Appendix A: Derivation of the LOT

The derivation of the LOT by Malvar [62], and Cassereau et al. [61], is
quite similar, except for the actual derivation of the basis functions. The
derivation given here is basically that of Malvar [62], but with
comments from [61], Malvar [63], and Le Gall [47] for further

clarification.

Basic Properties of the LOT

To take the statistical interdependence of adjacent blocks into
account, the transform needs to allow for the overlapping of basis
functions between blocks. The length L, of the basis functions, must
therefore be greater than that of the subblock size N, i.e. L>N. To avoid
an increase in data rate the number of transform coefficients must be
kept equal to the block size, which is the major difference between this
technique and that of overlap- and add techniques.
The LOT is defined as a separable unitary transform for which the basis
functions corresponding to adjacent data blocks overlap in the image

domain [61].
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Thus the LOT transform, for a segment consisting of M blocks of size

N, can be numerically defined by [62]

P 0

1

T = ; (1)

P, is an LXN matrix that contains the LOT basis functions for each
block. The matrices P; and P, are introduced because the first and last
blocks of a segment have only one neighbouring block, and thus the
LOT for the first and last blocks needs to be defined in a slightly
different way to compensate for boundaries.

The LOT of a single block is not invertible, since the matrix P, is
not square. Nevertheless, in terms of reconstruction of the complete
sequence, all that is required, is that the transform T, of the complete
sequence be invertible. Orthogonality of T is also a desirable property,
since it guarantees good numerical stability, and is also necessary for
good energy compactation. In order for T to be orthogonal, the columns

of P, must be orthogonal,

PP -1, (2)
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With this condition satisfied, the transform process yields a non-
redundant representation of the digitised image. The next condition for
the orthogonality of T, requires that the overlapping basis functions of

neighbouring blocks must also be orthogonal,

P!WP, = P'W'P =0 (3)

where I is the identity matrix, and the shift operator W is defined by
wra |2 @)
0 0

The shift operator simulates the overlapping of basis functions from

adjacent blocks. The identity matrix in (4) is of order L-N.

For image coding it is important that the transform exhibit good energy
compactation properties. The optimal transform, given second order
statistics, is the Karhunen Loeve transform. Using this fact, and the
modelling of the image as a first order Gauss-Markov process, it was
found that the DCT is asymptotically equivalent to the KLT for
correlation factors close to one. The 2NX2N correlation matrix is defined

as

Ri il Gnkon Erlimsl el i

where p is the correlation coefficient.
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Since R,, is symmetric and Toeplitz, its eigenvectors (which define the

KLT) are either symmetric or antisymmetric [62], i.e.,

R_y=Ay = Jy=y or Jy=--y (6)

where | is the "counter-identity"

gty ; j 7)

@, . . B

For the first order Markov process the basis functions of the KLT,
consists of an equal number of symmetric and antisymmetric basis
functions. From this point of view Malvar [62], decided that a "good"
LOT matrix, should comprise of half odd and half even basis functions.
To advocate the use of the DCT, Malvar noted that the DCT also has
this even-odd symmetry.

The last point given for the use of the DCT, is that the basis functions
of the LOT should be as smooth as possible, i.e. sampled sinusoid. The
reason for the required smoothness is given, for energy compactation
by Malvar [62], and because the mse by itself is not a sufficient
goodness criteria for the evaluation of image coding techniques by Le
Gall [47]. Intuitively, any discontinuities in the basis functions would

give rise to blocking effects. The KLT, for first order Markov processes,
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and the DCT are members of the sinusoidal family of unitary
transforms [45].

The transform length in [61] and [62] is chosen L=2N for the reason that
shorter lengths may cause discontinuities at two positions, rather than
at one, and also for convenience in introducing the DCT based LOT. A
further desirable property of the LOT is that it should be able to
represent the DC value of a flat field with only one coefficient. This can
only be achieved if the overlapped lowest basis function has a constant
DC value. If L is chosen any other value than multiples of N,
discontinuities will be introduced into this basis function which is
undesirable. Although L could be any multiple of N, to minimise
boundaries, an overlap of two is chosen to minimise processing
requirements.

