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Chapter 5
Feature Selection for Large Datasets

.. the object of data analysis is not to model the fleeting random patterns of the
moment, but to model the underlying structures which give rise to consistent and

replicable patterns. ..’ (Hand, 1998)

It was stated in chapters 2 and 3 that the selection of a good subset of predictive
features results in the reduction of the variance component of a predictive model. To
the author's knowledge, there are very few reported studies on research that
addresses feature selection in the presence of large datasets. One such study has
been reported by Liu and Setiono (1998a, 1998b). Research has been reported on
validation of class-feature correlation coefficients using fake variables (Stoppiglia et
al, 2003; Bi et al, 2003). Since this method of validation has only been applied to
small datasets, it is useful to establish whether the use of fake variables for validation
can be effectively applied to feature selection from large datasets. It was also argued
in chapter 3 that algorithms that conduct feature subset search should use clearly
specified definitions of feature relevance.

The purpose of this chapter is to report the experimental results of the study of
feature subset selection in the presence of sampling from large datasets.
Experimental results are reported on studies that were conducted on two correlation
measures, two validation methods for correlations, and three algorithms for feature
subset selection. Hand (1998) has made the insightful observation about data
analysis as quoted at the beginning of this chapter, and it is in the spirit of this
observation that experiments for this chapter were designed and conducted. It is
argued in this chapter that statistical methods can be used to make inferences on the
expected values of the feature correlations for large datasets when many samples
are used. The use of many samples for correlation measurement should lead to
better decisions for feature selection since the correlation values obtained are more
reliable. It is further argued that features that are selected when domain-specific
definitions of feature relevance are incorporated into the feature selection procedures
are the best features for the prediction task at hand. In the context of processing
large datasets in data mining, the following research questions are answered in this
chapter:
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1. How can class-feature correlations be measured in order to produce a reliable
ranking of features for a dataset?

2. What methods of validation for feature correlations result in reliable feature
selection?

3. How can domain-specific definitions of feature relevance be incorporated into

feature selection procedures?

The rest of this chapter is organised as follows. Section 5.1 gives a summary of the
feature selection problem. Section 5.2 presents the different approaches to feature
selection that were studied. Empirical studies of feature ranking, feature subset
search and predictive performance of selected feature subsets are respectively
discussed in sections 5.3, 5.4 and 5.5. The discussion of the experimental results
and conclusions are respectively given in sections 5.6 and 5.7.

5.1 The feature selection problem revisited

It was stated in chapter 3 that the initial selection of features is typically done by a
domain expert, based on the data mining task at hand. Subsequent to this, a process
of selecting the most relevant features and eliminating redundant features must be
conducted. It is this process which is addressed in this chapter. Further, Guyon and
Elisseeff (2003) have observed that there is not just the one method of feature
selection that suits all datasets, all algorithms and all data mining tasks. With Guyon
and Elisseeff’s (2003) observations in mind, the methods discussed in this chapter
were directed at large datasets of moderately high dimensionality.

It was also stated in chapter 3 that filtering methods are preferred to wrapper
methods for data mining for reasons of efficiency. The measurement of class-feature
and feature-feature correlations is at the core of many filtering methods for feature
selection. In the experiments reported for this chapter, many of the correlation
measures commonly used in filtering methods for feature selection (Yu & Liu, 2004;
Hall, 1999, 2000) were adopted to establish feature relevance and redundancy in the
presence of sampling. For feature relevance, these measures are based on the
strength of the correlation between a feature and the class variable. For redundancy,
the measures are based on the strength of the correlations between the features.
The correlation measures were presented in chapter 3. While studies of feature
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selection most commonly use one sample (i.e. the whole dataset) to establish the
feature correlation values, the studies reported in this chapter were directed at using
many samples to establish the correlation values for the dataset features.

5.2 Alternative approaches to feature selection for large
datasets

When large datasets are available the question arises as to whether relevant
features should be selected based on the whole dataset, one sample from the
dataset, or several samples taken from the dataset. When a dataset is very large, it is
not feasible to compute correlation values using all the available data. If only one
sample is taken there is a great risk of making the wrong decisions about which
features are the most relevant. Based on Hand’s (1998) observations as quoted at
the beginning of this chapter, the purpose of feature selection should not be to
identify the best features for the specific training sample that has been chosen (or
happens to be available) for model creation, but rather to identify the best features for
model creation regardless of the specific training sample that is chosen. In other
words, the objectives of feature selection should be directed at the data generating
process and not solely at the data sample that happens to be available. In attempting
to answer the question:

How can class-feature correlations be measured in order to produce a reliable
ranking of features for a dataset?

the author hypothesised that the use of many samples to measure class-feature and
feature-feature correlations should provide reliable estimates of these correlations. In
order to provide evidence to support this hypothesis, the following alternatives were
considered and studied:

Alternative 1

Use one small sample (e.g. 100 or 500 instances) to measure correlations and select
the features, and assume that these will be the relevant features for the instance
space and prediction task regardless of the specific training sample used for
classification model construction. The motivation for this alternative is that, first of all,
the computation of correlation values from small samples is faster than for large

samples. Secondly, statistical theory points to the fact that relationships that appear
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to be strong in small samples are generally stronger than relationships which only
appear in large samples of data. The foregoing observation can be used to argue
that features that have strong correlations in small samples are the strongest
predictors and will have globally predictive power. The term globally predictive is
used to mean that a feature will have predictive power in all regions of the instance
space.

Alternative 2

Use one large sample (e.g. 1000 instances) to measure correlations and select the
features and assume that these will be relevant features for the instance space and
prediction task regardless of the specific training sample used for classification model
construction. The rationale here is that those features which are not strongly
predictive may be eliminated when a small sample is used. The use of a large
sample increases the chances of identifying more features for the prediction task.

Alternative 3

Use many small samples of one size to select the features and assume that these
will be relevant features for the instance space and prediction task regardless of the
specific training sample used for classification model construction. The rationale here
is the same as for alternative 1. Additionally, taking the mean values of the
correlations measured on many samples, and using statistical inference to select

features is more reliable than the use of a single sample correlation.

Alternative 4

Use many large samples of one size to select the features and assume that these will
be relevant for the instance space and prediction task regardless of the specific
training sample used for classification model construction. Again, taking the mean
values of the correlations measured on many samples, and using statistical inference

to select features is more reliable than using a single sample correlation.

The next section provides the experimental results for the investigation of the above

four alternatives.
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5.3 Empirical study of feature ranking methods for large
datasets

For feature ranking the selection criteria are applied to each feature, without any
consideration of the contribution of the other features to the prediction performance.
The ranking criteria reported in this section are based on feature correlation
measures. The results of the experiments that were conducted on feature selection
based on pure ranking of features are reported in this section. The experimental
procedures that were used are given in section 5.3.1. A comparison of Pearson’s and
Kendall’'s correlation measures is given in section 5.3.2. Sections 5.3.3 and 5.3.4
respectively provide the experimental results and discussions for feature ranking
based on a single samples and feature ranking based on many samples.

5.3.1 Experimental procedure for the study of feature ranking

The datasets presented in chapter 4 were used for the experiments. The sequential
random sampling method (SRS), described in chapter 4, was used to obtain random
samples. Probes (fake variables) with values drawn from both Gaussian and uniform
distributions were used. Probes may be added to the datasets prior to taking samples
for feature selection. However, adding probes to a very large dataset is a
computationally lengthy and unnecessary process. The probes can be added during
or after the sampling step. The generation of pseudo-random numbers is a process
of sampling from the specified distribution (Thomas et al, 2007). The sampling
approach used for the experiments was to first take samples from the large dataset
and then sample from the chosen probability distributions for the probes (fake
variables). Three types of probes were used with values drawn from a Gaussian
distribution, a uniform distribution, and uniform binary distribution. For the Gaussian
probe, the Marsaglia-Bray algorithm was used to generate the pseudo-random
numbers (Thomas et al, 2007). For the uniform probes, the Borland C++ function for
generating random numbers was used. The datasets that were used in the
experiments for this thesis contain quantitative (discrete and continuous), and
qualitative (nominal and ordinal) features. The forest cover type and KDD Cup 1999
also contain binary (quantitative discrete) features. Furthermore, even though the
correlation values (for quantitative features) and symmetrical uncertainty (SU)
coefficient values (for qualitative features) are comparable, the functions used to

104



b

W UNIVERSITEIT VAN PRETORIA
.. UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA

compute the correlations are different. The functions for computing Pearson’s
correlation Kendall’s correlation and SU coefficients were presented in chapter 3. It is
statistically meaningful to compare a true binary feature with a fake binary feature
and a true qualitative feature with a fake qualitative variable. For this reason one
Gaussian and two uniform probes were used. Table 5.1 shows the characteristics of
the probes used for the datasets.

Table 5.1 Characteristics of the probes for the datasets

Value
Probe name range Description
Probe1GaussCont 0- 999 Gaussian distribution with mean = 500, stdev = 100
Probe2UniformCont | 0-999 uniform distribution
Probe3UniformBin 0,1 uniform distribution with binary values

Class-feature and feature-feature correlation coefficients were computed from
samples drawn from a large dataset, for both the true features and the probes (fake
variables). Two methods were studied for computing correlations: Pearson’s
correlation coefficient and Kendall’s tau correlation coefficient. Two criteria were
studied for feature ranking selection: statistical significance with the t-test on mean
values for correlations and symmetrical uncertainty (SU) coefficients, and statistical
significance based on probes. Two algorithms, See5 for classification trees and
Nearest Neighbours (5NN) were used for comparison. It should be noted that these
two classification algorithms differ significantly in their treatment of predictive features
during model construction. The 5NN algorithm does not have the ability to rank
features or select relevant features, while the classification tree algorithm performs
an implicit ranking of features and also performs tree pruning to ensure that only
statistically significant information provided by the features is used in the final
classification tree.

5.3.2 Comparison of Pearson’s and Kendall’s correlation measures

For the comparison of Pearson’s and Kendall’s correlation coefficients, experiments
were conducted to compare the mean values of the class-feature correlations using
10 samples to compute each mean value. Correlation values for the top 10 variables
are shown in table 5.2. Table 5.2 shows the class-feature correlation values for the
three datasets: Forest cover type, KDD Cup 1999 and Abalone3C. For each dataset,
the top 10 features as ranked by Kendall’s tau are shown. It should be noted that the
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forest cover type dataset has 54 features, the KDD Cup 1999 dataset has 41

features, and the abalone3C dataset has eight features. Only the top 10 features for

the forest cover type and KDD Cup 1999 datasets are shown in table 5.2 for

purposes of concise presentation, and for illustration of the differences between the

Pearson’s rand Kendall's tau coefficients.

Table 5.2 Comparison of mean values for Kendall’s tau and Pearson’s r

Top 10 features as

Mean values for correlation coefficients for 10 test samples

Sample size = 1000

Sample size = 500

ranked by Kendall’'s Corresponding Corresponding
Dataset tau Kendall's tau | Pearson's r Kendall's tau | pearson's r
Forest WildernessArea4 0.86 0.22 0.81 0.22
covertype | SoilType12 0.70 0.14 0.72 0.16
SoilTypet 0.69 0.08 0.44 0.06
SoilType38 0.68 0.12 0.60 0.12
SoilType39 0.68 0.11 0.58 0.11
SoilType2 0.64 0.07 0.58 0.09
SoilType4 0.64 0.10 0.57 0.1
SoilType6 0.60 0.08 0.56 0.09
SoilType22 0.59 0.14 0.57 0.14
SoilType10 0.58 0.13 0.47 0.11
KDDCUP99 SerrorRate 0.92 0.51 0.87 0.45
NumCompromised 0.92 0.23 0.85 0.26
SrvSerrorRate 0.91 0.50 0.90 0.43
WrongFragment 0.90 0.21 0.81 0.18
DstHostSrvSerrorRate 0.85 0.50 0.83 0.43
DstHostSrvRerrorRate 0.85 0.34 0.76 0.27
SrvRerrorRate 0.85 0.35 0.80 0.28
Hot 0.84 0.11 0.78 0.14
DstHostSerrorRate 0.84 0.51 0.81 0.44
RerrorRate 0.82 0.34 0.76 0.27
Abalone 3C | piameter 0.50 0.41 0.50 0.41
(all features)
Shellweight 0.52 0.40 0.53 0.40
Height 0.51 0.37 0.52 0.39
WholeWeight 0.49 0.38 0.50 0.38
VisceraWeight 0.49 0.38 0.49 0.38
ShuckledWeight 0.45 0.34 0.45 0.34
Length 0.17 0.14 0.18 0.15
Gender (qualitative) 0.12 0.12 0.13 0.13

The mean correlation values shown in table 5.2 for sample sizes of 500 and 1000

indicate that for the forest cover type and KDD Cup 1999 datasets the class-feature

correlations as measured by Kendall’s tau are generally much larger than the class-

feature correlations measured using Pearson’s correlation coefficient. Secondly,
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even among the top 10 features out of 54 features for forest cover type, the two
features SoilType1 and SoilType2 have strong class-feature correlations based on
Kendall’s tau but have insignificant correlations based on Pearson’s r. A feature
ranking method based on Pearson’s r would eliminate the features SoilType1 and
SoilType2. Thirdly, for both forest cover type and KDD Cup 1999 the feature rankings
based on Kendall’'s tau are different from the rankings based on Pearson’s r.

The reader will recall from chapter 3 that the point was made that Wilcox (2001) has
cautioned against the interpretation of Pearson’s r for measuring correlations when
there is no guarantee that the correlation between two variables is linear, and when
outliers have not been given special treatment. A small Pearson’s correlation
coefficient between two variables does not necessarily mean that the two variables
are not strongly correlated. It could be the case that the correlation is not linear or the
correlation is masked by the presence of outliers in the data. On the other hand,
Kendall’s tau is a robust measure of correlation which will provide reliable correlation
values even when the correlation is not linear and even when outliers are present in
the data (Wilcox, 2001). For the Abalone3C dataset, the results of table 5.2 indicate
that the differences between the class-feature correlations measured with Kendall’s
tau and Pearson’s r are marginal and the feature rankings based on both correlation
measures are nearly the same. Based on Wilcox’s (2001) observations, it can be
deduced that Pearson’s ris a suitable correlation measure for the Abalone3C dataset
because there are no outliers in the data and the predictive features are linearly
correlated to the class variable. It can be deduced from table 5.2 that Pearson’s ris
not a suitable correlation measure for the forest cover type and KDD Cup 1999
datasets because the datasets either have outliers or the correlations between the

features and the class variables are non-linear.

