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Chapter 7  

Evaluation of Dataset Selection for One-
Versus-All Aggregate Modeling 
 

It was stated in chapter 6 that the proposed methods of training dataset selection 

were aimed at supporting the creation of aggregate models for multi-class prediction 

tasks. For such models, the two proposed methods for creating the base models are 

One-Versus-All (OVA) and positive-Versus-negative (pVn) classification. The 

experiments to study OVA base model design, training dataset selection for OVA 

base models and the performance of OVA base models and aggregate models are 

presented in this chapter. Questions 1 and 2 below were posed in chapter 6. The 

studies reported in this chapter are aimed at providing answers to these questions, in 

the context of OVA modeling.  

 

1. How should training datasets be designed in order to create base models that are 

syntactically diverse and highly expert at prediction for aggregate models? 

 

2. How should training datasets for the base models be designed in order to achieve 

high accuracy for the aggregate model? 

 

This chapter is organised as follows: Section 7.1 provides a discussion of OVA 

modeling. Experiments to study 5NN OVA model performance and See5 OVA model 

performance are respectively discussed in sections 7.2 and 7.3. Sections 7.4 and 7.5 

respectively provide a discussion and conclusions for the chapter. 

 

7.1 OVA modeling 
 

This section provides the motivation for OVA modeling. The methods for creating 

OVA aggregate models are also presented. The motivation for OVA modeling is 

discussed in section 7.1.1. The design of training samples for OVA base models is 

presented in section 7.1.2. The experimental procedure for this chapter is presented 

in section 7.1.3. 
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7.1.1 Motivation for OVA modeling 
 

It was stated in chapter 6 that OVA classification was selected as one of the problem 

decomposition methods to be studied, for several reasons. Firstly, by definition OVA 

classification enables the creation of base models where each base model is an 

expert on classification for one specific class. Secondly, since each OVA classifier 

solves a 2-class problem, the training sample size required to achieve a high level of 

accuracy is reduced. This is an implication of the Probably Approximately Correct 

(PAC) learning theory as discussed in section 6.1 of chapter 6.  

 

A third reason for selecting OVA modeling is as follows: It was stated in section 2.8 

that increasing the amount of training data for the modeling process results in the 

reduction of the variance component of the prediction error. However, an excessively 

large training dataset results in overfitting and modeling of phantom structure. If 

several moderately sized training datasets are used for the modeling process, then 

the amount of training data is increased while at the same time overfitting is avoided. 

The use of OVA base models enables the above approach. 

 

7.1.2 Sample composition for OVA base model training datasets 
 

The methods for training sample selection for base models was discussed in section 

6.3.3 and illustrated in figure 6.2. It should be highlighted here that each base model 

was created with a different training set from the other base models. Two options for 

sample composition for a dataset with k classes were studied for OVA base models 

design. The options cover the use of un-boosted and boosted OVA base models. 

The boosted OVA base models were designed based on information obtained from a 

confusion matrix for a single k-class model. The confusion matrix was discussed in 

section 4.7 of chapter 4.  The two options that were studied are as follows: 

 

Option 1 

Use 50% of instances from the class ic that the OVA classifier specialises in and for 

each of the other classes use 50/(k-1)% instances. This option results in the creation 

of un-boosted OVA base models. This option was used to test whether the increase 

in the quantity of training data through OVA modeling provides increased predictive 

performance. 
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Option 2 

Use 50% of instances from the class ic  that the OVA classifier specialises in and for 

each of the j (j < k) classes which are predominantly confused with class ic , based 

on the values in the confusion matrix, use 50 / (j-1)% instances. Recall that the 

confusion matrix was discussed in chapter 4. Option 2 results in the creation of 

boosted OVA base models. This option was used to test whether the use of boosting 

in addition to increasing the quantity of training data through OVA modeling provides 

additional increases in predictive performance. 

 

7.1.3 Experiment design for the study of OVA modeling 
 

Three categories of experiments on OVA aggregate modeling were conducted as 

follows: 

 

(1) To compare the performance of un-boosted OVA models with single k-class 

models for both 5NN and See5 classification. 

(2) To compare the performance of boosted OVA models with single k-class models 

for both 5NN and See5 classification. 

(3) To compare the performance of un-boosted OVA models with boosted models for 

both 5NN and See5 classification. 

 

The methods for OVA base model design and implementation, dataset partitioning 

and sampling, training dataset selection, model aggregation, and analysis of model 

performance were presented in chapter 6. These methods were used for the 

experiment categories listed above. The forest cover type and KDD Cup 1999 

datasets were used for the experiments. The 5NN and See5 algorithms were used 

for the creation of the base models.  

 

7.2 Experiments to study OVA models for 5NN 
classification 
 

The empirical studies of 5NN OVA classification based on the experiment design of 

section 7.1.3 are discussed in this section. Section 7.2.1 reports the experiments to 

compare the predictive performance of single models with un-boosted 5NN OVA 

models. The process that was followed for the design of boosted OVA models is 
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discussed in section 7.2.2. Section 7.2.3 presents experimental results to compare 

the predictive performance of single, un-boosted and boosted 5NN OVA models. 

 

7.2.1 Predictive performance of un-boosted 5NN OVA models  
 

The predictive performance of un-boosted OVA base models and aggregate models 

is presented in this section. The training sets for the un-boosted OVA base models 

were designed using option 1 of section 7.1.3. A training sample size of 4000 was 

used for OVANORMAL, OVADOS, OVAPROBE, and OVAR2L for the KDD Cup 

1999 base models. A training set size of 1000 was used for the OVAU2R model in 

order to limit the amount of bootstrap sampling for the U2R class. Table 7.1 gives the 

experimental results for the predictive performance of 5NN un-boosted base models 

for the forest cover type and KDD Cup 1999 datasets. Columns 3 and 4 respectively 

show the mean and 95% confidence interval for the TPRATE and TNRATE 

measures as percentages.  

 

Table 7.1: Predictive performance of 5NN OVA un-boosted base models 
Dataset, 
Training sample 
size, 
Test set size 

 
 
Base model name 

Mean performance for base models  

Mean TPRATE% Mean TNRATE% 

 
 
Forest cover type 
(12000) 
(350 x 10) 

OVA1-unboosted 91.8 ± 2.5 85.0 ± 0.8 
OVA2-unboosted 83.8 ± 2.6 80.5 ± 1.1 
OVA3-unboosted 90.4 ± 1.1 85.3 ± 0.9 
OVA4-unboosted 95.6 ± 1.5 94.3 ± 0.6 
OVA5-unboosted 99.6 ± 0.5 90.8 ± 0.8 
OVA 6-unboosted 98.4 ± 1.0 84.6 ± 0.8 
OVA7-unboosted 99.2 ± 0.6 93.7 ± 0.5 

    
 
KDD Cup 1999 
(4000) 
(350 x 10) 

OVANORMAL-unboosted 99.3  ± 0.6 73.0 ± 1.5 
OVADOS-unboosted 69.1  ± 4.5 97.8 ± 0.7 
OVAPROBE-unboosted 95.9 ± 1.2 88.5 ± 3.4 
OVAR2L-unboosted 76.7 ± 2.8 82.0 ± 1.6 
OVAU2R-unboosted 54.3 ± 0.0 97.7 ± 0.6 

 

The results of table 7.1 indicate that the forest cover type base models have very 

high TPRATE and TNRATE values and are therefore highly competent at predicting 

the classes they are designed to predict. It remains to be seen if combining these 

highly competent base models into an aggregate model provides performance gains. 

The OVANORMAL and OVAPROBE base models for the KDD Cup 1999 dataset 

have very high TPRATE and TNRATE values while the OVADOS, OVAR2L and 

OVAU2R have much lower values. 
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The 5NN OVA base models were combined into aggregate models. The predictions 

of the individual 5NN OVA models on each test instance were combined into a single 

prediction using the algorithm of figure 6.4 presented in section 6.4.3. Recall that the 

algorithm in figure 6.4 uses the probabilistic scores assigned by the base models to 

determine the best prediction. When there is more than one prediction with the 

highest probabilistic score (tied scores) the distances to the nearest neighbours are 

used to break the tie. Single k-class models were created and also tested on the 

same instances as the aggregate models. The single 7-class model for forest cover 

type was created from a training dataset of 12000 instances with an equal class 

distribution for all the classes.  

 

The KDD Cup 1999 single 5-class model was created from a training dataset of 4000 

instances. The training dataset for the KDD Cup 1999 single model was composed of 

500 instances for the class U2R and 3500 instances for the remaining four classes in 

equal proportions. Table 7.2 shows the results for the 5NN single and un-boosted 

OVA aggregate models for the forest cover type and KDD Cup 1999 datasets. The 

details for predictive accuracy and TPRATE values for the single and aggregate 

models for the forest cover type dataset are given in the appendix tables F.1 and F.2. 

The details for predictive accuracy and TPRATE values for the single and aggregate 

models for the KDD Cup 1999 dataset are given in the appendix tables F.9 and F.10. 

 

Table 7.2: Predictive performance of 5NN single and un-boosted OVA aggregate models 
 
 
Dataset,  
(training set size),  
(test set size) 

 
 
 
Class 

 
Mean predictive performance of  models 

Single model un-boosted 
OVA aggregate model 

Mean TPRATE% Mean TPRATE% 
 
Forest cover type 
(12000) 
(350 x 10) 

ALL(accuracy) 74.7 ± 1.0 80.5 ± 0.9 
1 62.8 ± 3.4 70.0 ± 4.3 
2 48.8 ± 2.8 58.4 ± 2.7 
3 56.8 ± 4.1 71.8 ± 1.9 
4 92.4 ± 1.8 89.8 ± 1.9 
5 91.2 ± 2.0 95.8 ± 3.1 
6 75.0 ± 2.1 80.8 ± 4.5 
7 96.0 ± 1.3 96.6 ± 0.6 

    
 
KDD Cup 1999 
(4000) 
(350 x 10) 

ALL (accuracy) 68.5 ± 1.4 72.4  ±1.1 
NORMAL 84.4 ± 3.1 92.7  ±2.8 
DOS 66.3 ± 5.0 66.0  ±4.4 
PROBE 95.7 ± 1.2 95.2  ±1.0 
R2L 64.7 ± 3.6 65.4  ±3.6 
U2R 31.6 ± 0.3 42.6 ± 0.4 

 

Student’s paired samples t-test and the Diff(A,S) and Ratio(A,S) measures discussed 

in section 6.4 were used to compare the performance of the single models with that 
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of the aggregate models. Tables 7.3 and 7.4 respectively give the results of the 

statistical tests for the forest cover type and KDD Cup 1999 datasets. The paired t-

test results of table 7.3 indicate that for the forest cover type dataset, the un-boosted 

aggregate model provides statistically significant increases in accuracy and the 

TPRATE values for five out of seven classes. The Diff(A,S) measure indicates an 

increase in accuracy of 5.8%. The increases in the class TPRATE values range 

between 4.6% and 15%. The Ratio(A,S) measure indicates a relative improvement of 

0.2 for the accuracy and relative improvements that range between 0.2 and 0.5. 

Recall that the maximum improvement as measured by Ratio(A,S) is 1.0. 

 

Table 7.3: Statistical tests to compare the performance of 5NN single and un-boosted OVA 
aggregate models for forest cover type 
Group names and 
mean accuracy / TPRATE% for 10 
test sets 

 
Student’s paired t-test (9 df) 

Performance 
improvement measures 

Group A 
un-boosted 
aggregate model 

Group S 
single  
model 

95% CI of 
mean 
difference 

P value 
(2 tail) 

Group A 
better than 
Group S? 

 
Diff(A,S)% 

 
Ratio(A,S) 

All classes-A 
(80.5 ± 0.9) 

All classes-S 
(74.7 ± 1.0) 

 
[ 4.1, 7.5] 

 
0.000 

 
yes 

 
5.8 

 
0.2 

Class1-A 
(70.0 ± 4.3) 

Class1-S 
(62.8 ± 3.4) 

 
[0.9, 13.5] 

 
0.029 

 
yes 

 
7.2 

 
0.2 

Class2-A 
(58.4 ± 2.7) 

Class2-S 
(48.8 ± 2.8) 

   
[6.3, 12.9] 

 
0.000 

 
yes 

 
9.6 

 
0.2 

Class3-A 
(71.8 ± 1.9) 

Class3-S 
(56.8 ± 4.1) 

 
[11.8, 18.3] 

 
0.000 

 
yes 

 
15.0 

 
0.3 

Class4-A 
(89.8 ± 1.9) 

Class4-S 
(92.4 ± 1.8) 

 
[-4.6, -0.6] 

 
0.018 

 
no 

 
-2.6 

 
-0.3 

Class5-A 
(95.8 ± 3.1) 

Class5-S 
(91.2 ± 2.0) 

 
[0.8, 8.4] 

 
0.022 

 
yes 

 
4.6 

 
0.5 

Class6-A 
(80.8 ± 4.5) 

Class6-S 
(75.0 ± 2.1) 

 
[0.5, 11.1] 

 
0.036 

 
yes 

 
5.8 

 
0.2 

Class7-A 
(96.6 ± 0.6) 

Class7-S 
(96.0 ± 1.3) 

 
[-1.2, 2.4] 

 
0.468 

 
no 

 
0.6 

 
0.1 

 

The paired t-test results of table 7.4 indicate for the KDD Cup 1999 dataset that the 

un-boosted aggregate model provides statistically significant increases in accuracy 

and the TPRATE values for two out of five classes. The Diff(A,S) measure indicates 

an increase in accuracy of 3.9%. The increases in the class TPRATE values are 

8.3% for class NORMAL and 11% for class U2R. The Ratio(A,S) measure indicates a 

relative improvement of 0.1 for the accuracy and relative improvements of 0.2 for the 

class U2R and 0.5 for the class NORMAL. Overall, the use of OVA base models 

based on option 1 of section 7.1.2 for training dataset selection, provides significant 

improvements in predictive performance. Recall that the training set for each un-

boosted OVA base model is composed of 50% for the class that the base model 

predicts and 50% for all the other classes combined. 

 

 
 
 



  168 

Table 7.4: Statistical tests to compare the performance of 5NN single and un-boosted OVA 
aggregate models for KDD Cup 1999 
Group names and 
mean accuracy / TPRATE%  
for 10 test sets 

 
Student’s paired t-test  (9 df) 

Performance 
improvement measures 

Group A 
Aggregate model 

Group S 
Single model 

95% CI of 
mean 
difference 

P value 
(2 tail) 

Group A 
better than 
Group S? 

