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Chapter 3  

The Feature Selection Problem 
 

Feature selection should be treated as an integral part of dataset selection. It was 

pointed out in the last chapter that the use of a good set of predictive features leads 

to the reduction of the variance component of the prediction error. This chapter 

provides an overview of the feature selection problem for classification tasks in 

predictive data mining. A review of the available methods for feature selection from 

small datasets is provided. The methods discussed fall into two categories. The 

methods in the first category have been studied by researchers in the context of 

small datasets. The methods in the second category have been studied to 

specifically address feature selection for data mining for high dimensional datasets 

and for large datasets. The dangers of using a single sample to determine relevant 

features are highlighted. An analysis is conducted of commonly used methods of 

measuring class-feature correlations and more robust measures of class-feature 

correlations are discussed. Existing methods for validation of correlation values are 

also discussed. 

 

This chapter is organised as follows: The need for feature selection is discussed in 

section 3.1. Methods for implicit and explicit feature selection are respectively 

discussed in sections 3.2 and 3.3. Merit measures for heuristic feature subset search 

are given in section 3.4. Sections 3.5 and 3.6 respectively provide a discussion of 

correlation measurement and validation methods for correlations. Section 3.7 

concludes the chapter. 

 

3.1 The need for feature selection 
 

The problem of feature subset selection is concerned with finding a subset of the 

original features of a dataset, such that an induction algorithm running on data 

containing only the selected features will generate a predictive model that has the 

highest possible accuracy. It is essential to select a subset of those features which 

are most relevant to the prediction problem and are not redundant (Hand et al, 2001; 

Hall, 1999, 2000; Liu & Motoda, 1998; Blum & Langley, 1997; Aha & Bankert, 1996).  
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Feature selection is central to training dataset selection since one of the motivating 

factors for training dataset selection is to improve predictive accuracy through 

variance reduction. This section provides a discussion of the need for feature 

selection as well as definitions of relevance and redundancy as reported in the 

literature on feature selection for machine learning and data mining. Section 3.1.1 

provides definitions of feature relevance and redundancy.  Section 3.1.2 discusses a 

major problem for predictive modeling called the curse of dimensionality. 

 

3.1.1 Feature relevance and redundancy 
 

It is generally agreed that a predictive model should be constructed using a subset of 

features which are most relevant to the prediction problem and are not redundant 

(Hand et al, 2001; Hall, 1999, 2000; Liu & Motoda, 1998; Blum & Langley, 1997; Aha 

& Bankert, 1996). Blum and Langley (1997) have provided definitions of relevance, 

strong relevance and weak relevance. A feature if  is relevant if a change in the 

feature’s value can result in a change in the value of the predicted (class) variable. A 

feature  if  is strongly relevant if the use of if  in the predictive model eliminates the 

ambiguity in the classification of instances. A feature if  is weakly relevant if  if  

becomes strongly relevant when a subset of the features is removed from the set of 

available features.  By implication, a feature is irrelevant if it is not strongly relevant 

and it is not weakly relevant. Koller and Sahami (1996) have provided a definition of 

redundancy for a feature. A feature if  is redundant relative to the class variable C 

and a second feature jf if if  has stronger predictive power for jf than for the class 

variable C. Koller and Sahami (1996) have used the term Markov blanket to refer to 

the above relationship between the features jf and if , that is jf  is a Markov 

blanket for if . 

 

For purposes of making feature selection decisions however, many researchers (e.g. 

Ooi et al, 2007; Yu & Liu, 2004; Blum & Langley, 1997; Hall, 1999,2000) have 

interpreted a relevant feature as one which is highly correlated with the class 

variable. Ooi et al (2007) and Hall (1999, 2000) have interpreted a redundant feature 

as one which is highly correlated with all the other features. Yu and Liu (2004) and, 
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Koller and Sahami (1996) have however implemented the above definition of 

redundancy (based on the Markov blanket property) in feature selection. 

 

3.1.2 The curse of dimensionality 
 

Hand et al (2001) have discussed the problem of the curse of dimensionality. This 

problem is defined as the exponential rate of growth of the number of unit cells in the 

instance space as the number of predictive features increases. The curse of 

dimensionality reduces the density of instances in the instance space. Recall from 

section 2.2.1 that the instance space is the d-dimensional space defined by the d 

predictor variables.  Reduction of the density of instances in the instance space 

causes instances to appear to be very far away from each other. This makes it 

difficult for discriminative classification algorithms to establish decision regions and 

decision boundaries for classes. It also becomes more difficult for probabilistic 

classification models to estimate probability densities in the different regions of the 

instance space.  

 

The reduction of the number of features reduces the size of the instance space, and 

therefore also decreases the complexity of the prediction problem. Secondly, 

according to the PAC theory (Mitchell, 1997), as the hypothesis space size 

decreases in size, so does the sample complexity.  

 

3.2 Implicit feature selection 
 

Decision tree algorithms have the capability to implicitly identify the most predictive 

features as the tree is constructed.  In addition, a decision tree is normally pruned so 

that it retains only those features which provide statistically significant predictive 

power (Osei-Bryson, 2004, 2007; Breiman et al, 1984). Kohavi and John (1997) have 

reported feature selection studies which have revealed that decision tree algorithms 

are not always able to eliminate irrelevant features. The studies reported by Kohavi 

and John (1997) on credit approval and diabetes datasets from the UCI Machine 

Learning repository (Ascuncion & Newman, 2007; Blake & Merz, 1998) have shown 

that the performance of decision trees constructed by the C4.5 algorithm deteriorates 

significantly when a single irrelevant feature is added to the dataset. Langley (1994) 

has observed that artificial neural networks (ANNs) and the Naïve Bayes (NB) 
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algorithms also perform an implicit ranking as they build classifiers. ANNs and NB 

assign larger weights to the more relevant features and smaller weights to the less 

relevant ones. A very important point to emphasize here is that, even though many 

inductive algorithms perform implicit feature selection, all induction algorithms do 

benefit from explicit feature selection, before the algorithm is presented with the data.  

 

3.3 Explicit feature selection  
 

Explicit feature selection involves the use of a separate step to select those features 

that are considered relevant for a predictive modeling task. Specific to data mining 

there may be hundreds or thousands of features in a dataset. All potentially relevant 

features must be identified first. The identification is typically done by a domain 

expert (Guyon & Elisseef, 2003). The task of the domain expert is to select those 

variables that are known to have a bearing on the domain for the prediction task. As 

an example, van der Putten and van Someren (2004) have quoted the winner of the 

COIL 2000 competition who stated that only the variables representing wealth and 

personal behaviour of individuals were useful for the competition dataset. After the 

initial selection of features, a second step is conducted so that the most effective 

(predictive) features are selected from the pool of potentially relevant features 

(Guyon & Elisseef, 2003). Section 3.3.1 presents the categories of feature selection 

methods. Wrapper methods are discussed in section 3.3.2. Methods that use pure 

ranking are presented in section 3.3.3. Heuristics search methods and relevance and 

redundancy analysis methods are respectively discussed in sections 3.3.4 and 3.3.5. 

Feature selection methods for large datasets are discussed in section 3.3.6. 

 

3.3.1 Categories of feature selection methods 
 

Feature selection methods may be categorized as wrapper or filtering methods (Hall, 

1999; Kohavi & John, 1997). Wrapper methods incorporate model construction with 

feature selection, and select that subset of features which provides a model with the 

highest predictive performance (Blum & Langley, 1997; Kohavi & John, 1997). 

Filtering methods on the other hand, select feature subsets without constructing 

predictive models from these features (Ooi et al, 2007; Yu & Liu, 2004; Guyon & 

Eliseeff, 2003; Hall, 1999; Blum & Langley, 1997). Three filtering methods are 

discussed in this section. The first method called pure ranking, involves sorting the 
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list of features in descending order of relevance and then selecting the top w features 

or selecting features whose level of relevance is above a user specified threshold (Yu 

& Liu, 2004). The second method, called feature subset search, involves a forward 

search or backward search based on a list of ranked features in order to determine 

the best subset of features which maximises relevance and minimises redundancy 

(Ooi et al, 2007; Hall, 1999, 2000; Blum & Langley, 1997). The third filtering method 

involves relevance and redundancy analysis as two distinct steps (Yu & Liu, 2004). 

The rest of this section provides a discussion of wrapper and filtering methods for 

feature selection. 

 

3.3.2 Feature selection using wrapper methods  
 

Wrapper methods incorporate model construction with feature selection (Blum & 

Langley, 1997; Kohavi & John, 1997). For wrapper methods, different feature subsets 

are selected, a predictive model is constructed for each feature subset and the 

feature subset which produces the model with the highest predictive performance is 

selected. The accuracy for different feature subsets is measured using 10-fold cross 

validation (Blum & Langley, 1997). Wrapper methods have typically been used for 

small datasets with a small number of features. It has been argued that wrapper 

methods are not suitable for large datasets as encountered in data mining (Hall, 

1999) or datasets of high dimensionality (Yu & Liu, 2004) due to the intensive 

computational requirements. Even though the research reported in this thesis 

focussed on filtering methods, it is the author’s opinion that when many samples are 

used for model construction and testing for the wrapper approach then more reliable 

feature selection should be achieved.  

 

3.3.3 Feature selection based on pure ranking 
 

Feature ranking involves two steps. In the first step, a value is assigned to each 

feature to indicate its level of relevance to the prediction task. In the second step, the 

list of features is sorted and the top w features are selected. A commonly used 

measure of relevance is the correlation of the feature to the class. To compute the 

correlation between a numeric-valued feature and the class variable, Pearson’s 

correlation coefficient is commonly used (Ooi et al, 2007; Hall, 1999, 2000). To 

compute the correlation between a qualitative feature and the class variable, the 
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symmetrical uncertainty coefficient may be used (Yu & Liu, 2004; Hall, 1999, 2000). 

Guyon and Elisseeff (2003) and Bekkerman et al (2003) have observed that various 

feature selection algorithms include feature ranking as a preliminary step. The 

purpose of this preliminary step is to identify those features that have the potential to 

appear in the final subset of selected features. Various feature selection methods, on 

the other hand, simply use feature ranking as the selection method (Guyon & 

Elisseeff, 2003). 

 

3.3.4 Feature selection based on heuristic search  
 

Heuristic search (Luger & Stubblefield, 1993; Pearl, 1984) is the process of 

intelligently narrowing the search through a potentially very large search space of 

solutions in order to identify a satisfactory solution. At every decision point in the 

search, a heuristic search procedure employs a merit (heuristic) measure to 

determine the best path to expand in the search space. For the problem of feature 

subset search the space of all possible problems is the set of all possible 

combinations (the power set) of the features in the set of candidate features. The 

candidate features are those features that have been pre-selected through a process 

of ranking as discussed in section 3.3.1. Each state in the search space specifies a 

possible subset of features (Blum & Langley, 1997).  

