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Chapter 1  

Introduction 
 

‘Into thy presence we come, not by the works we have done, but by the grace and the 

grace alone, into thy presence we come.’ (Benjamin Dube, 2007) 

 

The rate of growth in data volumes stored by organisations continues to grow at a 

phenomenal rate. For many organisations, the amount of data stored in the data 

warehouses is in the region of many terabytes. At the extreme end, there are 

organizations whose data warehouse sizes are in the region of 50 terabytes or more. 

Data warehouses and business intelligence tools for data analysis have become a 

necessity in many organizations due to the ever increasing competitive nature of 

doing business in the information age.  

 

Real-time data warehousing is not uncommon. Given the large volumes of data that 

are collected by business, government, non-government and scientific research 

organizations, a major challenge for data mining researchers and practitioners is how 

to select sufficient amounts of data for analysis, in order to meet the objectives of a 

data mining task. As second major challenge is design of fast methods of data 

analysis. The central argument of this thesis is that there is a need to employ 

methods of dataset selection that provide as much information as possible to the 

data mining algorithms. The dataset selection methods need to be coupled with fast 

and reliable methods of data analysis for the creation of reliable data mining models. 

The thesis concentrates on predictive data mining algorithms for classification tasks. 

Methods for feature selection, dataset selection, and model construction, are 

proposed and studied. It is argued and demonstrated that these methods result in the 

construction of reliable, high performance classification models for data mining from 

very large datasets. 

 

1.1 Motivation for the research  
 

Data mining is commonly defined as a collection of methods for the analysis of 

observational data (Hand et al, 2001; Smyth, 2001). The methods used in data 
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mining for purposes of data analysis originate mainly from the fields of Computer 

Science, Statistics and Operations Research. Several researchers (e.g. Giudici, 

2003; Smyth, 2001; Hand, 1999) have observed that data mining lies at the interface 

between Computer Science and Statistics. More recently, Olafsson et al (2008) have 

discussed the contributions of Operations Research to data mining. Formally, Hand 

et al (2001) have defined data mining as follows. 

 

‘Data mining is the analysis of (often large) observational datasets, to find unsuspected 

relationships, and to summaries the data in novel ways that are both understandable 

and useful to the data owner.’ 

 

From the Computer Science perspective, the main contribution to the field of data 

mining has been algorithms from the area of machine learning. The algorithms that 

originate from machine learning are employed in the implementation of local and 

global models from observational data (Giudici, 2003; Smyth, 2001). From Statistics, 

the parent field for data analysis, the main contribution has been the large body of 

knowledge on the summarisation of data that is generated by stochastic processes, 

estimation of descriptive and predictive models for stochastic processes, and the 

evaluation of the estimated models (Giudici, 2003; Smyth, 2001). From Operations 

Research the most distinctive contribution has been optimisation methods that can 

be employed in various modeling activities and especially in the selection of the best 

model from a set of possible models (Olafsson et al, 2008; Osei-Bryson, 2004, 2007, 

2008; Fu et al, 2003, 2006).  

 

The research for this thesis was directed at the selection of training data from large 

datasets for purposes of aggregate modeling. Aggregate modeling is concerned with 

the creation of many base models which are then combined into one aggregate 

model. From a computational perspective, it can be argued that the processing time 

complexity of most machine learning algorithms employed in data mining is typically 

non-linear. This property of machine learning algorithms places a limit  on the amount 

of data that can be processed in order to provide results within a reasonable and 

acceptable amount of time. The time complexity of machine learning algorithms for 

data mining is not the only issue to consider when faced with large data volumes. 

From a statistical perspective, it is not desirable to use a very large amount of data in 

the process of estimating one model. In the past there have been several negative 

comments, especially originating from the Statistics community, directed at various 
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research directions in data mining. In 1998, Hand (1998) made the following 

observation. 

 

‘..the term data mining is … synonymous with data dredging.. and has been used to 

describe the process of trawling through data in the hope of identifying patterns. It has 

a derogatory connotation because a sufficiently exhaustive search will certainly throw 

up some patterns of some kind … the object of data analysis is not to model the 

fleeting random patterns of the moment, but to model  the underlying structures which 

give rise to consistent and replicable patterns. ..the term data mining conveys the 

sense of naïve hope vainly struggling against the cold realities of chance.’ 

 

Both the computational perspective and the statistical perspective as discussed 

above, point to the need for data reduction. It is the author’s opinion that research 

efforts should be directed towards the study of methods for the selection of relevant 

data that can be used to create models that provide a high level of predictive 

performance. 

 

The problem that the work reported in this thesis aims to solve is the design of 

methods for training dataset selection, for purposes of creating many base models 

which can be combined into one aggregate model. Such an aggregate model should 

provide a higher level of predictive performance compared to a single model created 

from a single training dataset. This approach should lead to the usage of significantly 

large amounts of data while at the same time avoiding the computational and 

statistical problems highlighted above. The idea of using aggregate models is not 

new. As far back as 1996, Breiman (1996) proposed bootstrap aggregation as a 

method of improving predictive accuracy for models constructed from small datasets. 

At the present time, there are many research efforts directed at the design of 

aggregate predictive models.  

 

1.2 Current debates and practices in data mining from 
large datasets 
 

One approach that has been investigated by researchers in predictive data mining is 

the use of very large training datasets obtained from very large datasets. Training 

datasets of several millions records have been processed using very powerful 

machines (Chawla et al, 2001; Hall et al, 2000). The rationale behind this approach is 
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that when very large amounts of data are processed, then as much as possible of the 

information gathered about a subject area is incorporated in the model construction. 

An obvious disadvantage is that the model construction process takes a very long 

time. A second and more serious disadvantage may be explained through statistical 

theory. Smyth (2001), Hand et al (2001), and Hand (1998) have cautioned that when 

training datasets are very large it becomes very difficult to distinguish between noise 

and real structure in the data. 

 

Another explanation of this disadvantage comes from the machine learning literature. 

Dietterich (1995) has observed that for classification problems, a predictive model 

which has a very high level of training accuracy is not necessarily reliable when put 

to practical use. The main purpose of predictive modeling is to process data in order 

to find relationships that can be generalized. If an inductive algorithm is used to 

create a predictive model from a very large amount of data it will minimize the 

training error. However, there is a very high risk that it will fit the predictive model to 

the noise in the training data by memorizing peculiarities of the training data rather 

than finding a general predictive rule. This phenomenon is called overfitting (Smyth, 

2001; Dietterich, 1995). Prediction models based on very large amounts of data 

should therefore be treated with caution. 

 

A second approach to predictive data mining from large datasets is to take a single 

sample from a very large dataset and use it for model construction. Additional 

samples are then taken for validation and testing (Domingos, 2001; Kohavi et al, 

2004; Provost et al, 1999; John & Langley, 1996). This approach has also received 

much attention from theoretical research in statistical pattern recognition and 

machine learning, for example, Valiant (1984). The main advantage of this approach 

is that the training sample is typically much smaller than the large dataset, and so, is 

much faster to process. An obvious disadvantage is that the bulk of the data is 

discarded and only a small fraction of the data is used for making decisions about 

feature selection, model structure and model performance. A second disadvantage is 

that sampling results in stochasticity. If another random sample were to be taken, the 

selected features, model structure and measured performance may be significantly 

different.  

 

A third approach to predictive data mining from large datasets is to partition a large 

dataset, construct a predictive model based on each partition and then combine the 

different models into one aggregate model (Chawla et al, 2001; Hall et al, 2000; 
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Chan & Stolfo, 1998). One obvious advantage of this approach is that partitioning 

attempts to use as much of the available data as possible. Several researchers who 

have studied aggregate modeling from large datasets (e.g. Chawla et al, 2001; Hall 

et al, 2000; Chan & Stolfo, 1998) have argued that the performance of an aggregate 

model normally exceeds that of a single model constructed from a single large 

training sample. On the other hand, other researchers (e.g. Hall et al, 2000; Ali & 

Pazzani, 1996) have argued that there are various domains where partitioning does 

not result in any performance gains and may in fact result in loss of accuracy.  

 

The use of aggregate models has been studied by many researchers (e.g. Osei-

Bryson et al, 2008; Sun & Li, 2008; Ooi et al, 2007; Neagu et al, 2006; Kim et al, 

2002; Chan & Stolfo, 1998; Breiman, 1996; Krogh & Veldelsby, 1995; Kwok & Carter, 

1990) even though these studies have not always been in the context of very large 

datasets. A large body of literature and evidence exists to support the claims that 

aggregate modeling often leads to improved predictive performance. Given the 

foregoing observations, it is the author’s opinion that studies in dataset selection from 

large datasets should be directed towards improving the predictive accuracy of 

aggregate models. 

 

1.3 Scope of the research 
 

The title of this thesis makes reference to the term, predictive data mining. It is 

therefore important for the author to highlight the difference between predictive and 

non-predictive data mining. 

 

Data mining tasks may be broadly divided into four categories, namely: exploratory 

data analysis (EDA), local methods for pattern detection and rule extraction, 

descriptive modeling, and predictive modeling (Hand et al, 2001). Exploratory data 

analysis is concerned with the exploration of data without any prior clearly articulated 

idea of what one is looking for, or any plan of what output needs to be generated. 

Pattern detection and rule discovery activities are concerned with the identification of 

regions of the instance space whose characteristics significantly differ  from those of 

the other regions (e.g. association rule mining) or locating patterns of interest in data 

as is done in text mining (Hand et al, 2001). The objective of descriptive modeling is 

to create a model that describes the data or the process that generates the data 

(Hand et al, 2001). Examples of this include density estimation (estimation of the 
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overall probability distribution), cluster analysis (identification of naturally occurring 

groups in the data), segmentation (division of data into groups based on specified 

criteria) and, dependency modeling (description of the relationship between 

variables). For predictive modeling, the purpose is to create a model that may be 

used for the prediction of the value of the dependent variable, given the values of the 

independent (predictor) variables.  

 

The term predictive data mining refers to data mining methods that create predictive 

models (Hand et al, 2001). Predictive models may be constructed to predict the 

values of a quantitative variable as in regression or to predict the values of a 

qualitative variable as in classification. The research reported in this thesis is 

primarily concerned with classification problems. As discussed in the last section, 

there is a large body of evidence to support the claim that aggregate modeling has 

the potential to improve classification performance. The scope of the research 

reported in this thesis is directed at classification methods that employ aggregate 

modeling. 

 

In the data mining literature, Giudici (2003) has made a distinction between 

computational data mining and statistical data mining. The distinguishing 

characteristic between computational and statistical data mining is that while 

statistical data mining methods assume a specific probability distribution for the 

process that generates the data, computational data mining methods make no 

specific assumptions about the probability distribution for the data generating 

process. However for computational data mining and machine learning, there is the 

(not always stated) assumption that the data generating process is governed by a 

fixed but unknown probability distribution (Mitchell, 1997). The research reported in 

this thesis is aimed at computational data mining. 

 

1.4 The claims of the thesis 
 

The central argument of this thesis is that it is possible for predictive data mining to 

systematically select many dataset samples and employ different approaches 

(different from current practice) to feature selection, training dataset selection, and 

model construction. When a large amount of information in the large dataset is 

utilised in the modeling process, the resulting models should have a high level of 

predictive performance and should be reliable. 
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Ngwenyama (2007) has identified seven categories of scientific research claims. The 

first four claims identified by Ngwenyama (2007) are: (1) a scientific problem that has 

been solved (2) a general contribution to science (3) extension of a body of 

knowledge and (4) appropriateness of the research methodology.  Ngwenyama 

(2007) has used the argumentation model by the philosopher Toulmin (Toulmin et al, 

1979; Toulmin, 1958) to analyse the four categories of scientific research claims. In 

Toulmin’s argumentation model (Toulmin et al, 1979; Toulmin, 1958) claims are 

supported by data (observations / evidence) and warrants. The data (observations / 

evidence) are the grounds on which the claim stands. Warrants consist of general 

rules of inference and existing theories that serve as bridges or connections between 

the data (observations / evidence) and the claims. Warrants are supported by 

backings which are the known authoritative sources from which the warrants are 

drawn. The claims of this thesis are presented in terms of Ngwenyama’s (2007) 

categorisation and Toulmin’s (1958) argumentation model. The scientific problem 

that has been solved and the general contributions to science are presented in this 

section. The extensions to the body of knowledge and the research paradigm are 

presented in the next two sections. 