 
Diff(A,S)% 

 
Ratio(A,S) 

All classes-A 
(72.4±1.1) 

All classes-S 
(68.5±1.4) 

 
[2.6, 5.0] 

 
0.000 

 
yes 3.9 0.1 

NORMAL-A 
(92.7±2.8) 

NORMAL-S 
(84.4±3.1) 

 
[5.0, 11.6] 

 
0.000 

 
yes 8.3 0.5 

DOS-A 
(66.0±4.4) 

DOS-S 
(66.3±5.0) 

 
[-2.6, 2.0] 

 
0.790 

 
no -0.3 0.0 

PROBE-A 
(95.2±1.0) 

PROBE-S 
(95.7±1.2) 

 
[-1.4, 0.3] 

 
0.164 

 
no -0.5 -0.1 

R2L-A 
(65.4±3.6) 

R2L-S 
(64.7±3.6) 

 
[-1.9, 3.3] 

 
0.560 

 
no 0.7 0.0 

U2R-A 
(42.6±0.4) 

U2R-S 
(31.6±0.3) 

 
[10.3, 11.8] 

 
0.000 

 
yes 11.0 0.2 

 

7.2.2 Design of boosted 5NN OVA base models  
 

The results of section 7.2.1 have demonstrated that un-boosted OVA base models 

result in improvements in predictive performance. Boosting was discussed in 

sections 2.8.2 and 2.10.2 as a method of bias error reduction. Option 2 of section 

7.1.2 involves the use of boosted base models. The author hypothesised that 

boosting of OVA base models should lead to further improvements in predictive 

performance compared to un-boosted models. Recall from chapter 2 that boosting is 

a statistical technique for directing the greatest effort towards those areas of the 

instance space where prediction is most difficult. It was further hypothesised that 

examination of the confusion matrix for the single k-class model should provide 

information about those areas of the instance space where correct prediction is most 

difficult to achieve. Confusion matrices were discussed in section 4.7. 

 

It was further hypothesized that a predictive model makes incorrect decisions in 

those regions which are class boundary regions in the instance space. The term 

confusion regions, was used by the author to refer to these regions. Confusion 

regions were discussed in section 2.7. Table 7.5 shows the confusion matrix for the 

single k-class model for the forest cover type dataset based on 5 test sets. For 

simplicity of presentation only the counts for the off-diagonal cells are shown in the 

confusion matrix. 
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Table 7.5: Confusion matrix for the 5NN single model for the forest cover type dataset 
Single model confusion matrix, training size =12000, test set size = 250 per class 

Total confusion Actual 
class 

Predicted class 
Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 SUMS PCNT 

Class 1   38 2  10 1 49 100 40 
Class 2 38   16 1 53 12 7 127 50.8 
Class 3  3   41 6 65  115 46 
Class 4   8    14  22 8.8 
Class 5  2 8    6  16 6.4 
Class 6  4 37 25 10    76 30.4 
Class 7 4 3       7 2.8 

 
 

A confusion matrix can be used to identify the existence or possible absence of a 

confusion region between the decision regions of any two classes.  Identification of 

the confusion regions was done based on the confusion matrices, using the following 

simple deductive logic: 

(1) Given two classes ic  and jc , if  the entry ),( ji cc  in the confusion matrix is zero, 

then ic  and jc do not have a common boundary in the instance space, and so, do not 

share a confusion region 

(2) If the entry ),( ji cc for two classes ic  and jc  is non-zero, then the two classes 

share a common decision boundary in the instance space, and the value in the cell 

),( ji cc  indicates the intensity of the class confusion between the two classes. 

 

The confusion matrix of table 7.5 indicates for the 5NN single model of the forest 

cover type dataset that class 1 gets predominantly confused with classes 2 and 7. On 

the other hand class 2, is never confused with classes 3, 4 or 6. Class 7 is 

predominantly confused with classes 1 and 2, but is never confused with classes 3, 

4, 5 or 6. The following strategy could be used to reduce the confusion between class 

1 and class 2: Select the training set sample for OVA1 with class 1 as the positive 

instances and classes 2 and 7 as negative instances. This should provide higher 

instance space coverage of the confusion regions between classes 1 and 2, and 

classes 1 and 7. In other words, the training sample for the OVA1 base model is 

boosted so that there are more instances for the classes that are difficult to separate.  

 

Table 7.6 shows the sample composition that was used for the OVA base models for 

the forest cover type training datasets for purposes of reducing class confusion. The 

entries in the second column have the following interpretation. If the counts of 
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confusion matrix cells ),( ji cc and ),( ij cc  are high then ic  is predominantly confused 

with jc . The rationale behind the training sample composition for base model iOVA 

was to ensure that training instances of the classes appearing in column 2 are 

included in the training dataset as negative instances. The number of positive and 

negative instances should be equal as was done for the un-boosted models.  

 

Table 7.6: 5NN training sample composition to reduce class confusion for forest cover type  

Class  
Predominantly 
Confused with 

Training sample composition for OVA base model  
Percentage of 
positive instances Percentage of negative instances 

C1: C2, C7 C1: 50 C2: 25,   C7: 25 
C2 C1,C3,C5 C2: 49 C1:17,    C3:17,    C5: 17 
C3 C2,C4,C6 C3: 49 C2:17,    C4:17,     C6: 17 
C4 C3,C6 C4: 50 C3: 25,   C6: 25 
C5 C2 C5: 50 C2: 50 

C6 C3,C4,C5 C6: 49 C3:17,  C4: 17,  C5: 17 

C7 C1,C2 C7: 50 C1: 25,   C7: 25 
 

Table 7.7 shows the confusion matrix for the KDD Cup 1999 dataset for the single 

model with a training set size of 4000 instances. Based on the information in the 

confusion matrix, training set samples for OVA base models were designed to 

provide a higher coverage of the confusion regions. The training set sample design is 

shown in table 7.8. It should be noted that the sample composition for the 

OVANORMAL base model is the same as for the un-boosted base model. 

 

Table 7.7: Confusion matrix for the 5NN single model for the KDD Cup 1999 dataset 
Single model, training size = 4000, test set size =  350 instances per class 

Actual class 
Predicted class Total confusion 
NORMAL DOS PROBE R2L U2R SUM PCNT 

NORMAL   13 29 4 2 48 13.7 

DOS 13   91 14 3 121 34.6 

PROBE 11     4 15 4.3 

R2L 107 1    6 114 32.6 

U2R 170   69   239 68.3 
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Table 7.8: Training sample composition to reduce class confusion for 5NN models for KDD 
Cup 1999 

Class  
Predominantly 
Confused for: 

Training sample composition for OVA base models  
Percentage of 
positive 
instances 

Percentage of negative 
instances 

Training 
sample 
size 

NORMAL R2L,U2R, DOS,PROBE NORMAL: 50 
R2L:12.5, U2R:12.5, 
DOS:12.5, PROBE:12.5 4000 

DOS NORMAL,PROBE, R2L DOS: 49 
NORMAL:17, PROBE: 17, 
R2L:17 4000 

PROBE NORMAL, DOS, U2R PROBE: 49 
NORMAL:17, DOS:17, 
U2R:17 4000 

R2L NORMAL R2L: 50 
 
NORMAL:50 4000 

U2R NORMAL, R2L U2R: 50 
 
NORMAL:25, R2L:25 1000 

 

7.2.3 Predictive performance of boosted 5NN OVA models  
 

Boosted 5NN base models were created based on the sample designs shown in 

tables 7.6 and 7.9 for the forest cover type and KDD Cup 1999 datasets. 

Implementation of the aggregate models based on the boosted base models as 

shown in table 7.6 and 7.8 did not result in performance improvements over the 

single models. However, the approach of using a combination of boosted and un-

boosted base models resulted in performance improvements for the forest cover type 

aggregate model. The base models used for the boosted version of the OVA 

aggregate models for the forest cover type and KDD Cup 1999 datasets are given in 

table 7.9. The rationale for choosing boosted base models was as follows: If a 

boosted base model had a higher TPRATE value than the un-boosted version, the 

boosted version was selected. This was the case, for example, for the OVA4 forest 

cover type base model. If a boosted base model had a TPRATE comparable (equal) 

to that of the un-boosted version then the boosted base model was included in the 

aggregate model. If a performance improvement was realized, then the boosted base 

model was retained, otherwise it was replaced with the un-boosted version. 

 

Table 7.10 shows the predictive performance results for the single, un-boosted and 

boosted OVA aggregate models based on the boosted OVA base models for the 

forest cover type and KDD Cup 1999 datasets. The details for predictive accuracy 

and TPRATE measure for the boosted OVA aggregate models for the forest cover 

type and KDD Cup 1999 datasets are respectively given in appendix tables F.3 and 

F.11  

 

 
 
 



  172 

 

Table 7.9: Predictive performance of 5NN OVA boosted base models 
Dataset, 
Training sample 
size, Test set size 

 
Base model name 

Mean performance for base models  

TPRATE% TNRATE% 
Forest cover type 
(12000) 
(350 x 10) 

OVA1-unboosted 91.8 ± 2.5 85.0 ± 0.8 
OVA2-unboosted 83.8 ± 2.6 80.5 ± 1.1 
OVA3-unboosted 90.4 ± 1.1 85.3 ± 0.9 
OVA 4-boosted 100.0 ± 0.0 96.3 ± 0.6 
OVA 5-boosted 99.6 ± 0.5 89.0 ± 0.9 
OVA 6-boosted 94.2 ± 0.9 87.3 ± 1.3 
OVA 7-unboosted 99.2 ± 0.6 93.7 ± 0.5 

    
KDD Cup 1999 
(4000) 
(350 x 10) 

OVANORMAL-unboosted 99.3 ± 0.6 73.0 ± 1.5 
OVADOS-boosted 68.3 ± 4.8 97.3 ± 0.8 
OVAPROBE-unboosted 95.9 ± 1.2 88.5 ± 3.4 
OVAR2L-boosted 68.2 ± 3.3 82.0 ± .2 
OVAU2R-unboosted 54.3 ±0.0 97.7 ±0.6 

 

Table 7.10: Predictive performance of 5NN single, un-boosted and boosted OVA aggregate 
models 
 
 
Dataset,  
(training set 
size),  
(test set size) 

 
 
 
 
Class 

 
Mean predictive performance of  models 
 
 
single model 

un-boosted  
OVA aggregate 
model 

boosted 
OVA aggregate 
model 

Mean TPRATE% Mean TPRATE% Mean TPRATE% 
 
Forest cover 
type 
(12000) 
(350 x 10) 

ALL(accuracy) 74.7 ± 1.0 80.5 ± 0.9 82.0 ± 0.6 
1 62.8 ± 3.4 70.0 ± 4.3 70.0 ± 4.3 
2 48.8 ± 2.8 58.4 ± 2.7 62.0 ± 3.4 
3 56.8 ± 4.1 71.8 ± 1.9 71.0 ± 1.3 
4 92.4 ± 1.8 89.8 ± 1.9 100.0 ± 0.0 
5 91.2 ± 2.0 95.8 ± 3.1 97.0 ± 0.9 
6 75.0 ± 2.1 80.8 ± 4.5 77.6 ± 2.0 
7 96.0 ± 1.3 96.6 ± 0.6 96.6 ± 0.6 

     
 
KDD Cup 1999 
(4000) 
(350 x 10) 

ALL (accuracy) 68.5 ± 1.4 72.4  ±1.1 71.0 ±1.2 
NORMAL 84.4 ± 3.1 92.7  ±2.8 92.4 ±3.0 
DOS 66.3 ± 5.0 66.0  ±4.4 66.0 ±5.1 
PROBE 95.7 ± 1.2 95.2  ±1.0 95.4 ±1.2 
R2L 64.7 ± 3.6 65.4  ±3.6 60.9 ±3.8 
U2R 31.6 ± 0.3 42.6 ± 0.4 40.5 ±1.4 

 

Table 7.11 shows the results of the statistical tests to compare the predictive 

performance of the single, un-boosted and boosted OVA aggregate models for the 

forest cover type dataset. The paired t-test results of table 7.11 compare the boosted 

OVA aggregate model with the single model. The results indicate that the boosted 

aggregate model provides statistically significant increases in accuracy for the forest 

cover type dataset. The boosted model also provides increased TPRATE values for 

six out of seven classes. The Diff(A,S) measure indicates an increase in accuracy of 

7.3%. The increases in the class TPRATE values range between 2.6% and 14.2%. 

The Ratio(A,S) measure indicates a relative improvement of 0.3 for the accuracy and 
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relative improvements that range between 0.1 and 1.0. Recall that a Ratio(A,S) value 

of 1.0 indicates maximum improvement. 

 

Table 7.11: Statistical tests to compare the 5NN single, un-boosted and boosted OVA 
aggregate models for forest cover type 
Group names and mean 
accuracy / TPRATE for 10 test 
sets 

 
Student’s paired t-test (9 df) 

Performance 
improvement measures 

Group A 
aggregate 
model 

Group B 
single  
model 

95% CI of 
mean 
difference 

P value 
(2 tail) 

Group A 
better than 
Group B? 

 
Diff(A,B)% 

 
Ratio(A,B) 

boosted 
All classes-A 
(82.0 ± 0.6) 

single 
All classes-S 
(74.7 ± 1.0) 

 
[5.8, 8.8] 

 
0.000 

 
yes 

 
7.3 

 
0.3 

boosted 
Class1-A 

(70.0 ± 4.3) 

single 
Class1-S 

(62.8 ± 3.4) 

 
[0.9, 13.5] 

 
0.029 

 
yes 

 
7.2 

 
0.2 

boosted 
Class2-A 

(62.0 ± 3.4) 

single 
Class2-S 

(48.8 ± 2.8) 

   
[9.8, 16.6] 

 
0.000 

 
yes 

 
13.2 

 
0.3 

boosted 
Class3-A 

(71.0 ± 1.3) 

single 
Class3-S 

(56.8 ± 4.1) 

 
[9.8, 18.6] 

 
0.000 

 
yes 

 
14.2 

 
0.3 

boosted 
Class4-A 

(100.0 ± 0.0) 

single 
Class4-S 

(92.4 ± 1.8) 

 
[5.5, 9.7] 

 
0.000 

 
yes 

 
7.6 

 

 
1.0 

boosted 
Class5-A 

(97.0 ± 0.9) 

single 
Class5-S 

(91.2 ± 2.0) 

 
[3.8, 7.8] 

 
0.000 

 
yes 

 
5.8 

 
0.7 

boosted 
Class6-A 

(77.6 ± 2.0) 

single 
Class6-S 

(75.0 ± 2.1) 

 
[1.2, 4.0] 

 
0.002 

 
yes 

 
2.6 

 
0.1 

boosted 
Class7-A 

(96.6 ± 0.6) 

single 
Class7-S 

(96.0 ± 1.3) 

 
[-1.2,2.4] 

 
0.468 

 
no 

 
0.6 

 
0.1 

       

boosted 
All classes-A 
(82.0 ± 0.6) 

un-boosted 
All classes-A 
(80.5 ± 0.9) 

 
[0.5,2.7 ] 

 
0.009 

 
yes 

 
1.5 

 
0.1 

boosted 
Class1-A 

(70.0 ± 4.3) 

un-boosted 
Class1-A 

(70.0 ± 4.3) 

 
no variance 

 
no variance 

 
no 

 
0.0 

 
0.0 

boosted 
Class2-A 

(62.0 ± 3.4) 

un-boosted 
Class2-A 

(58.4 ± 2.7) 

   
[1.8,5.4] 

 
0.001 

 
yes 

 
3.6 

 
0.1 

boosted 
Class3-A 

(71.0 ± 1.3) 

un-boosted 
Class3-A 

(71.8 ± 1.9) 

 
[-3.1,1.5] 

 
0.443 

 
no 

 
-0.8 

 
0.0 

boosted 
Class4-A 

(100.0 ± 0.0) 

Class4-A 
(89.8 ± 1.9) 

 
[8.0,12.4] 

 
0.000 

 
yes 

 
10.2 

 
1.0 

boosted 
Class5-A 

(97.0 ± 0.9) 

un-boosted 
Class5-A 

(95.8 ± 3.1) 

 
[-2.9,5.3] 

 
0.520 

 
no 

 
1.2 

 
0.3 

boosted 
Class6-A 

(77.6 ± 2.0) 

un-boosted 
Class6-A 

(80.8 ± 4.5) 

 
[-7.7,1.2] 

 
0.137 

 
no 

 
-3.2 

 
-0.2 

boosted 
Class7-A 

(96.6 ± 0.6) 

un-boosted 
Class7-A 

(96.6 ± 0.6) 

 
no variance 

 
no variance 

 
no 

 
0.0 

 
0.0 
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The paired t-tests to compare the boosted and un-boosted aggregate models 

indicate for the forest cover type dataset that the boosted aggregate model provides 

statistically significant increases in accuracy. The boosted model also provides 

increased TPRATE values for two out of seven classes. The Diff(A,S) measure 

indicates an additional increase in accuracy of 1.5%, due to boosting. The increases 

in the class TPRATE values are 3.6% for class 2 and 10.2% for class 4. The 

Ratio(A,S) measure indicates a relative improvement of 0.1 for the accuracy and 

relative improvements  of 0.1 for class 1 and 1.0 for class 4. 

