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11.1 Appendix A: Tr measurements: surface and bubble aeration plant data 
  

 Table 11-1 Long-term Tr variation data  
 

05 July 2006 Temp @ 08h30 Temp @ 09h45 Temp @ 13h00 26 June 2006 Temp @ 08h00 Temp @ 17:20
Stage 1 North 12.5 12.9 13.4 leg 1 DO1 14.4 15.2
Stage 1 South 12.6 12.9 13.4 leg 2 DO2 14.2
Stage 2 North 11.5 11.6 12.1 Aerator out 14.1
Stage 2 South 11.9 11.8 12 RAS return 14.2
average 12.1 12.3 12.7 Clarifier 1 out 14.2

Clarifier 2 out 14.1
average leg 12 14.3 15.2

05 July 2006 Temp @ 08h30 Temp @ 09h45 Temp @ 13h00
North DO 1 17.7 17.8 18
South DO 2 17.7 17.8 18
North DO 3 17.6 17.7 17.9 26 June 2006 Temp @ 08h00 Temp @ 17:20
South DO 4 17.8 18.0 18.3 leg 1 DO1 14.2 14.7
North DO 5 17.6 17.7 18 leg 2 DO2 13.8
South DO 6 17.7 17.7 17.9 Aerator out 13.9
average 17.7 17.8 18.0 RAS return 13.9

Clarifier 1 out 13.8
Clarifier 2 out 13.8

05 July 2006 Temp @ 08h30 Temp @ 09h45 Temp @ 13h00 average leg 12 14 14.7
North DO 1 17.5 17.6 17.8
South DO 2 17.9 18.0 18.2
North DO 3 17.8 17.8 18
South DO 4 17.6 17.7 17.9 26 June 2006 Temp @ 08:00 Temp @ 17:20
North DO 5 17.8 17.9 18.2 Aerobic 6 9.7 16.6
South DO 6 17.6 17.7 17.9 Ambient 0.3 14.3
average 17.7 17.8 18.0

28 October 2006 Temp @ 08h30 Temp @ 12h00 27 October 2006 Temp @ 09h00 Temp @ 13:15
Stage 1 North leg 1 DO1 21.7 22
Stage 1 South leg 2 DO2 21.4 21.8
Stage 2 North 20.6 20.5 Aerator out
Stage 2 South 20.5 20.5 RAS return
average 20.6 20.5 Clarifier 1 out

Clarifier 2 out
average leg 12 21.6 21.9

28 October 2006 Temp @ 08h30 Temp @ 12h00
North DO 1 22.8 23
South DO 2 22.6 22.8
North DO 3 22.8 23 27 October 2006 Temp @ 09h00 Temp @ 13:15
South DO 4 23.1 23.4 leg 1 DO1 21.8 22.2
North DO 5 23.4 23.6 leg 2 DO2 21.5 21.9
South DO 6 23 23.1 Aerator out
average 23.0 23.2 RAS return

Clarifier 1 out
Clarifier 2 out

28 October 2006 Temp @ 08h30 Temp @ 12h00 average leg 12 21.7 22.1
North DO 1 22.3 22.5
South DO 2 22.5 22.7
North DO 3 22.6 22.9
South DO 4 23 23.3
North DO 5 22.5 22.8
South DO 6 22.5 22.7
average 22.6 22.8

Module 1: surface turbine aeration

Module 2: submerged diffuser bubble aeration

Module 3: submerged diffuser bubble aeration

Module 1: surface turbine aeration

Module 2: surface turbine aeration

Module 1: surface turbine aeration

WCW 1

Pilot Plant: submerged diffuser aeration

WCW 2

Module 1: surface turbine aeration

Module 2: surface turbine aeration

Module 3: submerged diffuser bubble aeration

Module 2: submerged diffuser bubble aeration

 
Remark: 

WCW1 = plant 2 

WCW2 = plant 1 

WCW1a = plant 2 module 1  

WCW1b = plant 2 module 2 and 3  

WCW2a = plant 1 module 1 and 2 

WCW2b = only on-line Tr data 

WCW2c = plant 1 pilot 
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11.2 Appendix B: Raw sewage plant inflow diurnal temperature variation  
 

 

y = -1E-17x6 + 5E-14x5 - 8E-11x4 + 6E-08x3 - 2E-05x2 + 0.003x + 15.496
R2 = 0.2017

y = -2E-16x6 + 1E-12x5 - 2E-09x4 + 2E-06x3 - 0.0006x2 + 0.0876x + 10.433
R2 = 0.981
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Figure 11-1 Traw and Ta data points and diurnal profiles 
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11.3 Appendix C: MLSS concentration meter reading Ts-based variations  
 

Table 11-2 Test data: MLSS concentration meter reading variation with Ts 
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11.4 Appendix D: Batch MLSS settling data 
 

Table 11-3 Summary of experimental batch settling test reactor zone conditions and results  
Parameter Statistics Anaerobic Anoxic Aerobic 1 Aerobic 2 Aerobic 3 Aerobic 4 

Average 0.09 0.07 2.34 2.90 1.91 2.94 

St. dev. 002 0.01 0.54 0.51 0.48 0.31 DO [mg/ℓ] 

n 29 29 29 29 29 29 

Average 17.9 17.9 18.9 18.8 18.1 17.8 

St. dev. 1.2 1.3 1.3 1.2 1.3 1.3 T [°C] 

n 29 29 29 29 29 29 

Average 3536 3531 3440 3415 3399 3382 

St. dev. 300 263 285 262 258 273 MLSS [mg/ℓ] 

n 35 35 35 35 35 35 

Average 121 123 105 98 104 101 

St. dev. 31 30 12 9 12 11 SVI [mℓ/g] 

n 34 34 34 34 34 34 

Average 2.1 1.9 1.8 2.1 2.0 2.1 

St. dev. 0.6 0.5 0.5 0.6 0.6 0.5 ISV [m/hr] 

n 34 34 34 34 34 34 

Average 140 98 60 44 31 30 

St. dev. 24 21 15 11 11 9 Turb [FNU] 

n 34 34 34 34 34 34 

 

