπ and dπ  The probabilities of concordance and discordance used in the computation of 

Kendall’s tau 

XYr , r Pearson’s sample correlation coefficient for two random variables X and Y 

XYτ  Kendall’s sample correlation coefficient for two random variables X and Y 

dR  Super domain of real values for the random variables dXX ,..1  

RMsize, RQsize For sequential random sampling, RMsize is the number of records still to be 

processed; RQsize is the number of records required for the sample 

XS  The sample standard deviation for random variable X 

SU Symmetrical uncertainty coefficient 

Xσ  The population standard deviation for random variable X 

si and spi Situations for feature subset search 

t For sequential random sampling, t is the number of records processed so far 

T The T statistic for statistical hypothesis testing 

u Number of unselected features for heuristic feature subset search 

v Number of levels for a qualitative variable 

V Cramer’s V statistic for measuring the level of association between two qualitative 

variables 

VC(H) The Vapnik-Chervonenkis dimension of a set of hypotheses  H for a learning task  

w Number of features currently selected/processed by a feature selection 

method/algorithm 

W Number of candidate features for heuristic feature subset search 
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Table A1 continued 

Symbol Meaning 

x and dxx ,..1  A vector of predictive features (predictor variable ) values ( an instance) 

qx  A query (or test) instance to be classified / assigned a predicted value 

X, Y Random variables 

Z The Z statistic for statistical hypothesis testing 

PZ  Constant for the calculation of the P% confidence interval of the mean 

z% Percentage of values to remove from each tail when winsorising variable values  

Confusion matrix and ROC analysis symbols: 

Pos Total number of positive instances 

Neg Total number of negative instances 

TP Number of positive instances predicted as positive  

FN Number of positive instances predicted as negative  

TN Number of negative instances predicted as negative  

FP Number of negative instances predicted as positive  

TPRATE Fraction of the positive instances predicted as positive  

FNRATE Fraction of the positive instances predicted as negative  

TNRATE Fraction of the negative instances predicted as negative  

FPRATE Fraction of the negative instances predicted as positive  

YRATE Fraction of test instances predicted as positive (used for lift analysis) 
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Appendix B  

Definitions of statistical measures 
 

A detailed discussion of the statistical measures used in this thesis is provided in this 

appendix. The entropy measure, Gini index of concentration, and measures of 

association (correlation) were used in the discussions of chapters 3, 4, 5 and 7.  

B.1 Entropy definitions 
 

The entropy function E(X) (Giudici, 2003; Shanon & Weaver, 1962) measures the 

amount of uncertainty, heterogeneity, information or randomness in the values of the 

qualitative or quantitative discrete random variable X and is defined as 

 

)(log)()( ir
i

ir xPxPXE 2�−=
               (B.1) 

 

where )( ir xP  which is used as a shorthand notation for )( ir LXP =  is the probability 

that variable X has the value (level) iL . The entropy of the random variable X, 

conditioned on the values of a second random variable Y is denoted as E(X|Y) and is 

defined as 
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where )|( iir yxP  which is used as a shorthand for ( ))(|)( jir LYLXP ==  is the 

conditional probability that random variable X has the value (level) iL  given that 

random variable Y has the value (level) jL  and is defined as 
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where ),( jir yxP is the probability of values ix  and jy appearing together. The joint 

entropy of two random variables X and Y denoted as E(X,Y) is defined as 
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),(log),(),( jir
i

jir yxPyxPYXE 2�−=                           (B.4) 

 

The difference between the entropy of X, E(X) and the entropy of X conditioned on Y, 

E(X|Y) is called the information gain IG(X,Y) and is defined as 

 

)|()(),( YXEXEYXIG −=                            (B.5) 

)|()(),( XYEYEYXIG −=                           (B.6) 

),()()(),( YXEYEXEYXIG −+=                          (B.7) 

 

The information gain measures the amount of reduction in the entropy of X when the 

values of X are grouped based on the values of Y. As indicated by the equations 

(B.5) and (B.6), information gain IG(X,Y) is a symmetric measure from which the 

symmetrical uncertainty coefficient SU is derived. The SU coefficient is defined as 
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The SU coefficient was used for the experiments of chapters 5 and 7 as a measure 

of correlation (association) for qualitative features. 

 

B.2 Measures of association 
 

B.2.1 Pearson’s correlation coefficient 
 

Pearson’s sample correlation coefficient, r (Wilcox, 2001), between two random 

variables X and Y is defined as 

YX

ii
XY SSn

yyxx
r
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where SX and SY are the standard deviations of X and Y respectively, and n is the 

sample size. 
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B.2.2 Kendall’s correlation coefficient 
 

Kendall’s rank correlation coefficient tau (Wilcox, 2001) is defined as  

 

dc ππτ −=                  (B.10) 

where cπ  and dπ  are the probabilities of concordance and discordance respectively. 

A pair of observations, ),( 11 yx  and ),( 22 yx   shows concordance if 21 xx >  and 

21 yy >  or 21 xx <  and 21 yy < , otherwise the pair shows discordance. The values cπ  

and dπ  are computed for all possible pairs for a data sample. For a data sample of 

size n, there are 
2

)1( −nn
possible pairs. However, some pairs will be tied i.e. having 

neither concordance nor discordance. 

 

B.2.3 Pearson’s chi-square statistic 
 

Pearson’s chi-square statistic measures the level of association between two 

qualitative random variables X and Y (Giudici, 2003). The statistic is computed using 

the frequencies in a contingency table. A contingency table is a cross-tabulation 

which gives the frequencies of co-occurrence of the values (levels) of the variables X 

and Y. Pearson’s chi-square statistic is defined as 
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where I and J are respectively the number of rows and columns in the contingency 

table, ijn are the observed frequencies in the cells of the contingency table and, *
ijn  

are the expected frequencies for the cells of the contingency table under the null 

hypothesis of independence between X and Y. 

 

The φ coefficient and Cramer’s V coefficients are derived from Pearson’s chi-square 

coefficient, and have the same interpretation as Pearson’s r coefficient. The φ  

coefficient is defined as (Giudici, 2003) 
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n

2
2 χφ =                  (B.12) 

 

and Cramer’s V coefficient is defined as 

}1,1min{.

2
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v
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               (B.13) 

 

The φ coefficient, Cramer’s V coefficient, and symmetrical uncertainty coefficient can 

all be used to measure the level of association between two qualitative features. 

 

B.3 Gini concentration coefficient 
 

Suppose there are n entities on which a given property EP has been measured 

yielding n pairs of measurement values )},(),..,,(),...,,{( ni EPnEPiEP11  where i 

identifies the thi  entity and iEP  identifies the measurement value for the thi   entity. 

Let iF  be the cumulative percentage of the count of entities from the first to the thi  

entity. Let iQ  be the cumulative percentage of the measurement values from the first 

measurement, 1EP  to the thi  measurement, iEP . A summary statistic of the 

concentration of the measured property EP among the n entities is called the Gini 

concentration coefficient defined as 
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              (B.14) 

 

The Gini measure equals 0 for minimum concentration and 1 for maximum 

concentration.  Minimum concentration means that all n entities have equal values of 

the property EP.  Maximum concentration means that only one entity possesses the 

property EP and all other n-1 entities have a value of 0 for EP. 
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The Gini concentration coefficient is related to the Area Under the ROC curve (AUC) 

as follows: The EP property corresponds to the scores that are assigned by a 

probabilistic classifier. The AUC was discussed in section 4.7. 

 

B.4 Computation of confidence intervals for the mean 
  

A P% confidence interval for the mean is an interval that is expected with probability 

P% to contain the true value of the population mean (Mitchell, 1997). Laplace’s 

estimate of the confidence interval of the population mean is defined as  

 

�
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�
�
�
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n
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ZxCI X

P
X

P

__

,                      (B.15) 

 

where 
_

x  is the sample mean for random variable X, XS is the sample standard 

deviation, and n is the sample size (Wilcox, 2001; Mitchell, 1997). Different values of 

PZ  are used to obtain different confidence intervals. A value of 961.=PZ  is used for 

the 95% confidence interval. A value of 582.=PZ  is used for the 99% confidence 

interval (Wilcox, 2001; Mitchell, 1997). 
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Appendix C  

Descriptive statistics for the datasets 
 

The descriptive statistics for the datasets used in the experiments are presented in 

this section. 

 

C.1 Forest cover type dataset 
 

Figure C.1 provides the class frequencies and a graphic representation for the forest 

cover type dataset classes. Tables C.1 and C.2 show the descriptive statistics for the 

qualitative and quantitative variables in the forest cover type dataset. 

 

 
Figure C.1: Class frequencies for the forest cover type class variable (covertype) 
 

Table C.1: Descriptive statistics for the quantitative variables  in the forest cover type dataset 
  

Minimum Maximum Mean 
Standard 
Deviation 

Coefficient of 
variation (CV) 

Aspect 0 360 155.7 111.9 0.7 
Elevation 1859 3858 2959.4 280.0 0.1 
Slope 0 66 14.1 7.5 0.5 
HorizDistToHydro 0 1397 269.4 212.5 0.8 
VertDistToHydro -173 601 46.4 58.3 1.3 
HorizDistToRoad 0 7117 2350.2 1559.3 0.7 
HillShade9am 0 254 212.2 26.8 0.1 
HillShadeNoon 0 254 223.3 19.8 0.1 
HillShade3pm 0 254 142.5 38.3 0.3 
HorizDistToFire 0 7173 1980.3 1324.2 0.7 

Class 
label Class name Percent 

1 Spruce / fir 36.5 

2 Lodgepole pine 48.8 

3 Panderosa pine 6.2 

4 Cottonwood / Willow .5 

5 Aspen 1.6 

6 Douglas-fir 3.0 

7 Krummholz 3.5 
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Table C.2: Descriptive statistics for the qualitative variables for the forest cover type dataset 

Variable name 
Percentage 
for '0' 

Percentage 
for '1' 

Variable 
name 

Percentage  
for '0' 

Percentage  
for '1' 

WildernessArea1 55.1 44.9 SoilType19 99.3 0.7 
WildernessArea2 94.9 5.1 SoilType20 98.4 1.6 
WildernessArea3 56.4 43.6 SoilType21 99.9 0.1 
WildernessArea4 93.6 6.4 SoilType22 94.3 5.7 
SoilType1 99.5 0.5 SoilType23 90.1 9.9 
SoilType2 98.7 1.3 SoilType24 96.3 3.7 
SoilType3 99.2 0.8 SoilType25 99.9 0.1 
SoilType4 97.9 2.1 SoilType26 99.6 0.4 
SoilType5 99.7 0.3 SoilType27 99.8 0.2 
SoilType6 98.9 1.1 SoilType28 99.8 0.2 
SoilType7 99.98 0.02 SoilType29 80.2 19.8 
SoilType8 99.97 0.03 SoilType30 94.8 5.2 
SoilType9 99.8 0.2 SoilType31 95.6 4.4 
SoilType10 94.4 5.6 SoilType32 91 9 
SoilType11 97.9 2.1 SoilType33 92.2 7.8 
SoilType12 94.8 5.2 SoilType34 99.7 0.3 
SoilType13 97 3 SoilType35 99.7 0.3 
SoilType14 99.9 0.1 SoilType36 100 0 
SoilType15 100 0 SoilType37 99.9 0.1 
SoilType16 99.5 0.5 SoilType38 97.3 2.7 
SoilType17 99.4 0.6 SoilType39 97.6 2.4 
SoilType18 99.7 0.3 SoilType40 98.5 1.5 

 

C.2 KDD Cup 1999 dataset 
 

Figure C.2 provides the class frequencies and a graphic representation for the KDD 

Cup 1999 dataset classes. Tables C.3 and C.4 give the descriptive statistics for the 

variables in the KDD Cup 1999 dataset. 

