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ABSTRACT

Title: High quality coding and reconstruction for transmission of single video
images.

Candidate: Gerrit Barnard

Promoter: Prof. ]J.J.D. van Schalkwyk

Department: Faculty of Electronical and Computer Engineering

Degree: MEng

High quality coding of images for transmission requires complete exploitation
of all the redundancies present in most images. Redundancy is present in both
the statistical and psychovisual properties of images. A detailed analysis was
made of the origins of perceivable distortion in images. In the section
addressing coefficient quantisation, it has been found that the use of uniform
quantisation followed by source coding gives better results than can be achieved
with the Lloyd-Max type quantisers. An algorithm has been presented that
minimises this distortion for a given coding rate with the introduction of
minimal artifacts. A major contribution towards the reduction of the visible
distortion was achieved by using the lapped orthogonal transform together with
adaptive quantisation. This reduced the visual perception of the so called
"block effect”. Other aspects investigated included the use of the human visual
system to determine the importance of the coefficients during quantisation, and

the effect that channel errors have on some of the algorithms.
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Wanneer beelde gekodeer word om so hoog as moontlike kwaliteit te verkry
moet die statistiese en psigovisuele oortolligheid in so 'n beeld ten volle benut
word. ‘n Detail studie van die oorsake van waarneembare vervorming in ‘n
beeld is gemaak. Uit die studie is die nodige resultate verkry om ’n algoritme
voor te stel wat die waarneembare vervorming minimiseer. Daar is gevind dat
die gebruik van 'n transformasie wat oor die grense van ‘n blokkie strek die
steurende blok-effek drasties verminder het, veral wanneer dit gekombineer is
met aanpasbare kwantiseering. Verder is die oordragsfunksie van die mens se
oog gebruik om tydens kwantisering te bepaal watter koéffisiente die meeste
inligting dra. In die ondersoek na optimale kwantisering is daar gevind dat
uniforme kwantisering gevolg deur bron-kodering beter resultate lewer as die
Lloyd-Max tipe kwantiseerders. Daar is ook gekyk na die invloed wat
kanaalfoute op die verkillende algoritmes het, en daar is vasgestel dat die
gebruik van 'n oorvleuelende transformasie die effek van kanaalfoute

verminder.
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I. Introduction

Image coding has been an active area of research for many years. It is
defined as the process in which the number of bits needed to represent
an image is minimised subject to some quality criterion. Transform
image coding has been found to be an efficient means by which to
achieve this minimisation [1,2,4,7]. Thus, this thesis will not investigate
image coding in general, since it is a very wide field, but a thorough
investigation of all aspects regarding transform image coding will be
given'.

Intraframe or single image coding of video images has several
applications including reconnaissance, remote sensing, and is used in
interframe coding for encoding of difference images. The transmission
of images over a bandwidth limited channel places constraints on the
time in which the images can be transmitted. Lower average bit rates
result in less data to be transmitted and consequently faster
transmission rates.

Image coding techniques can be classified as either noiseless or
minimum distortion. In noiseless image coding, the image is
reconstructed perfectly from the coded information. The compression
ratio that can be achieved, from information theory, is limited to the
entropy of the image and is typically more than two bits per pel (pixel

or picture element). This is not sufficient since the average bit rate

For a more general discussion of image coding the reader is referred to W.K.Pratt "Digital
Image Processing" John Wiley & Sons 1978.

HIGH QUALITY CODING OF IMAGES PAGE:1
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required by most applications is less than one bit/pel. Compression
ratios of this order can only be achieved at some expense in fidelity.
Shannon introduced the concept of the 'rate distortion function"
specifically to give a mathematical framework for this kind of problem.
The rate distortion function determines the minimum channel capacity
required to transmit data with a specified distortion percentage subject
to a suitable distortion measure.

The desired bit rates, that the algorithms will have to achieve,

is between 2.0 and 0.5 bits/pel. This means that in most cases the
algorithms will introduce a certain amount of distortion, and thus can
be categorised under the rate distortion theory. The rate distortion
function is rarely used in image coding since no representative
statistical model exists for images and the definition of a suitable
distortion criteria is troublesome. However, it can be used to find an
absolute upper bound on the achievable performance of any image
coder for a given set of images. Using the rate distortion theory,
images will be generated that should give one a subjective idea of what
the optimum codec will be able to achieve. These images can then be
used to determine the subjective efficiency of a specific codec.

Most applications require that the reconstructed image be as
close as possible to the original with little or no artifacts. This raises the
question of the determination of the quality or fidelity of the image. In
the rate distortion theory, the problem is one of finding a suitable

distortion criteria. In most applications the user of the video

HIGH QUALITY CODING OF IMAGES PAGE:2



information will be a human interpreter.  This places a subjective
image criteria on the evaluation of the quality of a reconstructed image.
In section VI the question of image fidelity is discussed briefly. The
conclusion reached in that section is that a human visual weighted
mean square error gives an acceptable image fidelity measure,
although the mean square error itself will also be used for comparison
purposes.  The use of the human visual system in the image coding
environment has been widely publicised [4,7]. However, it has been
found that care should be taken in the application of these models since
they depend on certain physical parameters, such as the viewing angle,
that the user might want to adapt. The viewing angle might change
considerable if the sections of the image is magnified. In general the
incorporation of the model of the human visual system will increase the
performance of the image coder since it provides additional information
regarding the image coding system [1,2,7]. The model of the human
visual system developed by Mannos and Sakrison [16] were used in the
experiments.

The thesis was started with an investigation into the different
types of distortion that is generated during the coding process. The
origins of the distortions were categorised according to quantisation and
block processing noise. Of the different sources of noise the block
processing noise, generated by the independent processing of blocks,
was found to generate the most subjective objectionable distortion,

namely the block-effect. An efficient solution to this problem, using an

HIGH QUALITY CODING OF IMAGES PAGE:3
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overlapping transform, was given by Cassereau [61]. The specific
transform was called the lapped orthogonal transform (LOT). Another
technique that reduces the block-effect and also improves overall coder
performance is the use of a visual error criterium in the assignment of
bits for quantisation. A feasible method to incorporate the visual system
into transform coding was given by Eggerton [56].

The final goal of the image coding system is the transmission of
the coded image over a transmission channel. Therefore the effect of
channel errors had to be kept in mind in the design of the image
codec’s. Since channel errors are more serious when the data is
represented efficiently, the addition of a controlled form of
redundancy, in the form of error detection and correction schemes, is
necessary [3]. The evaluation of different error coding schemes did not
form part of the thesis but the effect of channel errors on the different
types of data, ie. quantisation information and coded coefficients,

present in the encoded stream were investigated.

A. Thesis Structure

It was decided to divide the thesis into problem statement and
problem solving sections. The thesis starts with a general background
to transform image coding, which include a simplistic but relatively
efficient image codec. The sources of errors in this basic transform
image codec is investigated and presented. The next sections presents
possible solutions to the identified errors. A diagrammatical

representation of the structure of the thesis is shown in figure 1.

HIGH QUALITY CODING OF IMAGES PAGE:4
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Information
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Test Image
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Final
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Figure 1 Diagrammatic representation of the thesis structure.
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1. Transform Image Coding Background

Section II discusses the type of images that the coding algorithm
will be designed to code. The originals of the selected images are also
presented.

Section III of this thesis states the role that information theory
plays in image coding and answers the question: What enables us to
compress images? It answers the question but, as is typical from the
information theory, it does not state how this can be done.

Section IV starts with the statistical analysis of the selected
images in the spatial domain. This is done in order to model images
for mathematical derivations. The reason for the use of the first order
Markov model is given. This model will be needed in the selection,
development and optimisation of transforms in later sections.

Section V gives an evaluation and brief discussion regarding the
use of the human visual system in the image coding environment. A
model of the human visual system will be used in other sections to
optimise the algorithm, and also in the determination of image fidelity.

Section VI discusses the image quality criterion that will be used
in the determination of coded image quality. This section is important
since it will be used in the synthesis of the final algorithm. Factors like
objective measures and subjective evaluation will be discussed. Also
included in this section is the rate distortion simulated images, used for
an absolute upper bound on codec performance.

Section VII gives the basic transform coder structure that will be
used as a starting point. The functions of the basic structures is

investigated and sources of errors is identified and discussed.

HIGH QUALITY CODING OF IMAGES PAGE:6
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2. Codec Optimisation

The following sections are aimed at optimising the image codec,
in order to minimise the observed coding-error.

Section VIII looks at improving quantisation by using statistical

models, making the quantisation adaptive, and using source coding.

Section IX looks at methods for reducing the block effect at low
bit rates. This includes using the human visual system model, spatially
variant filtering and overlapping transforms.

Section X puts the different subsections together and evaluates
the system’s overall performance, including performance in the
presence of channel errors.
| Section XI contains the concluding remarks regarding the results

achieved in all the sections.

HIGH QUALITY CODING OF IMAGES PAGE:7
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II. Test Image Selection

It is important to use a variety of images with different scenarios.
These scenarios should be representative of the types of images that the
codec (coder/decoder) is likely to transmit. Obviously there exists a
large variety of images and one cannot accommodate all the different
classes. For this thesis a subjective choice were made of typical pictures
that the codec will come across, typically natural scenarios.

The United States database contains ten standard images and,
at a recent conference [66], it was suggested that all images can be
coded with four bits since these images were always used for
evaluation purposes. The danger always exists that one can design an
algorithm that is specific for a certain image or class of images. For
practical purposes it was decided to use a selection of two images for
the simulations presented in this thesis. In the experimental evaluation

of algorithms other images were tested randomly to verify the results.

The images were chosen from natural occurring scenarios, the
first image is called GIRL and the second image ROAD (see figures 2 and
3). The image GIRL contains the head and shoulders of a girl with a
part of a room in the background. This image contains a good variety
of textures and is typical of a video conference application. The second
image, ROAD, was taken outdoors and contains a section of a road
with vehicles travelling along the road. Some bushes and trees and
other natural foliage as well as the typical horizon form part of the
scenario. This image is typical of images that occur in remote sensing

applications.