 

Table 11-4 Batch MLSS settling sample extended cooling and heating  
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Cooled Sun 8.6 16.1 131 - 0.53 - 15 - 

Cooled Shade 6.4 10.8 164 -6.2 0.04 0.09 7 1.5 

Heated Sun 29.0 27.3 106 - 1.76 - 33 - 

Heated Shade 25.5 25.3 106 0 1.76 0 21 6.0 
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Table 11-5 Batch settling test results data, with temperature and container size variation  

C
on

ta
in

er
 

Condition & 

Temperature 

SVI 

19/6 

SVI 

21/6 

SVI 

19/7 

SVI 

Ave 

u 

19/6 

u 

21/6 

u 

19/7 

u 

Ave 

Tur 

19/6 

Tur 

21/6 

Tur 

19/7 

Tur 

Ave 

 MLSS [mg/ℓ] 4210 3930 4470 4203 4210 3930 4470 4203 4210 3930 4470 4203 

1ℓ Shade 181 170 172 174 0.00 0.09 0.04 0.04 14 19 9 14 

 T30 [°C] 17.0 19.5 20.9 19.1 17.0 19.5 20.9 19.1 17.0 19.5 20.9 19.1 

1ℓ Sun 105 104 116 108 0.92 1.06 0.11 0.70 20 23 14 19 

 T 30 [°C] 21.5 23.8 25.2 23.5 21.5 23.8 25.2 23.5 21.5 23.8 25.2 23.5 

2ℓ Shade 195 137 181 171 0.31 0.88 0.13 0.44 14 - 14 14 

 T 30 [°C] 17.0 19.5 20.7 19.1 17.0 19.5 20.7 19.1 17.0 - 20.7 19.1 

2ℓ Cool, shade - 164 - 164 - 0.04 - 0.04 - 7 - 7 

 T 30 [°C] - 10.8 - 10.8 - 10.8 - 10.8 - 10.8 - 10.8 

2ℓ Cool, sun - 131 - 131 - 0.53 - 0.53 - 15 - 15 

 T 30 [°C] - 16.1 - 16.1 - 16.1 - 16.1 - 16.1 - 16.1 

2ℓ Heat, shade - 106 - 106 - 1.76 - 1.76 - 21 - 21 

 T 30 [°C] - 25.3 - 25.3 - 25.3 - 25.3 - 25.3 - 25.3 

2ℓ Heat, sun - 106 - 106 - 1.76 - 0.76 - 33 - 33 

 T 30 [°C] - 27.3 - 27.3 - 27.3 - 27.3 - 27.3 - 27.3 

2ℓ Dilute, shade - 122 - 122 - 1.89 - 1.89 - 21 - 21 

 T 30 [°C] - 19.1 - 19.1 - 19.1 - 19.1 - 19.1 - 19.1 

2ℓ Dilute, sun - 102 - 102 - 2.73 - 2.73 - 23 - 23 

 T 30 [°C] - 23.2 - 23.2 - 23.2 - 23.2 - 23.2 - 23.2 

2ℓ Sun 109 106 119 111 0.62 1.50 0.40 0.84 15 21 23 21 

 T 30 [°C] 20.9 23.6 25.1 23.2 20.9 23.6 25.1 23.2 20.9 23.6 25.1 23.2 

20ℓ Sun 112 - 139 126 0.97 - 0.31 0.64 18 - 11 15 

 T 30 [°C] 19.0 - 22.2 20.6 19.0 - 22.2 20.6 19.0 - 22.2 20.6 
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11.4.1 SVI variation 
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Figure 11-2 SVI, different containers, Ts after 30 min., MLSS 4210 mg/ℓ 
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Figure 11-3 SVI, different containers, Ts after 0 and 30 min., MLSS 3930 mg/ℓ 
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Figure 11-4 SVI, different containers, Ts after 5 min., MLSS 4250 mg/ℓ 
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Figure 11-5 SVI, different containers, Ts after 0, 15 and 30 min., MLSS 4470 mg/ℓ 
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11.4.2  Zone settling velocity variation 
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Figure 11-6 Initial settling velocity, Ts after 30 min., MLSS 4210 mg/ℓ 
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Figure 11-7 ISV, Ts after 0 and 30 min., MLSS 3930 mg/ℓ 
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Figure 11-8 ISV, Ts after 5 min., MLSS 4250 mg/ℓ 
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Figure 11-9 ISV, Ts after 0, 15 and 30 min., MLSS 4470 mg/ℓ 
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11.4.3 Turbidity variation 
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Figure 11-10 Turbidity, 30 min. settling, Ts after 30 min., MLSS 4210 mg/ℓ 
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Figure 11-11 Turbidity, 30 min. settling, Ts after 0 and 30 min, MLSS 3930 mg/ℓ 
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Figure 11-12 Turbidity, 30 min. settling, Ts after 5 min., MLSS 4250 mg/ℓ 
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Figure 11-13 Turbidity, 30 min. settling, Ts after 0, 15 and 30 min., MLSS 4470 mg/ℓ 
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11.5 Appendix E: On-line meter data 
 

An example of a typical Excel spreadsheet diagram with an original 12-hour profile of h and 