 

Table 7.12 shows the results of the statistical tests to compare the predictive 

performance of the boosted and un-boosted OVA aggregate models for the KDD Cup 

1999 dataset. A comparison of the test results of tables 7.4 and 7.12 indicates that 

the use of un-boosted 5NN OVA base models results in performance improvements 

over the single model for the KDD Cup 1999 dataset. However, there are no 

performance gains released due to boosting of 5NN OVA base models for the KDD 

Cup 1999 dataset. 

 

Table 7.12: Statistical tests to compare the 5NN single, un-boosted and boosted OVA 
aggregate models for KDD Cup 1999 
Group names and  mean accuracy 
/ TPRATE for 10 test sets 

 
Student’s paired t-test  (9 df) 

Performance improvement 
measures 

Group A 
aggregate 
model 

Group B 
single  
model 

95% CI of 
mean 
difference 

P value 
(2 tail) 

Group A 
better than 
Group B? 

 
Diff(A,B)% 

 
Ratio(A,B) 

boosted 
All classes-A 

(71.0±1.2) 

un-boosted 
All classes-A 

(72.4±1.1) 

 
[-2.1, -0.6] 

 
0.002 

 
no 

 
-1.3 

 
0.0 

boosted 
NORMAL-A 
(92.4±3.0) 

un-boosted 
NORMAL-A 
(92.7±2.8) 

 
[-0.9, 0.4] 

 
0.343 

 
no 

 
-0.3 

 
0.0 

boosted 
DOS-A 

(66.0±5.1) 

un-boosted 
DOS-A 

(66.0±4.4) 

 
[-1.5, 1.5] 

 
0.988 

 
no 

 
0.0 

 
0.0 

boosted 
PROBE-A 
(95.4±1.2) 

un-boosted 
PROBE-A 
(95.2±1.0) 

 
[-0.2, 0.7] 

 
0.168 

 
no 

 
0.3 

 
0.1 

boosted 
R2L-A 

(60.9±3.8) 

un-boosted 
R2L-A 

(65.4±3.6) 

 
[-7.4, -1.7] 

 
0.005 

 
no 

 
-4.6 

 
-0.1 

boosted 
U2R-A 

(40.5±1.4) 

un-boosted 
U2R-A 

(42.6±0.4) 

 
[-4.1, -0.2] 

 
0.031 

 
no 

 
-2.2 

 
0.0 
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7.3 Experiments to study OVA models for See5 
classification 
 

The empirical studies of See5 OVA classification based on the experiment design 

presented in section 7.1.3 are discussed in this section. Section 7.3.1 reports the 

experiments to compare predictive performance of single models with un-boosted 

See5 OVA models. The design of boosted OVA models is discussed in section 7.3.2. 

Section 7.3.3 presents experimental results to compare predictive performance of 

single, un-boosted and boosted See5 OVA models. 

 

7.3.1 Predictive performance of un-boosted See5 OVA models 
 
The training datasets that were used for the un-boosted 5NN OVA base models were 

also used for the experiments to compare See5 single and un-boosted OVA 

aggregate models. Table 7.13 gives the experimental results for the predictive 

performance of See5 OVA un-boosted base models. Columns 3 and 4 respectively 

show the mean and 95% confidence interval for the TPRATE and TNRATE 

measures as percentages.  

 

Table 7.13: Predictive performance of See5 OVA un-boosted base models 
Dataset, 
Training sample 
size, 
Test set size 

 
 
Base model name 

Mean performance for base models  

Mean TPRATE% Mean TNRATE% 

Forest cover type 
(12000) 
(350 x 10) 

OVA1-unboosted 92.6 ± 2.3 82.7 ± 0.7 
OVA2-unboosted 85.6 ± 1.7 82.0 ± 0.7 
OVA 3-unboosted 93.2 ± 1.7 86.8 ± 0.5 
OVA 4-unboosted 99.0 ± 0.9 95.9 ± 0.6 
OVA 5-unboosted 98.6 ± 1.3 93.7 ± 0.7 
OVA 6-unboosted 92.2 ± 1.9 88.0 ± 0.5 
OVA 7-unboosted 99.6 ± 0.5 96.1 ± 0.5 

    
KDD Cup 1999 
(4000) 
(350 x 10) 

OVANORMAL-unboosted 98.4 ± 0.7  82.7  ± 0.9 
OVADOS-unboosted 53.2 ± 4.6 99.6  ± 0.1 
OVAPROBE-unboosted 88.6 ± 1.3 90.3  ± 1.0 
OVAR2L-unboosted 37.4 ± 3.6 88.9  ± 0.8 
OVAU2R-unboosted 65.7  ± 0.0 96.8  ± 0.8 

 

The results of table 7.13 indicate that the forest cover type base models have very 

high TPRATE and TNRATE values and are therefore highly competent at predicting 

the classes they are designed to predict. It remains to be seen if combining these 

highly competent base models into an aggregate model provides performance gains. 
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The OVANORMAL and OVAPROBE base models for KDD Cup 1999 have high 

TPRATE and TNRATE values. While OVADOS, OVAR2L and OVAU2R have high 

TNRATE values, the TPRATE values for these base models are low. 

 

The See5 OVA base models were combined into aggregate models. The predictions 

of the individual See5 OVA base models on each test instance were combined into a 

single prediction using the combination algorithm of figure 6.3 that was presented in 

section 6.4.3. Recall that the algorithm in figure 6.3 uses the probabilistic scores 

assigned by the base models to determine the best prediction. Single k-class models 

were created and also tested on the same instances as the aggregate models. Table 

7.14 shows the results for the single and aggregate models for the forest cover type 

and KDD Cup 1999 datasets. The details for predictive accuracy and TPRATE 

measure for the forest cover type single and aggregate models are respectively given 

in appendix tables F.5 and F.6. The details for predictive accuracy and TPRATE 

measure for the KDD Cup 1999 single and aggregate models are respectively given 

in appendix tables F.13 and F.14. 

 

Table 7.14: Predictive performance of See5 single and un-boosted OVA aggregate models 
 
Dataset,  
(training set size),  
(test set size) 

 
 
 
 
Class 

Mean predictive performance of  models 
Single model un-boosted 

OVA aggregate model 
Mean TPRATE% Mean TPRATE% 

 
Forest cover type 
(12000) 
(350 x 10) 

ALL(accuracy) 76.9 ± 1.0 75.3 ± 0.7 
1 57.4 ± 3.4 60.6 ± 2.6 
2 63.8 ± 3.0 49.8 ± 3.6 
3 60.8 ± 3.3 64.0 ± 1.8 
4 96.8 ± 1.0 86.6 ± 1.7 
5 86.2 ± 2.4 94.4 ± 1.8 
6 77.8 ± 3.3 79.2 ± 2.0 
7 95.6 ± 1.6 92.8 ± 2.5 

    
 
KDD Cup 1999 
(4000) 
(350 x 10) 

ALL (accuracy) 63.8 ± 1.3 63.3 ± 1.2  
NORMAL 86.0 ± 3.1 98.3 ± 0.7 
DOS 82.0 ± 3.8 50.1 ± 4.4 
PROBE 36.8 ± 2.4 88.0 ± 1.3 
R2L 37.7 ± 3.3 34.3 ± 3.3 
U2R 77.1 ± 0.0 45.7 ± 0.0 

 

Student’s paired samples t-test and the Diff(A,S) and Ratio(A,S) measures were 

used to compare the performance of the single models with that of the aggregate 

models. Tables 7.15 and 7.16 respectively give the results of the statistical tests for 

the forest cover type and KDD Cup 1999 datasets. The results of the paired samples 

t-tests for the forest cover type models indicate that there is a general degradation in 

performance due to the use of the un-boosted aggregate model. The accuracy and 

TPRATE values for 6 out of 7 classes are lower for the un-boosted OVA aggregate 
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model compared to the single model. The statistical tests of table 7.16 indicate that 

there is no overall improvement in accuracy due the un-boosted OVA aggregate 

model. However, there is a significant improvement in the TPRATE values for the 

NORMAL and PROBE classes. 

 

Table 7.15: Statistical tests to compare the performance of See5 single and un-boosted OVA 
aggregate models for forest cover type 
Group names and mean accuracy /  
TPRATE for 10 test sets 

 
Student’s paired t-test (9 df) 

Performance 
improvement measures 

Group A 
un-boosted 
aggregate model 

Group S 
single  
model 

95% CI of 
mean 
difference 

P value 
(2 tail) 

Group A 
better than 
Group S? 

 
Diff(A,S)
% 

 
Ratio(A,S) 

All classes-A 
(75.3±0.7) 

All classes-S 
(76.9 ± 1.0) 

 
[-2.5, -0.8] 

 
0.002 

 
no 

 
-1.6 

 
-0.1 

Class1-A 
(60.6±2.6) 

Class1-S 
(57.4 ± 3.4) 

 
[-1.1, 7.5] 

 
0.125 

 
no 

 
3.2 

 
0.1 

Class2-A 
(49.8±3.6) 

Class2-S 
(63.8 ± 3.0) 

   
[-17.6, -10.4] 

 
0.000 

 
no 

 
-14 

 
-0.4 

Class3-A 
(64.0±1.8) 

Class3-S 
(60.8 ± 3.3) 

 
[-1.3, 7.7] 

 
0.141 

 
no 

 
3.2 

 
0.1 

Class4-A 
(86.6±1.7) 

Class4-S 
(96.8 ± 1.0) 

 
[-12.5, -7.0] 

 
0.000 

 
no 

 
-10.2 

 
-3.2 

Class5-A 
(94.4±1.8) 

Class5-S 
(86.2 ± 2.4) 

 
[5.8, 10.6] 

 
0.000 

 
yes 

 
8.2 

 
0.6 

Class6-A 
(79.2±2.0) 

Class6-S 
(77.8 ± 3.3) 

 
[-2.1,4.9] 

 
0.390 

 
no 

 
1.4 

 
0.1 

Class7-A 
(92.8±2.5) 

Class7-S 
(95.6 ± 1.6) 

 
[-5.3, -0.4] 

 
0.029 

 
no 

 
-2.8 

 
-0.6 

 

Table 7.16: Statistical tests to compare the performance of See5 single and un-boosted OVA 
aggregate models for KDD Cup 1999 
Group names and  mean 
accuracy / TPRATE%  
for 10 test sets 

 
Student’s paired t-test  (9 df) 

Performance improvement 
measures 

Group A 
un-boosted 
aggregate 
model 

Group S 
single  
model 

95% CI of 
mean 
difference 

P value 
(2 tail) 

Group A 
better than 
Group S? 

 
Diff(A,S)% 

 
Ratio(A,S) 

All classes-A 
(63.3 ± 1.2) 

All classes-S 
(63.8 ± 1.3) 

 
[-2.0, 0.9] 

 
0.430 

 
no 

 
-0.5 

 
0.01 

NORMAL-A 
(98.3 ± 0.7) 

NORMAL-S 
(86.0 ± 3.1) 

 
[9.0, 15.6] 

 
0.000 

 
yes 

 
12.3 

 
0.9 

DOS-A 
(50.1 ± 4.4) 

DOS-S 
(82.0 ± 3.8) 

 
[-38.2, -25.5] 

 
0.000 

 
no 

 
-31.9 

 
-1.8 

PROBE-A 
(88.0 ± 1.3) 

PROBE-S 
(36.4 ± 2.4) 

 
[48.2, 54.9] 

 
0.000 

 
yes 

 
52.6 

 
0.8 

R2L-A 
(34.3 ± 3.3) 

R2L-S 
(37.7 ± 3.3) 

 
[-7.5, 0.5] 

 
0.082 

 
no 

 
-3.4 

 
-0.1 

U2R-A 
(45.7 ± 0.0) 

U2R-S 
(77.1 ± 0.0) 

 
no variance 

 
no variance 

 
no 

 
-31.4 

 
-1.4 
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7.3.2 Design of See5 boosted OVA base models  
 

Table 7.17 and 7.18 show the confusion matrices for the single models created from 

the training samples with an equal class distribution for the forest cover type and 

KDD Cup 1999 datasets. For simplicity of presentation, only the off-diagonal counts 

are given. A comparison of the confusion matrices for forest cover type for the 5NN 

and See5 models reveals that the nature of the class confusion is fairly similar for 

both models. However, there a significant change in the level of confusion between 

the PROBE and U2R classes of the KDD Cup 1999 dataset. The 5NN OVA training 

sample designs given in table 7.6 for forest cover type were also used for the 

implementation of the See5 OVA base models. The sample design for KDD Cup 

1999 See5 OVA base models is shown in table 7.19. It should be noted that the 

sample composition for the OVANORMAL, OVAPROBE and OVAR2L base models 

is the same as that for the un-boosted base models.  

