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Abstract

In modern times continuous casting is the preferred way to convert molten steel into

solid forms to enable further processing. At Columbus Stainless the continuous

casting machine cast slabs of constant thickness with varying width. One important

aspect of the continuously cast strand that must be controlled, is the strand width. The

strand width exiting from the casting machine, has a direct influence on the product

yield which in turn influences the profitability of the company. In general, the strand

width control on the austentic and ferritic type steels achieved is excellent with the

exception of the 12% chrome non stabilised ferritic steel. This steel type exhibited

different strand width changes when a sequence of different heats was cast. The

strand width changes corresponded to the different heats in the sequence. Each heat

has a unique chemistry and a relationship between the austenite and ferrite fraction at

high temperature and the resulting strand width change was explained by Siyasiya[27].

The relationship between the heat composition and width change has in the past

resulted in the development of a model that enabled the prediction of the expected

width change of a specific heat before it is cast to enable preventative action to be

taken. This model has been implemented as an on-line prediction model in the

production environment with very encouraging results. This study was initiated
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because it was uncertain if the implemented model was the most accurate for this

application. This study is concerned with the development of more models based on

different techniques in an attempt to implement a more accurate model. The data

mining techniques used include statistical regression, decision trees and fuzzy logic.

The results indicated that the existing model was the most accurate and it could not

be improved upon.

Key words: Continuous Casting, Stainless Steel, Strand width Control, Statistical

Regression, Decision Trees, Fuzzy Logic, Rule Based Model, Width Change.
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Nomenclature

CCM

- Continuous Casting Machine

Level 1

- Control sytems on a process consisting out of the measurement equipment and

PLC’s (Programmable Logic Circuit).

Level 2

- Computer control systems on a process using level 1 system as input.

CCT

- Continuous Cooling Transformation

ABS

- Argon bubbling station

Width Error

– The width error is defined as the difference between the actual cold width of a

slab and the aim cold width.

Width error = Actual cold width width – Aim cast cold width

If the width error is positive it means the slab is wide from aim, conversely, if the

width error is negative it means the slab is narrow from aim.
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Chapter 1

Introduction

1.1 Background

With the rapid development of computer technologies during the last decades many

industrial processes have benefited from ever-increasing automation of process control

systems. Process modelling is a very important part of modern day process control that

enables a “virtual” process view where scenarios can be run “off-line” reducing the time

to develop new technology and also reducing the cost of implementing new technologies.

A very important part of process modelling is prediction. Process models are used in a

wide variety of industries as predictive tools in order to improve process control.

Predictive process models are usually derived from theoretical engineering principles for

example fluid mechanics and thermodynamics. Most industrial processes are however

very complex and the process models usually range from being 100% based on theory to

being 100% derived from empirical data. The latter usually arises when no theory is

available to describe the process adequately or critical parameters needed as input for

theoretical models are not available for the process.

Of particular interest to this study are the process models concerned with continuous

casting of stainless steel and the effect on cast strand width control. Strand width control

is important because it has a direct influence on the product yield which influences the

profitability of the company directly. The desired cast width is a function of the ordered

final width combined with the effects of all the processes between the continuous caster

and final processing lines. The typical route for a cold rolled product in a stainless steel

manufacturing plant for example, Columbus Stainless, is continuous casting, hot rolling,

cold rolling, final annealing and final lines where the product is cut into ordered sizes.
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The two processes that have the biggest direct influence on strand/strip width are the

continuous caster and hot rolling mill. The CCM (Continuous Casting Machine) is the

first process where the molten steel is shaped into a predetermined dimension and

consequently plays a critical role in the resulting strand width. Instabilities in the cast

strand width can also lead to instabilities during hot rolling of the slab. The hot rolling

mill can influence the strip width by the edging strategy while rolling or by too high

tensions that could lead to “necking” of the material that will result in the material being

under width. At the final lines the cold rolled material is trimmed to ordered size. If the

strip is too wide, too much material must be trimmed off which influences the product

yield negatively. If the material is too narrow, it cannot be trimmed to ordered size and

must be allocated to narrower ordered widths. When the material is then trimmed to

width the result is again excessive trimming losses.

The CCM at Columbus Stainless utilizes a finite element model that calculates the

cooling tempo required per strand position to maintain a specified strand temperature

profile under varying operational conditions. A lot of work ha been done at Columbus

Stainless to minimise strand width changes from the aim cast width and in general most

steel grades at Columbus Stainless has excellent cast strand width control and stability,

except for the 12% Chrome ferritic non-stabilised material. This type indicated different

width errors for different heats cast under constant conditions. An investigation revealed

a strong relationship between the width error and the heat composition. More specifically

a strong relationship between the ferrite and austenite fraction of a heat in the region

850°C to 1250°C and the resulting width error was found. The transformation behaviour

and hot strength of this steel type during the continuous casting process has been studied

in detail by Siyasiya et al[26,27,28]. They also came to the conclusion that the strand width
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error can be influenced by the ratio between austenite and ferrite in the temperature range

experienced in the continuous casting process. If the relationship can be determined

accurately, it will make it possible to predict a certain width error before the heat is cast.

If the predictions are accurate, counter measures can be put in place to compensate for

the expected width error. A model is currently in use, using rules based on classic set

theory incorporating “if-then” type statements. The success of this model serves as an

indication that it is possible to predict the width change of 12% chrome, non-stabilised

ferritic stainless steels before a heat is cast by using only the heat composition as input

parameter base. The uncertainty whether the current model is the best for this specific

application initiated this present study.

1.2 General Stainless Steelmaking Principles

The continuous caster is usually the last process in a modern steel melting and refining

facility. Three basic processing principles are part of a stainless steel melting and refining

plant. The first is the melting of the raw materials, the second is the refining of the

molten metal, by changing the chemistry of the raw material melt to the desired

chemistries for the different types of stainless steels, and lastly the molten metal is cast

into a specific shape using a continuous casting machine. At Columbus Stainless an arc

furnace is used to melt the raw materials. The refining is done via an AOD (Argon-

Oxygen Decarburization) converter and ABS (Argon Bubbling Station) and the

continuous caster cast slabs of constant thickness (200mm) with width varying between

920mm to 1575mm. Figure 1 gives a schematic view of the Columbus Stainless steel

plant.
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Figure 1: Schematic representation of the Columbus Stainless Steel plant

1.2.1 Refining

The refining basics were adapted from Meyn[15]. The part of the refining process that is

of interest to the present study is the ABS. The ABS is the last station where changes to

the chemistry can be made. The melt is tapped from the converter into a teeming

(casting) ladle. The ladle is equipped with a slide gate bottom tap hole and a porous plug

arrangement for argon purging.

At the rinse station, final adjustments in terms of chemistry and steel temperature are

carried out. Major movements in the steel analysis are not desirable because of a risk of

insufficient dissolution and mixing of added materials. This late in the process the alloys

have to be of low carbon content, unless re-carburisation is required due to a lack of

converter process control. The risk of introducing impurities into the clean steel in the

form of oxides (corroded scrap) or moisture, needs to be managed. Many steel makers

operate ladle furnaces to keep melts hot and even raise ladle temperatures and perform

steel analysis adjustments within a much wider scope for production planning.

Electric Arc
Furnace

Argon Oxygen
Decarburisation

Argon
Bubbling
Station

Raw
Materials

Continuous
Casting
Machine
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At Columbus Stainless there is no ladle furnace facility and all heats have to be tapped

superheated. With the ladle refractory lining being kept hot at 1200 degrees Celsius when

empty, there is a certain flow of energy from the steel into the lining. Through stirring

with argon, temperature homogenisation is achieved resulting in an overall drop in metal

temperature. For the casting process very stable temperature behaviour of the steel is

essential (steel quality implication) to maintain casting parameters, such as casting speed

at constant level.

The fully prepared teeming ladle has to be delivered to the casting deck, sometimes

within a fairly narrow time window when sequences are being cast. When the required

temperature-drop during the rinse treatment cannot be obtained by stirring only, the

operator has the choice of adding (at final stainless steel specification) coolants in the

form of granules.

The final rinse treatment period is reserved for a very gentle stir to float out non-

metallics. These oxides from stirred-in slag or re-oxidation products will show up as

inclusions in the final product. For their successful removal the slag has to be

manipulated to have oxide-absorbing (scavenging) capabilities. Those non-metallics that

cannot be floated out, can be modified by calcium-silicon wire injection treatment to

solidify as globules (small round inclusions) finely dispersed in the steel. Through this

technique, long clusters of oxides can be avoided that are harmful to mechanical

properties, such as crack propagation etc.

Consequently the chemistry leaving the ABS can be assumed to be the same at the CCM

since no chemistry changes are done at the CCM. This makes it possible to use the final
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chemistry at the ABS as input chemistry to a model that can predict the width error of a

heat before the heat is cast.

1.2.2 Chemistry of 12% Chrome ferritic non-stabilised stainless steel

The typical chemical composition of the stainless steel applicable to this study is the

following:

% C % Si % Mn % P % S % Cr % Ni
0.030
max

1.00
max

2.00
max

0.040
max

0.030
max

10.50
12.50

1.50
max

The steel under review is not stabilised. This means that no stabilisation elements has

been added. Sensitisation occurs when chromium carbides precipitates on the grain

boundaries causing adjacent chrome depleted areas. In austenitic stainless steels the

sensitisation temperature range is between 425C to 815C[42]. Above 815C the

chromium carbides are soluble and below 425C the diffusion rate of carbon is too slow

to form carbides. Ferritic stainless steel only sensitise after heating to more than 925C[42]

where the solubility of carbon and nitrogen in ferrite becomes significant. The low

solubility of interstitials in ferrite causes ferritic stainless steels to sensitise more rapidly

and at lower temperatures than austenitic stainless steels. The method to prevent

sensitisation is to add elements with a great affinity for carbon in order to form stable

carbides and doing so removing carbon from the matrix to prevent chromium carbides.

The principle elements used for stabilisation is titanium and niobium[44]. The material

under review in this study has no stabilisation elements.
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1.2.3 Continuous casting of steel

The majority of steel in modern times is produced via the continuous casting process.

The basic principle is to continuously solidify molten steel in a water-cooled mould

while withdrawing the solidified part at a constant rate. The solidified part is called a

strand. A typical continuous casting machine would consist of a tundish that is fed with

molten steel from a ladle. The molten steel flows from the tundish to the mould through a

ceramic submerged entry nozzle (SEN). The withdrawing rate is also called the casting

speed and is measured in meters per minute. The mould can take on different shapes, but

slab and billet casting forms are very common. The molten metal that solidifies on the

water-cooled copper mould plates forms a shell around a molten inner core. When the

solidified shell exits the mould, the shell is usually strong enough to contend with the

ferrostatic pressure exerted by the molten metal core. The strand that continuously exits

the mould has certain dimensions. The caster at Columbus Stainless cast slabs of constant

thickness (200mm) and varying widths (900mm – 1600mm). Casting powder is used to

provide lubrication between the solidified shell and copper mould plates. The main

constituents of casting powders are usually CaO and SiO2. The casting powders play a

major role in the heat transfer between the solidified shell and copper plates. The heat

transfer determines the shell thickness and if insufficient shell strength is present, a

breakout usually follows (the shell rupturing with the molten metal being sprayed out

into the casting machine). A breakout is a dangerous and very expensive event. When the

strand exits the mould it enters the secondary cooling area of the casting machine. The

strand is supported by rollers as it moves through different segments of the machine

while being spray cooled. The spray cooling can be controlled from level 1

(Programmable Logic Computers (PLC’s)) or from models on the level 2 computer

systems (computer system responsible for the control of the process using input from the
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level 1 systems). The objective of the secondary cooling practice is to solidify the molten

inner core before the strand exits the machine.

Figure 2: Schematic representation of the continuous casting machine at Columbus

Stainless (Source: Columbus Stainless Intranet)

1.2.3.1 Mould heat transfer

The heat transfer in the mould is critical for the continuous casting process because the

principle of casting continuously depends predominantly on the ability to extract heat

sufficiently from the shell to solidify it. Jenkins[8] studied the heat transfer in the mould

by looking at mould design, casting speed, steel grade and mould flux (casting powder),

and concluded that for a given mould design and steel composition the mould flux was

the principal factor governing the heat transfer. Jenkins[8] indicated that the contact

resistance is influenced by the flux composition (basicity). Mills et al[16] highlighted the
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importance of the break temperature of a flux and the effect it has on the heat transfer

capability of the flux. The varying effect of mould flux on the heat transfer can be

minimised by adequate compositional control from the manufacturer and using only one

type of flux in the plant per steel grade. 12% Chrome non-stabilized stainless steel at

Columbus is cast with only one type of flux. Heat transfer in the mould is important for

slab width control because the heat transfer influences the shell thickness. It is also

desirable to obtain uniform heat transfer in order to obtain uniform shell growth.

Another defect associated with a thin shell is slab bulging. Slab bulging occurs on the

narrow sides of the slabs because there is no roller support (except strand guides beneath

the mould) to ensure constant dimensions. The bulging can be due to insufficient shell

thickness that cannot contend with the ferrostatic pressure, or due to creep of the hot shell

under constant ferrostatic pressure.

1.2.3.2 Secondary Cooling

Secondary cooling in the continuous casting machine has the primary function of

solidifying the strand after the mould and before it exits the machine. If the strand is not

fully solidified at the exit in a vertical continuous casting machine, the result can be

catastrophic. The ferrostatic pressure can cause the shell to rupture at exit and with the

high ferrostatic pressure molten steel, can be sprayed out into a wide perimeter.

Secondary cooling control and optimisation are of utmost importance because defects

such as slab cracking, strand width problems, bulging, central segregation and central

delamination can be caused by incorrect secondary cooling practices. Different models

or modes of secondary cooling exist. The two most important parameters that usually
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determine the secondary cooling flow rates (for a specific steel grade), are the casting

speed (m/min of strand extraction from the mould) and the superheat, of the molten

metal. Intuitively, it is clear that a high casting speed with a high superheat, requires

higher cooling rates than a low casting speed, and low superheat to achieve the same

strand characteristics. At Columbus Stainless the secondary cooling control is done with

a finite element model[18] that dynamically controls the secondary cooling per zone, to

maintain a specified strand temperature in a particular zone. The process metallurgist

specifies a cooling curve per material type, and the model uses the cooling curve as

setpoints to adjust the cooling tempo accordingly in the different zones. Figure 3 serves

as an example to indicate two typical cooling profiles. One profile would be used if a

“soft cooling” (i.e. low water flow rates) is required, for example on certain crack

sensitive grades. The other profile would serve for a steel grade where more aggressive

cooling is required, due to various reasons. To change from a “soft cooling” to an

“aggressive” cooling, the prescribed cooling profile is changed.

Figure 3: Typical CCM temperature profiles required for secondary cooling control at

Columbus Stainless

Temperature profile example from the Columbus stainless
CCM
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1.2.3.3 Mould Set-up

Before a cast is started in the continuous casting machine, the mould is prepared in terms

of dimensions and prepared for the start-of-cast procedure. The mould dimensions

determine the initial width of the strand. The term “strand width” is therefore used to

describe the dimensional width of the continuously cast strand exiting the mould. To start

the casting process, a dummy bar is inserted from the bottom of the mould or from the

top depending on the design. The function of the dummy bar, is to provide an initial

“plug” in the mould, in order to start the continuous process. When the cast is started, the

dummy bar starts moving with the strand out of the mould and is later removed so that

the strand can exit continuously. Before every cast, the mould is set up according to

specified dimensions on the top and bottom of the mould. The bottom of the mould has

smaller dimensions than the top. This provides a slope in the mould that is called the

taper setting. The function of the taper is to compensate for the shell shrinkage as it

solidifies in the mould. Typical taper settings are in the order of one percent. Correct

taper setting is critical for heat transfer and can therefore influence the width of the

strand. In practice, the mould dimensions are rarely changed and can be assumed to be

constant. The mould dimensions are also measured continuously during a cast, and can

therefore easily be checked for any movement. The continuous caster at Columbus

Stainless is equipped with a mould that can adjust its dimensions while casting.

1.3 Objectives of this project

The objective of this project is to improve the cast strand width control of 12% Chrome

ferritic, non-stabilised stainless steels, cast at the continuous casting machine at

Columbus Stainless. The heat composition to strand width change relationship will be

used as basis for this study. The objective of this study is not to describe the fundamental
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principles governing the strand width error but to use the theoretical principles in a

practical way to decrease the strand width change variation.

1.4 Method of investigation

The relationship of the chemistry to the cast width error on 12% Chrome non stabilised

steel has been studied in detail by Siyasiya[26,27,28] and co-workers. They concluded that

there is a relationship between the heat composition and the associated width change of

the heat. As part of this study a relationship between the chemistry parameters that have

an influence on the ferrite to austenite ratio at elevated temperatures and the width error

was determined. Historical plant data from the identified parameters were used as input

for different data mining techniques (i.e. empirical approach). The different data mining

techniques together with the model currently used in the plant were applied to the same

input data set and compared in terms of accuracy of prediction. The following data

mining techniques were used:

 Statistical regression

 Decision Tree

 Fuzzy logic

1.5 Outline of dissertation

Chapter one serves as an introduction to this dissertation where the background, objective

and method of investigation are outlined. Chapter two gives a summary of the literature

survey and starts with the background of the theoretical foundation for the heat chemistry

to cast width relationship. Data mining techniques including statistical analysis, decision

trees and fuzzy logic are also described. Chapter three details the data preparation used

for the modelling process that includes the gathering, preparation, clean-up and selection
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of significant variables as well as describing the derivation of the different models using

the training data set. In chapter four the different derived models together with the model

currently used in the plant are applied to the same validation data set to compare the

accuracy of prediction. Chapter five outlines the results obtained by using the

implemented model in the plant. Chapter six deals with the conclusions and

recommendations from this particular study.
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Chapter 2

Literature Survey

2.1 Continuous Cast width Change

A limited amount of literature is available on the width change phenomenon at

continuous casters. All literature agrees that cast width change can be very problematic

for downstream processes and sometimes the real effect of poor dimensional control is

hidden[38]. Most of the literature deals with techniques that were successfully

implemented to improve the cast width change. The techniques range from simple

monitoring techniques to theoretical prediction models. Evans et al[42] achieved improved

width change results by better slab width verification techniques. The mould face

positions were continuously monitored and the hot and cold width were matched.

Unfortunately it is not evident how the matching between the cold and hot width was

done. Nakamura[41] et al implemented a slab width control model that controls the width

of the strand by changing the mould dimensions using a mould that can continuously

adjust its dimensions. The model is based on the steel grade, casting speed and

compression force that is influenced by the braking force during compression casting.

The model is essentially based on the concept to correct the width during transient

conditions. The model divided a cast into four portions. Portion one is the start-up where

a narrow slab width is usually the result due to low ferrostatic pressure and overcooling.