Ta logger data is provided in Figure 11-14. The Ta profile varies from about 5 to 25°C, 

whereas the 30-minute MLSS settling profiles final h value varies from about 359 mm to 

210 mm. The period between each moving settling profile indicates the meter cleaning and 

standby cycle. 
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Figure 11-14 Consecutive 30-minute settling profiles from MLSS settling meter data, h and 

Ta readings over 12 hours  

 

Table 11-6 Summary of on-line experimental data 
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y = -2E-14x6 + 8E-11x5 - 9E-08x4 + 4E-05x3 - 0.0085x2 + 0.5954x + 17.673
R2 = 0.797

y = 2E-14x6 - 3E-11x5 + 2E-08x4 - 5E-06x3 + 0.0004x2 + 0.002x + 17.153
R2 = 0.9033
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Figure 11-15 Two-day Ta and Tr profiles  
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Figure 11-16 Two-day Tr and MLSS concentration profiles  
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Figure 11-17 Two-day SVI and Tr profiles 
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Figure 11-18 Two-day SVI and MLSS concentration profiles  
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11.6 Appendix F: Photograph of MLSS settling meter 

 
 

 
Photograph 1 MLSS settling meter and output display  

 

SVI, height, and 
velocity display

Settling column 
with sensor 
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11.7 Appendix G: Settleability factors summary 

 
11.7.1 Biofloc composition and structure 

Table 11-7 Biofloc composition and structural properties affecting settling aspects 

Parameter Improve settling  Worsen settling  Impact description Typical range Reference 

Density  
Higher density with specific gravity (SG) 
of floc up to 1.06 
 

Lower density with SG of floc up to 
1.02 Heavier particles settle and compact faster  1.020  Bień et al., 2005; Murthy 1998;  

Andreadakis, 1993; 

ECP  More ECP (up to 15%) protects biofloc Less ECP  ECP Layer decrease surface roughness, provides protective coat to flocs  
N/A Liss et al., 2002; Frolund et al., 1996; 

Growth stage End of log growth phase, start endogenous Log growth or end of endogenous  Non-settleable at start, dispersed at end N/A Kolmentz, 2003; 

Organism type 

 
Floc former: filament ratio balance; 
higher organisms: swimming or crawling, 
such as protozoans and rotifers 
 

 
Microorganism imbalance: filaments 
dominate over floc formers 
 
 

 
Filaments dominance prevent settling (leads to bulking),  
Bridging between flocs,  
Floc formers suppressed, 
Filaments prevent downward sludge and upward water movement 
Higher organisms feed on dispersed flocs and free bacteria 
 

 
3-5 filaments per floc-
former 

Martins et al., 2003; Forster and Dallas-
Newton, 1980; Blackbeard et al., 1986; 
Bux and Kasan (1994a); 

Polyphosphate  Higher P increases settling velocity N/A Cells store polyphosphate, P increases biofloc density N/A De Clercq, 2003; 

Porosity Low porosity or high porosity High porosity 

 
Low porosity biofloc has higher density and is firm and compact and 
improves settling, but high porosity can also improve settling velocity of 
aggregate, as water can rise through settling blanket flocs 
Larger size more porous, and resulting lower density 
Low DO cause filaments and irregular shaped porous flocs  
 

N/A 
Martins et al., 2003; Barbusiński and 
Kościelniak, 1995; Námer and 
Ganczarczyk, 1993; 

Shape  

 
Irregular shaped improve clarification 
efficiency and bridging 
Round, regularly shaped improves settling 
velocity and compression 
 

Sphere (reduce clarification 
efficiency) 

 
 
Shape away from sphere reduces settling velocity but improves sweep 
flocculation 
 

N/A Martins et al., 2003; 

Size Medium size 200-500 µm Too Small (no filtering effect) or too 
large (too porous and low density) 

 
Balance between growth and fragmentation 
Settling velocity directly related to size (diameter) 
Anaerobic inside large flocs: break-up 
Surface shear increases with floc diameter 
 

 
0.5 to 1000 µm 

Spicer and Pratsinis, 1996;  Kolmentz et 
al., 2003 ; Randall et al., 1992; 
Wilén, 1999; 

Surface charge 
 
Higher charge 
 

 
Lower charge 
  

 
Negative surface charge provides negative adsorption sites to bind to positive 
metal cations 
Surface charge influences filament length (coil or straight) 
 

-20 to -50 mV;  
-15 to -30 mEq/gSS 

Bux and Kasan, 1994b; Liss et al., 2002; 
Forster, 1976; Örmeci and Vesilind, 
2000; 

Surface solvent 
interaction 
(hydrophobicity) 

Hydrophobicity larger 
(hydrophobic surface) 

 
Hydrophobicity smaller 
(hydrophilic surface) 
 

Cells and flocs adhere easier to hydrophobic surface N/A Liss et al., 2002; Agridiotis et al., 2006; 
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11.7.2 Wastewater characteristics  

 

Table 11-8  Wastewater characteristics affecting settling aspects 

Parameter Improve settling  Worsen settling Impact description Reference 

Alkalinity 
 
Normal alkalinity 
 

 
Low alkalinity 
 

 
Low alkalinity – no buffer for nitrification loss – defocculation 
High alkalinity increases settling rate (>500 mg/ℓ as CaCO3) 
 

Nell, 1980; Rasmussen et al., 1993 

Ammonia Low ammonia concentration < 1.5mg/ℓ Higher ammonia concentration Nitrification bacteria attached to surface of compact flocs Kruit et al., 2002; Wanner et al., 1988 