 

Table 7.17: Confusion matrix for See5 classification tree single 7-class model for forest cover 
type  
See5 single model, training set size = 12000, test set = 250 per class 

Actual 
class 

Predicted class Total confusion 

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 SUMS PCNT 

Class 1   60     3 2 38 103 41.2 

Class 2 43   5   32 8 8 96 38.4 

Class 3       26 11 50   87 34.8 

Class 4     6         6 2.4 

Class 5   17 6     6   29 11.6 

Class 6   4 30 23 3     60 24 

Class 7 16             16 6.4 
 

Table 7.18: Confusion matrix for See5 classification tree single 5-class model for KDD Cup 
1999 
See5 single model, training set = 4000, test set size = 350 instances per class 

Actual class 

Predicted class Total confusion 

NORMAL  DOS PROBE R2L U2R SUM PCNT 

NORMAL    1 30 11 1 43 12.3 

DOS 32   15 10   57 16.3 

PROBE 4 17     198 219 62.6 

R2L 185   8   20 213 60.9 

U2R 70 10       80 22.9 
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Table 7.19: See 5 Training sample composition to reduce class confusion for KDD Cup 1999  

Class  
Predominantly 
Confused for: 

Training sample composition for OVA base models  
Percentage of 
positive instances 

Percentage of negative 
instances 

Training 
sample size 

NORMAL 
R2L,U2R, 
DOS,PROBE NORMAL: 50 

R2L:12.5, U2R:12.5, 
DOS:12.5, PROBE:12.5 4000 

DOS 
NORMAL,PROBE, 
R2L DOS: 49 

NORMAL:17. PROBE: 17, 
R2L:17 4000 

PROBE 
NORMAL, DOS, 
R2L,U2R PROBE: 50 

NORMAL:12.5, DOS:12.5, 
R2L:12.5, U2R:12.5 4000 

R2L 
NORMAL, 
DOS,U2R R2L: 49 

NORMAL:17, DOS:17, 
U2R:17 4000 

U2R 
NORMAL, DOS, 
PROBE, R2L U2R: 50 

NORMAL:12.5, DOS:12.5,  
PROBE: 12.5, R2L:12.5 1000 

  

The performance of the boosted base models and aggregate models is discussed in 

the next section. 

 

7.3.3 Predictive performance of boosted See5 OVA models  
 

Boosted See5 base models were created based on the training set designs of table 

7.6 for forest cover type and table 7.19 for the KDD Cup 1999 dataset. The TPRATE 

and TNRATE values for the base models are given in table 7.20. A comparison of the 

un-boosted base models of table 7.9 and the boosted base models of table 7.20 

reveals that the boosted base models generally have lower mean TPRATE values. 

 

Table 7.20: Predictive performance of See5 OVA boosted base models 
Dataset, 
Training sample size, 
Test set size 

 
 
Base model name 

Mean performance for base models  
 
Mean TPRATE% 

 
Mean TNRATE% 

Forest cover type 
(12000) 
(350 x 10) 

OVA1-boosted      75.0 ± 2.9 92.7 ± 0.7 
OVA2-boosted      81.4 ± 1.8 83.3 ± 0.9 
OVA3-boosted     85.8 ± 2.4 91.8 ± 0.7 
OVA4-boosted     99.0 ± 0.7 97.5 ± 0.4 
OVA5-boosted     96.4 ± 1.4 90.4 ± 0.7 
OVA6-boosted     93.2 ± 1.2 91.3 ± 0.8 
OVA7-boosted     97.6 ± 1.1 98.3 ± 0.3 

    
KDD Cup 1999 
(4000) 
(350 x 10) 

OVANORMAL-unboosted  99.3 ± 0.6 73.0 ± 1.5 
OVADOS-boosted        56.3 ± 4.3 88.5 ± 0.2 
OVAPROBE -unboosted    95.9 ± 1.2 88.5 ± 3.4 
OVAR2L-boosted          51.0 ± 4.4 88.2 ± 1.4 
OVAU2R-unboosted           54.3 ± 0.0 97.7 ± 0.6 

 

Boosted aggregate models were created using the base models of table 7.20. Table 

7.21 shows the predictive performance results for the See5 single, un-boosted and 

boosted OVA aggregate models for the forest cover type and KDD Cup 1999 

datasets. The details for predictive accuracy and TPRATE measures for the forest 

cover type boosted aggregate model are given in appendix tables table F.7. The 
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details for predictive accuracy and TPRATE measures for the KDD Cup 1999 

boosted aggregate model are given in appendix table F.15.Table 7.22 shows the 

results of the statistical tests to compare the predictive performance of the forest 

cover type single, un-boosted and boosted aggregate models.  

 

Comparison of the test results of tables 7.15 and 7.22 indicates that there is 

degradation in performance when un-boosted OVA base models are combined into 

an aggregate model. However, comparison of the forest cover type single and 

boosted OVA aggregate models indicates that there are significant performance 

improvements in the accuracy and TPRATE values for 3 out of 7 classes. The 

Diff(A,S) measure indicates an increase of 2.5% in accuracy and increases of 

TPRATE values of 2.2% (class 7), 6.0% (class 2),  and 7.6% (class 1). 

 

 

Table 7.21: Predictive performance of  See5 single, un-boosted and boosted OVA aggregate 
models 
 
Dataset,  
(training set 
size),  
(test set size) 

 
 
 
 
Class 

Mean predictive performance of  models 

 
 
single model 

un-boosted  
OVA aggregate 
model 

boosted 
OVA aggregate 
model 

Mean TPRATE% Mean TPRATE% Mean TPRATE% 
 
Forest cover 
type 
(12000) 
(350 x 10) 

ALL(accuracy) 76.9 ± 1.0 75.3 ± 0.7 79.4 ± 0.6 
1 57.4 ± 3.4 60.6 ± 2.6 65.0 ± 2.9 
2 63.8 ± 3.0 49.8 ± 3.6 69.8 ± 2.4 
3 60.8 ± 3.3 64.0 ± 1.8 63.2 ± 3.3 
4 96.8 ± 1.0 86.6 ± 1.7 95.4 ± 1.3 
5 86.2 ± 2.4 94.4 ± 1.8 88.4 ± 2.3 
6 77.8 ± 3.3 79.2 ± 2.0 76.0 ± 1.9 
7 95.6 ± 1.6 92.8 ± 2.5 97.8 ± 1.1 

     
 
KDD Cup 1999 
(4000) 
(350 x 10) 

ALL (accuracy) 63.8 ± 1.3 63.3 ± 1.2  61.7 ± 0.9 
NORMAL 86.0 ± 3.1 98.3 ± 0.7 99.2 ± 0.6 
DOS 82.0 ± 3.8 50.1 ± 4.4 56.3 ± 4.3 
PROBE 36.8 ± 2.4 88.0 ± 1.3 89.3 ± 1.4 
R2L 37.7 ± 3.3 34.3 ± 3.3 23.6 ± 3.4 
U2R 77.1 ± 0.0 45.7 ± 0.0 40.0 ± 0.0 

 

Table 7.23 shows the results of the statistical tests to compare the predictive 

performance of the single and boosted aggregate models for KDD Cup 1999. The 

results show that the predictive accuracy of the aggregate model on all the classes 

combined is not better than that of the single model. Secondly, the TPRATE values 

of the aggregate model on the classes DOS, PROBE and R2L are lower than the 

TPRATE values of the single model on the same classes. However, the aggregate 

model provides significant improvements on the TPRATE values for the classes 

NORMAL and U2R. Overall, both the Student’s paired t-test results and the Diff(A,S) 

and Ratio(A,S) measures demonstrate that there are no impressive gains to be 
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realized by using the aggregate model. This is in contrast to the forest cover type 

dataset where the aggregate model provides significant gains over the single model.   

 

Table 7.22: Statistical tests to compare the See5 single, un-boosted and boosted OVA 
aggregate models for forest cover type 
Group names and mean 
accuracy / TPRATE for 10 
test sets 

 
Student’s paired t-test (9 df) 

Performance 
improvement measures 

 
Group A 
model 

 
Group B 
model 

95% CI of 
mean 
difference 

P value 
(2 tail) 

Group A better 
than Group B? 

 
Diff(A,B)% 

 
Ratio(A,B) 

boosted 
All classes-A 
(79.4 ± 0.6) 

single 
All classes-S 
(76.9 ± 1.0) 

 
[1.6, 3.4] 

 
0.000 

 
yes 

 
2.5 

 
0.1 

boosted 
Class1-A 

(65.0 ± 2.9) 

single 
Class1-S 

(57.4 ± 3.4) 

 
[3.1, 12.1] 

 
0.004 

 
yes 

 
7.6 

 
0.2 

boosted 
Class2-A 

(69.8 ± 2.4) 

single 
Class2-S 

(63.8 ± 3.0) 

 
[2.4, 9.6] 

 
0.004 

 
yes 

 
6.0 

 
0.2 

boosted 
Class3-A 

(63.2 ± 3.3) 

single 
Class3-S 

(60.8 ± 3.3) 

 
[-0.9, 5.7] 

 
0.132 

 
no 

 
2.4 

 
0.1 

boosted 
Class4-A 

(95.4 ± 1.3) 

single 
Class4-S 

(96.8 ± 1.0) 

 
[-3.1, 0.3] 

 
0.088 

 
no 

 
-1.4 

 
-0.4 

boosted 
Class5-A 

(88.4 ± 2.3) 

single 
Class5-S 

(86.2 ± 2.4) 

 
[-1.9, 6.3] 

 
0.258 

 
no 

 
2.2 

 
0.2 

boosted 
Class6-A 

(76.0 ± 1.9 

single 
Class6-S 

(77.8 ± 3.3) 

 
[-4.0, 0.4] 

 
0.096 

 
no 

 
-1.8 

 
-0.1 

boosted 
Class7-A 

(97.8 ± 1.1) 

single 
Class7-S 

(95.6 ± 1.6) 

 
[0.6, 3.8] 

 
0.012 

 
yes 

 
2.2 

 
0.5 

       
boosted 

All classes-A 
(79.4 ± 0.6) 

un-boosted 
All classes-A 

(75.3±0.7) 

 
[ 3.7, 4.5] 

 
0.000 

 
yes 

 
4.1 

 
0.2 

 
boosted 
Class1-A 

(65.0 ± 2.9) 

un-boosted 
Class1-A 
(60.6±2.6) 

 
[1.7, 7.1] 

 
0.005 

 
yes 

 
4.4 

 
0.1 

boosted 
Class2-A 

(69.8 ± 2.4) 

un-boosted 
Class2-A 
(49.8±3.6) 

   
[16.5, 23.5] 

 
0.000 

 
yes 

 
20 

 
0.4 

boosted 
Class3-A 

(63.2 ± 3.3) 

un-boosted 
Class3-A 
(64.0±1.8) 

 
[-4.3, 2.7] 

 
0.619 

 
no 

 
-0.8 

 
0.0 

boosted 
Class4-A 

(95.4 ± 1.3) 

un-boosted 
Class4-A 
(86.6±1.7) 

 
[7.4. 10.2] 

 
0.000 

 
yes 

 
8.8 

 
0.7 

boosted 
Class5-A 

(88.4 ± 2.3) 

un-boosted 
Class5-A 
(94.4±1.8) 

 
[-9.0, -3.0] 

 
0.001 

 
no 

 
-6.0 

 
-1.1 

 
boosted 
Class6-A 

(76.0 ± 1.9 

un-boosted 
Class6-A 
(79.2±2.0) 

 
[-5.7, -0.8] 

 
0.016 

 
no 

 
-3.2 

 
-0.2 

boosted 
Class7-A 

(97.8 ± 1.1) 

un-boosted 
Class7-A 
(92.8±2.5) 

 
[2.3, 7.7] 

 
0.002 

 
yes 

 
5.0 

 
0.7 
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It was stated in sections 2.2.4 and 6.2.3 that syntactic diversity and high competence 

of base models should lead to performance improvements for an aggregate model. 

The statistical test results of table 7.16 indicate that the See5 un-boosted OVA 

aggregate models for the KDD Cup 1999 dataset did not provide a statistically 

significant increase in predictive accuracy. The statistical test results of table 7.23 

indicate that the See5 boosted OVA aggregate model resulted in a statistically 

significant reduction in predictive accuracy. Two problems were observed for the 

See5 OVA aggregate models for the KDD Cup 1999 dataset. The first problem was 

that only two base models (OVANORMAL and OVAPROBE) had a high level of 

competence, based on the results of tables 7.13 and 7.20.  

 

The second problem was that the prevalence of ‘no prediction’ was high for both the 

un-boosted and boosted aggregate models. Recall from section 6.4.3 that it is 

possible for all OVA base models to predict the class ‘other’. When this happens, 

then the aggregate model prediction is ‘none’ to indicate that there is no valid 

prediction. The prevalence of ‘none’ predictions for the un-boosted OVA aggregate 

model ranged between 11.4% and 13.4% on the ten test samples. Boosting had the 

desirable effect of reducing the ‘none’ prediction to between 5.4% and 7.7%. 

However, the rate of incorrect predictions also increased in the boosted version of 

the model. 

 

Both the See5 un-boosted and boosted base models for the forest cover type dataset 

had a high level of competence, based on the results of tables 7.13 and 7.20. The 

occurrence of ‘none’ predictions was very low for the forest cover type aggregate 

models, varying from 0.3% to 1.4% for the un-boosted model and 0.6% to 1.7% for 

the boosted model. The reduction in predictive performance for the See5 un-boosted 

OVA aggregate model is due to the occurrence of ‘none’ predictions and tied 

predictions which could not be resolved. The problem of unresolved tied predictions 

is further discussed in section 7.4. 
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Table 7.23: Statistical tests to compare the See5 single and boosted OVA aggregate models 
for KDD Cup 1999 
Group names and mean accuracy 
/ TPRATE  for 10 test sets 

 
Student’s paired t-test  (9 df) 

Performance 
improvement measures 

Group A 
boosted  
aggregate 
model 

Group S 
single  
model 

95% CI of 
mean 
difference 

P value 
(2 tail) 

Group A 
better than 
Group S? 

 
Diff(A,S)% 

 
Ratio(A,S) 

All classes-A 
(61.7 ±  0.9) 

All classes-S 
(63.8 ± 1.3) 

 
[-3.6,0.8] 

 
0.008 

 
no 

 
-2.1 

 
-0.01 

NORMAL-A 
(99.2 ± 0.6) 

NORMAL-S 
(86.0 ± 3.1) 

 
[9.9,16.4] 

 
0.000 

 
yes 

 
13.2 

 
0.9 

DOS-A 
(56.3 ± 4.3) 

DOS-S 
(82.0 ± 3.8) 

 
[-32.6,-18.6] 

 
0.000 

 
no 

 
-25.7 

 
-1.4 

PROBE-A 
(89.3 ± 1.4) 

PROBE-S 
(36.4 ± 2.4) 

 
[49.5,56.3] 

 
0.000 

 
yes 

 
52.9 

 
0.8 

R2L-A 
(23.6 ± 3.4) 

R2L-S 
(37.7 ± 3.3) 

 
-18.3,-10.0] 

 
0.000 

 
no 

 
-14.1 

 
-0.2 

U2R-A 
(40.0 ± 0.0) 

U2R-S 
(77.1 ± 0.0) 

 
no variance 

 
no variance 

 
no 

 
-37.1 

 
-1.6 

 

7.4 Discussion  
 

OVA modeling was studied as a method of problem decomposition with a potential to 

reduce the bias variance components of the prediction error. It has been 

demonstrated through the experimental results of this chapter that highly competent 

and syntactically diverse base models can be obtained through OVA modeling. 