The mould dimensions are changed to start wide during portion one. Portion two is the

section after start-up where the speed is slowly increased. The mould dimensions would

also then be slowly adjusted to a narrower setpoint. Portion three is the “steady state”

portion where the width change can be explained by changes in the casting speed. Portion

four is the last section and represents “end of cast” conditions where the mould width is
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increased again because the strand will be narrow due to low ferrostatic pressure and

overcooling. Assar et al[39] attribute the widening of the slabs during casting to the

ferrostatic pressure and shell malleability. They found the widening of the slabs to be

directly correlated to the casting speed and depend on both the strand width and steel

grade. They developed a prediction model based upon casting speed, mould width and

steel grade. Their results indicated that wider slabs expand more and will therefore

undergo a bigger width change. The prediction model was going to be implemented to

continuously predict the cold width of the strand. The mould width would then be

adjusted should the need arise to correct the strand width.

Kocatulum et al[40] studied the causes of width change using physical devices to measure

slab width and also developed a statistical slab width prediction model. They found that

the slab resident time in the upper cooling sections of the caster has a huge influence on

the slab width change. The resident time in the upper sections of the secondary cooling

correlates directly with the casting speed. They also concluded that the mould width

plays a very big role in the resulting slab width. A slab width prediction model was

developed incorporating the mould width and the resident time in the upper sections of

the secondary cooling. They achieved very accurate results with the model. Mostert and

Brockhoff[38] developed a slab width prediction model based on theoretical principles.

They determined an equation for the shrinkage factor and stated that the final cold width

of a slab is influenced by 1) thermal shrinkage and 2) contraction counteracted by

expansion. They expressed the shrinkage factor as the ratio of mould width to cold slab

width. The effects that were considered are the thermal shrinkage, expansion due to

ferrostatic pressure and the influence of slab width. An expression for the thermal

shrinkage was determined by modelling the strand as a rigid bar taking into account the
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effect of the taper. The expansion of the shell depends on the thickness and temperature

of the shell combined with ferrostatic pressure. The relationship between the spray

cooling, ferrostatic pressure, casting speed, shell thickness and shell temperature was

studied. They concluded that the expansion depends on the ferrostatic pressure, spray

cooling and casting speed. They also concluded that there is a slight dependency of the

slab width change on the mould width.

If all the previous findings are combined then the cast width change is influenced by the

following factors as concluded by Assar et al[39]:

1. Grade Chemistry

2. Strand width (mould width)

3. Cooling curve (secondary cooling intensity)

4. Casting speed

2.2 Fundamentals of the chemistry to cast width error relationship

In this section the mechanism of how the phase ratio between austenite and ferrite

influences the width error of the strand will be proposed. It is important to understand

how the theoretical relationship of the phase ratio between austenite and ferrite

influences the width error in practise, because this is the fundamental building block on

which this study is based. An overview of the theory behind the chemistry to cast width

error relationship will be described first before the mechanism is proposed.
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2.2.1 Theoretical fundamentals

This study deals specifically with 12% chrome non-stabilised ferritic stainless steel and

the relationship of the heat composition and associated cast width change of the heat.

The main reason why 12% chrome ferritic steels (non-stabilised) would exhibit a

relationship between heat composition and cast width change (width error) is that it goes

through a dual phase region between austenite and ferrite (termed the “gamma loop”)

during the secondary cooling stage. Research[26] on the transformation behaviour and hot

strength of the 12% Chrome non-stabilised steel has indicated that as long as the ratio of

austenite and ferrite keeps on fluctuating, the width error variation will persist. This dual

phase characteristic plays a role in the width change due to three reasons:

1. The temperature range at casting exit is in the order of 800C to 950C where the

steel is still expected to be in the dual phase region. The ratio between austenite

and ferrite depends on the chemical composition and the cooling intensity[27]. The

lattice structure of austenite is FCC (Face Centred Cubic) and the lattice structure

of ferrite is BCC (Body Centred Cubic). The BCC structure occupies a higher

volume than the FCC structure and therefore changes in the ratio of austenite to

ferrite will be accompanied by a change in the width[27].The dual phase region is

evident from the Fe-Cr binary phase diagram in Figure 4a[23].

 
 
 



18

Figure 4a: Fe-Cr Binary phase diagram[7]

The 12 % Chrome material therefore will go through the gamma loop as it cools

from above 1250°C. Rowlands[25] also indicates that the 12% chrome content

places it at the critical boundary of the gamma loop and therefore austenite or

ferrite stabilisers (formers) can change the structure of the steel at elevated

temperatures. Elements that are important ferrite stabilizers in stainless steels are

chrome, titanium and molybdenum. Important austenite stabilisers are carbon,

nickel, nitrogen and manganese. Small changes in any of these elements can

change the austenite to ferrite ratio in a 12% chrome, non-stabilised ferritic

stainless steel. Figure 4b indicates the change to the austenite/ferrite region when

a strong austenite stabiliser is added like carbon. The “gamma loop” (austenite/

ferrite) region is shifted to higher chromium levels and the transformation

temperature from delta ferrite to austenite is increased.

12% Chrome range
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Figure 4b: Effect of carbon content on the austenite/ferrite region[27]

It can be seen that the delta ferrite and austenite phase region has been expanded

and the transformation temperature from delta ferrite to austenite has increased.

Variations in the austenite and ferrite stabilisers therefore influences the gamma

loop which influences the phase ratio’s and the transformation temperatures.

The CCT diagram depicted in Figure 5[26] also indicates the dual phase region of

the 12% Chrome ferritic (non-stabilised) material. The typical cooling rate

experienced during secondary cooling is also plotted.

Figure 5: CCT diagram for typical 12% Chrome non-stabilised ferritic stainless
steel[27]

Approximate cooling
rate in caster of 12%
Chrome non-stabilised
Stainless Steel at
Columbus (Siyasiya26)
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The dual phase temperature range corresponds to the temperature range between

mould exit and continuous casting machine exit. Due to the dual phase nature

between austenite and ferrite together with slight variations in heat composition,

there will always be a certain ratio between the austenite and ferrite fraction that

will be determined by the heat composition (ferrite and austenite stabilisers).

2. The hot strength of austenite is more than the hot strength of ferrite which will

influence the ability of the formed shell to contend with the ferrostatic pressure if

the phase ratio between austenite and ferrite changes. The more the ratio favours

austenite, the “stronger” the shell will tend to be and vice versa if the ratio

favours ferrite. A “stronger” shell will be able to contend more effectively with

any forces that will attempt to deform it (mainly ferrostatic pressure). A shell

consisting predominantly of austenite will also be less sensitive to shell thickness

variations caused by fluctuating in-mould conditions. The opposite is true for a

shell consisting predominantly out of ferrite, it will be sensitive to any forces

acting upon it and shell thickness variations will also play a large role in the

tendency of the shell to deform.

3. The inherent resistance to creep of austenite is more than that of ferrite[50]. Hence

changes in the phase ratio between the austenite and ferrite influences the creep

characteristics of the strand. When a metal or an alloy is under constant load or

stress, it may undergo progressive plastic deformation over a period of time. This

time-dependent strain is called creep.[46] Creep properties are usually determined

by means of a test in which a constant load or stress is applied to the specimen

and the strain is recorded as a function of time. This creep curve exhibits various

stages. Directly on loading the specimen undergoes an instantaneous strain. This
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is followed by the primary stage. The creep rate then declines gradually until it

reaches a constant value which is called the secondary stage. During the tertiary

stage the creep rate increases again until final fracture[45]. Creep processes are

diffusion-controlled and they become of particular importance in materials

experiencing extensive time at elevated temperature especially if a stress or load

is also present. The elevated temperature that is important is typically above

0.4Tm where Tm is the absolute melting point[47]. If a continuous casting process is

considered, then typically the strand is at a temperature > 0.4 Tm for the whole of

the secondary cooling stage and is therefore prone to undergo creep at high

temperature. Temperature plays a major role in the creep rate with a higher creep

rate experienced with a higher temperature[45,48]. The creep resistance of austenitic

stainless steels are increased by the following elements: carbon, nitrogen,

chromium, molybdenum, tungsten, vanadium, boron, titanium and niobium[50].

According to Austin et al[48] the following elements have an influence on the

creep properties of ferrite (ferrite itself does not have a high resistance to creep at

elevated temperatures), nickel, silicon and cobalt only increases the creep

resistance at elevated temperatures marginally while carbon, chromium,

manganese and molybdenum increase the resistance to creep markedly. Jamieson

et al[49] also found that nitrogen and silicon increases the initial creep strength of

ferrite.
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2.2.2 MEDUSA model

In order to quantify and calculate the constitution and transformation properties of 12%

chrome stainless steels (non-stabilised) the Columbus research and development

department has developed a model to calculate the phase fractions and transformation

tempos of 12% Chrome stainless steels (non-stabilised) given the chemistry composition.

The model is called MEDUSA[30] (Mathematical Evaluation of Dilatometry Using

Statistical Analysis). The model was developed using dilatometry, mechanical testing

and image analysis of 500 laboratory heats and 300 plant heats. Most of the experimental

work used to derive the MEDUSA model was done on 12% chromium heats but

chromium levels up to 25 % were also included in the model. The effect of all residuals

was examined by deliberately making steels with a wide composition range to stabilise

the model. Continuous cooling diagrams were constructed for all 800 heats used to

develop the model. The phase balance at 1000°C was also measured to allow, along with

the CCT diagrams, the calculations of the hardenability curve. The following parameters

are calculated (amongst others), by the MEDUSA model and are of value for the present

study. All the equations pertaining to the specific parameter is given in Appendix C.

Gamma max(%)

This is the amount of austenite present at 1100°C in ferritic stainless steels

AC1 temp (°C)

This is the temperature at which austenite begins to form when ferritic stainless steel is

heated at 1°C/min.

CR95 (°C/min)

Cooling rate at which 95% of the austenite present at 1000°C transforms to ferrite. This

is a measure of the transformation response of austenite to ferrite.
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Amax (Austenite potential)

This is the percent austenite present in ferritic stainless steels at 1000°C and

approximates to the maximum austenite potential of the steel.

2.3 Proposed mechanism for the chemistry to cast width relationship.

The mould set-up in terms of the hot bottom width is in the order of 30 mm smaller than

the aim cast width. A schematic representation of the mould set-up and aim strand width

is given in Appendix A. This means that the material actually creeps/flows wider during

the secondary cooling stages. The dual phase characteristic of the solidified shell was

discussed earlier, and it follows from the difference in hot strength and creep properties

between austenite and ferrite that the width change can be different for different heats.

Intuitively it is clear that a low creep rate will lead to an under-width strand and a fast

creep rate will lead to an over-width strand. Another mechanism that will play a role in

the final strand width, is the amount of slab bulging on the narrow sides. If the creep rate

is low and the shell is strong, the slab dimensions should remain intact and little or no

bulging should be evident. The opposite is true for a shell with high creep rate and low

strength, where bulging due to the ferrostatic pressure should be evident. These

mechanisms are easy to evaluate in the plant by inspection and measurement of slabs and

comparison to the width error. Figure 6 gives examples and pictures of actual slabs that

were measured and inspected. The results are given by comparing the width as measured

in the centre of the slabs, to the width measured at the bottom of the slab. Measurements

were taken from slabs that had cast width errors of +19.9 mm and +18.8 mm

respectively, because the mechanisms causing the width change were present. From the
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measurements of the slabs it is clear that the width change is a combination of excessive

creep of the shell and bulging of the narrow sides. According to the measurements, the

contribution of each mechanism is on the order of 50%. The characteristics of the shell

creeping and bulging in terms of creep/bulging rate and position in the continuous caster

is unclear, but research[26,28] has shown that bulging must take place within the first

couple of metres after mould exit, where the shell is still thin. It is also expected that the

creep rate will be higher during the initial stages of secondary cooling because the

temperature is high. One way of combating bulging, is to increase the water flow rates in

the secondary cooling, in order to form a cooler shell that will be able to withstand the

ferrostatic pressure. “Hard cooling” on the 12% Chrome ferritic non-stabilised steels has

in the past resulted in micro cracks forming on the slab surface, due to low hot ductility

problems in the unbending zone. It should also be kept in mind that not all slabs are

bulging, and increasing the cooling intensity will be effective to a limited extent. The

strategy decided upon in this study was to attempt to predict the heats that will exhibit

bulging/creep problems and increase/decrease the water flow rates on these selected heats

in order to limit the amount of bulging and change the creep properties. The increase in

water flow rates is kept below the level that would induce micro crack problems

mentioned earlier.
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Figure 6: Slabs measured in plant to indicate width error mechanism

Slab number 3494843:
Width error measured by laser
+19.9 mm wide

Bottom

Centre (Bulging)

Slab number 3494873:
Width error measured by laser
+18.8 mm wide

Bottom

Centre (Bulging)

Slab Measurements:
Centreline cast width error = +20
mm
Bottom cast width error = +12
mm

Slab Measurements:
Centreline cast width error =
+19mm
Bottom cast width error = +10 mm

2.4 Description of the model being used in the production environment

This model was initiated when it was found that there was a relationship between the heat

composition and the resulting width change of the heat. The work done by

Siyisiya[26,27,28] indicated that there is a relationship between the heat chemistry and

resulting width change of a specific heat on 12% chrome non-stabilised ferritic material

based on the dual phase characteristic of the solidified shell. Logic suggested that the

important parameters that should correlate with the width change are those that

influences the austenite to ferrite ratio at high temperatures. It was found that good

results were achieved by not using only the heat composition in terms of austenite and

ferrite stabilisers but by also using the calculated parameters from the MEDUSA model
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as described earlier. Experience indicated that the combination of the following input

parameters gave satisfactory results: AC1, Amax, Gamma max, Kaltenhauser ferrite

factor, addition of the absolute carbon and nitrogen and the CR95. The model was

developed using very simple analysis techniques. A set of rules was generated from

historical data. The width change was divided into three groups (narrow from aim,

acceptable and wide from aim) and the combination of the parameters that resulted in the

width error falling into one of the three groups were determined. The combinations of

parameters are expressed in terms of rules. The rules give the freedom of not having to

use all the input parameters. The amount of parameters per rule can range from one to

six. The model therefore consists out of a mixture of rules but all having the form of IF-

then statements. A typical example of a rule incorporating four parameters is illustrated

below:

If AC1 < x AND Gmax > y AND CR95 < z AND (C+N) > zz THEN …………

The parameters are calculated for each heat and then sent to the model for evaluation. If

the model classifies it as being problematic (either narrow or wide), then the secondary

cooling is changed automatically to compensate for the expected width error. The

secondary cooling is changed by selecting a different pre-defined secondary cooling

strategy. The philosophy is therefore to selectively change the secondary cooling on

selected heats to better control the width error. This model has been running “live” in the

plant since November 2004. More details and preliminary results of the current model

can be found in De Beer[7].
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2.5 Data mining

2.5.1 Introduction

A functional general definition of data mining according to Weaver[34] is the use of

numerical analysis, visualization, or statistical techniques to identify non-trivial

numerical relationships within a dataset, to derive a better understanding of the data and

to predict future results. Data mining is also described Anon[2] as an analytical process

designed to explore data in search of consistent patterns, and/or systematic relationships

between variables, and then to validate the findings by applying the detected patterns to

new subsets of data. The ultimate goal of data mining is prediction, and predictive data

mining is the most common type of data mining and has the most direct business

application[2]. Data mining is conceptually based on statistical techniques like the

traditional Exploratory Data Analysis (EDA). However, an important difference between

Exploratory data Analysis (EDA) and data mining, is that data mining is more concerned

with the application than the basic nature of the underlying phenomena. In essence, data

mining is less concerned with what the exact relationships are between the variables, but

is more concerned to obtain a solution that can be used for accurate prediction[2]. The

application of data mining techniques is found in a diverse array of industries like steel

manufacturing [1],[20], the chemical industry[5] and even drug discovery[34], to name a few.

A survey done in November 2003 of 213 data mining users[3]
, indicated the most

regularly used data mining techniques are the following:
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Table 1: Survey of data mining technique usage.

Technique Percentage of 213 votes

Decision tree / Rules 16%
Clustering 12%
Statistics 12%

Neural Networks 9%
Logistic regression 9%

Visualization 7%
Association rules 5%

Nearest Neighbour 5%
Text Mining 4%
Web Mining 4%

Bayesian nets / Naïve Bayes 3%
Sequence analysis 3%

Support Vector Machine 3%
Hybrid Methods 3%

Genetic Algorithms 2%
Other 3%

Source: Anon2[3]

From Table 1, it is clear that the first four techniques account for approximately 50% of

the surveyed users, and the conclusion can be made that these techniques are the most

popular. For this reason, it was decided to use two of these techniques in an attempt to

describe and predict the patterns of heat chemistry versus strand width error. Each of the

techniques consists of many branches and the chosen branches relevant to this study will

be discussed.

The process of data mining consists out of three main stages[2].

Stage 1: Data exploration

Stage 2: Model building and validation

Stage 3: Deployment.

A more detailed description of the process is described in the course outline offered by

Olivia[21] on data mining. The chapter headings can be used as a process map for data

mining.
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Step1: Defining the objective

The first step in any modelling process is to define the objective[21]. The objective usually

determines what techniques are used and how they are applied. The objective of this

study is to test various techniques for accuracy in a specific application and to develop an

on-line prediction model that is sufficiently accurate.

Step 2: Gathering the data

Accurate, actionable, accessible data are the lifeblood of any successful model[21].

Unfortunately a model will only be as good as the quality of the training data set.

Extreme care must be taken to ensure that the data are correct and in the correct form.

The data collected, must be relevant to the dependant variable that must be predicted.

Data can be collected manually but extracting data from an existing database is the

common way of data collection for industrial processes.

Step 3: Preparing the data for modelling

The average modeller spends 60% of his or her time preparing the data for modelling[21].

The old rule of “garbage in garbage out” will apply if the training data set is not correct.

Some typical operations during this stage are to check for missing data or outliers.

Missing data is a common problem in databases of industrial processes. The origin of

missing data in an industrial process database can be anything from measurement errors,

level 1 to level 2 computer communication problems, or level 2 problems, to mention just

a few. Two typical ways of dealing with missing values is to populate the missing values

with predetermined values, by using for example, the average of the specific field’s data

or by using some kind of perturbation technique or even using random numbers within a

specific range. The other option is to eliminate records, where some of the fields (either

independent or dependant variables) are missing. Outliers are also common in industrial

process databases and the reason for the outlier can be amongst others, measurement
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errors, default values or database errors. One technique of identifying outliers is

described by Vardeman[32] and is based on a box plot. The “box” is constructed by using

the first or lower quartile and third or upper quartile presented as Q(0.25) as the lower

and Q(0.75) as the upper quartile. An interquartile range (IQR) can now be defined as:

IQR = Q(0.75) – Q(0.25)

The IQR can be used to determine outliers by identifying as outliers all points larger than

Q(0.75) + 1.5xIQR and all points less than Q(0.25) – 1.5xIQR. Figure 7 indicates this

technique graphically.

Figure 7: Box plot indicating outliers by using IQR (Interquartile range)

Step 4: Selecting and transforming variables

Typical operations during this stage will include Anon[3] data transformations, selecting

sub-sets of records and in data sets with a large number of variables, the variables will be

screened. Redundant variables that do not contribute to the outcome of the model will be

eliminated. This process will bring the number of variables into a manageable range. The

accuracy of a model can also be influenced if redundant or inactive variables are

included.