HIGH QUALITY CODING OF IMAGES PAGE:=8
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Figure 2 Original Image: GIRL (256x256x8)

Figure 3  Original Image: ROAD (256x256x8)

HIGH QUALITY CODING OF IMAGES PAGE9



ITIL. Information Theory and Image Coding

Information theory provides us with mathematical tools to determine
the channel capacity required to transmit a certain image or class of
images over the channel. Two results from this theory give us a basis

for image coding, they are [3]

0 < H(U) < log,(A) (1

and

H(U,) < NH(U) @

where H is the entropy function,

H(U) = - p,log,(p,) (3)

i

and U is a scalar source, Uy is an N dimensional source, p; is the
probability of source symbol u;, and A is a source with uniform
distribution. The first equation states that compression of the image
data can be achieved if the statistical distribution of the data is not
uniform, while the second equation states that further compression can
be achieved if the data is dependant or correlated.

The theory behind these two equations together with the rate
distortion theory form the basis of all image coding algorithms.
Basically the above two equations determine that the output of the
coder should consist of an independent uniformly distributed sequence

while the rate distortion function determines the minimum distortion

HIGH QUALITY CODING OF IMAGES PAGE:10



at which this can be achieved for a fixed rate. The grey scale histogram
of an image is normally not uniform, i.e. figures 4 and 5 show the
histograms of the test images. By applying equation (1), the average
bit rate can be computed for this image. Most images also contain a
fair amount of correlation between the image pels. If a method could
be devised to remove this correlation, equation (2) predicts a lowering
in the average bit rate. In transform image coding the correlation is
reduced by using an energy compacting transform. This property of
the transform will be discussed in more detail in Section VIIL.

Information theory also provides the means by which to analyze,
in a mathematical sense, the transmission of sources where some
distortion of the source is acceptable. This is done in the framework of
the rate distortion theory. A brief overview of the origin of the rate
distortion function is given in the rest of this section. Most of the
overview is based on the references [3] and [18].

The problem addressed by the rate-distortion theory is the
minimisation of the channel capacity requirement while holding the
average distortion at or below an acceptable level. More specific, the
rate distortion function R(D) is the minimum value of the mutual
information I(U,V) for a given distortion level D [3]. By keeping the
rate lower than the channel capacity C, i.e R(D)<C, the possibility of

obtaining distortion D is ensured.

HIGH QUALITY CODING OF IMAGES PAGE:11
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The information theoretic measure of information transmitted is
the average mutual information between U and V, and is defined for

a block length N as:

Qv U,
ZP(U,C) Qwv.Iu,)

LV) =2 5 PU)QV, U log @)
B

Each block is described by one of a denumerable set of messages (U, ]
with probability P(U;). Any given system, i.e. channel, is described
mathematically by the conditional probability Q(V; U;) of message v
being output by the decoder for a given source output U,. The mutual

information may also be written as

L,(U,V)=Hy(U) - H/(U|V) (5)

where Hy(U V) is the entropy of the source given the observed decoder
output. In other words the mutual information is equal to the entropy
of the source minus the entropy of the source given the decoder
output V.

If distortion is introduced then the decoder output only contains
statistical information about U and as a result thereof L(U,V) decreases.
In the worst case V contains no information about U, so that

Hy(U V)=Hy(U) and L(X,Y)=0.

HIGH QUALITY CODING OF IMAGES PAGE:13



For the time discrete continuous-amplitude sources, the mutual
information and average distortion functions are defined with integrals
in place of the summations. Given the distortion d(u,v) between u and
v, the rate distortion results can be summarised as follows for block
messages:

R(D*)- lim = inf I(UV) ©6)

N—o q:D(p)<D*

: log 1014) )

I(u,v) fp(u)q(vlu) B dv du
D(q) = [d(u,0) p(u) 4ol u) dodu (8)
H0) = [ p(u) qlolu) du ©)

It is very difficult to solve these equations and it is normally only done
for homogeneous, isotropic, Gaussian sources with a mean square

error criterion. The rate for this particular Gaussian source is given by

(18]

R(D')~—~%10g§: for ¢*>D* (10)

The rate distortion theory is used in a later section to simulate the
optimal encoding of images.
The next section looks at the statistical models used to facilitate

a mathematical treatment of image coding.

HIGH QUALITY CODING OF IMAGES PAGE:14
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IV. Image Statistical Models

Images are sometimes represented by simple stochastic models in order
to develop useful algorithms or to compare the performance of various
processes on an image mathematically. A stochastic process can be
completely described by its joint probability density [1]. In general,
high-order joint probability densities of images are usually not known,
nor are they easily modeled [4]. For practical reasons the images are
characterised by their mean and covariance functions.

A common model used, for natural images, is that of the two
dimensional, stationary, first-order Markov process [1]. If f; represents
the picture brightness at the point (i , j) , then for this process the

autocorrelation function may be written

R(m,n) = ELf; fun jun] = P'"7" (11)
where 0<p<l1
and zero mean is normally assumed E[f;] =0. The assumption of zero
mean is nonessential, since the mean can always be easily computed
and subtracted if necessary to obtain a zero mean image.

To test the validity of the assumption the correlation of the two
test images have been computed, horizontally and vertically, and is
compared with the theoretical Markov model in figures 6 and 7. For
large block sizes the images follow the model for small shifts from the

origin.

HIGH QUALITY CODING OF IMAGES PAGE:15
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V. The Human Visual System

The human visual system (HVS) is a very complex system. At this time
there is no accurate model that can simulate the visual interpretation of
the HVS. However, a few simple models have been presented by
various authors [16,21,22,23,27]. These empirical results were basically
achieved by doing subjective threshold judging tests.

The results of the judging tests by Mannos and Sakrison [16] lead

to a transfer function of approximately the form

A(f) = 26 (0.0192+0.114 f ) exp [-(0.114 f '] (12)

where f, is the radial frequency in cycles/degree. The equation has a
peak value of one at 8 cycles/degree and diminishes at 64
cycles/degree. They also derived a nonlinear transfer function for the

HVS given by

fu) = u®® (13)

Plots of the two equations are given in figure 8.

A. Rate Distortion Simulation

To determine the best picture that any coding scheme may produce,
the same rate distortion simulation procedure was followed that led to
the generation of the empirical equations (12) and (13) [16]. To
calculate the rate distortion function one must specify both the
distortion measure and the probability distribution of the source. At
present we are unable to specify the probability distribution of an
image source. The best we can do is to specify the mean and

correlation function for the image.

HIGH QUALITY CODING OF IMAGES PAGE:17
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Furthermore the only tractable model of a random field for which the
mean and correlation function specify the joint distribution of the
random variables is the Gaussian random field. However, the
Gaussian source is a "worst case" hypothesis because it has the largest
entropy of all sources with the same average power [19,27]. This "worst
case" means that if the simulations are done with a Gaussian model and
the actual model is not Gaussian then the non-Gaussian source will
achieve better results than was estimated. In transform coding the
distribution of the errors in the spatial domain will be nearly Gaussian.
This can be seen from the central limit theorem, i.e. the errors are the
sums of independent errors in the transform coefficient. For a
homogeneous (invariant to a shift in origin) Gaussian field with image
dimension large compared to correlation distance, the rate distortion

function is given in parametrical form by the pair of equations [19]

R = L[] log, [S(F..f,) /nldf.df, (14)
2 sty
a*G = [Jmin(S(f,.f,),n] df, df, (15)

where 5(f,f,) is the power spectral density of the input image V(x,y).

HIGH QUALITY CODING OF IMAGES PAGE:19



If Vk,j is the Fourier coefficients of V(x,y), then those coefficients for

which

E[IV, 1*1=Q, <n (16)

are not transmitted. The remaining coefficients are transmitted in such
a way that the received coefficients B,; have a distribution such that
V; - By; are Gaussian with zero mean, variance i, and is independent

of B, This can be simulated [16,19] by setting

?Lk —11
= Kk
Bk’j = = [de_a— Nk‘}_] (17)

k,f

in which N, ; are zero-mean complex random variables, independent of
Vi» and whose real and imaginary parts are uncorrelated. The

variance of N, is given by

Ay 18
ELVe] - —2 (=) (18)

The simulation then consists of the following steps:
s Apply the nonlinear function (13) to the input image
ulx,yl, ie. wlxyl=f(ulxyl).
2, Compute the power spectral density S [f, f, ] of w[xy] by
using a smoothed periodogram technique, i.e. averaging
the power spectral density computed from small

overlapping sections of w[x,y].

HIGH QUALITY CODING OF IMAGES PAGE:20



3. Weigh the power spectral density with the frequency

sensitivity of the human visual system using (12), i.e.

SIF1 = 1 A(f)I2S,[f]
(19)

where f, = | f2+f}

4. Using (14) iteratively, compute the p corresponding to
the desired rate.

5. Compute WIf, f, ] = FFT { w[x,y] }.

6. Weigh W with the HVS (12), ie. VIf, f, 1= A(f,)W(f, f,).

7 Compute the variance of the coefficients V, ;, i.e. apply
equation (16), setting all coefficients with variance lower
than u equal to zero and adding noise according to (17) &
(18) to the rest.

8. Compute the inverse FFT of B.

8. Apply the inverse of the HVS function (12) to the result of
step eight.

10.  Apply the inverse of the nonlinear function (13) to the
result of step nine, this gives the rate distortion simulated

picture.

HIGH QUALITY CODING OF IMAGES PAGE:21
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It should be noted that no provision has been made to accommodate
overheads in the average bit rate using this simulation, i.e. coding the
position of coded coefficients. To avoid this problem and to keep the
class of images as wide as possible, the simulations were done using
the first order Markov model. The power spectral density for this

model is given by (Appendix D),

Stm) = 262, %

aZ i 0)2
(20)
where o7 is the image variance,

and where the correlation p = e

The simulation results are shown in figures 9 and 10. The results show
that very good quality images are possible for bit rates of 1.0 and 0.5
bits/pel. These pictures can now be compared to those produced by
the actual codec. Based on the comparison one should be able to decide
how much more can be done to improve the codec performance. For
example one would be able to determine if the added complexity is
worth the gain in image quality. The next paragraph looks at the range

of frequencies for which (12) is valid in normal viewing situations.
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Rate Distortion Simulation: GIRL rate=1 bit/pel.

Figure 10
bit/ pel.

