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Chapter 9 

ROC Analysis for Single and Aggregate 
Models 
 

Recall from section 4.7 that a discrete classifier simply assigns a class label to a test 

instance (Fawcett, 2001, 2004, 2006).The single, OVA aggregate and pVn aggregate 

models were treated as discrete classifiers for the predictive performance analysis 

reported in chapters 7 and 8. Even though the single, OVA aggregate and pVn 

aggregate models assign probabilistic scores to the test instances as discussed in 

section 6.4, the scores could not be used in the statistical tests used in chapters 7 

and 8 to compare model performance. Student’s paired samples t-test, the Diff(A,S) 

measure, and the Ratio(A,S) measures that were used to compare model 

performance do not provide the capability for the analysis of the probabilistic scores 

assigned to the model predictions. 

 

Receiver Operating Characteristic (ROC) curves and ROC analysis were discussed 

in section 4.7. ROC analysis enables the analysis of classifiers based on the scores 

that are assigned to the test instances. The classification models of chapters 7 and 8 

were treated as probabilistic classifiers for the ROC analysis reported in this chapter. 

The purpose of the ROC analysis was to answer the questions below in order to 

establish whether the aggregate models provide a better level of performance 

compared to the single models for different operating conditions:  

 

1. Do OVA aggregate models provide a higher level of predictive performance 

compared to single models for different operating conditions? 

 

2. Do pVn aggregate models provide a higher level of predictive performance 

compared to single models for different operating conditions? 

 

This chapter is organised as follows: Sections 9.1 and 9.2 respectively provide a 

discussion of 2-class and multi-class ROC analysis. Section 9.3 provides a 

discussion of ROC analysis for the 5NN single and aggregate models. Section 9.4 

provides a discussion of ROC analysis for the See5 single and aggregate models. 

Section 9.5 concludes the chapter. 
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9.1 ROC analysis for 2-class predictive models 
 

Recall that ROC curves provided a graphic representation of predictive model 

performance for 2-class prediction tasks (Giudici & Figini, 2009; Witten & Frank, 

2005; Giudici, 2003; Berry & Linoff, 2000). A probabilistic classification model 

typically assigns a class and a score for the class. Most commonly, the score is the 

probability that a test instance belongs to the predicted class (Giudici & Figini, 2009; 

Witten & Frank, 2005; Giudici, 2003; Berry & Linoff, 2000). ROC analysis is 

concerned with the selection of the model with the optimal performance based on the 

cut-off point (threshold) λ that is used to decide when an instance should be 

declared positive or negative. A cut-off point (threshold) is the score value )( 

 

conf  

for which λ≥)( �� ��conf implies that the predicted class for instance ���� is the positive 

class. ROC analysis may also be used to determine which of two models provides a 

higher level of predictive performance as discussed in section 4.7. ROC analysis 

produces a statistic called the Area Under ROC curve (AUC). Recall from section 

4.7.3 that when the predictive performance of a probabilistic classifier is better than 

random guessing then ��
 � ��
�� !" # ��
$�!%�. ��
�� !"  and ��
$�!%� are 

respectively the area below and the area above the 45 degree line which represents 

random guessing in the 2-dimensional ROC plane. The AUC is also the probability 

that  a classifier will rank a randomly chosen positive instance higher than a randomly 

chosen negative instance (Fawcett, 2006). Given two probabilistic classifiers, the 

classifier with the larger AUC value has a higher level of predictive performance 

under different operating conditions.. 

 

9.2 ROC analysis for multi-class predictive models 
 

Computation of the AUC for 2-class classification models is a straight forward task. 

ROC analysis for k-class (k > 2) prediction tasks is concerned with the Volume Under 

the ROC Surface (VUS). Computation and visualisation of the VUS is a non-trivial 

task. Fawcett (2004, 2006) has discussed two approximations of the VUS measure 

that have been proposed by Hand and Till (2001) and Provost and Domingos (2001).  

The Hand and Till (2001) measure is defined as 
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where ),( ji ccAUC is the AUC value computed for the two class ROC curve for the 

classes ic  and jc  and k is the number of classes for the predictive model.  

 

The Provost and Domingos (2001: cited by Fawcett, 2004, 2006) measure is defined 

as 
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where ),( restcAUC i  is the AUC for class ic  compared to all the other k-1 classes 

and  )( ir cP  is the prevalence (prior probability) of class ic  in the training dataset(s). 