Bacteria Floc formers: filaments ratio balance Filaments > floc-formers 
Floc formers > filaments Filament growth leads to bulking and settling reduction Tandoi et al., 2006; 

C: N: P  
or nutrient composition or 
trace elements 

COD: N: P > 100:5:1 
COD: NH4  > 5 (nitrogen limited) 
 

COD: N: P < 100:5:1 
COD: NH4 < 5 (carbon limited) 
Iron concentration low  
 

Filaments favour N and P deficiency 
High C synthesis of cells and ECP production, but low C fungal growth, filaments 
Endogenous growth phase, filaments 

 
Tandoi et al., 2006; Nakhla and Lugowski (2003); 
Durmaz and Sanin (2001); Nell, 1980; Ekama et al., 
1997; Al-Yousfi et al., 2000 
 

Floc water Bound floc water Capillary water  

 
Well formed flocs holds bound floc water, 
Deflocculated flocs hold capillary water, 
Bound water is released and decreased at low DO, 
Bound water is decreased at high salinity and conductivity. 
 

Sürücü and Çetin, 1989; Forster, 1976; Sanin, 2002 

FOG No excessive quantities Fats oils grease (FOG) from 
industrial sources 

 
FOG coat flocs, and interfere with bacterial activity structure 
FOG covers porosity channels, and hinders water flow and entrap air bubbles 
 

Gerardi, 2002 

Metal cations 
Divalent (Copper > Calcium > 
Magnesium selectivity to floc matrix) 
Divalent: Monovalent ratio > 0.5 

Monovalent (sodium, potassium, 
ammonium) 

 
Charge bridging and when by divalent ion, a larger surface area 
Biofloc is an ion exchange medium: monovalent ion exchange for divalent ion (Calcium 
instead of Magnesium or Sodium) 
Lower net negative surface charge and lower interparticle distance 
Increase floc size and density, stable structure, decrease porosity with divalent ions  
Binding ability of charged and uncharged groups on ECP  
 

Murthy, 1998; Biggs et al., 2001; Gerardi, 2002; 
Sürücü and Çetin, 1989; Tandoi et al., 2006; Urbain 
et al., 1993; Bruus et al., 1992; Novak et al., 2001; 

MLVSS Low active fraction High active fraction Settleability decreases at higher active fraction (or young sludge age) Catunda and Van Haandel, 1992; Gerardi, 2002 

Nitrate Nitrate low < 1 mg/ℓ 
Nitrate  > 1 to 2 mg/ℓ  
(Anoxic to aerobic zone) 
 

 
Filaments reduce NO3 to NO2 and will proliferate 
Floc formers reduce NO2 to N2 to proliferate  
Anoxic conditions in secondary settling tank release insoluble nitrogen gas bubbles which 
attach to flocs and float to surface 
 

Hercules et al., 2002; Sötemann et al., 2002 

Nitrogen gas Denitrification that is completed 
improves compression Denitrification not complete  

 
Insoluble nitrogen gas adhere to bioflocs and specifically filaments, increase biofloc 
buoyancy 
 

Madoni et al., 2000; de Clercq, 2003 

pH 

 
 
Neutral pH near 7 (range 6.5 to 8.5) 
 
 

Alkaline pH  (pH > 8.5) or  
acidic pH  (pH < 6.5) 

 
No large variations in pH for stable MLSS settling, 
Alkaline conditions can improve settling, 
Filamentous fungi growth at low pH, filament proliferation when denitrification 
incomplete for alkalinity recovery 
Negative charge reduces at lower pH 
Deflocculation at low pH 

Nell, 1980; Sürücü and Çetin, 1989; Pitman, 1975; 
Ekama et al., 1997; Drysdale et al., 2000; Gerardi, 
2002;  
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Septicity Increase septicity Decreased septicity Lower bacterial fibril charge Gerardi, 2002 

Sewage feed age  

Fresh sewage (normal age) 
Low levels of sulphide no impact (0.5 – 
2.0 mMol) 
 

Long sewage feed age: septic 
sewage  
Acetate and sulphide: carbon sources 
for filaments, Sulphide from 
industrial sources  
 

Filament dominance under septic conditions 
Deflocculation at S > 2.7 mMol 

Kjellerup et al., 2001; Martinez et al., 2006; van 
Niekerk et al., 1987; Jenkins et al., 1984 

Soaps, detergents,  
emulsifying agents No excessive quantities 

High concentrations industrial 
sources 
 

 
Surface active compounds cause deflocculation of colloids, dispersed cells, small flocs, 
Decrease surface tension and attack perimeter of floc, 
Foam production and toxicity. 
 

Kjellerup et al., 2001; Gerardi, 2002 
 

Solids content Normal MLSS concentration: 3000 to 
6000 mg/ℓ (Extended aeration) 

Low MLSS concentration 
High MLSS concentration 

 
All aspects of settling related to solids content or MLSS concentration 
MLSS settling velocity and concentration modelled accordingly 
 

Bhargava and Rajagopal, 1993; Catunda and Van 
Haandel, 1992 

TDS 

High TDS, specifically salinity (sodium 
and potassium ions) 
High strength: up to 0.06 M for 
monovalent and divalent cations 

Low TDS 
Dilution of sample with water 

 
High TDS: Larger floc area, elongated shape, decreased shape factor due to electrostatic 
and hydrophobic reactions 
Low TDS: Deflocculation, high turbidity 
Diluted sample has lower ionic strength, leads to deflocculation 
 

Moghadam et al., 2005;  Gerardi, 2002; 
Chaignon et al., 2002; 

Temperature: long- term 
(seasonal variation) 

Summer and early autumn  
(high temperature) 

Winter and early spring  
(low temperature) 