Rate Distortion Simulated Image: GIRL rate=0.5
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B. Parameters for the HVS

To apply (12) to the images used in this simulation it is necessary to
compute the frequency range for which it is valid. This can be done by
examining the system in figure 11. From this figure it is easy to

determine that the angle spanned by the viewing device is given by the

0=-2 tan'l[gJ (21)

where d is the distance from the screen, and 2r is the size of the screen.

relationship

For a distance from the viewing device of 50cm and a horizontal screen
size of 7.2" (9" diagonal) the horizontal viewing angle is 20.73 degrees.
For an image resolution of 256 pels horizontally, the maximum number
of cycles would be 128, which gives a frequency of 128/20.73 = 6.18

cycles/degree.

eye

screen

Figure 11 Determination of viewing angle from viewing distance and screen size.
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A few different viewing angles have been computed for changing
viewing distances and screen sizes, and are given in table I. From this
table it is clear that the frequency response of an image, with
resolution of 256x256, displayed on a device with the given physical

parameters is lacking in comparison with the resolution ability of the

human eye (64 cycles/ degree).

Horizontal Screen Size
Viewing - - *
Distance 4" Photo ul 1312 .
(5" diag.) (9" diag.) (14" diag.)

30cm 6.66 3.78 2.52

50cm 11.03 6.18 4.03

Im 22.01 12.25 7.91

2m 43.99 24.45 15.73

Table I Maximum normalised frequency available from different viewing devices for
an image resolution of 256x256

For images with a resolution of 512x512 pels the frequency response
will be exactly double that shown in the table.

The next section introduces the distortion measures that will be
used to determine image quality in a more mathematical sense. It
should be kept in mind that a subjective evaluation of the image coding

results should be used as final evaluation measure.
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VI. Image Quality

A very important part of the design of a high quality image coder is the
evaluation of the performance of different algorithms inside the image
codec itself. To do this it is necessary to specify a fidelity criterion, i.e.
some measure by which we can determine the quality of the
reconstructed image. The mean square error is frequently used in

image processing applications. It is defined as follows for images

1 N-1 N-1
e, = s Dok gro G, ) P (22)
N* x=0 y=0
where the input pels are designated by i , and the output pels are
designated by o . There are two definitions of signal to noise ratios

(SNR) which use the definition of the above error. The first is the

normalised signal to noise ratio

NSNR = 10 Log,, iz (23)
e

ms

where & is the variance of the original image. The second definition

is that of the peak signal to noise ratio (PSNR), defined as

(255 )%

PSNR = 10 Log,, (24)

ms

Although the mse measure does not agree with subjective evaluations
of coded images, the mse gives an indication of the physical accuracy

of reconstruction, and as such it is a useful measure.
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The mse measure indicates the accuracy of both subjectively-
important and subjectively-redundant image reconstruction. It has been
found from experience that the mse only starts to fail as a good
measure when the signal to noise ratio is relatively low, ie. when
coding of subjectively redundant information cannot be tolerated. Since
this is normally the case for bit rates below one bit per pixel, a HVS
frequency response weighted mse measure will also be used. This
measure was also used by Davisson [18], and is defined as follows: If
If is the spectrum of the input image and O; is the spectrum of the

reconstructed image then the weighted mse (wmse) is given by

N-1 N-1
e2 = % > |Af(x,y) |2 [If(x,y)—Of(x,y))2 (25)
x=0 y=0

where A, is the frequency response of the HVS given by (12). The HVS
was implemented for a nine inch diagonal viewing device viewed from
half a metre. From table I the maximum observable frequency would
then be 6.18 cycles/degree. This would mean that the HVS frequency
response would be that of a high pass filter.

The next section examines the basic transform image codec
structure. It gives a description of all the different sections, gives
results of images coded with this codec and then proceeds to an

analysis of the origins of the errors in transform coding.
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VII. Basic Transform Image Coding Structure

For the high quality coding and transmission of still pictures one needs
to exploit all structure or redundancy present within the image.
Transform image coding has been found to be a robust and efficient
way to achieve this [1,4,5,6,7,61,62]. This section starts with a brief
overview of the structure of a typical intraframe codec, which is
followed by a more detailed discussion of the different aspects
involved.

In transform coding the image is first decorrelated by using a
suitable transform. This step is normally reversible and contributes
little to the overall image degradation, except for round-off errors in
integer implementations. With a suitable transform the decorrelation
step can achieve efficient energy compacting, as will be discussed in
more detail in a following section.

The next step involves the quantisation of the coefficients, and
it is in this step that the actual image compression takes place. This
step is irreversible and is responsible for the majority of degradation in
the reconstructed image. The statistics of the coefficients are normally
exploited in the quantisation step to minimize the distortion.

The last step is channel encoding, and involves addiﬁg some
redundancy to minimise the effect of channel errors. This step is
important because of the efficient representation of the image data,

which implies that a small error might have a significant influence on
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the output image. The decoder section at the receiver starts with
channel decoding followed by a reconstruction of the coefficients and
an inverse transform.

The next section will look at the selection and desirable
properties of the transform to make the transform coding as efficient as

possible.

A. Transforms

A truly optimum transform would result in the best picture quality
using the least number of bits. This is a criterion which is difficult to
specify quantitatively. A simpler criterion is to require that the
transform coefficients be statistically independent, but this requires
knowledge of the probability density function of images which we do
not yet have. Using second order statistics we can find a transform that
results in uncorrelated coefficients. From the view of the information
theory (see equation 2), the transform attempts to decrease the entropy

of the image by taking advantage of dependencies in the source.
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A significant unitary transform is the Karhunen-Loeve transform
(KLT) for random fields. It is the complete orthonormal set of basis

images b(.) determined from the eigenvalue equation

S>> rlk,l;m,mbG,j;m,m=% bG,j;k, 0 (26)

where 7(.) is the image covariance function.
The optimality of the KLT for image processing stems from the
following two properties [51]:

1. It completely decorrelates the transform coefficients, i.e.

Cov [v, (T),v, (T)=c; (T)§ 3§ — for T-® (27)

where T denotes an arbitrary N°xN” unitary transform, @ is the
KLT and o*(T) is the variances of the T-transform coefficients
o(T).

2. Compared to all other unitary transforms, the KLT packs the

maximum expected energy in a given number of samples, say

M, ie.

>0, @2 ) > o (T) V 1sM<N? (28)

k,1 e S(@) k,le S(T)

where S(T) is the set containing M index pairs (k) corresponding
to the largest M variances in the T-transform domain. This
property serves as a basis for transform data compression

techniques.

HIGH QUALITY CODING OF IMAGES PAGE:30



P

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Quef® YUNIBESITHI YA PRETORIA

Although the optimal transform is explicitly known, its use in practice
results in problems such as:

* Different basis functions for every class of images as a

result of the non-stationarity of images,

* Singularities may exist in the covariance matrixes which

means that all the basis functions cannot be computed,

* No fast transform exist for the KLT.
For the Markov image model as described in section IV the discrete
cosine transform (DCT) has been found to be very similar to the KLT,
and can be derived as the limiting case of the KLT as the correlation
coefficient approaches one, i.e. p—1. The DCT has also been found to
perform better than other transforms in many image coding
applications [36,40,41,45]. The DCT does not perform well for negative

correlations or for correlations below 0.5.
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The forward DCT is defined by Ahmed, Natrajan and Rao [31]:

=Zc(u) - Q2j+l)umn
F(u N >, f(j)eo [ oIy 1,

j-0
u=0,1,.,N-1
where 55
c(u)=i for u=0
2
cu)=1 foru=12,.,N-1
c(u) =0 elsewhere.
and the inverse transform is
f(Gi)- NZIO c(u) F (u) cos [%] 0]

j=01,.,N-1
Since the DCT is separable, the two dimensional transform can be
computed by transforming the rows of the image followed by
transforming the columns using the one dimensional transform. Many
fast algorithms has been proposed for the DCT [31,32,33,34,35,37].

Normally the whole image is not transformed in a single
transform since the statistics in an image is highly spatially variant,
and from the information theory it would be better to group areas of
similar statistics together. Coding images using a full-image transform
normally results in a loss of detail, it is also time consuming, requires

a large amount of memory, and require higher precision mathematical
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processors. This leads to the spatially adaptive quantisation that will be

discussed in the next section.

1. Transform Block Size

The question that remains is that of block size. In real images
the assumption of a Markov model are not valid especially if the block
size is small [7]. Computer simulations on real pictures show [7] that
the mean square error (mse) produced by transform coding improve
with the size of the sub-picture, but it does not improve meaningfully
beyond 16x16. Natrevali [7] also showed that the subjective image
quality does not appear to improve much with block size beyond 4x4.

To determine the influence of block size on the image quality,
the test images were coded to 1.0 bits/pel for block sizes 4x4, 8x8, and
16x16. The coefficients were coded using a Laplacian pdf optimised
Lloyd-Max quantiser with optimal bit assignment for mean square error
minimisation. A graph of peak signal to noise ratio versus block size
is given on figure 12. Figures 13 to 15 contains the coded image results
for the different block sizes. The signal to noise ratio (S/N) increased
with an increase in block size. The difference in S/N decreases
between successive block sizes as the block size increases. The 4x4
block size showed a noticeable vector quantiser type noise along edges
in the image. There were little difference, in subjective image quality,
between transform block sizes of 8x8 and 16x16. Most of the

simulations done further on in the thesis will use a block size of 8x8.
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The reasons being that it allows for better adaption to local statistics,
and also because DCT-chips exist that can do 8x8 transform in real
time. The existence of the DCT-chips probably means that most of the
current real world systems will use this block size.

Since the quantisation forms such an important section of the
coder structure, it will be discussed in a separate section. The
following section will investigate the different approaches that is used

in the quantisation of the transform coefficients.
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Figure 12 Signal to Noise Ratio versus Block Size for the image
GIRL coded to 1.0 bits/pel.

Figure 13  GIRL coded using a DCT of size 4x4, 1.0 bits/pel.
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Figure 14 GIRL coded using an 8x8 DCT, 1.0 bits/pel.