The Provost and Domingos (2001) measure is commonly called the one-versus-rest 

approximation of the VUS (Fawcett, 2001, 2004, 2006). The Provost and Domingos 

(2001) measure is easier to visualise and faster to compute. However, determining 

the prevalence (prior probability) )( ir cP of a class is a simple matter for a single 

predictive model. When base models are based on boosted training datasets and 

then combined into one aggregate model, the determination of )( ir cP is not straight 

forward any more. A modified version of the Provost and Domingos (2001) measure 

that was designed by the author of this thesis and used for the ROC analysis of this 

chapter is a simple mean value for the AUC and is defined as  
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                (9.3) 

 

where ),( restcAUC i has the same meaning as before and  k is the number of 

classes for the multi-class (k-class) prediction task. The justification for computing the 

mean value of ),( restcAUC i  in equation (9.3) is as follows: The VUS estimates of 

equations (9.1) and (9.2) are based on the arithmetic combination of the AUC values 

for many 2-dimensional planes in multi-class ROC space. Equation (9.1) computes a 

mean value for 2/)1( −kk  such planes. Equation (9.2) computes a simple sum of 

weighted values of the AUC for k 2-dimensional planes. Given the foregoing 

 
 
 



  214 

observations, computation of the mean AUC in equation (9.3) gives a useful estimate 

of the VUS, especially for purposes of comparing the performance of two multi-class 

probabilistic classifiers. 

 

Several values need to be computed in order to derive the approximation of the VUS. 

The values that were computed and the methods for computation of these values are 

given in table 9.1. Since 10 test sets were used to measure model performance, it 

was necessary to combine the test results for the TPRATE and FPRATE into 

summary measures for the 10 test sets. The mean TPRATE and mean FPRATE 

were computed for each threshold value for the probabilistic classifier. Fawcett 

(2004, 2005) calls this approach threshold averaging. 

 

Table 9.1: Computations for the estimation of the VUS 
 
Value 

 
Description 

 
Computation 

Mean ),,( λrestcTPRATE i  

Mean TPRATE for probabilistic 

classifier  ),( restcPC i  for 

threshold value λ  

Mean values computed using 10 
test sets 

Mean ),,( λrestcFPRATE i  

Mean FPRATE for probabilistic 

classifier ),( restcPC i  for 

threshold value λ  

Mean values computed using 10 
test sets 

 

),( restcAUC i  

AUC computed for the curve 
defined by the mean TPRATE 
and FPRATE values for 
probabilistic classifier 

),( restcPC i  for different λ  

values.  

Integration of the area between 
the curve and the 450 line in the 
2-dimensional ROC space. 
The λ  values for the 5NN 
probabilistic classifiers were: 
0.6, 0.8 and 1.0.  The values for 
See5 were: 0.5, 0.75 and 1.0. 

Mean totalAUC  
Estimation of VUS  
 Computed using equation (9.3) 

 

9.3 ROC analysis for 5NN models 
 

The ROC analysis results for the 5NN single and aggregate models for the forest 

cover type, KDD Cup 1999 and wine quality datasets are given in table 9.2. The 

details of the ROC analysis are given in the appendix tables G.2, G.3 and G.4. The 

aboveAUC  values and Gini concentration coefficients for the probabilistic classifiers 

are given in table 9.2 columns 3 to 10 for each class. The mean aboveAUC  and mean 

Gini values for the single k-class model and aggregate k-class models are also given 

in the table. Recall from sections 4.7.3 and 9.1 that  aboveAUC  is the area between 

the ROC curve and the 45 degree line and aboveAUCGini x2= . When the 2-
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dimensional ROC space is visualised as a grid of 100 cells with each cell having a 

width of 0.1 and a height of 0.1, then an increment of 0.01 in the AUC corresponds to 

an AUC increase of one such cell. This corresponds to a 2% increase in the area 

aboveAUC  whose maximum value is 0.5, and an increase of 4% in the Gini 

concentration coefficient whose maximum value is 1.0. 

 

Table 9.2: ROC analysis results for the 5NN single and aggregate models 
  
 
Dataset, 
algorithm 

Probabilistic 
classifier 
PC(ci,rest) 

 AUCabove and Gini concentration coefficient for model: 
single un-boosted 

OVA 
boosted OVA pVn 
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Forest 
cover 
type, 
5NN 
  

PC(1,rest) 0.29 0.58 0.33 0.66 0.33 0.66 0.32 0.64 
PC(2,rest) 0.23 0.46 0.28 0.56 0.30 0.60 0.27 0.54 
PC(3,rest) 0.25 0.50 0.35 0.70 0.34 0.68 0.31 0.62 
PC(4,rest) 0.45 0.90 0.44 0.88 0.49 0.98 0.48 0.96 
PC(5,rest) 0.43 0.86 0.46 0.92 0.47 0.94 0.46 0.92 
PC(6,rest) 0.33 0.66 0.38 0.76 0.37 0.74 0.36 0.72 
PC(7,rest) 0.47 0.94 0.47 0.94 0.47 0.94 0.46 0.92 
Mean  0.35 0.70 0.39 0.78 0.40 0.80 0.38 0.76 

                    
  
 
KDD 
Cup 
1999, 
5NN  

PC(NORMAL,rest) 0.36 0.72 0.41 0.82 0.41 0.82 0.43 0.86 
PC(DOS,rest) 0.33 0.66 0.33 0.66 0.33 0.66 0.48 0.96 
PC(PROBE,rest) 0.44 0.88 0.44 0.88 0.44 0.88 0.49 0.98 
PC(R2L,rest) 0.30 0.60 0.29 0.58 0.27 0.54 0.38 0.76 
PC(U2R,rest) 