 
Figure C.2: Class frequencies for the KDD Cup 1999 training dataset derived class variable 
(class) 

 
 
 
Class Frequency Percent 

DOS 10851 20.9 

NORMAL 35794 68.9 

PROBE 4107 7.9 

R2L 1126 2.2 

U2R 52 0.1 

Total 51930 100.0 
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Table C.3:  Descriptive statistics for the quantitative variables for the KDD Cup 1999 training 
dataset 

Variable name Minimum Maximum Mean 
Standard 
Deviation 

Coefficient 
of variation 
(CV) 

Counted 0 511 53.3 120.4 2.3 
DiffSrvRate 0 1 0.1 0.2 2.0 
DstBytes 0 5,155,468.00 3,758.50 99,612.90 26.5 
DstHostCount 1 255 191 93.2 0.5 
DstHostDiffSrvRate 0 1 0.2 0.3 1.5 
DstHostRerrorRate 0 1 0.1 0.2 2.0 
DstHostSameSrcPortRate 0 1 0.3 0.4 1.3 
DstHostSameSrvRate 0 1 0.6 0.4 0.7 
DstHostSerrorRate 0 1 0.1 0.3 3.0 
DstHostSrvCount 1 255 120.9 107.3 0.9 
DstHostSrvDiffHostRate 0 1 0 0.1 undefined 
DstHostSrvRerrorRate 0 1 0.1 0.2 2.0 
DstHostSrvSerrorRate 0 1 0.1 0.3 3.0 
Duration 0 58,329.00 455.5 2,140.00 4.7 
Hot 0 30 0.3 2.4 8.0 
NumAccessFiles 0 8 0 0.1 undefined 
NumCompromised 0 884 0.1 5.5 55.0 
NumFailedLogins 0 5 0 0 undefined 
NumFileCreations 0 28 0 0.3 undefined 
NumOutboundCmds 0 0 0 0 undefined 
NumRoot 0 993 0.1 6.2 62.0 
NumShells 0 2 0 0 undefined 
RerrorRate 0 1 0.1 0.2 2.0 
RootShell 0 1 0 0 undefined 
SameSrvRate 0 1 0.8 0.4 0.5 
SerrorRate 0 1 0.1 0.3 3.0 
SrcBytes 0 693,000,000.00 23,327.40 3,047,960.00 130.7 
SrvCount 0 511 20 73.9 3.7 
SrvDiffHostRate 0 1 0.1 0.3 3.0 
SrvRerrorRate 0 1 0.1 0.3 3.0 
SrvSerrorRate 0 1 0.1 0.3 3.0 
SUAttempted 0 2 0 0 undefined 
Urgent 0 3 0 0 undefined 
WrongFragment 0 3 0.1 0.4 4.0 
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Table C.4:  Descriptive statistics for the qualitative variables for the KDD Cup 1999 training 
dataset 
 
Variable Level description Level names Frequency% 

ProtocolType 
  
  

3 levels 
  
  

icmp 7.3 
tcp 53.5 
udp 39.2 

Service 
  
  
  
  
  

64 levels 
  
  
  
  
  

domain_u 11.3 
ftp_data 9.1 
http 14.3 
private 19.4 
smtp 9.9 
all other services 36 

Flag 
  
  

9 levels 
  
  

SF 82.1 
S0 10.7 
all other flags 7.2 

Land 
  

2 levels 
  

0 99.96 
1 0.04 

LoggedIn 
  

2 levels 
  

0 67 
1 33 

IsHostLogin 
  

2 levels 
  

0 100 
1 0 

IsGuestLogin 
  

2 levels 
  

0 98.7 
1 1.3 

 

C.3 Abalone3C dataset 
 

Figure C.3 provides the class frequencies and graphic representation for the 

abalone3C dataset classes. Table C.5 gives the descriptive statistics for the 

variables. 

 
Figure C.3: Class frequencies for the abalone3C class variable (age) 
 

 

Class Frequency Percentage 

young 1407 33.7 

middle 1447 34.6 

old 1323 31.7 

Total 4177 100.0 
 
 
 
     
          Class: 
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Table C.5: Descriptive statistics for the quantitative variables of abalone3C 
Variable Minimum Maximum Mean Standard 

Deviation 
Coefficient of 
variation (CV) 

Length 15.0 163.0 104.8 24.0 0.2 

Diameter 11.0 130.0 81.6 19.8 0.2 

Height 0.0 226.0 27.9 8.4 0.3 

WholeWeight 0.4 565.1 165.7 98.1 0.6 

ShuckledWeight 0.2 297.6 71.9 44.4 0.6 

VisceraWeight 0.1 152.0 36.1 21.9 0.6 

ShellWeight 0.3 201.0 47.8 27.8 0.6 

 

The qualitative variable gender has three levels with absolute frequencies of: 1528 

for male (M), 1307 for female (F) and 1342 for infant (I). 

 

C.4 Wine quality datasets 
 

Figure C.4 provides the class frequencies and graphic representation for the wine 

quality (white) dataset classes. The two minority classes: 3 (20 instances) and 9 (5 

instances) were removed from the dataset. Table C.6 gives the descriptive statistics 

for the variables. 

 

 
Figure C.4: Class frequencies for the wine quality (white) class variable (quality) 
 

 

 

 

 

 

 

Class Frequency Percentage 

4 163 3.3 

5 1457 29.9 

6 2198 45.1 

7 880 18.1 

8 175 3.6 

Total 4873 100.0 
 

 

Class: 
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Table C.6 Descriptive statistics for the Wine quality (white) dataset variables 

Variable Minimum Maximum Mean 
Standard 
Deviation 

Coeff of 
variation (CV) 

FixedAcidity 3.8 14.2 6.9 0.8 0.1 
VolatileAcidity 0.1 1.1 0.3 0.1 0.4 
CitricAcid 0.0 1.7 0.3 0.1 0.4 
ResidualSugar 0.6 65.8 6.4 5.1 0.8 
Chlorides 0.0 0.3 0.0 0.0 0.5 
FreeSulfurDioxide 2.0 289.0 35.3 17.0 0.5 
TotalSulfurDioxide 9.0 440.0 138.4 42.5 0.3 
Density 1.0 1.0 1.0 0.0 0.0 
pH 2.7 3.8 3.2 0.2 0.0 
Sulphates 0.2 1.1 0.5 0.1 0.2 
Alcohol 8.0 14.2 10.5 1.2 0.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 



  276 

C.5 Mushroom dataset 
 

Table C.7 gives the descriptive statistics for the mushroom dataset. The variables for 

this dataset are all qualitative nominal. 

 

Table C.8 Descriptive statistics for the mushroom dataset variables 

Variable 
Level 
description Level name 

Frequ-
ency% Variable 

Level 
description 

Level 
 name 

Frequ-
ency% 

CapShape 
  
  

6 levels 
  
  

FLAT                39.1 
StalkRoot 
  
  
  

5 levels 
  
  
  

EQUAL               16.3 
CONVEX              45.1 BULBOUS             45.2 
All other 15.8 UNKNOWN             29.5 

CapSurface 
  
  
  

4 levels 
  
  
  

GROOVES             0.05 All other 9.0 
SMOOTH              31.9 

StalkSfAbvRing 
  
  

4 levels 
  
  

SILKY                28.3 
FIBROUS             29.2 SMOOTH              63.2 
SCALY               38.8 All other 8.5 

CapColor 
  
  
  
  
  

10 levels 
  
  
  
  
  

WHITE               12.4 
StalkSfBlRing 
  
  

4 levels 
  
  

SILKY                27.4 
RED                 17.8 SMOOTH              60.3 
YELLOW              12.7 All other 12.3 
BROWN               27.6 

StalkClAbvRing 
  
  

9 levels 
  
  

WHITE                56.4 
GRAY                24.9 PINK                 22.2 
All other 4.6 All other 21.4 

Bruises? 
  

2 levels 
  

NO                   59.9 
StalkClBlRing 
  
  

9 levels 
  
  

WHITE                55.1 
BRUISES             40.1 PINK                 22.2 

Odor 
  
  

9 levels 
  
  

FOUL                25.7 All other 22.6 
NONE                45.2 VeilType 1 level PARTIAL             100.0 
All other 29.1 VeilColor 

  
4 levels 
  

WHITE                97.6 

GillAttach 
  

2 levels 
  

FREE                97.4 All other 2.4 
ATTACHED            2.6 RingNumber 

  
3 levels 
  

ONE                  92.3 

GillSpace 
  

2 levels 
  

CROWDED             18.9 All other 7.7 
CLOSE               81.1 

RingType 
  
  
  

5 levels 
  
  
  

LARGE               15.4 

GillSize 
  

2 levels 
  

NARROW              30.1 PENDANT             47.1 
BROAD               69.9 EVANESCENT          36.3 

GillColor 
  
  
  
  
  

12 levels 
  
  
  
  
  

WHITE               14.6 All other 1.1 
PINK                18.5 

SporePrintColor 
  
  
  
  

9 levels 
  
  
  
  

BLACK               23.8 
BUFF                20.5 WHITE                28.8 
BROWN               13.2 CHOCOLATE           19.4 
All other 33.1 BROWN               24.9 
GRAY                8.9 All other 3.1 

StalkShape 
  

2 levels 
  

ENLARGING           42.2 
Population 
  
  
  

6 levels 
  
  
  

SOLITARY            20.3 
TAPERING            57.8 SEVERAL             48.3 

Habitat 
  
  
  
  

7 levels 
  
  
  
  

PATHS               13.6 SCATTERED           16.3 
LEAVES              10.2 All other 15.0 
GRASSES             28.6  Class 2 levels EDIBLE 53.3 

WOODS               37.5 POISONOUS 46.7 

All other 10.1  
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Appendix D 

Correlation measurements for feature selection 
 

The details of feature selection discussed in chapters 5 and 7 are presented in this 

appendix. Tables D.1 to D.4 show the class-feature correlations and the number of 

features selected by the t-test and the probes using Pearson’s r and Kendall’s tau 

measures of correlation for the forest cover type dataset.  

 

Table D.1: Feature selection for Forest cover type  
Sample size for 
correlation 
measurement 

Selection criteria  
(Number of selected 
features) 

Top 10  features 

Feature Mean 
Corrcf 

StDev 95% CI of mean 
Low High 

  
100 
  

  
Pearson’s r  
t-test (3) 

WildernessArea4 0.2 0.06 0.16 0.24 
SoilType38 0.14 0.04 0.12 0.16 
Elevation 0.14 0.04 0.12 0.16 

  
  
  
 500 
and  
1000 
  

 Pearson’s r 
t-test (6) 
(WildernessArea1 is 
selected for sample size 
500, SoilType10 is 
selected for size 1000) 

WildernessArea4 0.22 0.02 0.21 0.23 
SoilType12 0.16 0.02 0.15 0.17 
SoilType22 0.14 0.03 0.12 0.16 
Elevation 0.13 0.02 0.12 0.14 
WildernessArea1 0.12 0.01 0.11 0.13 
SoilType38 0.12 0.02 0.11 0.13 

  
  
  
  
100 
  
  
  
  
  

  
Kendall’s tau:  
  
t-test (20) 
Uniform probe (26) 
Uniform binary probe 
(21) 
Gaussian probe (31) 
  
  
  

WildernessArea4 0.58 0.15 0.49 0.67 
SoilType12 0.51 0.19 0.39 0.63 
SoilType38 0.44 0.1 0.38 0.50 
SoilType22 0.43 0.17 0.32 0.54 
SoilType10 0.4 0.13 0.32 0.48 
SoilType39 0.38 0.17 0.27 0.49 
SoilType4 0.35 0.2 0.23 0.47 
SoilType23 0.35 0.15 0.26 0.44 
SoilType11 0.32 0.16 0.22 0.42 
SoilType30 0.31 0.19 0.19 0.43 

  
  
  
  
500 
  
  
  
  
  

  
Kendall’s tau  
  
t-test (35) 
Uniform probe (47) 
Uniform binary probe 
(44) 
Gaussian probe (47) 
  
  
  

WildernessArea4 0.81 0.03 0.79 0.83 
SoilType12 0.72 0.08 0.67 0.77 
SoilType38 0.6 0.08 0.55 0.65 
SoilType39 0.58 0.09 0.52 0.64 
SoilType2 0.58 0.15 0.49 0.67 
SoilType22 0.57 0.1 0.51 0.63 
SoilType4 0.57 0.12 0.50 0.64 
SoilType6 0.56 0.11 0.49 0.63 
SoilType13 0.56 0.11 0.49 0.63 
SoilType40 0.48 0.11 0.41 0.55 

  
  
  
  
  
  
1000 
  
  
  

  
  
Kendall’s tau: 
  
t-test (38) 
Uniform probe (48) 
Uniform binary probe 
(47) 
Gaussian probe (49) 
  
  

WildernessArea4 0.86 0.02 0.85 0.87 
SoilType12 0.7 0.07 0.66 0.74 
SoilType1 0.69 0.05 0.66 0.72 
SoilType38 0.68 0.08 0.63 0.73 
SoilType39 0.68 0.08 0.63 0.73 
SoilType2 0.64 0.1 0.58 0.70 
SoilType4 0.64 0.05 0.61 0.67 
SoilType6 0.6 0.1 0.54 0.66 
SoilType22 0.59 0.1 0.53 0.65 
SoilType10 0.58 0.05 0.55 0.61 
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Table D.2: Feature selection for forest cover type using Kendall’s tau and a Gaussian probe 
 