Figure 15  GIRL coded using a 16x16 DCT, 1.0 bits/pel.
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VIII. Quantisation

Quantisation forms the kernel around which most of the compression
revolves once the transform has been chosen. From the information
theory guidelines this section is equivalent to solving (1), and
sometimes both (1) and (2). The input of the image codec is assumed
to be already digitised with a sufficient number of bits per pixel (6 bits
or more for normal monochrome video systems) to avoid contouring
effects. As a result of the mathematical processing in the transform,
the dynamic range of the transform coefficients is much more than that
of the spatial image. The larger the block size the bigger the dynamic
range of the coefficient since there are more multiply and adds. The
coefficients need to be quantised further in order to achieve the desired
compression ratio. The quantisation of the coefficients will be
investigated in this section. The first part of this section deals with the
actual quantiser design while the second part is concerned with the
optimal allocation of bits to each coefficient.

Since the dynamic range of the coefficients is bounded the
distribution of the coefficients is always bounded between absolute
maximum and minimum values. These values are determined by the
dynamic range of the input signal and the type of transform used. For
an orthonormal real transform the maximum and minimum values are

half (since the input is positive and the basis-function norm is one) that
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of the maximum value of the input signal times a constant that is
proportional to the size of the transform.

Three different types of quantisation will be investigated. The
first is the Lloyd-Max quantiser that has been frequently used and still
is very popular for use in image coding systems. This quantiser makes
use of the probability density function (pdf) of the coefficients to
iteratively minimise the mean square error. The second set of
quantisers are more simple and are classified as companders. As the
name indicates they make use of a nonlinear function derived from the
pdf to transform the coefficient to a uniform distribution where it can
be quantised uniformly. Both of these quantisers operate on a sample
by sample, i.e scalar, basis. The third method of quantisation that will
be looked at is that of source coding. In source coding the coefficients
are quantised uniformly and then coded via an optimal source encoding

scheme like Huffman coding.
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A. Lloyd-Max Quantisers

Quantisation [1,57] is the process of subdividing the range of a signal
into non-overlapping regions. The amplitude of the signal is compared
to a set of decision levels. If the sample amplitude falls between two
decision levels, it is quantised to a fixed reconstruction level lying
between the two decision levels. The quantiser as defined here is a

memoryless non-linearity and is shown graphically in figure 16.

QuUTPUT

Reconstruction

Levels

Yk

By, Bpge INPUT

Decision
Levels

Figure 16  Quantiser input output characteristic.
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Consider an N level quantiser with output levels ,,y,,...,yy. The output
level y, is associated with a decision region specified by its boundaries,

the decision levels,

g <o, <z for k= 12N, (31)

For convenience, the x; are in increasing order and the two extreme
decision levels, x, and x,, are chosen at infinity.

The total mean square error (mse) is

Nit,

=3 [y pw ax 2)

=1
Xt

Differentiating the mse with respect to x, and y, and setting equal to

zero gives the decision levels as

+
X, = % , for k-1,2,.,N-1 (33)

and the reconstruction levels as

%

fx p(x) dx

xk-'l

yk = ————— fﬂr k= 1.2..;N (34)
fp(x) dx

These conditions must be satisfied by a minimum mean square error
quantiser. They can be interpreted to mean that the decision levels
should be midway between the output levels and that the output levels

should be the conditional means of the decision regions.
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Recursive solution of equation (33) and (34) for a given pdf provides

the values for the optimum decision and reconstruction levels. Two

versions of the iteration that can be used is given in [57]:

Method 1
In the first version, often termed Lloyd’s method I, an initial
guess is made for the output levels and a set of decision
boundaries corresponding to these is determined using (33).
Then (34) can be applied to determine a new set of output levels
which is optimal for the decision boundaries just determined,
completing one iteration. At the end of an iteration the mse has
either decreased or remained unchanged.
A variation of this technique, introduced by Kabal [57], applies
both halves of the iteration to each output level in turn. In this
way the effect of changing an output level is allowed to
propagate to other output levels. This modified version of
method I, which uses the same number of integral evaluations
as the original technique, often converges faster in practice.
This method was used for the computation of the Max-Lloyd
quantiser levels in this thesis, and no problems with
convergence were experienced.

Method II
A variational technique, dubbed method II, proposed by both
Lloyd and Max involves a one dimensional search. An initial

guess is made as to the value of the first output level y,. The
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The Lloyd-Max quantiser was implemented for the Laplacian

density function

p(X) - ;8 (-alx])
(35)

where o = % , O is the variance of x

The reconstruction levels can be solved by replacing (35) in (34), i.e.,

J:Ir- 1

(o, v 1) ™ ~ (g,  *1)e™ (36)
¥ =

=0lx X,

e o me
The mean square error can be computed by replacing (35) in (32), ie.,
err? = _f:‘i(xz—ny;yf) z e dx (37)
this reduces to

err? = f(x) - f(x.,)

where

(38)
2 2
flx) = e 1/(x+1) _ _y__ (ox)*+2x+2)
* 2 202
The average mse is given by
N
err? = ) err} (39)
i=1

This error function has been tabulated in the bit-assignment section,
Table II. The recursive solution of method I has been used for
computing the decision and reconstruction levels. It was found that

this method converged quickly for quantiser sizes up to eight bits.
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value of the decision level below this output level, in this case
X,, is known. The next decision level can be determined by
finding the value of x; which satisfies (34). This step is normally
carried out using iterative numerical techniques. The next
output level can now be computed and the process repeated for
all levels. The last output level will generally not be the
conditional mean of the last interval. The difference between y,,
and the conditional mean of the last interval can be used to
determine an update for y; for the next iteration. The process of
determining the output levels continues until sufficient precision

has been achieved.

For the mse, a sufficient condition for uniqueness of the Lloyd-Max
solution is log-concavity of the pdf [57]. The Gaussian and Laplace
distributions have associated with them unique (and hence symmetrical)
quantisers. It is also shown [57] that the Laplace distribution occupies
a unique place in the continuum of generalized Gamma distributions
in that it sits on the boundary between distributions that have unique

optima and those which do not.
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Conversion was slow for higher bit rates as a result of the increase in
number of levels that had to be computed for every iteration.

All numerical implementations involving this kind of recursive
structure with mathematical functions, were done using double
precision mathematics. The decision and reconstruction levels
generated were verified with those given by Pratt [1 p.144].

A different approach to nonlinear quantisation that achieves
similar results is that of companding (compressing and expanding) a
signal and using uniform quantisation. The compander quantiser is

discussed in the next paragraph.
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B. Companders

A compander (compressor-expander) is a uniform quantiser preceded
and succeeded by nonlinear transformations as shown in figure 17. The
random variable x is first passed through a nonlinear memoryless
transformation g(.) to yield another random variable w. This random
variable is uniformly quantised to give ye{yi}, which is non-linearly
transformed by k(.) to give the output z. The overall transformation

from x to z is a nonuniform quantiser. The functions k(.) and g(.) can

be easily derived:

NON-LINEAR QUANTISER

X NON-L INEAR W UNIFORM Y INUERSE 2
TRANSFORMATION QUANTISER NON-L INERR
al.) TRANSFORMAT 10N
hi.)

Figure 17  Compander for nonlinear quantisation
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We wish to find a function g(x) such that the random variable

Y = g(X) (40)

transforms the input cumulative distribution function (cdf) Fylx] to a
desired output cdf F,[y]. The cumulative distribution function is a

monotone increasing function, that is
Elx]sE &) i &= (41)
Since Y=g[X], we have
P{Y<yl=P{X<x} (42)

where P is the probability of occurrence.

From the left hand side in (42) and using (40) we have
Flyl-Plysyl}=-P{g(X)<gx))} (43)
Replacing (43) in (42)
E [gt)]=F[x] (44)

In (44) fy[x] is the pdf of the input to the quantiser and f,[g(x)] is the

desired pdf. The function g(x) can be computed by inverting (44)

g(x) = F;'[Fy[x1] (45)
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For a uniform output pdf, between maximum and minimum values

f(y) becomes

fy) = —— (46)
Substituting (46) into (45) gives
g =(y -~y .)F[x]l+y_ . (47)

The expansion is done by computing the inverse of this function, i.e.

h(z)=-g'(x) with z-=g) (48)

The performance that can be achieved with the compander and the
Max-Lloyd quantiser is similar [4]. However, the compander is simpler
to compute and easier to implement for common distributions, i.e. the
Laplacian distribution. As an example of the application of equations
(47) and (48) the forward and inverse transformation functions were
computed for the Laplacian distribution, the derivation is given in

Appendix B. Other companders, i.e Gaussian and Rayleigh, are given

by Pratt [1].
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C. Source Encoding
For source coding the entropy of the output sequence is specified, if the
distribution of the input is known this allows us to compute the step
size of the quantiser. For ease of implementation the uniform quantiser
is normally used [57]. The uniform quantiser with source coding is
normally a sub-optimal quantiser, except for the Laplacian distribution,
for which it is the optimum quantiser [53,57,59].

A method to compute the optimal bin width is given by
Eggerton and Sirnath [56]. They determined the entropy of the

quantised coefficients to be approximately given by, (see Appendix C)

H(x*) = H(x) + BA - log,A
where A = stepswe, (49)
B is a function of the variance,

H(x) is the entropy of the source.

If the coefficients are assumed to be Laplacian distributed, the variables

of (49) was found to be [57]

H®) - log, (| 20¢) log,e  (bits)

_ 0.096 (50)
8]

B

where G is the standard deviation
The bin width can now be obtained from (49) by equating H(x") with
the desired bit rate. Once the coefficients have been quantised, an

optimal source encoding method, i.e. Huffman coding, can be used.
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The uniform quantiser with source coding were used in simulations on
the test image’s. A comparison between the Lloyd-Max quantiser and
the source encoding quantiser is given in figure 18, with the results for
images coded with 2.0, 1.0 and 0.5 bits/pel given in figures 19-21. Itis
clear from the graph that the source coder performs better than the
Lloyd-Max quantiser. This is in agreement with theoretical predictions
[71.

For efficient quantisation, it has been shown in the discussion
regarding the quantisers, that knowledge of the coefficient density
functions is necessary. The next paragraph investigates the different

functions that has been proposed in the literature.
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Figure 18  Comparison of the performance of the Source Encoder
versus the Lloyd-Max quantiser. Transform=DCT (8x8)

Figure 19  The image GIRL DCT coded to 2.0 bits/pel, using

uniform quantisation with source encoding.
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Figure 20 The image GIRL DCT coded to 1.0 bits/pel, using
uniform quantisation with source encoding.