 

The first claim that is made in this thesis is that aggregate classification models 

based on One-versus-All (OVA) modeling (Ooi et al, 2007; Rifkin & Klautau, 2004) 

and positive-Versus-negative (pVn) modeling can be used to increase the amount of 

relevant data in the training datasets. Increasing training data through OVA and pVn 

modeling results in improved predictive performance compared to the use of a single 

model. OVA modeling involves the decomposition of a k-class prediction task into k 

2-class prediction tasks. pVn modeling involves the decomposition of a k-class 

prediction task into j (j<k) prediction tasks. OVA and pVn aggregate models differ 

from the aggregate models commonly discussed in the literature (e.g. Osei-Bryson et 

al, 2008; Kim et al, 2002; Chan & Stolfo, 1998; Breiman, 1996; Krogh & Veldelsby, 

1995; Kwok & Carter, 1990; Hansen & Salamon, 1990). Firstly, the aggregate models 

discussed in the literature cited above do not employ problem decomposition. 

Secondly, the training datasets used for the base models that constitute such 

aggregate models generally re-use the small amount of available data. The methods 

proposed in this thesis for the implementation of OVA and pVn aggregate models do 

not re-use training data, but rather, use a different training dataset for each base 

model. These methods result in high coverage of the instance space while at the 

same time avoiding the problems of data dredging and overfitting. Traditionally, data 
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dredging and overfitting are associated with the usage of large training datasets for 

single models. High coverage of the instance space provides more information for 

the prediction task which in turn results in high predictive performance.  

 

The second claim of this thesis is that the performance of aggregate models can be 

improved when the training samples for the base models are purposefully designed 

to reduce the bias and variance components of the prediction error. The bias 

component of the prediction error reflects the level of error in the estimation process 

of the model. The variance component reflects the sensitivity of the model to the 

training sample used to estimate the model (Friedman, 1997; Geman et al, 1992). 

 

The warrants and backing for the first and second claim are as follows: Based on 

statistical theory a random / stochastic process can be studied using many small 

samples of the data generated by the process in order to establish the underlying 

structure of that process. Secondly, theories have been formulated in machine 

learning and statistical pattern recognition to explain how prediction errors arise. 

Based on these theories, it is possible to select training datasets in such a way that 

the chances of error are significantly reduced. There have been various research 

efforts that use several samples in model construction and feature selection. Breiman 

(1996) has studied the use of many bootstrap samples from small datasets to 

implement classifier committees.  Freund and Schapire (1997) have studied boosting 

through the sequential creation of many small training samples, where each 

successive training sample consists of a larger number of training instances that are 

difficult to predict correctly. Studies have been reported on dataset selection methods 

which are guided by information on the characteristics of the instance space (Chan & 

Stolfo, 1998; Kubat & Matwin, 1997). All the above studies have demonstrated that 

purposeful training dataset selection for base models can result in major 

improvements in the predictive performance of aggregate models. 

 

The third claim of this thesis is that the use of many (relatively) small samples to 

measure correlations between the variables for the prediction task leads to a more 

reliable selection of the relevant features for the prediction task. The fourth claim of 

this thesis is that, when the domain-specific definitions of the strength of association 

between variables are incorporated into the feature selection decisions, good subsets 

of predictive features will be selected for the prediction task. 
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The warrants and backing for the third and fourth claims are as follows. Statistical 

theory tells that, when the correlation between two random variables is measured 

using one sample then if the sample is small, a small or large correlation coefficient 

could be purely due to chance (Smyth, 2001). On the other hand if the sample is 

large, a small correlation coefficient may appear to be statistically significant even 

though it has no practical significance (Cohen, 1988). For purposes of measuring the 

correlations between the predictive variables and the class variable, Bi et al (2003) 

have studied the use of many bootstrap samples for micro-array datasets, in order to 

achieve reliable feature subset selection. Even though the studies by Bi et al (2003) 

have been conducted on small datasets, the results of their studies indicate that 

there are benefits in using many small samples to establish feature relevance for 

prediction tasks. Research has been conducted on the incorporation of user 

preferences in algorithms for predictive modeling. Osei-Bryson (2004) has proposed 

the incorporation of user preferences in decision tree selection. Ooi et al (2007) and 

Yu and Liu (2004) have proposed the incorporation of user-specified preferences in 

feature selection methods. The foregoing observations provide motivation for the 

incorporation of domain-specific definitions of feature relevance into feature selection 

algorithms. 

 

The fifth and final claim of this thesis is that research into aggregate model 

construction methods using different methods of sample composition and feature 

selection should lead to useful theories for the improvement of aggregate model 

performance. When the data available for model construction is small, as was 

typically the case in the past, statisticians invented effective methods of model 

construction, validation and testing (Mitchell, 1997; Cohen, 1995). Bootstrap 

sampling for example, is useful for purposes of creating several large samples which 

have the same statistical properties as the small sample from which they are 

generated (Cohen, 1995).  

 

In this thesis the author further argues that, since at the present time very large 

amounts of data are available for data mining, it is productive to investigate (new) 

ways of predictive model construction coupled with new ways of dataset selection. It 

is the author’s opinion that the following issues have not been sufficiently studied by 

researchers: 

 

(1)  The use of many samples drawn from very large datasets for purposes of feature 

selection. 
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(2) The use of sampling in conjunction with partitioning for purposes of dataset 

selection and aggregate model construction. 

(3) The design of training dataset samples aimed at reducing bias and variance in the 

prediction error without the need to re-use training data.  

 

The author further argues that when very large amounts of data are available, data 

mining researchers have at their disposal a great opportunity to conduct empirical 

studies of the factors, and the relationships between the factors that affect various 

aspects of predictive model design and construction.  In the data mining literature, 

there seems to be a scarcity of clearly articulated theoretical models based on 

empirical studies that can help to explain the relationships between the factors that 

determine: (1) the quality of selected feature subsets, (2) the quality of selected 

dataset samples and, (3) the predictive performance of aggregate models.  It should 

be pointed out however that for aggregate model construction, several researchers 

have conducted studies on various factors that affect aggregate model performance 

in the context of small datasets. Examples of these studies are Kwok and Carter 

(1990), Ali and Pazzani (1996), Breiman (1996), and Ho (1998).  

 

The investigations of this thesis were directed at dataset selection methods from 

large datasets for purposes of aggregate model implementation. The main research 

question for the thesis was as follows: 

 

What methods of dataset selection can be used to obtain as much information as 

possible from large datasets while at the same time using training datasets of small 

sizes to create predictive models that have a high level of predictive performance? 

 

The investigation of the answers to the above question was conducted using the 

design science research paradigm which is described briefly in the following section 

and in detail in chapter 4. The design science research paradigm enabled the author 

to generate experimental evidence (data) to support the claims presented in this 

section.  

 

1.5 Research paradigm 
 

The research paradigm used for this research is design science research as 

described by March and Smith (1995), Hevner et al (2004), Vaishnavi and Kuechler 
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(2004/5), and Manson (2006). Design science research involves two distinct steps. In 

the first step, an artifact is created. In the second step, an analysis of the usage and 

performance of the artifact is conducted. The purpose of the analysis is to 

understand, explain, and possibly improve on one or more aspects of the artifact 

(Vaishnavi & Kuechler, 2004/5). 

 

In the context of information systems, artifacts may be models (abstractions and 

representations), methods (algorithms and practices) and instantiations 

(implemented and prototype systems) (Hevner et al, 2004). Manson (2006) has 

summarised these views by observing that design science research is a process of 

using knowledge to design and create useful artifacts, and then using rigorous 

methods to analyse why, or why not, a particular artifact is effective. Scientific 

research is about generating knowledge. A design science research effort should 

therefore make a contribution to the knowledge base of the field. More specifically, 

the contributions of design science research could be: 

(1) Constructs. These are the components of the conceptual vocabulary of the 

domain. 

(2) Models.  These are propositions expressing the relationships between the 

constructs / concepts of the research domain. 

(3) Methods. This is the ‘how-to’ knowledge. It is specified in the form of steps used 

to perform a given task. 

(4) Instantiations. This is the operationalisation of the constructs, models and 

methods to demonstrate that the models and methods can be implemented in a 

working system. 

(5) Better theories.  

 

Design science research was found to be appropriate for this thesis because the 

central argument is based on the development of methods for feature and training 

dataset selection as well as the design and creation of predictive models.  

 

1.6 Research contributions 
 

It was stated in the last section that design science research should make a 

contribution to the knowledge base of the field. The claims of the research 

contributions of this thesis to the knowledge base of predictive data mining are 

summarised in this section in terms of the expectations of design science research 
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outputs. Two additional components in Toulmin’s (1958) argumentation model are 

qualifiers and rebuttals. Qualifiers are used to limit the strength of a claim and 

rebuttals provide an elaboration for the qualifiers. A detailed discussion of the claims 

of the research contributions and, the qualifiers and rebuttals identified by the author 

are presented in chapter 11 of this thesis. 

 

1.6.1 Methods and instantiations 
 

Methods for feature selection from large datasets were studied. The studies involved 

testing methods of reliable feature selection that  involve the use of robust measures 

of correlation, the use of many samples to measure correlations, and the use of 

statistical tests, such as the t-test and fake variables, for the validation of selected 

features. Arising from these studies, recommendations are given in this thesis on 

how to conduct reliable ranking of predictive features when large datasets are 

available. 

 

A new search algorithm for feature subset selection  is proposed. This algorithm uses 

the domain-specific knowledge of the meanings of the terms strong correlation and 

weak correlation in order to select the best subset of features for a list of ranked 

features. It is claimed in this thesis that the proposed method makes better decisions 

compared to two feature subset selection algorithms proposed in the literature, 

namely: Correlation-based Feature Selection (Hall, 1999, 2000) and Differential 

Prioritisation (Ooi et al, 2007). 

 

The implementation of One-versus-All (OVA) aggregate classification models in the 

presence of large datasets was studied. A new method of determining composition of 

the training dataset for each base model is proposed. A new method of aggregate 

model implementation, named positive-Vs-negative (pVn) classification is proposed. 

An algorithm is proposed for the determination of the classes to be included in each 

base model. A method of determining the sample composition for the training dataset 

of each base pVn model is proposed. An algorithm for combining base model 

predictions and resolving conflicting predictions is proposed. 
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1.6.2 Constructs, models and better theories 
 

Theoretical models are propositions expressing the relationships between the 

constructs / concepts of the research domain. For feature selection, a model was 

created to combine the work of various researchers. This model was extended by the 

author to explain how the definition of feature relevance, the methods used to 

measure correlations, and the number of dataset samples used, all combine to affect 

the quality of selected feature subsets. For aggregate model construction, the work of 

Ho (1998), Freund and Schapire (1997), Ali and Pazzani (1996), Breiman (1996), 

Kwok and Carter (1990), and Hansen and Salamon (1990), was used as a basis to 

construct a theoretical model that explains the relationships between the factors that 

affect aggregate model performance. This model was extended by the author to 

explain how dataset partitioning methods, learning task complexity, overlap between 

learning tasks, overlap between training instances, and the quality of the selected 

features affect the performance of aggregate models. The experimental results were 

used to demonstrate the relationships between the various factors that affect 

predictive model performance.  