Table 5.3 and tables D.1, D.4 and D.7 of appendix D respectively give the number of
features that would be selected for the forest cover type, KDD Cup 1999 and
Abalone 3C datasets based on the Students t-test of means. The test was conducted
to determine the features whose mean class-feature correlation coefficient is greater
than or equal to 0.1. The reader will recall from the discussion of chapter 3 that
Cohen (1998) has advised that a correlation value with a magnitude in the interval [0,
0.1) has no practical significance in any domain for data analysis and a correlation
value with a magnitude in the interval [0.1, 1.0] may have practical significance. For
the forest cover type dataset only 6 out of 54 features would be selected based on
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Pearson’s r. Based on the foregoing observations all subsequent experiments for
feature selection were based on Kendall’s tau as the correlation measure.

Table 5.3 Comparison of the number of selected features for Kendall’s tau and Pearson’s r

Number of features with a mean correor mean SU coefficient that is
Dataset Sample significant (corrs >= 0.1, significance level 0.01)
(no. of features) size
Kendall’s fau Pearson’s r
Forest cover type 500 35 6
(54) 1000 38 6
KDDCup99 500 36 26
(41) 1000 30 21
Abalone (3 class) 500 6 5
(8) 1000 7 5

5.3.3 Feature ranking based on a single sample

The problems and consequences of using a single small or large sample are
investigated and made explicit in this section. Ten small samples, 10 medium
samples, and 10 large samples were taken from the forest cover type dataset using
sequential random sampling (SRS). Table 5.4 shows the number of features selected
for each sample by the Gaussian probe and Z-test based on class-feature
correlations measured using Kendall’s tau. For the probes, the selection criterion is a
class-feature correlation coefficient greater than that of the Gaussian probe. The
number of features selected by the uniform probe and uniform-binary probe are given
in tables D.1, D.4 and D.7 of appendix D. Since only one correlation value is
available for each predictive feature for these experiments, the Z-test for a single
correlation value was used to test the hypothesis that the class-feature correlation
value is greater or equal to 0.1, that is, features that have a correlation value which is
of practical significance (Cohen, 1988). The Z-test for a single correlation
measurement was discussed in chapter 3. The first problem that can be deduced
from table 5.4 is that sample sizes of 100 result in very few features being selected.
The second problem is that the number of selected features varies from sample to
sample. Smyth (2001) has argued that if a single sample is used to measure
correlations between variables, then features may be lucky (or unlucky) in the sample
and get selected (or eliminated) based on the single correlation measurement.

It could be argued that as sample sizes get larger the variability in the measured
correlation coefficient will decrease. However, even for sample sizes of 1000 which is
large for statistical hypothesis testing, one can see from table 5.4 that the variability
in the number of features selected is still high. A second problem that arises when a
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single sample is used for feature selection is illustrated in table 5.5. Table 5.5 shows
the class-feature correlation values for four of the features in the KDD Cup 1999
dataset, as measured using Kendall’s tau with samples of size 1000. It can be
deduced from table 5.5 that a feature (e.g. NumFailedLogins) can have no
correlation, small correlation, medium correlation, or high correlation with the class
variable depending on the sample that is used, even when the sample size for
correlation measurements is large. Alternatives 1 and 2 as stated in section 5.2 were
discarded due to the three problems discussed above and no further studies of

correlation measurement with small sample sizes (size = 100) were conducted.

Table 5.4: Number of selected features based on single samples for forest cover type

Number of relevant features with a significant class-feature Kendall’s tau
correlation selected by the Gaussian probe and Z-test for forest cover type
size = 100 size = 500 size = 1000
Sample
|Dp Gaussian |cozr-rt?|3t>— Gaussian létﬁsft| Gaussian |cozr-rt?|8t>—
Cl - C C -
Probe 01 Probe oe 0.1 Probe 01
S1 35 22 46 31 46 35
S2 34 14 46 37 43 40
S3 30 13 46 34 43 35
S4 35 18 47 36 48 39
S5 39 16 46 34 49 41
S6 30 23 42 32 49 37
S7 34 15 42 32 48 38
S8 35 21 47 33 46 34
S9 34 16 46 34 48 37
S10 35 19 39 32 49 41

Table 5.5: Kendall’s correlations for four features for KDD Cup 1999

Sample ID COIT
Feature S1 S2 |S3 |[S4 (S5 |S6 |S7|S8 |S9 | S10 | Mean | Stdev
NumPFailedLogins | 0.33 | 0.58 0 0058 0.39 0033049 0.33 0.30 0.23
NumShells 0.21 ] 0.21 | 0.42 0034|032 0 0 0.2 ] 0.35 0.20 0.16
NumAccessFiles | 0.35 0 0]0.33]043]0.22 0 0 0044 0.18 0.20
SUAttempted 0] 0.21 0 0 0 0 0 0 0 0 0.02 0.07

5.3.4 Feature ranking based on many samples

The rationale behind using many samples is that the use of one sample will lead to
misleading conclusions as demonstrated above in section 5.3.3. Taking the mean
over the correlation values for many samples should provide a more reliable estimate
of the correlation values. Smyth (2001) has argued that a feature may be highly
correlated with the class for a given sample, simply because it is lucky in that
particular sample. In fact, the results of section 5.3.3 have illustrated this point
precisely. The use of many samples for correlation measurement also enables the
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validation of selected feature subsets using more robust (less prone to error)
statistical methods. For 4 datasets, 10 medium sized samples (size = 500) and 10
large samples (size=1000) were used to compute the Kendall's tau and the SU
coefficient for the class-feature associations. Two criteria were used for feature
selection. The first criterion was to select features based on the confidence interval of
the mean correlation value of the probe. If a feature has a confidence interval whose
lower and upper values are both greater than the lower and upper values of the
confidence interval for the probe then the feature is selected, otherwise it is rejected.
The second criterion was to use Student’s t-test on the mean value of Kendall's tau
or SU coefficient at the 0.01 significance level.

Table 5.6: Number of selected features based on 10 samples

Number of relevant features with mean corr; (Kendall’s tau) or
mean SU that is statistically significant. Number of samples = 10
Selection based on probes t-test for
Dataset Sample Prober Probe2 Probe3 (corre>=0.1 or
(no. of size Gauss, (uniform- b SU>=0.1
features) (Gaussian) cont) (uniform-bin) atthe 0.01 level)
Forest cover 500 47 47 44 35
(54) 1000 49 48 47 38
KDDCup99 500 36 36 36 34
(41) 1000 36 36 35 30
Abalone 500 8 8 8 6
(8) 1000 8 8 8 7
Mushroom(22) 500 21 15 14 2

Table 5.6 shows the results for the number of selected features based on two criteria.
The two uniform probes selected approximately the same number of features. The
Gaussian probe selected approximately the same number of features as the uniform
probes, except in the case of the mushroom dataset. The t-test is very strict as it
selects the smallest number of features. The details of the features selected by the
Gaussian probe for the forest cover type and KDD Cup 1999 are given in tables D.2
and D.5 of appendix D.

For the experiments of this section many samples were used to measure class-
feature correlations and to conduct validation for the selected features using probes
and the t-test for mean correlation values. The experimental results demonstrated
that for medium sized samples (size = 500) and large sized samples (size = 1000)
each validation method selects nearly the same number of features. However,
different validation methods select different numbers of features. The Gaussian
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probe is the least strict of all the methods as it generally selects more features. The t-
test is the most strict as it generally selects the smallest number of features.

Based on the results of table 5.6, alternatives 3 and 4 as stated in section 5.2
provided useful options for correlation measurement, feature ranking and validation.
For validation based on probes the variability in the number of selected features is
low for both medium size (500) and large size (1000) samples even though the
Gaussian probe does not work well for the mushroom dataset (all features are
qualitative). Performance of the feature subset search algorithms based on the
features selected in this section as inputs, are discussed in the next section.

5.4 Empirical study of feature subset search

Feature subset search is the process of searching for an optimal subset of features
based on specified criteria. A common criterion is to select that subset of features
(from a set of identified relevant features) that maximises relevance and minimises
redundancy in the selected subset. Feature subset search methods and examples of
the merit measures that are employed in heuristic search for feature subsets were
discussed in detail in chapter 3. The experiments reported in this section are for
feature subset selection using forward search. Forward search algorithms that
employ the correlation-based feature selection (CFS) merit measure (Hall, 1999) and
differential prioritisation (DP) measures (Ooi et al, 2007) were implemented and
tested using the features selected in the last section as inputs. Section 5.4.1 provides
a discussion and analysis of the implementation of feature relevance and redundancy
definitions by the CFS (Hall, 1999) and DP (Ooi et al, 2007) search procedures. The
weaknesses of the merit measures employed by the CFS and DP search procedures
are made explicit. A new algorithm for feature subset search is proposed in section
5.4.2 and the algorithm’s feature selection performance is compared to the CFS and
differential prioritisation methods.
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5.4.1 Implementation of feature relevance and redundancy
definitions

A good feature ranking method should be followed by a good search procedure. A
good feature subset search procedure should not have a search bias which forces it

to prefer an irrelevant feature to a relevant one.

When the search bias is based on precise and domain-specific definitions of weak,
medium, and strong feature correlations then the selected feature subset should be
the best for that application domain (Lutu & Engelbrecht, 2010). If fake variables are
included in the initial feature set, then they should only be used to indicate when the
search should stop. In other words, if the search procedure finds that the best feature
to select at a given point is a fake variable, then the search procedure should
terminate. Possible terminating criteria in the presence of fake variables (probes)
should then be: (1) stop when a pre-specified number of features have been selected
or (2) stop when a probe is encountered as the next best choice.

Definitions of feature relevance (Blum & Langley, 1997) and feature redundancy
(Koller & Sahami, 1996) were given in chapter 3. It was also stated in chapter 3 that
many implementations of feature selection implement the meanings of relevance and
redundancy using the level of class-feature and feature-feature correlations. For
feature selection implementations it is generally accepted that a relevant feature is
one which is highly correlated with the class variable and a redundant feature is one
that is highly correlated with other features (Ooi et al, 2007; Yu & Liu, 2004; Hall,
1999, 2000). Table 5.7 provides a summary of common interpretations of levels of
class-feature and feature-feature correlations for purposes of identifying relevant and
redundant features. One problem with heuristic procedures for feature subset search,
for example DP (Ooi et al, 2007) and CFS (Hall, 1999, 2000) is that the merit
measures they use do not have sufficient precision to distinguish between high
correlation as opposed to not-high correlation. 1t is demonstrated later in this section
that there are several situations where the CFS search procedure (Hall,1999, 2000)
and DP search procedure (Ooi et al,2007) prefer features with very low feature-
feature correlations at the cost of eliminating features with high class-feature

correlations.
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Table 5.7: Interpretation of levels of feature correlations for heuristic search

class-feature mean feature-feature Interpretation according to
Situation | correlation for correlation of selected | the literature

feature f features if fis added to

selected features

s not high not high fis irrelevant
s2 not high High fis redundant
s3 High not high fis relevant
s4 High High fis redundant

Experiments for feature subset selection were conducted on the forest cover type
and KDD Cup 1999 datasets since these are large datasets with large numbers of
features as commonly encountered in predictive data mining (Hand et al, 2001;
Hand, 1998). The purpose of the experiments was to establish the behaviour of the
CFS and differential prioritization algorithms for feature subset search. Table 5.8
shows a partial trace of the computations of the CFS search procedure for the
datasets. For one iteration of the CFS algorithm (column 5), the CFS algorithm
selects the best feature (column 2) based on the value of the CFS merit measure
(column 6). The CFS merit measure (discussed in chapter 3) is computed using the
mean values of the class-feature and feature-feature correlations for the candidate
feature subsets. For each iteration, columns 3 and 4 of table 5.8 show the value of
the class-feature correlation for the selected feature and total feature-feature
correlation for the subset of selected features.

For the situations depicted in table 5.7, when making a choice between a feature
whose situation is s7 and one whose situation is s3, CFS chooses the situation s17
feature. For the forest cover type features, at iteration number 26, it would be
preferable to choose one of SoilType13 or SoilType39 instead of the binary-valued
probe since each of these features has a high class-feature correlation and its
selection would result in a low level of feature-feature correlation for the selected
features. At iteration 39 it would be better to choose SoilType13 or SoilType39
instead of SoilType 25. Similarly, at iteration number 21 for the KDD Cup 1999
dataset, it should be preferable to choose one of DstHostSrvSerrorRate,
DstHostSrvRerrorRate or Count, instead of the Gaussian probe for the same reasons
as stated above. The search bias of the CFS search procedure forces it to choose
the Gaussian probe instead, since CFS does not have sufficient information to make
the distinctions that are made in table 5.7.
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Table 5.8: Trace of the CFS search procedure for the forest cover type and KDD Cup 1999

class- Total feature-
feature
feature .
correlation correlation . .
Dataset Selected feature F (corrg ) for Iteration | Merit
(Corrcf)
selected
for f
features
Probe3UniformBin 0.051 10.752 26 1.518
Forest cover Probe2UniformCont 0.044 10.752 27 1.509
type Probe1GaussCont 0.037 10.752 28 1.499
SoilType20 0.161 11.352 29 1.489
SoilType25 0.08 11.569 30 1.48
SoilType13 0.527 14.095 31 1.471
SoilTypel5 0.028 14.095 32 1.462
SoilType39 0.676 17.99 33 1.447
Probe1GaussCont 0.032 12.589 21 1.309
Probe2UniformCont 0.028 12.589 22 1.299
KDD Cup
1999 SUAttempted 0.021 12.589 23 1.289
Land 0.001 12.589 24 1.276
IsHostLogin 0 12.589 25 1.263
DstHostSrvSerrorRate 0.855 17.715 26 1.25
DstHostSrvRerrorRate 0.847 23.547 27 1.237
Count 0.631 28.713 28 1.22

Figures 5.1 and 5.2 respectively show the plots of the merit measures when the
forward search procedure was implemented with the CFS merit measure, and when
it was implemented with the differential prioritization (DP) measure. For the DP

measure figures 5.1 and 5.2 show the plots of merit values for & =0.5 (DP050

Merit), @ =0.75 (DP075 Merit) and a =0.95 (DP095 Merit). The plots show the
values of the merit measures for each iteration of the search procedure until all
features have been processed. A disturbing observation is that it is not obvious from
the plots when the search procedure should terminate. Hall (1999) has stated that in
the presence of feature interactions, CFS may fail to select the optimal subset of
features. The discussion of detailed executions of the CFS search procedure
provided earlier in this section demonstrated that the CFS merit measure can favour
noise over true features. For the differential prioritisation measure, the stopping
criterion is easier to determine, since Ooi et al (2007) have stated that one objective
of the search procedure which uses this measure is to identify a pre-specified
number of features. For the differential prioritisation measure it is difficult to justify the
choice of the avalue in relation to any precise definition of relevance and

redundancy unless domain-specific information is available.