The image GIRL DCT coded to 0.5 bits/pel, using
uniform quantisation with source encoding.

Figure 21
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D. Coefficient Statistics
After the image has been subdivided into a number of smaller blocks,
to take advantage of the spatial variant nature of images, these blocks
are transformed using the DCT or a similar transform to decorrelate the
images. The different coefficients, of similar index, are then grouped
together and quantised using one of the quantisation methods just
described. Since all of these methods need to know the distribution of
the coefficients a priori, in order to determine decision levels or to
achieve a certain rate, the determination of a representative distribution
is important.

Several distributions have been suggested by various authors.
Pratt [1] suggested that the DC coefficient should have a Rayleigh
distribution since it was the sum of positive values, and that, based on
the central limit theorem, the other coefficients should be Gaussian.
Netravali and Limb [7] agreed with the above assumption and also
stated that the histogram of non DC coefficients were roughly bell-
shaped. On the other hand, some authors [30] thought that the non-
DC coefficients were not Gaussian, but Laplacian. A few authors
agreed that the DC coefficient was Gaussian. These different
assumptions have led Reininger and Gibson [30] to perform goodness-
of-fit tests on the transform coefficients in order to identify the
distribution that best approximates the statistics of the coefficients. In
the tests they considered the Gaussian, Laplacian, Gamma, and

Rayleigh distributions. The test that they used was the well-known
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Kolmogorov-Smirnov test. The results of their paper indicate that for
a large class of images, the DC coefficient is best modeled by a
Gaussian distribution, and the non-DC coefficients are best modeled by
the Laplacian distribution.

The histograms of the coefficients of the two test images were
computed, see figure 22. The results shown in figure 22 were for the
coefficient [1,1] as well as the DC coefficient. The images were
transformed with an 8x8 DCT transform. The results show that the
non-DC coefficients were Laplacian distributed as experimentally
determmed. The DC coefficient could however not be described as
anywhere near Gaussian, but it is recognised that a larger database was
used in [30]. It was decided to code the DC-coefficient using a uniform
distribution and the other coefficients using a Laplacian distribution.
The next paragraph will investigate the question as to which coefficients
should be coded and how many bits should be used for every

coefficient.

E. Bit Assignment

Bit assignment is normally discussed in the literature under Block
quantisation. Block quantisation is an efficient scheme to quantise a
block of independently distributed random variables. In block
quantisation each element of a vector is quantised on an element by
element basis. These elements are normally not quantised equally well

as will become clear in the following paragraph.
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Figure 22 Coefficient distributions for the images GIRL using an 8x8 DCT.

The output of a two dimensional DCT is considered to be a

vector under block quantisation. The energy compactation property of
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the DCT will result in lower index or "frequency" components having
a larger variance than the high index coefficients. Coefficients having
a larger variance will have a more pronounced influence on the
reconstructed image, and therefore need be coded more accurately.
The purpose of the bit assignment algorithm is to generate a bitmap
matrix that contains information regarding the number of bits to use for
each coefficient. The sum of all the entries in this matrix should be
equal to the desired average bit rate.

Several methods exist for computing this bitmap matrix, all of
them have in common that the number of bits assigned to a coefficient
is proportional to the variance of that coefficient. Applying the rate
distortion theory for a Gaussian distributed block source and a
minimum mean square error criterion the optimal bit assignment was

found to be [1,7],

A,

1
b.b-0+% _log. - °
& OH A‘z "'A'N)I/N

: 2
(51)
where A, is the variance of the i th element,

0 = desired average number of bits

where b; is the number of bits assigned to the ith element. The
theoretical performance of the rate-distortion theoretic scheme is not
generally realisable. This is because a Shannon quantiser is assumed,
which is difficult to achieve practically [7], and the optimally assigned

number of bits is not necessarily integer, and may even be negative.
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Rounding to zero or the nearest integer is required, which may offset
the optimality of the bit assignment.

Besides the rate distortion theoretic method, there is a
computational approach to bit allocation [58]. This approach allocates
the total number of available bits to the vector on a bit-by-bit basis
using a marginal analysis technique.

The overall average quantisation error for an N-dimensional
source is

N
D-El (x2)] (52)

where x, is original element, %. is the reconstructed element

Let f(n) be the mean-square quantisation error (msqe) of an n-bit
quantiser for a source with unity variance. Then, (52) can be written
as

N

D=3 A f(n) (53)

i=1
where 7, is the number of bits assigned to the ith element of the vector.
The bit assignment is initialised by setting all the 7, equal to zero, i.e.
a zero bit map matrix. Using the variances of each coefficient a
marginal return can be computed for the coefficients. The marginal
returns basically determine which coefficient would gain most by

assigning another bit to that coefficient’s bitmap.
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The marginal returns are defined by

A=A LFCn)-f(n+1)]
where . is the variance of the i th element, (54)

f (n) is the msqe

The bit is allocated to the coefficient that has the largest marginal
return. This method is repeated until all the bits has been assigned.
The computational approach is superior to the rate-distortion theoretic
approach since there is no round-off error in the bit assignment.
However, its computational load is much heavier than the other
approach. The rate distortion approach further assumes that each
element of the vector is Gaussian distributed and that a Shannon
quantiser is employed. This is not the case for the coefficients of the
DCT transform which is predominantly Laplacian distributed [30].
When using a pdf optimised nonuniform quantiser the error for this
quantiser should be used in the bit assignment. A list of the msqge of
pdf-optimised nonuniform quantisers for Gaussian, Laplacian, and
Gamma distributions is given in Table II [4,58]. It is interesting to note
that the differential decrease in error for all distributions tends toward
that of the Shannon quantiser, i.e. four, for large n. This means that it

might not be necessary to compute the exact error values for large n.
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n f(n)
Shannon Gaussian Laplacian | Gamma
0 1.0 1.0 1.0 1.0
1 0.25 0.3634 0.5 0.668
2 0.0625 0.1188 0.1963 0.32
3 0.015625 0.03744 0.07175 0.1323
< 0.0039062 | 0.01154 0.02535 0.0501
5 0.00097656 | 0.003495 0.008713 | 0.01784
6 0.00024414 | 0.001041 0.002913 | 0.006073
7 0.00006104 | 0.0003035 | 0.0009486 | 0.001996
8 0.00001526 | 0.00008714 | 0.0003014 | 0.0006379
Table II Quantisation Errors of Shannon Quantiser and Max Quantisers for Gaussian,

Laplacian, and Gamma Distributions.

F. Adaptive Quantisation

It has been noted in previous discussions that the statistics of real
images are spatially variant. The performance of the quantiser could be
increased if we could make the quantiser adaptive to local statistics in
the image. The main advantage associated with adaptive quantisation
is the improvement in the ability of the codec to code detail in the
image.

Several methods to achieve this has been presented in the
literature [5,7,8,17]. Most of the techniques use some activity measure
defined for each block. This activity measure is mostly related to the
ac-energy or the variance of the block’s coefficients. In the method by

Chen [5], the image is classified into four different classes according to
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the variance of the blocks. A bitmap matrix is generated for every
class. This increases the overhead associated with the quantisation
information. It has been estimated by Chen that the overhead is
approximately 0.034 bits per class. This places a limit on the number
of classes that are practical for adaptive coding.

The purpose of this section is to investigate the relationship
between the improvement in image quality and the number of classes.
In other words the optimal number of classes will be determined using
empirical techniques. The classification will consist of computing the
ac-energy of each block and dividing the blocks equally between the
different classes. To keep the bit assignment optimal, the algorithm
assigns bits, using the marginal technique, concurrently to all bitmap
matrixes. In other words the bits are spread out between the classes on
a largest "error reduction” basis.

The results of the simulation is shown graphically in figure 23.
Figures 24 to 27 show the test images coded using one class and eight
classes respectively. It is clear from the results achieved that adaptive
quantisation based on an activity index improves the quality of the
image. Other more advanced techniques that exist but have not been
used in simulations are the use of masks in the computation of the
block energy. This basically involves generating masks that group
certain features of the image, i.e. horizontal, vertical, and diagonal
lines [17]. Some techniques use the sensitivity of the HVS to different

DCT coefficients to generate the masks [12]. Most of these techniques
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require a large number of adaptation of parameters to specific images,

making them less useful.

38
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Figure 23  Signal to Noise versus Number of Classes curves
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Figure 24 DCT (8x8) Coded Image: GIRL 1.0bits/pel, one
adaptation class.

DCT Coded Image: GIRL 1.0 bits/pel. 8 adaptation
classes.

Figure 25
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Flgur e 26 DCT Coded Image: ROAD 1.0 bits/pel. 1 Adaptahon
Class.

g‘v Er‘ H_ -
F1gure 27 DCT Coded Image: ROAD 1.0 bits/pel. 4 Adaptatlon
Classes.
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IX. Reducing the Block-Effect

The block-effect owes its existence to the independent processing of the
sub-images, of a segmented image. In the segmentation process the
statistical dependencies beyond the border of a block is not taken into
account in DCT transform coding. Quantisation of the blocks
introduces independent errors among the blocks that causes the
discontinuities at the borders between blocks which is observed as the
block effect. The block-effect origin is demonstrated graphically in
figure 28. The discontinuities are inherent to the basis functions used
in the DCT. A graph of the normalised discontinuity at the edges of
the DCT is shown in figure 29. It can be seen that the lower
“frequency” functions contain large discontinuities and would thus
Eontribute more towards the block-effect.

The energy compactation should be viewed in conjunction with
the "discontinuity size" to predict the influence of the quantisation of
different coefficients on the block-effect. An experiment was conducted
in which the low "frequency" components were first coarsely quantised
and then the higher "frequency” components. The results together with
the quantisation matrixes are shown in figures 30 to 33. From these
results it is clear that quantisation of different coefficients will have
different kinds of visual distortion. Low frequency quantisation led to
a more pronounced block-effect, while high frequency quantisation led

to a more grainy type of distortion.
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Figure 28  Block-effect: Result of independent processing and
quantisation of blocks.
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Figure 29 Normalised Discontinuities associated with the DCT
Basis Functions.
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Figure 30  Low frequency bitmap matrix for quantisation
experiment.