 

1.7 Overview of the thesis 
 

Chapters 2, 3 and 4 provide the background to the research. Chapter 2 provides a 

discussion of the dataset selection problem for predictive data mining. The chapter 

provides a background to this problem, giving examples of several application 

domains where very large datasets are to be found. A review of literature on current 

methods of selecting training set data from very large datasets for purposes of 

classifier construction is given. Theoretical methods as well as empirical methods are 

discussed. The discussion of this chapter also covers single model and aggregate 

model construction, since the problems of dataset selection and model construction 

are related. Chapter 3 provides an overview of the feature selection problem for 

classification tasks in predictive data mining. A review of the available methods for 

feature selection from small datasets is provided. The weaknesses of these methods 

are also highlighted. Robust measures of correlation are discussed briefly. In chapter 

4, the research questions, the central argument of the thesis, and the research 

paradigm and research methods, are discussed in detail. 
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Chapters 5, 6, 7, 8 and 9 provide the details of the empirical studies that were 

conducted. Further details of the experimental results are provided in the 

appendices. In chapter 5, the experimental results on feature subset selection are 

presented. The experimental results demonstrate that the use of many samples 

results in more reliable feature selection. The results also demonstrate that the use of 

domain-specific knowledge will lead to better feature subset selection when heuristic 

subset feature selection is employed. Based on the experimental results of chapter 5 

and the existing literature, a theoretical model for the factors that influence the quality 

of feature selection is proposed in chapter 10. 

 

Chapter 6 provides a discussion of the methods that were used in the experiments 

for aggregate model design, training dataset design and selection, partitioning and 

sampling, and base model design and aggregation. The studies to evaluate the 

performance of the proposed methods are presented in chapters 7, 8 and 9. 

 

Chapter 7 provides a discussion of the empirical study of the use of OVA modeling. It 

is demonstrated that the use of OVA base models where each base model uses a 

different training set of the same size as a single model can lead to significant 

improvements in predictive performance. It is further demonstrated that, by 

establishing the nature of the instance space and then determining which regions of 

the instance space to take samples from for each OVA base model, a level of 

predictive accuracy that is higher than that of a single k-class model can be obtained. 

Based on the experimental results of chapter 7 and the existing literature, a 

theoretical model for the factors that influence the performance of aggregate models 

is proposed in chapter 10. 

 

Chapter 8 presents a discussion of the new method of aggregate model 

implementation called positive-Vs-negative (pVn) classification, as well as the 

proposed methods for determining the class and sample composition for each pVn 

base model. Experimental results of the studies to demonstrate the performance of 

pVn modeling are presented. The experimental results demonstrate that, for the 

datasets used in the experiments, pVn aggregate modeling provides a high level of 

predictive accuracy. The experimental results of chapter 8 are used in chapter 10 to 

enhance the theoretical model for the factors that influence the performance of 

aggregate models. Chapter 9 provides an in-depth analysis of the OVA and pVn 

aggregate models operating under different conditions.  
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Chapter 10 presents the recommendations for dataset selection based on the 

experimental results for the thesis. Chapters 11 and 12 provide discussions and 

conclusions for the thesis as well as suggestions for future work. Chapter 11 provides 

a discussion of the contributions of this thesis to the knowledge base of the field of 

predictive data mining using aggregate classification models. The discussion of the 

contributions is presented in terms of the outputs of design science research. 

Chapter 12 provides conclusions for the thesis as well as suggestions for future work. 
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Chapter 2  

Dataset Selection and Modeling from 
Large Datasets 
 

This chapter provides a discussion of the dataset selection problem for predictive 

data mining. The discussion provides a background to the dataset selection problem, 

giving examples of application domains where very large datasets are to be found. A 

review of the literature on current methods of selecting training set data from very 

large datasets for purposes of classification modeling is given. Theoretical methods 

as well as empirical methods are discussed.  Since dataset selection and model 

construction are intimately linked, the discussion in this chapter also addresses 

single model and aggregate model construction. The strengths and shortcomings of 

the theoretical and empirical methods are highlighted. The chapter ends with a 

discussion of research directions that, in the author’s opinion, are useful to pursue in 

order to  effectively  answer the research question which was  presented in chapter 

1. 

 

This chapter is organised as follows: Section 2.1 provides motivation for the dataset 

selection problem with examples of four application domains for data mining. 

Sections 2.2 and 2.3 respectively introduce the classification modeling problem and 

dataset selection problem. Sections 2.4 and 2.5 respectively provide a review of  

theoretically based and empirically based  methods for  training dataset selection for 

single model construction. Section 2.6 gives a discussion of existing methods for 

training dataset selection for multiple model construction. Conceptual views of 

classification modeling and the sources of classification error are respectively 

discussed in sections 2.7 and 2.8. The limitations of current training dataset selection 

methods and the proposed methods of training dataset selection are respectively 

presented in sections 2.9 and 2.10. Section 2.11 concludes the chapter. 

 

2.1 The need for dataset selection 
 

Modern data warehouses store very large volumes of data. In many areas where 

data mining is applied, very large amounts of data are collected. There are many 

application areas where data mining from large datasets is applied. These areas 
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include scientific applications (Fayyad et al, 1996), forensic data mining for purposes 

of predicting telephone fraud (Hand, 1999), credit card fraud (Chan & Stolfo, 1998), 

computer network intrusion detection (Lee & Stolfo, 2000), web usage mining for 

analysing and predicting customer purchases behaviour (Theusinger & Huber, 2000; 

Kohavi et al, 2004), and customer relationship management (Rygielski et al, 2002; 

Kohavi et al, 2000; Berry & Linoff, 2000). This section provides examples of 

application areas where very large datasets for data mining are encountered. 

Customer Relationship Management (CRM) is discussed in section 2.1.1. Web 

usage mining and electronic commerce are discussed in section 2.1.2. Forensic data 

mining is discussed in section 2.1.3. Scientific applications of data mining are 

discussed in section 2.1.4.  

 

2.1.1 Customer Relationship Management - CRM 
 

Customer Relationship Management (CRM) (Giudici, 2003; Rygielski et al, 2002; 

Bose, 2002; Berry & Linoff, 2000) is a collection of business activities specifically 

aimed at maintaining good relationships with the business customers. CRM involves 

the formulation and implementation of strategies to encourage customer loyalty in 

order for a business to obtain as much value as possible from the customers. 

Statistically driven CRM (Giudici, 2003) involves the collection, storage and analysis 

of data about customer interactions with a business in order to obtain a better 

understanding of customer behaviour. A better understanding of customer behaviour 

enables businesses to provide better services and product offerings to the customers 

(Giudici, 2003; Rygielski et al, 2002; Bose, 2002). 

 

 Rygielski et al (2002) have argued that, in order for a business to succeed with 

CRM, the business needs to capture and analyse massive amounts of customer 

data, analyse the data and transform the analysis results into actionable information. 

Rygielski et al (2002) have also argued that the analysis of customer data using 

predictive data mining, especially to extract rules, is an essential component of CRM 

for the modern business. The use of electronic commerce has made it much easier 

to collect massive amounts of data about customer purchasing behaviour in data 

warehouses. The availability of large volumes of data on customer purchasing 

activities has given rise to research interest in the area of web usage mining for e-

commerce. Typical usage of data mining for CRM includes the analysis of customer 
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attrition, churn, propensity to purchase and customer lifetime value (Giudici, 2003; 

Rygielski et al, 2002). 

 

2.1.2 Web usage mining and electronic commerce 
 

For electronic commerce, since data collection is an automated process, data 

volumes can grow very rapidly. One interesting application area which has emerged 

for e-commerce data is clickstream analysis (Kohavi et al, 2004; Theusinger & 

Huber, 2000). Clickstream analysis is used to study user navigation patterns at a 

website.  The study of user navigation patterns at a website can expose structural or 

usability problems for a website, which in turn provide useful information for 

improving the website design. Such a study will also identify which click sequences 

lead to purchases (Theusinger & Huber, 2000).  Kohavi et al (2004) have observed 

that websites that have 30 million page views per day will need to store in the region 

of 10 billion records of clickstream data each year. Linden et al (2003) have reported 

that Amazon.comTM conducts electronic trading with more than 29 million customers 

per month and stocks several million catalogue items at any given time. The 

collection of large amounts of web navigation and purchases data  creates major 

challenges for clickstream analysis, for e-traders such as Amazon.comTM. Web 

usage mining applications make explicit the fact that it may be  practically impossible 

to process all of the available data for real-life e-commerce applications of data 

mining. 

 

2.1.3 Forensic data mining 
 

Forensic data mining involves processing large amounts of data in order to identify 

criminal activities such as credit card fraud (Chan & Stolfo, 1998; Hand, 1999) and 

computer network intrusion (Lee & Stolfo, 2000). Chan and Stolfo (1998) have 

reported studies conducted on data for credit card transactions. Chan and Stolfo 

(1998) have observed that, for the credit card fraud detection domain, there may 

typically be millions of transactions occurring every day. Hand (1999) has reported 

that 350 million transactions are recorded annually by UK’s largest credit company. 

Hand (1999) has further discussed the need for real-time data analysis for fraud 

detection and has argued that, since banking transactions happen all the time, 

models created, say weeks or months after the fact are useless.  There is a need to 
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constantly create new and up-to-date models. Hand (1999) has further reported that 

by 1999 AT&TTM was recording 200 million call detail records per day. Phua et al 

(2005) have reported that descriptive modeling (e.g. cluster analysis), predictive 

modeling (classification and regression), and pattern detection and rule extraction 

(e.g. association rules) are all data mining methods that are commonly employed in 

fraud detection. Scalability of these methods is therefore a serious issue for fraud 

detection, and dataset selection becomes a necessity. 

 

For modern computer networks large volumes of data are collected and stored in 

server log files to record all user connections to each server in the network. The 

users who access the network servers may be authentic users, or may be malicious 

criminal entities. The data stored in the server log files may be used to create 

predictive models that are used as network intrusion detection systems (IDS)  (Lee &  

Stolfo, 2000; Stolfo et al, 2000). Lee et al (2000) have observed that the volumes of 

data stored in server log files are typically huge, as computer networks can 

experience several million connections on some days due to denial-of-service 

attacks. 

 

2.1.4 Scientific applications of data mining 
 

Fayyad et al (1996) have presented various case studies of the application of data 

mining to scientific data. Fayyad et al (1996) have observed that the main challenge 

for the application of data mining to scientific data that is automatically collected by 

scientific instruments is that these instruments can easily generate terabytes of data 

at rates as high as several gigabytes per hour. One interesting example is the 

Palomar Observatory Sky Survey that was conducted over a period of six years 

(Fayyad et al, 1996). The data collected consisted of 3TB of image data containing 2 

billion sky objects. The basic problem here was to create a survey catalogue 

recording the (predictive) features of each object with its class: star or galaxy. Fayyad 

et al (1996) have stated that the problem was solved using decision tree learning with 

multiple trees, and rule extraction with statistical optimisation. 

 

A second interesting example of the application of data mining to scientific data is the 

analysis of geoscience data for purposes of earthquake detection. Stolorz and Dean 

(1996) have discussed the Quakefinder system which detects and measures tectonic 

activity in the earth’s crust by examining satellite data. The Quakefinder system 
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processes massive datasets on a 256-node CrayTM T3D parallel supercomputer to 

ensure fast turnaround of results for scientists. It is generally not possible for a 

predictive data mining algorithm to process all of the data for scientific applications 

where data is automatically collected by measuring instruments. Supercomputers are 

however used in order to process as much of the data as possible. 

 

2.2 Classification modeling from very large datasets 
 

Classification modeling is the process of creating a model which predicts the values 

of a qualitative variable called the class variable.  There are two approaches that 

have been proposed in the literature for the construction of predictive classification 

models from very large datasets. The first approach to modeling is concerned with 

constructing one model using a single sample whose performance is estimated to be 

as good as that of a model that would be obtained from the whole dataset. The 

second approach to modeling is concerned with the partitioning of a large dataset 

into many small subsets which can be efficiently processed, possibly in parallel, 

creating a base model from each subset of data, and then combining the base 

models into an aggregate model.  The predictive performance of the aggregate 

model is expected to be at least as good and in several cases superior to that of a 

single model. Aggregate model construction methods are generally concerned with 

increasing accuracy compared with the use of a single predictive model. Several 

methods for aggregate model construction are directly concerned with the parallel 

processing of the dataset using massively parallel machines in order to ensure that 

all the data, or as much as of the data as possible, is used in model construction. 