 

Algorithms for feature subset search are classified as forward selection or backward 

selection algorithms. The initial state for forward selection algorithms is one where no 

feature has been selected. For backward elimination algorithms on the other hand, 

the initial state is one where all features are selected. A hill-climbing search is 

commonly conducted. The state which currently maximises the measure of merit is 

selected for further expansion. Commonly used measures include information gain 

and merit measures based on the class-feature and feature-feature correlations (Ooi 

et al, 2007; Hall, 1999, 2000). For forward search, stopping criteria include stopping 

when addition of a new feature does not result in any significant increase in the 

employed measure (Hall, 1999, 2000), or when a pre-specified number of features 

has been selected (Ooi et al, 2007). 
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3.3.5 Feature selection using relevance and redundancy analysis 
 

Yu and Liu (2004) have proposed the method of relevance and redundancy analysis 

for feature selection aimed at datasets of very high dimensionality. Yu and Liu (2004) 

have argued that heuristic subset search and wrapper methods are not feasible for 

high dimensional datasets due to the quadratic time complexity of heuristic search 

algorithms. The feature selection method proposed by Yu and Liu (2004) consists of 

two distinct steps, namely relevance analysis and redundancy analysis. For 

relevance analysis class-feature correlations are used as a basis to eliminate all 

features whose level of correlation to the class variable is below a user-specified 

threshold. The features selected in the relevance analysis step are used as input to 

the redundancy analysis step. Redundancy analysis aims to select those features 

that are relevant with respect to the class variable and are not redundant with respect 

to any other relevant feature. For each relevant feature if , every feature 
jf which 

has a smaller class-feature correlation than if  (lower relevance than if ), but has a 

high feature-feature correlation with if  (more strongly correlated to if  than to the 

class variable) is eliminated.  

 

Yu and Liu (2004) have demonstrated that even though this method has quadratic 

time complexity in the worst case, in practice the time complexity is close to linear 

time when many redundant features are present. The studies reported in this thesis 

were limited to datasets of moderately high dimensionality. It will be useful in future to 

study how the validation methods proposed in this thesis can be adapted to feature 

selection for very high dimensional datasets. 

 

3.3.6 Feature selection for large datasets 
 

For feature selection for small datasets all the instances in the dataset are used in 

the selection process. Feature selection from large datasets poses new challenges 

for feature selection. A dataset may be large because it consists of a large number of 

instances, or a large number of potentially predictive features, or both. From a 

computational perspective, the time complexity of feature selection algorithms makes 

it infeasible to use all of the data in a large dataset (Liu & Setiono, 1998a, 1998b). 

From a statistical perspective, the problems of massive search (Smyth, 2001) which 

were discussed in chapter 2 make it infeasible to use all of the data. Liu and Setiono 
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(1998a, 1998b) have proposed a stochastic (probabilistic) method of feature 

selection for large datasets of high dimensionality. The method employs random 

feature subset generation and evaluation in conjunction with dataset sampling. At 

each step of the process a sample of dataset instances is created and a subset of 

randomly selected features is generated and evaluated. The process stops when the 

selected feature subset is established to be optimal.  

 

3.4 Merit measures for heuristic search of feature subsets  
 

Heuristic search for feature selection was discussed in section 3.3.2. Suppose that at 

the current step of heuristic search, w-1 features 11 −wff ..,  have been selected from 

the candidate set of features W  and 1|| −−= wWu  features are still unselected. In 

order to select the next feature wf , feature subsets uifffFS wwi ..1},,..,{ 11 == −  are 

created so that for each subset iFS  the feature wf  is one of the u  features that are 

still unselected. A mathematical function is typically used to compute a measure of 

merit which guides the heuristic search in the selection of the best feature subset
*FS . The correlation-based feature selection (CFS) method proposed by Hall (1999, 

2000) uses the merit measure defined as 

 

____

____

)(

.

ff

cf
CFS

corrwww

corrw
Merit

1−+
=

               (3.1) 

 

where  
____

cfcorr  is the mean correlation between each feature and the class variable, 

_____

ffcorr is the mean correlation between the features in subset FS  and, w is the 

number of features in the subset FS. The numerator on the right hand side of 

equation (3.1) measures the level of relevance of the feature subset, while the 

denominator measures the level of redundancy of the feature subset. The differential 

Prioritisation (DP) method, proposed by Ooi et al (2007) uses the merit measure 

defined as 
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and || fifjcorr is the magnitude of the correlation between two features. The first term 

on the right hand side of equation (3.2) measures the level of relevance, while the 

second term measures the level of redundancy of the feature subset. The parameter 

α is used to control the levels feature relevance and redundancy based on the user’s 

preference. The merit measures of equations (3.1) and (3.2) both reflect the fact that 

the subset of selected features should have a high level of relevance and a low level 

of redundancy. The main difference between the two equations is that the relative 

importance of relevance and non-redundancy are fixed in equation (3.1) while 

equation (3.2) allows the analyst to specify the relative importance of relevance and 

non-redundancy through the parameterα . 

 

The correlation coefficients cfcorr and ffcorr are computed using either Pearson’s 

correlation coefficient for quantitative features or the symmetrical uncertainty 

coefficient for qualitative features. For two quantitative features X and Y, the 

correlation is measured using Pearson’s correlation coefficient, which is defined as  
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where 
_

x and 
_

y are the sample means for X and Y respectively, XS and YS  are the 

sample standard deviations for X and Y, and n is the size of the sample used to 

compute the correlation coefficient. 

 

In general, the level of association between two qualitative variables X and Y can be 

established using measures derived from Pearson’s 2χ statistic, such as the φ

statistic and Cramer’s V statistic (Giudici, 2003). These measures of association 

have a similar interpretation as a correlation coefficient for quantitative features 

(Giudici, 2003). The symmetrical uncertainty (SU) coefficient derived from the 

entropy function is an alternative measure of association between two qualitative 

features and also has a similar interpretation as a correlation coefficient for 

quantitative variables (Yu & Liu, 2004; Hall, 1999, 2000). The symmetrical 

uncertainty coefficient SU given in equation (3.5) is defined in terms of E(X) and E(Y) 
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(the entropy in X and Y respectively) and E(X|Y) (the entropy of X conditioned on Y).  

The definitions for E(X), E(X|Y) and other related definitions of entropy are given in 

appendix B. The SU coefficient is defined as 
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The details for the computation of Pearson’s 2χ  statistic, the φ statistic and Cramer’s 

V statistic are given in appendix B. The SU coefficient was used in the experiments 

for this thesis as it is more commonly used in feature selection studies (Yu & Liu, 

2004; Hall, 1999, 2000). 

 

When one feature X is qualitative and the other feature Y is quantitative, a weighted 

Pearson’s correlation is used. If the qualitative feature X has V levels, VLL ...1 , then V 

binary features VBB ...1  are created through a process called binarisation. Each of the 

binary features is then correlated with the quantitative feature Y. The binary feature 

iB  is assigned the value 1 when X has level iL  and 0 otherwise. The weighted 

correlation coefficient between X and Y is computed as  

 

 YBii

V

i
rXY corrLXPcorr ,).( ==�

=1

                (3.6) 

 

where )( ir LXP = is the prior probability that X has the level iL and YBicorr ,  is the 

correlation coefficient between a binary feature and the variable Y. 

 

The computation of correlation coefficients using equations (3.6) is feasible for 

qualitative features with few distinct levels. If a qualitative feature has many levels 

(e.g. 20 and above) then the number of binary features to be created becomes 

excessively large, which in turn increases the computational time for the correlation 

coefficients. Equation (3.6) is especially useful for computing correlations between 

quantitative features and the class variable. Since many classification tasks have few 

classes the computations for equation (3.6) do not pose a problem. 
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3.5 Measuring correlations 
 

In general, there are three common methods of measuring the correlation between 

two quantitative random variables X and Y: Pearson’s correlation coefficient, 

Spearman’s rho, and Kendall’s tau (Wilcox, 2001). Each of these correlation 

measures is exactly zero when X and Y are independent, and have values that range 

between -1 and +1 to indicate the level and direction of the correlation. Pearson’s 

correlation coefficient is commonly used to estimate the magnitude of the association 

between the features and the class for a dataset (Ooi et al, 2007; Hall, 1999, 2000). 

The main advantage of Pearson’s correlation is that it is very efficient to compute, 

compared to the other correlation measures. However, for many datasets used in 

data mining the meaning of Pearson’s correlation coefficient may not be what one 

expects. The problems associated with Pearson’s correlation coefficient and the 

advantages of using robust measures of correlation are discussed in this section. 

The problems associated with Pearson’s correlation coefficient and robust measures 

of correlation are respectively presented in sections 3.5.1 and 3.5.2. 

 

3.5.1 Problems with Pearson’s correlation coefficient 
 

Pearson’s product moment correlation coefficient for a data sample is computed as 

shown in equation (3.4). The computation involves the sample mean, sample 

variance and sample covariance. Furthermore, the sample mean, variances and 

covariances can be computed in a single pass of the dataset. Wilcox (2001) has 

observed that Pearson’s correlation coefficient is the best estimator of the correlation 

between the random variables X and Y when X and Y have normal probability 

distributions. Wilcox (2001) has defined the finite sample breakdown point of a 

statistic computed from a sample as the smallest proportion of outliers in the sample 

required to make the value of the statistic arbitrarily large or arbitrarily small. Wilcox 

(2001) has demonstrated that the finite sample breakdown point for the sample mean 

and sample variance is 1/n, where n is the sample size. This means that a single 

outlier can cause these measures to be arbitrarily large or small. For Pearson’s 

correlation coefficient, Wilcox (2001) has also demonstrated that a single outlier can 

mask an otherwise strong association between X and Y.  

 

The above observations by Wilcox (2001) have serious implications for feature 

selection methods based on Pearson’s correlation coefficient. First of all, highly 
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predictive features may be discarded, simply because the presence of outliers 

causes the computed sample correlation coefficient to be small, or worse still, to be 

insignificant. Secondly, non-linear associations will produce very small correlation 

coefficients, which will cause otherwise relevant features to be discarded. In a 

nutshell, in the presence of outliers and non-linear associations, and this should  be 

expected in data mining, Pearson’s correlation coefficient will provide a feature 

ranking which is incorrect. When this is the case, there is an increased risk of 

creating a model that has poor predictive performance. The reader will recall that the 

use of poor predictors results in an increase in the inherent error or variance 

component of the prediction error. Wilcox (2001) has made a strong point that: ‘if we 

are told r (Pearson’s sample correlation coefficient), and nothing else, we cannot 

deduce much about the details of how X and Y are related’. A third problem with 

Pearson’s correlation (and other correlation measures) is that the two random 

variables X and Y may be strongly associated for some of the values and not for the 

whole range of values. When this is the case, computing the correlation coefficient 

between X and Y based on the whole range of each of the variables, will provide very 

small correlation coefficient values which will lead  to the assumption that there is no 

association between the variables. 