The properties of the desired LOT matrix P, are, equal even and odd
basis functions, basis functions which are smooth and decay toward
zero at the boundaries, and an overlapping of N samples. The shifted

orthogonality in (3) forces the decay toward zero of the basis functions.

Optimal LOT in terms of Energy Compactation

The optimal LOT is that transform which maximises the Energy
Compactation, since this minimises the bit rate. Assuming that the
Markov model is applicable, the energy compactation measure normally
used is given by the transform coding gain

Instead of using an iterative technique that searches for the maximum
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N
i (8)

1
—

where o is the variance from the autocorrelation matrix,
R,-P.R_P,. )

coding gain as in the technique by Casserau [61], Malvar [62] uses a
direct method that, although less sensitive to numerical errors, is less
likely to converge to a local minima than that of Casserau. The optimal
P,, as generated by Casserau’s method, may not be easily factorable so
that a fast algorithm may not exist. The lack of a fast algorithm and
sensitivity to numerical errors of Casserau’s method made the method
of Malvar a better choice. However, it is important to note that Malvar’s
method doesn’t give a global optimal LOT, since his approach leads to
an optimal LOT that is tied to the choice of P. The choice of P given by
Malvar seems to be good since they achieved a slightly higher coding
gain than Casserau [62].

Malvar starts by defining a feasible LOT matrix P that may not
be optimal. This matrix is then optimised to fulfil the desired features
of an optimal LOT as discussed. The optimisation is done by modifying

the P matrix with an optimising matrix Z, such that

P, = PZ (10)

0

is an optimal LOT matrix. P, is a feasible LOT matrix for any
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orthogonal Z, since it still conforms to the orthogonality definitions in

(2) and (3), i.e.

P'P - Z'P'PZ=2'Z-1 (1D

and

P/{WP, - Z'P'WPZ - 0 (12)
To compute the Z that will optimise P, the transform domain

correlation matrix is computed, i.e. substitute (10) into (9)

R,-Z'P'R_PZ (13)
where R, is the correlation matrix for the first order Markovian process,
defined in (7). With R,, and P fixed the coding gain G;. will be
maximised when R, is diagonal, i.e. when Z are the eigenvectors of

PR P. Given such a Z the LOT matrix P, is optimal.
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Malvar [62] defined the feasible LOT as

1 D -D. D-D (14)

2| J(D,-D,) -J(D,-D,)

where D, and D, are the NXN /2 matrixes containing the even and odd

DCT functions, defined by

r 2 1
(D, = ck) ~ <08 [%Zk(m_iﬁ (15)

and

[Do]nk - % cos(%(2k+1)[n+%ﬂ

for n=0,1,..,N-1, k=0,1,...,.N/2-1, (16)
where c(k) = I/E' k=0
1, otherwise.
The basis functions of the feasible LOT P, for a Markov model with a
correlation coefficient of 0.95 and n=8, are shown in figure Al, and that
of the optimised LOT P, in figure A2. Notice the discontinuities in the

odd basis functions of the non-optimised LOT.
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Figure A1 Basis functions for the non-optimised
LOT for n=8.

APPENDIX A: LOT PAGE:104



Figure A2  Basis functions for the optimised LOT,
correlation coefficient = 0.95, n=8.
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The optimising matrix Z may not be factorable in Nlog(N) butterfly
stages. However, Malvar introduced two different methods to
approximate this matrix for fast implementations. In the first approach
the eigenvalue matrix is approximated by a number of matrix rotations.
This technique is approximately 30% more computationally intensive
than the DCT by itself, but the approximation only keeps for N smaller
or equal to 16. The second method based on a sine/cosine transform
approximation is valid for larger sizes of N, but is 100% more
computationally intensive. The next section describes the two

approximations.

