
Chapter 3

Computer Graphics Overview

3.1 Introduction

The calculation of computer generated images takes up a large amount of processor time.
The field of computer graphics was developed to increase the speed and fidelity of com­
puter generated images. The purpose of this chapter is to highlight some of the fundamen­
tals of computer graphics that are relevant to this study. A short overview is given of the
conventions used in computer graphics and matrix operations. Two and three-dimensional
transforms are investigated, leading to a discussion on perspective and orthogonal projec­
tions. Texture maps are used to simplify the generation of physically realistic imagery. The
main elements of the OpenGL API are discussed. This chapter is based on Foley et al. [15],
except where otherwise noted.

3.2 History of computer graphics

A short history of computer graphics is given by Foley et al. [15].

Plotting on hard-copy devices such as teletypes and line printers date from the
earliest computers. The Whirlwind Computer, developed at MIT in 1950, used
computer driven CRT (cathode ray tube) displays for output. The SAGE Air De­
fense System in the middle of the 1950s used CRT display consoles on which
operators identified targets by pointing at them with light pens. Ivan Suther­
land founded modern interactive computer graphics with the development of the
Sketchpad drawing system as part of his PhD. work in 1963. He introduced data
structures for storing symbol hierarchies which are built up by replication of stan­
dard components as well as interaction techniques for using the keyboard and a
light-pen for chOice-making, pointing and drawing. Computer graphics were
then largely driven by developments in computer-aided design and computer­
aided manufacturing. The display devices developed in the mid-sixties are called
vector displays. They consist of a display processor, a display buffer memory and
a CRT. The buffer stores the computer generated display-list or display program
which contained point and line plotting commands as well as character plotting
commands. These commands are interpreted by the display processor, which
controls the display on the CRT. Vector displays of up to 4096x4096 points were

17

Chapter 3 Computer Graphics Overview

+Y

+Z

Figure 3.1: Right-handed coordinate system

developed.

In the seventies the generation of images was moved from the central computer
to a mini-computer connected to the display device. The most significant devel­
opment in the mid-seventies, however, was the appearance of low-cost solid state
memory. This lead to the development of raster displays. In the raster displays,
primitives such as lines, characters and polygons are stored in a refresh buffer
in terms of their component points, called pixels. The image is formed from the
raster. The raster is simply a matrix of pixels covering the display area.

OpenGL WilS developed from SGI's Iris GL [16]. Iris GL was used by SGI's high-end graph­
ics workstations as a 3D API (application programming interface). Iris GL required spe­
cialised hardware to display graphics. OpenGL was developed to be a more portable graph­
ics API than Iris GL. SGI made the OpenGL available to other vendors through licensing
and the OpenGL ARB (architecture review board) was formed . The founding members of
the OpenGL ARB were SGI, DEC, IBM, Intel and Microsoft. Version 1.0 of the OpenGL spec­
ification was introduced on July 1, 1992. The current specification of OpenGL, Version 1.2.1,
was released on April 1, 1999.

3.3 Coordinate Convention

The OpenGL library uses a right-handed coordinate system as illustrated in Figure 3.1. This
is from Wright et aI. [16, p137] .

3.4 Two-dimensional transformations

Matrix operations are fundamental to the implementation of a computer graphics system.
Sections 3.4 and 3.5 are included to highlight the basic matrix transformations required for
two- and three-dimensional computer graphics.

The multiplication of matrix A = (aij), a m x n matrix, and matrix B = (b i j), a n x p matrix,
is defined by de la Rosa et aI. [17, p205] as the matrix AB = (Cij) where

Electrical, Electronic and Computer Engineering
University of Pretoria

18

Chapter 3 Computer Graphics Overview

n

L aitbtj, (1:S; i :s; m, 1:S; j :s; p). (3.1)
t=l

AB is an m x p matrix.

The discussion on two-dimensional transformations is based on Foley et al. [15]. Points in the
xy-plane can be translated to new positions by adding translation amounts to the points. If
the point is to be moved kx units parallel to the x-axis and ly units parallel to the y-axis, the
coordinates of the new position is given by:

x'

y'

x+kx,

y + ly.