 

3.5.2 Robust measures of correlation 
 

Wilcox (2001) has discussed three ways of handling outliers when computing sample 

correlations. The first method is to compute a winsorised Pearson’s correlation 

coefficient, the second method is to use Spearman’s rho correlation coefficient, and 

the third method is to use Kendall’s tau correlation coefficient. To winsorise the 

values of a random variable X, the smallest z% and largest z% of values in the 

sample are altered. The alteration involves replacing each of the small values with 

the smallest of the unaltered values, and replacing the large values with the largest 

unaltered value (Wilcox, 2001). For correlation computations, the values of both X 

and Y must be winsorised, prior to computing the sample means, variances and 

covariance. The problem with computing the trimmed means and winsorised 

variances is that the values of the variables must be sorted first. For a multivariate 

dataset with d variables 22 dd +  sorting operations must be conducted for the 

computation of the class-feature and feature-feature correlations. These intensive 

computations can be avoided by using Spearman’s rho or Kendall’s tau correlation 

coefficients. 
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For Spearman’s rho, the values of X and Y are converted to ranks, 1,..n. Spearman’s 

rho is then computed with Pearson’s correlation formula using the rank values. This 

way, the effect of outliers is avoided. Even though this method eliminates the 

problem of outliers, its computational requirements are not modest. It is still 

necessary to sort the values of X and Y. For multivariate data, 22 dd +  sorting 

operations are still needed for the X,Y pairs. For Kendall’s tau computations are 

needed for the probabilities cπ  and dπ .  cπ  is the probability that, given two random 

pairs of values ),( 11 yx  and ),( 22 yx , when 21 xx >  then 21 yy > , and when 21 xx <  

then 21 yy < . cπ  is called the probability of concordance between the random 

variables X and Y. dπ  is the probability that the opposite is the case, and is called 

the discordance between X and Y. The value of Kendall’s tau is computed as 

DC ππτ −= . The probabilities cπ  and dπ  are estimated by comparing all possible 

sets of pairs of values of the variables X and Y, that is, 21 /)( −n  pairs.  Kendall’s tau 

is computationally more efficient than Spearman’s rho since Kendall’s tau does not 

require sorted data. The method is also a good alternative to Pearson’s coefficient 

when outliers and non-linearity are present. However, the computational time 

complexity for Kendall’s tau is still quadratic in n, the size of the sample used to 

estimate the correlations. 

 

3.6 Validation methods for feature selection 
 

Guyon and Elisseeff (2003) have defined feature validation methods as those 

methods that are used to determine the number of significant features, guide and halt 

the feature subset search or, evaluate the final performance of the models based on 

the selected features. The discussion in this section is concerned with methods for 

determining the validity of the decision to select a given feature for inclusion in the 

set of predictive features. Section 3.6.1 discusses the need for validation of class-

feature and feature-feature correlation coefficients.  The practical significance of 

correlation coefficients is discussed in section 3.6.2. Validation methods based on 

hypothesis testing and based on fake variables are respectively discussed in 

sections 3.6.3 and 3.6.4. 
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3.6.1 The need for validation of correlation coefficients 
 

In general, filtering methods rank features based on the correlation or some other 

measure, with the class. The higher the measure the more predictive a feature is 

assumed to be. Smyth (2001) has argued that a large correlation coefficient between 

the random variables X and Y in a given data sample could be purely due to chance. 

If the feature-class correlations were measured on a different sample, the correlation 

coefficient would take on different values. The same argument applies to any 

measurement that is taken on a data sample. Measures such as the class-feature 

correlation coefficient cfcorr and the feature-feature correlation coefficient ffcorr , 

which appear in equations (3.1), (3.2) and (3.3) are therefore random variables with 

associated probability distributions. It is essential to establish the validity of these 

correlation measures before they are used in feature ranking and subset selection. 

One validation method for feature correlations that has been reported in the literature 

is the use of fake variables (Guyon & Elisseeff, 2003; Bi et al, 2003; Stoppiglia et al, 

2003). A fake variable or probe, is a variable whose values are generated purely at 

random. Such values should not have any correlation with the class variable. When 

measuring correlations using either Pearson’s r or Kendall’s tau, any features with a 

correlation value that is lower than that of the fake variables should be discarded. 

 

3.6.2 Practical significance of correlation coefficients 
 

It was pointed out in section 3.1 that feature relevance and redundancy are typically 

defined in terms of the strength of correlations. Blum and Langley (1997) have 

defined a relevant feature as one which is highly correlated with the class variable. 

Hall (1999) and Ooi et al (2007) have defined a redundant feature as one that is 

highly correlated with other features. Cohen (1988) has observed that different fields 

of study and research define the quantitative adjectives for correlations, namely 

small, medium, large, differently. In the physical sciences where the variable values 

are obtained from high precision instruments, a correlation coefficient of 0.9 is 

considered small (Cohen, 1988). In Economics, a correlation coefficient of 0.6 is 

considered small (Coetsee, 2007).  

 

For the field of Behavioural Sciences research, Cohen (1988) has suggested the 

following approach to interpreting the magnitude of a correlation. A value in the range 

[0.10, 0.30) indicates a small/weak correlation. A value in the range [0.30, 0.50) 
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indicates a medium correlation. A value in the range [0.50, 1.00] indicates a 

large/strong correlation. Cohen (1988) has argued that these criteria are suitable for 

the social sciences, since for this field of research there is always a large number of 

complicating factors in the experimental setup and the measuring instruments used 

to collect data. One implication of Cohen’s (1988) criteria for interpreting correlations 

is that correlation values of less than 0.10 have no practical significance, even 

though such correlation coefficients might appear to be statistically significant, 

especially for very large samples. 

 

3.6.3 Validation based on hypothesis testing for correlation 
coefficients 
 

In many fields of scientific enquiry, it is common practice to establish the statistical 

significance of the correlation coefficient, r, using Student’s t-test for correlations 

(Wilcox, 2001; Kanji, 1999). One can then test the null hypothesis: 0H : ‘the 

correlation between the two variables is zero’, and the alternative hypothesis aH : 

‘the correlation between the two variables is not zero’. If the null hypothesis 0H  is 

rejected, then one concludes that the two variables have a statistically significant 

(linear) relationship indicated by the direction and magnitude of the correlation 

coefficient r. The T statistic used for testing 0H and aH as defined above is  

 

21
2

r
n

rT
−
−=                    (3.7) 

 

where n is the sample size used to estimate r. Under normality and when the 

population correlation 0=ρ  the quantity T has a Student’s t distribution with n-2 

degrees of freedom. Even though this is a fairly popular test in many research areas, 

the author is not aware of any reported usage of this test in feature selection for 

computational data mining. 

 

To test the hypothesis crH =:0 , that is,  the correlation coefficient is some value c 

other than zero, Fisher’s transform is used to convert the correlation coefficients into 

the Z statistic as follows (Cohen, 1995; Cohen, 1988):  
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In equation (3.8) Z(r) is Fisher’s Z transform of r and is computed as   
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where )(rzσ  is the estimated standard error of the sampling distribution of Z(r) and is 

computed as  )3(/1 −n , where n is the number of values used to compute r.  Z(c) is 

Fisher’s Z transform of c and can be similarly computed. 

 

3.6.4 Validation based on fake variables 
 

 Stoppiglia et al (2003) have proposed the use of probes (fake variables) for 

determining the cut-off point between relevant and irrelevant features. A probe is a 

random variable whose values may be generated from any probability distribution. 

Stoppiglia et al (2003) have argued that, since such a random variable should not 

have any significant correlation to the target function, it should be ranked last if an 

infinitely large amount of data were available. However, since the amount of data is 

finite, the probe should appear somewhere in the ranked list and all features that are 

ranked below the probe should be discarded. Since the probe is a random variable, 

its rank in the list of features is also a random variable. The decision to keep or 

discard features based on the probe’s value should be based on the probability that 

this feature’s ranking is higher or lower than that of the probe.  Stoppiglia et al (2003) 

have recommended that the designer of the model should choose a tolerable risk of 

selecting or discarding the feature based on the ranking of the probes. 

 

Bi et al (2003) have reported studies on feature selection for micro-array datasets. Bi 

et al (2003) have observed that the feature selection process can be very unstable in 

the sense that each time a feature set is selected it consists of totally different 

features.  Since micro-array datasets are typically small, Bi et al (2003) have used 

bootstrap samples and merged the results from these samples. Bi et al (2003) have 

used 3 fake variables drawn randomly from Gaussian distributions and have 

discarded all variables that are less relevant than one of the fake variables. It should 
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be noted however, that since fake variables are also random variables, one should 

expect that the ranking of the fake variable will vary from sample to sample. 

 

3.7 Conclusions 
 

The need for feature selection for predictive data mining has been discussed in this 

chapter. Feature selection methods for implicit and explicit feature selection have 

been presented. Implicit feature selection is performed by the induction algorithm, 

while explicit feature selection is performed by an algorithm whose sole purpose is to 

select the best features for a given prediction task. Methods for measuring class-

feature correlations have been discussed and the problems inherent in these 

methods have been highlighted. 

 

Filtering methods are heavily dependent on the class-feature and feature-feature 

correlation measures. Many researchers have used Pearson’s correlation coefficient 

to establish class-feature and feature-feature correlations. Even though this is the 

most reliable and efficient way of measuring linear correlations, it is not the most 

appropriate measure when correlations are non-linear, and when outliers are 

present. It is useful to study more robust measures of correlation for feature 

selection.  

 

The validation methods for selected feature subsets that have been reported are 

based on the use of fake variables. These methods have been studied in the domain 

of micro-array datasets, where the datasets are typically small: less than 200 

instances. Given that fake variables are random variables, it is useful to conduct 

studies on how probes will perform in the presence of much larger datasets, and to 

devise methods of using probes to select reliable feature subsets. In many fields of 

research, hypothesis testing is used to establish the statistical significance of a 

correlation coefficient. There are no reported studies of this nature for feature 

selection for computational predictive data mining. It is the author’s belief that, when 

large amounts of data are available, opportunities arise for researchers to conduct 

studies of this nature. 

 

Filtering methods conduct feature subset selection based on a general definition of 

relevance, redundancy and correlation strength, even though different application 

domains have different interpretations of what it means for two variables to be highly 
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correlated. Algorithms are needed that can incorporate domain-specific definitions of 

feature relevance and redundancy. Even though many studies have been reported 

on feature selection for small datasets, to the author’s knowledge there are very few 

reported studies (e.g. Liu & Setiono, 1998) that specifically address feature selection 

from very large datasets. It is the author’s opinion that it is useful to conduct more 

studies of feature selection methods that can make use of the large amounts of 

available data in order to perform reliable measurement and validation of class-

feature correlations and as a result, provide reliable feature subsets.  