Recall from chapter 2 and section 6.2 that several researchers (e.g. Sun & Li, 2008; 

Ho, 1998; Ali & Pazzani, 1996; Krogh & Vedelsby, 1995; Kwok & Carter; 1990; 

Hansen & Salamon, 1990) have argued that high competence and syntactic diversity 

of base models lead to aggregate models with improved predictive performance. The 

experiments reported in this chapter were conducted in order to establish: 

 

(1) Whether the use of OVA base models, each with a different training set, results in 

increased performance for an aggregate model. 

(2) Whether the use of boosting in addition to OVA base models results in additional 

increased performance for the aggregate model. 

 

Table 7.24 provides a summary of the conclusions from the OVA modeling 

experiments. The use of OVA modeling alone resulted in increased performance for 

the 5NN algorithm. The use of OVA modeling alone did not result in increased 

performance for the See5 algorithm. However, for the forest cover type dataset, the 

use of boosting in addition to OVA modeling resulted in increased performance for 

the See5 algorithm. 
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Table 7.24: Summary of the conclusions from the OVA modeling experiments 
 
 
Dataset 

 
 
Algorithm 

Is performance improvement realized for the 
aggregate model when the base models used are: 
 
un-boosted OVA? 

 
boosted OVA? 

Forest cover type 5NN yes yes 
See5 no yes 

KDD Cup 1999 5NN yes no 
See5 no no 

 

Recall that the combination algorithm for the 5NN aggregate models uses 

probabilistic scores as well as distances to the nearest neighbour in order to resolve 

tied predictions. On the other hand, the combination algorithm for See5 does not 

have a second measure available for resolving tied predictions, except to break ties 

randomly. It was observed by the author that even though the occurrence of tied 

predictions is rare for the See5 aggregate models, ties do occur. A sample of the 

output of the See5 combination algorithm is given in table 7.25 for the forest cover 

type un-boosted OVA aggregate model. Recall that an OVA base model predicts the 

one class it is designed to predict or it predicts the value 10 to represent ‘other’.  The 

instances in the first two rows are correctly predicted since there are no tied 

predictions with the highest score values. The third instance is incorrectly predicted 

as the tie between the class 1 and class 2 predictions cannot be correctly resolved. 

 

 

Table 7.25: Sample of the output for the See5 combination algorithm  

O
V

A
1  
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or

e1
 

O
V
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2  
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or

e2
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3  
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or
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A
4  
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e4
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V

A
5  
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e5
 

O
V

A
6  

sc
or

e6
 

O
V

A
7  

sc
or

e7
 

pr
ed

ic
te

d  

ac
tu

al
 

sc
or

e  

1 0.91 2 0.85 10 0.99 10 1 10 1 10 1 10 0.91 1 1 0.91 

1 0.91 10 0.85 10 0.99 10 1 10 1 10 1 10 1 1 1 0.91 

1 0.91 2 0.91 10 0.99 10 1 10 1 10 1 10 1 1 2 0.91 
 

7.5 Conclusions  
 

The first question posed in this chapter was: How should training datasets be 

designed in order to create base models that are syntactically diverse and highly 

expert at prediction for aggregate models? The experimental results have 

demonstrated that the use of OVA modeling results in base models that are highly 

expert in predicting instances in specific regions of the instance space. However, the 

experimental results also demonstrated that expertise of base models, as measured 
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in terms of the predictive accuracy of the individual models, is not always enough to 

guarantee high predictive performance of the aggregate model.  

 

The second question was: How should training datasets for the base models be 

designed in order to achieve high accuracy for the aggregate model?  The 

experimental results demonstrated that one limiting factor for the predictive 

performance of aggregate models, created through parallel combination of the base 

model predictions, is the level of conflicting predictions for the base models. The 

experimental results for the 5NN algorithm demonstrated that the use of un-boosted 

OVA aggregate models results in performance improvements. Recall that the 

algorithm that was used for the combination of predictions for the 5NN base models 

has the ability to resolve conflicting predictions which are tied on the scores. 

 

The experiments also demonstrated that when training datasets for base models are 

selected with the objective of minimising conflicting predictions, a high level of 

predictive performance may be realised. This was the case for the forest cover type 

5NN and See5 boosted OVA aggregate models. For the experiments reported in this 

chapter, the minimisation of class confusion was realised through boosting which 

was achieved through the selection of training datasets that provide a high coverage 

of the confusion regions for the classes. It was demonstrated that boosting can result 

in improvements to predictive performance when OVA base models have conflicting 

predictions.  

 

Further studies of the proposed training dataset selection method are reported in the 

context of pVn modeling in the next chapter. 
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Chapter 8  

Evaluation of Dataset Selection for 
Positive-Versus-Negative Aggregate 
Modeling 
 

 

It was stated in chapter 6 that the proposed methods of training dataset selection 

were aimed at supporting the creation of aggregate models for multi-class prediction 

tasks. The last chapter presented an evaluation of OVA modeling. This chapter 

presents the experiments to study training dataset selection for positive-Versus-

negative (pVn) models, a discussion of pVn model performance, and a comparison of 

predictive performance of single, OVA and pVn aggregate models. Recall that each 

pVn base model specialises in the prediction of a subset of the classes (the p-

classes). Also recall that the following two questions were posed in chapter 6, and 

answers to these questions were provided in chapter 7 for OVA classification: 

 

1. How should training datasets be designed in order to create base models that are 

syntactically diverse and highly expert at prediction for aggregate models? 

 

2. How should training datasets for the base models be designed in order to achieve 

high accuracy for the aggregate model? 

 

This chapter presents further studies for the purpose of answering the above 

questions in the context of pVn modeling. Section 8.1 provides a discussion of pVn 

modeling. Experiments to study 5NN pVn model performance and See5 pVn model 

performance are respectively discussed in sections 8.2 and 8.3. Section 8.4 provides 

a discussion of the statistical tests used to compare the predictive coherence of 

single, OVA and pVn models. Sections 8.5 and 8.6 respectively provide discussions 

and conclusions for the chapter. 
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8.1 pVn modeling 
 

The motivation for pVn modeling is presented in this section. The methods used for 

the design of pVn base models, and the creation and testing of pVn base models and 

pVn aggregate models are also discussed. Section 8.1.1 provides a discussion of the 

motivation for pVn modeling. The methods used to design the base models are 

discussed in section 8.1.2. The experiment design for the study of pVn modeling is 

presented in section 8.1.3.   

 

8.1.1 Motivation for pVn modeling 
 

pVn classification is a proposed modification of OVA classification. The initial 

motivation for using pVn base classifiers was given in chapter 6. Briefly stated, pVn 

modeling results in a reduction of the number of base models in comparison to OVA 

modeling. A further motivation for pVn modeling is as follows: The experimental 

results of chapter 7 demonstrated that there are datasets for which OVA base 

models do not result in aggregate models that provide a higher level of predictive 

accuracy. This is the case, for example, for the KDD Cup 1999 dataset where only 

the un-boosted 5NN model showed a small improvement in performance. It is useful 

to compare aggregate models based on OVA classification and with aggregate 

models based on pVn classification in order to establish whether pVn base models 

can result in predictive performance which is better than that of a single model which 

can predict any one of k (k > 2) classes. 

 

8.1.2 Design of pVn base models 
 

The following three questions need to be answered for pVn classification:  

 

(1)  What pVn models should be created? 

(2) Which classes should be the positive classes, and which classes should be the 

negative classes for each pVn base model? 

(3) What should be the class distribution for the positive and negative classes for the 

training dataset of each pVn base model? 
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An algorithm was designed by the author to provide answers to questions 1 and 2 

above. The algorithm uses the information in the confusion matrix for the single k-

class model to determine the number of models and the class composition of each 

pVn base model. This algorithm is presented in the next section. The methods used 

to answer question 3 above are also discussed in the next section. After the 

decisions have been made on the composition of the pVn base models, the training 

datasets must be selected. The selection process that was presented in chapter 6, 

and depicted in figure 6.2, was followed. The feature subset used for all pVn base 

models was the same as that for the single model, for both the 5NN and classification 

tree models. 

 

8.1.3 Experiment design for the study of pVn modeling 
 

Experiments were conducted to study the effectiveness of the proposed pVn base 

model design. The forest cover type and KDD Cup 1999 datasets were used for the 

experiments. The 5NN and See5 algorithms were used for the creation of the base 

models. The base models were combined into aggregate models using the 

combination algorithm in figure 6.3 (for See5 base models) and figure 6.4 (for 5NN 

base models). The analysis of pVn model performance was conducted as follows: 

 

(1) To compare the predictive performance of the single and pVn aggregate models 

for both 5NN and See5 classification. 

 

(2)  To compare the predictive coherence of single, OVA, and pVn aggregate models 

for both 5NN and See5 classification. 

 

Models were compared on predictive performance using the accuracy and class 

TPRATE measures as discussed in section 6.4.5. Student’s paired t-test and the 

Diff(A,S) and Ratio(A,S) measures discussed in section 6.4.5 were used to establish 

whether the aggregate models provide significant improvements in predictive 

performance. 
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8.2 Experiments to study pVn models for 5NN 
classification 
 

This section provides a discussion of the experiments on pVn classification for the 

5NN algorithm. Section 8.2.1 presents the methods for base model design and 

training dataset selection. Sections 8.2.2 and 8.2.3 respectively provide a discussion 

of the experimental results for base model and aggregate model performance. 

 

8.2.1 Design of training datasets for 5NN pVn base models 
 

Several interesting observations arose out of the experiments on OVA modeling. The 

following observations can be made for the forest cover type 5NN OVA aggregate 

models, based on table 7.6. A training sample of 50% class 1, 25% class 2 and 25% 

class 7 was used for the boosted OVA1 base model. A training sample of 25% class 

1, 25% class 2, and 50% class 7 was used for the boosted OVA7 base model. For 

both models, the main reason behind this decision was due to the fact that there is 

significant class confusion between classes 1, 2 and 7.  A question that comes to 

mind is: Would the performance of one base model, based on a sample with an 

equal class distribution for classes 1, 2, and 7 provided better performance than that 

of the two OVA base models, OVA1 and OVA7? In fact, the other OVA base models 

could be similarly combined based on the observations made from the confusion 

matrix of table 7.5.  

 

A structure that was referred to as a confusion graph was designed by the author for 

purposes of graphically representing the information in a confusion matrix. Figures 

8.1 and 8.2 respectively show the confusion graphs for the forest cover type and 

KDD Cup 1999 5NN single k-class models that were presented in section 7.2. The 

nodes in a confusion graph represent the classes for the prediction task. The arc 

),( ji cc  means that class ic  is predicted as class jc .  That is,  classes ic  and jc  

share a confusion region. The number in brackets in a node indicates the number of 

arcs connected to the node. The value labelling an arc represents the level of 

confusion between classes ic  and jc . This value comes from cell  ),( ji cc  of the 

confusion matrix. For simplicity of presentation, the arcs of the confusion graphs with 

values of 5 or less are shown as dashed lines and are not labeled. 
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Figure 8.1: Confusion graph for the 5NN single 7-class model for Forest cover type for 
training set size of 12000 instances 
 
 
 

 
Figure 8.2: Confusion graph for the 5NN single 5-class model for KDD Cup 1999  for  training 
set size of 4000 instances 
 

The algorithm shown in figure 8.3 was designed by the author for selecting classes to 

include in each of the pVn base models. The objectives of the algorithm are as 

follows: When selecting the positive (p) classes for each base model, include those 

classes that share confusion regions. Exclude those classes that do not share 
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confusion regions with all the selected classes. The motivation here is to identify 

groups of classes which should be modelled together. Each model based on a 

subset of classes needs negative instances. The negative instances should be drawn 

from those classes that have a confusion region with at least one of the positive 

classes included in the model.   

 

Table 8.1 provides a demonstration of the execution of the algorithm on the 

confusion graph of figure 8.1 for the forest cover type dataset. The last row of table 

8.1 indicates that four pVn base models are identified by the algorithm. These 

models are: M346 for the positive classes 3, 4 and 6, M127 for the positive classes 1, 

2 and 7, M125 for the positive classes 1, 2 and 5, and M2356 for the positive classes 

2, 3, 5 and 6. The algorithm was also applied to the confusion graph for the KDD Cup 

1999 single model shown in figure 8.2. The pVn base models that were identified are 

MNRU for the positive classes NORMAL, R2L and U2R, MNDR for the positive 

classes NORMAL, DOS and R2L, and MNDP for the positive classes NORMAL, 

DOS and PROBE. 

 

 
Figure 8.3: Algorithm for class selection for the pVn base models 
 

Table 8.2 shows the training set composition that was used to study the predictive 

performance of the pVn base models identified by the algorithm in figure 8.3 for the 

forest cover type and KDD Cup 1999 datasets. Each base model was composed of 

A. Make a copy of the confusion graph 

B. Repeat 

Step 1:    Select the node with the lowest connectivity and call it min,ic  

   (break ties randomly)  

Step 2:  Create a set whose members are min,ic  plus all the nodes connected to  

the node min,ic  

Step 3:    Delete all the arcs connected to min,ic  and delete min,ic  from the graph 

   Until there are no arcs left in the graph 

C. For each set created in step 2 of B above, if the set is a subset of another set, delete the  

    set (since its nodes are already included in another set) 

D. Assign each of the remaining sets as the positive classes for one model 

E.  For each model, determine the negative classes as follows: For each positive class in the   

     model, add all classes that have an arc to the class node, but are not one of the positive  

     classes of the model. 
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instances from the indicated classes and sample percentages for each class. The 

rationale behind the samples composition was to ensure that each of the positive 

classes has nearly the same number of instances as the other positive classes, and 

nearly the same number of instances as all the negative classes combined. The 

training sample size for the MNRU model was reduced to 1900 instances to avoid 

excessive bootstrapping of the U2R instances. 