Rank 

  
Feature 

  
Kendall's tau 

 Feature 
 95% CI 

Gaussian  
probe 95% CI 

 
 Select 

Mean Stdev Low High Low High 
1 WildernessArea4 0.86 0.02 0.84 0.87 0.02 0.05 yes 
2 SoilType12 0.70 0.07 0.66 0.75 0.02 0.05 yes 
3 SoilType1 0.69 0.05 0.65 0.72 0.02 0.05 yes 
4 SoilType38 0.68 0.08 0.63 0.73 0.02 0.05 yes 
5 SoilType39 0.68 0.08 0.62 0.73 0.02 0.05 yes 
6 SoilType2 0.64 0.10 0.58 0.70 0.02 0.05 yes 
7 SoilType4 0.64 0.05 0.61 0.67 0.02 0.05 yes 
8 SoilType6 0.60 0.10 0.54 0.67 0.02 0.05 yes 
9 SoilType22 0.59 0.10 0.53 0.65 0.02 0.05 yes 
10 SoilType10 0.58 0.05 0.55 0.61 0.02 0.05 yes 
11 SoilType3 0.55 0.10 0.48 0.61 0.02 0.05 yes 
12 SoilType40 0.55 0.10 0.49 0.61 0.02 0.05 yes 
13 SoilType13 0.53 0.10 0.47 0.59 0.02 0.05 yes 
14 SoilType11 0.48 0.08 0.43 0.52 0.02 0.05 yes 
15 SoilType35 0.44 0.09 0.39 0.50 0.02 0.05 yes 
16 SoilType18 0.44 0.17 0.34 0.54 0.02 0.05 yes 
17 SoilType17 0.43 0.16 0.34 0.53 0.02 0.05 yes 
18 SoilType26 0.43 0.16 0.33 0.53 0.02 0.05 yes 
19 SoilType34 0.40 0.18 0.29 0.51 0.02 0.05 yes 
20 SoilType23 0.40 0.04 0.37 0.43 0.02 0.05 yes 
21 WildernessArea2 0.39 0.12 0.31 0.47 0.02 0.05 yes 
22 SoilType5 0.36 0.22 0.22 0.50 0.02 0.05 yes 
23 SoilType19 0.35 0.17 0.25 0.46 0.02 0.05 yes 
24 SoilType30 0.34 0.10 0.28 0.40 0.02 0.05 yes 
25 SoilType16 0.33 0.13 0.25 0.41 0.02 0.05 yes 
26 SoilType21 0.32 0.20 0.20 0.44 0.02 0.05 yes 
27 SoilType29 0.30 0.04 0.27 0.32 0.02 0.05 yes 
28 WildernessArea1 0.28 0.03 0.27 0.30 0.02 0.05 yes 
29 SoilType9 0.28 0.16 0.19 0.38 0.02 0.05 yes 
30 Elevation 0.28 0.01 0.27 0.29 0.02 0.05 yes 
31 SoilType24 0.26 0.09 0.20 0.32 0.02 0.05 yes 
32 SoilType14 0.23 0.22 0.10 0.37 0.02 0.05 yes 
33 SoilType31 0.22 0.08 0.17 0.27 0.02 0.05 yes 
34 SoilType28 0.21 0.15 0.12 0.31 0.02 0.05 yes 
35 SoilType32 0.21 0.02 0.19 0.22 0.02 0.05 yes 
36 SoilType33 0.18 0.04 0.16 0.21 0.02 0.05 yes 
37 SoilType8 0.18 0.16 0.08 0.27 0.02 0.05 yes 
38 SoilType20 0.16 0.03 0.14 0.18 0.02 0.05 yes 
39 HorizDistToRoad 0.16 0.01 0.15 0.17 0.02 0.05 yes 
40 HorizDistToFire 0.16 0.01 0.15 0.16 0.02 0.05 yes 
41 SoilType27 0.15 0.15 0.05 0.24 0.02 0.05 yes 
42 Slope 0.12 0.02 0.11 0.14 0.02 0.05 yes 
43 HillShade9am 0.08 0.02 0.07 0.10 0.02 0.05 yes 
44 VertDistToHydro 0.07 0.02 0.06 0.08 0.02 0.05 yes 
45 HorizDistToHydro 0.07 0.02 0.06 0.08 0.02 0.05 yes 
46 WildernessArea3 0.07 0.03 0.05 0.09 0.02 0.05 yes 
47 HillShadeNoon 0.07 0.02 0.06 0.08 0.02 0.05 yes 
48 Aspect 0.05 0.02 0.03 0.06 0.02 0.05 yes 
49 HillShade3pm 0.04 0.02 0.03 0.06 0.02 0.05 yes 
50 Probe1GaussCont 0.04 0.02 0.02 0.05 0.02 0.05 no 

 

Tables D.4 and D.5 show the class-feature correlations using Pearson’s r, Kendall’s 

tau and SU coefficient, and the number of features selected by the t-test,  probes and 

decision rule-based algorithm for the KDDCup 1999 dataset.  
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Table D.3 Features selected by the decision rule-based search algorithm for different inputs 
Input feature set selected by: Number of 

selected features 
 Top 10 features for all methods 

Feature mean corrcf 
No pre-selection 
(54 features + 3 probes) 

42 WildernessArea4 0.855 
SoilType2 0.642 

Gaussian probe   
(49 features) 

41 SoilType40 0.547 
SoilType38 0.676 

Uniform probe   
(48 features) 

41 SoilType4 0.638 
SoilType1 0.686 

Uniform binary probe 
 (47 features) 

41 SoilType3 0.548 
SoilType6 0.603 

t-test for means   
(36 features) 

36 SoilType13 0.527 
SoilType39 0.676 

 
Table D.4: Feature selection for KDD Cup 1999   
 
Sample size 
for correlation 
measurement 

 
Selection criteria 
(Number of selected 
features) 

  
Top 10  features 
 
 
Feature 

 
Mean 
Corrcf 

 
 
StDev 

95% CI of mean 

Low High 
  
  
  
  
1000 
  
  
  
  
  

  
Pearson’s r: 
  
t-test (21) 
Uniform probe (32) 
Uniform binary probe (31) 
Gaussian probe (31) 
  
  
  

SameSrvRate 0.53 0.02 0.52 0.54 

SerrorRate 0.51 0.02 0.50 0.52 

DstHostSerrorRate 0.51 0.02 0.50 0.52 

Counted 0.51 0.02 0.50 0.52 

SrvSerrorRate 0.50 0.02 0.49 0.51 

DstHostSrvSerrorRate 0.50 0.02 0.49 0.51 

Flag 0.43 0.02 0.42 0.44 

DstHostRerrorRate 0.36 0.03 0.34 0.38 

SrvRerrorRate 0.35 0.03 0.33 0.37 

RerrorRate 0.34 0.03 0.32 0.36 

  
  
  
500 
  
  
  
  
  
  

  
  
Kendall’s tau: 
  
t-test (34) 
Uniform probe (36) 
Uniform binary probe (36) 
Gaussian probe (36) 
  

SrvSerrorRate 0.90 0.02 0.89 0.91 

SerrorRate 0.87 0.02 0.86 0.88 

NumCompromised 0.85 0.03 0.83 0.87 

DstHostSrvSerrorRate 0.83 0.04 0.81 0.85 

WrongFragment 0.81 0.04 0.78 0.84 

DstHostSerrorRate 0.81 0.02 0.80 0.82 

SrvRerrorRate 0.80 0.04 0.78 0.82 

Hot 0.78 0.04 0.76 0.80 

DstHostSrvRerrorRate 0.76 0.05 0.73 0.79 

RerrorRate 0.76 0.05 0.73 0.79 

  
  
  
  
  
  
1000 
  
  
  

  
  
Kendall’s tau: 
  
t-test (30) 
Uniform probe (36) 
Uniform binary probe (35) 
Gaussian probe (36) 
  

SerrorRate 0.92 0.01 0.91 0.93 

NumCompromised 0.92 0.03 0.90 0.94 

SrvSerrorRate 0.91 0.01 0.90 0.92 

WrongFragment 0.9 0.01 0.89 0.91 

DstHostSrvSerrorRate 0.85 0.01 0.84 0.86 

DstHostSrvRerrorRate 0.85 0.01 0.84 0.86 

SrvRerrorRate 0.85 0.02 0.84 0.86 

Hot 0.84 0.03 0.82 0.86 

DstHostSerrorRate 0.84 0.02 0.83 0.85 

RerrorRate 0.82 0.03 0.80 0.84 
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Table D.5: Feature selection for KDD Cup1999 using  Kendall’s tau and the Gaussian probe 
 
Rank 

 
Feature 

 
Mean 

 
StDev 

Feature 95% CI Gauss probe 95% CI  
Select Low High Low High 

1 SerrorRate 0.92 0.01 0.91 0.92 0.02 0.04 yes 

2 NumCompromised 0.92 0.03 0.90 0.93 0.02 0.04 yes 

3 SrvSerrorRate 0.91 0.01 0.91 0.92 0.02 0.04 yes 

4 WrongFragment 0.90 0.01 0.89 0.91 0.02 0.04 yes 

5 DstHostSrvSerrorRate 0.85 0.01 0.85 0.86 0.02 0.04 yes 

6 DstHostSrvRerrorRate 0.85 0.01 0.84 0.85 0.02 0.04 yes 

7 SrvRerrorRate 0.85 0.02 0.83 0.86 0.02 0.04 yes 

8 Hot 0.84 0.03 0.83 0.86 0.02 0.04 yes 

9 DstHostSerrorRate 0.84 0.02 0.82 0.85 0.02 0.04 yes 

10 RerrorRate 0.82 0.03 0.80 0.84 0.02 0.04 yes 

11 SameSrvRate 0.82 0.01 0.81 0.83 0.02 0.04 yes 

12 DstHostRerrorRate 0.80 0.03 0.79 0.82 0.02 0.04 yes 

13 DiffSrvRate 0.73 0.02 0.71 0.74 0.02 0.04 yes 

14 NumRoot 0.68 0.10 0.62 0.74 0.02 0.04 yes 

15 Counted 0.63 0.01 0.62 0.64 0.02 0.04 yes 

16 DstBytes 0.58 0.06 0.55 0.62 0.02 0.04 yes 

17 SrcBytes 0.49 0.05 0.46 0.52 0.02 0.04 yes 

18 SrvDiffHostRate 0.46 0.08 0.41 0.50 0.02 0.04 yes 

19 DstHostSrvDiffHostRate 0.44 0.05 0.41 0.47 0.02 0.04 yes 

20 Flag 0.43 0.02 0.41 0.44 0.02 0.04 yes 

21 SrvCount 0.42 0.02 0.41 0.44 0.02 0.04 yes 

22 DstHostCount 0.37 0.03 0.35 0.39 0.02 0.04 yes 

23 DstHostSrvCount 0.31 0.04 0.29 0.34 0.02 0.04 yes 

24 NumFailedLogins 0.30 0.23 0.16 0.44 0.02 0.04 yes 

25 NumFileCreations 0.30 0.08 0.25 0.35 0.02 0.04 yes 

26 DstHostSameSrcPortRate 0.28 0.05 0.25 0.31 0.02 0.04 yes 

27 Duration 0.25 0.02 0.24 0.27 0.02 0.04 yes 

28 Service 0.24 0.01 0.23 0.24 0.02 0.04 yes 

29 DstHostSameSrvRate 0.22 0.04 0.20 0.25 0.02 0.04 yes 

30 NumShells 0.20 0.16 0.11 0.30 0.02 0.04 yes 

31 NumAccessFiles 0.18 0.20 0.06 0.30 0.02 0.04 yes 

32 ProtocolType 0.15 0.02 0.14 0.16 0.02 0.04 yes 

33 DstHostDiffSrvRate 0.14 0.04 0.12 0.17 0.02 0.04 yes 

34 RootShell 0.11 0.15 0.02 0.20 0.02 0.04 no 

35 LoggedIn 0.08 0.01 0.08 0.09 0.02 0.04 yes 

36 IsGuestLogin 0.04 0.01 0.03 0.05 0.02 0.04 yes 

37 Urgent 0.03 0.11 -0.03 0.10 0.02 0.04 no 

38 Probe1GaussCont 0.03 0.02 0.02 0.04 0.02 0.04 no 

 

Tables D.7 and D.9 show the class-feature correlations using Pearson’s r, Kendall’s 

tau and the SU coefficient, and the number of features selected by the t-test, probes 

and decision rule-based algorithm for the abalone3C and mushroom datasets. Table 

D.8 shows the feature-feature correlations for abalone3C. 
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Table D.6: KDD Cup 1999 feature selection by decision rule 
Input feature set 
selected by: 

Number of selected 
features 

 Top 10 for no-preselection (32 features selected) 
Feature mean corrcf 

No pre-selection 
(41 features + 3 probes) 

 
32 

SerrorRate 0.92 
DstHostRerrorRate 0.81 

Gaussian probe  
 (36 features) 

 
34 

NumRoot 0.68 
WrongFragment 0.90 

Uniform probe   
(36 features) 

 
34 

Flag 0.43 
NumFailedLogins 0.30 

Uniform binary probe 
 (35 features) 

 
34 

DstHostSerrorRate 0.84 
DstHostSrvCount 0.31 

t-test for means  
 (30 features) 

 
30 

SrvCount 0.42 
DstHostCount 0.37 

 

Table D.7: Feature selection for Abalone using Pearson’s r and Kendall’s tau 
 
Sample 
size 

 
Selection criteria 
(Number of selected 
features) 

Selected features 

 
Feature 

Mean CorrCF StDev 95% CI of mean 

Low High 

  
  
500 
and  
1000 
  
  

Pearson’s r: 
  
t-test (5) 
probes do not eliminate 
any features 
  

Diameter 0.41 0.02 0.40 0.42 

ShellWeight 0.4 0.02 0.39 0.41 

WholeWeight 0.38 0.02 0.37 0.39 

VisceraWeight 0.38 0.02 0.37 0.39 

ShuckledWeight 0.34 0.02 0.33 0.35 

  
  
500 
  
  
  

  
Kendall’s tau: 
t-test (6) 
probes do not eliminate 
any features 
 
  
  

Height 0.52 0.03 0.50 0.54 

ShellWeight 0.53 0.03 0.51 0.55 

Diameter 0.5 0.03 0.48 0.52 

VisceraWeight 0.49 0.03 0.47 0.51 

ShuckledWeight 0.45 0.03 0.43 0.47 

WholeWeight 0.5 0.03 0.48 0.52 

  
  
  
  
1000 
  
  

  
Kendall’s tau: 
t-test (7) 
  
probes do not eliminate 
any features 
  
  

ShellWeight 0.52 0.02 0.51 0.53 

Height 0.51 0.02 0.50 0.52 

Diameter 0.5 0.02 0.49 0.51 

WholeWeight 0.49 0.02 0.48 0.50 

VisceraWeight 0.49 0.02 0.48 0.50 

ShuckledWeight 0.45 0.02 0.44 0.46 

Length 0.17 0.01 0.16 0.18 

  
1000 
  

  
Decision rule (3) 
  