IQR1.5xIQR 1.5xIQR

Q (.75)Q (.25)

Smallest Data Point Bigger Than
or Equal to Q(.25) – 1.5xIQR

Largest Data Point Less Than or
Equal to Q(.75) + 1.5xIQR
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Step 5: Processing and evaluating the model

During this step different models are fitted to the training data set. Each model will give

an output of predictions. The area of interest is usually the accuracy in terms of

prediction of the different models. The best model is the model with the most accurate

prediction. There are different techniques for evaluating and comparing the performance

of predictive models. According to Anon[3] the following techniques are available for

model evaluation: Bagging (Voting, Averaging), Boosting, Stacking (Stacked

Generalizations) and Meta-Learning. The basic principle of these techniques is

“competitive evaluation of models” which is to apply different models to the same data

set and then choosing the best.

Step 6: Validating the model

By definition, models should perform well on the development data[21]. A true test of a

model is however the performance on a new data set from a different time span or for

example different market. According to Olivia[21], there are three powerful methods to

ensure good model fit. 1) Scoring on alternative data sets gives a good indication of the

model performance; 2) Bootstrapping uses simple resampling techniques to find

confidence levels around the predictions; 3) Key Variable analysis calculates important

factors as they are effected by the model.

Step 7: Implementing and maintaining the model

The final stage is the implementation of the chosen model into the application area. In

this study, the end product will be an on-line model capable of predicting the width error

of a 12% Chrome ferritic non-stabilised heat before it is cast. Model maintenance is a

very important part of any implementation process. The type of maintenance will depend

on the type of model implemented, the systems or software where the model is run, to

name a few. A very common area for model maintenance in an industrial process is to
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update the model each time a change to the process is made that can influence the model

predictions. It might even be necessary to recreate a model after a change. Wrong

predictions can be the result if the model is not adequately maintained.

2.5.2 Statistical analysis

Statistics are seen as a “Classical” technique. The “Classical” techniques are in contrast

to the so-called “next generation techniques”, such as neural networks and decision trees.

By strict definition, statistical techniques are not data mining techniques, because the

statistical techniques have been around before data mining became a recognized

technique in industry. However, statistical techniques are driven by the data and are used

to discover patterns in the data that can be used for prediction[31].

What is the difference between statistics and data mining ?

According to Thearling[31], it is a very difficult question to answer. The problem is that if

a statistical technique is successful, the reason for its success is exactly the same as for a

data mining technique (clean data, clear target and good validation). The other issue that

makes a clear distinction very difficult, is that the application area for statistical

techniques and data mining techniques are exactly the same with even the same purpose

(prediction, classification discovery). There are however some benefits of data mining

above statistical techniques.

1. Data mining techniques tend to be more robust towards “messier” real world

problems.

2. Data mining techniques are more forgiving for less expert users.
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3. With the advances of computing technology it becomes viable to use very

complex data mining techniques that might be better suited to a specific data set

than classical statistical techniques.

2.5.2.1 Computationally simple descriptive statistics

Statistics are all about data. In industrial processes there are usually a vast number of

variables combined with a vast number of measurements collected in the process

databases. The following questions are usually asked about the dataset under

investigation[31].

 What patterns are in the database?

 What is the chance an event will occur?

 Which patterns are significant?

 What is a high level summary of the database that will give an idea of what is

contained in the database?

A great advantage of statistics is that it provides a high level view of the dataset without

having to understand individual records. There are several statistical techniques that can

be employed for giving an overview of a dataset and there are also some techniques that

can be used for prediction. The term used for “overview” statistics is “descriptive”

statistics. Vardeman[32] splits descriptive statistics in two categories; 1) Computationally

simple descriptive statistics and 2) Computationally intensive descriptive statistics.

Predictive methods fall mostly into the latter category.

The typical place to begin in the analysis of data is to visually plot the data on simple

graphs. Not much more analysis would be needed in simple engineering problems than a
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visual summary. The following techniques exist for simple visual representation of

univariate data: 1) Dot diagrams, 2) Stem-and-leaf plots, 3) Frequency tables, 4)

Histograms, 5) Scatterplots and run charts.

2.5.2.1.1 Dot Diagrams[32]

Dot diagrams are useful tools for small amounts of univariate quantitive data. One makes

a dot diagram by plotting each observation as a dot placed at a position corresponding to

its numerical value along a number line. Figure 8 indicates a typical Dot diagram. The

diagram gives the measured times for a 100 m sprint by an individual athlete.

Figure 8: Sample Dot Diagram
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If the data has significant figures of typically two or more then it is usually necessary to

round the value of the data points off to enable plotting. It becomes then impossible to

read the original data values from the graph. This is a disadvantage of the dot diagram

visual presentation. An advantage of the dot diagram is the ease of implementation and

relatively large amount of information obtained.
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2.5.2.1.2 Stem-and-leaf plots[32]

A stem-and-leaf diagram presents the same amount of visual information as the dot

diagram but the original values are preserved. A stem-and-leaf plot is made by using the

last few digits of each data point to indicate its position. Figure 9 below indicates a stem-

and-leaf diagram for a series of 100m sprint times.

Figure 9: Stem-and-leaf plot of 100m sprint times

10.21 .28 .29 .45 .57 .6 .88 .9 .9 .9 .95 .99
11.01 .05 .19 .22 .4 .48 .5 .6 .78
12.3 .46 .5 .59 .8
13.2 .5 .6 .8

A more useful way of presenting a stem-and-leaf diagram is to plot two diagrams back-

to-back. Stem-and-leaf and dot diagrams are useful tools to get a “feel” for the data and

to provide an overview of the data. They are however not commonly used in engineering

reports or presentations. Frequency tables or histograms are more commonly used for

formal presentation of data.

2.5.2.1.3 Frequency diagrams and histograms[32]

A frequency table is made by first breaking the interval containing the data into smaller

appropriate intervals of equal lengths. The frequency of each interval can be calculated

by counting the amount of data points in the interval. Relative and cumulative

frequencies can be calculated. Plotting the frequencies as a type of bar chart creates a

histogram. The histogram gives insight into the shape of the distribution.
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Figure 10: Sample Histogram

Sample Histogram

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9

Category

C
o

u
n

t

2.5.2.1.4 Scatterplots and Run Charts[32]

Dot diagrams, stem-and-leaf plots, frequency tables and histograms are univariate tools.

Mostly real engineering problems are multivariate. Relationships between the variables

are usually also important and can give some insight into the process being studied. A

scatterplot is a two-dimensional plot of data and can quickly indicate a relationship

between two variables if it exists. If the X-axis is a time axis then the scatterplot is called

a run chart. Seeing patterns on a run chart gives insight into the change of variables over

time.

2.5.2.2 Computationally intensive descriptive statistics[32]

The techniques described in this section are computationally more complicated and are

usually performed using some kind of statistical software package. The discussion will

start with simple straight line fitting using the least squares approximations and then

moving to more advanced methods of multivariate linear regression using polynomials

and surface fitting.
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2.5.2.2.1 Fitting a straight line using least squares approximations

A very commonly used method to describe bivariate data is to fit a straight line to it

using the following generic equation:

XY 10  ……………………………………...(1)

The advantage of describing data with an equation is that 1) Summarization is made

possible, 2) Interpolation can be performed, 3) Limited Extrapolation can be done and 4)

Process optimisation is made possible based on findings using the equation. The

principle of using least squares in the fitting of an equation for Y containing some

parameters to an n-point data set, values of the parameters are chosen so as to minimise

……………………….……………(2)

Where nYYY ........., 21 are the observed responses and nYYY ˆ,......ˆ,̂ 21 are corresponding

responses predicted or fitted by the equation.

0 and 1are calculated with the following equations:
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 ……………………….(3)

XY 10   ………….……………(4)

The next question that must be answered is how good the fit with the obtained equation

is. There are two commonly used methods for checking the quality of the fitted line 1)

Sample correlation, 2) Coefficient of determination.

The Sample Linear Correlation between x and y exhibited in a sample of n data points

(xi,yi) is:

2

1
)̂( i

n

I
i YY 


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 

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ii ………………………….……………(5)

The value of r falls in the range -1 < r < 1 range with values close to -1 and 1 indicating

strong relationships between y and x. The sign indicates if the relationship is proportional

or inversely proportional.

The Coefficient of determination for an equation fitted to an n-point data set via least

squares and producing fitted Y values nYYY ˆ,......ˆ,̂ 21 is the quantity :


 
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i

iii ……………………………………….(6)

The value of R2 is in the range 0 R2 1 and has the interpretation of the fraction of the

raw variation in Y accounted for using the fitted equation.

Another important concept in fitting a line with the least squares method is the

calculation of residuals. When one fits an equation to a set of data, the hope is usually

that the equation extracts the main message of the data, leaving behind only the variation

in iY that is uninterpretable. In essence one hopes that the predicted/calculated sY '̂ looks

like iY except for some small random variation. One way of checking this phenomenon

is by calculating and plotting the residuals.

If the fitting of an equation or model to a data set with responses nYYY ........., 21 , produces

fitted nYYY ˆ,......ˆ,̂ 21 , then the corresponding residuals are iii YYe ˆ .
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The idea is that when the residuals are plotted against some sensible quantity the result

should be some patternless graph. If there is some pattern to the graph, then it is evident

that there is some extra driving force not taken into account by the equation.

2.5.2.2.2 Fitting surfaces using least squares approximations

This section deals with linear multivariate regression. The typical problems in industry

are rather multivariate than univariate, making multivariate regression particularly useful

in industrial problems. The first curve to be considered is the generalization of the

straight line equation which is a Kth-order polynomial in a K variables equation given by:

k
k XXXY   .....2

210 ……….………………..(7)

The solution of the equation is usually done by software on a personal computer and the

software is freely available. The same techniques of correlation and coefficient of

determination can be used to check the quality of the fitted curve. The coefficient of

determination and visual examination should be used to determine the best polynomial

for the data. Residual plots are also useful tools to determine the appropriateness of the

polynomial.

If a surface needs to be fitted to a set of data points consisting out of kxxx ....., 21

quantitive variables on some response Y, then the surface to be fitted will have an

equation of the form (Linear polynomial in K variables):

kk XXXY   ....2210 …………………………..(8)

The calculation of the k...1 parameters is done using software on a personal computer.

The coefficient of determination and residual plots can be used to check the quality of the

fitted surface. With increasing variables it becomes more difficult to plot the surface to
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check it visually against the data, and consequently the coefficient of determination and

residual plots becomes increasingly important.

2.5.3 Decision trees

2.5.3.1 Introduction

Decision tree classifiers are used successfully in many diverse areas like radar signal,

character recognition, remote sensing, medical diagnosis, expert systems and speech

recognition and stainless steel quality predictions[1], to name a few. Arguably the most

important feature of decision trees is their ability to break down a complex problem into

smaller problems that are easier to understand and hopefully the combined outcome of

the solution to the smaller problems is the solution being searched for. The decision tree

approach falls into an array of techniques called multistage decision-making. Other

approaches in the multistage decision making array are table look-up rules and sequential

approaches. The basic idea of any multistage process is to break up a complex decision

into a series of smaller but easier decisions[11]. Kweku and Bryson[10] describes a decision

tree as a supervised knowledge discovery process in which prior knowledge regarding

classes in the database is used to guide the discovery. Perhaps a very simple definition of

decision trees is given in the Matlabhelp file stating that a regression tree is a sequence

of questions that can be answered as “yes” or “no” plus a set of fitted response values.

Each question asks whether a predictor satisfies a given condition. Predictors can be

continuous or discrete. Depending on the outcome of one question you either proceed to

another question or arrive at a response value. An example of a decision tree is given in

Figure 11.
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Figure 11: Typical structure of a decision tree

Landgrebe[11] gives an excellent description of some relevant areas regarding decision

trees.

1. A graph G = (V,E) consists of a finite non-empty set of nodes (or vertices) V and

a set of edges E. If the edges are ordered pairs (v,w) then the graph is said to be

directed.

2. A directed graph with no cycles is called a directed acyclic graph. A directed (or

rooted) tree is a directed acyclic graph satisfying the following properties:

 There is exactly one node called the root, which no edges enter. The root

node contains all the class labels.

 Every node except the root has exactly one entering edge

 There is a unique path from the root to each node

3. If (v,w) is an edge in a tree, then v is called the father of w and w is called the son

of v. If there is a path from v to w then v is a proper ancestor of w and w is a

proper descendant of v.
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4. A node without a proper descendant is called a leaf. All other nodes (except the

root) are called internal nodes.

5. The depth of a node v in a tree is the length of the path from the root to v. The

height of node v in a tree is the length of a largest path from v to leaf. The height

of a tree is the height of its root. The level of node v in a tree is the height of the

tree minus the depth of v.

6. An ordered tree is a tree in which the sons of each node are ordered.

7. A binary tree is an ordered tree such that 1) each son of a node is either

distinguished as a left or a right son, 2) No node has more than one left son nor

more than one right son.

8. The balance of a node v in a binary tree is (1+L)/(2+L+R), where L and R are the

number of nodes in the left and right subtrees of v. A binary tree is -balanced

with 01, if every node has balance between and 1-. A 0.5-balanced tree is

said to be a complete tree.

9. The average number of layers from root to the internal nodes is referred to as the

average depth of the tree. The average number of internal nodes in each level of

the tree is referred to as the average breadth of the tree. In general, the average

breadth of the tree will reflect the relative weight given to accuracy while the

average depth gives the relative weight given to efficiency.

2.5.3.2 Advantages and disadvantages of decision trees

According to Zhang[37] and Landgrebe[11] decision trees have the following advantages.

1. Decision trees have no strict assumption for the distribution of the target variable.

2. There are no multicollinearity problems when input variables are highly

correlated.
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3. Decision trees deal with non-linear models easily without any variable

transformation.

4. Decision trees can clearly indicate the relative importance of input variables with

respect to their influences on the model target, and can also indicate the

interactions between variables.

5. Decision trees can easily incorporate ordinal (such as low, medium, high),

nominal (classes with names) and interval variables in the same model.

6. Global complex decision regions can be approximated by the union of simpler

local decision regions at various levels of the tree.

7. Decision trees have the ability of choosing different subsets of features at

different internal nodes of the tree so that the feature subset chosen optimally

discriminates among the classes in that node. This feature may provide

performance enhancement above that of single stage classifier.

According to Zhang[37] and Landgrebe[11] decision trees have the following

disadvantages.

1. Overlap between classes in nodes is possible. This can cause the number of

terminals to be much larger than the number of actual classes and thus reducing

the efficiency.

2. Errors may accumulate from level to level in a large tree. One cannot optimise the

accuracy and efficiency simultaneously. For any given accuracy there is a bound

of efficiency that must be satisfied.

3. Designing an optimal tree might prove to be difficult. The performance of a

decision tree strongly depends on how well it is designed.

4. Decision trees require a relatively large amount of training data.
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5. Decision trees cannot express linear relationships in a simple and concise manner.

6. They cannot produce a continuous output due to their binary nature

7. Inherent replication of isomorphic subtrees[19]

2.5.3.3 Design of decision trees

Software developments during recent years have made the generation of decision trees

very easy. The objective, however, in any data mining exercise or modelling process, is

to create the most appropriate and accurate model. This is where the data analysist will

have to create a wide variety of models and then using some performance criteria, choose

the best model. According to Kweku and Bryson[10] the typical areas that will need focus

during the design are the choice of minimum number of cases per leaf, splitting criteria,

minimum number of cases per split, maximum number of branches from a node and the

maximum depth of a tree. They also suggest that one should not only look at the last

obtained decision tree as the best, but that using other performance criteria some of the

rejected trees might also prove to be useful. Landgrebe[11] claims that the main objectives

of a decision tree are to:

1. Classify correctly as much of the training sample as possible.

2. Generalise beyond the training sample so that unseen samples can be classified

with as high accuracy as possible.

3. Be easy to update as more training data becomes available.

4. Have as simple a structure as possible.

The design of any decision tree can then be broken down into the following tasks, 1) The

appropriate choice of the tree structure, 2) The choice of feature subsets to be used at

each internal node and, 3) the choice of the decision rule or strategy to be used at each

internal node.
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Some of the common optimality criteria for tree design are: minimum error rate, min-

max path length, minimum number of nodes in the tree, minimum expected path length

and maximum average mutual information gain Landgrebe[11]. The optimisation is done

by creating a series of decision trees. In practice the optimisation methods have the

limitation of being computationally very expensive.

The various heuristic methods for construction of decision trees can be classified in four

categories[11]:

1. Bottom-up approach where one starts with the information classes until one is

left with a node containing all the classes.

2. Top-down approach where starting from the root node, using a splitting rule,

classes are divided until a stopping criteria is met. The main issues in this

approach are 1) Choice of splitting criteria, 2) Stopping rules and 3) Labelling

the terminal nodes.

3. Hybrid method where one uses a bottom-up procedure to direct and assist a top-

down procedure.

4. Tree growing-pruning approach where in order to avoid some difficulties in

choosing a stopping rule, one grows the tree to its maximum size where the

terminal nodes are pure or almost pure and then selectively prune the tree.

2.5.3.4 Performance measures for decision trees

It was mentioned earlier that choosing the most appropriate and accurate decision tree is

very difficult. One would typically use one performance criteria to determine the most

suitable decision tree. Kweku and Bryson[10] give an excellent review of performance
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measures for decision trees. Their opinion is that the predictive accuracy rate is the most

commonly used method of performance measure. In binary trees, accuracy rate can

however, be a function of sensitivity (True positives/actual positives) and specificity

(True negatives/actual negatives). Discriminating power of leafs is also a measure of the

performance of a decision tree. Ideally one would like leafs that are totally pure (the

probability of all classes except one is zero for each leaf). Stability is a very important

aspect of any decision tree because it gives an indication of the accuracy stability when

the decision tree is applied to other data sets than the training set. Most decision trees are

created with prediction in mind and therefore the stability on new data sets is very

important.

2.5.4 Fuzzy logic

2.5.4.1 Introduction

A very good overview of the history and origin of fuzzy systems is given by Brulé[6]. The

following paragraph is a summary of his discussion. With the development of a concise

theory of logic, the early philosophers like Aristotle developed the so-called “Laws of

thought”. One of these laws, the “Law of excluded Middle” states that there are only true

and false answers to any proposition or idea. Heraclitus opposed the idea saying that

some things can be both true and false. Plato was the first to propose that there was a

third region (beyond true and false) but Lukasiewics proposed the first systematic

alternative to the bi-valued logic of Aristotle. In the early 1900’s, Lukasiewics described

a three-valued logic along with the necessary mathematics. The third region can be

described as “possible” and he assigned numerical values to the region between true and

false. Knuth proposed a three-valued logic similar to Lukasiewics but he used an integral

range from [-1,0,1] rather than [0,1,2]. His approach did however not gain acceptance
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and passed into relative obscurity. In 1965, Lotfi A. Zadeh published his seminal work

called “Fuzzy sets”[36] which described the mathematics of fuzzy set theory and by

extension fuzzy logic.