0.15 0.30 0.21 0.42 0.20 0.40 0.13 0.26 
Mean  0.32 0.64 0.33 0.66 0.33 0.66 0.38 0.76 

                    
 PC(4,rest) 0.04 0.08 0.04 0.08 0.04 0.08 0.03 0.06 

PC(5,rest) 0.15 0.30 0.17 0.34 0.18 0.36 0.16 0.32 
PC(6,rest) 0.03 0.06 0.04 0.08 0.06 0.12 0.12 0.24 
PC(7,rest) 0.09 0.18 0.11 0.22 0.12 0.24 0.10 0.20 
PC(8,rest) 0.04 0.08 0.04 0.08 0.04 0.08 0.05 0.10 
Mean  0.07 0.14 0.08 0.16 0.09 0.18 0.09 0.18 

 

The mean aboveAUC  values for the forest cover type models range between 0.35 and 

0.40. The boosted OVA aggregate model provided the best performance (0.40), 

followed by the un-boosted OVA aggregate model (0.39) followed by the pVn model 

(0.38). Since the single model has a mean aboveAUC  of 0.35, all forest cover type 

aggregate models provided an increased level of predictive performance over the 

single model. An examination of the performance on the individual classes reveals 

that the aggregate models provided increased performance levels on six out of the 

seven classes. There were no improvements on class 7.  
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The mean aboveAUC  values for the KDD Cup 1999 models range between 0.32 and 

0.38. The pVn aggregate model provided the best performance (0.38), followed by 

the un-boosted and boosted OVA aggregate models (0.33). Since the single model 

has a mean aboveAUC  of 0.32, the OVA models provided a very slight improvement in 

predictive performance. The pVn model provided a much higher performance 

improvement over the single model. The aboveAUC  values for the individual classes 

indicate that the KDD Cup 1999 pVn aggregate model provided increased 

performance levels on four out of the five classes. The un-boosted and boosted OVA 

aggregate models each provided increased performance levels on two out of five 

classes. 

 

The mean aboveAUC  values for the wine quality models are very small. The values 

range between 0.07 and 0.09. The boosted OVA and pVn aggregate models 

provided the best performance (0.09), followed by the un-boosted OVA aggregate 

models (0.08). Since the single model has a mean aboveAUC  of 0.07, the OVA and 

pVn models provided a slight improvement in predictive performance. The aboveAUC  

values for the individual classes indicate that the wine quality pVn aggregate model 

provided increased performance levels on four out of the five classes. The un-

boosted and boosted OVA aggregate models each provided increased performance 

levels on three out of five classes. 

 

9.4 ROC analysis for See5 models 
 

The ROC analysis results for the See5 single and aggregate models for the forest 

cover type, KDD Cup 1999, and wine quality datasets are given in table 9.3. The 

details of ROC analysis are given in the appendix tables G.5, G.6 and G.7. The 

aboveAUC  values for the probabilistic classifiers are given in table 9.2 columns 3 to 10 

for each class. The mean aboveAUC  and mean Gini values for the single k-class 

model and aggregate k-class models are also given in the table.  

 

The mean aboveAUC  values for the See5 forest cover type models range between 

0.36 and 0.38. The boosted OVA and pVn aggregate models provided the best 

performance (0.38), followed by the single model (0.37) followed by the un-boosted 
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OVA aggregate model (0.36). Since the single model has a mean aboveAUC  of 0.37, 

the boosted OVA and pVn aggregate models for forest cover type provided an 

increased level of predictive performance over the single model. The un-boosted 

OVA aggregate model did not provide any performance gains. An examination of the 

performance on the individual classes reveals that the boosted OVA aggregate 

model provided increased performance on five out of the seven classes. The pVn 

aggregate model provided increased performance on six out of the seven classes.  

 

Table 9.3: ROC analysis results for the See5 single and aggregate models 
 
 
 
 
Dataset, 
algorithm 
  

  
 
 
Probabilistic 
classifier 
 PC(ci,rest) 

AUCabove and Gini concentration coefficient for model: 

single 
  

un-boosted 
OVA 

boosted 
OVA 

pVn 
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Forest 
cover 
type, 
See5 
  
  

PC(1,rest) 0.27 0.54 0.28 0.56 0.30 0.60 0.31 0.62 
PC(2,rest) 0.29 0.58 0.22 0.44 0.30 0.60 0.30 0.60 
PC(3,rest) 0.29 0.58 0.30 0.60 0.30 0.60 0.34 0.68 
PC(4,rest) 0.46 0.92 0.43 0.86 0.47 0.94 0.47 0.94 
PC(5,rest) 0.42 0.84 0.45 0.90 0.42 0.84 0.43 0.86 
PC(6,rest) 0.37 0.74 0.36 0.72 0.36 0.72 0.39 0.78 
PC(7,rest) 0.47 0.94 0.45 0.90 0.48 0.96 0.45 0.90 
Mean  0.37 0.74 0.36 0.72 0.38 0.76 0.38 0.76 

          