ShellWeight 0.53 0.03 0.51 0.55 

Length 0.17 0.01 0.16 0.18 

Gender 0.12 0.01 0.11 0.13 
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Table D.8: Abalone3C feature-feature correlations 

Feature1 Feature2 corrff 

  

Feature1 Feature2 
 
corrff 

Length Diameter 0.92 Height ShellWeight 0.79 
Length Height 0.75 WholeWeight ShuckledWeight 0.88 
Length WholeWeight 0.88 WholeWeight VisceraWeight 0.87 
Length ShuckledWeight 0.84 WholeWeight ShellWeight 0.86 
Length VisceraWeight 0.83 ShuckledWeight VisceraWeight 0.80 
Length ShellWeight 0.83 ShuckledWeight ShellWeight 0.76 
Diameter Height 0.77 VisceraWeight ShellWeight 0.80 
Diameter WholeWeight 0.88 Length Gender 0.11 
Diameter ShuckledWeight 0.83 Diameter Gender 0.46 
Diameter VisceraWeight 0.83 Height Gender 0.47 
Diameter ShellWeight 0.85 WholeWeight Gender 0.48 
Height WholeWeight 0.78 ShuckledWeight Gender 0.46 
Height ShuckledWeight 0.72 VisceraWeight Gender 0.49 
Height VisceraWeight 0.76 ShellWeight Gender 0.47 

 

Table D9: Feature selection for mushroom using SU coefficients  
Sample size 
for SU 
measurement 

Selection criteria 
(Number of selected 
features) 

Selected features or top 5 features 

Feature Mean SU  StDev 95% CI 
of mean 

  
  
500 
  

  
  
t-test (4) 
  

Ordor 0.55 0.03 0.02 

SporePrintColor 0.3 0.02 0.01 

RingType 0.23 0.01 0.01 

GillColor 0.2 0.02 0.01 
  
500 
  
  
  

Uniform probe (15) 
Uniform binary probe (14) 
Gaussian  probe (21) 
  
  

Ordor 0.55 0.03 0.02 

SporePrintColor 0.3 0.02 0.01 

StalkSfAbvRing 0.28 0.03 0.02 

GillSize 0.24 0.03 0.02 

StalkSfBlRing 0.23 0.03 0.02 
  
  
  
  
500 
  
  
  
  
  
  
  
  
  

  
  
  
  
Decision rule (14) 
  
  
  
  
  
  
  
  
  

Ordor 0.55 0.03 0.02 

SporePrintColor 0.30 0.02 0.02 

StalkSfAbvRing 0.28 0.03 0.02 

GillSize 0.24 0.03 0.02 

StalkSfBlRing 0.23 0.03 0.02 

RingType 0.23 0.01 0.01 

GillColor 0.20 0.02 0.01 

StalkClAbvRing 0.18 0.02 0.01 

Bruises 0.17 0.03 0.02 

StalkClBlRing 0.15 0.02 0.01 

Population 0.14 0.02 0.01 

GillSpace 0.14 0.03 0.02 

habitat 0.11 0.01 0.01 

StalkRoot 0.10 0.01 0.01 
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Appendix E 

Algorithm for breadth first generation of a search space 
 

This appendix provides the details of the standard breadth-first search algorithm and 

the BreadthFirstGenerate algorithm which is based on the breadth first algorithm. 

The BreadthFirstGenerate algorithm was used for the generation of all possible tied 

predictions as discussed in section 6.4. The standard breadth-first search algorithm 

(Luger & Stubblefield, 1993) is given in figure E.1. The BreadthFirstGenerate 

algorithm is given in figure E.2. 

 

Both algorithms use the lists OPEN, CLOSED and CHILDREN. The OPEN list holds 

the states that are still to be expanded. The CLOSED list holds all states that have 

been generated so far. The CHILDREN list is used to temporarily hold all the children 

(successor states) of the current state while the children are being generated. The 

major difference between the breadth-first-search algorithm and the 

BreadthFirstGenerate algorithm is that the breadth-first-search algorithm specifically 

searches for a goal state while the BreadthFirstGenerate algorithm simply generates 

all the possible states in the search space. 

 
Figure E.1: Breadth-first search algorithm 
 

Breadth-first-search 

1. OPEN = [start_state] 

2. CLOSED = [ ] 

3. while OPEN � [ ] 

    begin 

 3.1  Remove leftmost state from OPEN, and call it X 

 3.2  if X is the goal state 

  return X 

          else 

 3.2  generate children of X and put them on the CHILDREN list 

3.3 eliminate children of X on OPEN (prevent cycles) 

3.4  put X on CLOSED  

3.5 put all states on CHILDREN list on right end of OPEN 

   end 
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Figure E.2: BreadthFirstGenerate algorithm 
 

For the generation of all possible tied predictions, the predictions are assigned 

numbers 1,2,..,k corresponding to the k classes for the prediction task. The start state 

contains the first number (1). Each state {1,.., j} has the children j+1, j+2,..,,k. When 

the BreadthFirstGenerate algorithm has finished executing, all the possible states 

(tied predictions) are available on the CLOSED list. 

 

Given a search space represented by a search tree with a constant branching factor 

B, the number of states (paths) of length L generated by a search algorithm is given 

by (Luger & Stubblefield, 1993: pg 146) 

 
LBBBBStates ++++= ...32                       (E.1) 

which reduces to: 

)1/()1( −−= BBBStates L                 (E.2)

      

For the BreadthFirstGenerate algorithm, the branching factor for level 1 of the tree is 

k -1 and reduces by 1 for successive levels. The maximum path length is k so that 

 
kkkkkStates ))1((...)2()1( 2 −−++−+−=                (E.3) 

which reduces to: 

�
=

−=
k

j

jjkStates
1

)(                   (E.4) 

  

BreadthFirstGenerate( ) 

1. OPEN = [start_state] 

2. CLOSED = [ ] 

3. while OPEN � [ ] 

    begin 

 3.1  Remove leftmost state from OPEN and  call it X 

 3.2  generate children of X and put them on the CHILDREN list 

3.3  put X on CLOSED  

3.4 put all states on CHILDREN list on right end of OPEN 

   end 
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Appendix F 

 Predictive performance of single OVA and pVn models 
 

The detailed results for predictive accuracy and TPRATE values for the single k-

class, OVA aggregate and pVn aggregate models using the 5NN and See5 

algorithms are provided in this appendix. Each table shows the accuracy and class 

TPRATE values for 10 test samples, as well as the mean, 95% confidence interval of 

the mean, standard deviation and variance. The mean values for performance were 

discussed in chapters 7 and 8. The variance values were used for the F-tests 

discussed in chapter 8. 

 

 F.1 5NN single 7-class and aggregate models for forest cover 
type 
 

Tables F.1 to F.4 give the details of predictive accuracy and TRATE values for the 

5NN single 7-class, OVA and pVn aggregate models forest cover type. 

 

Table F.1: Predictive performance of the 5NN single 7- class model for forest cover type 

Test set 

Accuracy 
on all 
classes 

5NN single model  (equal class distribution)  TPRATE% for class: 

1 2 3 4 5 6 7 
1 75.4 68 48 58 98 88 72 96 
2 71.4 60 46 50 90 92 70 92 
3 75.1 60 48 64 96 88 76 94 
4 73.7 66 50 48 90 92 74 96 
5 72.6 54 42 56 92 94 76 94 
6 76.9 72 50 48 94 94 82 98 
7 74.6 60 50 58 90 90 76 98 
8 76 60 58 68 90 86 72 98 
9 75.4 60 52 58 94 92 74 98 

10 76 68 44 60 90 96 78 96 
Mean 74.7 62.8 48.8 56.8 92.4 91.2 75.0 96.0 
StDev 1.7 5.4 4.4 6.6 3.0 3.2 3.4 2.1 
Variance 2.9 29.5 19.7 43.7 8.7 10.0 11.8 4.4 
Mean & 
CI 74.7±1.0 62.8±3.4 48.8±2.8 56.8±4.1 92.4±1.8 91.2±2.0 75.0±2.1 96.0±1.3 
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Table F.2: Predictive performance of the 5NN un-boosted OVA aggregate model for forest 
cover type 

Test set 

Accuracy 
on all 
classes 

5NN un-boosted OVA aggregate model. TPRATE% for class:  

1 2 3 4 5 6 7 
1 78.3 74 58 72 96 86 64 98 
2 80.3 68 64 68 92 94 78 98 
3 82.9 78 58 76 92 96 84 96 
4 80.6 84 58 70 86 88 82 96 
5 80.9 70 58 68 88 100 86 96 
6 79.1 62 60 70 88 100 78 96 
7 79.1 62 52 70 92 98 82 98 
8 82.0 66 66 76 88 100 82 96 
9 82.0 68 58 74 88 98 92 96 

10 79.4 68 52 74 88 98 80 96 
Mean 80.5 70.0 58.4 71.8 89.8 95.8 80.8 96.6 
StDev 1.5 6.9 4.4 3.0 3.0 5.0 7.2 1.0 
Variance 2.3 48.0 19.4 9.3 9.3 25.3 51.7 0.9 
Mean&CI 80.5±0.9 70±4.3 58.4±2.7 71.8±1.9 89.8±1.9 95.8±3.1 80.8±4.5 96.6±0.6 

 
 
 
TableF.3: Predictive performance of the 5NN boosted OVA aggregate model for forest cover 
type 

Test set 

Accuracy 
on all 
classes 

5NN boosted OVA aggregate model. TPRATE%  for class:  

1 2 3 4 5 6 7 
1 82.9 74 62 74 100 98 74 98 
2 82.3 68 70 70 100 98 72 98 
3 82.6 78 58 72 100 94 80 96 
4 83.7 84 62 68 100 98 78 96 
5 81.4 70 60 68 100 96 80 96 
6 81.4 62 60 72 100 98 82 96 
7 80.9 62 58 74 100 96 78 98 
8 82.3 66 72 72 100 96 74 96 
9 82.3 68 64 70 100 98 80 96 

10 80.6 68 54 70 100 98 78 96 
Mean 82.0 70.0 62.0 71.0 100.0 97.0 77.6 96.6 
StDev 1.0 6.9 5.5 2.2 0.0 1.4 3.2 1.0 
Variance 0.9 48.0 30.2 4.7 0.0 2.0 10.5 0.9 
Mean  
&CI 82.0±0.6 70.0±4.3 62.0±3.4 71.0±1.3 100.0±0.0 97.0±0.9 77.6±2.0 96.6±0.6 
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Table F.4: Predictive performance of  the 5NN pVn aggregate model for forest cover type   

Test set 

Accuracy 
on all 
classes 

 
5NN pVn aggregate model. TPRATE%  for class:  
1 2 3 4 5 6 7 

1 78.3 68 52 70 98 90 70 100 
2 75.1 60 60 66 94 90 68 88 
3 81.4 82 58 68 100 94 74 94 
4 79.7 80 56 64 96 94 76 92 
5 79.1 70 60 62 98 98 78 88 
6 80.0 70 58 60 98 98 82 94 
7 76.0 66 52 64 94 94 72 90 
8 77.7 62 60 66 98 90 74 94 
9 80.3 64 62 70 98 96 74 98 

10 78.0 56 60 60 96 98 82 94 
Mean 78.6 67.8 57.8 65.0 97.0 94.2 75.0 93.2 
StDev 2.0 8.2 3.5 3.7 1.9 3.3 4.6 3.9 
Variance 3.8 68.0 12.0 13.6 3.8 11.1 21.6 15.3 
Mean&CI 78.6±1.2 67.8±5.1 57.8±2.1 65.0±2.3 97.0±1.2 94.2±2.1 75.0±2.9 93.2±2.4 

 

F.2 See5 single 7-class and aggregate models for forest cover 
type 
 

Tables F.5 to F.8 give the details of predictive accuracy and TPRATE values for the 

See5 single 7-class, OVA and pVn aggregate models for the forest cover type 

dataset. 