The idea of fuzzy logic control was born out of allowing partial set membership rather

than crisp set membership[9]. Fuzzy logic is not a data mining technique but rather a

control idea. The first fuzzy logic controller was built in England in 1973 and the aim

was to stabilize a small steam engine Sowell[29] The products of data mining like the

discovered patterns in data, or discovered rules can be applied in a fuzzy control system

in order to control a certain process. Fuzzy logic represents an opposite approach to

conventional process control by not using a mathematical model of the process to predict

response, but is rather based on “fuzzy” rules or sets often based more on human

experience than mathematical fundamentals. According to Pentz[22], fuzzy logic can be

invested with human experience instead of a mathematical model. Yet the control can be

just as good or even better and problems that were impossible to control in the past are

suddenly possible with fuzzy logic. One of the main application areas of fuzzy logic is

where historically empirically collected data is used to determine the rules for the fuzzy

control system. Some advantages of fuzzy logic are given by the newsletter of the Seattle

Robotics Society[9]:

 It is inherently robust because it does not require precise, noise-free input and can

even be programmed to fail “safely” should a problem occur. The output control is a

smooth control function despite the wide range of input variables.

 The fuzzy logic system is based on user-defined functions and can therefore be easily

adapted to new scenarios.
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 Fuzzy logic is not limited to a few feedback input parameters and one or two control

outputs, nor is it necessary to measure or calculate any rate-of-change parameters in

order for it to be implemented. Any input data that provides some indication of the

system performance is sufficient. This allows the sensors to be imprecise and

inexpensive keeping the overall costs down and complexity low.

 Because of the rule-based operation, any reasonable number of inputs can be

processed and numerous outputs generated. However, care should just be taken that

the amount of input parameters does not create a lot of complex rules. Another option

is to break the control system up into smaller separate fuzzy control systems.

 Fuzzy logic can control non-linear systems that would be difficult or impossible to

model mathematically.

A simple example to illustrate the idea of fuzzy logic is to consider the cast strand width

error of a continuous casting machine. Let’s assume the width error set is defined as [-

20,20]. Intuitively we can divide the interval into regions to which we can connect a

linguistic description like “Very narrow”, “Narrow”, “Wide” and “Very Wide”. The

regions are defined as:

Very Narrow = [-20,-10)

Narrow = [-10,0)

Wide = [0,10)

Very Wide = [10,20]

If classical set theory is applied and True = 1 and False = 0, then a graphical

representation of the above set would be given in Figure 12.
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Figure 12: Bivalent Sets to characterize the strand width error
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The problem with classical set theory is the sudden sharp change from one “region” to

another. For example, if a slab is 9mm wide from aim it will be called “wide”, if it is

10mm wide from aim it will be called “Very Wide”. Intuitively one can see the problem

with applying classical set theory to real world problems. If one would apply fuzzy set

theory that allows a more continuous transition from one region to another, together with

allowing shared membership in different regions, one can apply for example triangular

membership functions and the slab width error domain can be covered by the

membership as illustrated by Figure 13.
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Figure 13: Triangular membership functions illustrating fuzzy set theory
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It can be seen that there is smooth transition between areas. Fuzzy set theory therefore

makes it possible to characterise certain “fuzzy” areas where the decision between true

and false is not so clear.

In general, a fuzzy system consists out of four components: Fuzzy rule base, fuzzy

inference engine, fuzzifier and defuzzifier[33] that will be discussed in detail.

2.5.4.1.1 Fuzzy rule base

A fuzzy rule base consists out of a set of fuzzy IF-THEN rules. It is the heart of the fuzzy

system because usually all the other components play a role to implement these rules. In

general these rules have the following form:

Ru(k) : IF x1 is A1
l and ….and xn is An

l, THEN Y is B(k) ……………………… (9)

where Ai
l and B(k) are fuzzy sets in Ui R and V R, respectively and x = (x1…..xn)T

U and y V are the linguistic input and output. The rules from equation (9) are called
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canonical fuzzy IF-THEN rules because they include many other parts of fuzzy rules and

special cases such as:

 Partial Rules,

 “Or Rules”,

 Single Fuzzy Statements,

 “Gradual Rules”, and

 Non-Fuzzy rules (conventional production rules).

2.5.4.1.2 Fuzzy Inference Engine

In a fuzzy inference engine, fuzzy logic principles are applied to combine the fuzzy IF-

THEN rules in the fuzzy rule base into a mapping from a fuzzy set A’ in U to a fuzzy set

B’ in V. There are basically two ways to infer 1) Composition-based inference and 2)

Individual-rule based inference. In compositional-based inference all the rules in the

fuzzy rule base are combined into one fuzzy relation in UV. This single relation is then

viewed as one IF-THEN rule. There are two ways to view the rules that will influence the

method of inference. The first view is to see the rules as individual conditional

statements. A reasonable operator to use in such a case would be union (see 2.2.3.3). The

second view is to see the rules as strongly-coupled conditional statements meaning that

all the conditions of all the rules must be satisfied in order for the whole set of rules to

have an impact. A reasonable operator for this view would be intersection (see 2.2.3.3).

There are other inference methods which will not be discussed in this text but all details

can be found in Wang[33]. Other inference methods are 1) Product Inference Engine, 2)

Minimum Inference Engine, 3) Lukasiewics Inference Engine, 4) Zadeh Inference

Engine, and 5) Dienes-Rescher Inference Engine.
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2.5.4.1.3 Fuzzifiers

The fuzzifier is defined as the mapping from a real –valued point x* U to a fuzzy set A’

in U. One important criteria for a fuzzifier is that it should be able to suppress any noise

in the input values. Three typical fuzzifiers are the following:

2.5.4.1.3.1 Singleton Fuzzifier

The singleton fuzzifier maps a real-valued point x* U into a fuzzy singleton A’ in U

with membership function value 1 at x* and 0 at all other points.

)(' xA 1 if x = x* ……………………………………(10)

)(' xA 0 otherwise

2.5.4.1.3.2 Gaussian Fuzzifier

The Gaussian fuzzifier maps x*  U into fuzzy set A’ in U with the following

membership function:
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where ai are positive parameters and the t-norm  is usually chosen as the algebraic

product.

2.5.4.1.3.3 Triangular Fuzzifier

The triangular fuzzifier maps x* U into fuzzy set A’ in U using the membership

function
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with bi positive parameters and the t-norm chosen as the algebraic product.
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2.5.4.1.4 DeFuzzifiers

The defuzzifier is defined as a mapping from fuzzy set B’ in V R (which is the output

of the inference engine) to a crisp point y*V. Conceptually the task of the defuzzifier is

to calculate a point in V that represents the fuzzy set B’. The concept is almost similar to

calculating the mean value of a series of random values. Because B’ was constructed

using some technique, a choice must be made how to best represent point y* in V. The

following criteria are recommended to choose the best scheme:

 Plausibility – The point y* should represent B’ from an intuitive point of view.

 Computational simplicity

 Continuity – A small change in B’ should not result in a large change in y*.

The common defuzzification techniques are discussed next:

2.5.4.1.4.1 Centre of Gravity Defuzzifier

The centre of gravity defuzzifier specifies the y* as the centre of the area covered by

the membership function of B’, and is given as:
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………………………………….(13)

where V is the conventional integral. The advantage of the centre of gravity method

lies in the plausibility but the disadvantage is that it is computationally intensive.

2.5.4.1.4.2 Centre Average Defuzzifier

The fuzzy set B’ is the union or intersection of M fuzzy sets (due to the inference

technique) hence a good average will be the average weights of the different fuzzy

sets. The heights of the M sets can be taken as the weights of the M sets. Let
l

y be

the centre of the l’th fuzzy set and wl be its height, then the centre average defuzzfier

will be given by:
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w

wy
y

1

1* …………………………………(14)

The centre average defuzzifier method is the most commonly used defuzzifier

because it is intuitively plausible and computationally simple.

2.5.4.1.4.3 Maximum Defuzzifier

Conceptually the maximum defuzzifier chooses the y* as the point in V at which

B’(y) achieves its maximum value. This method is not highly regarded in literature

because the feeling is that the results may be contradictory to the intuition of

maximum membership. Another disadvantage is that small changes in B’ may result

in large changes in y*.

2.5.4.2 Membership functions

The generation of the applicable rules for the fuzzy controller usually depends on the

system to be modelled. The rules can be based purely on experience or the rules can be

generated with data mining processes from historical empirical data. It should also be

kept in mind that a rule can be a fundamental mathematical equation and all rules do not

have to be derived from empirical data. This freedom of rule generation is a big

advantage of fuzzy systems. The implementation of the rules is usually based upon

membership functions. A description of a membership function according to Kaehler[9] is

that it is a graphical representation of the magnitude of participation of each input. It

associates a weighting with each of the inputs, defines functional overlaps between inputs

and ultimately determines an output response. The rules are the input membership values

as weighting factors to determine their influence on the fuzzy output sets of the final

output conclusion. Once the functions are inferred, scaled, and combined, they are

defuzzified into a crisp output that drives the system. There are different membership
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functions associated with each input and output response. Some features to note about

membership functions are:

 Shape – can be triangular, bell, trapezoidal, havesine and even exponential. More

complex functions require more computing resources.

 Height – usually normalised to 1

 Width – Base of the function

 Shouldering – Locks height at maximum if an outer function. Shouldered functions

evaluated as 1.0 past their centre.

 Centre – Points in the middle of the membership function

 Overlap – Overlapping of membership functions.

2.5.4.3 Fuzzy set Operations

As is the case with classical set theory, fuzzy set theory also have set operations. The

following summary was adapted from Anon3[3].

2.5.4.3.1 Union

The membership function of the union of two fuzzy sets A and B with membership

functions a and b respectively is defined as the maximum of the two individual

membership functions. This is called the maximum criterion denoted by

a b = Max(a, b)…….………………… (15)

The union operation is fuzzy set theory is equivalent to the OR operator in Boolean

algebra.
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2.5.4.3.2 Intersection

The membership function of the intersection of two fuzzy sets A and B with membership

functions a and b respectively is defined as the minimum of the two individual

membership functions. This is called the maximum criterion denoted by

a b = Minimum(a, b)…….…………………(16)

The union operation is fuzzy set theory is equivalent to the AND operator in Boolean

algebra.

2.5.4.3.3 Complement

The membership function of the Complement of a Fuzzy set A with membership

function a is defined as the negation of the specified membership function. This is

called the negation criterion denoted by

AA  1 ……………….…………….(17)

The Complement operation in fuzzy set theory is equivalent to the NOT Boolean

operator.

2.6 Summary of literature survey

The literature survey covered topics from data mining techniques and the theory behind

the cast width error and chemistry relationship on 12% chrome ferritic non-stabilised

stainless steel. The data mining techniques that were covered in detail included statistical

regression and general statistical graphical techniques, decision trees and fuzzy logic.

The cast width error to chemistry relationship was discussed by first looking at the

fundamental metallurgical principles to why such a relationship might be possible. The

reason for this relationship is mainly due to the fact that 12% chrome non-stabilised
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ferritic stainless steel have a dual phase region between austenite and ferrite in the

temperature range 1250C and 850C. The hot strength of austenite and ferrite is

different with austenite having more hot strength than ferrite. The ratio between austenite

and ferrite is fluctuating as a function of the heat chemistry. The variation between heats

can lead to width error variation. The second issue with regards to the width error to

chemistry relationship that was discussed deals with the proposed mechanism of the cast

width error. Plant measurements and visual observation seemed to indicate that the width

error was a result of creep from the complete shell combined with bulging on the narrow

sides.
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Chapter 3

Data preparation for modelling

This section deals with one of the most important factors of any data mining exercise,

gathering appropriate, relevant and accurate data to be used in the modelling process.

Unfortunately it can easily be the case of “garbage in, garbage out”. This chapter consists

out of four sections covering the themes of gathering the data, preparing the data for

modelling, clean-up of the data set and selection of significant variables.

3.1 Gathering the data

The data that was used for this project is “live” plant data. The plant databases are

updated continuously as new products are manufactured. Through experience over the

years, it has been attempted to capture as many of the critical process parameters as

possible. The data is usually stored on the databases for a period of three years. The data

relevant to this project are the specific chemistry analysis of a specific heat of steel and

the strand width of the heat. The chemistry of each heat is analysed by taking a sample

from the molten metal and then analysing it in the laboratory for chemical composition.

The chemical analysis of each heat is then entered onto the corporate database called

“P4”. The width of the strand is measured continuously by means of a lazer at the exit of

the casting machine. The measured value is stored once every second. The cast length is

32 meters from mould exit to where it is measured by the lazer. The strand temperature is

still at approximately 900°C when the lazer measures it and consequently a conversion

factor (shrinkage factor) is used to transform the hot width to a cold width measurement

for a specific steel grade (see Appendix D). The shrinkage factor is unique for the

different steel grades and was determined empirically by comparing the hot lazer
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measurements of a slab to the cold measurements as taken in front of the reheat furnace

before hot rolling. The slabs are charged cold into the reheat furnace at Columbus

Stainless and the slab width is measured with a single probe in the middle of the slab.

The shrinkage factors were not determined as part of this project. Experience over the

years have indicated that the shrinkage factors are very accurate and converts the hot slab

width to cold width measurements very accurately. The cold width measurement that is

continuously measured by the lazer (converted from hot width) is then stored on the

steelplant database as an average value per slab (The strand that is continuously cast is

cut into sections of typically 12 meter lengths known as slabs). This average value of the

slab width as measured by the lazer is then taken as the width measurement of the slab.

Appendix G gives a typical relationship between the raw hot lazer data (actual

measured), cold lazer data (including shrinkage factor) and the value representing the

slab width for a single slab. Also included in Appendix G is the standard deviation for

the raw laser data for a specific slab, indicating that the standard deviation for the raw

laser measurements is very small in comparison to the standard deviation between the

different slabs. After the slabs have been cast, they are hot rolled. In order to be hot

rolled the slabs must first be reheated to typically above 1000°C. The slabs are measured

with a single probe when entering the reheat furnace. The slabs are typically below

200°C when measured by the probe and hence can be assumed to be the “cold” width of

the slab. This “cold” measurement of the slabs is also used to calibrate the conversion

factor used for converting the “hot” lazer width measurement to a “cold” width

measurement. The fact that two independent “cold” width measurements are available

per slab, makes it possible to check the validity and accuracy of each measurement

station. If both measurements are used, then measurement “drifts” and erroneous

readings can be identified. The data for this project was extracted from the databases

 
 
 



60

using Microsoft Access. The variables that were extracted from the databases included

the following: Slab width as measured by the lazer, slab width as measured in front of the

reheat furnace, absolute levels of Carbon, Nitrogen, Manganese, Nickel, Chrome, Silicon

and Titanium and then also the calculated parameters from the chemistry including the

AC1 temperature, Amax, CR95, Gmax and ferrite factor (see Appendix C for

descriptions). The chemistry parameters were chosen as those that is believed to have an

influence on the ferrite/austenite ratio as discussed in chapter 2.

3.2 Preparing the data for modelling

The data was split into two sets. A training set and a validation set. The same training and

validation sets were used to train/derive and compare the accuracy of the different

models. The training set that was used consisted out of the data for the 12 % chrome

ferritic non-stabilised material for the time period of 2002/12/28 to 2005/01/12. Every

record represents the chemistry composition of a heat. The average weight of a heat is

100 ton and therefore the training set represents approximately 24900 tons of steel with

249 combinations of unique chemistry (heats), with the resulting width error of each

chemistry. Every heat that is cast results in approximately five slabs of steel. Every slab

has a unique number that is used for tracking purposes in the plant. This means that all

the slabs from one heat have the same chemistry but have different processing parameters

at the continuous casting machine. Although the width measurement is done

continuously while the strand is cast, the width measurement is recorded per slab. The

only way to get an indication of the resulting width error of a certain chemistry

combination is to work with the individual slabs of the same heat. In this project the

width error associated with a certain heat composition was calculated by taking the

average of the width error of the slabs associated with the heat. The validation data set
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that was used was taken from all the 12% chrome (non-stabilised) ferritic material cast

between 20/01/2005 and 21/04/2006 with the standard cooling practice (without

secondary cooling modification). This resulted in 126 unique chemistry combinations

and associated width error.

3.3 Data Clean-up

Accurate data that is a true reflection of plant conditions are absolutely critical and

necessary for a successful model to be developed. Due to the fact that “live” plant data

was used for this project, it was critical to filter inaccurate data out of the data set.

Inaccurate plant data can usually be attributed to inaccurate measurements in the plant or

data base anomalies like unpopulated fields. The accuracy of the lazer was checked by

comparing the lazer measurements with the probe measurements taken before the reheat

furnace. A common problem in the plant was dirty lazer lenses that resulted in inaccurate

readings from the lazer captured on the database. The average width error for each heat

as measured by the lazer were compared to the average width error as measured by the

probe, and the records where the difference was more than 10mm were discarded as

being untrustworthy measurements. Records where unpopulated fields were encountered

were deleted. The inter quartile range (IQR) method was used to identify outliers with the

intention of deleting them, but it was realized that these outliers were necessary to train

an accurate model because they define the extreme points. Due to operational issues it

happened sometimes that a heat with chemistry similar to the “outliers” must be cast, and

in these cases it was necessary that the model must be able to recognise and handle these

chemistries that will result in severe strand width deviations. After the two data sets were

“cleaned”, the training set consisted out of 249 records representing 249 unique

chemistries and their associated width errors. The validation set had 126 records.

 
 
 



62

3.4 Selection of significant variables

Due to the fact that the chemistry parameters were chosen as those that would have an

influence on the phase balance between austenite and ferrite (austenite and ferrite

stabilisers), it was necessary to find the parameters that indicate the strongest correlation

with the width error. The correlation coefficient was determined between each parameter

and the width error. The parameters with the strongest correlations were chosen as the

parameters that were used in the modelling process. A parameter that was significant

through plant experience was the sum of the Carbon and Nitrogen content. Table 2 gives

the results of the correlation coefficient between the parameters and the width error.

Table 2: Correlation Coefficients between parameters and width error.

Parameter Correlation
Coefficient

Carbon -0.208
Nitrogen -0.334
Chrome -0.011

Manganese -0.102
Nickel -0.279
Silicon 0.199

Titanium 0.135
AC1 0.464
Amax -0.394
CR95 0.433
Gmax -0.479

Ferrite factor 0.427
Carbon + Nitrogen -0.362

The positive and negative signs for the correlation coefficient indicate if the strand width

tends negative or positive with an increase in the parameter. A reasonable cut-off was

chosen as 0.35 correlation coefficient. From Table 2 the correlation coefficients that

complied with this criteria are as follows in descending order:
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Gmax
AC1
CR95
Ferrite factor
Amax
Carbon + Nitrogen

These parameters were therefore chosen as input parameters for the modelling processes.

They are also the same parameters that are used in the model that is currently running

live in the plant.

3.5 Visual representation of data

The graphs in this section were adapted from De Beer[7]. The graphs gave a visual

representation of the relationship of the different parameters versus the strand width

error. It can visually be seen from Figures 14 to 19 that there is a relationship between

the parameters and the strand width error of 12% chrome non-stabilised ferritic stainless

steel.