(3.2)

(3.3)

Similarly, an object can be translated by applying Equation (3.2) to each point of the object.
All points on a line can be translated by translating the endpoints and drawing a line be­
tween the translated endpoints.

The points (as end-points of vectors) can also be scaled along the x-axis and y-axis by multi­
plying by Sx and Sy respectively. The new endpoints are given by:

x'

y'
Sx x x,

Sy x y.

(3.4)

(3.5)

In the case of differential scaling the values of Sx and Sy are not equal, leading to a change
in the proportions of an object made up of multiple points.

The points can also be rotated through an angle e about the origin. The coordinates of the
new point are given by:

x'

y'

x x cos e - y x sin e,
x x sin e + y x cos e.

Equations (3.6) and (3.7) are given in matrix form by:

[x' 'J = [c~s e sin e] .
y - sme cose

(3.6)

(3.7)

(3.8)

The translation, scaling and rotation of an object around the origin is illustrated in Figure 3.2.

The matrix representations for translation, scaling and rotation are:

Electrical, Electronic and Computer Engineering
University of Pretoria

19

Chapter 3 Computer Graphics Overview

y
8

7
Scaled

6

5

4

x

Figure 3.2: The translation, scaling and rotation of an object

p'

p'

p'

P+T
P x S

P x R

Translation,

Scaling,

Rotation.

(3.9)

(3.10)

(3.11)

Translation is the result of an addition, whereas scaling and rotation are the results of matrix
multiplications. Ideally, all three transformations should be treated in a similar way, so that
they can be combined in a single matrix operation. If the points are expressed in homogeneous
coordinates, all three transformations can be treated as multiplications. In homogeneous co­
ordinates, point P(x, y) is represented as P(W x x, W x y , W) for any scale factor W i- O.
Given a homogeneous coordinate representation of a point P(X, Y, W), the two-dimensional
cartesian representation of the point is x = ~ and y = ~ . Points are now 3-element row
vectors, leading to 3 x 3 transformation matrices to obtain another 3-element row vector. The
translation matrix is now given by:

IJ x [~
0 n [x' y' 1] = [x y 1 (3.12)

Dx Dy

with Dx and Dy the translation in x and y, respectively.
The scaling matrix is given by:

[S,
0 n, [x' y' 1] = [x y 1] x ~ Sy (3.13)
0

with Sx and Sy the scaling in the x and y dimensions, respectively.

Electrical, Electronic and Computer Engineering 20
University of Pretoria

Chapter 3 Computer Graphics Overview

Table 3.1: Scaled, rotated and translated coordinate points

Original Original Scaled Scaled Rotated Rotated Translated Translated
x y x y x y x Y

1.000 1.000 3.000 3.000 -0.366 1.366 -3.000 -2.000
2.000 1.000 6.000 3.000 0.134 2.232 -2.000 2.000
2.000 2.000 6.000 6.000 -0.732 2.732 -2.000 3.000
1.500 2.500 4.500 7.500 -1.415 2.549 -2.500 3.500
1.000 2.000 3.000 6.000 -1.232 1.866 -3.000 3.000

The rotation matrix is given by:

[x' y' 1] = [x y 1] x [~~:: e ~~~ : ~] ,
o 0 1

(3.14)

with e the rotation around the origin. The effects of the different transformations are il­
lustrated in Figure 3.2. The original coordinates of the polygon are given with the scaled,
rotated and translated coordinates in Table 3.1. The polygon is scaled by (2,2), rotated
+60oaround the origin and translated by (-4,1), respectively.