Fast Algorithm
A brief summary of the approximation algorithms is given in this

section. In both cases the optimising Z can be approximated by

g 1, 0 (17)
0 B

For the first approximation B is a cascade of N/2-1 plane rotations,

B-AA,.A (18)

Mi/2-1

the plane rotations is defined by
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A, - Y(BI.)
0 _’;—2—(5—1)
cosei sin@l.
Ye)-| |
: -sin6, cos(':)i

where ©, is the rotation angle.

(19)

(20)

where I’ is an identity matrix of order j. The rotation angles has been

computed by Malvar [62] for n=8 and n=16 and are given in Table A1.

Rotation- 1 2 9 4 b 6 7

angle / n

n==8 0.13 [ 0.16 | 0.13

n=16 042 [ 053 |05 0.44 0.35 1023 | 011
Table A1 Rotation angles for fast LOT, correlation coefficient = 0.95

The loss in coding gain due to the approximation were computed to be

0.08 dB. The gain over the DCT for this algorithm was 0.32dB for the

Markov process.

APPENDIX A: LOT

PAGE:107




+

UUUUUU SITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
@ VYUNIBESITHI YA PRETORIA

The approximation to B for any length given by Malvar [63],

B-CI SV 21

N/2. " N/2

where C and S are the DCT type II and DST type IV matrixes, defined

2 1
[Cﬂ]kr = ¢(k) = cos [%k[HED (22)

with c(k) as in (15), and

[SQ"]M = TZZ sin [% E(+%][r+% JJ (23)

The LOT basis functions generated with this approximation satisfies the

by

following symmetry condition:

[P~ CIFIP.L,, o ) 2
which guarantees that all the filters in the analysis and synthesis filter
banks have linear phase, which is an advantageous property for
subband coding.

The P, matrix can be restuctured to isolate the DCT section from the

LOT modification and optimation sections, i.e.

I T 00

0 0
p=lD"D"0 Ofr-roofr 1ro (25)
° 20 0 D D00 I|I-I|o0B
00 I -IJ0 0

Most of the operations after the DCT consists of additions and

APPENDIX A: LOT PAGE:108



+

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe YUNIBESITHI YA PRETORIA

subtractions, as can be seen from the matrix contents of (25). Only one

DCT need to be computed per LOT as can be seen in the flowgraph

shown in figure A3. P, and P, is computed by reflecting the data at the

boundaries. This concludes the derivation of the LOT algorithm.
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Figure A3

Flowgraph of the fast LOT for a data segment composed of M blocks
of size N. Each line consists of N/2 elements. In the figure "E" denotes

even and "O" denotes odd.
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Appendix B Laplacian Compander

The Laplacian probability density function is given by

px) = -Oé_exp(—a | x 1)

where o = E

XY=, o2%=uvariance
o

(1)

The distribution function can be obtained from the density function by

integrating from minus infinity to x, i.e.

@) - [ p(a)dx

- % - %f;exp(—a x)dx

1 [—exp(—oc x) J
2 2

[2-exp(-a x)], for x=0.

* (2

0

| =

The distribution function has been computed for the positive values
only since the sign could be extracted beforehand and can be added
after quantisation. The forward or compression function can now be
computed by using (Eq.47 pp.47). The output is scaled to be uniformly

distributed between plus and minus one half. The companding function

is given by
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g(x)
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+
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1 (%(2— exp(-o x))}- % (3)

%(1—exp(—a x)) for x=0

The inverse or expanding function can now be computed by solving for

x in (3), i.e.

h(g(x)) - —ailn(tl—zg(x)) for g(x)20 @

g(x) is uniformly quantised according to the number of number of bits
assigned to the coefficient. If the number of bits is b, the number of

levels is 2 and the compander can be implemented by

£ = h( Trunc(g(x)2*+27%)) (5)
where the 2% is added to obtain the optimum reconstruction levels for
the uniformly distributed variable. That is, the Lloyd Max quantiser
is applied to the uniformly distributed variable, from which it follows

that the optimum reconstruction level is halfway between the two

decision levels.
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Appendix C Source Coding Quantiser Stepsize