Figure 14 indicates that higher AC1 values lead to a greater positive width error. The

AC1 temperature influences the width error due to its relationship with the ferrite start

temperature as calculated by the MEDUSA model[30]. The higher the ferrite start

temperature, the higher the AC1 temperature. A high AC1 temperature therefore means

that ferrite will form early in the continuous casting process increasing the soft ferrite

fraction of the shell and thus increasing the probability of shell deformation.
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AC1 temperature versus Width Error
Moving Average
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Figure 14: Relationship of AC1 temperature to strand width error.

From Figure 15 it can be seen that the higher the Amax percentage, the narrower the

width error tends to be. This can be explained by the fact that the higher the Amax value

is, the more austenite will be present in the shell that will strengthen it, hindering creep

and bulging.

Figure 15: Relationship of Amax to strand width error.

Amax versus Width Error
Moving Average
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Figure 16 gives the relationship between the width error and the CR95 value. It is evident

that a higher CR95 value favours a larger positive width error. This relationship is

explained in terms of transformation rate of austenite to ferrite during solidification. A

heat with a high CR95 value will transform the austenite present at 1000°C faster to

ferrite, than a heat with a lower CR95 value. If the transformation rate from austenite to

ferrite is high (under constant cooling) then the austenite fraction of the structure will

decrease (transform to ferrite) quickly and relatively high up in the casting machine bow.

This will leave room for a weaker shell that might be prone to deformation. The opposite

is true for a slow transformation of austenite to ferrite that will tend to result in a stronger

shell for a longer period.

Figure 16: Relationship of CR95 to strand width error.

The Gamma max trend versus the strand width error is depicted in Figure 17. As

expected it followed the same trend as the Amax. The higher the Gamma max is, the

more difficult it would be for the shell to deform due to the higher austenite fraction.
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Gamma max versus Width Error
Moving Average

-30.00

-20.00

-10.00

0.00

10.00

20.00

30.00

61
.0

68
.9

69
.8

70
.4

70
.9

71
.3

71
.8

72
.1

72
.4

72
.7

73
.0

73
.3

73
.6

74
.0

74
.2

75
.0

75
.4

75
.7

76
.2

77
.3

78
.1

79
.6

Gamma max (%)

W
id

th
E

rr
or

Figure 17: Relationship of Gamma max to strand width error.

Figure 18 indicates that the higher the ferrite factor is, the wider from aim the strand

width tends to be. If the ferrite volume fraction is high, the shell will tend to be softer and

therefore tend to deform more easily. Figure B1 in Appendix B indicates the relationship

between the ferrite factor and the measured austenite start temperature Ar5 for a 12%

chrome non-stabilised ferritic stainless steel. It can be seen that the transformation to

austenite starts at earlier times and the transformation temperature is increased for a

chemistry with a low calculated ferrite factor. Earlier transformation and transformation

at higher temperatures for heats with a low ferrite factor, versus heats with a high ferrite

factor mean that the shell will be stronger for heats with a low ferrite factor versus heats

with a high ferrite factor.
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Figure 18: Relationship of ferrite factor to strand width error.

Figure 19 indicates that the width deviation from the aimed width tends to decrease (from

being wide) with an increase in the parameter C + N. This is due to the fact that both

carbon and nitrogen are austenite stabilisers and therefore an increase in these parameters

will change the ferrite to austenite ratio in the shell, favouring austenite, and this will

result in a stronger shell.
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C+N versus Width Error
Moving Average
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Figure 19: Relationship of Carbon and Nitrogen to strand width error.

The different modelling techniques will first be applied to the training set to derive

applicable models. The quality of the derived models in terms of accuracy on the training

data set will be discussed. Comparison of the different models will be done in chapter 4

when applied to the validation set of data.

3.6 Model evaluation criteria

The acceptable width criteria is defined as a width error (actual cold slab width – aim

cold cast width) of between 0mm and 15mm. Width errors of <0mm means negative

values and the slab is narrower than aim. Width errors >15mm represent slabs that are

considered to be excessively wide. Narrow and excessively wide slabs cause production

problems during subsequent processes. The results are grouped into three groups with

group one representing the narrow slabs, group two representing the acceptable slabs and

group three representing the excessively wide slabs. The performance of the models in
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terms of accuracy will be determined on its ability to predict the width error within one

of the defined groups. The measure of accuracy will be the percentage of heats correctly

predicted for each group. An example illustration is if it is assumed that a population

consists out of 100 records with 20 records having width errors less than zero (group 1),

50 records having width errors between 0 and 15mm (group 2) and 30 records having

width errors more than 15mm (Group 3). When a model is derived and predictions are

made, then for each of the 100 records there will be an actual value and a predicted value.

If both the actual and predicted value falls within the same group, then the model

predicted accurately. If, for example the records in group 1 is considered, then there are

20 records each with its own actual value and predicted value. Let’s assume 15 records of

the 20 records have both actual and predicted values inside group 1, then the model is

evaluated as being 75% correct in group 1.

3.7 Modelling using statistical regression

Figure 20 gives the distribution of the parameter values using histograms. This summary

gives a high level overview of the training set that will be used to derive the different

models. This statistical technique falls into the category of non-computationally

expensive statistical methods. No predictive model can be derived using the histograms

and is only useful to give a better higher level understanding of the data under review.
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Figure 20: Histograms of parameter values of the training data set.

It can be seen from Figure 20 that the Amax, Gamma max and AC1 indicate normal

distributions. Both CR95 and ferrite factor indicate a portion that is normal distributed

but both graphs indicate a long tail to one side. It seems as if the outlier chemistries

influence the ferrite factor and CR95 values more than it did the other parameters.

Response Surface Methodology (RSM) is a tool for understanding the quantitative

relationship between multiple input variables and one output variable. A quadratic

response surface was used to model the width error using the mentioned input

parameters. The statistical toolbox in Matlab was used to derive the RSM models. The
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general equation describing the quadratic response surface of an input vector x and

response vector y has the form:
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 ………..(22)

The “rstool” in Matlab was used to derive the quadratic response surfaces used in this

section. The “rstool” has the functionality of deriving separate response surface models

including the linear section alone, linear and quadratic alone and linear and interaction

terms separately and a response surface including the linear, interaction and quadratic

terms. In total, four response surface models were developed, one model representing

each of the before mentioned models.

Equation 23 represents the derived linear equation.

854.249)(486.431
683.1max561.095664.0max182.01374.0




NC
torFerriteFacGCRAACWidthError ….(23)

Figure 21 indicates the training set together with the predicted values using equation 23.
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Figure 21: Training data set with predicted values using linear statistical regression

model

Training data set with predicted values.
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The derived equation representing the linear and interaction terms combination is given

in Appendix E. Figure 22 indicates the relationship of the predicted values versus the

actual values.

Figure 22: Linear and interactive term surface versus actual values

Linear and interactive surface as fitted to the training set
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The derived equation representing the linear and Quadratic terms combination is given in

Appendix E. Figure 23 indicates the relationship of the predicted values versus the actual

values.

Figure 23: Linear and quadratic term surface versus actual values

Linear and Quadratic surface as fitted to the training set
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The derived equation representing the complete quadratic response surface is given in

Appendix E. Figure 24 indicates the relationship of the predicted values versus the actual

values.

Figure 24: Full quadratic response surface versus actual values

Full Quadratic surface as fitted to the training set
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Table 3: Results across the width error range from the different response surfaces.

Group
Width error

range
# of

Records
Linear

% Correct

Linear +
Interaction %

Correct

Linear +
Quadratic %

Correct

Full Quadratic
response
surface

1 < 0 mm 79 30% 30% 26% 30%
2 0 - 15mm 65 75% 72% 74% 71%
3 >15mm 105 59% 59% 63% 57%

249 54% 53% 54% 52%

Table 3 indicates that the response surface models has given results that are very close to

each other. The overall accuracy ranges from 54% to 52% correct, which indicates no

significant difference between the different models. All the models indicated the best

results in group 2. The only model that gave different results from the others in group 1

and group 2 is the linear and quadratic combination model.

3.8 Modelling using a Regression Decision Tree

In the preceding section, regression was applied to fit a response surface to the training

data set. In this section a regression decision tree will be derived from the training data

set. The statistics toolbox found in Matlab® was used to derive the regression decision

tree. The un-pruned version of the decision tree is displayed in Figure 25 (Quality as

obtained from Matlab®).
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Figure 25: Un-pruned version of regression tree

The un-pruned tree consists of 41 levels. Pruning can be done to the basic tree to

optimise the structure. With a tree like this one, having many branches, there is a danger

that it fits the current data set well, but would not do a good job at predicting new values.

Some of its lower branches might be strongly affected by outliers and other artefacts of

the current data set. If possible, one would prefer to find a simpler tree that avoids this

problem of overfitting. The following procedure can be followed to optimise a tree size

by using cross validation.

First, compute a resubstitution estimate of the error variance for this tree and a sequence

of simpler trees and plot it as the lower (blue) line in Figure 26. This estimate probably

underestimates the true error variance. Then compute a cross-validation estimate of the

same quantity and plot it as the upper (red) line (Figure 26). The cross-validation

procedure also provides an estimate of the pruning level, “best”, needed to achieve the

best tree size (Matlab®).
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The matlab code that was used is as follows:

[c,s,ntn] = treetest(t,'resub');
[c2,s2,n2,best] = treetest(t,'cross',x,y);
plot(ntn,c,'b-', n2,c2,'r-', n2(best+1),c2(best+1),'mo');
xlabel('Number of terminal nodes');
ylabel('Residual variance');
legend('Resubstitution error','Cross-validation error','Estimated best
tree size');
best
t0 = treeprune(t,'level',best);

Figure 27 indicates the pruned decision tree as per above Matlab® procedure. The pruned

model consists out of four levels.

Figure 26: Resubstitution and Cross-validation error to estimate best tree size
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Figure 27: Pruned version of decision tree

The best pruning level was determined as level 37 of the original 41 of the un-pruned

tree. A comparison of the actual width error and the predicted width error using the

pruned decision tree is given in Figure 28:

Figure 28: Actual width error and predicted width error using pruned decision tree

Training data set and predicted values as per
regression decision tree
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The correlation coefficient between the actual width error and the predicted width error is
0.91, which is very good.
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Table 4: Results across the width error range from the decision tree as applied to the

training data set.

Group

Width
error
range

# of
Records % Correct

1 < 0 mm 79 81%
2 0 - 15mm 65 71%
3 >15mm 105 80%

249 78%

The overall accuracy of 78% is acceptable. The decision tree tends to be more accurate

on the extremes of the width error ranges on the narrow and wide side.

3.9 Modelling using fuzzy logic

The problem of modelling the cast strand width error suits the principles of fuzzy logic

very well. Two approaches to the fuzzy logic methodology will be taken in this study.

The first approach is to use triangular membership functions as the fuzzy logic model

basis, while the second methodology is based on polynomial membership functions.

3.9.1 Fuzzy logic model based on triangular membership functions

The aim is to categorise the input parameters into one of three pre-defined groups. The

groups are defined in terms of the width error. Group one is defined as heats with

negative width error (i.e. narrow from aim), group two is defined as those having

acceptable width error and group three is defined as those heats with large positive

expected width errors (i.e. wide from aim). In terms of the actual plant implementation,

the groups will be used to select an appropriate secondary cooling pattern. The fuzzy
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logic membership functions were defined as straight lines using equations of

type:

cmxy  …………………………….………(23)

Each parameter was viewed separately and divided into the three groups according to the

width error. The 0.25, 0.5 and 0.75 quartiles were determined for each subgroup in each

parameter. The 0.5 quartile for each subgroup was chosen to have a membership of one

and then the 0.25 and 0.75 quartiles were chosen as having zero membership to the

specific subgroup.

Figure 29: Typical membership allocation using triangular membership functions

Typical membership allocation using the
triangular membership functions
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If the membership functions are combined then the result is a distribution with triangular

sets. Figure 30 indicates the combined membership functions as applied across a typical

parameter range.

0.25 and 0.75
Quartile

0.5 Quartile

 
 
 



80

Figure 30: Typical membership functions as defined across a parameter range

Membership functions defining Group 1 to Group
3 for a typical input parameter
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For certain parameters, group one and group three were swopped due to the fact that

some parameters (Amax, Gmax and C+N) are inversely proportional to the width error

and others are proportional to the width error.

The membership functions were determined using the training data set. Each parameter

was used separately to determine the membership equations across the parameter range.

Each value of each parameter was then fuzzified using the specific membership

functions. The de-fuzzification was done using a centre-average approach. Each

parameter gave an individual prediction of the width group the heat belongs to between

the three predefined width groups. The average of the six predictions were then used to

determine the final prediction of the width group. Figure 31 indicates the individual

membership functions as determined by the process described above.

Group 1 Group 2 Group 3
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Membership functions determined for
parameter Amax
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Membership functions determined for
parameter CR95
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Membership functions as determined for
parameter Gamma Max
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Membership functions as determined
for the parameter (Carbon + Nitrogen)
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Figure 31: Triangular membership functions of the six input parameters to the fuzzy

logic model

Table 5 indicates the results obtained using the training data set as input to the fuzzy

logic model.
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Table 5: Results across the width error range from the fuzzy logic model as applied to the

training data set.

Group

Width
error
range

# of
Records % Correct

1 < 0 mm 79 56%
2 0 - 15mm 65 40%
3 >15mm 105 74%

249 59%

Table 5 indicates that the fuzzy logic model is the most accurate in the width group

representing the material that is considered to be very wide from aim. The fuzzy logic

model is the least accurate in the width group considered to have acceptable width error

values. The implication of such inaccuracy is that material that has acceptable width error

will be changed to fall into another width error group causing more deviation in the width

error deviations. The overall accuracy of 59% on the training set is not considered to be

very good.

3.9.2 Fuzzy logic model based on Polynomial membership functions

The basis of this model is to use a polynomial for each parameter to predict a width error

separately. The final width error is then taken as the average of the predictions resulting

from the six polynomials derived from the six input parameters. The optimum order of

polynomial was found for each parameter by deriving six polynomials for each parameter

ranging from pure linear to a polynomial of the 6th order. The optimum degree of

polynomial was chosen as the one with the best correlation to the actual width error. The

six input parameters as well as the width error values were standardised to have values

between 0 and 1. All polynomials were derived and correlations checked using Matlab.

The code for this purpose can be found in Appendix F. Table 6 indicates the correlation
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results. The values in bold represent the optimum degree of polynomial for the specific

parameter.

Table 6: Correlation coefficients for the different degree of polynomials and input

parameters

Degree of Polynomial

Parameter 1 2 3 4 5 6

AC1 0.5667 0.5861 0.6179 0.6180 0.6250 0.6250

Amax 0.5080 0.5353 0.5573 0.5575 0.5581 0.5581

CR95 0.5191 0.5556 0.5600 0.5640 0.5696 0.5696

Gmax 0.5732 0.5755 0.6012 0.6016 0.6036 0.6068

Ferrite
factor 0.5323 0.5429 0.5493 0.5651 0.5669 0.5721

C + N 0.4541 0.4728 0.4730 0.5016 0.5189 0.5200

The individual optimum correlations are not necessarily taken as the maximum, but are

chosen where the change in correlation seems to have stabilised. For the input parameters

AC1, Amax and CR95 a third order polynomial is chosen as optimum, for the ferrite

factor a second order polynomial is chosen and for the sum of carbon and nitrogen a fifth

order polynomial is chosen.

The polynomial for each parameter was derived and is given in Appendix F. Figure 32

gives a comparison between the predicted values from the six polynomials and the actual

width error.
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Figure 32: Predicted versus actual values as obtained from the polynomials

Predicted versus actual values as obtained with the
six polynomials
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It can be seen from Figure 32 that all the polynomials tend to be less accurate on the

extremities. The result of the average of the six predictions is given in Figure 33.

Figure 33: Average of the Predicted values from the six polynomials versus the actual
width error

Average of the six polynomials versus the actual
width error
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It is clear from Figure 33 that the polynomials are not accurate on the extremities of the

width error range. The trend of the predictions seems to be correct but the slope does not

match the actual value.

Table 7: Accuracy across the width range as obtained with the average of the

polynomials

Group
Width error

range
# of

Records % Correct
1 < 0 mm 79 25%
2 0 - 15mm 65 80%
3 >15mm 105 49%

249 49%

The accuracy obtained (49 %) is not very good. The other negative factor about this

method is that it is not accurate on the extremities where a high accuracy is needed in

order to identify problematic heats before they are cast.

3.10 Summary of the results of the derived models

Prediction models were developed in the preceding sections to describe the relationship

between the six input parameters and the resulting width error. Three approaches were

used which included a statistical regression approach using response surface

methodology, decision tree models (pruned and un-pruned) and models based on fuzzy

logic (two approaches). Table 8 gives a summary of the results obtained with the

different models as applied to the training set. Only the best results per modelling

approach is given.
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Table 8: Summary table of the results obtained with the different models as applied to the

training set..

Statistical Decision
tree Fuzzy logic

Group Width error
range # of Records % Correct % Correct % Correct

1 < 0 mm 79 30 81 56
2 0 - 15mm 65 75 71 40
3 >15mm 105 59 80 74

249 54 78 59

It can be seen from Table 8 that the decision tree model resulted in the most accurate

model as trained on the training data set.
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Chapter 4

Evaluation of the derived models on a Validation data set.

In the previous sections three different predictive models were derived using the training

data set. The models consist of statistical regression, decision tree model and models

based on fuzzy logic. On the training data set the decision tree model was the most

accurate, or in other words the best fit on the training data set was obtained with the

decision tree model. In this section the derived models are applied to the validation set.

The validation set consists out of data that are independent from the training set and

therefore represents typical “live” data that the model would encounter during operating

conditions in the plant. The validation set consists out of 126 unique heat chemistries and

their associated strand width error.

4.1 Application of the derived statistical model on the validation data set

The statistical regression model (equation 22) was applied on the validation data set

using Microsoft Excel. The results obtained are given in Figure 34.

Figure 34: Linear Response surface model applied to the validation data set

Linear response surface predictions versus actual
width error
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Visually it can be seen that the fit is not very good. The calculated correlation coefficient

is only 0.21. If the three width error groups are considered then Table 9 indicates that the

model is most accurate in the width error group 0 – 15mm. The two groups on the

extremes of the populations have very low accurate predictions. It is also clear from

Figure 34 that the predicted values are predominantly found between 0 and 20mm. This

also explains the very good accuracy obtained in the 0 – 15mm band. Basically all the

predictions are in this interval and therefore the chance of the prediction being accurtate

is very good. The high accuracy rate is however not believed to be due to the accuracy of

the model but rather due to the fact that all predictions are in this interval anyway.

The more advanced response surface models were also applied to the validation data set.

Figure 35 represents the predictions obtained with the different response surfaces versus

the actual width error.