KDD Cup 
1999, 
See5 
  

PC(NORMAL,rest) 0.38 0.76 0.44 0.88 0.41 0.82 0.40 0.80 
PC(DOS,rest) 0.40 0.80 0.25 0.50 0.27 0.54 0.34 0.68 
PC(PROBE,rest) 0.17 0.34 0.39 0.78 0.41 0.82 0.48 0.96 
PC(R2L,rest) 0.18 0.36 0.12 0.24 0.11 0.22 0.26 0.52 
PC(U2R,rest) 0.31 0.62 0.23 0.46 0.19 0.38 0.38 0.76 
Mean  0.29 0.58 0.29 0.58 0.28 0.56 0.37 0.74 

          

Wine 
quality 
white, 
See5 
  

PC(4,rest) 0.11 0.22 0.16 0.32 0.16 0.32 0.14 0.28 
PC(5,rest) 0.18 0.36 0.17 0.34 0.18 0.36 0.19 0.38 
PC(6,rest) 0.05 0.10 0.01 0.02 0.01 0.02 0.11 0.22 
PC(7,rest) 0.14 0.28 0.09 0.18 0.10 0.20 0.16 0.32 
PC(8,rest) 0.04 0.08 0.05 0.10 0.06 0.12 0.06 0.12 
Mean  0.10 0.20 0.10 0.20 0.10 0.20 0.13 0.26 

 

The mean aboveAUC  values for the See5 KDD Cup 1999 models range between 0.29 

and 0.37. The pVn aggregate models provided the best performance (0.37), followed 

by the single model and un-boosted OVA aggregate model (0.29) followed by the 

boosted OVA aggregate model (0.28). Since the single model has a mean aboveAUC  

of 0.29, the pVn aggregate models for KDD Cup 1999 provided an increased level of 
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predictive performance over the single model. The OVA aggregate models did not 

provide any performance gains. An examination of the performance on the individual 

classes reveals that the pVn aggregate model provided increased performance on 

four out of the five classes.  

 

The mean aboveAUC  values for the See5 wine quality models are very small. The 

single, un-boosted OVA, and boosted OVA models have values of 0.10 for the mean

aboveAUC . These results indicate that the OVA aggregate models did not provide any 

performance gains. The pVn aggregate model provided the best performance with a 

mean aboveAUC  value of 0.13 which indicates an increased level of predictive 

performance over the single model. An examination of the performance on the 

individual classes reveals that the pVn aggregate model provided increased 

performance on all five classes.  

 

9.5 Conclusions 
 

The single and aggregate models of chapters 7 and 8 were treated as probabilistic 

classifiers for the ROC analysis discussed in this chapter. The first question that was 

posed for this chapter was: Do OVA aggregate models provide a higher level of 

predictive performance compared to single models for different operating conditions? 

Performance improvements were realised for the 5NN OVA aggregate models and 

the See5 boosted aggregate model for the forest cover type dataset. No performance 

gains were realised for the See5 un-boosted OVA aggregate model. No performance 

gains were realised from the OVA aggregate models for the 5NN and See5 

algorithms for the KDD Cup 1999 and wine quality datasets.  

 

The conclusion from the foregoing observations is that OVA aggregate modeling as 

proposed in this thesis may or may not result in improved performance. Schaffer 

(1994) has observed that no single strategy for machine learning is better at 

generalisation (prediction) than all other strategies for all problem domains. The 

above conclusion should therefore be viewed in the context of Schaffer’s (1994) 

observation. The single model confusion matrices of the forest cover type 5NN and 

See5 models had higher levels of sparsity compared to the KDD Cup and wine 

quality single models. It can be concluded that OVA modeling, as proposed in this 
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thesis, provides performance improvements for a dataset whose confusion matrix 

has a high level of sparsity.  

 

The second question that was posed for this chapter was: Do pVn aggregate models 

provide a higher level of predictive performance compared to single models for 

different operating conditions? The pVn aggregate models provided performance 

improvements for the forest cover type, KDD Cup1999, and wine quality datasets for 

both the 5NN and See5 algorithms. It can be concluded that pVn modeling provides 

performance improvements as long as the single model for a dataset has the sparse 

confusion matrix property. 

 

In conclusion, the observations based on the ROC analysis of this chapter support 

the conclusions of chapter 7 and 8. The ROC analysis results have additionally 

demonstrated that OVA and pVn aggregate models can provide better predictive 

performance under different operating conditions compared to single models. Based 

on the conclusions of chapters 5, 7, 8 and this chapter, recommendations are given 

in the next chapter for dataset selection and aggregate modeling from large datasets. 
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Chapter 10  

Recommendations for Dataset Selection 
 

‘… the problems in science … on a deeper level  ... are directed towards a consensus, 

or rational agreement, between the parties concerned … ’ (Toulmin et al, 1979) 

 

The studies conducted on feature selection, training dataset selection, and aggregate 

modeling, the experimental results and analysis of the results were presented in 

chapters 5 to 9. This chapter provides an integrated discussion of the experimental 

results by giving a summary of the results. The chapter also provides theoretical 

models that were derived from the results and suggestions on how to conduct feature 

and training dataset selection for aggregate modeling from large datasets. Recall 

from section 4.3.5 that several researchers have argued for the need for empirically 

derived theories for computer systems (Simon, 1996), machine learning (Dietterich, 

1997) and artificial intelligence systems (Cohen, 1995). It is the author’s opinion that 

empirically derived theoretical models for data mining should provide value for 

researchers and practitioners in data mining. Recall that the main research question 

for the thesis was: 

 

What methods of dataset selection can be used to obtain as much information as 

possible from large datasets while at the same time using training datasets of small 

sizes to create predictive models that have a high level of predictive performance? 