 

Chapter 2 presented a discussion of current methods of training dataset selection 

from large datasets. It was argued that in the presence of very large datasets it is 

useful to conduct studies of dataset selection methods aimed at reducing the bias 

and variance components of the prediction error, without having to re-use the training 

data. One method of reducing variance errors is the selection of a good set of 

predictive features. In this chapter, current methods of feature selection have been 

discussed and it has been argued that it is useful to conduct studies of feature 

selection methods that make use of the large amounts of available data to perform 

reliable measurements and validation of class-feature correlations. The next chapter 

presents a discussion of the research methods used for the studies in this thesis. The 

studies on feature selection methods are presented in chapter 5. The studies on 

training dataset selection are presented in chapters 6, 7, 8 and 9. 
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Chapter 4  

Research Methods 
 

‘It is better to have an approximate answer to the right question than a precise answer 

to the wrong question which can be made…precise’ (John Tukey) 

 

The discussion in chapters 2 has made it clear that, first of all, it is necessary to 

conduct training dataset selection from large datasets for purposes of computational 

efficiency.  Secondly, it is beneficial to study methods for selection of training data 

based on the characteristics of the instance space. Thirdly, the point has been made 

that the use of aggregate models has the potential to increase predictive accuracy 

since aggregate models are aimed at the reduction of the variance component of the 

prediction error. The use of training dataset selection methods aimed at the reduction 

of the bias and variance components of the prediction error should result in predictive 

models with a higher level of performance, compared to models created from data 

selected purely at random. The discussion of chapter 3 has made it clear that many 

samples should be used for the measurement and validation of the correlations for 

the dataset features in order to ensure reliable feature selection for large datasets.   

 

The purpose of this chapter is to explain how methods that address the above issues 

were studied. Detailed discussion of the research questions and objectives, the 

central argument of the thesis and, the research paradigm that was followed, are 

given in sections 4.1, 4.2 and 4.3 respectively. The datasets used for the 

experiments and the sampling procedures used are discussed in sections 4.4 and 

4.5 respectively.  The data mining algorithms used in the experiments, the methods 

used to evaluate model performance and, the software used for the experiments are 

given in sections 4.6, 4.7 and 4.8 respectively. Section 4.9 gives a summary of the 

chapter. 

 

4.1 Research questions and objectives 
 

The discussions in chapters 2 and 3 led the author to pose the following main 

research question: 
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What methods of training dataset selection can be used to obtain as much 

information as possible from large datasets while at the same time using training 

datasets of small sizes to create predictive models that have a high level of predictive 

performance? 

 

Based on the main research question and the literature review given in chapters 2 

and 3, the primary objectives for conducting the research were to investigate 

promising methods for the following: 

 

(1)  Reliable feature selection from large datasets using as much data as is feasible. 

 

(2)  Design of aggregate models which can make use of large amounts of training 

data while avoiding the problem of modeling phantom structure (i.e. structure that 

occurs purely due to chance as discussed in section 2.8.2). 

 

(3) Design and selection of training datasets for base models aimed at increasing 

predictive accuracy through the reduction of bias and variance of the prediction error. 

 

(4) Creation of a theoretical model that helps to explain the factors that affect the 

quality of selected features and the relationships between these factors. 

 

(5)  Creation of a theoretical model that helps to explain the factors that affect the 

performance of aggregate models and the relationships between these factors. 

 

4.2 The central argument for the thesis  
 

The central argument of this thesis is that, for predictive data mining, it is possible to 

systematically select many dataset samples and employ different approaches 

(different from current practice) to feature selection, training dataset selection, and 

model construction. When a large amount of information in a large dataset is utilised 

in the modeling process, the resulting models will have a high level of predictive 

performance and should be more reliable. 

 

Feature selection has been traditionally done based on a single randomly selected 

sample of the data. In the presence of very large amounts of data, many samples 

can be used in order to more reliably measure and validate the correlations between 
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the potential predictive features and the class (predicted) variable.  The construction 

of base models that make up an aggregate model requires the use of a separate 

training dataset for each base model. It has been argued that syntactic diversity in 

the base models is a key factor in increasing aggregate model performance. For 

small datasets it is difficult to create sufficiently large training datasets that are also 

highly diverse. Breiman (1996) has attempted to achieve diversity through bootstrap 

sampling. With large amounts of data, it is easier to create diverse training datasets, 

since there is plenty of data to choose from. Through the use of boosting, Freund and 

Schapire (1997) have attempted to replicate the training instances that come from 

those regions of the instance space that are difficult to predict correctly. With large 

amounts of data, it is easier to obtain many instances that come from the difficult 

regions. Very large datasets provide far better coverage of the instance space, 

compared to small datasets. Examination of the structure of the instance space 

should lead to a better understanding of the prediction task at hand.  This 

understanding should lead to better decisions for the sample composition of the 

training datasets for base models.  

 

4.3 The research paradigm and methodology 
 

The research paradigm used for this research is design science research as 

described by March and Smith (1995), Hevner et al (2004), Vaishnavi and Kuechler 

(2004/5) and Manson (2006). In this section, the design science research paradigm 

and methodology are briefly discussed. The design science research paradigm and 

the outputs of design science research are respectively presented in sections 4.3.1 

and 4.3.2. Artifact evaluation and theory building, and the justification for adopting 

design science research for this thesis are respectively discussed in section 4.3.3 

and 4.3.4. The different types of theories for data mining are discussed in section 

4.3.5. 

 

4.3.1 The design science research paradigm 
 

The design science research paradigm originates from engineering and the physical 

sciences (March & Smith, 1995). Design science (Simon, 1996) and design science 

research (March & Smith, 1995) are concerned with the design and study of artifacts. 
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Hevner et al (2004) have provided the following definition for Information Systems 

artifacts: 

 

‘.. innovations that define ideas, practices, technical capabilities, and products, through 

which the analysis, design, implementation, and use of information systems can be 

effectively and efficiently accomplished.’ 

 

Design science research involves two distinct steps as depicted in figure 4.1. In the 

first step, an artifact is created. In the second step, an analysis of the usage and 

performance of the artifact is conducted. The purpose of the analysis is to 

understand, explain, and possibly improve on one or more aspects of the artifact 

(Vaishnavi & Kuechler, 2004/5). According to Hevner et al (2004), in the context of 

information systems, artifacts may be models (abstractions and representations), 

methods (algorithms and practices) and instantiations (implemented and prototype 

systems). Design science research is a problem solving paradigm which seeks to 

create innovations in terms of ideas, practices, technical capabilities, and products. 

Through these innovations, the analysis, implementation, and usage of information 

systems can be effectively accomplished. Another view of design science research is 

due to March and Smith (1995). March and Smith (1995) have defined design 

science research and design science as activities aimed at the creation of things that 

serve human purposes. Design science and design science research are therefore 

technology-oriented and their outputs are assessed against criteria of value/utility.  

 

 
Figure 4.1:  A general model for generating knowledge in design science research  
(adopted from Vaishnavi & Keuchler (2004/5) and Manson (2006) ) 
 

Manson (2006) has summarised these views by observing that design science 

research is a process of using knowledge to design and create useful artifacts, and 

then using rigorous methods to analyse why, or why not, a particular artifact is 
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effective. Figure 4.1 shows a general model for generating knowledge in design 

science research, and reflects Manson’s (2006) observations. 

 

4.3.2 The outputs of design science research 
 

Table 4.1 gives a list of the outputs of design science research. Scientific research is 

about generating knowledge. In terms of generating new knowledge, for design 

science research new knowledge is generated in terms of the new constructs, new 

models, new methods (the how-to knowledge), and the better theories that arise out 

of the design and evaluation activities. Constructs are the core vocabulary that is 

used to express the concepts of a field. Knowledge is created when statements or 

propositions are made to express the relationships between various constructs of the 

field. Better theories, in terms of the models, will result if the models are rigorously 

tested in order to establish the existence of the relationships.   

 

Table 4.1: Outputs of design science research: Adapted from Vaishnavi & Kuechler (2004/5)  
 Output Description 

 
1 

 
constructs 

Conceptual vocabulary of a domain. Constructs make up the language 
used to define and communicate problems and solutions. 

 
2 

 
models 

A set of propositions or statements expressing relationships between 
constructs 

 
3 

 
Methods 

 
a set of steps used to perform a task: how-to knowledge 

 
4 

 
Instantiations 

Operationalisation of constructs, models and methods. Demonstration 
that the models and methods can be implemented in a working system. 

 
5 

 
Better theories 

 
Artifact construction as analogous to experimental natural science 

 

4.3.3 Artifact evaluation and theory building 
 

March and Smith (1995) have defined theories as ‘deep, principled explanations of 

phenomena’. Cohen (1995) has argued that theories may also be ‘propositions from 

which we can derive testable hypotheses’. Table 4.1  shows that one of the outputs 

of design science research should be ‘better theories’, that is, some improvements 

should be made to the existing theories of the field. Cohen (1995:ch.9) has provided 

guidelines for generalisation and theory building in Artificial Intelligence (AI) research. 

Cohen (1995) has stated that, for AI research there are six possible types of 

contributions as shown in figure 4.2. The cells 3,4,5,6 (P-S, P-G, E-S, E-G) in figure 

4.2 represent research activities that result in the creation of new scientific theories. 

Cells 3 and 4 (P-S and P-G) represent the creation of predictive theories. Predictive 
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theories attempt to predict (hypothesize on) the behaviour of a specific system or a 

class of systems. According to Cohen (1995), system behaviour is typically predicted 

in terms of the features of the system architecture (structure), the features of the 

tasks that the system can perform, and the features of the environment in which the 

system operates. Cells 5 and 6 (E-S and E-G) represent the creation of explanatory 

theories. Explanatory theories attempt to explain the hypothesized behaviour of a 

specific system or class of systems. 

 

 
Figure 4.2: Relationship between understanding, generalisation and scientific theories. 
Adapted from Cohen (1995) 
 

According to Cohen (1995) progress in science is gradually achieved by moving from 

descriptions of specific systems to providing causal explanations for systems in 

general as depicted in figure 4.2. Specific to design science research, March and 

Smith (1995) have observed that progress in design science is achieved when 

existing technologies are replaced by more effective ones. For the scope of this 

research, ‘general’ systems were viewed as systems for dataset selection for 

predictive data mining. A system for dataset selection for discriminative classification 

modeling was viewed as a ‘specific’ system as depicted in figure 4.2. The dashed line 

in figure 4.2 indicates the scope of scientific progress addressed in this thesis based 

on Cohen’s (1995) definitions. The scope of design science progress claimed in this 

thesis is described in detail in chapter 11. 

 

In the process of formulating predictive and explanatory theories, the Scientific 

Method of Peirce and Popper (Ngwenyama & Osei-Bryson, 2010; Oates, 2006) may 
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be followed for purposes of building theories based on empirical studies. This method 

involves observation, hypothesis generation, experiment design, and testing the 

validity of the hypotheses. Figure 4.3 shows the steps of the scientific method based 

on the discussion by Ngwenyama and Osei-Bryson (2010). Empirical observation 

involves the gathering of data/information about the phenomenon of interest. 

Hypothesis generation is when the researcher puts forward several hypotheses that 

could explain the phenomenon. Experiment design involves the design of 

experiments to test the logical consequence (validity) of the hypotheses. In the 

empirical testing step, the experiments are conducted in order to collect 

observations/data which is then analysed in order to establish whether or not the 

hypotheses are valid. The building of new theories arises from the outcomes of the 

empirical testing step. The empirical research reported in this thesis resulted in the 

formulation of a number of predictive theories which are presented in chapter 11. The 

scientific method was followed in the design and evaluation steps within the design 

science research paradigm. 