Figure 35: Response surface models applied to the validation data set

Predicted values as per different response surfaces
versus actual width error
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It can be seen from Figure 35 that the response surfaces do not pick up the trend of the

actual data. The response surfaces are not accurate in the extremities of the width error

range. This is unacceptable for a potential on-line prediction model where it is critical

that the model be accurate on the extremities of the width error range. Table 9 gives a

summary of the accuracy across the width range, as achieved with the more advanced

response surface models.

Table 9: Summary of the accuracy obtained with the surface response models as

applied to the validation data set.

Linear Full
Quadratic

Linear +
Quadratic

Linear +
Interaction

Group
Width error

range
# of

Records
%

Correct
%

Correct
%

Correct % Correct
1 < 0 mm 38 3% 8% 3% 8%
2 0 - 15mm 76 87% 88% 92% 91%
3 >15mm 12 42% 0% 0% 0%

126 57% 55% 56% 57%

From Table 9 it can be seen that all the models are accurate in the width error range

represented by group 2, but all the models perform very poorly in the width error ranges

represented by group 1 and group 3. From Figure 38 it is clear that the predictions tend to

be in the range of group 2, and hence, a high accuracy is obtained in group 2. The

accuracy is therefore not thought to be due to the models being accurate in that range, but

rather due to the fact that most of the predictions fall in that range.

4.2 Application of the derived decision tree model on the validation data set

The decision tree model derived from the training data set, was applied to the validation

set in two formats: Pruned and un-pruned to determine the best model between the two
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versions. Figure 36 and 37 depict the results obtained with the two decision tree models

as applied to the validation set.

Figure 36: Decision tree model results as applied to the validation data set.

Un-Pruned Decision tree predictions as applied
to the Validation data set
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Figure 37: Pruned decision tree model results as applied to the validation data set.

Pruned decision tree as applied to the Validation
data set
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The accuracy in terms of the three groups is given below in Tables 10 and 11.
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Table 10: Accuracy obtained per width error group with the decision tree model.

Group
Width error

range
# of

Records
%

Correct
1 < 0 mm 38 36%
2 0 - 15mm 76 47%
3 >15mm 12 66%

126 46%

Table 11: Accuracy obtained per width error group with the pruned decision tree model.

Group
Width error

range
# of

Records
%

Correct
1 < 0 mm 38 7%
2 0 - 15mm 76 59%
3 >15mm 12 50%

126 42%

From Tables 10 and 11 it can be seen that both decision trees result in an overall

accuracy rate of less than 50 % which is not very good. The un-pruned decision tree has

more balanced results between the three width groups. The most accurate results were

obtained in group 3 with the large decision tree and the pruned decision tree resulted in

the most accurate results in group 2. The good results obtained in group 2, are a result of

the fact that most of the predictions of the pruned decision tree fall within the range of

group 2 and the accuracy of the results are not a reflection of the true accuracy in group

2.

4.3 Application of the derived fuzzy logic models on the validation data set

The fuzzy logic model that is based on triangular membership functions was applied to

the validation data set. The accuracy obtained per width error group is given in Table 12.
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Table 12: Accuracy obtained per width error group with the fuzzy logic model based on

triangular membership functions .

Group Width error range
# of

Records
%

Correct
1 < 0 mm 38 32%
2 0 - 15mm 76 57%
3 >15mm 12 50%

126 48%

The overall accuracy of 48% is not very good. The best results were obtained in group 2

with an accuracy rate of 57%.

The second model based on fuzzy logic was derived using polynomials as prediction

functions for the individual parameters. Figure 38 indicates the relationship between the

predicted values and the actual width error values.

Figure 38: Predicted values from the fuzzy logic based model using polynomials

versus standardised actual width error values

Fuzzy logic model based on polynomials applied to the
validation data set
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The predictions from the fuzzy logic model fail to pick up the trend from the actual data.

It is thus clear, that the model seems to predict between 0.2 and 0.6 across the width error

range. This “flat” prediction might be due to the average taken from the six predictions.

The accuracy across the width range is given Table 13.

Table 13: Accuracy across the width error range as obtained with the fuzzy logic model

based on polynomials and applied to the validation data set.

Group
Width error

range
# of

Records
%

Correct
1 < 0 mm 38 52%
2 0 - 15mm 76 67%
3 >15mm 12 16%

126 58%

The overall accuracy of 58% on the validation data set is reasonable, considering the

results obtained with the other models. One positive about this model, is that it seems to

be fairly accurate in group 1 and group 2 but unfortunately not in group 3.

4.4 Application of the model currently in use by the plant to the validation data
set

The model currently used in the plant uses a slightly different philosophy to the models

developed previously. The model is purely based on a set of rules derived empirically

from a similar training set, used for the derivation of the models in the previous

sections[7]. The model philosophy is to only target the heats that fall in the width error

groups 1 and 3. If a heat is predicted to be within group 1, then the secondary cooling is

adjusted to provide more creep during the secondary cooling stage in the continuous

casting machine. This results in the strand being slightly wider and should fall typically

into width group 2. The same principle applies to heats that are predicted to fall into
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group 3. The secondary cooling intensity is increased and that results in the strand ending

up slightly narrower, which should be sufficient seeing that the heat then falls within

group 2. This philosophy results in a narrower width distribution of the material[7]. The

model structure is such that the chemistry is tested against the set of rules, should one of

the rules become active, then the secondary cooling would be adjusted. Should none of

the rules become active no action will be taken by the model and it would be termed a

“no decision”. The model therefore, does not have the capability to predict material to

fall within group 2. However, to measure the accuracy obtained in group 2, the correct

decision by the model would be not to change the cooling pattern. The accuracy of the

model therefore in group 2 will be measured in terms of the percentage “no decisions”.

Table 14 gives the results of the current model as applied to the validation set.

Table 14: Results of the current model as applied to the validation set.

Group
Width error

range
# of

Records
%

Correct % No Decision
1 < 0 mm 38 88% 58%
2 0-15mm 76 67% N/A
3 >15mm 12 71% 42%

126 73% 54%

The percentage of “no decision” is relatively high at 54 %, and this material should be

viewed as lost opportunities where a change could have been implemented, to improve

the width error. The 54% also indicates that the model can be improved to be able to

recognise more problematic material. Table 14 also indicates that where decisions were

made in the model, it was 73% correct. This result is considered to be excellent if it is

compared to the other models derived and tested in the previous sections.
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4.5 Summary of results obtained by applying the models to the validation data.

In the preceding sections the three derived models and the current model that is used in

the plant were applied to the same validation data set. This gives a good indication of the

relative accuracy obtained with the different data mining techniques on this specific

problem. The aim is to select the most appropriate model for this specific application of

predicting the width error of a heat before it is cast by purely taking the chemistry into

account. The results obtained with the statistical regression, decision tree and fuzzy logic

models were very disappointing. The only model with a success rate of more than 50%

accurate, is the statistical regression model with a 57% success rate. This relatively high

success rate is mainly due to the fact that most of the predictions were in the range of

0mm to 15mm and therefore many predictions that were correct, were purely by chance,

because the largest width error population is group two, representing the 0 mm to 15mm

range. The current model is a rule-based model drawn up empirically from historical

plant data. The expectation was that the more advanced data mining techniques would

outperform the current rule-based model. This assumption was tested with the validation

data set and the current rule-based model surprisingly outperformed the more advanced

techniques comfortably. The current model achieved an accuracy of 73% which is

excellent compared to the results of the other data mining techniques. The model that is

currently used in the plant is therefore the best suited for this specific application. Table

15 gives a comparison of the four models under consideration in terms of their accuracy

on the validation data set. Only the best results obtained per model type is given.
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Table 15: Combined results of the different models as achieved on the validation data

set.

Model Total Accuracy
Statistical regression 57%
Decision Tree 46%
Fuzzy logic 58%
Current model 73%

From Table 15 it is clear that the current model is outperforming the other models by far.

The combined result of 73% accurate is very good, considering the complexity of trying

to predict the strand width error for a specific heat from the chemistry of the specific

heat. Due to the fact that the model only made decisions on 48% of the heats that fell

into group one and group three, it does not mean that >70% of all the problem heats can

be picked up by the current model. Currently, the results only indicate that at least a large

portion of the problem material can be picked up accurately and adjustments can be made

to rectify the situation. What the results mean for the plant is a narrower width

distribution which means better strand width control for 12% Chrome, non stabilised

ferrritic stainless steel.
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Chapter 5: Plant results of the model best suited for this

application

5.1 Introduction

In the preceding chapters three different models were derived, having used the same

training data set. The different models represented different data mining techniques and

included statistical regression, decision trees and fuzzy logic. The derived models were

all applied to the same validation data set and compared to the performance of the model

currently in use also tested on the validation set. The results were then compared and it

was found that the model that is currently used in the plant was far more superior in

terms of prediction accuracy than the models from the other data mining techniques. This

section details the implementation of the model in the plant, together with the results

achieved with the model while using it as prediction tool in the production environment.

5.2 Implementation of the model in the production environment

The model was implemented in the production environment in November 2004.

Development and testing of the model started in January 2004. Initially the model was

run “off-line” and then gradually it was used manually “off-line” for predictions and the

secondary cooling would be adjusted based on the model predictions. In November 2004

the model was implemented as a fully automatic model running on the Level 2 computer

system of the continuous casting process. The sequence of events as outlined in Figure

39 can be summarised in the following way: A chemistry sample is taken at the end of

the process at the rinsing station (ABS). There is approximately a 10 to 15 minute gap
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between the end of the rinsing station process and the start of the casting operation. After

the chemistry sample has been taken, it is sent to the laboratory for analysis. After the

analysis is done, the chemistry results are read by the level two computer system of the

continuous caster. The width model is situated in the caster level two computer system.

Once the chemical analysis has been received by level two, the AC1, Amax, CR95,

Gmax and ferrite factor is calculated and sent to the model as input parameters. The input

parameters are checked by the model by fitting each rule in sequential order to the input

parameters. The individual rules are checked until a rule becomes active. When all the

rules have been checked and none fits, the default/standard secondary cooling practice is

used. If one of the rules becomes active, the secondary cooling practice would be

changed to either more aggressive or less aggressive based on the result of the specific

active rule.

Figure 39: Model decision making process as implemented in the plant

Sample is taken at
ABS and sent to

LAB

Chemistry is
analyzed

CCM level 2 reads
chemistry and

calculates
parameters

Model decision is
implemented and
secondary cooling
adjusted based on
model decision

Model makes
decision

Calculated
parameters are sent

to model
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5.3 Plant results from the implemented model

This discussion will begin by indicating the long term width error trend of the material

on which the model is implemented and is depicted in Figure 40. The results are based on

the cast width as measured by the lazers at the exit of the CCM. All start-up slabs and

end-of–cast slabs were excluded from the results, due to the fact that they are very

narrow from aim, due to processing at very slow casting speed. Outliers were filtered

using the inter-quartile range approach.

Figure 40: Long-term width error trend of 12% Chrome non-stabilised ferritic

Stainless steel.
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The graph represents the average and a two sigma (standard deviation) range. The two

sigma range represents approximately 75% of the population. It can be seen that the

width error stabilised after the implementation of the model. The width error also seems

to be lower on average. A more stable width error on average per month means that the

Model Implementation
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control on the strand width improved because the width error for each month is in a

similar region. This was not the case before the model was implemented. Before the

model was implemented it is clear that each month had a different average width error

and indicates poor width control.

The model results were further evaluated by comparing them to a population where the

model was not in operation. The reference population chosen were all material with

internal steel type 41220 and 41311 that were cast between July 2003 and November

2004. This population consisted out of 1637 individual slabs representing 420 different

heats, that translate into 420 unique chemistries with associated width error. The

population representing the population where the model was active, consisted out of 1407

individual slabs representing 383 heats cast between December 2004 and December

2005. This population was split into two populations. This was necessary because the

secondary cooling practice used for the heats with large positive width errors was

changed in May 2005 to a less aggressive pattern, after it was suspected that the high

cooling intensity resulted in some slabs cracking. The relationship between the cracked

slabs and the secondary cooling practice, could however, never be confirmed. The

population representing the period from December 2004 to May 2005 consisted out of

242 heats and the population representing June 2005 to December 2005 consisted out of

141 heats. Each heat represents approximately 110 tons and therefore the reference

population (without model) represents 46 200 tons of cast steel and the population where

the model was active represents 42 130 tons of cast steel in total. Table 16 gives a

summary of the two populations.
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Table 16: Summary of reference population and model active population

Reference
Population

(Before Model)

Model Active
Population

(Nov 04 – May-05)

Model Active
Population

(June 05 – Dec 05)
# of Heats 420 242 141

# of Slabs 1637 866 541

Tons 46 200 26 620 15 510

Mean* 9.27 mm 3.29 mm 5.68 mm
Standard

Deviation* 10.46 mm 10.42 mm 8.33 mm

Range*
(max-min) 54 55 44

* Based on heats

The three means were tested against each other using the student t-test with a 95%

confidence interval and all three means were found to be significantly different from each

other. It is evident that the mean of the reference population is higher than the two means

of the populations where the model was active. The reason for this is that in September

2004 by management decision, the preferred range for the caster to supply ferritic slabs

to the Hot mill was changed to 7.5 mm narrower. This resulted in a general width error

population shift with a larger percentage of the material falling in group one of the width

error definition (<0mm width error). Figure 41 is a frequency plot from the raw data to

give a clearer picture of the raw data. The frequency is expressed as a percentage of the

total of each group. Figure 42 indicates the distributions of the three populations if they

are assumed to be normally distributed and have the means and standard deviations listed

in Table 16. The standard deviation difference between the reference population and the

June 2005 to December 2005 population is 20.4 % and the range differs by 18.5 %. The

results indicate that the change made to the secondary cooling in May 2005 was very

beneficial for the width error.
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Figure 41: Frequency diagrams comparison of the three populations under study
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Figure 42: Normal distribution comparison of the three populations under study
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As is expected from the values in Table 16 the reference population and the population

between November 2004 and May 2005 have similar normal distributions. The

population representing June 2005 to December 2005 has a narrower distribution than the

other two populations due to its smaller standard deviation. Figure 42 clearly indicates
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the narrower width distribution of the population representing June 2005 to December

2005.

The two populations where the model was active were analysed in more detail. It is

important to know how much of the material was cast with modified secondary cooling

patterns and how the populations compare between those that were cast with modified

cooling patterns and those that were cast with the standard secondary cooling pattern

(Table 17).

Table 17: Summary of the populations with and without secondary cooling modifications

Nov 04 – May 05
Standard water

pattern

Nov 04 – May 05
Modified water

pattern

Jun 05 – Dec 05
Standard water

pattern

Jun 05 – Dec 05
Modified water

pattern

# of Slabs 352 of 818 total
slabs

466 of 818 total
slabs

157 of 529 total
slabs

372 of 529 total
slabs

“Wide”
cooling
Practice

52% of 818 slabs 68% of 529 slabs

“Narrow”
cooling
Practice

4.5 % of 818 slabs 1.89 % of 529 slabs

Mean* 7.21 mm 0.24 mm 5.41 mm 6.46 mm

Standard
Deviation* 11.42 mm 9.31 mm 9.1 mm 9.3 mm

Range* 56 mm 57 mm 49 mm 54 mm

The means of the two populations of the material between November 2004 and May

2005 are significantly different (Student t-test 95% confidence interval). This can be

attributed to the fact that the majority of the water patterns that were modified were

changed to the “wide” pattern. The compensation achieved with the modified secondary

cooling, was too much and the mean of 0.24 with a standard deviation of 9.3 means that
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some material was cast that was too narrow and could have caused processing problems

downstream. This problem was exaggerated by the fact that in September 2004 the aim

cast widths on all ferritic material was changed to 7.5 mm narrower. This caused

problems with the model compensation because the data used for training the model, and

to derive the secondary cooling pattern were based on a population with an average width

error of 7.5mm wider. The population of June 2005 to December 2005 is relatively

smaller than the population of the first part of 2005 because of lower production volumes

due to market conditions. The means of the two populations of the material from June

2005 to December 2005 are not significantly different (Student t-test, 95% confidence

interval). This result indicates that the model changed material that would have been

problematic to be within the range achieved with the standard cooling practice resulting

in an improved (reduced) width error distribution during the time period June 2005 to

December 2005 (Table 17, Figure 42). On the population from November 2004 to May

2005 the model changed 56% of the material cast to more suitable secondary cooling

practices. On the population from June 2005 to December 2005 the model changed 70%

of the material cast to more suitable secondary cooling patterns. The results are also

contradictory to the 48% achieved on the validation data set in the previous chapter.

5.4 Summary of plant results

In summary it is noted that the width prediction model was successfully implemented in

the plant to run “live” as a production tool. Only one major change was done to the

model after implementation and that was to change the secondary cooling practice used

on the material with predicted large positive width errors (too wide). The compensation

done with the particular secondary cooling was too much and the effect was also
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compounded by the fact that all the ferritic material had an aim cast width change of 7.5

mm narrower. The secondary cooling practice used on material with predicted large

positive width errors were changed to a less aggressive practice. The results of the

implemented model are detailed in the preceding sections and it can be seen that the

model did in fact improve the width error of 12% Chrome ferritic stainless steel (non –

stabilised) cast at Columbus Stainless. The narrower width error distribution implies that

the width error improved.
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Chapter 6

Conclusions and Recommendations

6.1 Conclusions

1. A previous study[27] indicated that there is a relationship between the heat

composition and cast width change of 12% chrome non-stabilised ferritic

stainless steels. This study used parameters that describe the dual phase

characteristic of the solidified shell to predict the expected width change of a heat

based on the composition before the heat is cast.

2. The relationship of the chemistry and the resulting width error is due to the fact

that during the secondary cooling temperature range (1200C to 800C) the 12%

chrome, non stabilised ferritic stainless steels go through a mixed phase area

between ferrite and austenite. Each heat that has a unique chemistry (still within

internal specifications on the different elements) will result in a different austenite

to ferrite ratio in the secondary cooling region. The hot strength of austenite is

more than the hot strength of ferrite, the resistance to creep of austenite is more

than ferrite and the volume of BCC ferrite is more than FCC austenite. These

differences result in slabs being cast narrow from aim if the phase ratio favours

austenite and vice versa if the ratio favours ferrite.

3. The rule based model that existed in the plant could not be improved by using

more advanced data mining techniques. The project suggests that a good

engineering understanding of the width change governing phenomena coupled

with a simple data mining technique performs better than the more advanced data

mining techniques.
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6.2 Recommendations for future work

1. The model that is currently running “live” in the plant should be checked

regularly and be updated with the latest information. The original idea of the

model was that the rules would be updated regularly to enable the

“intelligence” of the model to improve as a function of time.

2. From the results (table 17) it is clear that the model changes the secondary

cooling on more than 60 % of the material that is cast. A vast majority of the

changes made are the change to a more aggressive secondary cooling. It

should be considered to make the more aggressive secondary cooling pattern

the standard cooling pattern and only selectively use the current standard

secondary cooling pattern. This will reduce the amount of secondary cooling

changes through casts that should also promote more stable casting

conditions.

3. The implemented model was derived from historical data including heat

composition and width error. Should a change to the aim composition be

made to material where the width model is active, then the model results

should be very closely monitored to ensure the rules are still valid.