Fief Low Frequency Quantisation Experiment: GIRL
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Figure 32 High frequency quantisation experiment- bitmap
matrix.

Fire 33  High Frequency DCT Quantisation Experiment: GIRL
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The block-effect is a highly visible type of distortion, to a human
observer, as a result of the periodic nature thereof and the effect it has
on features crossing block-boundaries. At low bit rates the effect
becomes very pronounced and may render the transform coder useless.

In this section four techniques will be discussed that attempt to
reduce the block-effect. The techniques are filtering, overlapping,
using a visual error criterion, and lapped transforms. The first two
techniques will only be discussed briefly since they contain
inefficiencies in solving ﬂle problem. The last two techniques, using
the HVS and lapped transforms, each lead to usable improvements in
the quality of the reconstructed image. The lapped transforms have
been found to decrease the blocking effect considerably as well as

resulting in higher coding gains than the corresponding DCT.

A. Filtering

The first and most obvious solution to the problem, is the use of a
space variant filter along the boundaries of the blocks, called a post-
filter. The post filter performs a smoothing action from one block to the
next, with the result that features crossing boundaries tend to be
blurred. This blurring can be reduced by using a pre-filter that
enhances high frequency detail along the borders of the blocks to offset
the low-pass filtering effect of the smoothing filter. Since high

frequency detail is enhanced by the pre-filter, the image will require
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more bits to quantise to achieve equal fidelity. A nonlinear space-
variant postprocessing technique which smooths jagged edges without
blurring them, and also smooths out abrupt intensity changes in
monotone areas has been proposed by Arch [66]. The disadvantage of
filtering methods is that they invariably lead to a reduction in the
coding gain. Results from using the spatially variant filter are given in
figure 34 and 35. Figure 34 contains the original coded image and
figure 35 contains the filtered image. The block-effect seems less but
blurring has occurred along the edges of the blocks. The filter that was

used simply replaced the border pels with their average value.
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Fiiglll‘ei 34 DCT coded image: GIRL - block size = 8x8, bit rate =
0.5 bits/pel.

Figure 35  Filtered Image: GIRL
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B. Overlapping

A second method is that of overlapping of adjacent blocks, similar to
the overlap and add methods used in speech processing. The
overlapping of blocks is illustrated in figure 36. This method works
well, since it takes the statistical dependencies into account. In the
overlapping method, the blocks overlap slightly, so that redundant
information is transmitted for samples at the block boundaries. The
receiver averages the reconstructed samples from the neighbouring
blocks, in the overlapping areas. The disadvantage of this approach is
the added redundancy fhat causes an increase in the bit rate. No
results are given in this section since it is similar to that of the LOT,

that will be discussed in detail in a following section.

BLOCK1 BLOCKZ2

QUERLAP

Figure 36  Overlapping of blocks in the transform domain.
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C. Visual Error Criterion
A third method for reducing the block-effect is to optimise the bit
allocation for quantisation. For example, the use of the human visual
system (HVS) in the bit allocation algorithm will result in a more
optimal allocation, that takes the user of the information into account.
Using the HVS allows one to minimise the visual error, rather than the
mean square error (mse) criterium normally used. This means that the
visibility of the errors, such as the block-effect, will be taken into
account when the coefficients of the transform are quantised. What
needs to be done to imﬁlement this technique is to determine a HVS
weighing matrix that determines the relative importance of the different
coefficients. A method that achieves this has been introduced by
Eggerton [56].

The method starts by defining a visual weighted mse criterion.
They also use the HVS model by Mannos [16], but since that model is
in the frequency domain it has to be transformed to the DCT domain.
This is done as follows: Let x be a one dimensional vector obtained by
Eoncatenating the image rows. Let F and C represent the discrete
Fourier and the discrete Cosine transforms and let X, and X denote the
corresponding vector of transforms. If H represents the HVS response
in the Fourier domain, the DFT of the image as perceived by the

viewer will be given by
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Y.- HX - HFx (55)
The corresponding spatial function is
y, - F'HFx (56)
so that the DCT equivalent of the response ¥; will be

Y. =Cy.= CEF HFx

— CFH(CFY)'C
LR (57)

Il

AHA™'X,
where A = CE™!

If X, is set to a constant value, the elements of Y, provide the relative
importance of the DCT coefficients to the human observer.

The first application of this result, using a 16x16 DCT and 16x16
DFT, gave a weighing matrix that actually worsened the block-effect.
This was because the discontinuities at the block edges were not taken
into account. The contrast inside a block appeared to be sharper than
that of the normal mse codec, however the block effect made the
technique useless. A method that took the block effect into account was
given by Eggerton [56], in which the DCT is done on a block, say
16x16, and the DFT on the whole image. A flow diagram of this
method is given in figure 37. The weighing matrix obtained for a block
size of 8x8 is shown in figure 38, and in figure 39 the image Girl coded
to 1.0 bits. It was found that the weighting matrix has little effect on

image quality for rates above one bit per pel.
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Figure 37  Processing steps to obtain the DCT domain weighting matrix from the
Fourier domain function, while keeping the block boundary changes in

mind.
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0.05 0.85 0.82 0.89 1.00 0.77 0.90 O0.s61

0.84 0.71 0.86 0.67 0.81 0.58 0.69 0.47

0.82 0.86 0.94 0.85 0.99 0.73 0.87 0.59

Figure 38  Weighing matrix for 8x8 DCT with maximum display
frequency of 6 cycles/degree.

Figure 39 Human Visual System weighed DCT coded image
GIRL, 1.0 bits/pel.
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D. Lapped Transforms

The first of these transforms called the lapped orthogonal transform
(LOT), was introduced by Cassereau [61]. Subsequently, Malvar and
Staelin [62] introduced a new algorithm for generating LOT, that used
the DCT as basis. By using the DCT as basis for the LOT, this
algorithm is very attractive for practical implementation since it can use
existing DCT algorithms and chips. Cassereau in conjunction with
Staelin and de Jager recently published another paper [61], wherein an
augmented Lagrangian method has been used to derive the LOT basis
functions.  Recognising the LOT as a special case of perfect
reconstruction filter banks, Malvar [63] gave a new version of the
lapped orthogonal transform, which can be efficiently computed for
any transform length. He also introduced the modulated lapped
transform (MLT), which is based on a modulated quadrature mirror
filter (QMF). He found that the MLT can be efficiently computed by
means of a type-IV discrete sine transform.

Malvar [63] found that the LOT and MLT are both asymptotically
optimal lapped transforms for coding an AR(1) process with high inter-
sample correlation. The coding gains of the LOT and the MLT are
higher than that of the DCT for similar size, and were found to be

close to that of a DCT of twice the size.
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The DCT based LOT has been chosen for the simulations, based on the
advantages of using the DCT as is, as well as the numerical stability of
the LOT basis function when derived from the DCT. The derivation for
the optimal LOT is given in Appendix A. The final form of the optimal

LOT was found to be

il D-D.  D-D. |[1 o -
° 2 |KD-D) -(D~-D)||0 Z

where D, is the even cosine basis functions, D, is the odd cosine basis
functions, ] is the counter identity matrix, and Z is the optimising
matrix. The fast implementation of the LOT is also given in
Appendix A. A brief summary of the characteristics of the LOT is
given:
1. The LOT requires approximately 30%-100% more
computations than DCT, if the DCT is integrated into the
algorithm,
2. The LOT is asymptotically optimal for first order
Markov processes as the correlation coefficient approaches
unity,
3. The LOT can be optimised to the statistics of the image
by choosing the correlation coefficient and using it in the

computation of the optimisation matrix,
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4. The LOT decreases the block effect considerably as a
result of the overlapping nature of its basis functions, and
that they decay smoothly towards zero,

5. The LOT has a higher coding gain (0.3dB) than a DCT

of the same size.

To compare the results achieved with the LOT to those of the DCT the
test images were coded using the simple non-adaptive algorithm with
Lloyd-Max quantisation for bit rates 2.0, 1.5, 1.0, and 0.5 bits/pel.
The LOT fared better in inost cases with a significant reduction in the
block-effect. The block-effect was still visible at the lower bit rates but
was less than that of the DCT. Graphical results are plotted in figure
40 and pictures for 1.0 and 0.5 bits/pel are shown for comparison
purposes in figures 41-44. From figure 40 it can be seen that the LOT
achieved a better signal to noise ratio than the DCT. This improvement

was in accordance with what was expected.
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Figure 40  Comparison of LOT and DCT transform coding for images GIRL and
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Figure 41 DCT Coded Image: CIRL - 1.0 bit/ pel, 8x8 block size.

Figure 42  LOT coded Image: GIRL - 1.0 bit/pel, 8x8 block size.
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Figure 43  DCT Coded Image: ROAD 0.5 bit/pixel, 8x8 block
size.

Figure 44  LOT Coded Image: RoAD 0.5 bits/pel, 88 Block size.
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X. Combined Algorithm

In this section the results from the other sections will be integrated into
one algorithm. The algorithm basically consists of a visually-adaptive
lapped-transform encoder with optimised quantisation. The transform
section will consist of a LOT transform for reducing the block-effect.
The quantisation step will consist of a uniform quantiser followed by
source coding, since this type of coding took better advantage of
correlation between coefficients and blocks. The HVS is introduced in
the determination of the step size of the uniform quantiser. The

structure of the final algorithm is shown in figure 45.
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Figure 45  Structure of image codec for high quality encoding of images for
transmission.
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A. Results

The results achieved for the image codec, for bit rates between 2.0 and
0.25 bits/pel, is shown in figures 47 to 58. The results are good
compared to the basic transform image codec using a Lloyd-Max
quantiser. A numerical comparison of results are given in figure 46.
At 0.25 bits/pel the image lacked contrast and were a bit blurred.
However, the results were more useful than those achieved with a
simple DCT based codec. Compared to the rate distortion simulation,
the images coded to 1.0 and 0.5 bits performed slightly inferior. The
rate distorted images appeared slightly sharper than the coded images
and contained less artifacts. The block-effect was reduced up to a level

that it only became visible for low bit rates.
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/ i Optima Bit Elssignr ent
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8.25 8.5 8.75_ 1.8 1.25 1.5 1.75 2.8
bits/pel.