 

Table F.5: Predictive performance of  the See5 single 7-class model for forest cover type  

Test set 

Accuracy 
on all 
classes 

See5 single model (equal class distribution). TPRATE% for class: 

1 2 3 4 5 6 7 
1 77.1 56 60 68 100 92 70 94 
2 76 68 58 60 96 86 70 94 
3 78 52 66 68 98 86 80 96 
4 76 52 62 64 96 86 80 92 
5 77.1 66 62 54 94 92 80 92 
6 78.9 58 74 58 98 90 78 96 
7 73.7 54 58 54 96 82 74 98 
8 76 56 66 56 96 82 78 98 
9 78.9 58 66 64 98 82 88 96 

10 77.4 54 66 62 96 84 80 100 
Mean 76.91 57.40 63.80 60.80 96.80 86.20 77.80 95.60 

StDev 1.57 5.50 4.85 5.27 1.69 3.94 5.37 2.63 
Variance 2.47 30.27 23.51 27.73 2.84 15.51 28.84 6.93 

Mean & CI 76.9±1.0 57.4±3.4 63.8±3.0 60.8±3.3 96.8±1.0 86.2±2.4 77.8±3.3 95.6±1.6 
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Table F.6: Predictive performance of  See5 un-boosted OVA aggregate model for forest cover 
type 

Test 
sample 

Accuracy 
on all 
classes 

See5 un-boosted OVA aggregate model. TPRATE% for class: 

1 2 3 4 5 6 7 
1 74.9 64 44 68 84 96 80 88 
2 75.7 62 52 66 88 94 78 90 
3 75.1 60 50 60 92 90 78 96 
4 73.7 60 40 62 88 96 80 90 
5 74.3 60 44 64 86 98 78 90 
6 77.1 68 58 60 86 98 80 90 
7 74.6 58 50 66 88 94 72 94 
8 75.1 54 52 66 82 96 80 100 
9 76.9 64 50 66 86 92 82 98 

10 75.4 56 58 62 86 90 84 92 
Mean 75.3 60.6 49.8 64.0 86.6 94.4 79.2 92.8 
StDev 1.1 4.1 5.8 2.8 2.7 3.0 3.2 4.0 
Variance 1.1 16.9 34.2 8.0 7.2 8.7 10.0 16.2 
Mean&CI 75.3±0.7 60.6±2.6 49.8±3.6 64.0±1.8 86.6±1.7 94.4±1.8 79.2±2.0 92.8±2.5 

 

Table F.7: Predictive performance of  See5 boosted OVA aggregate model for forest cover 
type 
 
 
Test set 

Accuracy 
on all 
classes 

See5 boosted OVA aggregate model. TPRATE% for class: 
1 2 3 4 5 6 7 

1 79.4 70 70 72 96 82 70 96 
2 80.3 68 66 70 94 92 74 98 
3 80 60 66 66 100 90 78 100 
4 77.7 62 66 62 94 86 78 96 
5 78.9 60 70 60 96 92 78 96 
6 80.3 70 76 54 96 90 78 98 
7 78.9 62 74 60 96 90 72 98 
8 78.6 66 70 60 92 90 76 96 
9 80.6 72 66 62 94 90 80 100 

10 79.1 60 74 66 96 82 76 100 
Mean 79.38 65.00 69.80 63.20 95.40 88.40 76.00 97.80 

StDev 0.92 4.74 3.82 5.35 2.12 3.75 3.13 1.75 
Variance 0.84 22.44 14.62 28.62 4.49 14.04 9.78 3.07 

Mean & CI 79.4±0.6 65.0±2.9 69.8±2.4 63.2±3.3 95.4±1.3 88.4±2.3 76.0±1.9 97.8±1.1 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



  289 

 
Table F.8: Predictive performance of  the See5  pVn aggregate model for  forest cover type 

Test set 

Accuracy 
on all 
classes 

See5 pVn aggregate model. TPRATE% for class:  

 1 2 3 4 5 6 7 
1 78 72 56 72 94 84 78 90 
2 79.1 70 58 74 92 92 82 86 
3 80.6 64 62 76 100 88 78 96 
4 79.4 62 68 76 94 88 82 86 
5 80 62 66 74 96 88 86 88 
6 79.7 64 74 58 92 92 88 90 
7 78.6 66 58 70 98 86 76 96 
8 80.3 62 72 70 94 90 80 94 
9 83.7 68 74 76 92 92 88 96 

10 79.1 56 64 72 94 86 84 98 
Mean 79.85 64.60 65.20 71.80 94.60 88.60 82.20 92.00 

StDev 1.56 4.62 6.75 5.37 2.67 2.84 4.26 4.52 
Variance 2.44 21.38 45.51 28.84 7.16 8.04 18.18 20.44 

Mean& CI 79.9±1.0 64.6±2.9 65.2±4.2 71.8±3.3 94.6±1.7 88.6±1.8 82.2±2.6 92.0±2.8 
 

F.3 5NN single 5-class and aggregate models for KDD Cup 1999 
 

Tables F.9 to F.12 give the details of predictive accuracy and TPRATE values for the 

5NN single 5-class, OVA and pVn aggregate models KDD Cup 1999. 

 
Table F.9:  Predictive performance of the 5NN single 5-class model for KDD Cup 1999  
 
 
Test set 

 
Accuracy on 
all classes 

5NN single model (equal class distribution for NORMAL, DOS, PROBE, 
R2L). TPRATE% for class: 
NORMAL DOS PROBE R2L U2R 

1 69.7 81.4 80 95.7 60 31.4 

2 72 87.1 72.9 97.1 71.4 31.4 

3 65.7 87.1 51.4 98.6 60 31.4 

4 71.1 94.3 61.4 94.3 72.9 32.9 

5 68.3 81.4 62.9 92.9 72.9 31.4 

6 66.3 85.7 60 94.3 60 31.4 

7 69.7 87.1 71.4 94.3 64.3 31.4 

8 66.3 81.4 67.1 94.3 57.1 31.4 

9 69.7 82.8 71.4 98.6 64.3 31.4 

10 66.6 75.7 64.3 97.1 64.3 31.4 

Mean 68.54 84.40 66.28 95.72 64.72 31.55 

StDev 2.22 5.02 8.06 2.01 5.81 0.47 

Variance 4.94 25.20 65.02 4.05 33.76 0.22 

Mean & CI 68.5 ± 1.4 84.4 ± 3.1 66.3 ± 5.0 95.7 ± 1.2 64.7 ± 3.6 31.6 ± 0.3 
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Table F.10:  Predictive performance of the 5NN OVA un-boosted aggregate model for KDD 
Cup 1999  

Test set 

Accuracy 
on all 
classes 

5NN un-boosted OVA aggregate model. TPRATE % for class:  

NORMAL DOS PROBE R2L U2R 
1 73.7 90 81.4 94.3 61.4 41.4 
2 73.4 92.9 68.6 95.7 67.1 42.9 
3 72.3 98.6 58.6 98.6 62.9 42.9 
4 73.1 97.1 61.4 94.3 71.4 41.4 
5 71.7 85.7 64.3 92.9 72.9 42.9 
6 69.4 91.4 57.1 94.3 61.4 42.9 
7 73.7 94.3 68.6 95.7 67.1 42.9 
8 69.1 87.1 65.7 94.3 55.7 42.9 
9 74.3 98.6 71.4 97.1 61.4 42.9 

10 72.9 91.4 62.9 94.3 72.9 42.9 
Mean 72.4 92.7 66.0 95.2 65.4 42.6 
StDev 1.8 4.5 7.1 1.7 5.8 0.6 
Variance 3.2 20.3 49.7 2.8 33.6 0.4 
CI of mean 1.1 2.8 4.4 1.0 3.6 0.4 
Mean&CI 72.4±1.1 92.7±2.8 66.0±4.4 95.2±1.0 65.4±3.6 42.6±0.4 

  
 
Table F.11:  Predictive performance of the 5NN OVA boosted aggregate model for KDD Cup 
1999  

Test set 
Accuracy on 
all classes 

5NN boosted OVA aggregate model. TPRATE% for class: 
NORMAL DOS PROBE R2L U2R 

1 73.7 90 82.9 94.3 58.6 42.9 
2 73.4 94.3 68.6 95.7 65.7 42.9 
3 70.0 98.6 52.9 98.6 57.1 42.9 
4 72.3 97.1 61.4 94.3 65.7 42.9 
5 70.9 85.7 64.3 92.9 74.3 37.1 
6 68.0 90 58.6 94.3 57.1 40 
7 71.4 94.3 70 95.7 58.6 38.6 
8 68.3 85.7 67.1 94.3 55.7 38.6 
9 72.3 98.6 71.4 98.6 54.3 38.6 

10 70.0 90 62.9 95.7 61.4 40 
Mean 71.0 92.4 66.0 95.4 60.9 40.5 
StDev 2.0 4.9 8.2 1.9 6.1 2.3 
Variance 3.9 23.7 66.5 3.5 37.3 5.1 
CI of mean 1.2 3.0 5.1 1.2 3.8 1.4 
Mean&CI 71.0±1.2 92.4±3.0 66.0±5.1 95.4±1.2 60.9±3.8 40.5±1.4 

 
 
 

 

 

 

 

 

 

 
 
 



  291 

Table F.12: Predictive performance of the 5NN pVn aggregate model for KDD Cup 1999  

Test sample 

Accuracy 
on all 
classes 

 
5NN pVn aggregate model. TPRATE% for class: 
NORMAL DOS PROBE R2L U2R 

1 79.4 97.1 100 98.6 72.9 28.6 
2 82.0 98.6 98.6 98.6 88.6 27.1 
3 80.6 100 95.7 100 81.4 25.7 
4 82.0 100 98.6 98.6 85.7 25.7 
5 81.0 100 98.6 97.1 85.7 25.7 
6 78.0 95.7 94.3 100 77.1 21.4 
7 83.0 100 98.6 98.6 87.1 31.4 
8 80.0 98.6 100 97.1 74.3 28.6 
9 77.1 98.6 91.4 100 72.9 22.9 

10 80.0 98.6 97.1 95.7 88.6 20 
Mean 80.3 98.7 97.3 98.4 81.4 25.7 
StDev 1.8 1.4 2.7 1.4 6.6 3.5 
Variance 3.4 2.0 7.5 2.1 42.9 12.2 
Mean&CI 80.3±1.1 98.7±0.9 97.3±1.7 98.4±0.9 81.4±4.1 25.7±2.2 

 
 

F.4 See5 single 5-class and aggregate models for KDD Cup 1999 
 

Tables F.13 to F.16 give the details of predictive accuracy and TPRATE values for 

the See5 single 5-class, OVA and pVn aggregate models KDD Cup 1999. 

 

Table F.13: Predictive performance of the See5 single model for KDD Cup 1999   

 
Test set 

Accuracy 
on all 
classes 

See5 single model (equal class distribution for NORMAL, DOS, 
PROBE, R2L). TPRATE% for class: 

NORMAL  DOS PROBE R2L U2R 

1 65.1 84.3 84.3 44.3 35.7 77.1 

2 66.0 91.4 75.7 38.6 47.1 77.1 

3 63.1 91.4 77.1 34.3 35.7 77.1 

4 63.7 88.6 85.7 35.7 31.4 77.1 

5 67.1 82.9 95.7 34.3 45.7 77.1 

6 63.4 90.0 85.7 31.4 32.9 77.1 

7 65.4 90.0 81.4 38.6 40.0 77.1 

8 60.0 80.0 78.6 31.4 32.9 77.1 

9 63.4 84.3 77.1 38.6 40.0 77.1 

10 61.1 77.1 78.6 37.1 35.7 77.1 

Mean 63.83 86.00 81.99 36.43 37.71 77.10 

StDev 2.17 5.03 6.07 3.90 5.38 0.00 

Variance 4.72 25.30 36.84 15.19 28.97 0.00 

Mean &  CI 63.8±1.3 86.0±3.1 82.0±3.8 36.4±2.4 37.7±3.3 77.1±0.0 
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Table F.14: Predictive performance of the See5 un-boosted OVA aggregate model for KDD 
Cup1999 

Test set 

Accuracy 
on all 
classes 

See5 Class TPRATE% - boosted AGGREGATE MODEL  

NORMAL DOS PROBE R2L U2R 

1 62.3 97.1 45.7 88.6 34.3 45.7 

2 65.7 100 54.3 87.1 41.4 45.7 

3 60.9 98.6 42.9 85.7 31.4 45.7 

4 66.6 98.6 61.4 88.6 38.6 45.7 

5 64.9 98.6 54.3 84.3 41.1 45.7 

6 61.1 97.1 37.1 91.4 34.3 45.7 

7 64.3 98.6 55.7 87.1 34.3 45.7 

8 62.3 97.1 51.4 90 27.1 45.7 

9 62.6 100 52.9 88.6 25.7 45.7 

10 62.3 97.1 45.7 88.6 34.3 45.7 

Mean 63.3 98.3 50.1 88.0 34.3 45.7 

StDev 2.0 1.1 7.2 2.0 5.3 0.0 
Variance 3.8 1.3 51.5 4.2 27.7 0.0 

Mean & CI 63.3±1.2 98.3±0.7 50.1±4.4 88.0±1.3 34.3±3.3 45.7±0.0 
 

 

Table F.15: Predictive performance of the See5 boosted OVA aggregate model for KDD 
Cup1999 
 
 
Test set 

 
Accuracy on 
all classes 

See5 boosted OVA aggregate model. TPRATE% for class: 

NORMAL  DOS PROBE R2L U2R 

1 63.1 97.1 65.7 88.6 24.3 40.0 

2 63.7 100.0 61.4 90.0 27.1 40.0 

3 60.9 100.0 50.0 88.6 25.7 40.0 

4 61.7 100.0 61.4 90.0 17.1 40.0 

5 61.4 98.6 54.3 84.3 30.0 40.0 

6 59.1 98.6 42.9 92.9 21.4 40.0 

7 62.9 100.0 61.4 88.6 24.3 40.0 

8 60.3 98.6 52.9 90.0 20.0 40.0 

9 61.1 100.0 60.0 91.4 14.3 40.0 

10 62.3 98.6 52.9 88.6 31.4 40.0 
Mean 61.65 99.15 56.29 89.30 23.56 40.00 

StDev 1.40 1.00 6.88 2.26 5.44 0.00 

Variance 1.95 1.00 47.38 5.09 29.55 0.00 

Mean & CI  61.7±0.9 99.2±0.6 56.3±4.3 89.3±1.4 23.6±3.4 40.0±0.0 
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Table F.16:  Predictive performance of the See5 pVn aggregate model for KDD Cup 1999 

Test 
sample ID 

Accuracy 
on all 
classes 

See5 pVn aggregate model. TPRATE% for class:  

NORMAL DOS PROBE R2L U2R 

1 74 97.1 67.1 98.6 30 77.1 

2 79.1 98.6 57.1 97.1 65.7 77.1 

3 78 98.6 60 97.1 57.1 77.1 

4 83.4 98.6 87.1 95.7 58.6 77.1 

5 85.1 100 84.3 97.1 67.1 77.1 

6 78 97.1 64.3 100 51.4 77.1 

7 81.1 98.6 71.4 95.7 62.9 77.1 

8 77.7 97.1 70 97.1 47.1 77.1 

9 74.9 98.6 55.7 97.1 45.7 77.1 

10 78.3 97.1 67.1 94.3 55.7 77.1 

Mean 78.96 98.14 68.41 96.98 54.13 77.10 

StDev 3.45 0.99 10.51 1.57 11.16 0.00 

Variance 11.88 0.98 110.42 2.48 124.50 0.00 

Mean & CI 79.0 ± 2.1 98.1 ± 0.6 68.4 ± 6.5 97.0 ± 1.0 54.1 ± 6.9 77.1 ± 0.0 
 

F.5 Single and aggregate models for wine quality (white) 
 

Tables F.17 through F.24 give the details of predictive accuracy and TPRATE values 

for the 5NN single and aggregate models for the wine quality (white) dataset. Tables 

F.25 and F.26 provide the statistical test results for the comparison of the single and 

aggregate models. 