 

 
Figure 4.3: Steps of the scientific method.  
 

4.3.4 Justification for adopting the design science research 
paradigm 
 

This thesis is concerned with the investigation of methods for selecting features and 

training datasets from large amounts of data and the use of the selected data to 

create predictive models which can achieve a high level of accuracy and stability. 

The design and evaluation activities for the research are therefore the design and 

evaluation of feature selection methods, training set selection methods, and 

associated methods for model construction and testing. The use of design science 
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research enabled the author to systematically evaluate the hypothesised methods of 

feature selection, dataset selection, and model construction, and to systematically 

test hypothesised relationships between factors that affect the quality of selected 

features and training datasets. Based on existing literature, the author was able to 

construct models of known factors that affect the quality of selected features and 

training datasets, and to extend these models based on the results obtained from the 

experiments that were conducted for this research. 

 

4.3.5 Theories for data mining 
 

The foregoing discussion is aimed at the development of empirically derived theories 

for data mining. It was noted in chapter 1 that the parent fields of data mining are 

Computer Science and Statistics (Smyth, 2001). More recently, Olafsson et al (2008) 

have discussed the contributions by Operations Research to the field of data mining. 

While Statistics and Operations Research are founded on mathematical theories, in 

general for Computer Science, there are two types of possible theories: mathematical 

theories and empirical theories (Simon, 1996). Simon (1996) has observed that there 

are many aspects of computer systems that are so complex that there are no feasible 

mathematical theories that can be developed to describe their design and behaviour. 

Specific to machine learning, there are many mathematical theories that have been 

developed. However, Dietterich (1997) has observed that many problems in machine 

learning will only be solved through empirical studies, and not through mathematical 

formulations. The theories discussed in chapter 2, on sample complexity for inductive 

algorithms are a case in point. It was stated in chapter 2 that these theories provide 

unrealistic estimates for the sample complexity. Cohen (1995) has provided 

comprehensive guidelines on how to conduct empirical research in artificial 

intelligence and how to generate empirical theories from the empirical studies. 

 

4.4 The datasets used in the experiments 
 

The datasets used for the experiments were obtained from the UCI KDD Archive 

(Bay et al, 2000; Hettich & Bay, 1999), and the UCI Machine Learning Repository 

(Ascuncion & Newman, 2007; Blake & Merz, 1998).  This section provides the 

motivation for the choice of datasets, brief descriptions of the datasets, past usage of 

the datasets, and pre-processing that was performed on two of the datasets. The 
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descriptive statistics for the selected datasets are provided in appendix C. The 

reasons for selecting the datasets for the experiments of this thesis are presented in 

section 4.4.1. Dataset pre-processing is discussed in sections 4.4.2 and 4.4.3. 

 

4.4.1 Choice of datasets and past usage  
 

Typical empirical studies on aggregate modelling for small datasets have been 

conducted using small numbers of datasets. The exception is Ali and Pazzani’s 

(1996) studies where 29 datasets have been used. Table 4.2 provides some 

examples of studies where small datasets have been used. Experimental studies on 

dataset selection and aggregate modelling from large datasets have also been 

conducted using small numbers of datasets.  

 

Table 4.2: Examples of datasets used in data mining and machine learning studies 
 
Author(s) 

 
Nature / scope of study 

 
Dataset description 

Ooi et al (2007) 
 
 

OVA classification and feature 
selection 

8 small datasets of sizes between 60 and 257 
instances, and large number of dimensions 
ranging between 1,741 and 12,011 

Chawla et al 
(2001) 

Dataset partitioning and 
aggregate modeling using 
massively parallel super 
computers 

4 small datasets of size less than 20,000 
instances and  
2 large datasets of size 299,186 and 3.6 million 
instances 

Hall et al (2000) Dataset partitioning and 
aggregate modelling 
using massively parallel super 
computers 

4 very large datasets of sizes 1.6, 3.2, 6.4 and 
51 million instances 

Chan and Stolfo 
(1998) 
 

Dataset partitioning, sampling 
and aggregate modelling  

1 large dataset for credit card fraud detection. 
500,000 instances 
 

Ho (1998) Dataset partitioning with 
random feature subsets 

4 small datasets of sizes between 3,186 and 
14,500 instances 

Ali and Pazzani 
(1996) 

Factors that affect performance 
improvements for aggregate 
models  

29 small datasets of sizes between 150 and 
8,200 instances 

Breiman (1996) Bootstrap aggregation for 
classification and regression 

12 small datasets of sizes between 351 and 
1,395 instances 

Kwok and Carter 
(1990) 

aggregate modeling for 
decision trees 

2 small datasets of sizes 446 and 5,516 
instances 

 

The examples given in table 4.2 indicate that studies have been conducted using 

one, two or four large datasets. Studies on extremely large datasets with instances in 

excess of one million have been conducted using supercomputers with massively 

parallel architectures (Chawla et al, 2001; Hall et al, 2000). Based on the foregoing 

observations and the time and computational resources available to the author, a 
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decision was made to use two small datasets and two large datasets for the 

experiments for this thesis. 

 

Table 4.3 gives the characteristics and past usage of the datasets used in the 

experiments for this thesis. The mushroom and abalone datasets (Ascuncion & 

Newman, 2007; Blake & Merz, 1998) are very commonly used in machine learning 

research. The wine quality dataset (Cortez et al, 2009; Ascuncion & Newman, 2007) 

has been used by Cortez et al (2009) for predictive modeling of wine quality. The 

mushroom dataset has originally been used for concept learning research by 

Schlimmer (1987) and Iba et al (1988).  The mushroom dataset was selected for this 

research as the dataset which consists of only qualitative features, in order to study 

the behaviour of correlation measures for qualitative features. The abalone dataset 

has originally been used by Waugh (1995) for cascade-correlation. The original 

abalone dataset has 29 classes. Clark et al (1996) have created a three-class 

version of this dataset for their comparative study of artificial neural network 

algorithms. The three-class version of the abalone dataset was used for the 

experiments reported in this thesis. The wine quality dataset was selected for 

purposes of establishing whether the proposed training instance selection methods 

can also be applied to small datasets. A second reason for selecting the abalone and 

wine quality datasets was because these datasets have low levels of classification 

accuracy and can therefore be used to demonstrate increases in predictive 

performance (Cohen, 1995). 

 

The two large datasets that were used for the experiments are forest cover type and 

KDD Cup 1999 (Bay et al, 2000; Hettich & Bay, 1999). These two datasets were 

chosen for the experiments because they are large datasets, and have large 

numbers of features. Tables 4.3, 4.4 and 4.5 show the important statistics for these 

datasets. The forest cover type dataset is a good example of data mining for a 

scientific application. This dataset consists of data describing the forest cover type for 

each of 581,012 forest cells, each measuring 30x30 meters. The prediction task for 

the forest cover type dataset is to predict one of seven forest cover types based on 

the soil type, wilderness area type, elevation (altitude) and other variables. Blackard 

(1998) has used this dataset to study the differences in predictive performance 

between artificial neural networks and discriminant analysis. The KDD Cup 1999 

dataset is a typical example of data for forensic data mining. This dataset is a 

common benchmark for the evaluation of computer network intrusion detection 
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systems (IDS). The dataset consists of a wide variety of network intrusions, 

simulated for a military computer network environment.  

 

 

Table 4.3: The datasets used for the experiments  
Dataset Description Past usage 

Size Features & classes 
Forest cover 
type 

 
581,012 
 

54 features 
10 continuous, 44 binary, 7 classes 

Comparison of ANNs and 
discriminant analysis 
(Blackard, 1998) 

KDD Cup 1999  
Training dataset  
(10% version)  

 
494,022 

41 features 
34 continuous, 7 qualitative, 23 classes 

 
Intrusion detection 
(Stolfo et al, 2000) 

KDD Cup 1999  
Test dataset  

 
311,029 

41 features 
34 continuous, 7 qualitative, 40 classes 

Wine quality 
(white) 

 
4,898 

11 continuous-values features, 
7 classes 

Prediction of wine quality 
scores assigned by wine 
tasters. (Cortez et al, 2009) 

Abalone  
(3 class) 

 
4,177 

features: 8 features 
7 continuous, 1 qualitative, 3 classes 

Prediction of the age of 
abalone 

Mushroom  
8,146 

22 qualitative features 
2 classes 

Prediction of edibility of 
mushrooms 

 

Table 4.4: Class counts for the forest cover type dataset 
Class Type of forest cover Count 
1 Spruce / Fir 211,840 

2 Lodgepole pine 283,301 

3 Ponderosa pine 35,754 

4 Cottonwood / Willow 2,747 

5 Aspen 9,493 

6 Douglas - fir 17,367 

7 Krummholz 20,510 
TOTAL  581,012 

 

The dataset was provided by the USA DARPA and MIT Lincoln Labs (Lee et al, 

2002),  and was later pre-processed for the KDD Cup 1999 competition by the 

Columbia IDS Group (Stolfo et al, 2000). Two versions of this dataset are provided at 

the UCI KDD archive. The smaller version, which consists of ten percent of the 

instances of the original version, was used for the experiments. Four main categories 

of attacks are present in the dataset: denial-of-service (DOS), unauthorized access 

from a remote machine (R2L), unauthorized access to super-user privileges (U2R), 

and probing attacks (PROBE) (Laskov et al, 2005; Lee & Stolfo, 2001; Stolfo et al, 

2000).  
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Table 4.5: Class counts for the KDD Cup 1999 training (10% version) and test sets  

Attack Type 
Class count 

AttackType 
Class count 

Training set Test set Training set Test set 
apache2   794 portsweep 1,040 354 

back 2,203 1,098 processtable   759 

buffer_overflow 30 22 ps   16 

ftp_write 8 3 rootkit 10 13 

guess_passwd 53 4,367 saint   736 

httptunnel   158 satan 1,589 1,633 

imap 12 1 sendmail   17 

ipsweep 1,247 306 smurf 280,790 16,4091 

land 21 9 snmpgetattack   7,741 

loadmodule 9 2 snmpguess   2,406 

mailbomb   5,000 spy 2   

mscan   1,053 sqlattack   2 

multihop 7 18 teardrop 979 12 

named   17 udpstorm   2 

neptune 107,201 58,001 warezclient 1,020   

nmap 231 84 warezmaster 20 1,602 

normal 97,278 60,593 worm   2 

perl 3 2 xlock   9 

phf 4 2 xsnoop   4 

pod 264 87 xterm   13 

  TOTALS 494,021 311,029 
 

4.4.2 Dataset pre-processing to balance class distributions 
 

The KDD Cup 1999 dataset is not amenable to classifier construction without pre-

processing (Laskov et al 2005; Leung & Leckie, 2005). Laskov et al (2005) have 

observed that the KDD Cup 1999 dataset suffers from two major flaws in the 

distribution of the classes in the dataset. First of all, approximately 80% of instances 

correspond to attacks. Secondly, the distribution of the attack instances is highly 

unbalanced. Laskov et al (2005) have observed that Probes and DOS attacks 

dominate the class distribution, while more dangerous attacks such as phf and imap 

are severely under-represented. Researchers who have used the KDD Cup 1999 

dataset (e.g. Shin & Lee, 2006; Laskov et al, 2005; Leung & Lecki, 2005) have 

typically pre-processed the dataset to balance the distribution of the attack types and 

service types, and to reduce the number of instances for attacks in comparison to 

normal connections. Laskov et al (2005), for example, have reduced the number of 

attack instances to five percent (5%). 
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Table 4.6: Reduction of the over-representation of (service, attack type) values in the KDD 
Cup 1999 training and test datasets 
Dataset Service 

name 
Class name Instance 

type 
Count  
before 

Count  
after 

 
Training 
set 

private neptune attack 101,317 500 
ecr_i smurf attack 280,790 1,000 
http normal normal 61,887 5,000 

smtp normal normal 9,598 5,000 
 
Test set 

private neptune attack 54,739 500 
private smurf attack 164,091 1,000 
private snmpgetattack attack 7,733 2,500 
smtp mailbomb attack 5,000 2,500 
private normal normal 12,808 2,500 