 

Table 8.1: Trace of the class selection algorithm for the5NN forest cover type graph 
 
Iterations for steps B1, B2 and B3 
 
Iteration 

 
B1: selected  node 

 
B2: created set 

 
B3: deleted arcs and node 

1 min,ic = 4 class set: { 3, 4, 6 } arcs: { 3�4, 4�3, 6�4, 4�6 }  
node: 4 

2 min,ic = 7 class set:  {1, 2, 7 } arcs: { 1�7, 7�1, 2�7, 7�2 }   
node: 7 

3 min,ic = 1 class set:  {1, 2, 5 } arcs: { 1�5, 1�2, 2�1}             
node: 1 

4 min,ic = 5 class set: { 2, 3, 5, 6 } arcs: { 2�5, 5�2, 3�5, 5�3, 6�5, 5�6 } 
node:5 

5 min,ic = 6 class set: { 2,3,6 } arcs: { 2�6, 6�2, 3�6, 6�3 } 
node: 6 

6 min,ic = 3 class set: { 2, 3 } arcs: { 2�3, 3�2 } 
node: 3 

Final results of iterations of 
steps B1, B2, B3: { { 3, 4, 6 }, {1, 2, 7 }, {1, 2, 5 }, { 2, 3, 5, 6 }, { 2,3,6 }, { 2, 3 } } 

 
Steps C, D and E 
 
Step 

 
Action 

 
Results 

C Delete subsets of 
other sets 

deleted sets: {2,3} and {2,3,6} 
remaining sets: {  { 3, 4, 6 }, {1, 2, 7 }, {1, 2, 5 }, { 2, 3, 5, 6 } } 

 
D 

 
Assign positive 
classes 

M346:     positive classes =  { 3, 4, 6 } 
M127:     positive classes =  { 1, 2, 7 } 
M125:     positive classes =  { 1, 2, 5 } 
M2356:   positive classes =  { 2, 3, 5, 6 } 

 
 
 
 
E 

 
 
 
Determine negative 
classes 

M346:     negative classes = { 2, 5 } 
               2 borders with 3, 5 borders with 3 and 6 
M127:    negative classes: = { 3, 5, 6 } 
              3  borders with 2,  5 borders with 1 and 2, 6 borders with 2 
M125:    negative classes = {3, 6, 7}  
              3 borders with 2, 6 borders with 5,  7 borders with 1 and 2      
M2356:   negative classes = {1, 4, 7}  
               1 borders with 2, 4 borders with 3 and 6, 7 borders with 2  
               (but confusion level is very low) 

 
Algorithm 
output 

 
Model definitions 

M346:     positive classes = { 3, 4, 6 };      negative classes =  { 2, 5 } 
M127:     positive classes = {1, 2, 7 };       negative classes= { 3, 5, 6 } 
M125:     positive classes = {1, 2, 5 };       negative classes = {3, 6, 7 } 
M2356:   positive classes =  { 2, 3, 5, 6 }; negative classes= { 1, 4}                                           
                                                                  class 7 ignored 
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Table 8.2:  5NN training set composition for the pVn base models for forest cover type and 
KDD Cup 1999  
 
Dataset Model 

ID 

 
p (positive) classes n (negative classes) Training 

sample size Classes used sample 
percentage 

classes 
used 

sample 
percentage 

Forest 
cover  
type 

M125 C1,C2,C5 80: (27,27,26) C3,C6,C7 20: (7,7,6) 

12000 
M127 C1,C2,C7 80: (27,27,26) C3,C5,C6 20: (7,7,6) 

M2356 C2,C3,C5,C6 80: 
(20,20,20,20) C1,C4 20: (10,10) 

M346 C2,C3,C6 80: (27,27,26) C2,C5 20: (1,10) 
       
KDD 
Cup 
1999 

MNRU NORMAL, 
R2L,U2R 80: (27,27,26) DOS, 

PROBE 20: (10,10) 1900 

MNDR NORMAL,DOS, 
R2L 80: (27,27,26) PROBE, 

U2R 20: (10,10) 4000 

MNDP NORMAL,DOS, 
PROBE 80: (27,27,26) R2L, U2R 20: (10,10) 4000 

 

8.2.2 Predictive performance of the 5NN pVn base models 
 

The performance of the 5NN pVn base models for the forest cover type and KDD 

Cup 1999 dataset is shown in table 8.3. Columns 3 and 4 of table 8.3 show the mean 

TPRATE and mean TNRATE values for the base models. The TPRATE in this 

context is the predictive accuracy on the test instances for the p-classes while the 

TNRATE is the predictive accuracy on the test instances for the n-classes.  

 

Table 8.3: Predictive performance of 5NN pVn base models  
 
Dataset 
(Training  size) 
(test size) 

 
 
Base model 
ID 
 

Base model performance single model 
performance 

Mean 
TPRATE% 
(p instances) 

Mean 
TNRATE% 
(n instances) 

Mean 
TPRATE% 
for single model 
on p instances 

 
Forest cover type 
(12000) 
(350 x 10) 

M125 75.3 ± 2.3 85.1 ± 1.2 67.3 ± 7.3 

M127 74.4 ± 1.4 91.6 ±  0.7 66.9 ± 7.2 

M2356 57.9 ± 0.5 70.8 ± 3.5 67.1 ± 6.7 

M346 81.3 ± 1.5 94.1 ± 0.7 72.3 ± 5.6 

     

KDD Cup 1999 
(4000) 
(350 x 10) 

MNRU 76.3  ±0.8 97.4  ±1.0 60.2 ± 8.1 

MNDR 88.8  ±1.7 71.1  ±1.1 71.8 ± 3.9 

MNDP 74.4  ±5.5 68.9  ±7.4 82.1 ± 4.9 

 

Column 5 of table 8.3 shows the mean TPRATE values for the single 7-class model 

for forest cover type and the single 5-class model for KDD Cup 1999. The results of 

table 8.3 indicate that three out of four pVn models for forest cover type have a 

higher TPRATE value on the p-classes than for the single model. Two out of three 

pVn models for the KDD Cup 1999 dataset have a higher TPRATE value than the 

single 5-class model. It remains to be seen whether the aggregate model based on 
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these base models provide higher predictive performance compared to the single 

models. 

 

8.2.3 Predictive performance of the 5NN pVn aggregate models 
 

The pVn base models for forest cover type and KDD Cup 1999 were combined into 

aggregate models using the combination algorithm that was given in figure 6.4 of 

section 6.4.3. The experimental procedure that was used for aggregation was 

presented in section 6.4. Table 8.4 shows the results of the predictive performance of 

the 5NN aggregate model for the forest cover type pVn models. The details of 

predictive performance are given in table F.4. Table 8.4 also shows the results of the 

predictive performance of the 5NN single 7-class and OVA aggregate models of 

chapter 7 for the forest cover type dataset. Table 8.5 shows the results of the 

statistical tests used to compare the performance of the single 7-class model and the 

pVn aggregate model.  

 

Table 8.4: Mean Predictive performance of the 5NN single, OVA and pVn aggregate models 
for forest cover type 
 
 
Class name 

5NN Mean accuracy / TPRATE% (10 test sets of size 350) 
 
Single  
model 

un-boosted  
OVA aggregate 
model 

boosted  
OVA aggregate 
model 

pVn 
aggregate 
model 

All classes 74.7 ± 1.0 80.5 ± 0.9 82.0 ± 0.6 78.6 ± 1.2 

1 62.8 ± 3.4 70.0 ± 4.3 70.0 ± 4.3 67.8 ± 5.1 

2 48.8 ± 2.8 58.4 ± 2.7 62.0 ± 3.4 57.8 ± 2.1 

3 56.8 ± 4.1 71.8 ± 1.9 71.0 ± 1.3 65.0 ± 2.3 

4 92.4 ± 1.8 89.8 ± 1.9 100.0 ± 0.0 97.0 ± 1.2 

5 91.2 ± 2.0 95.8 ± 3.1 97.0 ± 0.9 94.2 ± 2.1 

6 75.0 ± 2.1 80.8 ± 4.5 77.6 ± 2.0 75.0 ± 2.9 

7 96.0 ± 1.3 96.6 ± 0.6 96.6 ± 0.6 93.2 ± 2.4 

 

The results of Student’s paired t-test and the Diff(A,S) and Ratio(A,S) performance 

improvement measures provide the following evidence: The pVn aggregate model 

has a higher level of performance compared to the single model. The aggregate 

model results in an accuracy increase of 3.9% for all classes combined. The Diff(A,S) 

measure indicates that the pVn aggregate model provides significant increases of 

3.0% to 9 % on the TPRATE for four out of seven classes, namely classes 2, 3, 4 

and 5. The Ratio(A,S) measure indicates increases between 0.2 and 0.6 for  classes 

2, 3, 4 and 5. However, for classes 1, 6 and 7 there are no statistically significant 

improvements in the TPRATE. The best 5NN OVA aggregate model for forest cover 
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type reported in chapter 7 provided a mean accuracy of 82.0±0.6 as shown in table 

8.4. The mean accuracy of the pVn aggregate model was 78.6±1.2. This leads to the 

conclusion that both the OVA and pVn aggregate models can provide improvements 

in predictive performance for the forest cover type dataset. 

 

Table 8.5: Statistical tests to compare the performance for 5NN single and pVn aggregate 
models for forest cover type 
Group names and  mean 
accuracy / TPRATE%  
for 10 test samples 

 
Student’s paired t-test (9 df) 

 
Performance improvement 
measures 

Group A 
Aggregate 
model 

Group S 
Single model 

95% CI of 
mean 
difference 

P value 
(2 tail) 

Group A 
better 
than 
Group S? 

 
 
Diff(A,S)% 

 
 
Ratio(A,S) 

All classes-A 
(78.6±1.2) 

All classes-S 
(74.7 ± 1.0) 

 
[2.5, 5.2] 

 
0.000 

 
yes 3.9 0.2 

Class1-A 
(67.8±5.1) 

Class1-S 
(62.8 ± 3.4) 

 
[-2.1, 12.1] 

 
0.146 

 
no 5.0 0.1 

Class2-A 
(57.8±2.1) 

Class2-S 
(48.8 ± 2.8) 

 
[4.9, 13.1] 

 
0.001 

 
yes 9.0 0.2 

Class3-A 
(65.0±2.3) 

Class3-S 
(56.8 ± 4.1) 

 
[3.7, 12.8] 

 
0.003 

 
yes 8.2 0.2 

Class4-A 
(97.0±1.2) 

Class4-S 
(92.4 ± 1.8) 

 
[3.1, 6.1] 

 
0.000 

 
yes 4.6 0.6 

Class5-A 
(94.2±2.1) 

Class5-S 
(91.2 ± 2.0) 

 
[1.5, 4.6] 

 
0.002 

 
yes 3.0 0.3 

Class6-A 
(75.0±2.9) 

Class6-S 
(75.0 ± 2.1) 

 
[-1.8, 1.8] 

 
1.000 

 
no 0.0 0.0 

Class7-A 
(93.2±2.4) 

Class7-S 
(96.0 ± 1.3) 

 
[-5.3, -0.4] 

 
0.029 

 
no -2.8 -0.7 

 

Table 8.6 shows the results of the Predictive performance of the 5NN pVn aggregate 

model for the KDD Cup 1999 dataset. The detailed results are given in the appendix 

table F.12. The results for the single 5-class and OVA aggregate models of chapter 7 

are also shown in table 8.6. Table 8.7 shows the results of the statistical tests used to 

compare the predictive performance of the single 5-class model and the pVn 

aggregate model. The results of Student’s paired samples t-test clearly indicate that 

the pVn aggregate model performance is much higher than that of the single 5-class 

model. The pVn model provided an increase of 11.8% in the mean accuracy for all 

the classes. The Ratio(A,S) measure indicates an increase of 0.4. The Diff(A,S) 

measure indicates an increase in the TPRATE ranging between 2.7% and 31% for 

four out of five classes. The Ratio(A,S) measure indicates high increases of between 

0.5 and 0.9.  
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Table 8.6: Mean Predictive performance of single, OVA and pVn aggregate 5NN models for 
KDD Cup 1999   
 
 
Class name 

5NN Mean accuracy / TPRATE% for 10 test sets of size 350 
 
Single  
model 

un-boosted 
OVA aggregate 
model 

boosted 
OVA aggregate 
model 

pVn 
aggregate 
model 

All classes 68.5 ± 1.4 72.4  ± 1.1 71.0 ± 1.2 80.3 ± 1.1 
NORMAL 84.4 ± 3.1 92.7  ± 2.8 92.4 ± 3.0 98.7 ± 0.9 
DOS 66.3 ± 5.0 66.0  ± 4.4 66.0 ± 5.1 97.3 ± 1.7 

PROBE 95.7 ± 1.2 95.2  ± 1.0 95.4 ± 1.2 98.4 ± 0.9 
R2L 64.7 ± 3.6 65.4  ± 3.6 60.9 ± 3.8 81.4 ± 4.1 
U2R 31.6 ± 0.3 42.6 ± 0.4 40.5 ± 1.4 25.7 ± 2.2 

 

Table 8.7 Statistical tests to compare the 5NN single and pVn aggregate models for KDD Cup 
1999 
Group name and mean 
accuracy / TPRATE%  
for 10 test sets 

 
Student’s paired t-test (9 df) 

Performance improvement  
measures 

Group A 
Aggregate 
model 

Group S 
Single model 

95% CI of 
mean 
difference 

p value 
(2 tail) 

Group A 
better than 
Group S? 

 
Diff(A,S)% 

 
Ratio(A,S) 

All classes-A 
(80.3 ±1.1) 

All classes-S 
(68.5 ±1.4) 

 
[10.1,13.4] 

 
0.000 

 
yes 

 
11.8 

 
0.4 

NORMAL-A 
(98.7 ±0.9) 

NORMAL-S 
(84.4 ±3.1) 

 
[10.9,17.8] 

 
0.000 

 
yes 

 
14.3 

 
0.9 

DOS-A 
(97.3 ± 1.7) 

DOS-S 
(66.3 ±5.0) 

 
[25.5,36.6] 

 
0.000 

 
yes 

 
31.0 

 
0.9 

PROBE-A 
(98.4 ±0.9) 

PROBE-S 
(95.7 ±1.2) 

 
[1.2,4.2] 

 
0.002 

 
yes 

 
2.7 

 
0.6 

R2L-A 
(81.4 ±4.1) 

R2L-S 
(64.7 ±3.6) 

 
[13.1,20.3] 

 
0.000 

 
yes 

 
16.7 

 
0.5 

U2R-A 
(25.7 ±2.2) 

U2R-S 
(31.6 ±0.3) 

 
[-8.4,-3.3] 

 
0.001 

 
no 

 
-5.9 

 
-0.1 

 

In comparison to the KDD Cup 1999 OVA aggregate models of chapter 7, the best 

OVA aggregate model had a mean predictive accuracy of 72.4±1.1 as shown in table 

8.6, while the pVn aggregate model has a mean predictive accuracy of 80.3±1.1. 

This comparison indicates that the pVn aggregate model has a much higher level of 

predictive performance. The foregoing observations provide evidence that pVn 

aggregate modeling can provide much higher performance improvements than OVA 

modeling. 

 

8.3 Experiments to study pVn models for See5 
classification 
 

pVn aggregate modeling was also tested using the See5 classification tree algorithm. 

A discussion of the experiments and the predictive performance of the See5 base 

models and aggregate models for the forest cover type and KDD Cup 19999 
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datasets are provided in this section. The training dataset design for the base models 

is presented in section 8.3.1. The predictive performance results for the base models 

and aggregate models are respectively presented in sections 8.3.2 and 8.3.3. 

 

8.3.1 Design of training datasets for pVn base models 
 

The confusion graphs for the forest cover type and KDD Cup 1999 See5 single 

models are shown in figures 8.4 and 8.5 respectively. The algorithm in figure 8.3 was 

used to determine the class composition of the pVn classification tree models for 

both the forest cover type and the KDD Cup 1999 datasets. It became evident that 

the algorithm in figure 8.3 is not suitable for determining the class composition for the 

KDD Cup 1999 dataset because the confusion graph for the KDD Cup 1999 See5 

single model is a maximally connected (fully interconnected) graph. When a 

maximally connected confusion graph is used as input to the algorithm of figure 8.3, 

the first iteration of step B will create a set of nodes which includes all the nodes in 

the graph. When step C is executed, all the sets of nodes created after the first 

iteration of step B will be deleted, since they will be subsets of the first set of nodes. 