 

Table F.17: Predictive performance of the 5NN single model for Wine quality  

Test set 
Accuracy 
on all 
classes 

5NN single model TPRATE% for class: 

4 5 6 7 8 
1 31.2 8 56 22 54 8 
2 30 14 58 30 44 4 
3 29.2 10 56 24 44 12 
4 28.8 6 54 30 46 8 
5 33.2 14 54 34 54 10 
6 32.4 12 54 34 54 8 
7 30.8 14 46 36 44 14 
8 34 18 50 36 54 12 
9 35.2 10 64 38 50 14 

10 31.6 10 56 30 50 12 
Mean 31.6 11.6 54.8 31.4 49.4 10.2 
StDev 2.1 3.5 4.7 5.3 4.5 3.2 
Variance 4.3 12.3 22.4 27.6 20.5 10.2 
Mean & CI 31.6±1.3 11.6±2.2 54.8±2.9 31.4±3.3 49.4±2.8 10.2±2.0 
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Table F.18: Predictive performance of the 5NN un-boosted OVA model for Wine quality  

Test set 

Accuracy 
on all 
classes 

  
5NN OVA  un-boosted model TPRATE% for class: 

4 5 6 7 8 
1 30.4 16 54 24 50 8 
2 32.8 14 60 28 56 6 
3 35.2 10 64 34 54 14 
4 28.8 6 58 32 40 8 
5 33.6 14 60 34 52 8 
6 30.8 14 54 32 48 6 
7 30.4 12 58 26 44 12 
8 34 18 58 30 52 12 
9 32.8 10 56 30 54 14 

10 32.8 12 68 24 48 12 
Mean 32.2 12.6 59.0 29.4 49.8 10.0 
StDev 1.9 3.4 4.3 3.8 4.9 3.1 
Variance 3.8 11.6 18.9 14.3 24.4 9.8 
Mean & CI 32.2±1.2 12.6±2.1 59.0±2.7 29.9±2.3 49.8±3.1 10.0±1.9 

 

Table F.19: Predictive performance of the 5NN boosted OVA model for Wine quality  

Test set 

Accuracy 
on all 
classes 

  
5NN OVA boosted model TPRATE% for class: 

4 5 6 7 8 
1 33.2 16 64 24 52 10 
2 33.2 16 68 16 58 8 
3 35.2 12 68 26 54 16 
4 29.2 6 66 22 44 8 
5 35.2 16 64 34 52 10 
6 29.6 14 62 16 50 6 
7 35.2 14 68 34 44 16 
8 35.6 18 62 28 56 14 
9 34.4 12 64 22 60 14 

10 34.8 12 70 28 52 12 
Mean 33.6 13.6 65.6 25.0 52.2 11.4 
StDev 2.3 3.4 2.8 6.3 5.3 3.5 
Variance 5.5 11.4 7.8 40.2 28.0 12.5 
Mean & CI 33.6±1.5 13.6±2.1 65.6±1.7 25.0±3.9 52.2±3.3 11.4±2.2 
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Table F.20: Predictive performance of the 5NN pVn model for Wine quality  

Test set 

Accuracy 
on all 
classes 

  
5NN pVn aggregate model TPRATE% for class: 

4 5 6 7 8 
1 33.2 16 44 52 46 8 
2 34.8 12 56 50 50 6 
3 36 12 58 50 46 14 
4 31.2 4 54 58 32 8 
5 37.6 14 60 60 44 10 
6 32.4 12 54 54 34 8 
7 32.4 10 56 46 36 14 
8 35.6 18 52 42 54 12 
9 34 6 50 50 50 14 

10 38.4 10 66 54 50 12 
Mean 34.6 11.4 55.0 51.6 44.2 10.6 
StDev 2.4 4.2 5.9 5.3 7.6 3.0 
Variance 5.6 17.8 34.9 28.3 58.2 8.9 
Mean & CI 34.6±1.5 11.4±2.6 55.0±3.7 51.6±3.3 44.2±4.7 10.6±1.9 

 
 
 
Table F.21: Predictive performance of the See5 single model for Wine quality  

Test set 

Accuracy 
on all 
classes 

  
See5 single model TPRATE% for class: 

4 5 6 7 8 
1 38.4 28 70 32 54 8 
2 37.6 24 70 34 52 8 
3 38.4 28 74 32 50 8 
4 33.6 20 64 26 46 12 
5 36.4 28 70 32 48 4 
6 37.2 30 72 30 46 8 
7 36.8 28 70 36 44 6 
8 37.2 28 66 36 46 10 
9 38 26 70 34 50 10 

10 34 20 74 30 42   
Mean 36.8 26.0 70.0 32.2 47.8 8.2 
StDev 1.7 3.5 3.1 3.0 3.7 2.3 
Variance 2.9 12.4 9.8 9.3 13.7 5.4 
Mean & CI 36.8±1.0 26.0±2.2 70.0±1.9 32.2±1.9 47.8±2.3 8.2±1.4 
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Table F.22: Predictive performance of the See5 un-boosted model for Wine quality  

Test set 

Accuracy 
on all 
classes 

  
See5 un-boosted OVA model TPRATE% for class: 

4 5 6 7 8 
1 34 42 64 14 36 14 
2 34.8 38 68 20 40 8 
3 38 42 70 12 48 18 
4 29.6 26 68 6 42 6 
5 36.4 48 70 10 42 12 
6 32 34 66 10 40 10 
7 36 46 58 14 46 16 
8 38 46 60 18 52 14 
9 34 40 58 14 38 20 

10 35.6 40 64 16 44 14 
Mean 34.8 40.2 64.6 13.4 42.8 13.2 
StDev 2.6 6.5 4.6 4.1 4.8 4.3 
Variance 6.8 42.2 21.4 16.9 23.3 18.8 
Mean & CI 34.8±1.6 40.2±4.0 64.6±2.9 13.4±2.6 42.8±3.0 13.2±2.7 

 
 
 
Table F.23: Predictive performance of the See5 boosted model for Wine quality  

Test set 

Accuracy 
on all 
classes 

  
See5 boosted OVA model TPRATE% for class: 

4 5 6 7 8 
1 36.4 42 68 14 42 16 
2 36 38 72 16 46 8 
3 37.6 42 74 6 48 18 
4 31.2 26 72 4 46 8 
5 36.4 48 72 6 42 14 
6 33.2 34 66 10 44 12 
7 36.4 46 62 8 50 16 
8 38.8 46 64 14 56 14 
9 35.2 40 62 12 42 20 

10 34.8 40 66 8 46 14 
Mean 35.6 40.2 67.8 9.8 46.2 14.0 
StDev 2.2 6.5 4.5 4.0 4.4 3.9 
Variance 4.7 42.2 20.0 16.4 19.1 15.1 
Mean & CI 35.6±1.3 40.2±4.0 67.8±2.8 9.8±2.5 46.2±2.7 14.0±2.4 
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Table F.24: Predictive performance of the See5 pVn model for Wine quality  

Test set 

Accuracy 
on all 
classes 

  
See5 pVn  model TPRATE% for class: 

4 5 6 7 8 
1 42 34 56 44 60 16 
2 39.6 28 54 42 64 10 
3 42.4 40 58 36 64 14 
4 38 26 58 38 58 10 
5 40.8 38 56 42 54 14 
6 39.2 38 50 42 50 16 
7 42.8 34 62 48 54 16 
8 41.2 38 50 40 64 14 
9 38.8 32 46 42 56 18 

10 40.8 36 60 32 60 16 
Mean 40.6 34.4 55.0 40.6 58.4 14.4 
StDev 1.6 4.6 5.0 4.4 4.9 2.6 
Variance 2.6 21.2 25.1 19.6 23.8 6.9 
Mean & CI 40.6±1.0 34.4±2.9 55.0±3.1 40.6±2.7 58.4±3.0 14.4±1.6 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



  298 

Table F.25: Statistical tests for 5NN single and aggregate model comparison for wine quality 
Wine quality white:   5NN models 
Group names and mean 
accuracy /TPRATE:10 test sets 

 
Student’s paired t-test (9 df) 

Performance 
improvement measures 

Group A 
aggregate 
model 

Group B 
single  
model 

95% CI of 
mean 
difference 

P value 
(2 tail) 

Group A 
better than 
Group B? 

 
Diff(A,B)% 

 
Ratio(A,B) 

OVA un-boosted 
All classes-A 
(32.2 ± 1.2) 

 
All classes-S 
(31.6 ± 1.3) 

 
 
[-1.2, 2.2] 

 
 
0.511 

 
 
no 

 
 
0.5 

 
 
0.01 

OVA un-boosted 
Class4-A 
(12.6 ± 2.1) 

 
Class4-S 
(11.6 ± 2.2) 

 
 
[-0.9, 2.9] 

 
 
0.273 

 
 
no 

 
 
1.0 

 
 
0.01 

OVA un-boosted 
Class5-A 
59.0 ± 2.7) 

 
Class5-S 
(54.8 ± 2.9) 

 
 
[-0.3, 8.7] 

 
 
0.066 

 
 
yes 

 
 
4.2 

 
 
0.09 

OVA un-boosted 
Class6-A 
(29.9 ± 2.3) 

 
Class6-S 
(31.4 ± 3.3) 

 
 
[-6.2, 2.2] 

 
 
0.311 

 
 
no 

 
 
-2.0 

 
 
-0.03 

OVA un-boosted 
Class7-A 
(49.8 ± 3.1) 

 
Class7-S 
(49.4 ± 2.8) 

 
 
[-4.1, 4.9] 

 
 
0.846 

 
 
no 

 
 
0.4 

 
 
0.01 

OVA un-boosted 
Class8-A 
(10.0 ± 1.9) 

 
Class8-S 
(10.2 ± 2.0) 

 
 
[-1.3, 0.9] 

 
 
0.678 

 
 
no 

 
 
-0.2 

 
 
0.00 

       
OVA boosted 
All classes-A 
(33.6  ± 1.5) 

 
All classes-S 
(31.6 ± 1.3) 

 
 
[0.1, 3.7] 

 
 
0.041 

 
 
yes 

 
 
1.9 

 
 
0.03 

OVA boosted 
Class4-A 
13.6  ± 2.1) 

 
Class4-S 
(11.6 ± 2.2) 

 
 
[0.3, 3.7] 

 
 
0.023 

 
 
yes 

 
 
2.0 

 
 
0.02 

OVA boosted 
Class5-A 
(65.6  ± 1.7) 

 
Class5-S 
(54.8 ± 2.9) 

 
 
[6.9, 14.7] 

 
 
0.000 

 
 
yes 

 
 
10.8 

 
 
0.24 

OVA boosted 
Class6-A 
(25.0  ± 3.9) 

 
Class6-S 
(31.4 ± 3.3) 

 
 
[-11.8, -1.0] 

 
 
0.025 

 
 
no 

 
 
-6.4 

 
 
-0.09 

OVA boosted 
Class7-A 
(52.2  ± 3.3) 

 
Class7-S 
(49.4 ± 2.8) 

 
 
[-1.6, 7.3] 

 
 
0.191 

 
 
no 

 
 
2.8 

 
 
0.06 

OVA un-boosted 
Class8-A 
(11.4  ± 2.2) 

 
Class8-S 
(10.2 ± 2.0) 

 
 
[-0.2, 2.9] 

 
 
0.081 

 
 
yes 

 
 
1.2 

 
 
0.01 

       
pVn  
All classes-A 
(34.6 ± 1.5) 

 
All classes-S 
(31.6 ± 1.3) 

 
 
[1.0, 4.9] 

 
 
0.008 

 
 
yes 

 
 
2.9 

 
 
0.04 

pVn 
Class4-A 
(11.4 ± 2.6) 

 
Class4-S 
(11.6 ± 2.2) 

 
  
[-2.7, 2.3] 

 
 
0.859 

 
 
no 

 
 
-0.2 

 
 
0.00 

pVn 
Class5-A 
(55.0 ± 3.7) 

 
Class5-S 
(54.8 ± 2.9) 

 
 
-5.6, 6.0] 

 
 
0.939 

 
 
no 

 
 
0.2 

 
 
0.00 

pVn 
Class6-A 
(51.6 ± 3.3) 

 
Class6-S 
(31.4 ± 3.3) 

 
 
[14.3, 26.1] 

 
 
0.000 

 
 
yes 

 
 
20.2 

 
 
0.29 

pVn 
Class7-A 
(44.2 ± 4.7) 

 
Class7-S 
(49.4 ± 2.8) 

 
 
[-11.0, 0.6] 

 
 
0.074 

 
 
no 

 
 
-5.2 

 
 
-0.10 

pVn 
Class8-A 
(10.6 ± 1.9) 

 
Class8-S 
(10.2 ± 2.0) 

 
 
[-0.2, 1.0] 

 
 
0.168 

 
 
no 

 
 
0.4 

 
 
0.00 
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Table F.26: Statistical tests for See5 single and aggregate model comparison for wine quality 
Wine quality white:   See5 models 
Group names and mean 
accuracy /TPRATE:10 test sets 

 
Student’s paired t-test (9 df) 

Performance 
improvement measures 

Group A 
aggregate 
model 

Group B 
single  
model 

95% CI of 
mean 
difference 

P value 
(2 tail) 

Group A 
better than 
Group B? 