3.5 Three-dimensional transformations

The discussion on three-dimensional transformations is based on Angel [18]. Points in the
three-dimensional space can also be translated, rotated and scaled around a reference point.
Translation moves a point p to a new point p' using a displacement vector d. This can be
written as:

P

d

p'

[x y z],

[ax a y

p+d,

(the original point)

a z]' (the translation vector)

(the new point)

therefore

x'

y'

z'

In homogeneous coordinates this is given as:

[x' y' z' 1] = [x y z 1] x

Electrical, Electronic and Computer Engineering
University of Pretoria

[~ ~ ~ :: 1 o 0 1 a z .

o 0 0 1

,

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

21

I 1&0 'bl? toto ~

~\Sl..j.?~O?C;

Chapter 3 Computer Graphics Overview

In the case of scaling and rotating, there is a fixed point that is unchanged by the transfor­
mation. For the cases where the fixed point is not the origin, transformations can be concate­
nated to obtain the transformation for the point. A point can be scaled, with the fixed point
a t the origin, using:

x'

y'

z'

These equations can be combined in homogeneous form as:

[x' y' z' 1] = [x Y z
[

f3X 0

1] x 0 f3y
o 0
o 0

(3.22)

(3.23)

(3.24)

(3.25)

In rotating a point around the origin, there are three possible degrees of freedom, corre­
sponding to the ability to rotate the point independently about the three coordinate axis.
The sequence of rotation is important because a rotation about the x axis by an angle () fol­
lowed by a rotation about the y axis by an angle 1; would not give the same results as when
the order of rotations were reversed. The equations for three-dimensional rotation about an
axis can be derived by noticing that, for example, rotating around the z axis is equivalent to
rotating in two dimensions in the x y plane, while keeping z constant. From Equation (3.14)
the equations for rotation about the z axis by an angle of () is given by:

x'

y'

z'

x cos () - y sin (),

x sin () + Y cos () ,

z.

In matrix form, rotation about the z axis can be written as:

[cosO
- sin () 0

[x' y' z' 1] = [x y z IJ x Sir
Rotation about the x axis is given by:

[x' y' z' IJ = [x y z IJ x U
whereas rotation about the y axis is given by:

Electrical, Electronic and Computer Engineering
University of Pretoria

o
cos ()
sin ()

o

cos(} 0
0 1
0 0

o
- sin ()
cos ()

o

n

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

22

Chapter 3 Computer Graphics Overview

[x' y' z' 1] = [x y z

l

cos eOsin e 0 1
o 100

1] x _ sin e 0 cos eo'
000 1

(3 .31)

Rotation of an object around a point Po would start by a translation to the origin, rotating the
object around the x, y and z axis as required and then translating the resulting object back to

Po·

When it is required to do successive transformations on a point p, the transformations can
be concatenated. In Equation (3.32) three transformations, A, Band C are carried out on p ,
resulting in q :

q CBAp,

(C(B(Ap))).

(3.32)

(3.33)

In the case of many points that must be transformed, a new transformation, M, can be cal­
culated, with

M=CBA. (3.34)

The matrix in Equation (3.34) can be used to calculate q, therefore

q=Mp. (3.35)

The use of a transformation such as M, can save a significant amount of calculations.

3.6 Orthogonal and perspective projections

Objects in a scene, such as shown in Figure 3.3, can be projected in two ways onto a dis­
play. The first is orthogonal projection as shown in Figure 3.4. In this case objects with the
same dimensions appear the same size, regardless of their distance from the viewing plane.
This type of projection is used in CAD drawings, architectural design and two-dimensional
graphs.

The result of perspective projection is shown in Figure 3.5. This projection adds the effect
that distant objects appear smaller than nearby objects. Perspective projection is widely
used in simulation and three-dimensional animation and is responsible for a large part of
the realism.

Electrical, Electronic and Computer Engineering
University of Pretoria

23

Chapter 3 Computer Graphics Overview

.- .. --I .. __

I --- .. Viewport
I
I

• r
I
!

• m

• w
I
I
I
I

Figure 3.3: Terrain with two objects

Viewport

---• I
I
I

• • • I • I

_______ m ___________ M ____________________ _

Figure 3.4: View using orthogonal projection

3.7 Texture maps

Wright et al. [16] regard texture mapping as one of the most significant developments in
computer graphics in the past ten years. Texture mapping is used to supply realism to com­
puter generated images. A texture map is an image that is fitted to polygons in a scene in
order to generate realistic imagery. Texture mapping is used for applications that include
anti-aliased text and reflection mapping. Texture mapping requires intensive calculations
and can be slow on 2D graphics cards where all the calculations are done on the computer's
Cpu. Newer generation 3D graphics cards support texturing in hardware, leading to perfor­
mance levels only found on graphics supercomputers a few years ago.