 
Filament growth at lower temperature (Tr < 20°C), M. parvicella growth only at Tr < 20°; 
Zoogloea growths more at lower Tr 
 

Kristensen et al., 1994; Mamais et al., 2006;  
Al-Yousfi et al., 2000; 

 
Temperature: short-term 
(diurnal variation) 
 

Day (high Temperature) Night (low temperature) Physical changes to water and biofloc Makinia et al., 2005; 

Toxicants Limited toxic concentrations Toxic (industrial) discharges such as 
organic compounds e.g. phenol 

 
Deflocculation from biofloc disintegration 
Large viscous clumpy bioflocs 
Instantaneous floc break-up 
 

Morgan-Sagastume and Allen, 2003; Wilén, 1999; 
Schwartz-Mittelmann and Galil, 2000; 

VFA and LCVFA VFA and LCVFA low concentration VFA and LCVFA concentration Filaments use VFA to proliferate Kruit et al., 2002; 

Viscosity Low  High  Improved MLSS settling at lower viscosity 
Viscosity is inversely related to Ts 

Hasar et al., 2004; 
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11.7.3 Process and reactor configuration  

 

Table 11-9 Process and reactor configuration affecting settling factors 

Parameter Improve settling Worsen settling  Impact description on settling aspect Reference 

Aeration intensity Low velocity surface aeration or  
bubble aeration 

High velocity surface aeration or over -
aeration causing turbulence 

 
Physical floc break-up of shearing of sections 
High shear leads to irreversible floc size reductions 
 

Ekama et al., 1997; Biggs et al., 2003; Parker et 
al., 1996; 

Aeration method Fine bubble 
Surface aeration with draught tubes 

Coarse bubble  
Point source surface aeration 

 
No low DO tension in bubble aeration 
Turbulence for floc break-up 
 

Van Huyssteen et al., 1990; Ekama et al., 1997 

Aerobic reactor zone size >55% to 60%  < 55 to 60%  Filament proliferate at low DO conditions and large anaerobic zones Ekama et al., 1997; Cooper et al., 1995; Tandoi 
et al., 2006; Pitman, 1991; 

Anaerobic reactor zone size Short anaerobic retention time 
Anaerobic reactor < 10% 

Longer anaerobic retention time 
Anaerobic reactor > 10% 

 
Deflocculation at long anaerobic time 
Filament growth at large anaerobic zone 
 

Wilén, 1999; Cooper et al., 1995; 

Attached growth 

 
Support material available for attached 
growth  in reactor 
 

No attached growth, only suspended 
growth in biofloc  

 
Biofilm carrier material in reactor requires no RAS recycle 
Biofloc grow on inert particle or carrier such as foam or plastic discs,  
Maximum particle volume 40% to ensure complete mixing 
Reduce filamentous growth in biofilm due to anoxic zone 
 

Wanner et al., 1988; Ødegaard, 2000; 

Combined sewers Separate Combined 
 
Combined infiltration, high hydraulic loads due to storm water 
 

Wilén, 1999; 

Environmental Quiescent conditions Rainfall, wind  

 
Rainfall dilute inflow through infiltration, hydraulic load 
Wind will enhance density currents and move surface scum 
 

Ekama et al., 1997; Van der Walt, 1998; 

HRT in settling tank As per design Too short Microorganism washout at low HRT over design capacity Pretorius, 1987; 

Inflow feed configuration Discontinuous or intermittently fed 
Cyclic loading Continuously fed 

 
Substrate gradient favours floc-formers above filaments 
Larger stronger flocs with cyclic 
 

Dangcong et al., 1999; Wilén and Balmer, 1999; 

Mixing intensity 
 
Gentle mixing: for contact and suspension 
 

Low intensity mixing: dead zones 
High intensity mixing: unwanted DO 
input  

Bioflocs contact, induce flocculation 
Mixing reduce wall effects during settling tests in cylinders 

Wilén, 1999; Grijspeerdt and Verstraete, 1997; 
Berktay, 1998; 

Prefermentation No prefermentation, (or Prefermentation 
depending on VFA) Prefermented settled sewage reactor feed 

 
M. parvicella store LCVFA under anaerobic conditions 
But 7.5 mg/ℓ VFA per 1 mg /ℓ  P can minimise anaerobic zone size and improve 
settling 

Mamais et al., 2006; Cooper et al., 1995; 

Primary settling Primary settling 
No primary settling 

No primary settling 
Primary settling 

 
Remove some RBCOD and VFA which simulates growth of filaments such as 
Microthrix parvicella 

Mamais et al., 2006; Tandoi et al., 2006; 
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Nutrient rations change 
 

Reactor configuration 

 
Plug flow or SBR or oxidation ditch 
Declining growth phase 
 

 
Completely mixed reactor 
Log growth phase 
 

 
Spatial substrate gradient in plug flow favours floc-formers 
Temporal substrate gradient SBR favours floc-formers 
Completely mixed reactor has backmixing and mobile organisms proliferate 
 

Droste, 1997; Janczukowicz et al., 2001; Azimi 
and Horan, 1991; van Niekerk et al., 1987; 
White, 1976; Pitman, 1975; Kruit et al., 2002 

Reactor surface flow 

 
Free surface flowing  
Reactor zone surface organism removal 
Mechanical foam removal 
 

Internal recirculation of foam/scum 
microorganisms 
Trapped foam 

 
Remove scum/foam organisms out of system 
Surface layers with foam / floating matter retention age > sludge age of bulk 
activated sludge : due to trapping and recirculation, cause foam proliferation 
Surface aerators have surface pump-back action to return foam upstream 
 