114



&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Que#’ VYUNIBESITHI YA PRETORIA

Merit values for CFS & DP for all features for forest cover type plus 3 probes
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Figure 5.1: Merit values for the forest cover type dataset without pre-selection

Merit measures for CFS & DP for all features for KDDCup99 plus 3 probes
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Figure 5.2: Merit values for the KDD Cup 1999 dataset without feature pre-selection

The experimental results reported in this section have revealed two weaknesses of
the merit measures employed by the CFS and differential prioritisation search
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procedures. Firstly, the mathematical functions used as merit measures sometimes
select pure noise in preference to predictive features. Secondly, the stopping criteria
for the two search procedures can be difficult to establish for some datasets. This
was found to be the case for the forest cover type dataset and for the KDD Cup 1999
dataset. Based on the foregoing observations the author was led to hypothesise that
the use of more precise definitions for interpretation of correlation values should
eliminate the above problems that arise with the CFS and differential prioritisation

merit measures.

5.4.2 A reliable search procedure for feature subset search

One possible solution to the problems exhibited by the CFS and DP merit measures
is to use a feature selection criterion that precisely implements a given definition of
relevance and redundancy. The definition of feature relevance should be supplied by
domain experts in terms of what values of correlations are considered to be low,
medium and high. The idea of incorporating user supplied domain knowledge in
model construction is not new. Osei-Bryson (2004) has proposed the incorporation of
user-specified preferences and value functions in the post pruning of classification
trees. Yu and Liu (2004) have proposed the incorporation of user-specified threshold
values of class-feature correlations for feature relevance analysis and selection. The
method of differential prioritisation proposed by Ooi et al (2007) enables a user to
control the levels of feature relevance and redundancy for the selected feature
subset.

Formal definitions of feature relevance and redundancy were given in chapter 3. For
feature selection based on relevance and redundancy analysis, Yu and Liu (2004)
have defined four categories of features, namely (1) irrelevant, (2) weakly relevant
and redundant, (3) weakly relevant and non-redundant, and (4) strongly relevant. Yu
and Liu (2004) have argued that the optimal subset of features should consist of
features that fall in categories 3 and 4, that is, weakly relevant and non-redundant,
and strongly relevant. The four categories of features proposed by Yu and Liu (2004)
are based on Blum and Langley’s (1997) definition of feature relevance and Koller
and Sahami’s (1996) definition of redundancy as discussed in chapter 3.

A feasible refinement of the feature relevance and redundancy definitions of table 5.7
is shown in table 5.9 for purposes of heuristic feature subset search. The refinement
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is based on all possible combinations of the levels insignificant, low, medium and
high correlation for class-feature and feature-feature correlations. Columns 5 and 6
respectively show the interpretation of each combination and the source of motivation
for the interpretation. Column 2 shows the symbols used to label the distinct
interpretations of the correlation level combinations. The categorisation suggests that
unselected features fall into one of six categories at the time when the search
algorithm needs to make a decision as to which feature to select next for inclusion in
the set of already selected features. The six categories denoted by A,B,C,D,E and F
correspond to the interpretations strongly relevant (category A), relevant (category
B), weakly relevant (category C), weakly redundant (category D), redundant
(category E), and irrelevant (category F).

Yu and Liu (2004) have defined four categories of features for relevance and
redundancy analysis, as discussed earlier in this section. For the proposed
categorisation of table 5.8 two categories (weakly redundant and redundant) are
used to represent redundant features and two categories (relevant and strongly
relevant) are used to represent strongly relevant features. The motivation for using
six categories was to provide the heuristic search procedure with the ability to make
higher precision distinctions between features compared to the level of precision
provided by the CFS and DP measures.

As an example of the interpretation of the correlation levels insignificant, low, medium
and high shown in table 5.9, Cohen’s (1988) proposal for the interpretation of
correlation coefficients for behavioural sciences research could be used. The reader
will recall that according to Cohen’s (1988) definitions, a correlation coefficient in the
range [0,0.1) indicates a correlation with no practical significance (insignificant). A
correlation coefficient in the range [0.1, 0.3) indicates a low correlation. A correlation
coefficient in the range [0.3, 0.5) indicates a medium correlation, and a correlation
coefficient in the range [0.5, 1.0] indicates a strong (high) correlation. The
categorisation of table 5.9 can then be used as follows. When the input variables to
the search procedure are pre-selected, for example, using the t-test or a probe, then
(situation sp1, category F) will not arise during the search. If there is no pre-selection
of features, then the situation (situation sp1, category F) may arise. The merit
measure should then be replaced by clear logic which implements the interpretation
of class-feature and feature-feature correlations based on table 5.9 It should be
noted that the categories are dynamic, that is, the category of a given feature will
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change based on the currently selected features since the mean correlation with
already selected features (column 4 of table 5.9) is not a static quantity.

Table 5.9: Proposed definition of feature relevance and redundancy based on user specified
levels

Situation class- mean correlation | Proposed Source of
(new Category | feature with selected new motivation for
interpre- correlation | features: interpretation interpretation
tation) for f. S ) of category
corr
corr,(f) 7
sp1 F insignificant any level irrelevant
sp2 C Low insignificant weakly relevant (Blum &
sp3 C Low Low weakly relevant Ié_lﬁggley, 1997)
sp4 C Low Medium weakly relevant (Yu & Liu,2004)
sp5 F Low High irrelevant
sp6 B Medium insignificant relevant
sp7 B Medium Low relevant
sp8 D Medium Medium weakly redundant | (Koller &
Sahami, 1996)
sp9 E Medium High redundant and
(Yu & Liu,2004)
sp10 A High Insignificant strongly relevant (Blum &
Langley, 1997)
spi1 A High Low strongly relevant and
(Yu & Liu,2004)
sp12 D High Medium weakly redundant | (Koller &
Sahami,1996)
sp13 E High High redundant and
(Yu & Liu,2004)

A new search algorithm was designed to use the categorisation shown in table 5.9 to
conduct a search for the best subset of features. In general, a heuristic search
procedure creates a search tree whose nodes represent various states of the search
space (Luger & Stubblefield, 1993; Pearl, 1984). The heuristic search procedure will
expand that node which is most promising based on the value of a heuristic (merit)
measure. Typical implementations of heuristic search employ several lists to record
the current state of the search tree. The new algorithm, which is given in figure 5.3,
uses a list called FEATURES to hold all currently unselected features, a list called
CHILDREN to hold all the nodes for features that are candidates for selection, and a
list called SELECTED to hold all currently selected nodes. Initially, the SELECTED

list holds the feature with the highest corr,, value. When making a decision on the

next feature to include in the SELECTED list, the algorithm will prefer a strongly
relevant feature, if such a feature exists. If there are no strongly relevant features at
that point, the algorithm will prefer a relevant feature. If there are no strongly relevant
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or relevant features at that point, the algorithm will prefer a weakly relevant feature. If
there are no strongly relevant, relevant or weakly relevant features at that point, the
algorithm will prefer a weakly redundant feature. If there is no feature which falls in
one of the categories strongly relevant, relevant, weakly relevant or redundant, the
algorithm terminates. The motivation for allowing the algorithm to select weakly
redundant features is due to the fact that Guyon & Elisseeff (2003) have reported

experiments which demonstrate that feature interactions are not necessarily harmful.

Initialise
Step 1: Place all features and their correlations on the FEATURES list

Step 2: Create a node for the feature with the highest Cort,, and place the node on the SELECTED

list

Process:

Step 3: If the FEATURES list is not empty, create a node for each feature on FEATURES and place it
on the CHILDREN list. If the FEATURES list is empty, go to step 11.

Step 4: For each node on the CHILDREN list, establish the corr, and mean COrTy with already

selected features on SELECTED.

Step 5: Assign a category to each node on the CHILDREN list, based on table 5.9.

Step 6: Delete from the CHILDREN list any node which belongs to the E and F categories. This leaves
the categories strongly relevant (A), relevant (B), weakly relevant (C) and weakly redundant (D).

Step 7: If the CHILDREN list has only one feature in category A (strongly relevant), put it on
SELECTED and delete it from the FEATURES list and go to step 3.

If there is more than one feature in category A, then call function GetBestInCat to select the best one.
Go to step 3. Otherwise go to step 8.

Step 8: If the CHILDREN list has only one feature in category B (relevant), putit on SELECTED and
delete it from the FEATURES list and go to step 3.

If there is more than one feature in category B, then call function GetBestinCat to select the best one
and go to step 3. Otherwise go to step 9.

Step 9: If the CHILDREN list has only one feature in category C (weakly relevant), put it on SELECTED
and delete it from the FEATURES list and go to step 3.

If there is more than one feature in category C, then call function GetBestinCat to select the best one.
Go to step 3. Otherwise go to step 10.

Step 10: If the CHILDREN list has only one feature in category D (weakly redundant), put it on
SELECTED and delete it from the FEATURES list and go to step 3.

If there is more than one feature in category D, then call function GetBestinCat to select the best one
and go to step 3. Otherwise go to step 11.
Step 11: Terminate the search procedure and return the nodes on SELECTED as the selected features.

Figure 5.3: Decision rule-based algorithm based on definitions of relevance and redundancy
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At the time of selecting a feature for inclusion in the SELECTED list, if more than one
feature fall in the preferred category, the algorithm uses the decision rules shown in

table 5.10 to choose between two features, f, and f,. The rules of table 5.10 are
implemented in the function Better_than(f1,f2) which returns true if f, is better than

/> (i.e. the decision should be to choose f;). Figure 5.4 shows the algorithm for the

function GetBestInCat(CT) for searching for the best feature of the CT category. This
function utilises the function Better_than(f1,f2).

1. first = index of first node in category CT
2. best = CHILDREN([first]
3. count = number of nodes on the CHILDREN list
4. For (i=first+1; i < count, i++)
feature = CHILDREN(I]
if (feature belongs to category CT) and Better_than(feature, best)
best = feature
end-for
4. Return best

Figure 5.4: The algorithm GetBestinCat(CT) to select the best features in one category

Table 5.10: Decision rules for choosing between two features of the same category

mean feature-feature
Class-feature correlation | correlation Decision Reason
with selected features

prefer feature with higher

COrr, (f,)> COrr, (fy) COTTy (fH=< corry (f3) | choose fl class-feature & lower
feature-feature correlation

prefer feature with lower
CoTTy (f)> COrTy (2) | choose fz feature-feature correlation

corr (fl) <corr (fz) chose prefer feature with higher
COFr, (f) < Corry (f) ! 7 /2 class-feature correlation

corry (f,)Zcorry (f,) | choose f,

corly (fl) —corty (fz) corry (fl) < corry (fz) choose fl prefer feature with lower

feature-feat lati
corr, (f)=corr,(f,) | corry (f))>corry(f,) | choose f, eature-feature correlation

_ _ break tie identical levels of relevance
COrT (fl) = COITy (fZ) COTTYy (fl) = COTTy (f2) randomly & redundancy

The results for the feature subset search for the KDD Cup 1999 and forest cover type
datasets are respectively listed in tables 5.11 and 5.12. The tables show the search
results when the input list consists of all features, including probes. The summary
results for the four datasets used in the experiments are given in table 5.13. The
results of tables 5.11 and 5.12 show that the search algorithm does not select any
probes.
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Table 5.11: Qutput of the decision rule-based search algorithm without feature pre-selection

for KDD Cup 1999

mean Number
f el

Feature Category Selection Reason | “°"r (f) corTy () ?eaetl?rgs ‘

SerrorRate 0.916 0 1
DstHostRerrorRate A Strongly relevant 0.805 0.272 2
NumRoot A Strongly relevant 0.677 0.281 3
WrongFragment A Strongly relevant 0.901 0.281 4
Flag B Relevant 0.428 0 5
NumPFailedLogins B Relevant 0.303 0 6
DstHostSerrorRate A Strongly relevant 0.835 0.278 7
DstHostSrvCount B Relevant 0.313 0.227 8
SrvCount B Relevant 0.423 0.268 9
DstHostCount B Relevant 0.368 0.258 10
Hot A Strongly relevant 0.845 0.289 11
Service C Weakly relevant 0.236 0 12
NumAccessFiles C Weakly relevant 0.177 0 13
NumCompromised A Strongly relevant 0.915 0.298 14
Counted A Strongly relevant 0.631 0.281 15
ProtocolType C Weakly relevant 0.151 0 16
SrvDiffHostRate B Relevant 0.455 0.286 17
SrcBytes B Relevant 0.49 0.297 18
RootShell C Weakly relevant 0.108 0 19
NumsShells C Weakly relevant 0.204 0.098 20
NumFileCreations C Weakly relevant 0.297 0.139 21
DstHostSrvRerrorRate A Strongly relevant 0.847 0.295 22
DstHostSameSrcPortRate C Weakly relevant 0.284 0.262 23
DstHostDiffSrvRate C Weakly relevant 0.144 0.268 24
DstHostSameSrvRate C Weakly relevant 0.224 0.296 25
Duration C Weakly relevant 0.254 0.361 26
DstBytes D Weakly redundant 0.584 0.332 27
DstHostSrvDiffHostRate D Weakly redundant 0.439 0.352 28
DstHostSrvSerrorRate D Weakly redundant 0.855 0.42 29
DiffSrvRate D Weakly redundant 0.727 0.444 30
SrvRerrorRate D Weakly redundant 0.845 0.456 31
RerrorRate D Weakly redundant 0.822 0.482 32

Secondly, the algorithm never selects irrelevant or redundant features as defined in

table 5.9. Thirdly, for forest cover type the algorithm selects nearly the same number

of features when pre-selection is done using probes as shown in table 5.13. Table

5.13 provides a summary of the number of features selected by the decision rule-

based algorithm for different input feature sets that were generated in the

experiments of the last section. The results for the features selected by the validation

and ranking methods were given in table 5.6. The results of table 5.13 show that the

t-test is far more restrictive compared to the pre-selection of features using probes. A

comparison of tables 5.6 and 5.13 shows that the decision rule-based search

algorithm selects nearly all the features that are pre-selected by the t-test.
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Table 5.12: Output of the decision rule-based search algorithm without feature pre-selection
for forest cover type

mean Selected

Feature Category Selection Reason COTly () Corry (f) I:%?Jtztre

WildernessArea4 0.855 0 1
SoilType2 A Strongly relevant 0.642 0.243 2
SoilType40 A Strongly relevant 0.547 0.146 3
SoilType38 A Strongly relevant 0.676 0.162 4
SoilType4 A Strongly relevant 0.638 0.164 5
SoilType1 A Strongly relevant 0.686 0.178 6
SoilType3 A Strongly relevant 0.548 0.185 7
SoilType6 A Strongly relevant 0.603 0.192 8
SoilType13 A Strongly relevant 0.527 0.199 9
SoilType39 A Strongly relevant 0.676 0.283 10
SoilType21 B Relevant 0.322 0 11
SoilType35 B Relevant 0.443 0.02 12
SoilType12 A Strongly relevant 0.704 0.286 13
SoilType34 B Relevant 0.4 0.021 14
SoilType19 B Relevant 0.351 0.02 15
SoilType22 A Strongly relevant 0.593 0.287 16
SoilType18 B Relevant 0.44 0.04 17
SoilType26 B Relevant 0.431 0.038 18
SoilTypel7 B Relevant 0.433 0.066 19
SoilType10 A Strongly relevant 0.579 0.295 20
SoilTypeb B Relevant 0.36 0.066 21
SoilType16 B Relevant 0.329 0.084 22
SoilTypeit B Relevant 0.476 0.162 23
WildernessArea2 B Relevant 0.391 0.221 24
SoilType30 B Relevant 0.34 0.266 25
SoilType14 C Weakly relevant 0.231 0 26
SoilType8 C Weakly relevant 0.176 0 27
SoilType37 C Weakly relevant 0.126 0 28
SoilType9 C Weakly relevant 0.283 0.018 29
SoilType28 C Weakly relevant 0.215 0.018 30
SoilType27 C Weakly relevant 0.147 0.017 31
SoilType23 B Relevant 0.399 0.293 32
SoilType20 C Weakly relevant 0.161 0.052 33
SoilType24 C Weakly relevant 0.259 0.203 34
SoilType31 C Weakly relevant 0.223 0.25 35
HorizDistToFire C Weakly relevant 0.156 0.263 36
HorizDistToRoad C Weakly relevant 0.158 0.266 37
Slope C Weakly relevant 0.124 0.283 38
SoilType33 C Weakly relevant 0.183 0.323 39
SoilType32 C Weakly relevant 0.207 0.349 40
Elevation C Weakly relevant 0.277 0.377 41
SoilType29 C Weakly relevant 0.295 0.465 42

The point was made in the last section that the t-test is more strict than the probes at
eliminating irrelevant features. When there is no pre-selection of features for the input
to the decision rule-based search algorithm, or when the input consists of features
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pre-selected using the Gaussian probe, the decision rule-based search algorithm
eliminates a larger number of the input features compared to when the input features
are pre-selected by the t-test. A tentative conclusion that can be made from this
observation is that the probes admit some features that are possibly irrelevant. A
more detailed discussion of this issue is given later in this chapter.