 

The following sections provide several concise answers to this question. A summary 

of the methods that were used for the reduction of prediction error is given in section 

10.1. Theoretical models and recommendations for feature selection and training 

dataset selection are provided in sections 10.2 and 10.3 respectively. Section 10.4 

provides a summary of the chapter.  

 

10.1 Reduction of prediction error 
 

It was argued in chapter 2 that a high level of predictive performance should be 

achieved when training datasets are selected with the main objective of reducing 

prediction error. Chapter 2 provided a discussion of the components that make up 
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the predictive error, namely bias, variance and intrinsic error. The methods that have 

the potential to reduce the bias and variance error components were discussed in 

chapter 2. The use of simple models (Dietterich & Bakiri, 1995) and boosting (Freund 

& Schapire, 1997) are known to reduce the bias component of the prediction error. 

The use of aggregate modeling (Breiman, 1996) and the use of simple models (e.g. 

OVA base models) are known to reduce variance error. The use of good feature 

subsets for prediction (Dietterich & Kong (2005) and reduction of noise through 

sampling (Smyth, 2001) are known to reduce the variance error. 

 

The main objective of the experiments reported in chapters 5, 7 and 8 was to reduce 

the bias and variance components of prediction error using the methods stated 

above. This was achieved through: 

(1) The use of many (relatively) small samples for correlation measurement and base 

model construction. 

(2) The design of simple base models, each of which specialises in the prediction of 

a subset of the k classes (k > 2) for the prediction task and uses a different training 

dataset from the other base models. 

(3) The design of training datasets for base models, with the objective of increasing 

the coverage of those regions of the instance space where correct prediction is more 

difficult. 

 

10.2 Recommendations for feature selection 
 

This section provides a summary of the discussion of the studies that were 

conducted for feature selection as reported in chapter 5. A theoretical model of the 

factors that affect the quality of selected features is proposed and guidelines are 

provided on how to proceed with feature selection in the presence of large datasets. 

Section 10.2.1 provides a summary of the feature selection studies. Section 10.2.2 

provides guidelines for feature selection based on the reported experimental results. 

 

10.2.1 Summary of the feature selection experimental results 
 

The factors that affect the quality of selected features for single models were 

discussed in sections 5.6 and 5.7. In the context of this discussion, quality refers to 

the extent to which as many relevant features as possible are included, and as many 
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irrelevant and redundant features as possible are excluded from the selected subset 

of predictive features. The point was made in chapter 3 that existing literature in 

computational data mining indicates that most commonly a single sample of (all 

available) data is used to measure class-feature and feature-feature correlations for 

feature ranking. Probes (fake variables) have been used for the validation of class-

feature correlations. The experiments of chapter 5 demonstrated that class-feature 

correlations measured from samples of a large dataset can vary widely from sample 

to sample. The point was also made in chapter 3 that in computational data mining, 

mathematical functions are commonly used as heuristic measures by feature subset 

search algorithms. The experimental results of chapter 5 revealed that the use of 

mathematical functions as heuristic measures does not always result in the best 

decisions for the features to be included in the subset of the best predictive features. 

 

Based on the experimental results and conclusions of chapter 5, the following are 

research contributions of this thesis to the problem of feature selection: 

(1) Reliable methods of measuring class-feature and feature-feature correlations 

through the use of many samples. 

(2) Reliable feature ranking through the use of mean class-feature correlations 

values. 

(3) Reliable class-feature and feature-feature correlation validation through the use of 

mean values for the class-probe correlations to eliminate non-relevant features. 

(4) Usage of decision rules for heuristics evaluation of the best feature to select at a 

given decision point for a feature subset search algorithm. 

 

Arising from the discussions of chapter 3 and the experimental results of chapter 5, 

the theoretical model shown in figure 10.1 was developed for purposes of 

representing the relationships between the factors that have an effect on the quality 

of selected features for predictive classification modeling. The theoretical model of 

figure 10.1 offers a predictive theory of the outcome of feature selection as depicted 

in figure 4.2 of section 4.3.3. However, the model of figure 10.1 does not provide 

causal explanations as depicted in figure 4.2. Proper causation experiments, with 

experiment controls are needed in order to conclude beyond reasonable doubt that 

the relationships shown in figure 10.1 are due to the indicated factors and not fully or 

partially due to other factors (Cohen, 1995: ch.9).  
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Figure 10.1: Theoretical predictive model for feature selection using filtering methods 
 

The theoretical model of figure 10.1 predicts that the definitions of feature relevance 

and redundancy that are used in the procedures for the validation of the class-feature 

correlation coefficient estimate, will affect the outcome of the validation procedure. 