A modification of the algorithm in figure 8.3 is given in figure 8.4. The motivation for 

the modification was to reduce the level of connectivity in the graph while at the same 

time retaining all the information about the regions with the highest levels of class 

confusion. The rationale behind step I of the algorithm in figure 8.4 is to ignore those 

regions that have low levels of confusion and favour those regions which have higher 

levels of class confusion. 

 

The application of step I of the algorithm in figure 8.4 to the confusion graph for the 

KDD Cup 1999 dataset resulted in the confusion graph of figure 8.5. The algorithm in 

figure 8.3 was applied to the confusion graph for the forest cover type dataset. The 

modified algorithm in figure 8.6 was applied to the confusion graph for the KDD Cup 

1999 dataset. The resulting pVn base model designs are shown in table 8.8. Column 

2 of table 8.8 shows the names of the pVn models. Each model is identified by the 

positive classes it is designed to predict. The training sample composition for each 

pVn base model is also shown in table 8.8. The training sample sizes for the MNRU 

and MNPU base models were reduced to 1900 instances to avoid excessive 

bootstrapping of the U2R instances. 
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Figure 8.4 Confusion graph for theSee5 single 7-class model for forest cover type for training 
set size of 12000 instances  
 

 
Figure 8.5: Confusion graph for the See5 single 5-class model for KDD Cup 1999 for training 
set size of 4000 instances 
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Figure 8.6: Modified algorithm for class selection for the pVn base models 
 

 
Figure 8.7: Simplified confusion graph for the See5 single 5-class model for KDD Cup 1999 
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I. Analyse the confusion graph as follows: 

     If  each node is fully connected to all the other nodes then 

            for each node 

                   delete the weakest  outgoing link (the outgoing arc  with the smallest weight)  

           end-for 

II. Process the confusion graph as follows: 

A. Make a copy of the confusion graph 

B. Repeat 

Step 1:    Select node with the lowest connectivity and call it min,ic   

                  (break ties randomly) 

Step 2:    Create a set whose member are min,ic  plus all the nodes connected to  

                  the node min,ic   

Step 3:    Delete all the arcs connected to min,ic  and delete min,ic  from the graph 

 

    Until there are no arcs left in the graph 

C. For each set of nodes created in step 2 of B above, if the set is a proper subset of  

    another set, delete the set. 

D. Assign each of the remaining sets as the positive classes for one model. 

E.  For each model, determine the negative classes. For each positive class in the model,  

     add all classes that have an arc to the class node, but are not one of the positive  

     classes for  the model. 
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Table 8.8:  Training set composition for theSee5 pVn base models  
 
Dataset Model 

ID 

p (positive) classes n (negative classed) Training 
sample  
size Classes used sample 

percentage 
classes 
used 

sample 
percentage 

Forest 
cover 
type 

M127 C1,C2,C7 80: (27,27,26) C3,C5,C6 20: (7,7,6) 

12000 M2356 C2,C3,C5,C6 80: (20,20,20,20) C1,C4 20: (10,10) 

M346 C2,C3,C6 80: (27,27,26) C2,C5 20: (7,7,6) 
       
KDD Cup 
1999 MNRU NORMAL, 

R2L,U2R 80: (27,27,26) DOS, 
PROBE 20: (10,10) 1900 

MNDP NORMAL, 
DOS, PROBE 80: (27,27,26) R2L, U2R 20: (10,10) 4000 

MNPU NORMAL, 
PROBE, U2R 80: (27,27,26) DOS,R2L 20: (10,10) 1900 

 

8.3.2 Predictive performance of the See5 pVn base models 
 

The performance of the See5 pVn base models for the forest cover type and KDD 

Cup 1999 dataset are shown in table 8.9. Columns 3 and 4 of table 8.9 show the 

mean TPRATE and mean TNRATE values for the base models. The TPRATE in this 

context is the predictive accuracy on the p-classes while the TNRATE is the 

predictive accuracy on the n-classes.  

 
Table 8.9: Predictive performance of See5 pVn base models  
Dataset 
(Training  
sample size) 

Base 
model 
ID 
 

Base model performance single model performance  

Mean TPRATE% 
(p instances) 

Mean TNRATE% 
(n instances) 

Mean TPRATE% 
(p instances) 

Forest cover type 
(12000) 

M127 76.7 ± 1.5 89.9 ± 0.9 72.3 ± 1.4 
M2356 76.8 ± 1.3 81.5 ± 2.0 72.2 ± 1.7 
M346 82.3 ± 0.9 96.9 ± 0.6 78.5 ± 1.8 

     
 
KDD Cup 1999 
(4000) 

MNRU 77.4 ± 2.6 84.7 ± 3.2 67.0 ± 1.6 
MNDP 91.1 ± 1.9 63.9 ± 1.3 68.1 ± 1.7 
MNPU 74.8 ± 0.4 77.3 ± 1.4 66.5 ± 1.3 

 
Column 5 of table 8.9 shows the mean TPRATE values for the single 7-class model 

on the p-classes for forest cover type, and the single 5-class model for KDD Cup 

1999. The results in table 8.9 indicate that the pVn base models M127, M2356 and 

M346 for forest cover type each have higher TPRATE values on their p-classes 

compared to the single 7-class model on the same classes. The pVn models MNRU, 

MNDP and MNPU for the KDD Cup 1999 dataset also have significantly higher 

TPRATE values on their p-classes compared to the single 5-class model.  
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8.3.3 Predictive performance of the See5 pVn aggregate models 
 

The pVn base models for the forest cover type and KDD Cup 1999 datasets were 

combined into aggregate models using the algorithm in figure 6.3. Table 8.10 shows 

the results of the predictive performance of the See5 pVn aggregate model for the 

forest cover type dataset. The detailed performance results are given in the appendix 

table F.8. Table 8.10 also gives the performance results for the single 7-class and 

OVA aggregate models of chapter 7. Table 8.11 shows the results of the statistical 

tests used to compare the performance of the single 7-class model and the pVn 

aggregate model.  

 

Table 8.10: Predictive performance of the See5 single, OVA and pVn models for forest cover 
type 
 
 
Class name 

See5 Mean accuracy / TPRATE% 
 
Single  
model 

un-boosted 
OVA aggregate  
model 

boosted 
OVA aggregate 
model 

pVn  
aggregate model 

All classes 76.9 ± 1.0 75.3 ± 0.7 79.4 ± 0.6 79.9  ± 1.0 
1 57.4 ± 3.4 60.6 ± 2.6 65.0 ± 2.9 64.6  ± 2.9 
2 63.8 ± 3.0 49.8 ± 3.6 69.8 ± 2.4 65.5  ± 4.2 

3 60.8 ± 3.3 64.0 ± 1.8 63.2 ± 3.3 71.8  ± 3.3 
4 96.8 ± 1.0 86.6 ± 1.7 95.4 ± 1.3 94.6  ± 1.7 
5 86.2 ± 2.4 94.4 ± 1.8 88.4 ± 2.3 88.6  ± 1.8 
6 77.8 ± 3.3 79.2 ± 2.0 76.0 ± 1.9 82.2  ± 2.6 
7 95.6 ± 1.6 92.8 ± 2.5 97.8 ± 1.1 92.0  ± 2.8 

 

The results of Student’s paired sample t-test and the Diff(A,S) and Ratio(A,S) 

performance improvement measures provide the following evidence: The pVn 

aggregate model has a significantly higher level of performance compared to the 

single model. The aggregate model results in an increase of 3% in accuracy for all 

classes combined. For the TPRATE values of the individual classes, the aggregate 

model provides a significantly higher level of performance with an increase in the 

TPRATE of 11% on class 3 and 7.2% on class 1. The aggregate model provided a 

performance improvement of 4.4% in theTPRATE for class 6. However, there is no 

statistically significant improvement in the TPRATE values for the remaining four 

classes. In fact, the single model provided higher TPRATE values on two of these 

classes. The best See5 OVA aggregate model for the forest cover type dataset that 

was reported in chapter 7 provided a mean accuracy of 79.4 ± 0.6 as shown in table 

8.10. The mean accuracy of the pVn aggregate model was 79.9 ± 1.0. This leads to 

the conclusion that both the OVA and pVn aggregate models can provide a 

comparable improvement in Predictive performance for the forest cover type dataset. 
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Table 8.11: Statistical tests to compare the performance for See5 classification tree single 
and pVn aggregate models for forest cover type 
Group mean accuracy / TPRATE% 
for 10 test sets 

 
Student’s paired t-test (9 df) 

Performance 
improvement measures 

Group A 
Aggregate 
model 

Group S 
Single model 

95% CI of 
mean 
difference 

P value 
(2 tail) 

Group A 
better 
than 
Group S? 

 
 
Diff(A,S)
% 

 
 
Ratio(A,S) 

All classes-A 
(79.9 ± 1.0) 

All classes-S 
(76.9 ± 1.0) 

 
[1.9, 4.0] 

 
0.000 

 
yes 

 
3.0 0.1 

Class1-A 
(64.6 ± 2.9) 

Class1-S 
(57.4 ± 3.4) 

 
[2.9,11.5] 

 
0.004 

 
yes 

 
7.2 0.2 

Class2-A 
(65.2 ± 4.2) 

Class2-S 
(63.8 ± 3.0) 

 
[-1.7, 4.5] 

 
0.334 

 
no 

 
1.4 0.0 

Class3-A 
(71.8 ± 3.3) 

Class3-S 
(60.8 ± 3.3) 

 
[6.8, 15.2] 

 
0.000 

 
yes 

 
11.0 0.3 

Class4-A 
(94.6 ± 1.7) 

Class4-S 
(96.8 ± 1.0) 

 
[-4.6, 0.2] 

 
0.066 

 
no 

 
-2.2 -0.7 

Class5-A 
(88.6 ± 1.8) 

Class5-S 
(86.2 ± 2.4) 

 
[-1.4, 6.2] 

 
0.188 

 
no 

 
2.4 0.2 

Class6-A 
(82.2 ± 2.6) 

Class6-S 
(77.8 ± 3.3) 

 
[1.2, 7.6] 

 
0.014 

 
yes 

 
4.4 0.2 

Class7-A 
(92.0 ± 2.8) 

Class7-S 
(95.6 ± 1.6) 

 
[-5.5, -1.7] 

 
0.002 

 
no 

 
-3.6 -0.8 

 

Table 8.12 shows the results of the Predictive performance of the pVn aggregate 

model for the KDD Cup 1999 dataset. The performance details are given in the 

appendix table F.16. The results for the single 5-class and OVA aggregate models 

are also shown in table 8.12. Table 8.13 shows the results of the statistical tests to 

compare the predictive performance of the single 5-class model and the pVn 

aggregate model. The results of Student’s paired t-test clearly indicate that the 

aggregate model performance is much higher than that of the single 5-class model. 

The Diff(A,S) and Ratio(A,S) measures indicate that the increase in the TPRATE for 

three of the classes is between 12.1% and 60.6%. The TPRATE increase for the 

PROBE class is 60.6%, which is remarkably high. Overall, the accuracy increase 

over all the classes is 15.2%.  

 

In comparison to the KDD Cup 1999 OVA aggregate model of chapter 7, the best 

See5 OVA aggregate model had a mean predictive accuracy of 61.7±0.9 as shown in 

table 8.12, while the pVn aggregate model has a mean predictive accuracy of 

79.0±2.1. This comparison clearly indicates that the pVn aggregate model has a 

much higher level of predictive performance. Again, this provides evidence that pVn 

aggregate modeling can provide much higher performance gains compared to OVA 

modeling. 
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Table 8.12: Predictive performance of See5 single, OVA and pVn aggregate models for KDD 
Cup 1999 
 
 
 
Class name 

See5 Mean accuracy / TPRATE (10 test sets of size 350) 
 
Single  
model 

un-boosted 
OVA aggregate 
model 

boosted  
OVA aggregate 
 model 

pVn  
aggregate  
model 

All classes 63.8 ± 1.3 63.3 ± 1.2  61.7 ± 0.9 79.0 ± 2.1 
NORMAL 86.0 ± 3.1 98.3 ± 0.7 99.2 ± 0.6 98.1 ± 0.6 
DOS 82.0 ± 3.8 50.1 ± 4.4 56.3 ± 4.3 68.4 ± 6.5 
PROBE 36.8 ± 2.4 88.0 ± 1.3 89.3 ± 1.4 97.0 ± 1.0 
R2L 37.7 ± 3.3 34.3 ± 3.3 23.6 ± 3.4 54.1 ± 6.9 
U2R 77.1 ± 0.0 45.7 ± 0.0 40.0 ± 0.0 77.1 ±  0.0 
 

Table 8.13 Statistical tests to compareSee5 single and pVn aggregate models for KDD Cup 
1999 
Group name and mean 
TPRAE% for 10  test samples 

 
Student’s paired t-test (9 df) 

Performance improvement 
measures 

Group A 
Aggregate 
model 

Group S 
Single model 

95% CI of 
mean 
difference 

p value 
(2 tail) 

Group A 
better than 
Group S? 

 
Diff(A,S)% 

 
Ratio(A,S) 

All classes-A 
(79.0 ± 2.1) 

All classes-S 
(63.8 ± 1.3) 

 
[12.8,17.5] 

 
0.000 

 
yes 

 
15.2 0.4 

NORMAL-A 
(98.1 ± 0.6) 

NORMAL-S 
(86.0 ± 3.1) 

 
[8.7,15.6] 

 
0.000 

 
yes 

 
12.1 0.9 

DOS-A 
(68.4 ± 6.5) 

DOS-S 
(82.0 ± 3.8) 

 
[-18.6,8.6] 

 
0.000 

 
no 

 
-13.6 -0.8 

PROBE-A 
(97.0 ± 1.0) 

PROBE-S 
(36.4 ± 2.4) 

 
[60.0,63.5] 

 
0.000 

 
yes 

 
60.6 0.97 

R2L-A 
(54.1 ± 6.9) 

R2L-S 
37.7 ± 3.3) 

 
[9.5,23.2] 

 
0.000 

 
yes 

 
16.4 0.3 

U2R-A 
(77.1 ± 0.0) 

U2R-S 
(77.1 ± 0.0) 

 
no variance 

no  
variance 

 
same 

 
0.0 0.0 

 

8.4 Comparison of performance variability for single and 
aggregate models 
 

Given two systems or methods, the system or method with more predictable 

behaviour should be preferred (Cohen, 1995:pg 205). In the context of predictive 

modeling, the method with predictive performance which has lower variability should 

be preferred to one which exhibits erratic performance. A model with low 

performance variability has more predictable behaviour. The F-test for variances 

which was discussed in chapter 4, was used to test the null hypothesis that the 

variance of predictive accuracy for a single k-class model is the same as that for the 

OVA or pVn aggregate model. There are two available rules for the rejection of the 

null hypothesis for the 2-tail F-test. The first rule states that the null hypothesis 

should be rejected if the p-value for the test is less than the critical p-value. The 

second rule states that the null hypothesis should be rejected if the value of the F-

statistic is greater or equal to the critical value of the F-statistic. The second rule was 
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used for the F-test inference given in table 8.14. The results of the F-tests indicate 

that, in general, there is no significant difference in performance variability between 

the single k-class models and OVA aggregate models, and between single k-class 

models and pVn aggregate models. This leads to the conclusion that both the single 

and aggregate models exhibit equal predictive coherence. 