This section provides a formal definition of the classification problem and the 

terminology for classification modeling. Methods for single model construction from 

large datasets as well as the methods for aggregate model construction from small 

datasets and from very large datasets are discussed. The terminology for 

classification modelling is presented in section 2.2.1. The classification modeling 

problem is discussed in section 2.2.2. Single model and aggregate construction are 

respectively discussed in sections 2.2.3 and 2.2.4. Serial and parallel aggregation, 

and model testing are respectively discussed in sections 2.2.5 and 2.2.6. 
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2.2.1 Terminology for classification modeling 
 

A dataset for predictive modeling may be described as an N x (d+1) data matrix. In 

the data matrix each row represents (d+1) measurements on a real-life object so that 

the N rows in the data matrix represent N real-life objects (Hand et al, 2001). The 

rows of the data matrix are commonly called patterns (Liu & Motoda, 1998), 

examples (Mitchell, 1997), instances or cases (Hand et al, 2001). The columns of the 

data matrix are commonly called variables, features or attributes (Hand et al, 2001; 

Mitchell, 1997). For predictive modeling the first d columns are called the predictor 

variables or features and the (d+1)st column is called the predicted variable. Specific 

to classification modeling, the predicted variable is called the class variable. The d-

dimensional space defined by the variables is commonly called the measurement 

space (Hand, 1997) or instance space (Mitchell, 1997). Within this d-dimensional 

space, each object (instance) corresponds to one point and the object has an 

associated class label specified by the (d+1)st column (class variable). In this thesis 

the term instance is used to refer to the objects, the term feature is used to refer to a 

predictor variable, the term class variable has the usual meaning and, the term 

variable is used to refer to a random variable in the generic sense. The term instance 

space is used to refer to the d-dimensional space defined by the predictor variables.  

 

The variables for the data matrix may be quantitative or qualitative (Giudici, 2003; 

Hand et al, 2001). A quantitative variable has numeric values that are either discrete 

or continuous. The values of a quantitative discrete variable have a finite number of 

levels. The values of a quantitative continuous variable come from the domain of real 

numbers. A qualitative variable has values that are either nominal or ordinal. The 

values of a qualitative nominal variable have a finite number of categories which do 

not possess an ordering. The values of a qualitative ordinal variable have a finite 

number of categories which possess an ordering (Giudici, 2003; Hand et al, 2001). 

The term categorical variable is also used in the literature to refer to a qualitative 

variable (Giudici, 2003; Hand et al, 2001). The terms quantitative variable, 

quantitative feature, qualitative variable, and qualitative feature were adopted for this 

thesis. 

 

In the literature on machine learning and data mining, various names are used to 

refer to predictive models for classification. A predictive classification model that is 

created from a single training sample using a single classification algorithm is called 

a classifier. When several classifiers are created from one or more training datasets 
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for purposes of combining them into one predictive model, these classifiers are called 

base classifiers or base models. A classifier that is created by combining several 

base classifiers is referred to using various terms. Breiman (1996) has used the term 

aggregation to refer to the process of combining classifier predictions, and the term 

aggregate predictor to refer to the model that results when several classifiers are 

combined into one model. The terms ensemble and ensemble classifier have been 

used by Hansen and Salamon (1990) to refer to combinations of artificial neural 

networks and are very commonly used in the current machine learning and data 

mining literature. The term committee of classifiers, originating from work on query by 

committee, has also been used to refer to ensemble classifiers.  The term multiple 

model is also commonly used (Sun & Li, 2008; Ali & Pazzani, 1996; Kwok & Carter, 

1990). In this thesis a decision was made to use the terms single model, base model, 

and aggregate model.  The term single model is used to refer to a classifier created 

by one algorithm from a single training dataset. The term aggregate model is used to 

refer to a classification model that is created by combining several base models.  The 

terms single model and aggregate model were chosen as it was felt that they capture 

more precisely, and clearly contrast the structures of the models to which they refer. 

 

In the literature on ensemble classification the terms complementary classifiers and 

complementarity are used to refer to base classifiers which make uncorrelated errors 

(e.g. Martínez-Muñoz et al, 2009). Base model diversity is a property that is related to 

complementarity. The term syntactic diversity is also used in the literature to refer to 

base model diversity (e.g. Ho, 1998; Ali & Pazzani, 1996; Krogh & Vedelsby, 1995; 

Kwok & Carter, 1990; Hansen & Salamon, 1990). Syntactic diversity refers to the 

level of structural differences between the base models that constitute an aggregate 

model. Martínez-Muñoz et al (2009) have observed that base model diversity is a 

necessary but not sufficient condition for complementarity. The term syntactic 

diversity is used in this thesis to refer to base model diversity. The term competence 

is used in the literature (e.g. Ali & Pazzani, 1996) to refer to the high predictive 

performance or high predictive expertise of base models. The terms competence and 

high expertise are used synonymously in this thesis. 

 

In machine learning literature, the terms generalisation error and generalisation 

accuracy are used to refer to the error and accuracy rates of a classifier on data that 

was not used in training the classifier (Mitchell, 1997). In statistics and data mining 

literature the terms prediction error and prediction accuracy are used to refer to the 

error and accuracy of a predictive model. In this thesis the terms prediction error and 
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prediction accuracy were adopted. The term predictive performance is used to 

generally refer to various measures of performance including prediction error and 

prediction accuracy. Performance measures for classification models are presented 

in chapter 4. 

 

The term bias appears in machine learning and statistics literature with different 

meanings. In statistics literature the term bias refers to estimation bias which is the 

error in the estimation of a parameter or a model (Mitchell, 1997). In machine 

learning literature the term bias has been adopted with the same meaning as used in 

statistics (Mitchell, 1997; Geman et al, 1992). In machine learning the terms inductive 

bias and preference bias refer to the set of methods used by an inductive algorithm 

to select a hypothesis (model) from the set of all possible hypotheses (models)  in the 

hypothesis space (model space) (Mitchell, 1997). In this thesis the term bias is used 

with the statistical meaning and the term inductive bias is used with the machine 

learning meaning. The term search bias is used to refer to the preferences of a 

heuristic search procedure. 

 

2.2.2 The classification modeling problem   
 

This research is specifically concerned with classification modeling. Classification 

modeling is the process of creating a model to be used for the prediction of the 

values of a qualitative variable, given the values of the predictive features. For 

applied data mining, classification modeling is part of a whole process which involves 

business understanding, data understanding and preparation, model creation, model 

assessment and deployment.  The Cross-Industry Standard Process for Data Mining 

(CRISP-DM) is a process model that has been widely adopted for applied data 

mining (Shearer, 2000). CRISP-DM provides recommendations for the phases to be 

conducted for data mining projects. Within CRISP-DM the two phases that are 

directly related to predictive modeling are data preparation and modeling.  For 

predictive classification modeling, these two phases involve (among others) the 

following activities: (1) data selection (2) data construction (e.g. creation of the class 

variable) (3) feature selection (4) model construction (5) estimation of model 

performance (Shearer, 2000). 

 

It has been illustrated by the examples of the last section that for many application 

areas, data already exists in large quantities. Data selection is concerned with the 
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selection of instances and features that have some relevance to the prediction task. 

Feature selection is concerned with the selection of the most useful features for the 

prediction task. Classification modeling often requires the construction of a class 

variable using information derived from other variables based on the objectives of the 

classification task. Classification modeling involves the estimation of a mapping m  

(or hypothesis h ) from an instance x = )...,( 1 dxx  in the d-dimensional instance space 

to the values of the class variable which consists of classes },...,{ kcc1  (Hand et al, 

2001). The two conceptual views of classification are discussed later in this chapter. 

 

2.2.3 Single model construction 
 

Methods for single model construction from large datasets are motivated by the 

learning curve. Several researchers have argued that the empirical estimation of 

training and predictive accuracy achievable from a given large dataset and a given 

learning algorithm may be done using learning curves (Provost et al, 1999; John & 

Langley 1996; Catlett 1991).  A learning curve shows the relationship between 

sample size (x axis) and the accuracy of the model (y axis) produced by an inductive 

algorithm. Learning curves typically have three sections as shown in figure 2.1. The 

leftmost section has a steep slope, the middle section has a more gentle slope, while 

the rightmost section is a plateau (Provost et al, 1999; Catlett 1991).  These three 

properties of the learning curve have been used as justification that a single model 

constructed from a large sample should provide a sufficient level of predictive 

accuracy (Provost at al, 1999; John & Langley, 1996; Catlett, 1991). 

 

John and Langley (1996), Provost et al (1999) and others have conducted empirical 

studies and devised methods for establishing the sample size minn  needed to obtain 

maximum accuracy for a given dataset and algorithm. Extrapolation of learning 

curves (ELC) is one method that has been used to fit learning curves (Frey & Fisher 

1999).  For ELC, training sets of increasing size are used to fit a parametric learning 

curve, which is an estimate of the algorithm’s accuracy as a function of training set 

size. 
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Figure 2.1   A typical learning curve 
 

2.2.4 Aggregate model construction 
 

The idea of using an aggregate model originates from the work of Breiman (1996) on 

bagging predictors. Breiman (1996) has demonstrated that, by creating classifiers 

from many bootstrap samples of a small dataset, prediction performance may be 

greatly improved. Bootstrap samples are created by using sampling with replacement 

in order to create many training datasets each with the same size as the original 

dataset. Hand et al (2001) have observed that model aggregation has conceptual 

similarities with Bayesian model-averaging. For Bayesian model-averaging all 

models in the model space are used in order to maximise predictive accuracy. The 

vote of each model is weighted by the posterior probability of that model, given the 

training data (Domingos, 2000b; Ali & Pazzani, 1996). Since the generation of all 

models is intractable, all implementations of aggregate modeling have to be 

approximations, and bagging predictors are an example of such an approximation 

(Ali & Pazzani, 1996). 

 

Chawla et al (2001) have proposed a method of improving classifier accuracy by 

partitioning a large dataset, constructing a base model with all the data from each 

partition, and combining the base models into an aggregate model. Chawla et al 

(2001) have concluded that such a strategy leads to a higher level of predictive 

performance compared to the use of a single model constructed from the whole 

dataset. Chawla et al (2001) have argued that bagging is not suitable for very large 

datasets. In their experiments with various ways of partitioning a dataset, Chawla et 

al (2001) have concluded that disjoint partitioning results in the best performance. It 

should be highlighted that Chawla et al (2001) used a supercomputer with a 

accuracy 

n min N 
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massively parallel architecture and it took ten hours to create an aggregate model for 

a 3.6 million record dataset with 304 features. 

 

Hall et al (2000) have conducted experiments that are fairly similar to those of 

Chawla et al (2001), using the same architecture as that used by Chawla et al 

(2001). The main difference in the studies is that Hall et al (2000) have used four 

very large datasets (1.6, 3.2, 6.4 and 51 million instances) in their experiments 

compared to Chawla et al (2001) who have used one very large dataset (3.6 million 

instances). Hall et al (2000) have observed that for different datasets, different 

amounts of partitioning provide different levels of accuracy. Hall et al (2000) have 

reported that accuracy will actually decrease when partitioning is applied to very 

large datasets where very small classes are present in the data. Partitioning of such 

datasets causes the very small classes to appear as noise. The main conclusion 

made by Hall et al (2000) is that the use of disjoint partitions of a very large dataset 

may result in a model with the same accuracy as that obtained without any 

partitioning. Hall et al (2000) have further concluded that the use of overlapping 

subsets, in a manner similar to bagging, may provide an increased level of accuracy.  

 

Ali and Pazzani (1996) have studied the use of aggregate models on data originating 

from many different domains. The objective of Ali and Pazzani’s (1996) study has 

been to explain why there is a significant variation in prediction error reduction from 

domain to domain when aggregate models are used. Ali and Pazzani (1996) have 

tested twenty nine (29) datasets and found that aggregate models provide significant 

prediction error reduction on only half of these datasets. Ali and Pazzani (1996) have 

made four main conclusions from their study. The first conclusion is that aggregate 

models are better at reducing prediction error on domains for which the prediction 

error is already very low, than on domains that have noisy data. The second 

conclusion is that aggregate models improve prediction performance in those 

domains with many irrelevant features. The third conclusion is that as the number of 

irrelevant features increases, the performance of aggregate models decreases. The 

fourth conclusion is that when the prediction errors made by the base models are 

strongly correlated, the aggregate model does not provide any prediction 

performance improvements. 