 
Diff(A,B)% 

 
Ratio(A,B) 

OVA un-boosted 
All classes-A 
(34.8 ± 1.6) 

 
All classes-S 
(36.8 ± 1.0) 

 
 
[-3.7, -0.2] 

 
 

0.034 

 
 

no 

 
 

-1.9 

 
 

-0.03 
OVA un-boosted 

Class4-A 
(40.2 ± 4.0) 

 
Class4-S 

(26.0 ± 2.2) 

 
 
[10.3, 18.1] 

 
 

0.000 

 
 

yes 

 
 

14.2 

 
 

0.19 
OVA un-boosted 

Class5-A 
64.6 ± 2.9) 

 
Class5-S 

(70.0 ± 1.9) 

 
 
[-9.1, -1.7] 

 
 

0.009 

 
 

no 

 
 

-5.4 

 
 

-0.18 
OVA un-boosted 

Class6-A 
(13.4 ± 2.9) 

 
Class6-S 

(32.2 ± 1.9) 

 
 
[-20.8, -16.8] 

 
 

0.000 

 
 

no 

 
 

-18.8 

 
 

-0.28 
OVA un-boosted 

Class7-A 
(42.8 ± 3.8) 

 
Class7-S 

(47.8 ± 2.8) 

 
 
[-10.3, 0.3] 

 
 

0.062 

 
 

no 

 
 

-5.0 

 
 

-0.10 
OVA un-boosted 

Class8-A 
(13.2 ± 2.7) 

 
Class8-S 
(8.2 ± 1.4) 

 
 
[0.7, 9.1] 

 
 

0.028 

 
 

yes 

 
 

5.0 

 
 

0.05 
       

OVA boosted 
All classes-A 
(35.6 ± 1.3) 

 
All classes-S 
(36.8 ± 1.0) 

 
 
[-2.4, 0.1] 

 
 

0.062 

 
 

no 

 
 

-1.2 

 
 

-0.02 
OVA boosted 

Class4-A 
(40.2 ± 4.0) 

 
Class4-S 

(26.0 ± 2.2) 

 
 
[10.3, 18.1] 

 
 

0.000 

 
 

yes 

 
 

14.2 

 
 

0.19 
OVA boosted 

Class5-A 
(67.8 ± 2.8) 

 
Class5-S 

(70.0 ± 1.9) 

 
 
[-6.0, 1.6] 

 
 

0.227 

 
 

no 

 
 

-2.2 

 
 

-0.07 
OVA boosted 

Class6-A 
(9.8 ± 2.5) 

 
Class6-S 

(32.2 ± 1.9) 

 
 
[-24.8, -20.0] 

 
 

0.000 

 
 

no 

 
 

-22.4 

 
 

-0.33 
OVA boosted 

Class7-A 
(46.2 ± 2.7) 

 
Class7-S 

(47.8 ± 2.8) 

 
 
[-6.5, 3.3] 

 
 

0.475 

 
 

no 

 
 

-1.6 

 
 

-0.03 
OVA un-boosted 

Class8-A 
(14.0 ± 2.4) 

 
Class8-S 
(8.2 ± 1.4) 

 
 
[1.8, 9.7] 

 
 

0.100 

 
 

yes 

 
 

5.8 

 
 

0.06 
       

pVn  
All classes-A 
(40.6 ± 1.0) 

 
All classes-S 
(36.8 ± 1.0) 

 
 
[2.4, 5.1] 

 
 

0.000 

 
 

yes 

 
 

3.8 

 
 

0.06 
pVn 

Class4-A 
(34.4 ± 2.9) 

 
Class4-S 

(26.0 ± 2.2) 

 
 
[5.8, 11.0]  

 
 

0.000 

 
 

yes 

 
 

8.4 

 
 

0.11 
pVn 

Class5-A 
(55.0 ± 3.1) 

 
Class5-S 

(70.0 ± 1.9) 

 
 
[-18.9, -11.1] 

 
 

0.000 

 
 

no 

 
 

-15.0 

 
 

-0.50 
pVn 

Class6-A 
(40.6 ± 2.7) 

 
Class6-S 

(32.2 ± 1.9) 

 
 
[5.6, 11.2] 

 
 

0.000 

 
 

yes 

 
 

8.4 

 
 

0.12 
pVn 

Class7-A 
(58.4 ± 3.0) 

 
Class7-S 

(47.8 ± 2.8) 

 
 
[7.0, 14.2] 

 
 

0.000 

 
 

yes 

 
 

10.6 

 
 

0.20 
pVn 

Class8-A 
(14.4 ± 1.6] 

 
Class8-S 
(8.2 ± 1.4) 

 
 
[2.9, 9.1] 

 
 

0.002 

 
 

yes 

 
 

6.2 

 
 

0.07 
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Appendix G 

ROC analysis details 
 

The computational method for the AUC and the detailed results for ROC analysis are 

provided in this appendix. The ROC analysis that was conducted for the experiments 

was discussed in chapter 9. The method used to compute the Area Under the ROC 

curve (AUC) is depicted in figure G.1 and table G.1. Figure G.1 shows a ROC curve 

created with three points corresponding to three threshold points 21,λλ  and 3λ . The 

x-axis and y-axis respectively represent the FPRATE and TPRATE of a probabilistic 

classifier. Threshold averaging was used for the computation of the AUC. Recall from 

chapter 9 that for threshold averaging, the co-ordinates of each point on the ROC 

curve are obtained by computing the mean FPRATE (x co-ordinate) and mean 

TPRATE (y co-ordinate) for one threshold value iλ . The mean FPRATE and 

TPRATE values were computed for 10 test sets. The areas of regions A1 to A7 were 

used to compute the AUC as shown in table G.1. 

 

 
Figure G.1: Areas of the ROC plane used to compute the AUC 
 

 

 

 

___

1TP
___

2TP  

___

3TP
A3 

A2 

A5 

A4 A6 

A7 

A1 

3λ

2λ  

___

minTP

___

3FP  
___

2FP  
___

1FP  
___

maxFP  
___

minFP  

1λ  
___

maxTP  

 
 
 



  301 

Table G.1: Method used for the computation of the AUC for probabilistic classifiers 
 
Area code 

 
Computation 

A1 ½ * (FP3 * TP3) 
A2 (FP2 – FP3) * TP3 
A3 ½ * (FP2 – FP3) * (TP2 – TP3) 
A4 (FP1 – FP2) * TP2 
A5 ½ *  (FP1 – FP2) *  (TP1 - TP2) 
A6 (FPmax  - FP1) * TP1 
A7 ½ * (FPmax  - FP1) * (TPmax – TP1) 
TOTAL A1 + A2 + A3 + A4 + A5 + A6 + A7 

aboveAUC  (TOTAL – area under 45deg line) 
AUC    TOTAL 
  

 

Tables G.2 to G.7 provide the details of the FPRATE values (FP1, FP2, FP3) and 

TPRATE values (TP1, TP2, TP3) and AUC values for the forest cover type, KDD Cup 

1999 and wine quality datasets. The AUC is the area between the x-axis, y-axis and 

ROC curve. aboveAUC  is the area between the 45 degree line and the ROC curve. 

The threshold values of 0.6, 0.8 and 1.0 for the 5NN classifiers correspond to the 

number of nearest neighbours (3, 4, 5) used by the 5NN algorithm to determine the 

winning class.  The threshold values of 0.5, 0.75 and 1.0 were used for the See5 

classifiers. The positive class column represents a one-vs-rest classifier which 

predicts the indicated class as the positive class and all the other classes as negative 

classes. 
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Table G.2: One-vs-rest AUC for the 5NN forest cover type models 
5NN forest cover type models: TPRATE, FPRATE, AUC and Mean AUC 

Model 
Positive 
class 

Mean values for thresholds 

AUC 

 
 

aboveAUC  
 6.01 =λ  8.02 =λ  0.13 =λ  

FP1 TP1 FP2 TP2 FP3 TP3 

  
  
single 
5NN 
  
  
  
  

1 0.04 0.62 0.02 0.37 0.00 0.17 0.79 0.29 
2 0.03 0.48 0.01 0.27 0.00 0.09 0.73 0.23 
3 0.03 0.51 0.01 0.32 0.00 0.15 0.75 0.25 
4 0.03 0.92 0.02 0.78 0.01 0.53 0.95 0.45 
5 0.03 0.88 0.02 0.78 0.01 0.48 0.93 0.43 
6 0.05 0.70 0.02 0.44 0.01 0.18 0.83 0.33 
7 0.03 0.95 0.01 0.82 0.01 0.64 0.97 0.47 

          Mean: 0.85 0.35 

  
  
OVA 
unboosted 
5NN 
  
  
  

1 0.03 0.70 0.03 0.69 0.03 0.58 0.83 0.33 
2 0.03 0.58 0.03 0.57 0.02 0.49 0.78 0.28 
3 0.03 0.72 0.03 0.72 0.02 0.60 0.85 0.35 
4 0.02 0.90 0.02 0.87 0.01 0.67 0.94 0.44 
5 0.04 0.96 0.04 0.96 0.03 0.89 0.96 0.46 
6 0.05 0.81 0.05 0.80 0.03 0.67 0.88 0.38 
7 0.03 0.97 0.03 0.97 0.02 0.91 0.97 0.47 

          Mean: 0.89 0.39 

  
OVA 
boosted 
5NN 
  
  
  
  

1 0.03 0.70 0.03 0.69 0.03 0.58 0.83 0.33 
2 0.03 0.62 0.03 0.60 0.02 0.51 0.80 0.30 
3 0.03 0.71 0.03 0.71 0.02 0.61 0.84 0.34 
4 0.02 1.00 0.02 1.00 0.01 1.00 0.99 0.49 
5 0.04 0.97 0.03 0.94 0.02 0.82 0.97 0.47 
6 0.04 0.78 0.04 0.75 0.03 0.63 0.87 0.37 
7 0.03 0.97 0.03 0.97 0.02 0.91 0.97 0.47 

          Mean: 0.90 0.40 

  
  
pVn 
5NN 
  
  
  
  

1 0.05 0.68 0.03 0.62 0.01 0.36 0.82 0.32 
2 0.04 0.57 0.03 0.50 0.02 0.30 0.77 0.27 
3 0.04 0.65 0.03 0.52 0.01 0.34 0.81 0.31 
4 0.03 0.97 0.02 0.83 0.01 0.68 0.98 0.48 
5 0.04 0.94 0.03 0.89 0.02 0.79 0.96 0.46 
6 0.05 0.75 0.03 0.65 0.01 0.39 0.86 0.36 
7 0.02 0.93 0.01 0.67 0.01 0.67 0.96 0.46 

          Mean: 0.88 0.38 
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Table G.3: One-vs-rest AUC for the 5NN KDD Cup 1999 models  
5NN KDD Cup 1999 models: TPRATE, FPRATE, AUC and Mean AUC 

Model 
Positive 
class 

Mean values for thresholds 
 
 
AUC aboveAUC  

 6.01 =λ  8.02 =λ  0.13 =λ  

FP1 TP1 FP2 TP2 FP3 TP3 

single 
5NN 
  
  
  
  

NORM 0.22 0.84 0.13 0.84 0.11 0.80 0.86 0.36 
R2L 0.06 0.65 0.05 0.60 0.04 0.53 0.80 0.30 
DOS 0.01 0.66 0.01 0.63 0.01 0.61 0.83 0.33 
PROBE 0.09 0.96 0.09 0.96 0.07 0.93 0.94 0.44 
U2R 0.01 0.31 0.01 0.26 0.01 0.20 0.65 0.15 
          Mean: 0.82 0.32 

OVA 
unboosted 
5NN 
  
  
  

NORM 0.14 0.92 0.13 0.92 0.10 0.92 0.91 0.41 
R2L 0.07 0.65 0.07 0.62 0.06 0.57 0.79 0.29 
DOS 0.00 0.66 0.00 0.66 0.00 0.65 0.83 0.33 
PROBE 0.08 0.95 0.08 0.95 0.08 0.95 0.94 0.44 
U2R 0.01 0.43 0.01 0.43 0.01 0.31 0.71 0.21 
          Mean: 0.83 0.33 