 

Two approaches have been used by researchers to construct classification models 

from the KDD Cup 1999 dataset. For the first approach, the attack types that appear 

in the data are used as the classes (Laskov et al, 2005; Lee & Stolfo, 2000; Fan et al, 

2000). For the second approach, the main categories: NORMAL, DOS, PROBE, R2L 

and U2R are used as the classes (Shin & Lee, 2006). The main problem with using 

the first approach is that there are attack types that are severely under-represented 

as can be seen in table 4.6. Secondly, there are attack types that appear in the test 

set but not in the training set. The problem of under-representation is slightly reduced 

in the second approach. The problem of classes which appear in the test set and not 

the training set is partially eliminated when the second approach is used, since all 

such attacks belong to the R2L category. 

 

For the experiments reported in this thesis, pre-processing of the dataset was done 

as follows. The instances for the (service, attack type) values that are severely over-

represented were reduced as shown in table 4.6. The objective of the reduction was 

to ensure that the frequency of attacks for each over-represented attack type is 

reduced to make that frequency comparable to the other attack types for that service. 

The reduction was achieved using sequential random sampling of the instances that 

are over-represented. The training and test datasets were further pre-processed to 

add a new class variable with values NORMAL, DOS, PROBE, R2L and U2R. Table 

4.7 shows the resulting attack type and class distributions after the pre-processing, 

for the dataset used for training. The test dataset was further pre-processed to 

remove all attack types that do not appear in the training data. This was motivated by 

the following observations as stated by Lee and Stolfo (2000). 

 

The two main intrusion detection techniques are misuse detection and anomaly 

detection. Misuse detection systems use patterns of well known attacks to identify 

 
 
 



  84 

known intrusions. On the other hand, anomaly detection systems detect and report 

activities that significantly differ from established normal usage profiles (Lee & Stolfo 

2000).  Since classification modeling is based on inductive learning, classification 

models created for intrusion detection systems should be created for misuse 

detection. For this reason, attack types that do not appear in the training data were 

removed from the test data. Table 4.8 shows the resulting class distribution of the 

test dataset after this phase of pre-processing. The entries for TestA in column 7 of 

table 4.8 indicate the number of instances that were removed because the attack 

type does not appear in the training data. 

 

Table 4.7: Class counts for the final version of the KDD Cup 1999 training dataset 

Class 
Type of 
connection AttackType 

AttackType 
count Class count 

 
 
 
 
DOS 

 
 
 
 
Denial of service 

back 2,203 

10,851 

land 21 
neptune 6,384 
pod 264 
smurf 1,000 
teardrop 979 

NORMAL normal normal 35,794 35,794 
 
 
PROBE 
 

 
 
Probing prior to 
attack 

ipsweep 1247 

4,107 

nmap 231 
portsweep 1,040 
satan 1,589 

 
 
 
 
 
R2L 
 

 
 
 
 
 
Unauthorised 
access from a 
remote machine 

ftp_write 8 

1,126 

guess_passwd 53 
imap 12 
multihop 7 
phf 4 
spy 2 

warezclient 1,020 
warezmaster 20 

 
 
U2R 
 

 
Unauthorised 
access to 
superuser 
privileges 

buffer_overflow 30 

52 

loadmodule 9 
perl 3 
rootkit 10 

TOTALS    51,930 51,930 
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Table 4.8: Class counts for the final version of the KDD Cup 1999 test dataset 

Class AttackType 
AttackType 
count 

Class 
count Class AttackType Attack count 

Class 
count 

 
 
 
 
 
 
 
 
DOS 
 

apache2 794 

  
  
  
  
  
  
  
  
  
10023 

 
 
 
 
 
 
 
 
 
R2L 
 

httptunnel 
TestA:    158 
TestB:        0 

  
  
  
  
  
  
  
  
TestA: 
 11,114 
 
TestB: 
5,995 

back 1,098 imap 1 
land 9 multihop 18 

mailbomb 2,500 named 
TestA:      17 
TestB:       0 

neptune 3,762 phf 2 

pod 87 sendmail 
TestA:     17 
TestB:      0 

processtable 759 snmpgetattack 
TestA : 2508 
TestB:     0 

smurf 1,000 snmpguess 
TestA:  2406 
TestB:        0 

teardrop 12 warezmaster 1,602 
udpstorm 2 worm 2 

NORMAL normal 50,285 50285 xlock 
TestA:       9 
TestB:       0 

PROBE 
 

ipsweep 306 
  
  
  
  
  

4166 

xsnoop 
TestA:       4 
TestB:       0 

mscan 1,053  
 
 
U2R 
 

buffer_overflow 22 
  
  
  
  
  
  

70 

nmap 84 loadmodule 2 
portsweep 354 perl 2 
saint 736 ps 16 
satan 1,633 rootkit 13 

R2L 
 

ftp_write 3   
  

sqlattack 2 
guess_passwd 4,367 xterm 13 

  
TOTALS (TestA) 75,658 75,658 
TOTALS (TestB) 70,539 70,539 

 

4.4.3 Dataset pre-processing to normalise feature values 
 

The KDD Cup 1999 dataset contains features from various numeric-valued domains. 

Table 4.9 shows a selected sample of features as well as the minimum and 

maximum values of the features for the KDD Cup 1999 dataset. As can be seen in 

table 4.9, the KDD Cup 1999 dataset has features with a narrow value range (e.g. 

[0,1] for DstHostSrvSerrorRate) as well as features with a very wide value range (e.g. 

[0, 693375640] for SrcBytes). K-Nearest neighbour (KNN) is one of the classification 

algorithms that were used in the experiments. The KNN algorithm computes 

distances between instances using a distance measure from the class of the 

Minkowski norms (Doherty et al, 2007) of which the Euclidean distance measure is 

the most common. The computation of the Euclidean distance using features from 

very widely varying ranges of values such as found in the KDD Cup 1999 dataset will 

result in the large-valued features dominating the result of the computed distance, 

and so masking the effects of the small-valued features.  
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Table 4.9: Range of values for features in the KDD Cup 1999 dataset 

Feature Minimum value Maximum value 

NumCompromised 0 884 

WrongFragment 0 3 

DstHostSrvSerrorRate 0 1 

Hot 0 30 

DstHostSerrorRate 0 1 

NumRoot 0 993 

Counted 0 511 

DstBytes 0 5,155,468 

SrcBytes 0 693,375,640 

SrvCount 0 511 

NumFailedLogins 0 5 

NumFileCreations 0 28 

Duration 0 58,329 
 

Doherty et al (2007) have conducted experiments which show that normalisation of 

data values for a dataset may eliminate this problem. For this reason, the numeric-

valued features of the KDD Cup 1999 dataset were normalised in the pre-processing 

step for the KNN algorithm. Secondly, the normalised values were mapped into the 

range [0, 1000] to avoid the effects of rounding when fractional values are multiplied 

together. 

 

4.5 Sampling methods 
 

All the experiments reported in this thesis involved the use of simple random 

sampling. Simple random sampling is the process of selecting a sample of the 

population units while giving every member of the population an equal chance of 

being selected (Rao, 2000). Simple random sampling may be done with replacement 

(SRSWR) or without replacement (SRSWOR).  For SRSWOR, every population unit 

gets only one chance of being considered for selection. For SRSWR, every 

population unit gets many chances of being considered for selection. Sequential 

random sampling, described in the next section, was used to implement both SRWR 

and SRWOR for the large datasets used in the experiments. Sequential random 

sampling is discussed in section 4.5.1. The shuffling of data prior to sampling is 

discussed in section 4.5.2. 
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4.5.1 Sequential random sampling 
 

Olken and Rotem (1995) and Olken (1993) have studied the use of sequential 

random sampling from databases. For sequential random sampling, the problem is to 

draw a random sample of size n without replacement, from a file containing N 

records. The simplest sequential random sampling method is due to Fan et al (1962) 

and Jones (1962), and proceeds as follows: An independent uniform random variate 

from the uniform interval [0,1]  is generated for each record in the file to determine 

whether the record should be included in the sample. If �� records have already been 

chosen from among the first t records in the file, the (t+1)st record is chosen with 

probability  )/( sizesize RMRQ ,  where )( tsize nnRQ −= is the number of records that still 

need to be chosen for the sample, and   )( tNRMsize −= is the number of records in 

the file still to be processed.  Olken (1993) has used these methods to study 

database sampling.  

 

4.5.2 Obtaining random samples from datasets 
 

The records for each of the large datasets used in the experiments were randomised 

(shuffled) prior to sampling. The reason for shuffling the data was to remove any 

possible ordering in the dataset and to maximise the randomness of the order in 

which the instances appear. Sequential random sampling was then used to achieve 

simple random sampling, either from the whole dataset or from partitions of the 

dataset. In order to create bootstrap samples, the sequential random sampling 

procedure was repeated several times on the dataset, with a different random seed 

for each iteration. The shuffling and sampling from the datasets were implemented 

using stored procedures in a Microsoft SQL Server database. 

 

4.6 The data mining algorithms used in the experiments 
 

The two classification algorithms used for the experiments are decision tree for 

classification and K-Nearest Neighbour (KNN) classification. Decision tree 

classification (Quinlan, 1993; Quinlan, 1986; Breiman et al, 1984), which constructs 

classification models, has the desirable property that it attempts to identify the most 

relevant features. The KNN algorithm (Cover & Hart, 1967) is very different from the 
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decision tree algorithms, as it does not perform feature selection of any kind, and 

therefore benefits the most from feature selection. Wu et al (2008) have reported that 

the decision tree algorithms as implemented in C4.5 (Quinlan, 1993; Quinlan, 1986) 

and CART (Breiman et al, 1984) as well as the KNN classification algorithm (Cover & 

Hart, 1967), are among the top ten algorithms used in data mining research. This 

section provides a brief description of the classification tree and KNN classification 

algorithms. Classification tree algorithms are discussed in section 4.6.1. KNN 

classification is discussed in section 4.6.2. 