 

Several authors (e.g. Ho, 1998; Krogh & Vedelsby, 1995; Kwok & Carter, 1990; 

Hansen & Salamon, 1990) have argued that when aggregate models exhibit 

syntactic diversity, then major improvements in prediction performance should be 
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realised. On the other hand, Ali and Pazzani (1996) have argued that the accurate 

models that can be learned for several domains are syntactically similar, so that 

increasing syntactic diversity does not result in improvements. Ali and Pazzani (1996) 

have further argued that in order to minimize aggregate model prediction error, it is 

necessary to balance increased diversity with competence, that is, ensure that the 

base models are all competent, and have a very high level of training accuracy.  

 

Ho (1998) has discussed the use of decision forests for the improvement of decision 

tree accuracy. For a decision forest, an aggregate model is constructed through 

random sampling of the feature space. Each classification tree that is constructed is 

capable of (an expert in) classification of instances that reside in the instance space 

defined by that subset of features which has been randomly selected. The combined 

performance of the decision forest is then higher than that of a single decision tree 

that is created to predict in the instance space defined by all the features of the 

dataset. The experiments conducted by Ho (1998) on feature space partitioning have 

been based on small datasets. Ho’s (1998) method however shows promise for a 

divide-and-conquer approach for very large datasets of high dimensionality. The 

method demonstrates that syntactic diversity can be achieved through variation of 

the feature space for each base model. 

 

Chan and Stolfo (1998) have proposed a method of aggregate model construction 

that addresses the problem of handling large two-class datasets with skewed class 

distributions. Chan and Stolfo (1998) have compared their method to that of using a 

single model and have concluded that their method provides superior performance. A 

more detailed discussion of Chan and Stolfo’s (1998) method is given in section 2.6 

where the methods that combine dataset sampling and partitioning are discussed. 

 

Boosting (Freund & Schapire, 1997) is a method of aggregate model construction 

which combines training set selection with aggregate model creation. For boosting, a 

sequence of base models is created, with each base model in the sequence having a 

higher level of competence at the classification of ‘difficult’ instances. In this context a 

‘difficult’ training instance is one that cannot be classified correctly by all preceding 

base models in the sequence. A more detailed discussion of boosting is provided in 

section 2.6 of this chapter. 
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2.2.5 Serial and parallel model aggregation 
 

In general all aggregate models consist of two components. The first component is 

the set of base models. The second component is the combination algorithm. A 

combination algorithm may perform parallel combination or serial combination of the 

predictions of the base models. The methods for aggregate model construction which 

were discussed in the last section employ a parallel combination algorithm. The 

method of parallel combination consists of two steps. In the first step, all the base 

models make their individual predictions. In the second step, the combination 

algorithm selects that prediction with the strongest supporting evidence. Kittler (1998) 

has observed that base model combination methods for parallel aggregation fall into 

two categories. The first category involves discrete classification (Fawcett, 2004, 

2006) where only the class labels for the classes predicted by the base models are 

available.  For this category, a voting scheme based on the majority rule (Breiman, 

1996; Hansen & Salamon, 1990) is appropriate for the combination of base model 

predictions. The majority rule is implemented by selecting that class which is 

predicted by the majority of base models. 

 

The second category involves probabilistic classification (Fawcett, 2004, 2006) where 

probabilistic scores for each class are provided by the base models. Given the base 

models ��� � � � ��, and the classes ��� � � � ��, let the probabilistic scores assigned to a 

query instance �	 by models  ��� � � � �� for classes  ��� � � � ��, be denoted by the 

values 
��
���� ���, � � �� � � � �� � � �� � � � �.  Kittler (1998) has discussed four different 

rules that can be used to combine the 
��
���� ���� scores in order to select the 

winning class. The product rule involves the multiplication of the scores for each 

class to obtain the combined class score �����  for each class, where ����� is defined 

as (Kittler, 1998) 
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and selecting the class with the largest value of ����� defined as (Kittler, 1998) 
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The sum rule involves the summation of the scores for each class to obtain the 

combined class score ����� defined as (Kittler, 1998) 
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and selecting the class with the largest value of ����� as defined by equation (2.2). 

The max rule involves the selection of the class with the largest score defined as 

(Kittler, 1998) 
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and selecting the class with the largest value of ����� as defined by equation (2.2). 

The min rule involves the selection of the class with the smallest score defined as 

(Kittler, 1998) 
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and selecting the class with the largest value of ����� as defined by equation (2.2). 

Ho (1998), and Kwok and Carter (1990) have implemented the sum rule for decision 

tree base models by computing the arithmetic mean of the scores for each class and 

selecting that class with the largest arithmetic mean score. Berry and Linoff (2000: pg 

217) have provided an illustrative example of how the product rule may be 

implemented. 

 

More recently, a second method of base model combination called serial combination 

has been proposed (Sun & Li, 2008; Neagu, 2006; Kim et al, 2002). Serial 

combination is a multi-step process. In the first step the base models are arranged in 

a series. In order to classify a new instance, the instance is passed to the first base 

model in the series. If the base model makes a ‘credible prediction’, then the process 

stops otherwise the instance is passed to the next base model in the series. In 

general, if a base model makes a ‘credible prediction’ the process stops otherwise 

the instance is passed to the next base model in the series (Sun & Li, 2008).The 

meaning of a ‘credible prediction’ may be defined and implemented in a variety of 

ways. Sun & Li (2008) have used the following definition and implementation. For 

each class, the base model that has the highest predictive accuracy on that class is 
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identified. When a base model predicts a class that it is best at predicting, the base 

model has made a ‘credible prediction’, otherwise the prediction is considered to be 

‘not credible’. Sun and Li (2008) have demonstrated that their method of serial 

combination produces an aggregate model whose performance on each class is as 

good as the performance of the best base model on the class.  

 

For the research reported in this thesis, the method of parallel combination was 

studied. In chapter 10, a comparison is made between the advantages of serial 

combination and the advantages of the methods proposed in this thesis. 

 

2.2.6 Model testing 
 

Traditionally, the three methods of model testing in machine learning and statistical 

pattern recognition are, the hold-out method, K-fold cross validation, and the 

bootstrap method (Mitchell, 1997; Moore & Lee, 1994). These methods of model 

testing were designed for model construction from small datasets, and primarily 

address the problem of data shortage. For the hold-out method the available data is 

split into a training set and a test set (hold-out set). The test set is used to estimate 

the predictive accuracy. The test set may be ½, �, or ¼ of the available data. For, 

K-fold cross validation, the available dataset consisting of n instances is divided into 

K subsets of equal size. For each of the K subsets, the remaining K-1 subsets are 

combined into the training set, and the remaining subset is used to estimate the 

error. For K << n, the entire process is typically iterated many times (e.g. 100) and 

the results are averaged. When K = n, the leave-one-out (LOO) method is obtained. 

For the bootstrapping method, a training set of size n is chosen randomly with 

replacement, which means that each item may appear more than once in the training 

set. Only those items that do not appear in the training set are used for the test set 

and only once each. This process is iterated many times (e.g. 200) and the error 

rates are averaged (Moore & Lee, 1994).  

 

Testing models in the presence of large volumes of data continues to be done using 

either K-fold cross validation or the hold-out method. K-fold cross validation is used 

to establish the accuracy on the training data. When only one model is being 

considered, the hold-out method is used to create two datasets, one for training and 

one for measuring the predictive accuracy of the final model. When several models 

are constructed with the objective of selecting the best one, the hold-out method is 
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used to create three datasets, one for training, one for validation, and one for 

measuring the predictive accuracy of the final model that is selected. The validation 

dataset is used to determine which of the many models has the best predictive 

performance. Given the stochastic behaviour of predictive models, several samples 

taken from the validation and test datasets are used for both the validation and 

testing steps and the results are averaged. Several researchers have argued that 

predictive accuracy should not be the only measure of model performance (Osei-

Bryson, 2004, 2007; Giudici, 2003; Hand, 1997). Various measures of classification 

model performance are discussed in chapter 4. 

 

2.3 The dataset selection problem 
  

It was stated in section 2.2.2 that data preparation is one of the phases of the 

CRISP-DM model for applied data mining (Shearer, 2000). Within CRISP-DM, data 

preparation involves three steps namely data selection, data construction, and 

feature selection, among others. Data selection is concerned with the identification 

and selection of sufficient quantities of good quality data that is relevant to the data 

mining goals (Shearer, 2000). Data records (instances) as well as relevant attributes 

(features) are identified and selected during this step. Data construction is concerned 

with the creation of any necessary new features, for example, the class variable for 

classification (Shearer, 2000). 

 

The data selected during the data preparation phase as prescribed in the CRISP-DM 

model is commonly pre-processed further when the modeling task is to create 

predictive models. Firstly, it is important to select training data so that overfitting of 

predictive models is avoided (Smyth, 2001; Dietterich, 1995). This is accomplished 

through data reduction. Hand et al (2001) have advised that one approach to 

reducing the amount of training data when the objective of data mining is to create 

models, is through sampling from the very large dataset. A second approach that is 

suggested by Hand et al (2001) is the use of sufficient statistics. Hand et al (2001) 

have provided least squares regression as an example of modeling where the use of 

sufficient statistics is enough to estimate the regression coefficients. For least 

squares regression, the sufficient statistics are the sum for each variable, sum of 

squared values for each variable, and sum of products for the values of the 

regression variables. Note that regression models are predictive. For classification, 

there are algorithms for which the usage of sufficient statistics seems feasible. The 
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Naïve Bayes classifier (Mitchell, 1997) is characterised by two types of probabilities: 

the probability of the class and the probability of a variable value given the class. For 

the creation of a Naïve Bayes classifier, the data records could be replaced by the 

probability values.  

  

Secondly, pre-processing may be done to make the data suitable for a classification 

algorithm. For example, artificial neural networks (Engelbrecht, 2002; Bishop, 1995) 

require normalised data, and K-nearest neighbour algorithms (Cover & Hart, 1995) 

perform best with normalised data. Thirdly, pre-processing may also be done to 

increase the likelihood that the classification algorithm will produce a classification 

model with high predictive performance. This third type of pre-processing involves 

selecting the most relevant training data for the classification task (e.g. Blum & 

Langley, 1997), or altering the probability distribution of the training data when data 

has a skewed class distribution (e.g. Chan & Stolfo, 1998; Kubat & Matwin, 1997). 

Fourthly, pre-processing is done to further select the most relevant features for the 

prediction task. 

 

The dataset selection problem addressed in this thesis was concerned with the 

selection of relevant features and relevant training data for the construction of many 

base models that make up an aggregate model. The use of aggregate models was 

studied for purposes of increasing the amount of (relevant) training data while at the 

same time avoiding the problem of overfitting. Training dataset selection was directed 

at classification algorithms for which data appears in raw form (at the instance level) 

to the algorithm. The next two sections provide a discussion of dataset selection 

methods that have been found appropriate for the modeling methods discussed in 

the last section, and for which training data must be presented to the algorithm at the 

instance level as opposed to a summarised (aggregated) level. Feature selection 

methods are discussed in chapter 3. 

 

2.4 Theoretical methods for single sample selection 
 

Predictive data mining has its roots in the fields of machine learning and statistical 

pattern recognition. The purpose of this section is to discuss the theories of machine 

learning and statistical pattern recognition which have been proposed for purposes of 

characterising the behaviour of algorithms that create predictive classification models 

through a process of induction from supplied example data. These theories may be 
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used to estimate a sufficient sample size, or sample complexity, for achieving a given 

level of accuracy for a single predictive classification model. The important lessons to 

be learned from the theories on sample complexity, as well as the weaknesses of 

these theories, are highlighted in this section. The probably approximately correct 

learning theory is presented in section 2.4.1. The theory on the Hoeffding-Chernoff 

bounds is discussed in section 2.4.2. 