Table 5.13: Features selected by the decision rule-based algorithm for sample sizes of 1000

Dataset Number of features selected by the decision rule algorithm when the input is
(number of features) pre-selected using:

no pre-selection | Gaussian Uniform Uniform- t-test

probe probe bin probe (sig =0.01)

Forest cover type (54) 42 41 41 41 36
KDD Cup 1999 (41) 32 34 34 34 30
Abalone  (8) 3 3 3 3 2
Mushroom (22) 14 14 14 14 -

5.5 Predictive performance for features selected with
different methods

Classifiers were constructed to compare the predictive performance of the features
selected by the different methods of feature selection. The 5NN and See5
classification tree algorithms were used for classification. In this section the results
and analysis of the predictive performance of the classifiers are reported. Section
5.5.1
performance of the forest cover type and KDD Cup 1999 classifiers are respectively

provides a description of the experimental procedures. The Predictive

given in sections 5.5.2 and 5.5.3. Predictive performance results for the small dataset
classifiers (abalobe3C and mushroom) are presented in section 5.5.4.

5.5.1 Experimental procedure for classifier creation and testing

The point was made in section 5.2 that the objective of feature selection should not
be to identify the best features for the training sample that has been chosen (or
happens to be available) but rather to identify the best features for model creation for
any sample taken from the instance space for the prediction task. This observation
was based on Hand’s (1998) advice quoted at the beginning of this chapter. Based
on the foregoing observation, training samples much larger than the samples used
for feature selection were used for the experiments. Classification models were
created for purposes of testing the predictive performance of the feature subsets
selected by the feature selection methods presented in sections 5.3 and 5.4. Two
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classification algorithms 5NN and Seeb5, were used in the experiments. For each
dataset the same training set (samples) and same test set (samples) were used for
5NN and See5 classification. Predictive accuracy (on instances not seen during
training) was established on 10 test sets for each classifier.

In section 5.3 feature ranking was reported for four datasets, two sizes of samples
(500 and 1000) for measuring correlations and four validation methods (three probes
and t-test). In section 5.4 feature subset search was reported for the decision rule-
based algorithm for four datasets, five types of input features (no pre-selection, three
probes and t-test) selected using sample sizes of 1000 to measure correlations. To
conduct experiments to test all the feature ranking methods on two algorithms would
require 4 x 2 x 4 x 2 = 64 classifiers to be created. To generate test results for 10 test
sets (samples) for each classifier would result in 640 test runs. To conduct
experiments to test feature subsets selected with the decision rule-based algorithm
would require 5 x 4 x 2 = 40 classifiers. The generation of test results for 10 test sets
(samples) for each classifier would result in 400 test runs. Additionally, four
classifiers must be created with all the features (no selection) and tested on 10 test
sets for comparison with the classifiers created with selected feature subsets, which
results in an additional 40 test runs. The total number of test runs would then be 640
+ 400 + 40 = 1080. If two types of class distributions are used, as was done for the
experiments, this number would double to 2160.

To avoid the factorial explosion in the number of test runs as described above,
researchers are advised to sample from the space of all possible factor combinations
(Cohen, 1995:pg 88). The decision made for the experiments was as follows: Only
feature subsets selected using correlations measured with samples of size 1000
were used. For feature ranking methods feature subsets selected by one probe were
used (Gaussian probe for forest cover type, KDD Cup 1999 and abalone3C, and
uniform probe for mushroom). These were compared to classifiers constructed with
all the features. Classifiers were also constructed for feature subsets selected by the
decision rule-based method with one type of input (no pre-selection of features). For
the forest cover type dataset (the largest dataset) two sample sizes of 6000 and
12000 instances were used. For the other three (smaller datasets), one sample size
was used. Additionally, for the large datasets classifiers were created for two types of
class distributions to illustrate the difficulty of establishing the true positive rates
(TPRATE) for individual classes when the parent dataset class distribution is used in
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the presence of minority classes. This resulted in the number of test runs being
reduced to 400.

5.5.2 Classification results for forest cover type

Classifiers were constructed to compare the predictive performance obtained when
the feature sets selected by the different methods as discussed in section 5.5.1 are
used. Tables 5.14 shows the classification results for the forest cover type dataset
samples on two class distributions. Column 4 gives the classification results for tests
based on the class distribution of the parent dataset. 10-fold cross validation was
used to measure the predictive accuracy. Column 5 shows the classification results
for tests based on an equal class distribution. Ten test samples were used to
measure the predictive accuracy. The results are shown for two sample sizes (6000
and 12000). For each sample size the predictive accuracy on all the classes is shown
for all features (54), features selected by the Gaussian probe (49), and features
selected by the decision rule based search algorithm (42).

Table 5.14: Predictive accuracy for forest cover type based on two class distributions

Mean predictive accuracy and
Feature selection 95% CI of mean
Algorithm method 10-fold cross 10 test sets
(number of features) Sample validation equal class
size parent dataset distribution
distribution
All features 6000 71.2+1.1 75.1+14
(54) 12000 76.2 +0.8 80.1+1.0
SNN Gaussian probe 6000 71.5+1.1 751 1.1
(nearest (49) 12000 76.1 £0.8 79.4 £0.8
neighbours) Decision rule search 6000 685+1.4 71.6+£1.2
(42) 12000 704 +£11 74.4 £0.9
All features 6000 74.8 +1.2 73.6 £0.9
Seeb (54) 12000 74.5+0.8 76.6 £0.9
(classification | Gaussian probe 6000 73.8+1.2 73.6+0.9
tree) (49) 12000 75.4 £1.1 76.5+0.9
Decision rule search 6000 72.8 £0.8 72.3+0.7
(42) 12000 74.5+£0.6 76.9+ 1.0

Table 5.15 gives the results of the statistical tests to compare the predictive
performance of the classifiers based on the parent dataset class distribution. The
paired samples t-test is not applicable in this case since there are no paired tests, so
the independent samples t-test was used to compare the performance of two
classifiers. The independent samples t-test revealed that the predictive performance
of the 5NN classifiers constructed with all 54 features and those constructed with 49
features as selected by the Gaussian probe do not statistically differ in predictive
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accuracy, for all sample sizes. However, the classifiers constructed with 42 features
(as selected by the decision rule-based search) have a predictive performance that is
significantly lower than that when all 54 features are used. For the classifiers
constructed using the Seeb classification tree algorithm, there is no statistically
significant difference between using all features (54) and features selected by the
Gaussian probe (49). There was also no significant difference between using all
features (54) and features selected by the decision rule search algorithm (42).

Table 5.15: Statistical tests to compare the accuracy of forest cover type classifiers for
different feature subsets for parent dataset class distribution

Groups for independent
samples t-test, sample size, Student’s independent samples t-test (9df)
Algorithm number of features (equal variances not assumed)
Group A Group B 95% Cl of mean | p-value Group A better
(mean & Cl) (mean & CI) difference (2 tails) than Group B?
6000; 54 6000; 42
(71.2+1.1) (68.5 +1.4) [1.8, 3.8] 0.000 yes
5NN 12000; 54 12000; 42
(nearest (76.2+0.8) (70.4 £1.1) [5.2, 6.4] 0.000 yes
neighbour)
6000; 54 6000; 49
(71.2+1.1) (71.5+1.1) [-1.0, 0.5] 0.468 no
12000; 54 12000; 49
(76.2+0.8) (76.1 £0.8) [-0.4, 0.6] 0.640 no
6000; 54 6000; 42
(74.8 £1.3) (72.8 £0.8) [0.3, 3.6] 0.019 yes
See5
(classification | 12000; 54 12000; 42
tree) (74.5 £ 0.8) (74.5 £0.6) [-1.0,1.0] 0.952 no
6000; 54 6000; 49
(74.7 £1.2) (73.8+1.2) [-0.9, 2.8] 0.283 no
12000; 54 12000; 49
(74.5 £ 0.8) (754 £ 11) | [-2.4,0.5] 0.176 no

Table 5.16 shows the results for the Student’s paired samples t-test for the predictive
accuracy on the 10 test sets. Columns 2 and 3 respectively provide the description of
the classifiers that were compared. A specification of the training set size for the
classifier, the size of the feature set that was used for the classifier and the mean
predictive accuracy of the classifier on 10 test samples are given. Column 4 gives the
95% confidence interval of the mean difference for the predictive accuracy of the two
classifiers specified in columns 2 and 3. Columns 5 and 6 respectively give the p-
value for the paired samples t-test and the interpretation of the p-value based on the
reasoning given in table 4.11 of chapter 4.
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For the 5NN classifiers created with training sample sizes of 6000 and 12000
instances, the 54-feature classifiers provided a higher level of predictive accuracy
compared to the 42-feature classifiers. The 49-feature classifiers provided a higher
level of predictive accuracy than the 42-feature classifiers. These results indicate that
the decision rule-based algorithm based on Cohen’s (1998) thresholds for
insignificant, low, medium and high correlations eliminates some features which have
predictive power for the 5NN algorithm. For the 5NN classifiers created with training
samples of 6000 and 12000 instances there is no statistically significant difference in
predictive accuracy between the 54-feature classifiers and the 49-feature classifiers.
These results indicate that the Gaussian probe eliminates only features with no
predictive power for SNN.

For the See5 classifiers created with training sample sizes of 6000 instances, the 54-
feature classifiers provided a higher level of predictive accuracy than the 42-feature
classifiers. The 49-feature classifiers also provide a higher level of predictive
accuracy that the 42-feature classifiers. For classifiers created with training sample
sizes of 12000 instances there was no statistically significant difference in predictive
accuracy between the 54-feature and 42-feature classifiers, and between the 54-
featute and 42-feature classifiers. These results indicate that for the See5 classifiers
the 42 features selected by the decision rule-based algorithm based on Cohen’s
(1998) guidelines are sufficient for prediction with very large samples (e.g. 12000

instances).

A detailed analysis of the 5NN and See5 classifiers was conducted for the classifiers
of sample size 12000 in order to establish the TPRATE values for the individual
classes. The analysis results are given in table 5.17. The analysis was done to
compare the predictive performance of the 49 features selected by the Gaussian
probe and the 42 features selected by the decision rule-based search algorithm. The
results of the Student’s paired samples t-test for the 5NN classifiers indicate that for
three of the classes (1, 2, 7) there is no statistically significant difference between
using 49 features and 42 features for 5NN classification. However, for four of the
classes (3, 4, 5, 6) there is a statistically significant increase in the TPRATE values
when 49 features are used. The results of the Student’s paired samples t-test for the
Seeb classifiers indicate that there is no statistically significant difference between
using 49 features and 42 features for five of the classes (2, 3, 4, 5, 6). The TPRATE
for the 49-feature classifier is statistically significantly higher than that for the 42-
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significantly much higher than that for the 49-feature classifier for class 7.