Tandoi et al., 2006; Blackbeard et al., 1986; 
Madoni et al., 2000; Pitman, 1991; Pitman, 1996 

Selectors 

Sectionalised selector short HRT: 
5 minutes in 3 sections 
Selectors loading: 100 mg COD. 
g MLSS .h-1 

HRT not suitable  
Too large or too small selector 
Selector loading too low or high 

 
High VFA uptake by floc-formers, substrate gradient favours floc-formers 
Flocformers are fast-growers, filaments are slow-growers 
Too small selector: substrate into reactor,  
Too large selector: removal of substrate too large 
 

Tandoi et al., 2006; Kruit et al., 2002; Cenens et 
al., 2000; Van Niekerk et al., 1987; 

Settling tank design 

 
Deep tank (>5m): sweep flocculation 
Large centre well: reflocculation 
Sloped floor: fast sludge removal  
Baffles: surface scum removal 
 

Shallow tank (< 5m depth)  
Small centre well  
Flat floor: slow sludge removal  
No baffles 

sweep flocculation 
reflocculation 
denitrification 
surface foam  
 

Parker et al., 1996; 

Settling tanks configuration Tanks in series Tanks in parallel Micro-organism selection occurring in tanks by removing filaments in 1st tank Kim et al., 1998; 

Simultaneous precipitation Precipitation No precipitation 

 
C and P nutrient deficiencies and filamentous growth from precipitation 
Stabilisation time required to restore settling 
 

Ødegaard, 2000; Ericsson and Eriksson, 1988; 
Janssen et al., 2002; 

Turbulence: hydraulic jump 
or pumping 

Low turbulence and gentle transfer 
(Can enhance settling if DO is increased)  

High turbulence, high pump impeller 
velocity 

 
Biofloc deflocculate during shear, Break-up more during aggregation 
 

Wilén, 1999; 

Ultrasound Sonification time low (about 180s) at 
22kHz and 16 µm, 

Sonification time high (about 360s) 
at 22kHz and 16 µm 

 
Ultrasonic cavitation bubbles can destroy filaments with Increased settling velocity, 
lower SVI, lower hydration, but at high intensity shear cause cell destruction, 
dispersed floc, and irreversible deflocculation 
 

Bień et al. 2005; Wünsch et al., 2002; 
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11.7.4 Operational factors 

 

Table 11-10 Operational factors affecting settling factors 

Parameter Improve settling  Worsen settling aspect Impact description on settling aspect Reference 

Additives: Synthetic 
polymers, inorganic 
coagulants, anti-foaming 
agents, weighing agents 
 

Structure change to compact dense flocs; 
Hydrophobicity increase 
 

Overdosing of these additives, and 
introduction of new constituents 
 

 
Fast changes within 30 to 45 min., ideal as short-term standby or emergency use 
but temporary measure only (e.g. 4 hr) with relative high cost of chemicals 
Ballasting effect, floc restructuring, thin biofilm 
Initial lag period, SVI, ISV, SV30 improvement 
 

Wilén, 1999; Agridiotis et al., 2006; 
Patoczka et al., 1998; Vanderhasselt and 
Verstraete, 1999; Vanderhasselt et al. 
(1999a); 

Anaerobic time Shorter anaerobic 
Anaerobic reactor < 10% Longer anaerobic time 

 
Deflocculation at long anaerobic time 
Filament growth at large anaerobic zone 
 

Wilén, 1999; Cooper et al., 1995; 

Anoxic reactor outlet nitrite Low NO2concentration 
 
High NO2 concentration  (>1 to 2 mg 
NO2/ℓ) 

Bulking sludge due to high nitrite concentration 
Control the a- recycle according to denitrification potential Lilley et al., 1997; 

Bactericide 

 
Chlorine, hydrogen peroxide, ozone 
Lower SVI and effluent suspended 
solids, higher settling velocity  
 

 
Overdosing of bactericide: effluent SS 
increase, Floc formers can be affected 
Introduction of new constituents 
 

Non-specific bulking control by filament killing 
Temporary solution 
High cost 
2 to 8 mg Cl2/(gMLSS.d) for 19 days reduces DSVI from 230 to 48 mℓ/g 

Seka et al., 2001; Van Leeuwen and 
Pretorius; 1988; Wentzel et al., 1988; 

DO concentration 

DO = 2 mg/ℓ over 24 hr in whole aerobic 
reactor (ideally), or minimum 1 mg/ℓ 
over 24 hours in all sections of aerobic 
reactor 

Over aeration (DO>3 mg/ℓ) 
Under aeration (DO <1 mg/ℓ) in zones or 
certain times,  
Oxygen limitation (DO< 0.5 mg/ℓ) 
Intermittent or alternating aeration  

 
Increase DO: mechanical or point source aerators turbulence will shear sensitive flocs,  
Filament dominance, 
Deflocculation, irregular weak flocs, low ECP production; low adsorption colloids; porous 
flocs; anaerobic period determines deflocculation, 
Diffusional limitation inside flocs at a low DO, 
DO according to organic loading [2 mg/ℓ DO for 0.5 kg COD/kg MLVSS/d], 
Higher DO (>2 mg/ℓ) create large stable compact flocs, 
High DO and over-aeration cause foams;  
High DO in a-recycle to anoxic zone reduces BNR efficiency. 
 