Electrical, Electronic and Computer Engineering
University of Pretoria

24

Chapter 3 Computer Graphics Overview

3.8 The open graphics library (OpenGL)

This section is based on Segal et al. [19]. OpenGL is concerned only with rendering into
a framebuffer and reading values from the framebuffer. It does not provide support for
devices such as mice and keyboards. OpenGL draws primitives subject to a number of se­
lectable modes. Primitives include points, line segments, polygons and pixel rectangles. The
primitives are defined by a group of one or more vertices. A vertex defines a point, an end­
point of an edge, or a corner of a polygon where two edges meet. A vertex is defined by
positional coordinates, colours, normals and texture coordinates.

The model for the interpretation of OpenGL commands is client-server. That means that a
program (the client) issues commands and these commands are interpreted and processed
by OpenGL (the server). The server and client mayor may not be operating on the same
computer. OpenGL is designed to run on a range of graphics platforms with varying capa­
bilities and performance.

Commands are processed in the order in which they are received. A primitive must there­
fore be drawn completely before a subsequent one can influence the frame buffer. Another
implication is that the results of pixel read operations are consistent when all previously in­
voked OpenGL commands are completed.

OpenGL commands are functions. Various groups of commands can perform the same oper­
ation, but differ in how arguments are supplied to them. The general syntax for a command
declaration is:

rtype Name{ E1234}{ E b s i f d ub us ui}{ EV}

({args ,] T argl , .. . ,T argN (, argsl);

rtype is the return type of the function. The braces ({}) enclose a series of characters of which
one is selected. E indicates no character is selected. The arguments enclosed in brackets may
or may not be present. If the final character is not v, then the number of arguments is 1, 2, 3

Viewport

--

D
~---------------------------------------~

Figure 3.5: View using perspective projection

Electrical, Electronic and Computer Engineering
University of Pretoria

25

Chapter 3 Computer Graphics Overview

or 4. If the final character is v, then only argl is present and it is an array of N values of the
indicated type.

The syntax can be illustrated using vertex specification as an example. Vertices are specified
by giving their coordinates in two, three or four dimensions. The general versions of the
command are:

void Vertex{234}{sifd}(T coords);
void Vertex{234}{sifd}v(T coords);

A call to any Vertex command specifies four coordinates: x, y, z and w. The x coordinate is
the first coordinate, y the second, z the third and w the fourth. A call to Vertex2 sets the x
and y coordinates while the z coordinate is implicitly set to zero and w is set to one. Vertex3
sets the x, y and z coordinates to the provided values, while w is set to one. Vertex4 sets
all four coordinates, allowing the specification of a point in homogeneous coordinates. The
type specifiers s, i, f and d represent the standard types short, integer, float or double.

Evaluator

Per-Vertex
Operations

Primitive
Assembl

Per·
Fragment
Operations

Figure 3.6: Block diagram of OpenGL

Framebuffer

Figure 3.6 shows a schematic diagram of OpenGL. Some commands specify geometric ob­
jects to be drawn, whereas others control how the objects are handled by the various stages.
Most commands may be accumulated in a display list for later processing. Commands that
are not included in a display list are sent through a processing pipeline.

The first stage approximates curve and surface geometry by evaluating polynomial func­
tions of input values. The next stage operates on geometric primitives described by ver­
tices: points, line segments and polygons. In this stage vertices are transformed and lit and
primitives are clipped to a viewing volume in preparation for the next stage. The rasterizer
produces a series of framebuffer addresses and values using a two-dimensional description
of a point, line segment or polygon. Each fragment produced by the rasterizer is fed to
the next stage that performs operations on individual fragments before they finally alter the
framebuffer. These operations include conditional updates into the framebuffer based on
incoming and previously stored depth values, blending of incoming fragment colours with
stored colours as well as masking and other logical operations on fragment values.