 

4.6.1 Classification trees 
 

A classification tree algorithm creates a tree-structured model for the prediction of a 

qualitative variable called the class variable. In the classification tree model each leaf 

node provides information about the class to be assigned to instances that fall in that 

node. A classification tree algorithm recursively partitions a set of training data, using 

one predictive feature at a time, to create training dataset partitions. A classification 

tree is constructed, along with the partitioning process, based on the generated 

training dataset partitions. The heuristic used to guide the partitioning process uses a 

class impurity measure. At each decision point (for partitioning), all remaining 

features are evaluated. The feature that produces the partitions with the lowest class 

impurity is selected for partitioning. The selected feature then becomes the test for 

the decision/classification tree node with its values labeling the branches of the node. 

Commonly used class impurity measures are the chi-square (CHAID) criterion 

(Giudici, 2003), the two-ing criterion (Breiman et al, 1984), the Gini index of diversity 

(Breiman et al, 1984), and the entropy function (Quinlan, 1986). 

        

The partitioning process should ideally stop when each partition is pure, that is, it 

consists of training instances all of the same class. In practice, however, pruning 

methods are used to halt the partitioning when it is no longer statistically valid to 

continue (Quinlan, 1993; Breiman et al, 1984). Breiman et al (1984) have observed 

that the tree growing procedures result in trees that are much larger than the data 

warrant. For example, if splitting is carried out to the point where each terminal node 

contains only one data case, then each node is classified by the case it contains, and 

the error on the training data is zero. This is an extreme case of overfitting which was 

discussed in chapter 2. On the other hand, when a tree is too small, then useful 

classification information in the training data has been ignored. This results in a high 
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rate of classification error on the training data and a high predictive error rate on 

future instances. To determine the optimally-sized tree, a three step procedure is 

used (Osei-Bryson, 2004; Breiman et al, 1984).  The first step is to grow a tree that is 

as large as possible. In the second step, the tree is pruned upward from the leaf 

nodes until the root is reached. In the third step, an independent sample of test data 

is used to estimate the predictive accuracy of all the pruned trees. The tree with the 

highest accuracy on the test data is selected as the optimally-sized tree. Optimisation 

methods from Operations Research have also been proposed for the selection of the 

optimal-size classification tree based on multiple objectives (Osei-Bryson, 2004). For 

the final classification tree that is used for classification, each leaf node has an 

assigned posterior probability for each class. In the prediction process, when a query 

instance lands at a given leaf node, the class with the highest probability at that node 

is predicted for the query instance (Osei-Bryson, 2004; Quinlan, 2004). 

 

4.6.2 K-Nearest Neighbour classification 
 

The K-Nearest Neighbour (KNN) classification algorithm originates from the field of 

statistical pattern recognition (Cover & Hart, 1967). The inductive bias of the KNN 

algorithm corresponds to an assumption that the classification of an instance q���� , will 

be most similar to the classification of other instances that are nearby in terms of 

Euclidean distance. K-nearest neighbour classification uses a lazy algorithm which 

only constructs a classifier in the form of a target function, only when a new instance 

for classification is presented. The target function may be either discrete or real 

valued. If the target function is discrete valued then it is of the form CRf d →: , 

where d is the number of predictive features and C is the finite set },...,{ kcc1  of the 

classes in the training data.  For the simplest implementation of the KNN algorithm, 

the target function is estimated by computing a score for each class and returning 

that class that most frequently occurs among the K-nearest instances, based on the 

Euclidean distance. The score computed by the KNN algorithm is also the posterior 

probability )|( qir cP ����  that the query instance q���� belongs to class ic . The computation 

of the Euclidean distance between query (test) instance q����  and training instance x is  

      

                     

 
dist(x, xq) =  2

1

1

2
��
�

�
��
�

� −�
=

d

i
qii xx )(  

(4.1) 
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where d is the number of predictive features for the instance space. Since many 

datasets have qualitative features, special treatment is needed for the qualitative 

nominal and qualitative ordinal values when computing Euclidean distance.  A 

common approach is to define the quantity )( qii xx −  for qualitative (nominal and 

ordinal) values as follows (Mitchell, 1997): 

 
 

4.7 Measures of model performance 
 

Evaluation is a crucial part of design science research. The measures for evaluating 

predictive model performance are discussed in section 4.7.1. Statistical methods for 

comparing two models on performance are discussed in section 4.7.2. ROC and lift 

chart analysis are discussed in section 4.7.3. 

 

4.7.1 Measures of predictive performance 
 

It was stated in chapter 1 that statisticians have invented effective methods of model 

construction, validation and testing for small datasets. Model validation and testing, 

using small amounts of data, has typically been done in the past using cross 

validation, the hold out method, or the bootstrap method (Mitchell, 1997; Hand, 1997; 

Moore & Lee, 1994). These methods were discussed in chapter 2. Even though the 

predictive performance of a model is very commonly reported in terms of predictive 

accuracy, especially in machine learning literature, various measures exist for more 

detailed analysis of the predictive capabilities of a model (Giudici, 2003; Hand et al, 

2001; Hand, 1997). By generating a confusion matrix, performance measures can be 

computed for a given classification model. Table 4.9 shows a theoretical confusion 

matrix for a 2-class problem with two class labels positive and negative (Giudici, 

2003; Hand, 1997). For a given validation dataset or test dataset, the value TP 

represents the number of positive instances that are correctly predicted as positive 

instances.  The value FN represents the number of positive instances that are 

incorrectly predicted as negative instances. The value FP represents the number of 

)( qii xx −
   = 

0 if the qualitative values are identical 

1 if the qualitative values are different 

(4.2) 
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negative instances that are incorrectly predicted as positive instances. The value TN 

represents the number of negative instances that are correctly predicted as negative 

instances. In general, a confusion matrix can be created for any k-class (k > 1) 

classification model. From the TP, FN, FP and TN values, various performance 

measures can be derived (Giudici, 2003; Kubat & Matwin, 1997; Hand, 1997).  

 

Table 4.10 gives the definitions and computation of the performance measures for a 

2-class model. These performance measures provide useful information which can 

be used to compare classification models and to select the model that has the best 

predictive performance on the test data. The counts FN and FP represent levels of 

class confusion. The value FN represents the level to which instances of the positive 

class are mis-classified as negative instances and FP represents the level to which 

instances of the negative class are mis-classified by the model as positive instances.  

 

Table 4.9: Theoretical confusion matrix for a 2-class model 
 
Actual class 

Predicted class  
Totals positive negative 

positive TP FN Pos = TP + FN 

negative FP TN Neg = FP + TN 

Totals TP + FP FN + TN Pos + Neg 

 

Table 4.10: Measures of performance derived from a confusion matrix 
Measure 

 
 
Computation 
 (in terms of table 4.9) Name Description 

 
symbol 

Error error rate error (FN + FP) / (Pos + Neg) 
 

Accuracy Accuracy accuracy (TP + TN) / (Pos + Neg) 
 

Sensitivity 
 

True positive rate  TPRATE TP / (TP + FN) 

Specificity 
 

True negative rate  TNRATE TN / (FP + TN) 

Precision 
 

Correct positive prediction rate Precision TP / (TP + FP) 

Type I error rate False negative rate FNRATE FN / (TP + FN) 
 

Type II error rate False positive rate FPRATE FP / (FP + TN) 
 

Y rate 
 

Positive prediction rate YRATE (TP + FP) / (Pos + Neg) 

 

The concepts of positive instances and negative instances for k-class prediction 

tasks were interpreted as follows in this thesis. Each class ic  was treated as the 

positive class in contrast to all the other k-1 classes which were treated as the 
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negative classes. This resulted in the creation and analysis of k confusion matrices 

with one 2 x 2 confusion matrix for each (positive) class. 

 

The error and accuracy measures have a straight forward interpretation. In this 

thesis, the accuracy (rather than the error) is reported for all experiments on 

predictive performance. For a 2-class problem, the sensitivity or true positive rate is 

the error rate on the test instances that belong to the positive class. For 2-class 

problems, the specificity or true negative rate is the error rate on the test instances 

that belong to the negative class. The false negative rate (type I error rate) is the rate 

at which a model fails to classify positive instances as positive. The false positive rate 

(type II error rate) is the rate at which a model fails to classify negative instances as 

negative. The YRATE is used for lift analysis as discussed in section 4.7.3. 

 

4.7.2 Statistical test to compare model performance 
 

For purposes of comparing the performance of two predictive models AM  and BM , a 

common approach is to establish the performance of each model on several test 

problems and compute the values of selected measures, or, all of the measures 

presented in the last section. Most commonly, in machine learning, the predictive 

accuracy or error rate are computed. Statistical tests are then used to compare the 

values of the measures on the test problems in order to establish if one model 

provides a higher level of predictive performance. Suppose that models AM  and 

BM  are each tested on a set of n problems, },...,{ 1 AnAA problemproblemPSet =

for model AM  and },...,{ 1 BnBB problemproblemPSet =  for model BM . For 

statistical testing, when the sample size n is large (n � 30), the Z test for normal 

distributions is used to compare the mean values of the performance measures. 

When n is small (5� n<30), Student’s t test is used to compare the mean values 

(Cohen, 1995).  

 

There are two types of t-tests for comparing sample means. For the first t-test, called 

the two sample t test (Cohen, 1995), the problem sets APSet  and BPSet  are 

different. For the second t-test, called the paired sample t test (Cohen, 1995), the 

problem sets APSet  and BPSet  are identical. The models AM  and BM  are each 

tested on each problem, Aiproblem , and the statistical test is based on the 
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difference in performance on each of the test problems. The paired sample t-test has 

more statistical power than the two sample t-test since it controls for (minimises) the 

variance due to the test problems (Cohen, 1995). The paired sample t-test was used 

for all the experiments in this thesis to compare model performance. In order to 

establish whether model AM  provides a higher level of predictive performance 

compared to model BM , the following null hypothesis 0H  and two-tail alternative 

hypothesis aH  were tested:  

 
0:,0:0 ≠= δδ µµ aHH                 (4.3) 

 
where Aµ  and Bµ  represent the hypothesised mean values for one of the 

performance measures presented in the last section and BA µµµδ −=  represents 

the mean difference. 

 

The F-test for variances (Cohen, 1995) was used in this thesis to compare the single 

and aggregate models in terms of variability of predictive performance. Cohen (1995: 

pg 205) has advised that comparison of performance variance for two models can be 

used to establish whether one model exhibits more erratic (or more coherent) 

behaviour compared with the other model. When two models have equal mean 

predictive performance then the model with more coherent performance should be 

preferred (Cohen, 1995). For the F-test of variances, the null hypothesis H0 is that 

there is no significant difference in the performance variances of both models. 