 

Table 8.14: F- tests for comparison of performance variability for single and aggregate models 
 
 
 
Dataset 

 
 
 
Algorithm 

 Variance of  
predictive accuracy 

F-test for variance of accuracy on 10 test 

sets (9 x 9 df, 18.3=criticalF ) 

Single 
model (S) 
 

Aggregate 
model (A) 

F value = 
Max{VarA ,VarS}  / 
Min{VarA,VarS} 

p-value 
(F � f)  
1-tail 

A has 
same 
coherence  
as S? 

 
 
forest cover 
type 

 
5NN 

 
single  
(2.9) 

un-boosted OVA 
(2.3) 

 
1.26 

 
0.37 

 
yes 

boosted OVA 
(0.9) 

 
3.13 

 
0.05 

 
yes 

pVn 
(3.8) 

 
1.34 

 
0.33 

 
yes 

 
See5 

 
single  
(2.5) 

un-boosted OVA 
(1.1) 

 
2.17 

 
0.13 

 
yes 

boosted OVA 
(0.8) 

 
2.95 

 
0.06 

 
yes 

pVn 
(2.4) 

 
1.01 

 
0.49 

 
yes 

 
 
 
KDD Cup 
1999 

 
5NN 

 
single  
(4.9) 

un-boosted OVA 
(3.2) 

 
1.53 

 
0.27 

 
yes 

boosted OVA 
(3.9) 

 
1.28 

 
0.36 

 
yes 

pVn 
(3.4) 

 
1.47 

 
0.29 

 
yes 

 
See5 

 
single  
(4.7) 

un-boosted OVA 
(3.8) 

 
1.24 

 
0.38 

 
yes 

boosted OVA 
(2.0) 

 
2.42 

 
0.10 

 
yes 

pVn 
(11.9) 

 
2.52 

 
0.09 

 
yes 

 

The following general conclusions can be made from the statistical tests of chapter 7 

for the comparison means and the statistical tests of this chapter for the comparison 

of means and comparison of variances: Both OVA and pVn aggregate models 

provided a higher level of predictive performance compared to a single 7-class model 

for the forest cover type dataset. The single and aggregate models exhibited similar 

levels of predictive coherence, so that overall the aggregate models should be 

preferred to the single 7-class model. The pVn aggregate model provided a higher 

level of predictive performance compared to a single 5-class model for the KDD Cup 

1999 dataset. The level of predictive coherence is similar for the single and pVn 

aggregate model, so that the aggregate model should be preferred. 

 

 
 
 



  205 

It should be emphasized that the variance shown in table 8.14 is not the same as the 

variance component of the prediction error. Recall from section 2.8 that variance 

error is defined as variability in prediction of an instance x from one training sample 

to the next. For a given algorithm and modeling method, the measurement of 

variance error requires the creation of many models each based on a different 

training sample. The variance error is then estimated using the same test set for the 

different models (Kohavi & Wolpert, 1996). 

 

8.5 Discussion 
 

The benefits of pVn modeling are summarised in this section. The performance of 

OVA and pVn models is compared to the performance of single models. The 

limitations of the proposed methods for training dataset selection are discussed. 

Section 8.5.1 provides a summary of the benefits of pVn modeling. Section 8.5.2 

presents a comparison of OVA and pVn modeling. Section 8.5.3 discusses the 

limitations of the proposed dataset selection methods. 

 

8.5.1 Dataset selection for pVn modeling 
 

pVn modeling was proposed as a method of problem decomposition with a potential 

to reduce the bias (errors in the model estimation process) and variance (sensitivity 

to the training sample) components of the prediction error. Secondly, the initial 

motivation for proposing pVn modeling was to reduce the number of base models as 

required for OVA modeling. The experimental results demonstrated that pVn 

modeling enables the creation of syntactically diverse and highly competent base 

models. The pVn models were designed based on the lessons learned from OVA 

modeling. Confusion graphs derived from confusion matrices were used as input to 

the proposed algorithm for determining the class composition for the pVn base 

models. The experimental results reported in this chapter have demonstrated that the 

design of the base models based on the proposed algorithms results in pVn base 

models that provide a high level of predictive performance when combined into an 

aggregate model. The pVn aggregate models provided a much higher level of 

predictive performance compared to a single k-class model for the two datasets and 

two algorithms used for the experiments. 
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8.5.2 Comparison of OVA and pVn modeling 
 

Table 8.15 provides a summary of the predictive performance of the OVA and pVn 

models for the datasets and algorithms used in the experiments. One small dataset, 

namely Wine quality (white) (Cortez et al, 2009) was also used to test performance of 

OVA and pVn dataset selection and modeling. The experimental results for the forest 

cover type and KDD Cup 1999 datasets were discussed in detail in chapter 7 and in 

this chapter. The details of the test results for the wine quality dataset are provided in 

appendix tables F.17 through F.26. 

 

Table 8.15: Summary of performance improvements for OVA and pVn models 
 
 
Dataset 
(size) 

 
 
Algorithm 

Is there a performance improvement compared to single model 
for the: 
un-boosted OVA  
aggregate model? 

boosted OVA  
aggregate model? 

pVn 
aggregate model? 

 
Forest cover type 
(large) 

 
5NN 

 
yes 

 
yes 

 
yes 

 
See5 

 
no 

 
yes 

 
yes 

 
KDD Cup 1999 
(large) 

 
5NN 

 
yes 

 
no 

 
yes 

 
See5 

 
no 

 
no 

 
yes 

 
Wine quality - 
white 
(small) 

 
5NN 

 
no 

 
no 

 
yes 

 
See5 

 
no 

 
no 

 
yes 

 

OVA modeling provided performance gains for the forest cover type dataset for both 

the 5NN and the See5 algorithms. The un-boosted version of OVA modeling 

provided a small performance improvement for KDD Cup 1999 for the 5NN algorithm. 

The boosted version of OVA modeling did not provide any performance gains for the 

KDD Cup 1999 dataset for the 5NN and See5 algorithms. OVA modelling did not 

provide any performance gains for the wine quality dataset. pVn modeling provided 

performance gains for the forest cover type, KDD Cup 1999 and wine quality 

datasets for both algorithms. The performance improvements for the pVn aggregate 

models were far more impressive for the KDD Cup 1999 dataset compared to the 

forest cover type and wine quality datasets. An examination of the confusion graphs 

of figures 8.1, 8.2, 8.4, 8.5 and 8.7 reveals that one main difference between the 

prediction tasks for forest cover type and KDD Cup 1999 is that there is one class 

(NORMAL) for the KDD Cup 1999 whose node is connected to all the other nodes 

(classes) in the graph. This is not the case for the forest cover type confusion graphs. 

This observation could help to explain why, for a dataset such as KDD Cup 1999, 

OVA modeling as proposed in chapter 7 does not provide significant performance 
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gains, while pVn modeling provides significant gains. Further studies are required 

before firm conclusions can be made. 

 

The F-tests for variance indicated that, in general, both OVA and pVn aggregate 

models exhibit the same level of predictive coherence. This leads to the conclusion 

that the OVA or pVn aggregate model should be preferred if such a model provides a 

higher level of mean predictive performance compared to a single k-class model. 

 

It was observed from the experiments on OVA and pVn modeling, that OVA and pVn 

modeling can be used to reduce the problems associated with creating predictive 

models from datasets with skewed class distributions, especially when one or more 

classes are severely under-represented in the dataset. This is the case, for example, 

for the U2R class in the KDD Cup 1999 dataset. For the 52 instance of the U2R 

class, a combination of bootstrap sampling, training sample design to include only 

the necessary classes in the OVA and pVn models, and reduction of the training 

sample size were implemented for the OVAU2R, MNPU and MNRU base models. 

This scheme resulted in performance improvements on the TPRATE for the U2R 

class for the OVA aggregate models using the 5NN algorithm. The U2R TPRATE for 

the single 5-class model was 31.6±0.3, for the un-boosted OVA aggregate model the 

TPRATE was 42.6±0.4, and for the boosted OVA aggregate model the TPRATE was 

40.5±1.4. However, for the See5 algorithm, the OVA and pVn aggregate models did 

not provide an increase in the TPRATE for the U2R class. 

 

8.5.3 Classification problems where proposed boosting methods 
are not appropriate 
 

Two-class problems are very common in data mining especially in business 

applications (Giudici & Figini, 2009; Witten & Frank, 2005; Giudici, 2003; Berry & 

Linoff, 2000). It was stated in chapter 2 that the OVA and pVn base model design 

and dataset selection methods proposed in this thesis are not appropriate for 2-class 

problems, but rather to k-class problems where k > 2. However if each of the classes 

for a 2-class problem is located in more than one contiguous region of the instance 

space, then it should be possible to apply the proposed methods to that dataset. For 

example, suppose that a 2-class dataset has classes 1c  and 2c  with the instances of 

class 1c  located in regions 1g  and 2g  while the instances of class 2c  are located in 
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regions 3g  and 4g . Classes  1c  and 2c  can be re-labelled as 42322111 gcgcgcgc ,,,  so 

that the classification task becomes a 4-class prediction problem to which the 

proposed methods can be applied. Liu and Motoda (1998) have observed that cluster 

analysis is commonly used as a pre-processing step in data mining. Samoilenko and 

Osei-Bryson (2008), and Osei-Bryson (2010) have observed that clustering is 

commonly used as a step prior to predictive modeling for purposes of improving the 

performance of predictive models. The author of this thesis hypothesised that 

identification of 1-class contiguous regions in the instance space of a 2-class problem 

can be achieved through cluster analysis. Experiments to test this hypothesis are left 

for future work. 

 

The datasets used for the empirical studies on boosting have the desirable property 

that their confusion matrices have off-diagonal entries ),( ji ccCM with 

kjki ,..,,,.., 11 ==  and ji ≠ which do not have an equal (or nearly equal) 

distribution of instances. In fact, some of the entries in the off-diagonal confusion 

matrix cells are zero. The proposed OVA and pVn base model design and training 

dataset selection for boosted OVA and pVn base models were based on this 

property. The training samples for each iOVA  boosted base model or ipVn  base 

model were designed as follows: Each training sample included only instances of the 

classes where the off-diagonal entries ),( ji ccCM  and )c,c(CM ij  for i � j in the 

matrix cells have large values, and to exclude instances of the classes with small or 

zero counts. There are k-class datasets for which the above property does not hold 

as shown in tables 8.16 and 8.17. 

 

Table 8.16: See5 single 3-class model confusion matrix for abalone3C  
Single model confusion matrix, training size = 3000, 10-fold cross validation 
Actual  
class 

Predicted class 

young middle old 

young  206 51 

middle 183   316 

old 74 272   

 

For such datasets the (off-diagonal) entries in the class confusion cells all have 

nearly the same instance counts. The 3-class abalone3C dataset is a case in point. 

The 3-class waveform dataset (Blake & Merz, 1998; Breiman et al, 1984) was also 

identified as fitting this category. The confusion matrices for these two datasets for 

the See5 classification algorithm are given in tables 8.16 and 8.17. 
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Table 8.17: See5 single 3-class model confusion matrix for waveform 
Single model confusion matrix, training size = 5000, 10-fold cross validation 
Actual  
class 

Predicted class 

Class 0 Class 1 Class 2 

Class 0   269 217 

Class 1 160  151 

Class 2 179 140   

 

The foregoing observations led the author to formulate the following property for k-

class confusion matrices: 

 

Sparse confusion matrix property: 

A k x k confusion matrix with exactly one off-diagonal cell having a zero count is 

minimally sparse. A k x k confusion matrix with all k(k-1) off-diagonal cells having  

zero counts is maximally sparse. A k x k confusion matrix with j off-diagonal cells, 

)( 11 −≤≤ kkj  having zero counts is a sparse confusion matrix.  

 

The implication of the above property is that there are classes in the dataset that do 

not share a common region of class confusion. The two large datasets that were 

used in the OVA and pVn studies for boosting training datasets both have the sparse 

confusion matrix property for the single k-class models. For this reason, it was 

possible to design boosted training datasets for OVA and pVn base models which 

resulted in increased predictive performance. It should be noted that it is possible 

that a non-sparse confusion matrix has off-diagonal cells with counts that are much 

smaller than the counts of all the other off-diagonal cells. Such a matrix can be 

converted into a sparse confusion matrix by setting the off-diagonal cell counts with 

small values to zero. 

 

8.6 Conclusions 
 

The first question that was posed for the studies on aggregate modeling and training 

dataset selection was: How should training datasets be designed in order to create 

base models that are syntactically diverse and highly expert at prediction for 

aggregate models? The experimental results reported in this chapter have 

demonstrated that the design of pVn models based on the information in the 

confusion matrix and confusion graph for a single k-class model and the new pVn 

model design algorithm presented in this chapter, results in the design of pVn base 
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models that are syntactically diverse and highly expert at prediction. The discussion 

of section 8.5.3 has however made it clear that the pVn and boosted OVA base 

model designs that are proposed are only applicable to datasets for which the single 

k-class predictive model has a sparse confusion matrix. 

 

The second question that was posed was:  How should training datasets for the base 

models be designed in order to achieve high accuracy for the aggregate model? The 

experimental results reported in this chapter have demonstrated that when pVn base 

models are designed as described above, the aggregation of such base models 

results in increased predictive performance. This was shown to be the case for the 

datasets and the algorithms that were used in the experiments. The experimental 

results also demonstrated that the predictive performance increases achieved 

through the proposed OVA and pVn aggregate modeling methods do not come at the 

cost of reduced coherence in the predictions. 

 

The models discussed in chapter 7 and this chapter were assessed for performance 

using mean values for accuracy and TPRATE values as well as the variance in 

accuracy. Evaluation of model performance using Receiver Operating Characteristic 

(ROC) analysis is presented in the next chapter. 

 
 
 


	00FRONT
	CHAPTER 1-2
	CHAPTER 3-4
	CHAPTER 5-6
	CHAPTER 7-8
	Chapter 7
	Evaluation of Dataset Selection for One-Versus-All Aggregate Modeling
	7.1 OVA modeling
	7.2 Experiments to study OVA models for 5NNclassification
	7.3 Experiments to study OVA models for See5classification
	7.4 Discussion
	7.5 Conclusions


	Chapter 8
	Evaluation of Dataset Selection forPositive-Versus-Negative AggregateModeling
	8.1 pVn modeling
	8.2 Experiments to study pVn models for 5NNclassification
	8.3 Experiments to study pVn models for See5classification
	8.4 Comparison of performance variability for single andaggregate models
	8.5 Discussion
	8.6 Conclusions



	CHAPTER 9-10
	CHAPTER 11-12
	BACK