The vertex processing portion of the pipeline can be bypassed to send a block of fragments

Electrical, Electronic and Computer Engineering
University of Pretoria

26

Chapter 3 Computer Graphics Overview

directly to the individual fragment operations, eventually causing a block of pixels to be
written to the framebuffer. Values may also be read back from the framebuffer or copied
from one portion of the framebuffer to another.

Vertices, normals and texture coordinates are transformed before their coordinates are used
to produce an image in the framebuffer. Figure 3.7 shows the sequence of transformations.
The vertex coordinates that are presented to OpenGL are termed object coordinates. The model­
view matrix is applied to these coordinates to yield eye coordinates. The next matrix, the projec­
tion matrix, is applied to the eye coordinates to yield clip coordinates. A perspective division
is carried out on clip coordinates to yield normalised device coordinates. A final viewport trans­
formation is applied to convert these coordinates into window coordinates.

Model-View
Matrix

Projection
Matrix

Coordinates

Perspective Normalised Devic Viewport Window
Division Coord inates Transformation Coordinates

Figure 3.7: Vertex transformation sequence

3.9 OpenGL Utilities: GLUT

OpenGL was developed to be platform independent. It does not contain functions or com­
mands for actions such as window management, keyboard input or mouse interaction.
OpenGL was initially released with AUX, the OpenGL auxiliary library. The library was
created to facilitate the learning and writing of OpenGL programs and did not contain basic
GUI features.

AUX has been largely replaced by GLUT, the OpenGL utility toolkit. GLUT was written by
Mark Kilgard at SGI. It includes pop-up menus, window management, keyboard and mouse
interaction and even joy-stick support. GLUT makes it possible to port programs with rela­
tively little effort between different platforms.

3.10 A short OpenGL program

This section shows a short OpenGL program that was written using GLUT. The listing is
based on code from Wright et al.[16] .

/ / A short OpenGL Program using GLUT

#incl ude < windows. h>

Electrical, Electronic and Computer Engineering
University of Pretoria

27

Chapter 3 Computer Graphics Overview

#include <gllglut . h >

I I Main program entry point

void main (void)
{

II Set up a doubLe - buffered dispLay and specify

II the pixeL mode to be red, green and bLue.

glutInitDisplayMode (GLUT _DOUBLE I GLUT _RGB) ;
II Creates the dispLay window with titLe "Short Program"

glutCreateWindow ("Short Program") ;
II The function caLLed by gLutMainLoop whenever a new

II scene is to be rendered.
glutDisplayFunc (Render Scene) ;
I I Setup the rendering context. Parameters such as the

II background coLour, Lighting and fog can be set up in

II this function .

setupRC () ;
II The gLutMainLoop caLLs functions to handLe events such

II as keyboard inputs, timer ticks and scaLing of windows.

glutMainLoop () ;
}

void Renderscene (void)
{

II CLear the window with current cLear co Lor

glClear (GL_COLOR_BUFFER_BIT) ;
II Draw a fiLLed triangLe with a dark gray coLor

glBegin (GL_TRIANGLEs) ;
giColor3ub (150, 150, 150);
glVertex2f(-0.5, - 0.5);
glVertex2f(0.5, - 0.5);
gLVertex2f(O. 0, 0.5);

glEnd () ;
II FLush drawing commands

glut Swap Buffers () ;
}

II Setup the rendering state

void setupRC (void)
{

II Set cLear coLor to Light gray

glClearColor (0 . 90f, O. 90f, O. 90f, 1. Of) ;
}

The output of the program is shown in Figure 3.8.

Electrical, Electronic and Computer Engineering
University of Pretoria

28

Chapter 3 Computer Graphics Overview

.. ,.,; Short Program ~ I!lIiII3

Figure 3.8: Image generated by using the short GLUT and OpenGL program

3.11 The use of OpenGL commands to simulate an infrared sce­
nano

3.11.1 glColor

A colour can be defined for each vertex. If an infrared scenario is simulated, the colour as­
signed to a vertex can be replaced with a radiance value. The colours in OpenGL consist of
a combination of red, green and blue. The radiance value can be assigned only to a single
colour. It is also possible to assign the same radiance value to all three colours. This would
lead to gray-scale images, which are similar to the output of typical thermal imagers. The
"colour" output seen on some thermal imagers is a false colour map that is assigned accord­
ing to the irradiance level of the pixel.