 

When an experiment is conducted, the probability of obtaining a particular sample 

result given the null hypothesis 0H  is called the p value. There are two methods of 

conducting statistical inference with p values. With the first, more traditional method, 

the researcher decides on the level of significance at which the null hypothesis will be 

rejected. Conventionally, a significance level of 0.05 (p = 0.05) is used. If the p value 

for a test is less than 0.05, then the null hypothesis is rejected (Montgomery et al, 

2004; Cohen, 1995). For the second method, various levels of the p value are used 

to determine the outcome of the test, as shown in table 4.11 (Stirling, 2008). The 

second method of interpreting p values was adopted for the experiments of this 

thesis. 

 

 

 
 
 



  94 

 

Table 4.11: Interpretation of p values for statistical tests 
 
p value 

 
Interpretation 

p < 0.01 Strong evidence for the rejection of 0H  

0.01 < p � 0.05 Moderate evidence for the rejection of 0H  

0.05 < p � 0.1 Marginal or weak evidence for the rejection of 0H  

p > 0.1 No evidence to support the rejection of 0H  

 

4.7.3 Analysis of performance using ROC curves and lift charts 
 

Receiver Operating Characteristic (ROC) curves and lift charts are commonly used 

as graphic representations of predictive model performance for 2-class prediction 

tasks (Giudici & Figini, 2009; Witten & Frank, 2005; Giudici, 2003; Berry & Linoff, 

2000). A probabilistic classification model will typically assign a class and a score for 

the class. Most commonly, the score is the posterior probability that a test instance 

belongs to the predicted class (Giudici & Figini, 2009; Witten & Frank, 2005; Giudici, 

2003; Berry & Linoff, 2000). ROC analysis and lift analysis are concerned with the 

selection of the model with the optimal performance based on the cut-off point λ that 

is used to decide when an instance should be declared positive or negative. A cut-off 

point is the score value )( �� ��conf  for which λ≥)( �� ��conf implies that the predicted 

class for instance ���� is the positive class. ROC and lift analysis can also be used to 

determine which of two models provides a higher level of predictive performance as 

discussed below. 

 

The Receiver Operating Characteristic (ROC) curve construct originates from signal 

detection applications where there is a signal transmitter and a signal receiver for a 

given (possibly noisy) transmission channel.  A ROC curve is used to specify the 

relationship between the hit rate (correct detection) and the miss rate (false alarm 

rate) for the signal receiver (Witten & Frank, 2005). For classification modeling, a 

ROC curve is created using the information in a 2-class confusion matrix. More 

precisely, a ROC curve is a plot on a 2-dimensional Cartesian plane with the x and y 

values defined as (Vuk & Curk, 2006; Fawcett, 2001, 2004, 2006; Ferri et al, 2003; 

Hand & Till, 2001): 

 

)(),( λλ TPRATEyFPRATEx ==                (4.4) 
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where )(λFPRATE and )(λTPRATE are respectively the false positive and true 

positive rates obtained when the cut-off value of λ is used. In order to understand the 

purpose of ROC analysis for classification modeling, it is useful to make a distinction 

between a discrete classifier and a probabilistic classifier. A discrete classifier 

assigns a class label to a test (or query) instance for a fixed threshold value (Fawcett, 

2001, 2004, 2006). A probabilistic classifier on the other hand has the ability to 

assign a class label and a (probabilistic) score to a test (or query) instance for 

different threshold values. Stated differently, a probabilistic classifier operates in 

ROC space (Fawcett, 2001, 2004, 2006) which is the 2-dimensional plane defined by 

equation (4.4). A discrete classifier corresponds to exactly one point in the ROC 

space of a probabilistic classifier. 

 

Figure 4.5 shows the Cartesian plane for the ROC space with a ROC curve example. 

A ROC curve represents relative tradeoffs between the benefits (true positives) and 

the costs (false positives) of using a given probabilistic classifier (Fawcett, 2006).  

 

 
Figure 4.5: ROC space and AUC 
 

For a given probabilistic classifier, each cut-off value of λ  corresponds to a single 

point in the ROC space as defined in equation (4.4). The ROC curve joins these 

points for ∞<<∞− λ . The point (0,0) represents a classifier which never gives a 

positive prediction. The point (1,1) represents a classifier which always gives a 
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positive prediction. The point (0,1) represents a perfect classifier which never issues 

incorrect predictions. For the ROC curve example shown in figure 4.5, the 

relationship between the cut-off values is: 123 λλλ >> , that is, the higher the cut-off 

value, the lower the FPRATE and TPRATE. A 45 degree line is normally plotted on 

the ROC plane to represent the ROC curve for classification in the absence of a 

model (random guessing). Any ROC point which lies below the 45 degree line 

represents a model which performs worse than random guessing. 

 

An important statistic provided by the ROC curve is the Area Under the ROC curve 

(AUC). The AUC is the area between the x-axis, y-axis and the ROC curve (Fawcett 

2001, 2004, 2006; Vuk & Curk, 2006; Ferri et al, 2003). This is the sum of the areas 

labelled aboveAUC  and belowAUC  in figure 4.5. The area belowAUC  has a fixed value 

of 0.5. Fawcett (2006) has observed that the area aboveAUC  is related to the Gini 

concentration coefficient (Breiman et al, 1984) as: 

 

aboveAUCGini x2=                  (4.5) 

 

Hand and Till (2001) have observed that the total area under the curve is related to 

the Gini concentration coefficient as: 

 

)(21 x abovebelow AUCAUCGini +=+             (4.6) 

 

The definition of the Gini concentration coefficient is given in appendix B. The AUC is 

equivalent to the probability that a classifier will rank a randomly chosen positive 

instance higher than a randomly chosen negative instance (Fawcett, 2006). The AUC 

is also equivalent to the statistical Wilcoxon test of ranks (Fawcett, 2006; Hand & Till, 

2001; Hanley & McNeil, 1982). Given two classifiers, the classifier with the larger 

AUC value provides a higher level of predictive performance. When the ROC curves 

of the two classifiers lie above the 45 degree line the performance difference is 

determined by the aboveAUC  area. For this reason, all discussions of the AUC 

provided in chapter 9 refer to the aboveAUC  area. 

 

Two-class ROC analysis is concerned with the computation of the AUC, which is 

computed in a straight-forward manner by calculating the area under the ROC curve 
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in the 2-diminsional Cartesian plane defined by equation (4.4). For k-class (k > 2) 

prediction tasks, ROC analysis is concerned with the computation of the Volume 

Under the ROC Surface (VUS). Computation and visualisation of the VUS is a non-

trivial task. Two surrogate measures for the VUS, which have been proposed by 

Hand and Till (2001) and Provost and Domingos (2001) are discussed in chapter 9 of 

this thesis. The ROC (VUS) analysis results for the models studied in the 

experiments for this thesis are also presented in chapter 9. 

 

The lift chart construct originates from the domain of predictive modeling for 

marketing and sales. For purposes of targeting customers in Marketing, the lift factor 

represents the expected increase in response rates when a model is used compared 

to the situation when no model is used to determine the customers to be targeted  

(Witten & Frank, 2005; Berry & Linoff, 2000). In order to plot a lift chart, the scores 

(probability values) assigned by the model on the test data are sorted into ascending 

(or descending) order and then grouped into deciles. A score for each group (decile) 

is then computed as the mean score within each group (Giudici & Figini, 2009; Witten 

& Frank, 2005; Giudici, 2003; Berry & Linoff, 2000). More precisely, a lift chart is a 

plot on a 2-dimensional Cartesian plane with the x and y values defined as (Vuk & 

Curk, 2006): 

 

)(),( λλ TPRATEyYRATEx ==                (4.7) 

 

The lift factor for each decile is computed as the ratio between the score assigned by 

the model and the score when no model is used (random guessing). The lift chart is 

plotted with the deciles on the horizontal axis and the cumulative lift factor values on 

the vertical axis. A baseline line that represents random guessing is also plotted. As 

for ROC curves, the area between the base line and the cumulative lift curve 

indicates the quality of the model. The larger the area, the better the model. A 

discussion of why lift analysis was not used is provided in chapter 6. 

 

4.8 Software used for the experiments 
 

Various software packages were used for the experiments as shown in table 4.12. 

The datasets were stored in a Microsoft SQL Server database. Storing the datasets 

in a database made it especially easy to establish the composition of each dataset, 

and to pre-process the KDD Cup 1999 dataset, using SQL statements and stored 
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procedures. Dataset sampling was implemented using stored procedures 

implemented in the Microsoft SQL Server procedural language.  

 
Table 4.12: Software used for the experiments 
 
Task / Activity 

 
Software 

 
Dataset storage and retrieval 

 
MS SQL Server 2000 

 
Dataset sampling  

Stored procedures implemented in the  MS SQL Server procedural 
language 

 
Measurement of correlation 
coefficients 

 
Specialised code implemented in Borland C++ Builder 5 

 
Feature subset search  

 
Specialised code implemented in Borland C++ Builder 5 

 
KNN classification (modeling) 

 
Specialised code implemented in Borland C++ Builder 5 

 
Classification tree modeling 

 
See 5 – Windows version of the C5.0 classifier 

 
Aggregate modeling 

 
Specialised code implemented in Borland C++ Builder 5 

 
ROC analysis 

 
Specialised code implemented in Borland C++ Builder 5 

 
Statistical hypothesis testing 

 
SPSS versions 15 and 17 

Generation of descriptive 
statistics for datasets 

 
SPSS versions 15 and 17, MS  SQL Server 2000 SQL, Ms Excel 
2003 

 
Various activities 

 
MS Excel 2003 

 

The See5 classifier (Quinlan, 2004), which is the MS Windows version of the C5.0 

classifier for Unix, was used for classification tree construction. SPSS versions 15 

and 17 for MS Windows were used for conducting the Student’s t-tests for the 

statistical analysis of model performance. Specialised applications were created in 

Borland C++ Builder 4 and 5 for measuring class-feature and feature-feature 

correlation coefficients, feature selection, the KNN classifiers, aggregate model 

classifiers, and ROC analysis. It should be pointed out that statistical software 

provides functions for correlation measurement and ROC analysis. However 

specialised software was implemented in order to speed up the experiments.  

 

4.9 Chapter summary  
 

The main research questions, central argument of this thesis, and research methods 

have been presented and justified in this chapter. The design science research 

paradigm in conjunction with the scientific method were used as a conceptual 

framework for the research. The datasets used for the experiments were obtained 

from the UCI KDD Archive and UCI Machine Learning repository. The descriptive 
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statistics of the datasets, as well as the pre-processing that was done on the 

datasets have been discussed. Sequential random sampling was used to obtain 

random samples from large datasets. The algorithms that were used for modeling, 

namely: classification tree and K-Nearest Neighbour, have been presented. The 

measures of predictive performance that were used in the experiments have been 

discussed. Finally, the software used for the experiments has been presented. In the 

next four chapters, the experiments that were conducted, the results that were 

obtained and the proposed methods for feature and dataset selection are presented. 

The theoretical models that were deduced from the experimental results are 

discussed in chapter 10.   
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