Figure 46  Numerical Results for Images Coded with the
Combined Algorithm.
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Fi 47  Original Image: GIRL (256x256x8)

i 48

LOT Coded Image: GIRL 2.0 bits/pel.
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'Figure 49  LOT Coded Image: GIRL 1.0 bits/pel.

Figure 50  LOT Coded Image: GIRL 0.75 bit/pel.
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Figure 51  LOT Coded Image: GIRL 0.5 bit/pel.

igure 52  LOT Coded Image: GIRL 0.25 bits/pel.
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Figure 54  LOT Coded Image: ROAD 2.0 bits/pel.
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Figure 55  LOT Coded Image: ROAD 1.0 bits/pel.

Figure 56 LOT Coded Image: ROAD 0.75 bits/ pel.
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Figure 57  LOT Coded Image: ROAD 0.5 bits/pel.

Figure 58  LOT Coded Image: RoAD 0.25 bits/pel.
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B. Channel Error Simulation

For the channel error simulation random errors were made in the
coefficients of the coded data. For the experiments the bit rate was
chosen to be 1 bit/pel. Errors in the quantisation information are
considered critical, thus it is assumed that this information will be
sufficiently protected with an error correction scheme. For a picture
coded to one bit per pixel the total number of bits is 65536, which
makes simulation of channel errors difficult for error probability less
than 10°. The influence of errors in the range 10° to 10° was
investigated on images coded with both the DCT and the LOT. Results
are shown graphically in figure 59 and images for error probability of
10* are shown in figures 60 to 61. The results show that the LOT is
superior in its ability to compensate for channel errors, since each

block is reconstructed from the overlapping of four blocks.
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Figure 59  Signal to Noise Ratios for different channel error rates.
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Figure 60  DCT (8x8) Coded Image: GIRL @ 1.0 bits/pel, 10
Error probability.

Figure 61 LOT Coded Image: GIRL 1.0 bits/pel, 8x8 block size,
10" Probability of Error.
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XI. Conclusion

The thesis started by stating the information theory guidelines for
image coding. Next the image spatial statistics was investigated and
the Markov image model was presented. The thesis continued with a
discussion of the human visual system and its application in transform
image coding. The use of the rate distortion theory was also presented
in this section. The next step was to define the quality criteria that
were used to measure the codec’s performance.

The basic transform coder structure was given and the different
subsections were discussed. In this discussion the use of the DCT, as
choice of transform, was substantiated. The different sources of errors
in the basic transform coder structure were inspected and presented.
The quantisation of the coefficients was investigated next. Three
models for quantisation were presented, the compander, the Lloyd-
Max quantiser, and the uniform quantiser followed by source coding.
The last method outperformed the others as a result of its ability to
adjust to the specific statistics of the coefficients as well as an ability to
take advantage of inter-block as well as inter-coefficient correlations.

Next the optimal assignment of bits to the different coefficients
were presented. It was shown that the marginal analysis bit assignment
provides better results than the rate distortion theoretic approach

(RDTA), as a result of several shortcomings of the RDTA.
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The bit assignment was then made spatially adaptive, ie. the
image was classified into different regions of similar statistics. This
improved the coding of detail in the images, especially when a Lloyd-
Max quantiser was used, and to a lesser extend when source coding
was used.

The focus then moved to the elimination of the block-effect, and
four methods were presented that attempted to reduce the blocking
effect. These included filtering, overlap and add method, visual error
minimisation, and lapped orthogonal transforms (LOT). Of these the
LOT was found to be the most successful in reducing the block-effect
while at the same time increasing the coding gain.

The best results of each section were then integrated to form the
final algorithm. This algorithm was tested for bit rates between 2.0 and
0.25 bits/pixel. Good results were achieved throughout the rate range
with 2.0 bits/pel virtually indistinguishable from the original and 0.25
bits/pixel very usable. The algorithm was then tested for sensitivity to
channel errors for error probability between 10® and 10°. Here, it was
seen that the overlapping nature of the LOT is desirable for image

reconstruction in the presence of channel errors.

HIGH QUALITY CODING OF IMAGES PAGE:94



It was found that the final algorithm performed close to that of
the rate distortion simulation with some improvement still possible.
The improvement could possibly be achieved by further improvements
in the coefficient quantisation. These improvements could take the
form of direction adaptive masks, to better group blocks of similar

statistics.
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Appendix A: Derivation of the LOT

The derivation of the LOT by Malvar [62], and Cassereau et al. [61], is
quite similar, except for the actual derivation of the basis functions. The
derivation given here is basically that of Malvar [62], but with
comments from [61], Malvar [63], and Le Gall [47] for further

clarification.

Basic Properties of the LOT

To take the statistical interdependence of adjacent blocks into
account, the transform needs to allow for the overlapping of basis
functions between blocks. The length L, of the basis functions, must
therefore be greater than that of the subblock size N, i.e. L>N. To avoid
an increase in data rate the number of transform coefficients must be
kept equal to the block size, which is the major difference between this
technique and that of overlap- and add techniques.
The LOT is defined as a separable unitary transform for which the basis
functions corresponding to adjacent data blocks overlap in the image

domain [61].
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Thus the LOT transform, for a segment consisting of M blocks of size

N, can be numerically defined by [62]

P 0

1

T = ; (1)

P, is an LXN matrix that contains the LOT basis functions for each
block. The matrices P; and P, are introduced because the first and last
blocks of a segment have only one neighbouring block, and thus the
LOT for the first and last blocks needs to be defined in a slightly
different way to compensate for boundaries.

The LOT of a single block is not invertible, since the matrix P, is
not square. Nevertheless, in terms of reconstruction of the complete
sequence, all that is required, is that the transform T, of the complete
sequence be invertible. Orthogonality of T is also a desirable property,
since it guarantees good numerical stability, and is also necessary for
good energy compactation. In order for T to be orthogonal, the columns

of P, must be orthogonal,

PP -1, (2)
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With this condition satisfied, the transform process yields a non-
redundant representation of the digitised image. The next condition for
the orthogonality of T, requires that the overlapping basis functions of

neighbouring blocks must also be orthogonal,

P!WP, = P'W'P =0 (3)

where I is the identity matrix, and the shift operator W is defined by
wra |2 @)
0 0

The shift operator simulates the overlapping of basis functions from

adjacent blocks. The identity matrix in (4) is of order L-N.

For image coding it is important that the transform exhibit good energy
compactation properties. The optimal transform, given second order
statistics, is the Karhunen Loeve transform. Using this fact, and the
modelling of the image as a first order Gauss-Markov process, it was
found that the DCT is asymptotically equivalent to the KLT for
correlation factors close to one. The 2NX2N correlation matrix is defined

as

Ri il Gnkon Erlimsl el i

where p is the correlation coefficient.
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Since R,, is symmetric and Toeplitz, its eigenvectors (which define the

KLT) are either symmetric or antisymmetric [62], i.e.,

R_y=Ay = Jy=y or Jy=--y (6)

where | is the "counter-identity"

gty ; j 7)

@, . . B

For the first order Markov process the basis functions of the KLT,
consists of an equal number of symmetric and antisymmetric basis
functions. From this point of view Malvar [62], decided that a "good"
LOT matrix, should comprise of half odd and half even basis functions.
To advocate the use of the DCT, Malvar noted that the DCT also has
this even-odd symmetry.

The last point given for the use of the DCT, is that the basis functions
of the LOT should be as smooth as possible, i.e. sampled sinusoid. The
reason for the required smoothness is given, for energy compactation
by Malvar [62], and because the mse by itself is not a sufficient
goodness criteria for the evaluation of image coding techniques by Le
Gall [47]. Intuitively, any discontinuities in the basis functions would

give rise to blocking effects. The KLT, for first order Markov processes,
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and the DCT are members of the sinusoidal family of unitary
transforms [45].

The transform length in [61] and [62] is chosen L=2N for the reason that
shorter lengths may cause discontinuities at two positions, rather than
at one, and also for convenience in introducing the DCT based LOT. A
further desirable property of the LOT is that it should be able to
represent the DC value of a flat field with only one coefficient. This can
only be achieved if the overlapped lowest basis function has a constant
DC value. If L is chosen any other value than multiples of N,
discontinuities will be introduced into this basis function which is
undesirable. Although L could be any multiple of N, to minimise
boundaries, an overlap of two is chosen to minimise processing
requirements.

The properties of the desired LOT matrix P, are, equal even and odd
basis functions, basis functions which are smooth and decay toward
zero at the boundaries, and an overlapping of N samples. The shifted

orthogonality in (3) forces the decay toward zero of the basis functions.

Optimal LOT in terms of Energy Compactation

The optimal LOT is that transform which maximises the Energy
Compactation, since this minimises the bit rate. Assuming that the
Markov model is applicable, the energy compactation measure normally
used is given by the transform coding gain

Instead of using an iterative technique that searches for the maximum
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N
i (8)

1
—

where o is the variance from the autocorrelation matrix,
R,-P.R_P,. )

coding gain as in the technique by Casserau [61], Malvar [62] uses a
direct method that, although less sensitive to numerical errors, is less
likely to converge to a local minima than that of Casserau. The optimal
P,, as generated by Casserau’s method, may not be easily factorable so
that a fast algorithm may not exist. The lack of a fast algorithm and
sensitivity to numerical errors of Casserau’s method made the method
of Malvar a better choice. However, it is important to note that Malvar’s
method doesn’t give a global optimal LOT, since his approach leads to
an optimal LOT that is tied to the choice of P. The choice of P given by
Malvar seems to be good since they achieved a slightly higher coding
gain than Casserau [62].

Malvar starts by defining a feasible LOT matrix P that may not
be optimal. This matrix is then optimised to fulfil the desired features
of an optimal LOT as discussed. The optimisation is done by modifying

the P matrix with an optimising matrix Z, such that

P, = PZ (10)

0

is an optimal LOT matrix. P, is a feasible LOT matrix for any
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orthogonal Z, since it still conforms to the orthogonality definitions in

(2) and (3), i.e.