 

2.4.1 Probably Approximately Correct (PAC) learning  
 

The probably approximately correct (PAC) theoretical model of learning proposed by 

Valiant (1984) and discussed by Mitchell (1997) has been designed for purposes of 

characterising algorithms that learn target concepts by generating a hypothesis h 

from a set H of all possible hypotheses that belong to some concept class. The 

learning algorithms use training instances drawn at random according to some 

unknown, but fixed, probability distribution. PAC is concerned with the identification 

of classes of hypotheses that can and cannot be learned from a polynomial number 

of instances. Within the PAC theory various measures of hypothesis space 

complexity have been proposed for purposes of establishing bounds for the number 

of training instances required for achieving a given level of accuracy for inductive 

learning algorithms. Within the PAC framework, a learning algorithm that finds the 

hypothesis Hh ∈  with the minimum training error is called an agnostic (or robust) 

learner. For a hypothesis space H, it is guaranteed with probability )( δ−1 , that an 

agnostic learner will output a hypothesis Hh ∈ , which has a prediction error rate of 

at most ε . This guarantee will hold provided that n, the size of the training sample 

used to generate h, conforms to (Mitchell, 1997) 
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Equation (2.6) is applicable to classes of hypotheses for which |H|, the size of the 

hypothesis space, is finite.  One major problem with the sample complexity estimates 

based on equation (2.6) is that the size of the hypothesis space is not always easy to 

estimate. As an example, for decision trees the hypothesis space is the set of all 

possible decision trees that can be created from the given dataset. A second problem 

is that the instances in the training sample are assumed to be independent and 
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identically distributed, a requirement that is extremely difficult to satisfy. A third 

problem is that the hypothesis space may be infinite in size. For infinite hypothesis 

spaces, a useful measure of the complexity of H is its Vapnik-Chervonenkis 

dimension, VC(H) (Vapnik & Chervonenkis, 1971). VC(H) is the size of the largest 

subset of instances that can be shattered (split in all possible ways) by H.  An 

alternative upper bound for the sample complexity n, under the PAC model is given 

by (Mitchell, 1997) 
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One major problem with the sample complexity estimates based on equation (2.7) is 

that it is not always easy to estimate the VC dimension for a given classification 

algorithm. Additionally, the VC dimension might be infinite, as is the case for a fully 

grown decision tree. In artificial neural network learning, however, the application of 

the VC dimension has been used successfully. A general criticism of the use of 

equations (2.6) and (2.7) is that they provide a training sample size estimation which 

is usually excessively large. 

 

2.4.2 The Hoeffding-Chernoff bounds 
 

The Hoeffding-Chernoff theorems (Hoeffding, 1963) have been proposed by several 

researchers (e.g. Watanabe, 2005; Domingo et al, 2002; Kiniven & Manila, 1993) as 

an alternative method for training sample size estimation.  Kiniven and Manila (1993) 

have discussed the use of concentration bounds (Hoeffding-Chernoff bounds) for 

determining sufficient sample sizes for a specified level of accuracy, when 

determining the truth of universal  sentences expressed as first order logic formulae. 

Toivonen (1996) has discussed the use of these bounds for sample size estimation in 

association rule mining. The major criticism of the usage of the Hoeffding-Chernoff 

bounds is similar to that of PAC estimates. The sample sizes they estimate are 

usually excessively large. 

 

Watanabe (2005) and Domingo et al (2002) have proposed an adaptive sampling 

scheme, which incorporates the use of the sample size bounds stated by the 

Hoeffding-Chernoff theorems.  Watanabe (2005) and Domingo et al (2002) have 

argued that the methods they have proposed preserve the theoretical guarantees 
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(level of accuracy and confidence in the level of accuracy) of the theorems while at 

the same time providing good and practical estimates of sample sizes.  

 

2.5 Empirical methods for single sample selection 
 

For the empirical estimation of a sufficient training sample size, three approaches 

have been reported in the literature. A sufficient training sample size is one which 

provides a level of predictive accuracy that is comparable to processing the whole 

dataset. The first approach to empirical sample size estimation involves taking 

progressively larger samples from a large dataset until the sufficient sample size has 

been reached (Provost et al 1999; John & Langley 1996). The second approach is 

based on the assumption that a sample that has statistical similarity to the whole 

dataset is a sufficient sample. Statistical similarity is measured in terms of the 

descriptive statistics for the dataset variables (Lutu & Engelbrecht 2006; John & 

Langley 1996). The third approach to the empirical estimation of sufficient sample 

sizes is to select samples based on the characteristics of the instance space (Palmer 

& Faloutsos, 2000; Kubat & Matwin, 1997). The three approaches are discussed in 

this section. Dynamic sampling and progressive sampling methods are discussed in 

section 2.5.1 and 2.5.2 respectively. Static sample size estimation is presented in 

section 2.5.3. Density-biased sampling and one-sided sampling are respectively 

discussed in sections 2.5.4 and 2.5.5. 

 

2.5.1 The Dynamic Sampling method 
 

John and Langley (1996) have proposed a method they call dynamic sampling, which 

combines database sampling with the estimation of classifier accuracy. The method 

is most efficiently applied to classification algorithms which are incremental, for 

example, Naïve Bayes and artificial neural network algorithms such as 

backpropagation. John and Langley (1996) have defined the concept of ‘probably 

close enough’ (PCE), which they use for determining when a training sample size 

provides an accuracy that is probably good enough. ‘Good enough’ in this context 

means that there is a small probability δ that the classification algorithm could do 

better by using the entire dataset. The smallest sample size n, is chosen from a 

dataset of size N, so that δε ≤>− ))()(( naccuracyNaccuracyPr , where 
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accuracy(n) is the accuracy after processing a sample of size n, and ε is a parameter 

that describes what ‘close enough’ means. 

 

Dynamic sampling works by gradually increasing the sample size n until the PCE 

condition is satisfied. accuracy(n) is estimated by taking a new sample from the 

database, classifying all instances in the sample and measuring the accuracy.  

accuracy(N) is estimated using the method of Extrapolation of Learning Curves 

(ELC).  In their study, John and Langley (1996) have compared the accuracy of static 

and dynamic sampling for the Naïve Bayes classifier, and have concluded that the 

use of dynamic sampling results in the selection of a single sample which provides a 

level of accuracy that is very close to that obtained when the whole large dataset is 

used for classifier construction. 

 

2.5.2 The progressive sampling method 
 

Provost et al (1999) have proposed progressive sampling as an alternative method 

for the empirical estimation of sufficient training sample sizes. Provost et al (1999) 

have addressed the issue of convergence, where convergence means that a learning 

algorithm has reached its plateau of accuracy. In order to detect convergence, 

Provost et al (1999) have defined the notion of a sampling schedule as a sequence 

}...,{ ,. innn 10  of sample sizes to be provided to an inductive algorithm. Provost et al 

(1999) have argued that schedules where the sample size ni increases geometrically 

as },...,,.,{ 00
2

00 nananan i are asymptotically optimal. Progressive sampling is similar 

to the adaptive sampling method of John and Langley (1996), except that a non-

linear increment for the sample size is used. Provost et al (1999) have handled the 

problem of convergence detection by using a method called Linear Regression with 

Local Sampling (LRLS).   LRLS fits a linear regression line in the neighbourhood of 

ni, the  size of the last training sample obtained. If the slope of the line is sufficiently 

close to zero, then convergence is detected.  Provost et al (1999) have reported 

experimental results which show that geometric progressive sampling far 

outperforms dynamic sampling. 
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2.5.3 Static sample size estimation 
 

John and Langley (1996) and Provost et al (1999) have made a distinction between 

static and dynamic sampling for data mining. For static sampling, nmin, the smallest 

sample size needed to achieve maximum accuracy, is determined on the basis of a 

sample’s statistical similarity to the whole large dataset. Statistical similarity is 

measured in terms of the descriptive statistics for the dataset variables. Lutu and 

Engelbrecht (2006) have studied the selection of samples based on statistical validity 

and concluded that statistical validity is not a sufficient test for dataset selection. Lutu 

and Engelbrecht (2006) have concluded that there is a statistically significant 

performance difference between small statistically valid samples and large 

statistically valid samples. One important difference they have identified is 

information content as measured using the entropy function. 

 

2.5.4 Density-biased sampling 
 

Palmer and Faloutsos (2000) have proposed density biased sampling as a suitable 

method for sampling from large datasets in which clusters of differing sizes occur.   

Palmer and Faloutsos (2000) have argued that for such datasets, uniform sampling 

fails to represent small clusters (small groups) of interesting instances in the instance 

space. For density biased sampling, the aim is to sample so that within each cluster, 

instances are selected uniformly to obtain a training sample that is density preserving 

and biased by cluster size.  Density preserving in this context means that the 

expected sum of weights of the sampled instances for each cluster is proportional to 

the cluster’s size. The method of density-biased sampling is used to select instances 

to be included in the dataset based on the density of the various regions of the 

instance space. The purpose is to ensure that all regions of the instance space are 

equally represented in the selected dataset.  

 

2.5.5 One-sided sampling  
 

One-sided sampling is a training sample selection method that has been proposed by 

Kubat and Matwin (1997) for the selection of training instances based on the class 

distributions in the different regions of the instance space. Kubat and Matwin (1997) 

have argued that one-sided sampling is suitable for datasets with skewed class 
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distributions.  For datasets with skewed class distribution, Kubat and Matwin (1997) 

have argued that the training datasets should be selected based on where the 

decision boundaries of the classes lie in the instance space. For 2-class problems 

with positive and negative instances for the concept to be learned, Kubat and Matwin 

(1997) have identified four types of negative instances as follows: 

(1) Noisy instances. These are instances that incorrectly have the negative class 

label. 

(2) Borderline instances. These are instances that are located very close to the 

decision boundary between the positive and negative class. 

(3) Redundant instances. These are instances that lie far away from any decision 

boundary. 

(4) Safe instances. All the instances that do not fall into any of the above categories 

are safe instances. 

 

For the one-sided sampling method, instances that fall in categories (1), (2) and (3) 

above are removed from the training dataset. The rationale for one-sided sampling is 

that when one-sided samples are used for training, then the regions of class 

confusion are removed from the training data. Therefore classifiers based on 

discriminative classification should not experience any class confusion. Kubat and 

Matwin (1997) have demonstrated that this scheme produces good training datasets 

for the k-Nearest Neighbour and decision tree classifiers. One obvious problem with 

one-sided sampling is that when borderline negative instances (category 2) are 

removed from the training dataset, the resulting predictive model has limited 

information to predict instances that are located in the borderline regions. However, 

the results of the studies conducted by Kubat and Matwin (1997) may be used to 

argue that purposeful dataset selection, based on the characteristics of the instance 

space, may lead to the selection of training datasets that result in a higher level of 

predictive accuracy compared to training datasets obtained through pure random 

sampling. 

 

2.6 Methods for selecting multiple training datasets  
 

The construction of aggregate models requires the use of several training datasets. 

Each training dataset is used to construct one base model, and the base models are 

then combined into one aggregate model. For small datasets, methods such as 

bootstrapping and boosting have been devised for purposes of increasing the 
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number of training instances available for base model creation. Breiman (1996) has 

investigated the use of bootstrap sampling of small datasets in order to create the 

training datasets for the base models. Traditionally, boosting has been used in 

statistical modeling to improve model performance. Boosting involves the use of 

several variations of one training dataset to create several base models (Giudici, 

2003; Freund & Schapire, 1997). For large datasets, partitioning and sampling have 

been used to create training datasets for base models. Chawla et al (2001) have 

investigated the partitioning of a large dataset in order to create several training 

datasets for the base models. Chan and Stolfo (1998) have investigated combining 

dataset partitioning with sampling in order to create the base models. In this section, 

the methods proposed in the literature, for obtaining multiple training datasets 

(samples) for aggregate model construction are discussed. The methods for 

bootstrap sampling and boosting of small datasets are presented in section 2.6.1. 

Partitioning of large datasets and the methods for combining partitioning and 

sampling from large datasets are respectively discussed in sections 2.6.2 and 2.6.3. 

 

2.6.1 Bootstrap sampling and boosting of small datasets 
 

For small datasets, Breiman (1996) has proposed the use of bootstrap sampling 

(Cohen, 1995) in order to create the required number of training datasets. Bootstrap 

samples are created by using sampling with replacement in order to create many 

training datasets each with the same size as the original dataset. Breiman (1996) has 

recommended that at least 30 training datasets should be generated and used to 

create the base models of an aggregate model when bootstrap sampling is applied to 

a small dataset. 