OVA 
boosted 
5NN 
  
  
  

NORM 0.15 0.92 0.13 0.92 0.10 0.92 0.91 0.41 
R2L 0.07 0.61 0.06 0.59 0.05 0.52 0.77 0.27 
DOS 0.00 0.66 0.00 0.66 0.00 0.66 0.83 0.33 
PROBE 0.08 0.95 0.08 0.95 0.08 0.95 0.94 0.44 
U2R 0.01 0.40 0.01 0.40 0.01 0.29 0.70 0.20 
          Mean: 0.83 0.33 

pVn 
5NN 
  
  
  
  

NORM 0.16 0.99 0.15 0.99 0.12 0.98 0.93 0.43 
R2L 0.07 0.81 0.06 0.81 0.06 0.78 0.88 0.38 
DOS 0.00 0.97 0.00 0.97 0.00 0.72 0.98 0.48 
PROBE 0.00 0.98 0.00 0.98 0.00 0.98 0.99 0.49 
U2R 0.01 0.26 0.01 0.20 0.00 0.05 0.63 0.13 
          Mean: 0.88 0.33 
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Table G.4: One-vs-rest AUC for the 5NN Wine quality models  
5NN Wine quality (white) models: Mean TPRATE, mean FPRATE, AUC and Mean AUC 

Model 
positive 
class 

Mean values for thresholds 

AUC aboveAUC  
 6.01 =λ  8.02 =λ  0.13 =λ  

FP1 TP1 FP2 TP2 FP3 TP3 

  
single 
5NN 
  
  
  

4 0.04 0.12 0.02 0.08 0.01 0.04 0.54 0.04 
5 0.20 0.48 0.10 0.29 0.04 0.11 0.65 0.15 
6 0.17 0.22 0.04 0.08 0.01 0.01 0.53 0.03 
7 0.23 0.42 0.10 0.16 0.04 0.03 0.59 0.09 
8 0.02 0.10 0.01 0.07 0.00 0.03 0.54 0.04 

          Mean  AUC: 0.57 0.07 

OVA  
un-boosted 
5NN 
  
  
  

4 0.05 0.13 0.05 0.13 0.04 0.09 0.54 0.04 
5 0.27 0.59 0.25 0.55 0.12 0.34 0.67 0.17 
6 0.22 0.29 0.19 0.26 0.11 0.16 0.54 0.04 
7 0.28 0.50 0.25 0.42 0.17 0.33 0.61 0.11 
8 0.02 0.10 0.02 0.10 0.02 0.10 0.54 0.04 

          Mean  AUC: 0.58 0.08 

OVA  
boosted 
5NN 
  
  
  

4 0.05 0.14 0.05 0.14 0.05 0.10 0.54 0.04 
5 0.31 0.66 0.29 0.59 0.13 0.35 0.68 0.18 
6 0.13 0.25 0.09 0.20 0.02 0.08 0.56 0.06 
7 0.29 0.52 0.27 0.48 0.17 0.35 0.62 0.12 
8 0.03 0.11 0.03 0.11 0.02 0.11 0.54 0.04 

          Mean  AUC: 0.59 0.09 

pVn 
5NN 
  
  
  
  

4 0.05 0.11 0.04 0.09 0.02 0.02 0.53 0.03 
5 0.23 0.53 0.15 0.39 0.04 0.16 0.66 0.16 
6 0.27 0.50 0.17 0.32 0.04 0.12 0.62 0.12 
7 0.22 0.44 0.15 0.28 0.06 0.08 0.60 0.10 
8 0.02 0.11 0.02 0.09 0.01 0.06 0.55 0.05 

          Mean  AUC: 0.59 0.09 
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Table G.5: One-vs-rest AUC for the See5 forest cover type models 
See5 forest cover type models: TPRATE, FPRATE, AUC and Mean AUC 

Model 

Positiv
e 
class 

Mean values for thresholds 

AUC 

 

aboveAUC
 

 5.01 =λ  
75.02 =λ

 0.13 =λ  

FP1 TP1 FP2 TP2 FP3 TP3 

  
  
  
single 
See5 
  
  
  

1 0.03 0.57 0.01 0.28 0.00 0.04 0.77 0.27 
2 0.06 0.63 0.03 0.39 0.00 0.04 0.79 0.29 
3 0.03 0.61 0.01 0.41 0.00 0.04 0.79 0.29 
4 0.03 0.94 0.02 0.90 0.00 0.08 0.96 0.46 
5 0.03 0.86 0.02 0.77 0.00 0.00 0.92 0.42 
6 0.05 0.78 0.03 0.60 0.00 0.05 0.87 0.37 
7 0.03 0.96 0.02 0.85 0.01 0.03 0.97 0.47 

          Mean: 0.87 0.37 

  
  
OVA 
unboosted 
5NNSee5 
  
  
  

1 0.05 0.61 0.05 0.60 0.00 0.01 0.78 0.28 
2 0.05 0.50 0.05 0.50 0.00 0.00 0.72 0.22 
3 0.04 0.64 0.04 0.62 0.00 0.02 0.80 0.30 
4 0.01 0.87 0.01 0.85 0.00 0.00 0.93 0.43 
5 0.04 0.94 0.04 0.94 0.00 0.01 0.95 0.45 
6 0.07 0.79 0.07 0.79 0.00 0.08 0.86 0.36 
7 0.03 0.93 0.03 0.93 0.00 0.00 0.95 0.45 

          Mean: 0.86 0.36 

  
OVA 
boosted 
See5 
  
  
  
  

1 0.03 0.63 0.02 0.52 0.00 0.04 0.80 0.30 
2 0.07 0.67 0.07 0.62 0.01 0.01 0.80 0.30 
3 0.02 0.63 0.02 0.62 0.00 0.08 0.80 0.30 
4 0.01 0.95 0.01 0.94 0.00 0.04 0.97 0.47 
5 0.04 0.87 0.04 0.87 0.00 0.09 0.92 0.42 
6 0.04 0.76 0.04 0.76 0.00 0.05 0.86 0.36 
7 0.01 0.98 0.01 0.97 0.00 0.22 0.98 0.48 

          Mean: 0.88 0.38 

  
pVn 
See5 
  
  
  
  
  

1 0.04 0.65 0.02 0.54 0.00 0.08 0.81 0.31 
2 0.06 0.65 0.05 0.61 0.00 0.04 0.80 0.30 
3 0.04 0.72 0.03 0.68 0.00 0.09 0.84 0.34 
4 0.01 0.95 0.01 0.89 0.00 0.01 0.97 0.47 
5 0.02 0.89 0.02 0.81 0.00 0.00 0.93 0.43 
6 0.05 0.82 0.04 0.78 0.00 0.12 0.89 0.39 
7 0.02 0.92 0.01 0.88 0.00 0.03 0.95 0.45 

          Mean: 0.88 0.38 
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Table G.6: One-vs-rest AUC for the See5 KDD Cup 1999 models   
See5 KDD Cup 1999 models: TPRATE, FPRATE, AUC and Mean AUC 

  
  
Model 

  
Positive 
class 

Mean values for thresholds 

AUC aboveAUC  
 5.01 =λ  75.02 =λ  0.13 =λ  

FP1 TP1 FP2 TP2 FP3 TP3 

single 
See5 
  
  
  
  

NORM 0.22 0.86 0.22 0.86 0.02 0.63 0.88 0.38 
R2L 0.02 0.38 0.02 0.38 0.00 0.12 0.68 0.18 
DOS 0.02 0.82 0.02 0.82 0.02 0.82 0.90 0.40 
PROBE 0.04 0.36 0.04 0.36 0.02 0.36 0.67 0.17 
U2R 0.16 0.77 0.16 0.77 0.00 0.00 0.81 0.31 
          Mean: 0.79 0.29 

OVA 
unboosted 
See5 
  
  
  

NORM 0.11 0.98 0.11 0.98 0.10 0.98 0.94 0.44 
R2L 0.09 0.34 0.09 0.34 0.06 0.04 0.62 0.12 
DOS 0.00 0.50 0.00 0.50 0.00 0.01 0.75 0.25 
PROBE 0.10 0.88 0.10 0.88 0.10 0.88 0.89 0.39 
U2R 0.01 0.46 0.01 0.46 0.00 0.00 0.73 0.23 
          Mean: 0.79 0.29 

OVA 
boosted 
See5 
  
  
  

NORM 0.24 0.99 0.24 0.99 0.15 0.93 0.91 0.41 
R2L 0.02 0.24 0.02 0.24 0.00 0.01 0.61 0.11 
DOS 0.06 0.56 0.06 0.56 0.01 0.56 0.77 0.27 
PROBE 0.08 0.89 0.08 0.89 0.08 0.89 0.91 0.41 
U2R 0.01 0.40 0.01 0.40 0.00 0.00 0.69 0.19 
          Mean: 0.78 0.28 

pVn 
See5 
  
  
  
  

NORM 0.20 0.98 0.20 0.98 0.07 0.41 0.90 0.40 
R2L 0.02 0.54 0.02 0.54 0.01 0.22 0.76 0.26 
DOS 0.00 0.68 0.00 0.68 0.00 0.44 0.84 0.34 
PROBE 0.03 0.97 0.03 0.97 0.01 0.97 0.98 0.48 
U2R 0.01 0.77 0.01 0.71 0.00 0.43 0.88 0.38 
          Mean: 0.87 0.37 
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Table G.7: One-vs-rest AUC for the See5 Wine quality models 
See5 Wine quality white: TPRATE, FPRATE,auc and MEAN AUC 

  
  
 model 

  
positive  
Class 

Mean values for thresholds 

AUC aboveAUC  
 5.01 =λ  75.02 =λ  0.13 =λ  

FP1 TP1 FP2 TP2 FP3 TP3 

  
single 
See5 
  
  
  

4 0.04 0.26 0.04 0.26 0.00 0.01 0.61 0.11 
5 0.33 0.70 0.03 0.05 0.00 0.00 0.68 0.18 
6 0.18 0.28 0.02 0.04 0.00 0.00 0.55 0.05 
7 0.19 0.48 0.05 0.14 0.00 0.00 0.64 0.14 
8 0.01 0.08 0.00 0.08 0.00 0.00 0.54 0.04 

          Mean: 0.60 0.10 

un-boosted 
OVA 
See5 
  
  
  

4 0.09 0.40 0.09 0.40 0.01 0.09 0.66 0.16 
5 0.30 0.65 0.30 0.65 0.02 0.01 0.67 0.17 
6 0.12 0.13 0.10 0.13 0.01 0.00 0.51 0.01 
7 0.25 0.43 0.24 0.43 0.00 0.00 0.59 0.09 
8 0.03 0.13 0.03 0.13 0.00 0.00 0.55 0.05 

          Mean: 0.60 0.10 

  
boosted 
OVA 
See5 
  
  

4 0.09 0.40 0.09 0.40 0.01 0.09 0.66 0.16 
5 0.33 0.68 0.31 0.68 0.02 0.01 0.68 0.18 
6 0.07 0.10 0.01 0.02 0.00 0.00 0.51 0.01 
7 0.26 0.46 0.24 0.45 0.00 0.00 0.60 0.10 
8 0.03 0.14 0.03 0.13 0.00 0.00 0.56 0.06 

          Mean: 0.60 0.10 

pVn 
See5 
  
  
  
  

4 0.06 0.34 0.06 0.34 0.01 0.09 0.64 0.14 
5 0.19 0.55 0.14 0.48 0.00 0.00 0.69 0.19 
6 0.19 0.41 0.12 0.27 0.01 0.02 0.61 0.11 
7 0.29 0.58 0.25 0.56 0.03 0.06 0.66 0.16 
8 0.02 0.14 0.02 0.14 0.01 0.00 0.56 0.06 

          Mean: 0.63 0.13 
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Appendix H 

Using statistical and database software to implement 
dataset selection methods 
 

Recommendations for using database and statistical software for the implementation 

of dataset selection methods proposed in this thesis were given in chapter 10. Tables 

H.1 and H.2 provide detailed suggestions for feature selection, training instance 

selection and model aggregation. 

 

TableH.1: Suggestions for feature selection using statistical software 
Feature selection 
activity 

 
Step for activity 

 
Implementation 

 
 
 
 
 
 
 
 
Feature ranking 

Generation of probe variables SPSS, SAS  or MS Excel 
 

Sampling SPSS or SAS 
 

Binarisation of qualitative features and 
class variable 

SPSS, SAS  or MS Excel 
 

Measurement of class-feature and 
feature-feature correlations 

Bivariate correlation matrix for 
quantitative variables 
Pearson’s chi-square, SU 
coefficient, phi and Cramer’s V 
statistics 

Computation of mean and 95% CIs of 
means for correlations 

SPSS 

Ranking and feature elimination using 
probes 

SPSS or MS Excel 

Feature subset search Search for best subset Specialised code e.g. C++ code 
 

 

Table H.2: Suggestions for OVA and pVn modeling using statistical software 
 
Activity 

 
Implementation 

Sampling for training set to create single model SPSS or SAS 

Creation of single model and confusion matrix SPSS or SAS  

Dataset partitioning 
 
SPSS, SAS or SQL 

Sampling from partitions to obtain boosted samples for base 
model creation SPSS, SAS  

 
Creation of base models 

 
SPSS, SAS or other modelling 
software 

Model aggregation 
SPSS, SAS  or MS Excel 
or Specialised code e.g. C++ code 
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