P'P - Z'P'PZ=2'Z-1 (1D

and

P/{WP, - Z'P'WPZ - 0 (12)
To compute the Z that will optimise P, the transform domain

correlation matrix is computed, i.e. substitute (10) into (9)

R,-Z'P'R_PZ (13)
where R, is the correlation matrix for the first order Markovian process,
defined in (7). With R,, and P fixed the coding gain G;. will be
maximised when R, is diagonal, i.e. when Z are the eigenvectors of

PR P. Given such a Z the LOT matrix P, is optimal.
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Malvar [62] defined the feasible LOT as

1 D -D. D-D (14)

2| J(D,-D,) -J(D,-D,)

where D, and D, are the NXN /2 matrixes containing the even and odd

DCT functions, defined by

r 2 1
(D, = ck) ~ <08 [%Zk(m_iﬁ (15)

and

[Do]nk - % cos(%(2k+1)[n+%ﬂ

for n=0,1,..,N-1, k=0,1,...,.N/2-1, (16)
where c(k) = I/E' k=0
1, otherwise.
The basis functions of the feasible LOT P, for a Markov model with a
correlation coefficient of 0.95 and n=8, are shown in figure Al, and that
of the optimised LOT P, in figure A2. Notice the discontinuities in the

odd basis functions of the non-optimised LOT.
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Figure A1 Basis functions for the non-optimised
LOT for n=8.
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Figure A2  Basis functions for the optimised LOT,
correlation coefficient = 0.95, n=8.
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The optimising matrix Z may not be factorable in Nlog(N) butterfly
stages. However, Malvar introduced two different methods to
approximate this matrix for fast implementations. In the first approach
the eigenvalue matrix is approximated by a number of matrix rotations.
This technique is approximately 30% more computationally intensive
than the DCT by itself, but the approximation only keeps for N smaller
or equal to 16. The second method based on a sine/cosine transform
approximation is valid for larger sizes of N, but is 100% more
computationally intensive. The next section describes the two

approximations.

Fast Algorithm
A brief summary of the approximation algorithms is given in this

section. In both cases the optimising Z can be approximated by

g 1, 0 (17)
0 B

For the first approximation B is a cascade of N/2-1 plane rotations,

B-AA,.A (18)

Mi/2-1

the plane rotations is defined by
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 li 0
A, - Y(BI.)
0 _’;—2—(5—1)
cosei sin@l.
Ye)-| |
: -sin6, cos(':)i

where ©, is the rotation angle.

(19)

(20)

where I’ is an identity matrix of order j. The rotation angles has been

computed by Malvar [62] for n=8 and n=16 and are given in Table A1.

Rotation- 1 2 9 4 b 6 7

angle / n

n==8 0.13 [ 0.16 | 0.13

n=16 042 [ 053 |05 0.44 0.35 1023 | 011
Table A1 Rotation angles for fast LOT, correlation coefficient = 0.95

The loss in coding gain due to the approximation were computed to be

0.08 dB. The gain over the DCT for this algorithm was 0.32dB for the

Markov process.
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The approximation to B for any length given by Malvar [63],

B-CI SV 21

N/2. " N/2

where C and S are the DCT type II and DST type IV matrixes, defined

2 1
[Cﬂ]kr = ¢(k) = cos [%k[HED (22)

with c(k) as in (15), and

[SQ"]M = TZZ sin [% E(+%][r+% JJ (23)

The LOT basis functions generated with this approximation satisfies the

by

following symmetry condition:

[P~ CIFIP.L,, o ) 2
which guarantees that all the filters in the analysis and synthesis filter
banks have linear phase, which is an advantageous property for
subband coding.

The P, matrix can be restuctured to isolate the DCT section from the

LOT modification and optimation sections, i.e.

I T 00

0 0
p=lD"D"0 Ofr-roofr 1ro (25)
° 20 0 D D00 I|I-I|o0B
00 I -IJ0 0

Most of the operations after the DCT consists of additions and
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subtractions, as can be seen from the matrix contents of (25). Only one

DCT need to be computed per LOT as can be seen in the flowgraph

shown in figure A3. P, and P, is computed by reflecting the data at the

boundaries. This concludes the derivation of the LOT algorithm.

1/2

He

He

D
<= lane

I
3
L 1

JHe 2 172
— e <
BLOCK 1 >< i —] LOT BLOCK 1
— E a : ~ —_—
DCT >< 12 L |
BLOCK 2 >< - LOT BLOCK 2
—_— E s — —_—
DCT > )
1 O - —~ - -
BLOCK 3 >< 12 LOT BLOCK 3
— E E _—
DCT f
= 0 = ol
12
- > i B
DCT >< B
0 _ )
BLOCK 1 ] LOT BLOCK M

Figure A3

Flowgraph of the fast LOT for a data segment composed of M blocks
of size N. Each line consists of N/2 elements. In the figure "E" denotes

even and "O" denotes odd.

APPENDIX A: LOT

PAGE:109



Appendix B Laplacian Compander

The Laplacian probability density function is given by

px) = -Oé_exp(—a | x 1)

where o = E

XY=, o2%=uvariance
o

(1)

The distribution function can be obtained from the density function by

integrating from minus infinity to x, i.e.

@) - [ p(a)dx

- % - %f;exp(—a x)dx

1 [—exp(—oc x) J
2 2

[2-exp(-a x)], for x=0.

* (2

0

| =

The distribution function has been computed for the positive values
only since the sign could be extracted beforehand and can be added
after quantisation. The forward or compression function can now be
computed by using (Eq.47 pp.47). The output is scaled to be uniformly

distributed between plus and minus one half. The companding function

is given by
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g(x)

Il
=
g

&

[
N
g

T
&

+
=

1 (%(2— exp(-o x))}- % (3)

%(1—exp(—a x)) for x=0

The inverse or expanding function can now be computed by solving for

x in (3), i.e.

h(g(x)) - —ailn(tl—zg(x)) for g(x)20 @

g(x) is uniformly quantised according to the number of number of bits
assigned to the coefficient. If the number of bits is b, the number of

levels is 2 and the compander can be implemented by

£ = h( Trunc(g(x)2*+27%)) (5)
where the 2% is added to obtain the optimum reconstruction levels for
the uniformly distributed variable. That is, the Lloyd Max quantiser
is applied to the uniformly distributed variable, from which it follows

that the optimum reconstruction level is halfway between the two

decision levels.
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Appendix C Source Coding Quantiser Stepsize

In order to achieve the desired bit rate by using source coding the
source have to be quantised. The optimal quantiser for the Laplacian
distribution is an uniform quantiser Berger [53]. The problem is to find
the stepsize for the uniform quantiser that would achieve this rate. The

entropy of a continuously distributed source is given by

N-1

H() = - p, log, p.

i=0

where p, = f‘”p(x)dx 0

and  p(x) = Ze™™

For the Laplacian distribution the stepsize can be computed numerically
by increasing or decreasing the number of levels N, in (1). However,
this would be computationally intensive for large N. For the simulation
in this thesis (1) was solved numerically and the results saved in a file.
The file was loaded into a lookup table during system initialisation so
that no stepsize computation was necessary during coding simulations.

An approximate solution to the stepsize was given by Eggerton
[56] and is derived as follows: Since most common probability density
functions is monotonously decreasing from zero (for zero average

values), there exists a value a € [x...x;,,] for which

f: p(x)dx = p(a ) A (2
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Equation (1) can now be written in terms of (2) as

H(x) = -3 Ap(a ) log, (A p(a )
' ®)
= -2 Ap(a ) log,pla ) - log, A
The first term on the right is now intuitively approximated by the
entropy of continuous data H,(x) and a constant 8 times the step size
~Z p(a )log,p(a ) A= H(x)+B A
: (@)
where  H(x) = __f; p(x)log, p(x)dx
The value of £ was determined as the one that provides a least squares

fit to approximation to

H(x) = H(x)+pB A-log, A (5)
and is given by
g- Py 6)
D" D
where
Y(A) A,
Y=| : and = | )
Y(A)) A,
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Computer simulations were done by Eggerton [56] in which he found
that § was essentially equal to a constant that depended on the
distribution and variance of the density function. He determined £ as
a function of the deviation ¢ as follows

Gaussian  £8=0.082/c

Laplacian  £=0.096/c

Cauchy $3=0.060/c
With these values of {3 the step sizes of the uniform quantiser can be

easily computed.
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Appendix D Rate Distortion Simulation Parameters

The first order Markov model was used as model for the class of images for
which the rate distortion simulation was done. This model was chosen for the
lack of a large enough database of images that would be representative of the
images the encoder could encounter. The model as defined previously is
given by
R(x) = ¢2e% % = o.zpm
where p =e® or o =-lnp, (1)

and ©?* is the image variance.

The power spectral density can be computed by taking the Fourier transform

of the correlation function -
S(w) = f R(x) e77** dx (2)

By taking advantage of the odd/even symmetries of the cosine and sine

functions, as well as the symmetry of the correlation function, (2) can be

written as

S(w) = 2 f R(x) coswx dx (3)
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The power spectral density can easily be computed by replacing (1) in (3), i.e.

S(w) = 262 f e~ * cos mx dx

oo

2¢°?

e**( cos ax + wsin wx ):|

o2+ o

0

(4)

0(,2'5'(02

/
20%|0- Lt +0)]

I
3%
o]

%)

For a discrete system the radial frequency can be written in terms of an index

6=  x=010.. 00 (5)
N 2

where N is the image dimension. The frequency weighing function of the
human visual system as derived by Mannos and Sakrison [16] is

of the form

A(f) = 2.6(0.0192 + 0.114f, | ™ *" .
The nonlinear function g is of the form
g(u) = u®® )

To do the rate distortion simulation the threshold p has to be calculated for the

desired rate R to satisfy

R(p) = n f log,

Svsf)>n

{Smw

d (8)
'l_l }fr fr

where the power spectral density of the human visual system (HVS) is the
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weighted power spectral density of the Markov model given by (4), i.e.

2
Sustf) = |AG) [ S(F) &
To implement the HVS, it has been shown that for the given image the
maximum visual frequency is equal to 6.18 cycles/degree (Table I). The radial

frequency f, can be written in terms of the discrete grid as follows

f = 618{ x/NP+@/NF  xy=0,12,.,N-1 (10)
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