Table 5.16: Statistical tests to compare the accuracy of forest cover type classifiers for
different feature subsets for equal class distribution

Groups for paired tests Student’s paired t-test
sample size; (9df)
Algorithm number of features
Group A Group B 95% Cl of mean | p value Group A better
(mean & Cl) (mean & Cl) difference (2 tails) than Group B?
6000; 49 6000; 42
(75.1 £1.1) (71.6 £1.2) [1.7,5.2] 0.002 yes
12000; 49 12000; 42
5NN (79.4 £ 0.8) (74.4 £0.9) [3.6, 6.3] 0.000 yes
(nearest
neighbours) 6000; 54 6000; 42
(75.1£1.4) (711.6+£1.2) [1.9,5.0] 0.000 yes
12000; 54 12000; 42
(80.1 £1.0) (74.4 £0.9) [4.2,7.2] 0.000 yes
6000; 54 6000; 49
(75.1£1.4) (75.1 £1.1) [-1.5,1.4] 0.451 no
12000; 54 12000; 49
(80.1 £1.0) (79.4 £0.8) [-0.6, 1.8] 0.290 no
6000; 49 6000; 42
(73.6 £ 0.9) (72.3 £0.7) [0.3, 2.3] 0.014 yes
Seeb5
(classification | 12000; 49 12000; 42
tree) (76.5 £ 0.9) (76.9 £ 1.0) [-1.3,0.5] 0.324 no
6000; 54 6000; 42
(73.6 £0.9) (72.3£0.7) [0.3,2.3] 0.014 yes
12000; 54 12000; 42
(76.6 £ 0.9) (76.9 £1.0) [-1.2,0.6] 0.490 no
6000; 54 6000; 49 no
(73.6 £0.9) (73.6 £0.9) no variance variance no
12000; 54 12000; 49
(76.6 £ 0.9) (76.5 £ 0.9) [-0.01, 0.3] 0.495 no

When samples are randomly selected from a large dataset and the class-feature
correlations are measured, the correlation values obtained reflect the predictive
power of the features over the whole instance space. This is called global predictive
power in this thesis. If a large dataset was clustered and samples taken from each
cluster to measure the class-feature correlations, then the correlation values obtained
would reflect the predictive power of the features for a given cluster. Features that
have significant class-feature correlations only for a cluster and not for the whole
instance space are said to be locally predictive within that cluster. This is called /ocal
predictive power in this thesis.
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Table 5.17: Statistical tests to compare TPRATE performance of forest cover type classifiers
for different feature subsets for training sample size 12000

Groups for paired tests Student’s paired t-test
sample size; (9df)
Algorithm number of features
95% Cl of mean | p value Group A better
Group A Group B difference (2 tailed) than Group B?
(12000;49) (12000;42)
All classes-A All classes-B
(79.4 £ 0.8) (74.4 £0.9) [3.6, 6.3] 0.000 yes
Class 1-A Class 1-B
(60.6 +3.0) (60.4 +4.0) [-6.3, 6.7] 0.473 no
Class 2-A Class 2-B
5NN (46.2 +3.1) (47.8+4.4) [-4.4,1.2] 0.224 no
(nearest
neighbours) Class 3-A Class 3-B
(67.2 £4.0) (54.4 £2.1) [7.7,17.9] 0.000 yes
Class 4-A Class 4-B
(97.4 £0.4) (90.4 £ 3.0) [3.3, 10.7] 0.002 yes
Class 5-A Class 5-B
(97.6 £0.8) (93.8 £0.9) [2.5,5.1] 0.000 yes
Class 6-A Class 6-B
82.0+2.9) (72.2+£2.9) [5.1, 14.5] 0.000 yes
Class 7-A Class 7-B
(94.8 £ 1.0) (92.4 +4.1) [-2.0, 6.8] 0.250 no
All classes-A All classes-B
(76.5 £0.9) (76.9 £ 1.0) [-1.3,0.5] 0.324 no
Class 1-A Class 1-B
(61.4 £4.1) (57.4+£3.4) [1.3,6.7] 0.008 yes
Class 2-A Class 2-B
(61.2 £3.0) (63.8 +3.0) [-5.2,0.2] 0.050 no
Seeb5
(classification | Class 3-A Class 3-B
tree) (64.8 £3.4) (60.8 +3.3) [-0.4, 8.4] 0.034 yes
Class 4-A Class 4-B
(96.6 £1.0) (96.8 +1.0) [-2.2,1.8] 0.414 no
Class 5-A Class 5-B
(84.0 £1.7) (86.2+24) [-5.2, 0.8] 0.128 no
Class 6-A Class 6-B
(79.8 £2.5) (77.8 £3.3) [-0.1, 2.1] 0.062 yes
Class 7-A Class 7-B
(87.6 +£3.4) (95.6 £1.6) [-11.2, -4.8] 0.000 no

The observations for the test results of tables 5.16 and 5.17 led the author to
hypothesise as follows: If a large dataset has features that only have local predictive
power, such features will have small class-feature correlations and will therefore

appear to be non-relevant when one of the validation methods (Student’s t-test of
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means) and decision rule-based search algorithm studied in this chapter are used.
This hypothesis was not tested in this thesis, and is left for future work.

5.5.3 Classification results for KDD Cup 1999

5NN and See5 classification models were also constructed for the KDD Cup 1999
dataset. The challenge for the KDD Cup 1999 dataset is to achieve a high level of
accuracy on the attack classes R2L and U2R on the test dataset. The KDD Cup 1999
test dataset was presented in chapter 4. Classification performance results for this
dataset are most commonly presented in terms of the TPRATE values for the classes
(Lee et al, 2002; Lee & Stolfo, 2000). The predictive performance results are
therefore presented here in terms of the accuracy on all classes as well as the
TPRATE values for each of the 5 classes. Table 5.18 shows the predictive
performance of the classifiers. The performance results are shown for 10-fold cross
validation on the training set, and for 10 test samples drawn from the test dataset.

For 10-fold cross validation, a training sample of 4500 instances was used. For the
minority class, U2R, all 52 instances of that class were included in the sample. For
the remaining four classes, sequential random sampling was used. For the classifiers
based on an equal distribution of the classes, a training sample of 4500 instances
was created with 1000 instances from each of the four classes NORMAL, DOS,
PROBE and R2L, and 500 instances for the class U2R. The 500 instances of the
class U2R were obtained using bootstrap sampling of the 52 instances that appear in
the training dataset. The aim was to try as much as possible to achieve an equal
distribution, but a decision was made not to bootstrap the U2R class beyond ten
times the actual size. The test samples were created by taking all 70 instances of the
class U2R in the test dataset and using sequential random sampling to obtain 70
instances for each of the remaining classes.

From table 5.6 it can be deduced that the 3 probes select nearly the same numbers
of features for the KDD Cup 1999 dataset. The results of table 5.13 show that all
input feature subsets result in nearly the same number of features being selected,
with the decision rule-based search algorithm selecting the smallest number of
features. Classifiers were constructed with all the 41 features (all features) and with
the 32 features selected by the decision rule based search algorithm. Classifiers
were not constructed with the 36 features selected by the Gaussian probe as initial
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exploratory studies (Cohen, 1995) revealed that the predictive performance of 41
features is not significantly different from that of the 32 features.

Table 5.18: Predictive performance of KDD Cup 1999

Natural distribution Equal class
Feature selection mean TPRATE% distribution
Algorithm method Class for 10-fold cross mean TPRATE%
(training (number of features) validation for 10 test sets
sample size)
All features All classes
(41) (accuracy) 97.0+£0.5 73.5+£0.9
NORMAL 98.4 85.6 +3.2
DOS 97.5 67.3+5.0
5NN PROBE 60.0 959+1.2
(nearest R2L 61.9 73.1+2.2
neighbours) U2R 65.2 45.7 +0.0
(size = 4500) Decision rule All classes
(32) (accuracy) 96.4 £ 0.5 69.9 £1.3
NORMAL 98.2 84.7 +3.2
DOS 97.0 67.1+4.8
PROBE 94.7 95.9+1.2
R2L 72.3 70.3 +3.3
U2R 38.0 31.4+0.0
no selection All classes
(41) (accuracy) 98.6 £ 0.5 66.3+1.2
NORMAL 99.6 97.3+1.1
See5 DOS 99.5 74.3+6.2
(classification PROBE 98.2 86.2+22
tree) R2L 76.5 25.4+23
(size = 4500) U2R 71.2 48.6 +0.0
Decision rule All classes
(32) (accuracy) 97.5+£0.5 66.3+1.2
NORMAL 99.3 97.3+1.1
DOS 96.3 74.3 £6.2
PROBE 98.4 86.2 +2.2
R2L 68.4 25.4+2.3
U2R 65.4 48.6 £ 0.0

From the 10-fold cross validation results of table 5.18 it can be deduced that
predictive accuracy does not differ significantly for the 41-feature and 32-feature 5NN
classifiers. The 5NN classifier TPRATE values for the classes NORMAL and DOS do
not differ significantly. There are significant differences in the 5NN classifier TPRATE
values for the classes PROBE, R2L and U2R. The 10-fold cross validation results for
the Seeb5 classifiers indicate that the TPRATE values for the majority classes
(NORMAL, DOS, PROBE) are nearly identical. The See5 TPRATE values for the 41-
feature classifiers are significantly higher than those for the 32-feature classifier for
the minority classes (R2L, U2R). Overall, it is difficult to establish differences in
performance when the parent dataset class distribution of the KDD Cup 1999 dataset
is used.
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A training dataset of size 4500 randomly selected instances was created to with a

class distribution that is very close to an equal class distribution. An equal class

distribution is one where instances from all the classes appear in equal proportions in

a dataset. One thousand instances were selected for each of the classes, NORMAL,
DOS, PROBE and R2L. The 52 instances for the minority class (U2R) were
bootstrapped to 500 instances. Test samples of 350 instances with an equal class

distribution were created.

Table 5.19: Statistical tests to compare the performance of KDD Cup 1999 classifiers for
different feature subsets

Groups for the paired tests
training sample size;

Student’s paired t-test

(9df)

Algorithm number of features
(training size) 95% Cl of mean | p value Group A better
Group A Group B difference (2 tailed) than Group B?
(4500;41) (4500;32)
All classes-A All classes-B
(73.5£0.9) (69.9 £1.3) [3.1, 4.1] 0.000 yes
NORMAL-A NORMAL-B
5NN (85.6 £3.2) (84.7 £3.2) [0.1,1.6] 0.026 yes
(nearest
neighbour) DOS-A DOS-B
(67.3 £5.0) (67.1+£4.8) [-0.4,0.8] 0.492 no
(size=4500)
PROBE-A PROBE-B
(95.9+1.2) (95.9+1.2) [-0.01, 0.03] 0.342 no
R2L-A R2L-B
(73.1£2.2) (70.3£3.3) [0.5, 5.1] 0.020 yes
U2R-A U2R-B
(45.7 £0.0) (31.4+£0.0) no variance no variance | no variance
All classes-A All classes-B
(66.3+£1.2) (66.3£1.2) no variance no variance | no
See5
(classification NORMAL-A NORMAL-B
tree) (97.3 1.1 (97.3+1.1) no variance no variance | no
(size=4500) DOS-A DOS-B
(74.3+6.2 (74.3+6.2) no variance no variance | no
PROBE-A PROBE-B
(86.2+£2.2 (86.2 £2.2) no variance no variance | no
R2L-A R2L-B
(25.4 £2.3) (25.4+2.3) no variance no variance | no
U2R-A U2R-B
(48.6 £0.0) (48.6 £0.0) no variance no variance | no

5NN and See5 classifiers were constructed from the training dataset of 4500

instances and tested on 10 test sets. Table 5.18 provides a summary of the

classification results for the 41-feature and 32-feature classifiers. Table 5.19 shows
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the results of the Student’s paired samples t-test to compare the 41-feature and 32-
feature classifiers. The results indicate that there is no statistically significant
difference in the TPRATE values for both the 5NN and Seeb5 classifiers the DOS and
PROBE classes. The TPRATE values for the NORMAL and R2L classes are
marginally higher for the 41 feature classifiers compared to the 32 features classifier.
The 5NN classifier TPRATE for the U2R class is 14.3% higher for the 41-feature
classifier compared to the 32-feature classifier. However, due to lack of variance, the
paired t-test could not be applied. The See5 classifier TPRATE values for all classes
for the 41-feature and 32-feature classifiers are equal. Again, due to the absence of
variance, the paired samples t-test is not applicable.

The foregoing discussion led the author to hypothesise as follows: It is possible that
features that are predictive of minority and severely under-represented classes will
be eliminated when class-feature correlations are measured for all classes using
instances randomly selected to represent the whole instance space. Such features
are eliminated because the class-feature correlations cannot be reliably estimated.
This is the case for the U2R class. This hypothesis was not tested for this thesis and
is left for future work.

5.5.4 Classification results for the small datasets

Classifiers were constructed for the abalone3C and mushroom datasets to compare
the predictive performance obtained when there is no feature selection and when the
features selected by the decision rule-based algorithm are used. The results of table
5.13 show that for the abalone3C dataset the probes did not eliminate any features.
For the mushroom dataset the number of features selected by the decision rule-
based algorithm is the same as the number of features selected by the uniform-
binary probe. 5NN and Seeb5 classifiers were constructed for both datasets using 10-
fold cross validation on randomly selected training samples from the datasets. The
training sample size used for abalone3C was 3000 instances. Training sample sizes
of 600 and 3000 instances were used for the mushroom dataset since training
sample sizes of 3000 instances produced a ceiling effect (Cohen, 1995). A ceiling
effect is encountered when the performance level of a system on a given task is so
high that it is not possible to demonstrate performance improvements with any
intervention (Cohen, 1995). Experiments with 10 test sets were not conducted as
was done for the large datasets since the abalone3C and mushroom datasets have
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balanced class distributions. Tables 5.20 show the classification results for the two
datasets.

The predictive accuracy for each dataset is shown for all features and for features
selected by the decision rule based search algorithm. The 5NN 8-feature classifiers
provided a higher level of predictive accuracy compared to the 3-feature classifiers
for the abalone3C dataset. Clearly the 95% confidence intervals for the mean
predictive accuracy for these classifiers do not overlap.

Table 5.20: Predictive accuracy for the small datasets based on the parent dataset class
distribution

Feature selection Mean predictive accuracy
Dataset method & 95% Cl of mean with
(training set Classifier (number of features) 10-fold cross validation
size)
5NN All features
(nearest neighbours) (8) 59.8 £ 2.1
Decision rule search
(3) 52.3+3.2
Abalone3C All features
(3000) See5 (8) 63.3+1.3
(classification tree) Decision rule
(3) 56.7+1.6
All features
5NN (22) 97.9+14
(nearest neighbours) Decision rule search
(14) 97.6 + 2.1
Mushroom Seeb5 All features
(3000) (classification tree) (22) 100
Decision rule search
(14) 99.9+£0.0
Mushroom 5NN All features
(600) (nearest neighbours) (22) 96.7 £ 2.1
Decision rule search
(14) 95.8+2.8
See5 All features
(classification tree) (22) 99.2 +0.6
Decision rule search
(14) 99.2 +0.9

The Seeb5 8-feature classifiers also provided a higher level of predictive accuracy
compared to the 3-feature classifiers for the abalone3C dataset. The 22-feature and
14-feature Seeb5 and 5NN classifiers created with training sample sizes of 600 and
3000 provided the same level of very high predictive accuracy the mushroom
dataset. Clearly the 95% confidence intervals of mean accuracy for the classifiers
overlap. This is a ceiling effect which makes it difficult to make any conclusions on
this dataset. The same ceiling effect was observed for both the mushroom 5NN 22-
feature and 14-feature classifiers created with training sample sizes of 600 and 3000.
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Table 5.21 gives the results of Student’s independent samples t-test for means for
the two datasets. The groups compared for each dataset were the 10-fold cross
validation results when all features were used and when the features selected by the
decision rule-based algorithm were used.

Table 5.21: Statistical tests to compare the predictive performance of small dataset classifiers

Dataset Groups for independent samples | Student’s independent samples t-test
(training tests; number of features (18df, equal variances assumed)
sample size) | Classifier | Group A Group B 95% Cl of | p value Group A
(mean & ClI) (mean & ClI) mean (2 tails) better than
difference Group B?