Jones and Franklin, 1985; Kabouris and 
Georgakakos, 1990; Kjellerup et al., 2001; 
Martins et al., 2003; Tandoi et al., 2006; 
Wilén, 1999; Wilén and Balmér, 1999; 
Pitman, 1991; 

Organic loading Organic loading high Organic loading low  
Organic loading overload (long-term) 

 
Filament dominance at low substrate, larger surface: volume 
Floc formers have higher substrate utilisation rates 
Floc formers cannot absorb too high substrate loading: break up  
Diffusional resistance inside flocs for high loading: break up 
Size of flocs increase with increased loading  
 

Jones and Franklin, 1985; Tandoi et al., 
2006; Barbusiński and Kościelniak, 1995;  
Pitman, 1975; 

Plant stability Start-up Steady state 
 
Start up unstable, microorganisms need period of a few sludge ages to acclimatise 
Bioflocs flocculate poorly in log growth phase when compared to declining growth phase 

Kolmetz et al., 2003; 

RAS recycle rates High RAS recycle (>1) Low RAS recycle (<1) High contact for flocculation; Prevent clarifier denitrification Cloete and Muyima, 1997; 

Sludge age (SRT) SRT high (>15 days for EPBNR) SRT low (< 10 to 15 days EPBNR),  
or very high  

 
High sludge age (15 to 20 days): Biofloc more stable, compact, floc surface more 
hydrophobic, less negatively charged, less hydrated, large ECP layer gives smoother surface 
and protective coat; 
Higher life forms scavenge effluent dispersed fragments; 
High sludge age: Filament dominance at very high sludge age; 
Low sludge age: weak buoyant floc shear easily no structure; 
 

Liss et al., 2002; Liao et al., 2001; Akça et 
al., 1993; Kaewpipat and Grady, 2002;  
Nakhla and Lugowski, 2003; Gerardi, 2002; 
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11.7.5 Settleability failure identification 

 

Table 11-11 Settleability failure identification guidelines 

(adapted from Jenkins et al., 1986) 

Name of problem Nature of problem / alternative names Characterization of problem  Reasons for problem 

Dispersed floc Flocs do not aggregate, small clumps (10 to 20 µm) or single cells 
(Dispersed growth, straggler flocs) 

Turbid effluent 
No or very low zone settling velocity 
Low sludge age from loss of sludge in settling tank 

 
Low amount of ECP 
High organic loading 
Start-up of plant or low sludge age 
Toxicity event 
 

Filamentous floc 
 

 
Strong, large flocs 
Filaments extend from flocs into bulk solution, interfloc bridging 
Interfere with settling and compression 
Filaments cause foaming (Norcadia or Microthrix parvicella) 
(filamentous bulking) 
 

Clear effluent 
Poor thickening and low RAS concentration 
Increased sludge blanket 
High SVI and high SV30 

 
Nutrient deficiency 
High organic loading / shock load 
Low DO concentration 
Low pH 
Septicity or high sulphide levels 
 

Floating flocs 
Bio surfactants or surface active agents, from foam forming filaments 
Floating foams from hydrophobic filaments, accumulate on surfaces 
Bacteria causing foams dominate 

Foams visible in aerator and settling tank, aesthetic  
Carryover cause high nutrient content in effluent 
Low density billowy foam or heavy dense foam 

 
Internal circulation of material and not removed from system 
Low temperature or seasonal changes 
Low sludge age  
Low DO concentration 
High organic shock load 
Industrial surface active agents 
 

Non-filamentous floc 

Sludge flocs become more hydrated and reduce density 
Bound water in sludge flocs due to hydrophilic biopolymers 
Exocellular slime or jelly-like characteristics of sludge solids 
(viscous bulking, hydrous zoogloeal bulking, non-filamentous bulking) 
 

 
Low settling velocity 
Low compression and low RAS concentration 
Increased sludge blanket 
High SVI 
 

 
Low sludge age 
Nutrient deficiency 
High organic loading / shock load 
Low DO concentration 
 

Pin floc 

Compact dense flocs settle rapidly, leaving lighter flocs in suspension 
Weak, small flocs 
Break up of large flocs 
(Pin-point floc, unsettleable floc) 

Cloudy turbid effluent with fine particles 
High zone settling velocity 
Few filaments  
Low SVI 

 
High DO concentration 
High turbulence from aerators or hydraulic jumps High shear 
High sludge age  
Low organic loading 
Absence of filaments 
 

Rising flocs 

 
Gas entrainment or gas release gives buoyancy to flocs 
Bubble aeration MLSS supersaturated with air 
Denitrification of nitrate in blanket with insoluble nitrogen gas release 
Long retention in settling tank make sludge anaerobic with gas release 
 

Settle rapidly and compact well 
Flocs or clumps of flocs rise rapidly to surface, within 30 
minutes to interfere with SVI test 

Low RAS flow rate 
High sludge blanket or tank floor accumulation 
Reactor denitrification incomplete 
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11.7.6 Settleability impacts due to filamentous micro-organism dominance 
 Table 11-12 Microthrix parvicella dominance and settling effects in a NDBEPR process 

 (adapted from Tandoi et al., 2006)  

Parameter Microthrix parvicella compared to floc-formers Microthrix parvicella  dominance impact on settling 

Biocides 

 

20 to 200 kgCl2/kgSS effective for Microthrix parvicella;  

2 kg Cl2/kg SS normal dosing for other filaments 

 

Hydrophobic cell wall prevents penetration to reduce 

Microthrix parvicella dominance 

Cell wall 

 

Microthrix parvicella hydrophobic 

 

Supports formation of stable foams, Scum and bulking in 

same reactor attributed to Microthrix parvicella 

Electron 

acceptors 

 

Microthrix parvicella uses DO, NO3, NO2 

 

All reactor zone grower (anaerobic, anoxic, aerobic) and 

related settleability deterioration 

Maintenance 

energy  

 

Microthrix parvicella has lower requirements, and can adapt 

and withstand environmental stress 

 