The commercially available graphics accelerators for the PC are limited to a resolution of
eight bits per colour. It is therefore only possible to assign 256 radiance levels to an image.
This can lead to severe reductions in the radiometric accuracy of the rendered images. A
technique to artificially increase the resolution will be investigated in Chapter 4.

Electrical, Electronic and Computer Engineering
University of Pretoria

29

Chapter 3 Computer Graphics Overview

3.11.2 glFog

OpenGL provides depth cuing and atmospheric effects through the glFog function. Fog pro­
vides a way of adding a predefined colour to each vertex in the image, with the amplitude
based on the distance between the vertex and the observer. OpenGL supports three kinds of
fog namely:

GLLINEAR: linear fog that is used for depth cuing.

GLEXP: exponential fog that is used for heavy fog or clouds.

GLEXP2: exponential fog that is used for smoke and weather haze.

Once a fog type is specified, the fog colour is specified using:

Glint fog_colour [4] = {red, green, blue, alpha};
gIFogiv(GL_FOG_COLOR, fog_colour};

In addition to the fog colour, GL..EXP and GL..EXP2 have an additional density parameter:

The equivalent infrared atmospheric transmittance is defined using the density parameter,
wheras the infrared path radiance is defined by specifying the colour of the fog. The effect of
the three types of fog are shown in Figure 3.9. The data were generated using OpenGL with
linear fog from 100m to 2000m, GL..EXP and GL..EXP2 fog with a density parameter of 0.001
and the fog colour set to {a, 0, a}. The fog colour was black, resulting in no path radiance.
The irradiance was normalised with the irradiance calculated for a scenario without fog.

Angel [18, p420] gives the equations for the different types of fog as:

GL_LINEARFOG: f

GL...EXP FOG: f

GL_EXP2 FOG: f

1 - dz,
- dz e ,

e-(dz)2 ,

(3.36)

(3.37)

(3.38)

with d the density factor and z the distance. The linear fog is clamped between 1 and a using

gIFogf(GL_FOG_START, start_of~og) ;
gIFogf(GL_FOG_END, end_of~og) ;

with the transmittance 100% at the start of the fog and 0% at the end of the fog. Ob­
jects closer than GLFOG..5TART are rendered without fog effects and objects further than
GLFOG_END are rendered with maximum fog effects. Equation (3.36) are modified by
OpenGL to take this into account. The linear fog equation in this case becomes:

{

1 if z < GL..FOG_START,

FOG = 1 - dz if GL..FOG..5TART < z < GL..FOG..END,

a if z > GL..FOG..END.

Electrical, Electronic and Computer Engineering
. University of Pretoria

(3.39)

30

Chapter 3 Computer Graphics Overview

Effect of different types of fog

1~,~-----'--------'--------r~======~======~

0.9

0.8

Q) 0.7
o
c
ro
'6 0.6
~
al 0.5
.!!2
ro
E 0.4
o
Z

0.3

0.2

0.1

, "-., "\.

." '\

." '\
.,\

.~

\.
\\.

\ \.

\ '\

\ "-
\ "

\ ,
" "-" ,

" " " "

\.

"
"

"-
" '", "

"

GL_EXP Fog
GL_EXP2 Fog
GL_LlNEAR Fog

"\.

~.'t""" -
O L---------~--------~--------~--------~---------
o 500 1000 1500 2000 2500

Distance (m)

Figure 3.9: Demonstration of the reduction in normalised irradiance due to fog

3.11.3 The dynamic range of computer graphics hardware

The dynamic range of PC computer graphics hardware is limited to 8 bits per colour channel.
It is not possible to increase the dynamic range in the hardware and another technique must
be implemented to artificially increase the dynamic range. This technique is investigated in
Chapter 4.

Electrical, Electronic and Computer Engineering
University of Pretoria

31