All-classes; 8 All-classes; 3

(59.8 +2.1) (52.3+3.2) [3.4,11.6] | 0.001 yes
Class-young; 8 | class-young,3
(741 +£45) (73.7 £ 6.2) [-7.8,8.7] 0.912 no
Abalone3C 5NN
(3000) Class-middle; 8 | Class-middle;3
(43.1 £4.9) (51.1 £6.5) [-16.8,0.7] | 0.70 no
Class-old; 8 Class-old; 3
(61.5+3.4) (37.2+6.7) [16.3,32.4] | 0.000 yes
See5 All-classes; 8 All-classes; 3
(63.3+1.3) (56.7 £1.6) [4.3, 8.8] 0.000 yes
Class-young; 8 | Class-young;3 | based on arithmetic
(74.0) (74.5) comparison of TPRATE | no
Class-middle; 8 | Class-middle;3 | based on arithmetic
(47.6) (20.4) comparison of TPRATE | yes
Class-old; 8 Class-young;3 | based on arithmetic
(67.3) (72.7) comparison of TPRATE | no
5NN All-classes; 22 | All-classes; 14
Mushroom (97.9+14) (97.6 £2.1) [-2.5, 3.0] 0.856 no
(3000)
Seeb All-classes; 22 | All-classes; 14
(100 £ 0.0) (99.9 £ 0.0) [-0.3, 0.1] 0.230 no
Mushroom 5NN All-classes; 22 | All-classes; 14
(600) (96.7 £2.1) (95.8 +2.8) [-3.0,4.7] 0.652 no
Seeb All-classes; 22 | All-classes; 14
(99.2 +0.6) (99.2 +£0.9) [-1.1,1.1] 0.970 no

Student’s paired samples t-test for means is not applicable here as cross validation
tests were not paired. The class TPRATE values for the abalone3C classifiers are
also given. TPRATE values are not given for the mushroom classes as there were no
(interesting) differences in the TPRATE values for the different feature subsets. The
statistical tests on the TPRATE values for the abalone3C 5NN classifiers indicate
that the performance of the 8-feature and 3-feature classifiers does not differ
significantly for the classes young and middle. For the 8-feature and 3-feature See5
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classifiers the TPRATE values for the classes young and old do not differ
significantly, but the TPRATE for the class middle is much higher for the 8-feature
classifier.

The abalone3C dataset is a major challenge for feature subset search algorithms
which attempt to maximise class-feature association and minimise feature-feature
association. Table D.8 of appendix D gives the feature-feature correlation values for
this dataset. It is clear from table D.8 that generally all the abalone3C features are
strongly correlated with each other. The results of table 5.21 clearly indicate that the
use of eight features (all features) provides a higher level of predictive performance
compared to the use of a subset of the features. Obviously, the feature interactions
for abalone3C have predictive power for the class variable.

5.6 Discussion

This section provides a discussion of the experimental results of this chapter. The
discussion is divided into three subsections covering correlation measurement,
feature subset selection and the problems associated with the measurement of class-
feature correlations for feature selection. The recommendations for feature selection
from large datasets are given in chapter 10 where the general discussion of the
research findings is provided. Section 5.6.1 provides a discussion of correlation
measures and feature ranking. A discussion of feature subset selection is given in
section 5.6.2. Section 5.6.3 discusses the problems associated with the global

measurement of class-feature and feature-feature correlations.

5.6.1 Correlation measures and feature ranking

When there are no outliers in the data and associations between variables are linear
Pearson’s correlation coefficients are suitable for measuring correlations (Wilcox,
2001) and determining feature ranking for feature selection. This was demonstrated
with the abalone3C dataset experiments of section 5.3.2. When data contains
outliers or when the association between variables is non-linear, robust measures of
association will provide more accurate estimates of correlation values (Wilcox, 2001).
The experimental results of section 5.3.2 and 5.3.4 demonstrated that Kendall’s

correlation coefficient is a more accurate measure of correlation compared to
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Pearson’s correlation coefficient for the large datasets used in the experiments.
However, this does not exclude the possibility that Pearson’s correlation coefficients
could work well for some large datasets.

Robust measures for correlations (e.g. Kendall’s tau) should be the preferred
measure for ranking numeric features in feature selection for purposes of estimating
the class-feature and feature-feature correlations, when the expense of removing
outliers becomes prohibitive. Given a d-dimensional instance space and a sample

size of n instances for correlation measurement, computation of Kendall’s fau (and
generally any robust correlation measure) has a larger time complexity of o(d.n*)

compared to Pearson’s O(d.n)for the computation of class-feature correlations. The
computation of feature-feature correlations has a time complexity of O(dz.nz) for

Kendall's fau (and generally any robust correlation measure) and 0(d2.n ) for

Pearson’s correlation coefficients. The extra computation time is worthwhile, since it
allows more accurate feature rankings, even when moderately small sample sizes
are used for the correlation estimates. If, on the other hand, there is sufficient
computing power, then the winsorised Pearson’s correlation coefficient (Wilcox,
2001) discussed in chapter 3 may be used for correlation measurement.
Computation of winsorised Pearson’s correlation coefficients will remove the effect of
outliers but will not solve the problem of non-linear associations (Wilcox, 2001).

The experimental results further demonstrated that, a correlation coefficient is a
random variable in the presence of sampling. This was demonstrated by the results
of table 5.5 for the KDD Cup 1999 dataset and in fact Smyth (2001) has discussed
this problem. When feature ranking and validation is based on correlations measured
for one sample the feature ranking and number of selected features will vary from
sample to sample. This was demonstrated in table 5.4. Based on the foregoing
observations, feature rankings should not be based on a single sample, but rather on
the mean values of the coefficients measured with many samples.

From a statistical perspective, using many (relatively) small randomly selected
samples from very large datasets makes it possible to accurately and more efficiently
estimate class-feature and feature-feature correlations. This was demonstrated in
section 5.3.4. The samples used for feature ranking for large datasets should not be
very small. When samples are small, the variability of the correlation coefficients can
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change dramatically from sample to sample causing the confidence intervals of the
mean correlation coefficients to be wide. It then becomes difficult to trust the feature
ranking even when the rankings are based on mean values. This problem is
demonstrated in table D.1 of appendix D for the forest cover type dataset samples of
size 100.

Probes (fake variables) provide useful information for elimination of irrelevant
features. It was empirically found that the three probes used generally eliminated the
same (number of) features for the forest cover and KDD Cup 1999 datasets. The
Gaussian probe did not work well for the mushroom dataset (all features are
qualitative). However, the uniform and uniform-binary probe both eliminated nearly
the same number of features for the mushroom dataset. None of the probes
eliminated any features for the abalone3C dataset. Probes are random variables.
The use of the confidence interval of the mean for a probe provided a better criterion
for feature elimination. It was empirically found that probes also selected several
features whose correlation values are not of practical significance, as defined by
Cohen (1988). However, these features were found to have a small amount of
predictive ability for the forest cover type dataset. Statistical significance with the t-
test for means selected features that have predictive power. However, for all datasets
the t-test eliminated features with no practical significance, even though these
features have a small amount of predictive ability.

5.6.2 Feature subset selection

Feature selection methods that search for the best subset of features depend on an
initial ranking of features. If this ranking is not accurate, then the search method will
not select the best subset of features. The experimental results of section 5.3.4
demonstrated that the use of mean values of correlation coefficients for feature
ranking and validation provided more accurate input values for feature subset
selection. The experimental results of section 5.4.1 demonstrated that a
mathematical function (merit measure) will not necessarily always precisely reflect
the definition of what is required for feature subset selection. It was demonstrated
that the search procedure can select irrelevant features in preference to more
relevant features. The use of decision rules in place of a merit measure provides an
alternative method of implementing the definition of feature relevance and
redundancy to a search algorithm. The experimental results of section 5.4.2
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demonstrated that irrelevant features were not selected when decision rules were

used in place of mathematical functions.

The results of section 5.5.4 provided evidence to support the observation that
apparently redundant features can have predictive power. This was the case for the
abalone3C dataset. Cohen (1995:pg 68) has discussed two types of relationships
between random variables. A simple relationship between two variables X and Y can
be expressed in the form X influences Y (or X is correlated with Y). An interaction

relationship involves three variables and is expressed in the form X; and X, in

concert influence Y. The feature selection methods proposed in this chapter are not
capable of detecting feature interactions.

5.6.3 Problems associated with the global measurement of
correlations

For the empirical studies reported in section 5.4 some of the eliminated features were
those features that are either good predictors for one or more of the classes in the
dataset, or good predictors of some local areas of the instance space, or both. It was
observed that one or more of the eliminated features for the KDD Cup 1999 dataset
were those features that could be good predictors for the minority and severely
under-represented class (U2R). It was hypothesised that if a large dataset is pre-
processed to create clusters prior to feature selection then the above problems
should not arise. The study of this hypothesis was left for future work.

5.7 Conclusions

The first research question that was addressed in this chapter was: How can class-
feature correlations be measured in order to produce a reliable ranking of features for
a dataset? The method that was studied and demonstrated to work well is to use
many samples to measure correlations coupled with a robust measure of correlation.
The samples should be large enough to avoid large variability in the measured
correlation values as discussed in section 5.6.1. The mean values of the correlations
should then be used to conduct validation and feature ranking for the prediction task.
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The second research question that was addressed in this chapter is: What methods
of validation for feature correlations result in reliable feature selection? The
experimental results reported in this chapter have demonstrated that a comparison of
mean values of class-probe and class-feature correlations provides useful
information for more accurately determining which features have no relevance to the
classification task. A second method of validation that was studied is the use of
Student’s t-test of means to determine the practical significance of class-feature
correlations. The experimental results indicated that the t-test method of validation
eliminated several features which have predictive power.

The third research question that was addressed in this chapter is: How can domain-
specific definitions of feature relevance be incorporated into feature selection
procedures? The method that was studied was to incorporate domain-specific
definitions of the meaning of insignificant, low, medium and high correlation, in terms
of the ranges of values that should be interpreted as insignificant, low, medium and
high correlations. A new algorithm was designed, implemented and used for the
selection of the best subset of features. The algorithm used decision rules based on
the definitions of values for insignificant, low, medium and high correlations based on
Cohen’s (1988) definition. Experiments using the decision rule-based algorithm
demonstrated that the algorithm selected good feature subsets which have global
predictive power. The experimental results have also demonstrated that selecting
features based on the measurement of class-feature correlations for samples
obtained from all the regions of the instance space does not necessarily result in the
selection of all the features that have predictive power. This problem was left for
future research. The next three chapters provide a discussion of the studies that
were conducted for training dataset selection.
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Chapter 6

Methods for Dataset Selection and Base
Model Aggregation

‘Where you lead me | will follow, where you lead me | will follow, wherever you lead me
I will follow. | will be with you always. Ngiyakuthanda moya oyingcwele...” (Benjamin
Dube, 2007)

It was stated in chapter 2 that a limited amount of research on the combination of
dataset partitioning, sampling and aggregate model construction from large datasets
has been reported in the literature. To the author's knowledge, only one research
effort by Chan and Stolfo (1998) has been reported. Chan and Stolfo’s (1998) studies
were aimed at improving predictive performance of 2-class datasets with skewed
class distributions. It was argued in chapter 2 that, when large datasets are available,
training datasets can be designed to achieve bias and variance reduction of the
prediction error, without having to re-use training data. It was also argued in chapter
2 that more information is made available to the modeling process when a large
amount of data is used in the training process.

The purpose of this chapter is to present the two proposed methods for combining
dataset partitioning, sampling and aggregate model construction for large datasets.
The methods used in the experiments for the evaluation of aggregate model
performance are also presented. The proposed methods are specifically aimed at
multi-class prediction tasks. The proposed methods were designed to support two
types of base models: One-Versus-All (OVA) models and positive-Versus-negative
(pVn) models. OVA modeling (Ooi et al, 2007; Rifkin & Klautau, 2004) is discussed in
this chapter and the performance evaluation of this method is presented in chapter 7.
pVn modeling is a new method of aggregate model construction, proposed in this
thesis. pVn modeling is introduced in this chapter and the performance evaluation of
this method is presented in chapter 8. The main difference between OVA and pVn
modeling is that each OVA base model is designed to predict one of the k classes
while each pVn base model is designed to predict more than one of the k classes.
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It is claimed in this thesis that the proposed methods have the potential to provide a
high level of predictive accuracy through the implementation of highly diverse and
competent base models that are designed to provide high predictive performance
when combined into an aggregate model. Syntactic diversity and high expertise of
base models were discussed in chapter 2. Syntactic diversity refers to level of
structural differences between the base models that constitute the aggregate model.
High expertise refers to the level of predictive accuracy of the base models. The
higher the predictive accuracy the higher the expertise. In the context of having large
amounts of data available for the modeling process, the methods presented in this
chapter are aimed at providing answers to the following questions:

1. How should training datasets be designed in order to create base models that are
syntactically diverse and highly expert at prediction for aggregate models?

2. How should training datasets for the base models be designed in order to achieve
high accuracy for the aggregate model?

The rest of this chapter is organised as follows: Problem decomposition for OVA and
pVn modeling is discussed in section 6.1. A recap of methods for improving
predictive performance is given in section 6.2. Methods for training and test dataset
selection are discussed in section 6.3. Methods for creation and testing of OVA and
pVn models are presented in sections 6.4. Section 6.5 provides a summary of the
chapter.

6.1 Problem decomposition for OVA and pVn modeling

Problem decomposition is the process of converting a classification task into several
classification sub-problems (Ooi et al, 2007; Dietterich & Kong, 1995). It was stated
in the last section that problem decomposition has the potential to reduce the bias
component of the prediction error (Dietterich & Kong, 1995). The two methods of
problem decomposition that were studied are discussed in this section. The methods
are One-versus-all (OVA) classification and positive-versus-negative (pVn)
classification. OVA classification is discussed in section 6.1.1 and pVn classification
is discussed in section 6.1.2.

142



UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

b
W UNIVERSITEIT VAN PRETORIA
A 4

6.1.1 Problem decomposition for OVA modeling

OVA classification (Ooi et al, 2007; Rifkin & Klautau, 2004) is a method of
classification where a k-class prediction problem is decomposed into k sub-problems
for classification. OVA classification is commonly used for (binary) support vector

machines (SVMs) (Boser et al, 1992) for creating classifiers from multi-class

datasets. Given a classification problem with k classes, ¢;...,c,, OVA classification
involves the creation of k sub-problems ova,,..., ova, . For each sub-problem, ova,,
the task is to create a base classifier, OVA , , that differentiates between instances of

class c;and instances that belong to all the other classes. In other words, each base
classifier specialises in the prediction of one class. The base classifiers,
OVA,,..., OVA, , are combined into one aggregate model using the method of

parallel aggregation that was discussed in section 2.2 of chapter 2.