4. Recent developments at the continuous caster, include the continuous

monitoring of the width error by production personnel. Should certain

deviations be detected, the mould will be adjusted during the cast to correct

the width error. The production personnel should receive training on the width

model to understand what decision the width model had made and what effect

it had on the width error. If the production personnel are not aware of the

model, the situation can quickly arise where both the width model and
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production personnel are changing the cast width. The results can be

disastrous.
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Appendix A

Schematic overview of the mould set-up relationship to aim cast width on 12%
Chrome non stabilised ferritic stainless steel.

Figure A1: Schematic overview of the mould set-up relationship to aim cast width on
12% Chrome non stabilised ferritic stainless steel.
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Appendix B

The relationship between the ferrite factor and the measured austenite start
temperature Ar5 for 3CR12.

Figure B1: The relationship between the ferrite factor and the measured austenite start
temperature Ar5 for 3CR12.

Source: Siyasiya[26]
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Appendix C

Equations used for metallurgical parameters

(All equations adopted from Columbus internal documentation MET-PRO-001 rev 1 and
are the equations used to calculate the parameters on the Columbus systems)

Note that due to confidentiality of the equations a parameter is introduced that will be
termed CLS. Certain coefficients in the equations will be substituted by this variable.

Ferrite factor:

This is the Kaltenhauser ferrite factor (1971). The equation used to calculate the
ferrite factor is the following:

FF = (Cr + 6*Si + 8*Ti + 4*Mo + 4*Nb + 2*Al) - (4*Ni + 2*Mn + 40*(C+N))…………...( C1)

Gamma max:

Gamma max =
(420*C + 470*N + 23*Ni + 9*Cu + 10*Mn + 180) - (11.5*Cr + 11.5*Si + 12*Mo +
22*Al)…………………………………………………………………………………………...(C2)

Amax: Also termed the austenite potential

Fe = 100 – (C + S + P + Mn + Si + Cu + Co + Ti + Mo + Cr + Ni + Al + Nb + V + N + B)

Amax = 1305.28
+64.2529*Mn +41.7255*Co CLS*Ti +70.3538*Ni
-300.12*V +1678.48*B -14.924*Mn2 -33.3896*Si2

+137.56*Ti2 -27098*B2 -0.678753*Fe2 +6.67283*Si3

+5.16581*Cu3 -17.4990*Ni3 +0.005882*Fe3 -26314.2*C*S
+174.992*C*Si -1003*C*Cu +2234.78*C*Ti -192.079*C*Ni
+1008.9*S*Si CLS*S*Ti -29554.6*S*Al +14098.5*S*N
-122679*S*B +18.8491*Mn*Si +15.2653*Mn*Cu CLS*Mn*Ti
-1.72602*Mn*Cr -30.0842*Mn*Ni -56.1561*Mn*Nb +71.2464*Mn*V….(C3)
CLS*Si*Ti -90.088*Si*Nb +229.274*Si*N -2183.42*Si*B
-5.2287*Cu*Co +124.587*Cu*Ti +83.949*Cu*Mo +4923.64*Cu*B
-197.289*Co*Mo +51.6542*Co*Ni -1167.69*Co*N -29.5763*Ti*Mo
+180.861*Ti*Ni CLS*Ti*Nb CLS*Ti*V CLS*Mo*V
+3729.98*Mo*B +13.5881*Cr*V +190.519*Ni*Al +1264.86*Al*Nb
CLS*Nb*V +1013.35*Nb*N -0.207238*C/Ti +11146.7*C/Cr
-0.065936*C/Nb -0.585814*Nb/C -6.46356*C/V CLS*V/C
+6.94717*N/V

Ac1 TEMPERATURE

Fe = 100 – (C + S + P + Mn + Si + Cu + Co + Ti + Mo + Cr + Ni + Al + Nb + V + N + B)
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Ac1 = 1692.52
-60.3563*Mn +320.661*Cu CLS*Ti -174.916*Cr
CLS*Ni +942.384*Ti2 +10.3839*Cr2 -301.065*C3

+2.68843*Si3 CLS*Ti3 -0.163722*Cr3 -7338.67*C*Ti
+2430.18*C*Nb +2559.53*S*Mn -11400*S*Cu CLS*S*Ni
+30125*S*Al +6367.23*S*V -371.607*Mn*Ti -602.906*Mn*Al
-161.987*Mn*V +750.507*Mn*N CLS*Mn*B +94.695*Si*Mo
+2.20712*Si*Cr -12.6116*Cu*Co -17.8166*Cu*Cr -136.644*Cu*Ni
+296.83*Cu*Nb CLS*Ti*Cr -366.401*Ti*Ni +2018.97*Ti*Al……(C4)
CLS*Ti*Nb -1149.71*Ti*V CLS*Ti*N CLS*Ti*B
+47.9937*Mo*Ni -14.7511*Cr*Ni +110.993*Cr*Al +10.3851*Cr*V
-67.7747*Cr*N -277.44*Cr*B -1341.11*Ni*Al +475.895*Ni*N
+8327.59*Ni*B CLS*Al*Nb -1.83959*Ti/C CLS*Cr/C
-1.36387*Ti/N -8.67322*Al/N +2.65377*V/N

TRANSFORMATION RESPONSE (CR95)

Fe = 100 – (C + S + P + Mn + Si + Cu + Co + Ti + Mo + Cr + Ni + Al + Nb + V + N + B)

N = -6.69988
+53.8905*C +4.26774*Si +5.48015*Ti -4.12103*Ni
CLS*N -1.22102*Si2 -14.0669*Ti2 -0.849752*Ni2

-449.443*N2 +22.8353*Ti3 CLS*N3 CLS*B3

+0.00000843852*Fe3 CLS*C*S -20.2257*C*Ni +87.9968*C*Nb
-2678.61*C*B +446.323*S*Al -708.703*S*Nb +1033.32*S*N
+1.03954*Mn*Cu +1.25468*Mn*Mo -6.07283*Si*Ti -2.93412*Si*Mo
-0.273412*Si*Cr +2.37037*Si*Ni CLS*Si*N -0.685823*Cu*Co
-9.79902*Cu*Ti +6.26836*Cu*Mo -21.3804*Cu*Nb CLS*Cu*N
CLS*Co*Mo CLS*Co*Al +1.51008*Ti*Mo +2.20947*Ti*Ni
-35.3195*Ti*Al -35.7064*Ti*Nb +84.9319*Ti*N -12.0076*Mo*V
+0.297646*Cr*Ni +0.322343*Cr*V +9.06333*Ni*Nb -11.37*Ni*N
+190.226*Ni*B +34.9798*Nb*N CLS*V*N -0.005526*C/Ti
-508.07*C/Cr +0.000557*Cr/C -0.006649*C/Nb CLS*Nb/C
-0.090395*V/C CLS*S/Mn -570.968*N/Cr

LNK = -34.3412
-1.20867*Mn +19.2604*Ti +0.164882*Cr -6.5598*Ni
-597.722*N +0.407547*Fe +60.0472*C2 -3.70847*Si2

-15.1266*Ti2 +17.4978*V2 +735.331*N2 -107.111*C3

CLS*Mn3 +1.00523*Si3 CLS*N3 -42.3335*C*Si
-77.5978*C*Ti +59.9413*C*Mo +24.548*C*Ni -141.505*S*Mo
+17.7342*Mn*Al -8.85472*Si*Ti +0.470194*Si*Cr +2.27374*Si*Ni
+5.55689*Si*Nb CLS*Cu*Ti -21.2405*Cu*Mo CLS*Co*Al
-202.522*Ti*N +0.195079*Mo*Cr CLS*Cr*N -8.34154*Ni*Nb
+127.008*Al*V +0.009702*C/Ti +12.3751*S/Mn +3310.95*N/Cr
-0.467526*Al/N +0.009897*N/Nb

CR95 = exp((ln(-ln(1-0.95))-LNK)/N)…………………………………………………………………(C5)
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Appendix D

Example of ASPEN graph representing laser measurements

Cold lazer (including
shrinkage factor)

Hot lazer
measurement

Heat numbers
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Appendix E

Response surface equations

Definitions:

A = AC1
B = Gamma max
C = CR95
D = Amax
E = Ferrite factor
F = Carbon + Nitrogen

Linear and interaction terms combined

Width error =

1388.7-0.66297*A+8.0113*B+58.783*C+40.334*D-502.73*E2-24053*F-
0.015812*A*B-0.047074*A*C-0.057829*A*D+0.5316*A*E+32.114*A*F-
0.067733*B*C-0.011128*B*D+0.51737*B*E+1.6934*B*F-0.015042*C*D-
1.0978*C*E-8.0292*C*F+0.52708*D*E+30.635*D*F-438.26*E*F…………(E1)

Linear and Quadratic terms combined

Width error =

12553 +0.018996*(A^2)+0.0027562*(B^2)-0.07477*(C^2)+0.02058*(D^2)-
1.4754*(E^2)+15450*(F^2)-30.797*A-0.6422*B+1.6815*C-4.0243*D+32.207*E-
1323.2*F………………………………………………………………………..(E2)

Full Quadratic response surface

Width error =

-44.93A - 43.15B + 9.1744 C + 188.22D + 444.27E - 75797F +0.050142AB +
0.011877*A*C-0.11559*A*D-0.19633*A*E+77.154*A*F-0.22263*B*C-
0.082837*B*D+0.3561*B*E+5.7516*B*F+0.31193*C*D-1.7269*C*E-84.5*C*F-
3.3303*D*E+244.49*D*F-333.05*E*F+0.030135*(A^2)+0.028397*(B^2)-
0.06548*(C^2)-0.40724*(D^2)-2.2585*(E^2)-29994*(F^2)+11876…………….(E3)
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Appendix F

Polynomials for fuzzy logic model

for n=1:6

p = polyfit(x,y,5);
Y = polyval(p,x);
R = corrcoef(Y,y);
Correlation = (R(1,2));
Corre(n) = Correlation;

end

WE = Width Error

WE = -4.724*(AC1)3 + 8.012*(AC1)2 - 2.9784*AC1 + 0.5078 ...............................(F1)
WE = 2.9147*(Amax)3 - 5.5702*(Amax)2 + 2.4045*Amax + 0.4055 .....................(F2)
WE = 1.3266*(CR95)3 - 2.7794*(CR95)2 + 2.0942*CR95 + 0.1805 .......................(F3)
WE = 4.2285*(Gmax)3 - 6.1782*(Gmax)2 + 1.4921*Gmax + 0.6988 ......................(F4)
WE = 0.6271*(FF)2 + 0.2055*FF + 0.0753...............................................................(F5)
WE = 34.3452*(C+N)5 - 94.048*(C+N)4 + 92.8363*(C+N)3 - 39.1632*(C+N)2 +
5.8697*(C+N) + 0.4508 ............................................................................................(F6)
.
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Appendix G: Raw laser data gathering and representation

Steps for storing laser width per slab:

1. Strand is cast continuously.
2. Strand width is measured continuously with lasers
3. Strand is cut into sections (slabs) as it exits the casting machine
4. The continuous width measurement taken on each slab is averaged and stored on

a database. This average value is the value used for the width of a slab.

Figure G1: Schematic overview of lazer measurement at CCM

Figure G2 indicates the actual hot laser measurements and the converted laser
measurements (shrinkage factor) representing the cold width of a specific slab. The laser
measurements are stored every second and for this specific slab there were 275
measurements. The value that is used as representative of the width of the slab is the
average of the 275 logged measurements.

Slab 3 Slab 2 Slab 3

Lazers measure
continuously

Average and standard
deviation stored per
slab

Strand continuously
cast typically 1m/min

Strand cut into
individual slabs
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Figure G2: Comparison of Hot and Cold (including shrinkage factor) raw lazer data for
MPO 3585752.

Comparison of Hot and cold (including shrinkage
factor) raw lazer data for MPO 3585752
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Table G1: Average and standard deviation of actual lazer measurements for MPO
3585752

Stdev Average
1.31 1288.82
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Appendix H: Raw data for the Training and Validation set

Training set
Record

# AC1 Amax CR95 Gmax FF C+N
Width
Error

1 805 93.5 0.1 83.7 9.43 0.0345 -18.60
2 820 82.9 2.6 76.4 11.28 0.0405 -18.38
3 802 91.4 0.2 80.9 9.67 0.037 -17.15
4 806 98.6 0.4 79.1 8.91 0.0365 -14.93
5 815 87.5 1.4 77.2 10.86 0.0378 -13.15
6 804 98.9 0.4 79.3 8.69 0.0412 -12.98
7 812 96.3 0.4 79 8.88 0.035 -12.73
8 820 80.7 2.3 75.7 11.31 0.035 -12.56
9 824 78.7 4.3 73.6 11.33 0.0309 -11.56