When feature ranking is all that is required, then the quality of the selected features 

will be affected by the outcome of the validation procedure. The definitions of feature 

relevance and redundancy will affect the behaviour of a feature subset search 

algorithm in terms of the final subset of selected features. The method used to 

measure the correlation coefficients, the sample sizes used, and the number of 

samples used, will all affect the estimate of the correlation coefficients, and in turn 

affect the feature ranking that is generated for input to the search algorithm. Finally, 

the quality of the feature subset selected by a search algorithm is influenced by the 

quality of the decisions made by the search algorithm. 

 

10.2.2 Guidelines for feature selection 
 

The steps shown in figure 10.2 are recommended for feature selection from large 

datasets of moderate dimensionality. 

quality of 
selected 
features 

search algorithm 
behaviour / decisions 
(Ooi et al, 2007; this 
thesis) 

 
feature correlation 
value estimates &  
feature ranking 
(this thesis) 

definition of feature 
relevance & redundancy 
(Koller & Sahami, 1996; 
Blum & Langley, 1997; 
Yu & Liu, 2004; this thesis) 

method of measuring 
correlations  
(Wilcox, 2001; this thesis) 

size of samples used to 
measure correlations  
(Smyth, 2001;  this thesis) 

number of samples used to 
measure correlations  
(this thesis) 

Validation for 
correlation coefficients 
(Stoppiglia et al, 2003; 
this thesis) 
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Figure 10.2: Recommended procedure for feature selection from large datasets 
 

If the feature selection task is to select a pre-specified number of features, then steps 

1 to 7 of figure 10.2 are recommended. If on the other hand, the task is to select the 

best subset of features, then steps 1 to 7 should be followed by steps 8 and 9. Step 9 

involves the search for the best feature subset. Suggestions on how to conduct steps 

1 to 7 using commonly available software (SPSS and MS Excel) are given in the 

appendix table H.1. The decision-rule base feature selection algorithm that was 

presented in chapter 5 is a good candidate for performing step 9. One alternative to 

Step 1: Obtain information on the meaning of low, medium and high correlation for the domain 

from where the data originates. If this information is not available, use Cohen’s (1988) guidelines. 

 

Step 2:  Take many small random samples and add one or more probes to each sample. Ten test 

samples of 1000 instances and at least one probe (Gaussian for quantitative continuous data, 

Uniform for quantitative discrete and qualitative data) provided useful information for the chapter 5 

experiments. 

 

Step 3:  Measure the class-probe, class-feature and feature-feature correlations using a robust 

measure of association, eg. Kendall’s tau or Pearson’s r with the outliers removed. 

 

Step 4: Compute the mean class-probe, class-feature and feature-feature correlations. If the 

confidence intervals of the means for the correlation values are large, go back to step 1 and 

increase the sample size. 

 

Step 5:  Conduct feature ranking based on the mean values of the class-probe and class-feature 

correlations. 

 

Step 6:  Use the probe method discussed in chapter 5 to eliminate all features whose ranking is 

below that of any of the probes from further consideration, as discussed in chapter 5. 

 

 Step 7: If the feature selection task is to select a pre-defined number of features (w), then select 

the top w features that have a correlation coefficient of practical significance for the problem 

domain and stop. Alternatively, a user-specified threshold for correlation values can be used to 

determine which features to select. 

 

Step 8: If the feature selection task is to identify the best subset of features then construct 

decision rules for the meanings of relevance and redundancy for the problem domain where the 

dataset originates. If this information is not available, use Cohen’s (1988) guidelines. 

 

Step 9: Conduct the feature subset search using the decision rules of step 8  to obtain the best 

feature subset. 
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the above approach is to conduct steps 1 to 7 of figure 10.2 followed by Yu and Liu’s 

(2004) method of redundancy analysis that was discussed in chapter 3. 

 

10.3 Recommendations for training dataset selection for 
aggregate modeling 
 

This section provides a summarised discussion of the studies that were conducted 

for OVA and pVn base model design and training dataset selection as well as the 

implications of the experimental results. A theoretical model that was developed for 

the factors that affect the quality of selected training datasets, based on existing 

literature is presented. An extension of the theoretical model based on the studies 

conducted for this thesis is proposed, and guidelines are provided on how to proceed 

with training dataset selection for aggregate model implementation in the presence of 

large datasets. Section 10.3.1 provides a summary of the training dataset selection 

experiments and the research contributions arising from the experiments. Section 

10.3.2 presents the theoretical model for training dataset selection. Parallel and serial 

aggregation methods are discussed in section 10.3.3. Guidelines for training dataset 

selection are provided in section 10.3.4. 

 

10.3.1 Summary of the training dataset selection experimental 
results 
 

Sections 7.4 and 7.5 provided the discussion and conclusions for the OVA model 

dataset selection experiments. Sections 8.5 and 8.6 provided the discussion and 

conclusions for the pVn model dataset selection experiments. Chapter 9 provided the 

results for ROC analysis to compare single models, OVA and pVn aggregate models. 