OVA classification was selected as one of the problem decomposition methods to be
studied for the following reasons: Firstly, OVA classification enables the creation of
base models where each base model is an expert on classification for one specific
class. Secondly, since each OVA classifier solves a 2-class problem, the training
sample size required to achieve a high level of accuracy is reduced. This is an
implication of the Probably Approximately Correct (PAC) learning theory which was
discussed in section 2.4 of chapter 2. Equation (2.1) of section 2.4 specifies the
theoretical relationship between the samples (complexity) size n, classification
accuracy 1—¢&, and hypothesis space size [H| . For a fixed level of classification
accuracy, reduction of the hypothesis space size [H| results in a reduction in the
samples size required to achieve a given level of classification accuracy.

6.1.2 Problem decomposition for pVn modeling

Positive-Versus-negative (pVn) classification is a proposed modification of OVA
classification proposed in this thesis. For pVn classification, each base model
specializes in the prediction of a subset of classes, instead of just one class, as is the
case for OVA classification. For pVn classification, a k-class prediction problem is
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decomposed into a set of sub-problems, pvn,..., pvn,, (I< k). For each sub-problem,

the task is to create a base classifier pVn which specializes in the prediction of j

classes (j < k), which are a subset of the k classes. The j classes are referred to as
the positive classes. All the other classes whose instances are included in the
training dataset for the pVn model are collectively referred to as the negative classes.
The name positive-Versus-negative (pVn) was used to represent the fact that a pVn
base model can predict the positive classes in contrast to other classes which are
simply treated as negative classes. The pVn models are combined into one
aggregate model using the method of parallel aggregation.

The initial motivation for pVn modeling was as follows: If a multi-class problem has
many classes, then many OVA base classifiers must be created. If on the other hand,
each of the base models is specialized on more than one class, the number of base
models to be created is reduced. After the OVA and pVn modeling experiments
reported in chapters 7 and 8 were conducted, it became clear that pVn modeling
solves other problems which are discussed in chapter 8.

6.2 Methods for improving predictive performance

The methods for improving predictive performance were discussed in detail in
chapter 2. A summary of these methods is given in this section, and details are
provided for the objectives for the methods that were studied for training dataset
selection. Section 6.2.1 provides a discussion of the methods for bias and variance
error reduction for small datasets. Section 6.2.2 provides a discussion of the methods
for bias and variance error reduction for large datasets. High competence and
syntactic diversity are discussed in section 6.2.3.

6.2.1 Reduction of bias and variance errors for small datasets

It was stated in chapter 2 that the three major factors that affect the predictive
performance of a model are the bias, variance, and intrinsic error components of the
prediction error. The bias of a predictive model reflects the error in the estimation
process for the model (Giudici, 2003; Friedman, 1997; Geman et al, 1992). The
variance reflects the sensitivity of the predictive model to the sample used to create
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the model (Giudici, 2003; Friedman, 1997; Geman et al, 1992). The intrinsic error is
the irreducible component of the prediction error. Various methods of bias and
variance reduction were discussed in detail in section 2.11 of chapter 2. For small
datasets, bias and variance reduction have been achieved primarily through two
methods. The first method involves the creation of many base models through the re-
use of the training data either through bootstrap sampling (Breiman, 1996) or re-
using those training instances that are difficult to predict (Freund & Schapire, 1997).
The second method involves the use of many base models, each with a different
structure, in order to achieve syntactic diversity (Ho, 1998; Ali & Pazzani, 1996;
Krogh & Vedelsby, 1995; Kwok & Carter, 1990; Hansen & Salamon, 1990).
Additionally, various methods for base model aggregation have been studied (Ooi et
al, 2007; Sun & Li, 2008; Ali & Pazzani, 1996).

6.2.2 Reduction of bias and variance errors for large datasets

The studies reported in the next two chapters were aimed at the design of aggregate
models and the selection of training datasets for the base models, with the objective
of reducing the bias and variance components of the prediction error. The training
dataset selection methods used for aggregate modeling from small datasets were
adapted in this thesis for the selection of training datasets when large amounts of
data are available. While the dataset selection methods for small datasets have
relied on the re-use of training data, there is generally no need to re-use training data
for large datasets, except in those cases where one or more classes are severely
under-represented in the dataset. In such cases, bootstrap sampling was employed
for the studies of chapter 7 and 8, to increase the number of instances for the
severely under-represented classes.

The following methods for bias and variance reduction were incorporated into the
base model design and training dataset selection for the studies reported in chapter 7
and 8 of this thesis:

(1) Variance reduction through the use of a different training sample for each of the

base models. The objective here was to use as much training data as possible in
order to achieve a high level of coverage of the instance space.
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(2) Variance reduction through the use of relatively small training samples (relative to
the size of the large dataset) for each of the base models. The objective here was to
reduce the effects of noise, and chance or phantom structure in the data (Smyth,
2001) as discussed in chapter 2.

(3) Bias and variance reduction through the use of training datasets with a sample
composition aimed at providing a high level of coverage of the decision boundary
regions of the instance space. The objective here was to provide as much data as
possible for the regions where it is difficult to make correct predictions. A second
objective was to ensure that the predictive performance does not degrade due to
conflicting base model predictions when base models are combined into an
aggregate model.

(4) Variance reduction through the selection of good feature subsets. These studies
were reported in chapter 5.

(5) Bias reduction through the decomposition of k-class problems into 2-class
problems as is done for OVA classification, and j-class (j<k) problems which was
implemented using the proposed method of pVn classification.

6.2.3 High competence and syntactic diversity of base models

Several researchers have argued that syntactic diversity of base models may lead to
a higher level of predictive accuracy for the aggregate model (Sun & Li, 2008; Ho,
1998; Ali & Pazzani, 1996; Krogh & Vedelsby, 1995; Kwok & Carter, 1990; Hansen &
Salamon, 1990). Several researchers have also argued that a higher level of
predictive performance may be achieved by making each member of the aggregate
model as competent as possible (Sun & Li, 2008; Ho, 1998; Ali & Pazzani, 1996).
Furthermore, Chan and Stolfo (1998) have demonstrated that the use of carefully
designed samples from partitions, and creation of aggregate models from the
samples, may result in an increased level of predictive performance of 2-class
datasets with skewed class distributions.

It is the author’s opinion that syntactic diversity and high competence of the base

models, both lead to a reduction in the bias and variance components of the
prediction error. Syntactic diversity should lead to a reduction in variance errors
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(errors due to sampling variations) since the modeling process is conducted using a
large amount of information on the data generating process. Syntactic diversity
should also lead to a reduction in variance (sensitivity to the sample used for
training), since several samples are used in the modeling process. High competence
should lead to a reduction in bias since the methods used in the estimation process
of a highly competent model will necessarily minimize the errors in the model

estimation process.

For the achievement of syntactic diversity and high competence of the base models,
the following methods were incorporated in the base model design and training
dataset selection:

(1) Syntactic diversity through the use of base models where each base model
predicts a different set of classes.

(2) Syntactic diversity through the use of a training sample with a different
composition for the training samples of the other base models.

(8) High competence through the use of base models where each model is
specialized on a simpler hypothesis space with fewer classes than for the single k-
class model.

(4) High competence through the design of training samples to provide a high
coverage of those regions of the instance space where correct prediction is difficult.

6.3 Design and selection of training and test datasets

This section provides a detailed discussion of the method of training dataset
selection that were adopted for the experiments of chapters 7 and 8 for OVA and pVn
modeling. The methods were designed to achieve three main objectives. The first
objective was to maximise diversification of the base models. The second objective
was to maximise individual expertise of the base models. The third objective was to
ensure that when base models are combined into one aggregate model, the class
confusion (occurrence of conflicting predictions) is minimised. Section 6.3.1 provides
a discussion of the strategy that was adopted for base model design, training and
test data selection, and model testing. Section 6.3.2 provides a discussion of the

147



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Q@ VYUNIBESITHI YA PRETORIA

0=

motivation for the sample composition of the training and test datasets. Section 6.3.3
presents the methods employed for large dataset partitioning and sampling. Section
6.3.4 provides a discussion of the sampling process from the dataset partitions.

6.3.1 Strategy for dataset selection and model creation

Seven distinct steps were identified for purposes of predictive model design, training
dataset selection, model creation, and testing. The steps are shown in figure 6.1.
Step 1 involves the design of the base models. Step 2 involves the selection of the
relevant feature set for each base model. Step 3 involves making a decision on the
partitions that should be created, and then creating the partitions. Steps 2 and 3
could be interchanged. Feature selection is done to ensure that irrelevant features
are removed in order to make the individual base models as competent as possible.
Step 4 involves the selection of training data and test data. Step 5 involves the
creation, validation and testing of each base model. Step 6 involves the combination
of the predictions of the base models. Step 7 involves the measurement of the

performance gains realized from using an aggregate model versus a single model.

Step 1: Design the base models
Step 2: Select the relevant feature sets for the training datasets
Step 3: Decide on, and create the dataset partitions
Step 4: Select the training datasets and test datasets from the partitions
a. Create training and test data partions
b. Create training datasets
c. Create test datasets
Step 5: Create, validate and test each of the base models
Step 6: Combine the predictions of the base models
Step 7: Measure the performance gain for using an aggregate model versus a single model

Figure 6.1 Steps for dataset partitioning, model creation and testing

6.3.2 Motivation for the sampling methods

It is important to make a decision on the class distribution of the training set and test
set samples when sampling is employed. Two alternatives exist: The first alternative
is to select samples which have the same class distribution as the large dataset from
which the samples are drawn. The assumption here is that the class distribution of
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the large dataset is a true representation of the class distribution of the population.
The second alternative, called oversampling (Berry & Linoff, 2000) is to use a
different class distribution in the samples. One common motivation for employing
oversampling is to increase the coverage of the minority classes that appear in the
large dataset.

Berry and Linoff (2000) have cautioned against the use of oversampling and argued
that oversampling changes the meaning of the scores (class posterior probabilities)
that are assigned to the predictions by a probabilistic classifier. Recall from chapter 4
that a classification algorithm outputs a prediction for a test or query instance in the
form of a pair (class, score). Berry and Linoff (2000) have advised that the /ift factor
which was discussed in chapter 4 should be interpreted with care when oversampling
is used. Provost and Fawcett (2001) on the other hand, have cautioned against the
assumption that the class distribution for the large dataset is always a true
representation of the population class distribution. Provost and Fawcett (2001) have
argued that, firstly, the true class distribution is rarely ever known precisely for most
domains. Secondly, the class distribution for a large dataset is subject to change for
many application domains. Provost and Fawcett (2001) have provided the example
of fraud detection as a domain where the class distribution for large datasets
changes often.

Recall from chapter 2 that boosting is a statistical method for modeling which aims to
increase the coverage of those regions of the instance space where correct
prediction is more difficult. Boosting will necessarily result in changes to the class
distribution of the training dataset to make it different from the class distribution of the
large dataset. Given the foregoing discussion of Berry and Linoff (2001), and Provost
and Fawcett (2001), the author made a decision to use boosted training samples with
a class distribution determined by the base model design. Test samples with an
equal class distribution for all the classes were used. The motivation here was that
the performance of single and aggregate models should be compared class by class
for the same number of test instances of each class. The net result of the adopted
approach is oversampling. For purposes of measuring model performance,
calculation of lift factors was avoided and ROC analysis was used instead. Recall
from chapter 4 that ROC analysis is not dependent on the class distribution of the
training and test data.
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6.3.3 Partitioning and sampling for dataset selection

The proposed methods of dataset selection involve the use of stratified sampling
(Berry & Linoff, 2000; Rao, 2000) in order to obtain the required sample composition
for the training and test datasets. Stratification is achieved through the creation of
large dataset partitions (strata) with each partition (stratum) consisting of instances of
one class. Training datasets are then created by taking random samples from each
partition (stratum) with each class having a different level of representation in each of
the training datasets. The level of representation of a given class is based on the
objectives of model creation. These objectives are further elaborated on later in this
chapter. The proposed method of training dataset selection was used to support two
different types of aggregate classification models: OVA classification and positive-Vs-
negative (pVn) classification.

very large
dataset

partitioning
process

Class 1 Class 2 Class 3 Class k
instances instances instances IR instances

>~

Sampling & re-labelling
process

Base model 1 Base model 2 Base model 2 Base model k
training training training o e e training
samples samples samples samples

Figure 6.2: Partitioning and sampling process for base model training dataset selection

Figure 6.2 shows the approach that was studied for creating the partitions and
obtaining samples from the partitions. This corresponds to steps 3 and 4 of figure
6.1. In step 3 the large dataset is partitioned into k (k > 2) partitions, where each
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partition consists of instances of the same class. Step 4 involves various activities.
The first activity is to sub-divide each partition into a training data and test data
partition. The second activity is to create training datasets for the base models by
selecting instances from the partition determined by the base model design. The third
activity is to create test datasets by selecting instances from each partition. Simple
random sampling was used for selecting instances from the partitions.

Each of the model training sets for OVA classification consists of instances from the
class it is designed to be expert at predicting, as well as instances from some or all
the other classes. Re-labeling was done to assign all the negative instances to a
single class, so that each OVA training sample consists of instances of two classes.
Each of the base model training sets for pVn classification is composed of instances
from the p (positive) classes in equal proportions, and n (negative) classes in equal
proportions. The proportions of the positive and negative samples were different. Re-
labeling was done to assign all the negative instances to a single class. Details of

how sampling was done are given in the next section.

6.3.4 Sampling from dataset partitions

Samples were taken from the partitions (strata) for the implementation of step 4 of
figure 6.1. It is important to make decisions concerning the proportions of instances
(of each class) in each of the base model training samples. When one-class
partitions are created there may be great variation in the sizes of the partitions, with
the partitions for the majority classes being very large and the partitions for the
minority classes being very small. The number of training instances required from
each one-class partition was calculated and then simple random sampling was used
to obtain the instances from that partition. Details of the calculation of the required
number of instances are given in chapters 7 and 8. A situation may arise when the
partition size is smaller than the required number of instances for datasets with
skewed class distributions. When this is the case, the solution that was used in the
experiments of chapters 7 and 8 was to obtain a bootstrap sample from the partition
(Rao, 2000). Bootstrap sampling (Breiman, 1996; Cohen, 1995) is a statistical
method that is used to generate a large amount of data from a small dataset using
simple random sampling with replacement (SRSWR) (Rao, 2000). Test data sets
were created using simple random sampling from the test data partitions (strata).
Each test dataset was created with an equal (balanced) class distribution.
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6.4 Methods for creating and testing OVA and pVn models

Steps 5, 6 and 7 of figure 6.1 involve the creation and testing of the base models,
aggregation of the base models, and testing of predictive performance of the
aggregate models. The methods used to implement steps 5, 6 and 7 are presented in
this section. Section 6.4.1 provides a discussion of the implementation of the OVA
and pVn base models and a discussion of the outputs generated by the base models.
Section 6.4.2 provides a discussion of the methods that were used to implement the
aggregate models. The algorithms for model aggregation are presented in section
6.4.3. The experimental procedure for model aggregation is given in section 6.4.4.
The methods for measuring performance gains due to aggregate models are
presented in section 6.4.5.