10 799 89 1.1 75.7 10.52 0.035 -11.56
11 814 92 1.3 77.9 10.49 0.0375 -11.42
12 822 85.7 3.4 75.9 11.15 0.0362 -11.14
13 820 85.6 2.1 78.3 11.17 0.0461 -10.25
14 806 97.7 0.1 88.3 9.26 0.0453 -10.17
15 815 87.1 1.3 75.3 10.66 0.0335 -9.97
16 820 83.9 1.9 76.1 10.85 0.0335 -9.79
17 822 82.3 4.1 73.6 11.35 0.0333 -9.73
18 821 83 2.2 71.9 11.06 0.0295 -9.60
19 814 89.1 2.9 73.4 10.97 0.0314 -9.58
20 815 90 2 77.9 10.53 0.0405 -9.52
21 812 88.4 1.8 77.9 10.85 0.0504 -9.47
22 823 85.5 4 72.2 11.18 0.0295 -9.34
23 807 91.7 0.4 81.9 10.11 0.0385 -9.15
24 813 93.8 2.3 73.8 10.34 0.0369 -9.12
25 816 87.3 2.6 75.2 10.93 0.033 -9.07
26 818 83.5 2.6 74.1 11.13 0.0375 -8.90
27 816 84.2 2.5 73 11.32 0.037 -8.50
28 819 89 2.2 73.3 10.82 0.031 -8.39
29 821 81.9 2.6 75.4 11.16 0.0362 -7.93
30 811 90.9 1.4 76.5 10.76 0.0376 -7.84
31 819 84.7 4.7 72.8 11.22 0.0327 -7.75
32 827 78 4.5 72.4 11.76 0.0399 -7.60
33 825 75.3 4.2 69.1 11.8 0.03 -7.42
34 816 84.5 3.4 71.6 11.19 0.0336 -7.39
35 828 78.7 3.5 72.3 11.29 0.0297 -6.19
36 819 79.4 4.4 72.2 11.48 0.0355 -6.05
37 823 81.7 3.9 73.6 11.41 0.032 -5.92
38 823 81.8 1.7 77.2 11.39 0.0464 -5.67
39 822 81.2 5.1 71.2 11.21 0.028 -5.19
40 823 85.5 3.3 76.4 11.34 0.0428 -5.00
41 822 85.6 1.7 75 10.93 0.0305 -4.78
42 811 91.5 1.7 76.3 10.74 0.035 -4.57
43 823 84.5 2.1 73.9 11.21 0.029 -4.54
44 820 80.4 3.4 72.6 11.54 0.034 -4.40
45 822 79.7 4.4 73.7 11.48 0.0325 -4.29
46 818 83.3 1.4 74 11.16 0.033 -4.28
47 818 84 2.7 75.9 11.14 0.0385 -4.14
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48 789 93.2 0.2 87.3 9.58 0.0485 -4.07
49 817 85 2.2 75.5 11.09 0.0349 -4.07
50 824 74 4 69.3 11.76 0.0305 -4.05
51 822 85.1 2.9 74.1 11.25 0.035 -4.02
52 818 88.2 2.1 74.3 11.09 0.0335 -3.96
53 819 82.9 3.5 72.5 11.37 0.039 -3.93
54 817 88.1 2.2 74.2 11 0.0338 -3.92
55 825 82 2.7 73.9 11.36 0.0317 -3.89
56 817 95 0.4 78 9.5 0.033 -3.89
57 816 91.6 1.2 76.9 10.59 0.0367 -3.88
58 820 81.3 2.3 73.9 11.3 0.0345 -3.87
59 800 97.1 0.8 80 10.31 0.0444 -3.80
60 826 80.4 3.6 77.3 11.45 0.045 -3.80
61 812 91.5 1.1 77.9 10.67 0.0375 -3.79
62 823 77.2 8.6 70.7 11.77 0.0278 -3.71
63 821 83.3 4.6 74.3 11.18 0.0332 -3.31
64 822 80.8 2.8 72.2 11.47 0.027 -3.17
65 808 93.5 0.9 76.2 9.9 0.0374 -3.17
66 820 83.6 3.6 74.2 11.14 0.0328 -2.89
67 828 82 4.1 75.1 11.64 0.0417 -2.80
68 816 86.5 4.4 75.5 11.08 0.0368 -2.80
69 831 82 2.8 70.7 11.19 0.023 -2.74
70 821 83.3 2.9 73 11.29 0.031 -2.63
71 816 94.9 0.4 76.7 9.38 0.0308 -2.27
72 824 82.1 3.2 71.1 11.23 0.0275 -2.01
73 820 82.9 2.2 77.8 11.38 0.048 -2.00
74 826 82.9 5.8 72.2 11.29 0.0279 -1.40
75 815 87.2 3.6 75.4 11.17 0.0388 -0.71
76 822 82 3.1 75.4 11 0.0372 -0.67
77 824 81.6 3.5 74.2 11.22 0.0325 -0.50
78 811 61.1 0.9 81.9 10.18 0.0244 -0.25
79 823 79.8 5.1 73.6 11.43 0.0328 -0.25
80 822 87.6 2.2 75.7 10.65 0.0323 0.20
81 816 90 1.2 76.1 10.83 0.0387 0.50
82 818 88.6 1.5 76.2 10.78 0.0357 0.50
83 832 80.3 5.4 77 11.53 0.0421 0.67
84 808 93 1.1 78.9 10.32 0.0434 1.00
85 826 83.7 3.9 75.2 11.59 0.0419 1.20
86 820 86.7 2.7 75.4 10.92 0.034 1.50
87 820 83.6 2.6 74.3 11.16 0.0351 2.20
88 828 78.1 6.6 70.4 11.67 0.0268 3.25
89 827 80.8 4.1 72.9 11.18 0.0303 3.80
90 829 81.7 4.5 75.2 11.75 0.0388 4.00
91 821 85.1 2 72.7 11.12 0.0353 4.14
92 818 92.6 1.1 77.4 10.39 0.035 4.17
93 816 84.3 3.3 72.9 11.16 0.03 4.40
94 819 87.8 1.9 73.8 11.13 0.0335 4.43
95 819 79.9 2.4 69.6 11.36 0.0343 4.67
96 820 88.2 2.3 78.2 11.2 0.0474 4.83
97 814 89.1 1.6 79 10.54 0.0435 5.50
98 825 73.2 8.8 66.5 12.41 0.0302 5.75
99 819 81.5 2.5 79.1 11.18 0.0498 5.80
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100 824 84.2 2.6 75.2 10.93 0.0335 6.00
101 821 84.3 2.6 73.7 10.96 0.0327 6.00
102 823 79.6 4.7 72.1 11.43 0.0312 6.00
103 823 85.5 3.1 75 11.42 0.041 6.25
104 810 90.7 1.6 76.7 10.68 0.0375 6.75
105 821 83.6 3.6 73.6 11.39 0.0323 6.83
106 829 84.7 4.5 75.6 10.98 0.0292 7.00
107 824 85.5 4.8 73.4 11.11 0.0294 7.00
108 820 84.5 3 73.8 11.24 0.0344 7.20
109 823 84.5 3.3 75.1 11.34 0.0422 7.33
110 828 74.9 5.6 72.7 11.89 0.0416 8.00
111 832 76.6 7.8 72.5 11.8 0.0394 8.00
112 833 78.5 8.5 71.2 11.68 0.0271 8.00
113 826 79.9 2.2 73.2 11.19 0.0317 8.17
114 819 84.7 2.3 73.7 11.17 0.0327 8.67
115 825 83.3 4 72.9 11.36 0.0295 8.80
116 827 84 4.1 73 11.15 0.0277 8.81
117 811 60.8 0.7 77.4 10.4 0.0231 8.86
118 819 79.4 3.5 71.9 11.32 0.0305 9.00
119 799 91.5 3.5 71.8 10.88 0.0227 9.25
120 819 85.8 2.8 73.6 11.03 0.0326 9.63
121 819 73.6 3.2 70.7 11.65 0.0382 9.67
122 826 81.5 6.3 73.2 11.22 0.0292 10.00
123 827 80.4 4.4 74.1 11.7 0.0431 10.11
124 823 78.6 3.2 72.1 11.62 0.037 10.20
125 831 77.8 10 71 11.79 0.0282 10.50
126 817 86.5 1.4 74 10.93 0.0341 10.80
127 825 80.8 5.3 72.7 11.46 0.0306 11.20
128 824 80.4 5.3 73.3 11.58 0.0337 11.33
129 827 81.1 3.1 71.1 11.32 0.0286 11.40
130 824 80.3 6.4 72.6 11.46 0.0318 11.50
131 825 81.7 4.1 73 11.16 0.0297 11.60
132 816 87.2 2.5 73.4 10.98 0.0329 11.63
133 833 78.9 10.5 72.4 11.89 0.0377 12.00
134 829 78 4.9 71.8 11.9 0.0363 12.20
135 830 78.1 6.1 71.6 11.83 0.0385 12.40
136 829 77.8 6.2 72 11.47 0.0288 13.20
137 825 78.4 3.7 71.1 11.44 0.0295 13.40
138 822 78.6 3.3 73 11.44 0.035 13.50
139 827 78.6 3.5 71.8 11.97 0.0423 13.50
140 823 80.9 3.5 72.1 11.19 0.0309 13.60
141 819 85.9 2.1 75.3 11.24 0.0428 13.80
142 832 79.3 8.5 70.4 11.68 0.0251 14.33
143 829 81.6 5.2 71 11.48 0.027 14.50
144 810 89.8 1.8 73.5 10.59 0.0344 14.91
145 819 81.9 3.3 74 11.22 0.0344 15.25
146 826 83.3 4.2 74 11.5 0.0363 15.40
147 825 80.3 5.4 72.7 11.64 0.0386 15.60
148 830 79.1 8.1 72.3 11.83 0.0372 15.63
149 830 77.9 9.6 71.9 11.89 0.0278 15.80
150 829 79.4 6.1 73.6 11.99 0.04 16.00
151 819 87.5 2.5 75.5 11.18 0.0435 16.25
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152 833 78.2 5.3 69.6 11.56 0.0262 16.60
153 827 73.3 8.5 67 12.04 0.0273 16.60
154 821 84.1 2.6 72.5 11.24 0.0302 16.67
155 837 73.7 9 72.5 12.57 0.0371 17.50
156 828 77.6 9.4 71.5 11.79 0.0373 17.75
157 831 77.2 7.3 70.6 11.99 0.0345 17.80
158 833 76.6 6.7 71.8 12.07 0.0378 18.00
159 835 77.2 8.8 71.3 12.06 0.0354 18.00
160 822 84.2 2.6 75.1 11.36 0.0336 18.33
161 827 81.9 4.1 74.7 11.46 0.0388 18.33
162 826 81.6 3.7 74.4 11.52 0.0415 18.40
163 821 74.9 3.2 65 11.78 0.0283 18.60
164 825 81.3 4.1 70.9 11.36 0.0295 20.03
165 825 76.7 6.5 74.2 11.26 0.0333 20.17
166 818 86.3 7.3 70 11.59 0.0254 20.31
167 828 80.3 8.1 73.6 11.71 0.0368 20.50
168 827 76.3 7.5 73.4 11.49 0.0317 20.51
169 831 76.9 8 71.1 11.6 0.0268 20.54
170 831 80.5 7 69.7 11.63 0.0248 20.57
171 825 84.5 3.9 69.6 11.45 0.0261 20.80
172 833 72.2 14.8 69 12.05 0.0286 20.83
173 824 77.3 5.7 71.8 11.56 0.0323 20.84
174 827 73.9 6.1 72.5 11.64 0.037 20.89
175 822 84.9 2.2 74 11.34 0.037 20.90
176 823 74.8 4 72.6 11.51 0.037 21.04
177 825 75.5 6.1 72.8 11.59 0.033 21.06
178 836 83.5 4.4 72.9 11.53 0.0275 21.16
179 823 77.7 4.7 71.4 11.57 0.033 21.26
180 828 80.5 4.1 71.3 11.51 0.0294 21.33
181 829 80.5 5.3 69.8 11.67 0.0264 21.33
182 819 84 2.1 75.6 11.06 0.0345 21.35
183 825 85.1 3.5 70.8 10.94 0.0242 21.43
184 831 81.5 3.8 68.9 11.48 0.0249 21.50
185 815 87.3 2.4 76.3 10.95 0.039 21.57
186 830 77.9 9.6 71.9 11.89 0.0278 21.59
187 792 86.7 0.4 75.9 10.4 0.03 21.60
188 826 81 7.1 69.8 11.45 0.025 21.60
189 828 80 5 71.4 11.49 0.0284 21.75
190 837 72.4 8.8 67.5 12.01 0.0245 21.85
191 828 79.6 4.6 69.7 11.65 0.026 21.99
192 822 81.7 3.2 73.1 11.37 0.0294 22.00
193 820 84.9 4.5 70.8 11.29 0.0281 22.10
194 821 80.7 4.2 73.7 11.29 0.0335 22.38
195 826 82.6 4.7 71.4 11.38 0.0293 22.40
196 822 84.3 4.9 71.1 11.42 0.0292 23.01
197 829 70.4 11.4 68.9 11.93 0.0285 23.05
198 821 82.6 3.1 76 11.29 0.0391 23.20
199 823 83.7 3.2 76 11.32 0.0386 23.25
200 832 76 6.2 68.9 11.76 0.0245 23.52
201 826 76.6 6.2 70.9 11.55 0.0294 23.67
202 827 75.1 2.2 61 11.99 0.0223 23.82
203 829 80.5 5.3 69.8 11.67 0.0264 23.84
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204 822 81.7 3.2 73.1 11.37 0.0294 23.95
205 822 76.8 6.4 70 11.82 0.0304 24.27
206 829 80 4.8 70.4 11.4 0.0254 24.29
207 840 79.1 12.4 71.4 11.9 0.0324 24.40
208 832 79.3 8.5 70.4 11.68 0.0251 24.50
209 821 81.5 3.4 74.6 11.12 0.0339 24.63
210 824 79.2 4.2 74.1 11.34 0.0324 24.80
211 818 84 2.1 74 11.03 0.0351 24.98
212 829 75.4 5 67.9 11.87 0.028 25.00
213 833 83.7 12.2 72 11.28 0.0285 25.05
214 831 74.8 8.8 72.5 11.65 0.0305 25.10
215 823 80.7 5.2 72 11.43 0.0295 25.13
216 827 73.7 6.6 71.3 11.69 0.0295 25.25
217 825 84.5 3.9 69.6 11.45 0.0261 25.39
218 845 82.6 5.9 72.1 11.31 0.0235 25.44
219 837 71.5 9.7 70.1 11.95 0.0275 25.44
220 832 80.9 3.3 70.8 11.46 0.0286 25.54
221 828 79.2 5.5 71.3 11.59 0.029 25.62
222 821 84.5 4.2 72.3 11.29 0.0308 25.91
223 828 82.4 4 70.4 11.49 0.027 26.06
224 829 78.2 4.8 73 11.49 0.031 26.07
225 831 80.5 7 69.7 11.63 0.0248 26.40
226 825 80.8 6 72.7 11.39 0.0293 26.49
227 831 73.1 8.9 70.5 11.89 0.0305 26.79
228 824 82.9 1.9 75.7 10.97 0.0314 27.18
229 825 79.2 4.1 72.7 11.54 0.0301 27.80
230 830 78.3 7.6 73 11.85 0.0381 27.80
231 834 76.9 7.1 71.1 11.53 0.0275 28.20
232 829 79.5 5.9 72.5 11.41 0.0274 28.26
233 835 83.6 3.9 70.8 11.25 0.0255 28.66
234 828 78 4.9 69.7 11.66 0.0285 28.71
235 822 81.8 2.3 73.1 11.26 0.0305 28.77
236 831 76.5 6.2 69.4 11.8 0.026 29.04
237 831 72.8 13.6 72 11.79 0.0299 29.08
238 830 81.4 5.1 71.4 11.47 0.0264 29.17
239 830 80.5 4.5 70.3 11.53 0.026 29.91
240 827 79.2 8.7 70.3 11.64 0.0259 29.93
241 831 76.9 4.8 69.9 11.79 0.0285 30.18
242 834 74.1 17.5 68.6 11.9 0.024 30.72
243 830 81.4 5.1 71.4 11.47 0.0264 31.00
244 827 78.8 4.5 70 11.72 0.028 33.05
245 822 78.6 4.8 70.2 11.56 0.0293 33.48
246 852 78.9 0.2 73.6 11.15 0.0302 34.60
247 830 74.1 6.4 68.4 11.7 0.0283 35.03
248 826 79.1 4 69.8 11.69 0.028 36.43
249 830 75 9.9 67.7 11.98 0.0275 38.00

 
 
 



O

Validation Set
Record

# AC1 Amax CR95 Gmax FF C+N
Width
Error

1 825 82.2 2.12 74.6 11.34 0.0295 -18.97
2 825 80.5 2.7 74.6 11.31 0.0365 -16.58
3 833 74.2 6.52 72.7 11.61 0.0305 -13.30
4 821 78.9 2.37 77 11.28 0.0405 -10.33
5 826 80 5.1 73 11.36 0.0285 -8.18
6 828 80.4 4.4 73.5 11.44 0.03 -6.84
7 825 82 3.2 75.6 11.21 0.036 -6.75
8 823 79.4 3.6 73.3 11.38 0.034 -6.23
9 822 84.2 3.11 74.3 11.28 0.0345 -6.03

10 829 76.6 6.6 73.1 11.61 0.032 -5.94
11 819 85.4 2.5 75.2 11.07 0.0355 -5.66
12 832 76.5 7.72 71.9 11.57 0.027 -5.38
13 831 78.2 4.2 74.1 11.36 0.0325 -5.30
14 819 84.5 2.7 75.4 11.02 0.037 -5.08
15 822 82.7 2.5 75.3 10.9 0.037 -5.07
16 819 85.9 2.2 75.2 11.06 0.037 -5.07
17 823 77.4 3.6 71.5 11.54 0.0315 -4.86
18 817 86 2.19 77.4 10.96 0.041 -4.66
19 813 83.4 1.8 73.1 11.29 0.031 -4.65
20 822 79.1 2.87 73 11.43 0.0325 -4.26
21 814 86.3 2 74 11.28 0.04 -4.14
22 819 83.3 2.6 74.6 11.31 0.0385 -3.88
23 819 86.2 1.6 76.2 10.48 0.033 -3.86
24 831 76.7 4.79 71.8 11.5 0.0255 -3.00
25 822 81.3 3.7 74.8 11.3 0.0345 -2.98
26 820 83.2 2.3 76.6 11.12 0.04 -2.59
27 822 84.4 3.4 73.6 11.15 0.031 -2.42
28 821 82.4 3.6 74.6 11.4 0.035 -1.82
29 821 78.7 2.3 75.2 11.17 0.0325 -1.30
30 819 87.9 1.43 72 10.55 0.0275 -1.12
31 822 82.5 4.2 74.1 11.44 0.038 -1.00
32 831 75.9 4.53 73.8 11.51 0.032 -0.84
33 818 87.7 2.1 75.6 10.87 0.036 -0.68
34 824 81 3.4 73.5 11.41 0.033 -0.68
35 819 85 2.9 73.5 11.18 0.036 -0.52
36 823 74.4 4.24 73.2 11.78 0.0375 -0.19
37 821 81.1 3.1 76.3 11.3 0.0385 -0.04
38 824 81.2 3.5 73.5 11.32 0.031 -0.03
39 816 85.2 2.4 73.9 11.01 0.035 0.09
40 822 83.1 2.5 75.3 11.32 0.0345 0.22
41 823 79.9 3.3 73.6 11.43 0.0365 0.24
42 819 81.4 3 75.4 11.31 0.0385 0.30
43 820 77.7 2.6 70.2 11.59 0.033 0.40
44 828 76.2 6.6 70.8 11.76 0.0275 0.48
45 822 78.7 3.8 74.5 11.36 0.0355 0.57
46 820 78.1 3.72 74.3 11.45 0.039 1.11
47 822 83.5 3.5 75.6 11.31 0.037 1.25
48 818 76.4 2.4 70.5 11.72 0.038 1.35
49 822 80.4 3.3 73.7 11.46 0.0335 1.55

 
 
 



P

50 823 81.1 2.7 74.4 11.31 0.0365 1.57
51 825 72.1 2.61 71.6 11.7 0.037 1.62
52 834 70.9 6.64 73 11.65 0.032 1.67
53 825 77.7 4.22 73 11.39 0.031 1.78
54 819 82.5 3 74 11.29 0.038 1.81
55 820 83.3 3.1 74.9 11.2 0.035 1.99
56 825 81.4 0.93 76.9 10.85 0.0315 2.00
57 817 78.3 2.5 72.6 11.38 0.0295 2.09
58 826 81.9 2.31 73.2 11.07 0.029 2.40
59 828 78.5 5.1 72.7 11.52 0.031 2.43
60 826 82.1 3.6 72.8 11.17 0.0295 2.57
61 821 82.9 2.5 75.6 11.15 0.033 3.07
62 812 80.9 1.6 73 11.37 0.0265 3.10
63 829 79.5 4.9 73.4 11.57 0.0315 3.14
64 826 75.6 1.9 73.1 11.56 0.0315 3.14
65 825 75 1.26 72.1 11.37 0.031 3.16
66 825 78.4 2.5 72.9 11.38 0.0345 3.22
67 825 80.5 3.8 74 11.29 0.032 3.33
68 828 78 3.78 75.4 11.19 0.035 3.36
69 822 80.1 5.4 73.6 11.48 0.0355 3.61
70 826 78.5 4.1 73.8 11.5 0.0325 3.62
71 827 80.1 2.84 75.8 11.36 0.036 3.68
72 827 71.6 6.9 71.4 12.46 0.031 3.74
73 828 79.3 3.4 72.5 11.47 0.036 3.75
74 822 75 3.4 74.7 12.56 0.0415 3.90
75 825 78.6 2.95 74 11.27 0.033 4.00
76 823 80.7 0.7 74.7 10.86 0.0295 4.08
77 817 83 2.3 74.6 10.96 0.036 4.17
78 824 77.6 3.5 73.7 11.56 0.0345 4.34
79 816 86.4 2.2 74.3 10.83 0.0345 4.47
80 819 82.4 2.31 75.5 11.14 0.0355 4.60
81 816 83 3.15 74.6 11.22 0.0375 4.75
82 823 76.9 2.08 72.3 11.45 0.0325 4.93
83 819 80.6 3.2 73.4 11.45 0.035 4.94
84 827 80.4 5.1 70.7 11.62 0.0285 5.28
85 822 85.5 2.8 75.1 10.96 0.0305 5.71
86 827 79.9 5.41 73.3 11.49 0.0315 5.84
87 827 78.9 3.76 73.1 11.51 0.0335 5.90
88 821 82.9 3.25 71.5 11.41 0.0285 6.13
89 823 81.2 2.4 74.4 11.02 0.031 6.15
90 822 85.6 2.7 75.8 11.05 0.0325 6.21
91 825 83.8 3.1 73.5 11.44 0.0335 6.59
92 825 80.3 3.88 74 11.31 0.032 6.81
93 824 79.9 2.8 74.8 11.33 0.0355 7.44
94 821 81.9 3.5 74.5 11.44 0.0365 7.48
95 833 73 3.11 69.6 11.65 0.0265 7.59
96 822 83.6 3.6 74.8 11.46 0.0375 7.83
97 824 80.3 3.18 75.3 11.24 0.034 7.92
98 824 76.1 4.27 74.1 11.46 0.0345 8.07
99 825 76.9 4.79 74.7 11.47 0.036 8.63
100 824 75 3.5 69.7 11.73 0.0335 9.40
101 822 82.8 3.6 74.3 11.29 0.037 9.41

 
 
 



Q

102 823 84.1 2.87 73.1 11.08 0.03 9.81
103 824 79.3 10.1 70.6 11.74 0.028 10.43
104 819 77.2 3.5 74.2 11.57 0.0405 10.56
105 823 78.4 3.9 73 11.52 0.0355 10.64
106 832 74.6 6.9 71.2 11.63 0.028 10.73
107 824 79.1 4 73 11.49 0.0325 11.10
108 837 75.4 8.4 70.2 11.7 0.026 11.42
109 820 81.8 3.5 72.2 11.31 0.033 11.75
110 816 83.5 2.7 73.7 10.97 0.0335 12.16
111 826 77.3 3.1 68.8 11.74 0.031 12.52
112 831 75.2 10.06 69.5 11.77 0.0275 13.19
113 826 78.5 4.53 73.9 11.24 0.0315 14.13
114 823 84.4 1.78 72.8 11.03 0.03 14.77
115 810 75.7 2.1 73.3 11.51 0.049 15.32
116 830 78.7 6 71.6 11.31 0.028 15.90
117 829 75.1 4.63 70.5 11.73 0.027 16.72
118 810 88.8 0.97 75.9 10.39 0.032 18.15
119 824 78.6 3.1 74.9 11.25 0.034 18.42
120 829 79 6.8 69.3 11.66 0.0225 20.96
121 843 72.8 32.77 68.6 11.76 0.02 21.25
122 837 74.6 10.87 69.4 11.9 0.0251 21.54
123 822 85.2 2.6 75.4 10.81 0.0395 22.22
124 827 77.6 6.2 73.4 11.52 0.0315 26.73
125 824 81.1 3.4 73.8 11.36 0.033 28.28
126 820 81.5 2.56 71.8 11.27 0.028 29.67

 
 
 