The main conclusions from chapters 7, 8 and 9 were that the proposed dataset 

selection methods for OVA and pVn aggregate modeling generally provided 

improvements in predictive performance. In summary, the main research 

contributions arising from the reported experiments are as follows: 

(1) The use of OVA modeling to increase the amount of training data used for 

modeling from large datasets, and to increase the level of predictive performance. 

(2) The use of pVn modeling to increase the amount of training data used for 

modeling from large datasets, and to increase the level of predictive performance. 

pVn modeling reduces the number of base models compared to OVA modeling. 
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(3) The use of a confusion matrix to provide information for the design of boosted 

OVA and pVn base models. 

(4) The use of a confusion graph as a graphical and mathematical representation of 

the information in a confusion matrix to be used as input to the algorithm for 

determining the positive and negative classes of pVn base models. 

(5) A definition of the sparse confusion matrix property which can be used to 

determine whether boosted OVA and pVn base models will provide performance 

improvements for a given dataset. 

(6) A base model combination algorithm for KNN OVA and pVn base model 

predictions. The algorithm resolves tied predictions. 

 

10.3.2 Theoretical model for training dataset selection 
 

A theoretical model to summarise the work on aggregate modeling as reported in 

chapter 2 was developed by the author. The theoretical model is shown in figure 

10.3. One major factor that affects the performance of aggregate models is syntactic 

diversity. Recall from chapter 2 that the term syntactic diversity refers to the level of 

dis-similarity between the base models that make up an aggregate model. Syntactic 

diversity has been achieved by researchers (as indicated in figure 10.3) either 

through variation of the learning task, or variation of the base model structure, or 

variation of the training datasets for base models. A second major factor that affects 

aggregate model performance is the predictive accuracy of the base models. Several 

researchers (as indicated in figure 10.3) have achieved a high level of base model 

predictive accuracy (Chan & Stolfo, 1998) or single model accuracy (Kubat & Matwin, 

1997) through sampling methods that balance the level of class representation for 

datasets with skewed class distributions. A second approach has been to vary the 

learning task and/or the base model structure.  

 

Syntactic diversity, predictive accuracy of the base models and the method of 

determining the winning class lead to a reduction of the bias and variance 

components of the prediction error of an aggregate model as depicted in figure 10.3. 

The level to which the bias and variance components of the prediction error are 

reduced affects the predictive performance of the aggregate model.  

 

The research for this thesis concentrated on the selection of training datasets from 

large amounts of data, with the objective of constructing aggregate models which 
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provide a high level of predictive performance. The methods of training dataset 

selection that were studied were aimed at achieving variation in the base model 

structures, variation in the training datasets for the base models, and balancing of the 

class representation in the base models. The theoretical model shown in figure 10.4 

is an extension of the model of figure 10.3, based on the studies conducted for this 

thesis. 

 

 
Figure 10.3: Theoretical predictive model for aggregate model performance based on existing 
literature 
 

The model of figure 10.4 predicts that the use of information about the structure of 

the instance space combined with information on the aggregation method should 

result in the design of a set of base models whose performance should ultimately 

result in high predictive performance. The design of the base models should 

influence the methods used to select the training sample for each base model from 

the large dataset. The methods of training dataset selection, based on the designed 

base models, should influence the level of balance of the classes in the training 

datasets, the level of variation in the training datasets for the base models, and the 

level of variation in the learning tasks and structures of the base models. This should 

in turn influence the predictive performance of each base model, and the syntactic 

diversity in the set of base models. The algorithm used for combining the base model 

predictions will affect the bias error of the aggregate model. 
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Figure 10.4: Extensions to the theoretical predictive model for aggregate model performance 
based on studies for this thesis 
 

10.3.3 Parallel versus serial aggregation of base models 
 

The method of parallel combination of base models was used to create the 

aggregate models for the experiments reported in this thesis. Serial combination 

(Sun & Li, 2008; Neagu et al, 2006; Kim et al, 2002) is the second method of base 

model aggregation which was discussed in chapter 2. Recall that serial combination 

is a multi-step process. In the first step the base models are arranged in a series. In 

order to classify a new instance, the instance is passed to the first base model in the 

series. If the base model makes a credible prediction, then the process stops, 

otherwise the instance is passed to the next base model in the series. In general, if a 

base model makes a credible prediction the process stops otherwise the instance is 

passed to the next base model in the series (Sun & Li, 2008). The base model which 

provides the highest predictive accuracy on a given class is considered to be the 

base model that makes a credible prediction for that class (Sun & Li, 2008). 

 

Sun and Li (2008) have conducted studies on the serial combination of base models, 

where each base model can make predictions for any of the classes and is 

constructed with a different classification algorithm. Two useful aspects of the base 

models were noted in the design and testing process for the pVn base models. First 
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of all, in general, a pVn base model was found to provide a higher level of accuracy 

on the positive classes that it predicts, compared to the single k-class model. 

Secondly, several of the classes for the prediction task can be predicted by more 

than one base model. Based on the foregoing observations the author hypothesized 

that the use of pVn base models in a serial combination scheme would provide 

performance improvements, especially for decision tree algorithms where no 

measures are available for resolving tied predictions. Studies to confirm this 

hypothesis were left for future work. 