6.4.1 Design and implementation of OVA and pVn base models

Base models were designed, created and tested for each dataset. The design
objectives discussed in section 6.2 were adopted for each set of base models that
make up an aggregate model. The details of OVA and pVn base model design and
testing are given in chapters 7 and 8 respectively. Test datasets were created to
include positive instances for the class(es) that a base model predicts, as well as
negative instances from all the other classes. The same test sets were used for
testing all the base models, as depicted in figure 6.3.

A predictive classification model may output a prediction pred, for a test or query

instance in the form

pred=(c;,conf)) (6.1)

where ¢, is the predicted class, conf; is the level of confidence that the test or query

instance belongs to the predicted class and is defined as

conf, =P (c, | X,) (6.2)
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where X, is the test or query instance and F,(c; | X, ) is the posterior probability that

the instance X, belongs to class c¢;. The value of conf; is referred to as the score

that is assigned by the predictive model for purposes of ROC and lift analysis (Giudici
& Figini, 2009; Witten & Frank, 2005; Giudici, 2003; Berry & Linoff, 2000).

Each leaf node of a classification tree stores the posterior probability for prediction of
each class at that node. The class with the highest posterior probability is the
predicted class for test or query instances that land at that leaf node. The See5Sam
tool which is part of the See5 classification software (Quinlan, 2004) that was used
for the experiments reported in chapters 5, 7 and 8 outputs a prediction as indicated

in equation (6.1).

The 5NN classifier which was used for the experiments of chapters 5, 7 and 8,
outputs a prediction pred, in the form of a triple

pred = (c,,conf;,recdist,) (6.3)

where c¢; is as defined above, and conf;, the probability that the test or query
instance belongs to the predicted class is defined as
U]

conf, =P.(c;) = = (6.4)

where the numerator |U| represents the count of nearest neighbours that belong to
the predicted class and the denominator is the total number of neighbours used for

deciding the predicted class (which is 5 for 5NN). The quantity recdist; is the sum of

reciprocal distances for the neighbours that belong to the predicted class and is
defined as

recdist = Z;
v dis{( X, X) (6.5)

where dist(xq,x) is the Euclidean distance between the test or query instance and

one of the nearest neighbours. The possible values for conf. are 0.4, 0.6, 0.8 and

1.0 for the 5NN classifier. These values correspond to the number of nearest
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neighbours for the predicted (winning) class. For two nearest neighbours of the

predicted class conf;=0.4. For three nearest neighbours of the predicted class conf
=0.6. For four nearest neighbours of the predicted class conf,=0.8. For five nearest

neighbours of the predicted class conf,=1.0.

6.4.2 Implementation of OVA and pVn aggregate models

When multiple base models are used, each model will declare a given test or query
instance as belonging to a class c¢. The purpose of the aggregation step is to
examine all the predictions of the individual base models and select that class with
the strongest supporting evidence. The parallel method of aggregation, discussed in
section 2.2.5, was used in the experiments. Recall that all the base model predictions
for parallel aggregation are considered at the same time and the best prediction is
selected based on the level of confidence in the prediction. The methods for
combining base model predictions when each base model is capable of predicting
any of the k classes for a prediction task were discussed in section 2.2.5.

Recall that these methods include (1) majority voting (2) the product rule (3) the sum
rule (4) the max rule, and (5) the min rule. The product rule and sum rule are not
directly applicable to OVA and pVn base models for the following reasons: Since
each OVA base model can predict only one of the k classes and each pVn base
model can predict only a subset of the classes, it is not possible to have a meaningful
majority vote for any given class. It is also not possible to generate a meaningful
mathematically combined probabilistic score for each class when OVA or pVn base
models are used. The max rule and min rule can however be applied to OVA and
pVn base model predictions as discussed below.

When OVA or pVn base models assign a single score to each prediction, as is the

case for the Seeb5 algorithm, then the output of a parallel aggregation algorithm,
based on the max rule, is a pair defined as

pred =(c;,conf,’)e {(c,,conf)),..., (c;.conf;)}, j<k (6.6)

where
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conf, =max{conf,,..., conf ;} (6.7)

and k is the number of classes for the prediction task, and c;is the predicted class

which has the largest value conf,.*. Equations (6.6) and (6.7) are sufficient for
determining the prediction for the See5 classification tree aggregate models. The
domain of possible values for conf; is small for the 5NN models, having 0.4, 0.6, 0.8
and 1.0 as the possible values. The small domain of values results in a high
probability of tied conf; values for the base model predictions. In order to break ties,

equation (6.5) was used to compute recdist values and the tied prediction with the
highest recdist value was selected as the best prediction for the 5NN aggregate
model. The interpretation of the recdist values is as follows: If base model predictions

have a tied conf, value, then select the model which used the shortest Euclidean

distances to determine the predicted class. The output of the 5NN aggregation
algorithm is a triple defined as:

pred =(C; ,Confi*,recdistf)e {(c,,conf), recdist,),..., (c;,conf ;, recdist ;)}

(6.8)

where pred, k, ¢, and conf, have the same interpretation as before and recdist is the

reciprocal distance for the best tied or untied prediction. It should be noted that Ooi et
al (2007) have used the recdist values as a measure of the level of confidence in a
5NN prediction. The problem with Ooi et al’s (2007) approach is that recdist values
do not have a straightforward interpretation for ROC analysis.

6.4.3 Algorithms for model aggregation

The algorithm of figure 6.3 was used to implement the combination (aggregation)
decisions for the See5 OVA and pVn aggregate models using the max rule. A base

model may predict class ¢; or the class ‘other’ to indicate that a test instance belongs
to one of the other classes. The value conf; in figure 6.3 is the posterior probability

P.(c; | x,) for the predicted class as defined in equation (6.2) for See5. The value

‘none’ indicates that there was no valid prediction. That is, all base models predicted
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the class ‘other’. A base model predicts ‘other’ to indicate that the class for the query
or test instance is not a class that it is designed to predict. In step 3 of the algorithm
in figure 6.3, ties are broken randomly, since there is no other value that can be used

to resolve a tie.

1. If only one base model predicts a class C;, and all the other base models predict
‘other’, then the prediction is C;

2. If more than one base model predicts a class C;, then select the class C; which is
predicted with the largest value of Conﬁ.

3. lIfthereis atie on Conﬁbetween winning classes then break the tie randomly

4. If all base models predict the class ‘other’, then the prediction is ‘none’
Figure 6.3: Algorithm for combining See5 base model predictions

It was stated in section 6.4.2 that the prevalence of tied predictions (tied on the conf;

values) is high for the 5NN base models. The strategy that was used for the
implementation of the algorithm that determines all the tied predictions involves the
generation of the complete search space of all possible ties. The generation of all
possible ties is a combinatorial search problem (Luger & Stubblefield, 1993) requiring

the generation of the number of states given by

States = Z(k—j)j (6.9)

Jj=

where k is the number of classes for the prediction task. For prediction tasks with a
small number for classes the combinatorial explosion of equation (6.9) does not pose
a major problem. For example, a prediction task with 5 classes will have 22 possible
tied predictions. The derivation of equation (6.9) is given in appendix E. Figure 6.4
gives the data structures and algorithms for the functions that were used to combine
the 5NN base model predictions.
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Data structures:
Prediction: a base model prediction stored as a tuple
(modelname, modelnumber, predictedclass, score, recdist)
State: a search space state which holds data on tied predictions in the form
(tiedcount, tiedmodels, tiedscore, bestclass, bestrecdist)
OPEN,CLOSED, CHILDREN: list used by BreadthFirstGenerate algorithm to
generate the complete search space
TIED: List used to hold the states for predictions that are actually tied
PREDICTIONS: list to hold the predictions for all the models.

Algorithm for CheckTies( ):
1. Call BreadthFirstGenerate( ) to generate the list of all states for possible tied predictions
consisting of j, j-1, ..., 2tied predictions. Save the states on the CLOSED list.
2. For each state on the CLOSED list:

a. Check if there is a tie in the COI’ljfscores for all the predictions in the state.

b. If there is a tie, record the tied score, largest recdist and prediction with largest recdist
c. Copy the state to the TIED list
Delete from TIED every state whose nodes are all contained in another state on TIED
Select besttiedstate as the state on TIED with the highest score. Break ties using recipdist
5. Return besttiedstate

Algorithm for CombinePredictions( ):

1. Assign a unigue number to each of the j (j < k) base models
2. Store the predictions for the j base models in the PREDICTIONS list
3. If all base models predict the class ‘other’, then the prediction is ‘none’
4. Check for 2-way tied predictions
5. If there are no 2-way ties
select prediction with largest conﬁ score on the PREDICTIONS list as bestprediction
6. else

a. Call CheckTies( ) to search for the tied state with the largest number of
predictions. Call this besttiedstate
b. besttiedpred = prediction in besttiedstate with largest recipdist
select prediction with largest score on the PREDICTIONS list. Call this
bestuntiedpred
d. if (score for bestuntiedpred > score for besttiedpred)
bestprediction = bestuntiedpred
e. else
bestprediction = besttiedpred
7. Return bestprediction

Figure 6.4: Algorithm for combining 5NN base model predictions
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The function CheckTies( ) uses the BreadthFirstGenerate( ) to generate all the
possible ties for base models identified as 1,2,..,j (j < k). The BreadthFirstGenerate( )
algorithm is based on a breadth-first search strategy (Luger & Stubblefield, 1993) and
is given in appendix E. For each possible tied state, if there is an actual tie on the

conf; scores for the predictions, the state is recorded in the TIED list. The tied state

with the highest score is then selected as the best tie. The function
CombinePredictions( ) places all predictions on the PREDICTIONS list. If all the base
models predict the class ‘other’ then there is no valid prediction for the aggregate
model. The function CombinePredictions( ) checks if there are any 2-way ties (ties
involving two predictions). If there are no 2-way ties then there cannot be any 3-way,
4-way or higher order ties. When there are no tied predictions, the prediction with the

highest conf, score is selected as the prediction for the aggregate model. If 2-way
ties exist, CombinePredictions( ) calls CheckTies( ) to locate the tied predictions with

the highest conf, score. The conf; score for the tied predictions is then compared
with the highest conf. score for untied predictions. If the tied predictions have a

higher conf, score, the tied prediction with the highest value of recdist is selected as

the aggregate model prediction.

6.4.4 Experimental procedure for testing aggregate models

The experimental set up for OVA and pVn base model aggregation is shown in figure
6.5. The base models shown in figure 6.5 may be either all OVA models or all pVn
models. Ten test sets were used to measure model performance. Each test set was
applied to each of the base models and the test (prediction) results were written to a
text file. The test results for each test set were combined into a single file and then
used as input to the algorithm for combining the predictions of the base model into
one prediction for each test instance.
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Figure 6.5: Experimental method for aggregate model implementation for one test set

6.4.5 Measurement of performance gains for OVA and pVn
aggregate models

Prediction performance gains for aggregate models are typically established through
comparison with single models (Ali & Pazzani, 1996). A detailed discussion of the
statistical tests used to compare model performance was given in section 4.7 of

chapter 4. Given two predictive models, M, and M ,, Student’s paired sample t-test
was used to establish whether model M, provides a higher level of predictive
accuracy than model M,. More precisely, if i,and ,are the mean values for
predictive accuracy for models M, and M, respectively, the following hypotheses
were tested: H,: g, — ;=0 and H, :u,—u, #0. When the null hypothesis is

rejected and the mean difference is positive, this gives an indication that the

predictive performance of model M , is generally higher than the performance of

model M ,. The mean difference provided by the paired samples t-test, gives an

indication of the level of magnitude by which one model is better than the other.

Ali and Pazzani (1996) have conducted studies on different methods of combining
the results from various classification models, and have proposed the following
measures for computing the error reduction that is realised due to the use of
aggregate model:
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Measure 1: compute the error difference error,, as

error, = error, — error, (6.10)

Measure 2: compute the error ratio error, as

error, = error , [error (6.11)

where error; is the predictive error of a single model, and error, is the predictive

error of the aggregate model obtained from the base models. The larger the error
difference, the greater the error reduction due to the aggregate model. The larger the
error ratio the greater the error reduction. Ali and Pazzani (1996) have advised that
the error ratio is a better measure as it reflects the fact that it becomes very difficult to
achieve error reduction using aggregate models when a single model has a very low
prediction error. When the mean values of the errors are used in equation (6.10), the
equation has a similar interpretation to the mean difference computed by the paired
samples t-test.

For purposes of measuring the performance improvements due to the aggregate
models, the Ali and Pazzani (1996) measures were re-interpreted by the author of

this thesis as shown in table 6.1.

Table 6.1 Interpretation of Ali and Pazzani (1996) measures

Re-interpretation and computation of the measures used in the

Ali & Pazzani B‘:Qje thesis based on accuracy and TPRATE:
HEREIE in thesis

accuracy = (1 — error) FNRATE = (1 — TPRATE)

Error difference =

error; —error, | DIff(A,S) accuracy, —accuracyy TPRATE , —TPRATE

Error ratio = oA (accuracy, —accuracy) | (TPRATE , — TPRATE )
tio(A,
error,  error | Fa1OAS) (1—accuracyy) (1-TPRATE )

The measure Diff(A,S) represents the performance increase in either the accuracy or
TPRATE measures due to the aggregate model. The measure Ratio(A,S) represents
the fraction (of maximum possible improvement) by which the aggregate model
increases the accuracy or TPRATE. A value of Ratio(A,S) = 0 indicates that there is
no increase in the accuracy or TPRATE. A value of Ratio(A,S) = 1 indicates that the
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accuracy or TPRATE of the aggregate model is at its maximum value of 1 (or 100%).
A negative value for Ratio(A,S) indicates deterioration in performance.

Student’s paired samples t-test, the Diff(A,S) measure, and the Ratio(A,S) measure
were all used to determine performance improvements due to the aggregate model
for the experiments of chapters 7 and 8. Mean values for the accuracy and TPRATE
values were used to compute the Diff(A,S) and the Ratio(A,S) measures.

ROC analysis and lift-factor analysis are commonly used to assess the performance
of a predictive classification model and compare different models as discussed in
section 4.7.3. It was also noted in section 6.3.2 that lift-factor analysis is difficult to
interpret when oversampling is used as was done for this thesis. Multi-class ROC
analysis (Fawcett, 2001, 2004, 2006; Provost & Domingos, 2001; Hand & Till, 2001)
was used to analyse and compare the performance of the k-class single and

aggregate models.

6.5 Chapter summary

The methods used for base model design and implementation, dataset partitioning
and sampling, training dataset selection, base model aggregation, and performance
measurement have been presented in this chapter. The next two chapters report the
experimental results of the implementation of these methods for OVA and pVn
modeling.
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