In order to achieve the desired bit rate by using source coding the
source have to be quantised. The optimal quantiser for the Laplacian
distribution is an uniform quantiser Berger [53]. The problem is to find
the stepsize for the uniform quantiser that would achieve this rate. The

entropy of a continuously distributed source is given by

N-1

H() = - p, log, p.

i=0

where p, = f‘”p(x)dx 0

and  p(x) = Ze™™

For the Laplacian distribution the stepsize can be computed numerically
by increasing or decreasing the number of levels N, in (1). However,
this would be computationally intensive for large N. For the simulation
in this thesis (1) was solved numerically and the results saved in a file.
The file was loaded into a lookup table during system initialisation so
that no stepsize computation was necessary during coding simulations.

An approximate solution to the stepsize was given by Eggerton
[56] and is derived as follows: Since most common probability density
functions is monotonously decreasing from zero (for zero average

values), there exists a value a € [x...x;,,] for which

f: p(x)dx = p(a ) A (2
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Equation (1) can now be written in terms of (2) as

H(x) = -3 Ap(a ) log, (A p(a )
' ®)
= -2 Ap(a ) log,pla ) - log, A
The first term on the right is now intuitively approximated by the
entropy of continuous data H,(x) and a constant 8 times the step size
~Z p(a )log,p(a ) A= H(x)+B A
: (@)
where  H(x) = __f; p(x)log, p(x)dx
The value of £ was determined as the one that provides a least squares

fit to approximation to

H(x) = H(x)+pB A-log, A (5)
and is given by
g- Py 6)
D" D
where
Y(A) A,
Y=| : and = | )
Y(A)) A,
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Computer simulations were done by Eggerton [56] in which he found
that § was essentially equal to a constant that depended on the
distribution and variance of the density function. He determined £ as
a function of the deviation ¢ as follows

Gaussian  £8=0.082/c

Laplacian  £=0.096/c

Cauchy $3=0.060/c
With these values of {3 the step sizes of the uniform quantiser can be

easily computed.
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Appendix D Rate Distortion Simulation Parameters

The first order Markov model was used as model for the class of images for
which the rate distortion simulation was done. This model was chosen for the
lack of a large enough database of images that would be representative of the
images the encoder could encounter. The model as defined previously is
given by
R(x) = ¢2e% % = o.zpm
where p =e® or o =-lnp, (1)

and ©?* is the image variance.

The power spectral density can be computed by taking the Fourier transform

of the correlation function -
S(w) = f R(x) e77** dx (2)

By taking advantage of the odd/even symmetries of the cosine and sine

functions, as well as the symmetry of the correlation function, (2) can be

written as

S(w) = 2 f R(x) coswx dx (3)
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The power spectral density can easily be computed by replacing (1) in (3), i.e.

S(w) = 262 f e~ * cos mx dx

oo

2¢°?

e**( cos ax + wsin wx ):|

o2+ o

0

(4)

0(,2'5'(02

/
20%|0- Lt +0)]

I
3%
o]

%)

For a discrete system the radial frequency can be written in terms of an index

6=  x=010.. 00 (5)
N 2

where N is the image dimension. The frequency weighing function of the
human visual system as derived by Mannos and Sakrison [16] is

of the form

A(f) = 2.6(0.0192 + 0.114f, | ™ *" .
The nonlinear function g is of the form
g(u) = u®® )

To do the rate distortion simulation the threshold p has to be calculated for the

desired rate R to satisfy

R(p) = n f log,

Svsf)>n

{Smw

d (8)
'l_l }fr fr

where the power spectral density of the human visual system (HVS) is the
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weighted power spectral density of the Markov model given by (4), i.e.

2
Sustf) = |AG) [ S(F) &
To implement the HVS, it has been shown that for the given image the
maximum visual frequency is equal to 6.18 cycles/degree (Table I). The radial

frequency f, can be written in terms of the discrete grid as follows

f = 618{ x/NP+@/NF  xy=0,12,.,N-1 (10)
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