 

Boosting is a statistical approach to model construction which aims to direct the 

largest effort of model construction towards the more difficult aspects of the process 

to be modeled. Giudici (2003) has observed that early versions of boosting fitted 

models on several versions of the training dataset, where the observations with the 

poorest fit received the largest weight. For classification modeling, Adaboost 

(Schapire, 2003; Freund & Schapire, 1997) is a boosting algorithm which creates 

many base classifiers that are finally combined into one prediction model. At each 

iteration of Adaboost, the training instances that are misclassified by the most 

recently created base classifier are assigned larger weights in the training set for the 

next base classifier. For classification, this means that the instances are replicated in 
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the next training set in proportion to the assigned weights. The rationale behind 

training dataset selection by Adaboost is to increase the representation of the 

instances that come from those regions of the instance space that are very difficult to 

model and predict.  

 

The method of bootstrap sampling is commonly used in statistics to create larger 

datasets that have the same statistical properties as the small dataset from which the 

bootstrap sample is obtained (Cohen, 1995). In the context of aggregate model 

creation, bootstrap sampling provides a large amount of data for purposes of creating 

the base models. When large amounts of data are available, bootstrap sampling 

obviously becomes unnecessary. Boosting, as implemented in Adaboost, aims to 

increase coverage of the difficult regions of the instance space when there is a 

shortage of data, as is the case for small datasets. The studies reported in this thesis 

demonstrate that, first of all, the use of aggregate models as is done in bootstrap 

aggregation also provides performance improvements over single models when large 

amounts of data are available.  Secondly, when large amounts of data are available, 

it is possible to increase coverage of the difficult regions of the instance space 

without using the methods of Adaboost, and without using all of the available data. 

 

2.6.2 Partitioning of large datasets 
 

For very large datasets, the training datasets are typically obtained by dividing the 

large dataset into several partitions. The most common approach to dataset 

partitioning for data mining is to use horizontal partitioning. For horizontal partitioning, 

a criterion is applied to assign each instance of the dataset to one of P partitions. The 

partitioning criteria that have been studied include disjoint partitioning and overlapped 

partitioning. For disjoint partitioning every instance in the dataset (of size N ) appears 

in exactly one partition (Chawla et al, 2001; Hall et al, 2000). The original dataset is 

divided into PT partitions each of size (N /PT) so that each instance appears in 

exactly one partition (Chawla et al, 2001).  

 

For overlapped partitioning an instance may appear in more than one partition 

(Chawla et al, 2001; Hall et al, 2000; Breiman, 1996). Each partition is created 

independently of the others using either random sampling with replacement or 

random sampling without replacement. Randomly selected instances are added to 

the partition until the partition is of size (N /PT). If sampling is done with replacement 
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some replication of instances within each partition and across the PT partitions will 

occur. If sampling is done without replacement, replication of instances within 

partitions does not occur (Chawla et al, 2001). 

 

2.6.3 Combining dataset sampling and partitioning 
 

Chan and Stolfo (1998) have reported experiments conducted on data for credit card 

transactions for purposes of identifying fraudulent transactions. Data for credit card 

transactions typically has a skewed class distribution with the fraudulent transactions 

having a representation in the range of 1% to 5% of the whole dataset (Chan & Stolfo 

1998).  In their studies, Chan and Stolfo (1998) have addressed the problem of 

creating training datasets with balanced class distributions and then creating base 

models from each training dataset. In order to create the training datasets, they have 

proceeded as follows. First, the whole dataset is partitioned according to the two 

classes {normal, fraudulent} to create two partitions NORMAL and FRAUDULENT. 

Since fraudulent is the minority class and the objective of partitioning is to balance 

the class distributions, the NORMAL partition is further divided into smaller partitions

JNORMALNORMAL,...,1 . The training datasets for the base classifiers are then 

constructed by combining each of the small partitions JNORMALNORMAL...,1  with 

the partition FRAUDULENT.  In other words, each of the training datasets has all the 

minority class instances and (1/J)th  of the majority class instances. Chan & Stolfo 

(1998) have concluded that compared to simple random sampling, this method of 

constructing training datasets results in better predictive performance for datasets 

with skewed class distributions. 

 

 

2.7 Conceptual views of classification modeling 
 

There are two well accepted (conceptual) views of classification, namely: 

discriminative classification and probabilistic classification (Hand et al, 2001).  It is 

important to briefly discuss these views of classification modeling in order to establish 

the extent to which methods of data selection from large datasets attempt, or should 

attempt to satisfy the objectives of these views. Sections 2.7.1 and 2.7.2 respectively 

provide a discussion of discriminative and probabilistic classification modeling. A 

 
 
 



  42 

concise definition of decision boundaries for classification that was adopted for the 

experiments of this thesis is given in section 2.7.3. Section 2.7.4 provides a 

discussion of training dataset selection methods aimed at supporting the objectives 

of classification modeling. 

 

2.7.1 Discriminative classification  
 

For discriminative classification (Hand et al, 2001), a classification model provides a 

mapping, m , from an instance x = )...,( 1 dxx in the d-dimensional instance space to a 

set of classes }.,...,{ 1 kcc  The d-dimensional instance space is viewed as consisting 

of regions with labels for each of the k classes. The mapping, m , defines the various 

regions of the instance space. For each class ic , the union of all the regions with that 

class label is called the decision region for the class. The mapping may also be 

interpreted as a definition of the decision boundaries between the decision regions. 

For real life classification problems, the classes are usually not perfectly separable in 

the d-dimensional instance space so that there are regions of class confusion for the 

mapping, m . Discriminative models handle the problem of class confusion by 

assigning a probability for each class to each decision region in the instance space. 

In the process of classification, a new instance x is assigned to the most probable 

class for the region in which it falls. The classification modeling problem may 

therefore be defined as a process of estimating the decision boundaries as closely as 

possible, with the objective of minimizing class confusion in each decision region. 

Examples of classifiers that follow this approach are decision trees for classification 

(Quinlan, 1993; Quinlan, 1986; Breiman et al, 1984), artificial neural networks 

(Engelbrecht, 2002; Bishop 1995), and K Nearest Neighbour (Cover & Hart 1967). 

 

2.7.2 Probabilistic classification 
 

Probabilistic models for classification are based on the assumption that, for all 

instances x = ),...,( 1 dxx belonging to class kc , there is a probability distribution or 

density function governing the characteristics of the class kc . For example, the 

probability distribution functions for a multivariate dataset with quantitative features 

might be multivariate normal with estimated means and variances for the features 
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(Hand et al, 2001). If the means associated with the different classes are far enough 

apart and the variances are small, then the classes will be well separated. In 

practice, the appropriate functional forms for describing the probability distributions 

for the classes are not known. However, it is possible to estimate from the data the 

prior probabilities )( ir cp  for each class, and the posterior probabilities 

)),...,(|( . dir xxcP 1 of instance x = ),...,( 1 dxx belonging to class ic . The posterior 

probabilities )),...,(|( . dir xxcP 1  can be viewed as carving the instance space into at 

least k decision regions and at the same time defining the decision boundaries for the 

classes. An examples of a modeling method based on probabilistic classification is 

the Naïve Bayes classifier. 

 

One distinguishing characteristic between discriminative classification modeling and 

probabilistic classification modeling is that probabilistic models are created by 

computing the prior and posterior probabilities that determine whether an instance 

belongs to a given class. On the other hand, for discriminative modeling probabilities 

are used when the most likely class must be assigned to an instance x. For 

probabilistic classification, the training datasets should have the same probability 

distributions as the parent dataset, but for discriminative classification this limitation 

does not hold. 

 

2.7.3 Definition of decision boundaries and class confusion regions 
 

One of the training dataset selection methods proposed in this thesis is based on the 

identification of decision boundaries for classification and those regions where 

predictive models confuse one class for another class (confusion regions). From a 

probabilistic view of classification modeling, Hand et al (2001) have defined a 

decision boundary between two classes ic and jc as a ‘contour’ or ‘surface’ in the 

instance space which has 

 

5.0),(),( == �������� jri cPc��               (2.8) 
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where �����,( ir cP  is the prior probability that instance x has the class label ic  and 

���������jr cP (  is the prior probability that instance x has the class label jc . The ‘contour’ 

defined by equation (2.8) is depicted in figure 2.2 as the bold curve. 

 

 
Figure 2.2: Confusion region for two classes 
 

Based on Hand et al’s (2001) definition of a decision boundary, the confusion region 

for classes ic and jc was formulated by the author as follows: On either side of the 

decision boundary there are two regions 21,g and 12,g where the two classes ic and jc

occur together as depicted in figure 2.2. The region 21,g  is characterised by three 

inequalities: ��� � �������� ,(,( jir ccP > , ������ << ����,( jc0  and ����<< ����,(. ir cP50 . The 

region 12,g  is characterised by the three inequalities: ��� � �������� ,(,( ijr ccP > , 

������ << ����,( ic0  and ����<< ����,(. jr cP50 . The confusion region for classes ic and 

jc is composed of the regions 21,g and 12,g . Regions 1g  and 2g  in figure 2.2 represent 

the instance space regions where there is no class confusion between the two 

classes. 

 

2.7.4 Selection of training data to support the objectives of 
classification 
 

The dataset selection methods based on theoretical bounds such as the PAC 

theorems (Valiant, 1984) and Hoeffding-Chernoff theorems (Hoeffding, 1963) directly 

g1 
g2,1 

c1, c2 c1, c2 c2 c1 

g1,2 g2 
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support the objectives of probabilistic classification. The dataset selection methods 

that employ the learning curve to empirically estimate the sufficient sample size (Lutu 

& Engelbrecht, 2006; Provost et al 1999; John & Langley, 1996) also support the 

objectives of probabilistic classification. These dataset selection methods attempt to 

obtain the minimum amount of data selected randomly across the instance space. 

The selected data enables a classification algorithm to create a predictive model 

based on data that reflects the natural probability distributions of the classes and 

variable values. 

 

Density biased sampling (Palmer & Faloutsos, 2000) and one-sided sampling (Kubat 

& Matwin, 1997) directly support the objectives of discriminative classification for 

single model construction. These methods have the primary objective of ensuring 

that those regions in the instance space where prediction is difficult are sufficiently 

represented in the training datasets. Breiman’s (1996) method of bootstrapping a 

dataset to create many training datasets, Freund and Schapire’s (1997) method of 

boosting with many training datasets, and Chan and Stolfo’s (1998) method of 

partitioning and sampling also support discriminative classification.  All these 

methods attempt to establish the decision boundaries for the classes by using as 

many training datasets as possible. Additionally, Freund and Schapire’s (1997) 

boosting method attempts to create the highest possible coverage of the decision 

boundary regions. Partitioning methods that process the whole dataset (Chawla et al, 

2001; Hall et al, 2000) do not appear to be directed at any specific view of 

classification. There is, perhaps, the un-stated assumption that the large dataset is 

still a very large sample of the real-world data that could be collected for the 

application domain. 

 

2.8 Sources of classification error 
 

It is important to briefly examine the sources of error in predictive classification 

modeling. Surely if the reasons why errors arise are known, it becomes possible to 

design data selection methods that have the potential to produce training datasets 

which minimize the prediction errors. This section provides a discussion of the 

components of prediction error and factors that influence these components. A 

discussion of how training datasets can be selected to reduce prediction errors is 

also provided. The components of prediction error and factors that influence these 

errors are respectively discussed in sections 2.8.1 and 2.8.2. Methods for selecting 
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training data for purposes of reducing predictive classification errors are discussed in 

section 2.8.3. 

 

2.8.1 Bias, variance and intrinsic errors in classification 
 

For statistical regression modeling and artificial neural network modeling where the 

objective function to be minimized is the mean squared error, the prediction error has 

been decomposed into three components, namely bias, variance and intrinsic error 

(Giudici, 2003; Geman et al, 1992). For classification modeling in machine learning 

where the objective function to be minimized is the 0-1 loss function, the prediction 

error has been decomposed into the same three components (van der Putten & van 

Someren, 2004; James, 2003; Domingos, 2000a; Friedman, 1997; Breiman, 1996; 

Kohavi & Wolpert, 1996; Dietterich & Kong, 1995). A prediction error has a cost 

(penalty) of 1 and a correct prediction has a cost of 0 for the 0-1 loss function. 