 

10.3.4 Guidelines for OVA and pVn model design, training dataset 
selection and testing 
 

The steps given in figures 10.5 to 10.8 are recommended for the design of OVA and 

pVn aggregate models, training dataset design and selection for the models, and 

aggregate model creation and testing.  

 

 
Figure 10.5: Steps for the creation of a confusion matrix and confusion graph 
 

The steps are based on the observations from the experiments of chapters 7 and 8. 

The first phase involves the establishment of the class confusion in a single k-class 

Phase I: Steps to establish class confusion 
 

1. Partition the large dataset according to class, so that k partitions are created, one for 

each class. 

2. From each partition obtained in step 1, set aside the data for model testing. 

3. Decide on the sample size, n, for the creation of a single k-class model. 

4. To obtain the training dataset for the single class model, proceed as follows. For each 

class ic in the data, obtain a random sample of size kn /  from the corresponding 

partition. If the partition has a size less than kn / , use bootstrap sampling to obtain the 

required sample size. 

5. Combine all the samples obtained in step 4 to create the training dataset for the single k-

class model. This training dataset will have an equal class distribution. 

6. Create several test sets with an equal class distribution from the test data partitions.  

7. Create the single k-class model and test it with the test sets created in step 6 in order to 

generate a confusion matrix for the classes. 

8. Compute the predictive accuracy, TPRATE and TNRATE for each class in the single k-

class model on the test sets. 

9. If the confusion matrix is sparse, create a confusion graph from the confusion matrix. 
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model. Figure 10.5 shows the recommended steps to be followed for the 

identification of the class confusion.  

 

 
Figure 10.6: Steps for the design, creation and testing of un-boosted OVA aggregate models 
 

 
Figure 10.7: Steps for the design, creation and testing of boosted OVA aggregate models 
 

Phase IIb: Boosted OVA model design, training dataset selection and 

testing 
If the single k-class model has a sparse confusion matrix, proceed as follows to create a boosted 

OVA aggregate model: 

1. For each class ic , determine from the confusion matrix or confusion graph which other 

classes are predominantly confused with ic .  

2. Design the class and training sample composition for each iOVA model so that class ic  has 

50% of the instances and the classes identified in step 1 have  50% of the instances. 

Consider apportioning the class representation based on the level of confusion, as discussed 

in chapter 7. 

3. Obtain the training samples for the OVA base models based on the design of step 2 by 

sampling from the partitions created in phase I. Use bootstrap sampling it the partition size is 

smaller than the required number of instances.  

4. Create the OVA base models and OVA aggregate model, and test the aggregate model using 

the test samples created in phase I. 

5. Compare the performance of the OVA aggregate model with that of the single k-class model 

on the test samples. 

Phase IIa: Un-boosted OVA model design, training dataset selection and 

testing 
 

To create an un-boosted OVA aggregate model, proceed as follows: 

1. Design the class and training sample composition for each iOVA model so that class ic  

has 50% of the instances and all the other classes combined have  50% of the instances. 

2. Obtain the training samples for the OVA base models based on the design of step 1 by 

sampling from the partitions created in phase I. Use bootstrap sampling if the partition size 

is smaller than the required number of instances.  

3. Create the OVA base models and OVA aggregate model, and test the aggregate model 

using the test samples created in phase I. 

4. Compare the performance of the un-boosted OVA aggregate model with that of the single 

k-class model on the test samples. 
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The steps given in figures 10.6 and 10.7 are recommended for purposes of creating 

OVA aggregate models. These steps should be conducted after the steps given in 

figure 10.5. For purposes of creating pVn aggregate models, the steps given in figure 

10.8 are recommended. These steps should be conducted after the steps given in 

figure 10.5. Suggestions on how to conduct the steps of figures 10.6, 10.7 and 10.8 

using commonly available software (SPSS and MS Excel) are given in the appendix 

table H.2.  

 
 

 
Figure 10.8: Steps for the design, creation and testing of pVn aggregate models 
 

10.5 Chapter summary 
 

A summary of the research contributions for feature selection, base model design 

and training dataset selection have been given in this chapter. Recommendations for 

feature selection and training dataset selection for OVA and pVn modeling from large 

datasets have also been presented. A detailed discussion of the research 

contributions in terms of the expectations for design science research is provided in 

the next chapter. 

Phase III: pVn model design, training dataset selection, and testing 
If the single k-class model has a sparse confusion matrix, proceed as follows to create a pVn model:  

 

1. Use the algorithms of figures 8.4 and 8.5 to establish the p-classes and n-classes for the 

base models, based on the confusion graphs created in phase I. 

2. Design  the training samples so that the p-classes combined have a high instance 

representation (eg. 80%) and the n-classes combined have a low instance representation 

(eg. 20%). 

3. Obtain the training datasets designed in step 2 through random sampling from the 

partitions created in phase I. 

4. Create the pVn base models and aggregate model and test the performance of the 

aggregate model using the test sets created in phase I. 
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