Advantage under starvation conditions (low substrate loading 

such as C, N, O) leads to proliferation and related settleability 

deterioration 

Oxygen affinity Microthrix parvicella has high affinity 

 

Advantage during micro-aerobic conditions 

During low DO concentration or plant overload 

More prevalent in surface aeration with low DO concentration 

sections  

pH 

 

Stimulated Microthrix parvicella growth alkaline pH (>8) 

 

NDBEPR recovers alkalinity for resulting higher pH, and 

related settleability deterioration 

Slowly 

biodegradable 

substrate  

 

Microthrix parvicella grows well with SBCOD, and also a 

specialised lipid consumer 

 

Kinetic selectors are not effective to reduce Microthrix 

parvicella dominance 

Sludge age 

 

Enhanced Microthrix parvicella growth at long sludge ages 

(>10 days) 

 

NDBEPR process sludge age above 15 days, and related 

settleability deterioration  

Strains 

 

Numerous 

 

Contradictory information; Difficult to isolate and cultivate 

Symptoms 

 

Varied indications makes identification difficult 

 

Bulking and scum formation in same reactor 

Temperature  

 

Enhanced Microthrix parvicella growth at 12- 15°C (winter 

temperatures) 

Microthrix parvicella growth stops above 20°C (summer 

temperatures) 

 

Seasonal / periodic dominance, and related long-term changes 

in settleability 

Volatile fatty 

acids 

 

Enhanced Microthrix parvicella growth with LCVFA in 

anaerobic reactor zones  

 

 

LCVFA enriched settled sewage feed from prefermenters; 

Microthrix parvicella proliferation from anaerobic reactor in 

NDBEPR process and related settleability deterioration 

 
 
 



 

 

151

Appendix H: Summary of regression model variable results 
 Table 11-13 Regression variable results 
 

95% confidence interval 
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Value Standard error t-ratio p value 
95% (+/-) Lower limit Upper limit 

SVI 33051.9430 20.0767 71.0372 a 872.4200 159.1041 5.48 0 316.5058 555.9142 1188.9258 
   b -4624176.0614 445895.8905 -10.37 0 887020.6949 -5511196.7563 -3737155.3665 
   c 4823.4020 1611.5791 2.99 0.0037 3205.9143 1617.4878 8029.3163 

t_umax 2419.6831 5.4322 70.2409 a 239.5624 43.0489 5.56 0 85.6372 153.9252 325.1996 
   b -1290679.9382 120646.3577 -10.70 0 240001.7994 -1530681.7375 -1050678.1388 
   c 939.9347 436.0461 2.16 0.034 867.4264 72.5082 1807.3611 

u_max 7.7978 0.3084 58.9421 a -9.30 2.44 -3.81 0.0003 4.86 -14.16 -4.44
   b 57454.30 6848.89 8.39 0 13624.50 43829.76 71078.76 
   c -39.8603 24.75 -1.61 0.11 49.24 -89.10 9.38

u_ave 0.3879 0.0688 75.5813 a -2.89 0.55 -5.31 0 1.08 -3.98 -1.81
   b 18433.81 1527.63 12.07 0 3038.92 15394.90 21472.74 
   c -15.18 5.52 -2.74 0.007 10.98 -26.16 -4.20
h 94532.14 33.9535 76.0927 a 1793.96 269.07 6.67 0 535.27 1258.69 2329.23
   b -9200670.30 754092.67 -12.20 0 1500116.54 -10700786.85 -7700553.76 
   c 7744.02 2725.48 2.84 0.006 5421.80 2322.23 13165.82 

u1 2.4349 0.1723 32.0137 a -1.1851 1.3656 -0.86 0.388 2.7166 -3.9018 1.5315
   b 14418.7348 3827.1866 3.77 0.0003 7613.4223 6805.31 22032.1571 
   c -31.9946 13.8324 -2.31 0.023 27.5168 -59.5115 -4.4778

u2 4.2432 0.2275 59.0884 a -2.6708 1.8027 -1.4815 0.1423 3.5861 -6.2570 0.9153
   b 33145.3653 5052.1882 6.5606 0 10050.3181 23095.0472 43195.6834 
   c -74.7660 18.2598 -4.0946 0.0001 36.3244 -111.0903 -38.4416 

u3 1.4572 0.1333 62.3507 a -3.6732 1.0564 -3.4770 0.00081 2.1016 -5.7748 -1.5717
   b 25152.0675 2960.7089 8.4953 0 5889.7381 19262.3293 1041.8057 
   c -26.7192 10.7007 -2.4969 0.0145 21.2870 -48.0062 -5.4322

u4 0.6809 0.0911 59.5538 a -4.1828 0.7222 -5.7921 0 1.4366 -5.6194 -2.7462
   b 19564.9547 2023.8724 9.6671 0 4026.09 15538.8655 23591.0440 
   c 3.4218 7.3148 0.4678 0.6411 14.5513 -11.1295 17.9731

u5 0.5620 0.0838 33.6828 a -3.3897 0.6561 -5.1666 0 1.3051 -4.6948 -2.0846
   b 11822.7573 1838.6975 6.4300 0 3657.7208 8165.0364 15480.4781 
   c 18.7500 6.6455 2.8215 0.006 13.2199 5.5301 31.9700

u6 0.3475 0.0651 29.5519 a -2.6835 0.5159 -5.2019 0 1.0262 -3.7097 -1.6573
   b 8411.5793 1445.7612 5.8181 0 2876.0528 5535.5265 11287.6321 
   C 18.8984 5.2253 3.6167 0.00051 10.3948 8.5037 29.2932
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