 

The bias of a predictive model reflects how closely, on average, the (estimated) 

predictive model is able to approximate the target function. Bias reflects the error in 

the estimation process for the model and is due to the algorithm or inference method 

as well as the domain for the modeling task (van der Putten & van Someren, 2004; 

Giudici, 2003; Hand et al, 2001; Friedman, 1997). The variance reflects the sensitivity 

of the (estimated) predictive model to the training sample that is used to create the 

model. Low variance means that the (estimated) model is more stable to the 

variations introduced by sampling to obtain the training data (Giudici, 2003; Hand et 

al, 2001; Friedman, 1997). The phenomenon of overfitting which is discussed in the 

next section is also responsible for the variance error (van der Putten & van 

Someren, 2004). A simple model will have small variance, but large bias. A very 

complex model will have small bias, but large variance (Giudici, 2003).  

 

The third component of the prediction error is called intrinsic error (van der Putten & 

van Someren, 2004; Friedman, 1997; Kohavi & Wolpert, 1996). For a given training 

dataset and classification algorithm, there exists a hypothetical least-error rate 

classifier known as the Bayes optimal classifier with an error rate known as Bayes 

optimal error rate (Mitchell, 1997; Breiman et al, 1984). The Bayes optimal classifier 

combines predictions of all possible models (hypotheses) weighted by their posterior 

probabilities in order to calculate the most probable prediction for a new instance 

(Mitchell, 1997). Bayes optimal error rate is the intrinsic error component of the 
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prediction error and is an irreducible component of the prediction error (van der 

Putten & van Someren, 2004; Friedman, 1997; Kohavi & Wolpert, 1996). 

 

2.8.2 Factors that influence the components of prediction error 
 

Figure 2.3 shows the components of prediction error, the factors that cause these 

prediction errors and the relationships between the components and the factors, as 

discussed in section 2.8.1. Variance error is caused by sampling variation in the 

training datasets as well as overfitting of models to training data. For purposes of 

dataset selection from large datasets it is useful to establish how variance errors can 

be reduced through the avoidance of overfitting. A predictive model which has a high 

level of predictive accuracy on the training data and a low predictive accuracy on the 

test data is called an overfitted model (Mitchell, 1997; Hand, 1997; Dietterich, 1995). 

The causes of overfitting and their relationship to variance error are depicted in figure 

2.3. Overfitting arises due to one or a combination of the following reasons. Firstly, 

when a large number of model parameters is used in the model, the functional form 

(or structure) of the model becomes very complex. 

 

For classification, examples of model parameters are the nodes of a classification 

tree and the nodes and connections of an artificial neural network (Engelbrecht, 

2002; Hand, 1997). Secondly, when the size of the training dataset is too small 

and/or does not provide a representative sample for the estimation of the target 

function then model parameters cannot be accurately estimated (Mitchell, 1997). 

Thirdly, when the size of the training dataset is very large, it becomes very difficult to 

distinguish between noise and real structure in the data (Hand et al, 2001; Smyth, 

2001; Cohen, 1995). The model is then fitted to the noise and phantom structure in 

the data. The first two causes of overfitting as discussed above occur most 

commonly when small datasets are used for training, and it could be argued that 

these causes of overfitting could be removed by using sufficiently large training 

datasets. However several researchers have cautioned against the use of very large 

training datasets (Hand et al, 2001; Smyth, 2001; Hand, 1998). 

 

 
 
 



  48 

 
Figure 2.3: Components of prediction error and factors that influence prediction error 
 

In statistical data analysis, the terms massive search and data dredging refer to the 

practice of processing as much data as possible in order to uncover evidence in 

support of a hypothesis (Hand et al, 2001; Smyth, 2001; Hand, 1998). The following 

quote is taken from Hand et al (2001): 

 

In the 1960s, as computers were increasingly applied to data analysis problems, it was 

noted that if you searched long enough, you could always find some model to fit a 

dataset arbitrarily well. 

 

Smyth (2001) has warned against problems of massive search as practiced, for 

example, in association rule mining. Smyth (2001) has argued that even on purely 

random data where each item’s values are generated randomly and independently of 

other items, a massive search for item associations will ‘discover’ significant 

associations between the items. These observations can also be extended to 

predictive modeling. The main problem here is that it becomes more difficult to 

distinguish between noise and real structure in the data when datasets are very large 

(Smyth, 2001; Hand et al, 2001; Cohen, 1995). It is argued in this thesis that one of 

the objectives of training dataset selection from large datasets should be to minimize 

the effects of noise and phantom structure in the modeling process. This in turn will 

lead to a reduction in the variance component of the prediction error. 
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2.8.3 Selection of training data to reduce classification error 
 

Figure 2.3 also depicts the methods for prediction error reduction as reported in the 

literature. Van der Putten and van Someren (2004) have argued that variance error 

can be reduced through the use of methods that select the best predictive features. 

Methods for feature selection are discussed in chapter 3. The impact of overfitting 

due to noise and/or phantom structure can be reduced through the use of relatively 

small samples from a dataset. Cohen (1995) has advised that sampling reduces the 

effects of noise. The use of relatively small training datasets should lead to the 

reduction of variance error as long as the samples provide good coverage of the 

instance space. Several researchers have conducted studies to demonstrate that 

aggregate models based on bagging (bootstrap aggregation) (Breiman, 1996) and 

boosting (Freund & Schapire, 1997) achieve variance reduction (Friedman, 1997; 

Kohavi & Wolpert, 1996; Dietterich & Kong, 1995). Dietterich and Kong (1995) have 

also demonstrated that bias reduction can be achieved through the use of simple 

models plus increased representation of decision boundary instances as is done for 

boosting algorithms. 

 

2.9 The limitations of current methods of dataset selection 
 

The dataset selection methods discussed in this chapter for selecting training data 

from large datasets may be divided into three categories. The methods in the first 

category select and use all of the data in the belief that maximum accuracy will be 

achieved by processing all the data (Chawla et al, 2001; Hall et al, 2000). For the 

implementation of these methods, partitioning has been used in order to achieve 

parallel execution and fast computation of classification algorithms on massively 

parallel supercomputers. One obvious problem with this approach is that overfitting 

will occur when millions of records are used to create a predictive model. A second 

problem is that there is no clear explanation in the reported studies on how this 

approach is expected to reduce prediction error. It is the author’s opinion that the 

objective here is to provide a very high coverage of the instance space. However, 

given the caution by Smyth (2001) concerning chance structure in very large 

datasets, one is led to conclude that high coverage of the instance space has its 

limits.  
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The methods in the second category select a subset of the data with the expectation 

that there is a minimum sample size, nmin, beyond which no further gains in predictive 

accuracy are possible (Lutu & Engelbrecht, 2006; Provost et al, 1998; John & 

Langley, 1996; Toivonen, 1996). The rationale behind this approach is that small 

training sets are preferred when it is prohibitively expensive to process very large 

datasets in reasonable time. This approach works well for single model construction. 

However, given the strong evidence of the superior performance of aggregate 

models, there is a need in the field of data mining to direct more research effort 

towards training dataset selection for aggregate model construction. 

 

The methods in the third category attempt to create training datasets with balanced 

class distributions (Chan & Stolfo, 1998). These methods support training dataset 

selection for aggregate model construction. Additionally, the methods are aimed at 

solving the specific problem of creating predictive models from large datasets with 

skewed class distributions. 

 

 

2.10 Proposed approach to selection of training data from 
very large datasets 
 

It is the author’s opinion that when large amounts of data are available, it is 

productive to use as much data as possible, while at the same time avoiding the 

problems of overfitting and the modeling of chance or phantom structure in the large 

datasets. The discussions in this chapter have revealed that, by reducing the bias 

and variance components of the prediction error, a good predictive model is 

obtained. This assertion is strongly supported by the success of bootstrap 

aggregation (Breiman, 1996) and boosting (Freund & Schapire, 1997) for small 

datasets. These methods are known to reduce the bias and variance components of 

the prediction error (van der Putten & van Someren, 2004; Friedman, 1997; Kohavi & 

Wolpert, 1996; Dietterich & Kong, 1995). Additionally, at the present time, there are 

many research efforts being undertaken in the area of aggregate model construction. 

These research efforts are largely motivated by the success of bootstrap 

aggregation. This section provides a discussion of the training dataset selection 

approach that was studied for this thesis, for purposes of achieving bias and variance 

reduction. The proposed methods for variance reduction are discussed in section 

2.10.1. The proposed methods for bias reduction are discussed in section 2.10.2. 
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2.10.1 Variance reduction methods 
 

Variance reduction can be achieved through at least four methods. The first method 

of variance reduction involves the use of many training datasets to create base 

models for aggregation through voting. For large datasets, this can be achieved by 

obtaining many randomly selected training samples from the large dataset. Each 

training sample is then used to create one base model. The second method of 

variance reduction is to provide as much coverage as possible of the decision 

boundary regions, as is done in boosting. For large datasets, this can be achieved by 

ensuring that the training datasets have many instances drawn from the decision 

boundary regions. The third method of variance reduction is through the avoidance of 

overfitting. For large datasets, the use of relatively small randomly selected training 

samples results in the reduction of the amount of noise (incorrect data values) and 

the effects of chance structure in the data. The fourth method of variance reduction is 

to select a good set of predictive features (van der Putten & van Someren, 2004). 

 

The combination of the above four methods, namely: selection of many training 

datasets for the base models, provision of high coverage of the decision boundary 

regions, and the usage of relatively small training samples for the base models and, 

feature selection should lead to a significant reduction of the variance component of 

the prediction error. This approach to dataset selection was adopted for this thesis. 

For this proposed approach, productive usage of large amounts of data is achieved 

by ensuring that each of the training datasets for the base models is taken from a 

different region of the instance space. This approach should result in the usage of 

large amounts of data in the training process, without creating the problems of 

overfitting. 

 

2.10.2 Bias reduction methods 
 

Bias reduction can be achieved through at least three methods. The first method of 

bias reduction is through sampling to reduce the effects of noise in the training data. 

The second method of bias reduction is through making improvements to the 

algorithm for purposes of reducing bias. The third method of reducing bias is due to 

Dietterich and Kong (1995). Dietterich and Kong (1995) have argued that the 
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decomposition of a k-class problem into a number of 2-class problems whose 

solution is then converted back (combined) into the k-class solution, results in the 

correction for bias errors in the classification algorithm (Dietterich & Bakiri, 1995). 

Two of the three methods discussed above were combined for the proposed 

methods of training dataset selection. The two methods used for bias reduction were 

boosting of training datasets and decomposition of k-class problems into 2-class 

problems and j-class (j < k) problems. 

 

2.11 Conclusions 
 

The need for dataset selection has been made explicit, using examples of several 

application domains where data is collected in massive quantities. The examples 

have covered both business and scientific application areas. Methods for predictive 

modeling for classification using very large datasets have been discussed. These 

include the use of a single model and the use of aggregate models for prediction. 

The discussion has revealed that the methods available for aggregate model 

construction may result in an increase in prediction performance, but this is not 

guaranteed for every domain. Methods for training dataset selection have been 

discussed. The methods include single sample selection to obtain one dataset for 

training, dataset partitioning, and, a combination of partitioning and sampling to 

obtain several training datasets for base models. Additionally, for a given dataset, 

there may be other objectives, such as balancing the class distribution, which will 

determine the data selection method.  

 

 A discussion of the problems associated with the use of very large training datasets 

has been given, and reasons have been given on why it is not desirable to use very 

large training datasets. The various sources of classification error have been 

discussed. Prediction error is traditionally decomposed into two components: bias 

and variance. Methods of reducing bias and variance through dataset selection have 

been discussed. Finally, the proposed general approach to training dataset selection 

from large datasets in order to reduce bias and variance has been given in the last 

section. The next chapter presents a discussion of feature selection from very large 

datasets. The research methods that were used for the studies reported in this thesis 

are presented in chapter 4. 
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