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VIII. Quantisation

Quantisation forms the kernel around which most of the compression
revolves once the transform has been chosen. From the information
theory guidelines this section is equivalent to solving (1), and
sometimes both (1) and (2). The input of the image codec is assumed
to be already digitised with a sufficient number of bits per pixel (6 bits
or more for normal monochrome video systems) to avoid contouring
effects. As a result of the mathematical processing in the transform,
the dynamic range of the transform coefficients is much more than that
of the spatial image. The larger the block size the bigger the dynamic
range of the coefficient since there are more multiply and adds. The
coefficients need to be quantised further in order to achieve the desired
compression ratio. The quantisation of the coefficients will be
investigated in this section. The first part of this section deals with the
actual quantiser design while the second part is concerned with the
optimal allocation of bits to each coefficient.

Since the dynamic range of the coefficients is bounded the
distribution of the coefficients is always bounded between absolute
maximum and minimum values. These values are determined by the
dynamic range of the input signal and the type of transform used. For
an orthonormal real transform the maximum and minimum values are

half (since the input is positive and the basis-function norm is one) that
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of the maximum value of the input signal times a constant that is
proportional to the size of the transform.

Three different types of quantisation will be investigated. The
first is the Lloyd-Max quantiser that has been frequently used and still
is very popular for use in image coding systems. This quantiser makes
use of the probability density function (pdf) of the coefficients to
iteratively minimise the mean square error. The second set of
quantisers are more simple and are classified as companders. As the
name indicates they make use of a nonlinear function derived from the
pdf to transform the coefficient to a uniform distribution where it can
be quantised uniformly. Both of these quantisers operate on a sample
by sample, i.e scalar, basis. The third method of quantisation that will
be looked at is that of source coding. In source coding the coefficients
are quantised uniformly and then coded via an optimal source encoding

scheme like Huffman coding.
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A. Lloyd-Max Quantisers

Quantisation [1,57] is the process of subdividing the range of a signal
into non-overlapping regions. The amplitude of the signal is compared
to a set of decision levels. If the sample amplitude falls between two
decision levels, it is quantised to a fixed reconstruction level lying
between the two decision levels. The quantiser as defined here is a

memoryless non-linearity and is shown graphically in figure 16.

QuUTPUT

Reconstruction

Levels

Yk

By, Bpge INPUT

Decision
Levels

Figure 16  Quantiser input output characteristic.
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Consider an N level quantiser with output levels ,,y,,...,yy. The output
level y, is associated with a decision region specified by its boundaries,

the decision levels,

g <o, <z for k= 12N, (31)

For convenience, the x; are in increasing order and the two extreme
decision levels, x, and x,, are chosen at infinity.

The total mean square error (mse) is

Nit,

=3 [y pw ax 2)

=1
Xt

Differentiating the mse with respect to x, and y, and setting equal to

zero gives the decision levels as

+
X, = % , for k-1,2,.,N-1 (33)

and the reconstruction levels as

%

fx p(x) dx

xk-'l

yk = ————— fﬂr k= 1.2..;N (34)
fp(x) dx

These conditions must be satisfied by a minimum mean square error
quantiser. They can be interpreted to mean that the decision levels
should be midway between the output levels and that the output levels

should be the conditional means of the decision regions.
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Recursive solution of equation (33) and (34) for a given pdf provides

the values for the optimum decision and reconstruction levels. Two

versions of the iteration that can be used is given in [57]:

Method 1
In the first version, often termed Lloyd’s method I, an initial
guess is made for the output levels and a set of decision
boundaries corresponding to these is determined using (33).
Then (34) can be applied to determine a new set of output levels
which is optimal for the decision boundaries just determined,
completing one iteration. At the end of an iteration the mse has
either decreased or remained unchanged.
A variation of this technique, introduced by Kabal [57], applies
both halves of the iteration to each output level in turn. In this
way the effect of changing an output level is allowed to
propagate to other output levels. This modified version of
method I, which uses the same number of integral evaluations
as the original technique, often converges faster in practice.
This method was used for the computation of the Max-Lloyd
quantiser levels in this thesis, and no problems with
convergence were experienced.

Method II
A variational technique, dubbed method II, proposed by both
Lloyd and Max involves a one dimensional search. An initial

guess is made as to the value of the first output level y,. The
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The Lloyd-Max quantiser was implemented for the Laplacian

density function

p(X) - ;8 (-alx])
(35)

where o = % , O is the variance of x

The reconstruction levels can be solved by replacing (35) in (34), i.e.,

J:Ir- 1

(o, v 1) ™ ~ (g,  *1)e™ (36)
¥ =

=0lx X,

e o me
The mean square error can be computed by replacing (35) in (32), ie.,
err? = _f:‘i(xz—ny;yf) z e dx (37)
this reduces to

err? = f(x) - f(x.,)

where

(38)
2 2
flx) = e 1/(x+1) _ _y__ (ox)*+2x+2)
* 2 202
The average mse is given by
N
err? = ) err} (39)
i=1

This error function has been tabulated in the bit-assignment section,
Table II. The recursive solution of method I has been used for
computing the decision and reconstruction levels. It was found that

this method converged quickly for quantiser sizes up to eight bits.
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value of the decision level below this output level, in this case
X,, is known. The next decision level can be determined by
finding the value of x; which satisfies (34). This step is normally
carried out using iterative numerical techniques. The next
output level can now be computed and the process repeated for
all levels. The last output level will generally not be the
conditional mean of the last interval. The difference between y,,
and the conditional mean of the last interval can be used to
determine an update for y; for the next iteration. The process of
determining the output levels continues until sufficient precision

has been achieved.

For the mse, a sufficient condition for uniqueness of the Lloyd-Max
solution is log-concavity of the pdf [57]. The Gaussian and Laplace
distributions have associated with them unique (and hence symmetrical)
quantisers. It is also shown [57] that the Laplace distribution occupies
a unique place in the continuum of generalized Gamma distributions
in that it sits on the boundary between distributions that have unique

optima and those which do not.
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Conversion was slow for higher bit rates as a result of the increase in
number of levels that had to be computed for every iteration.

All numerical implementations involving this kind of recursive
structure with mathematical functions, were done using double
precision mathematics. The decision and reconstruction levels
generated were verified with those given by Pratt [1 p.144].

A different approach to nonlinear quantisation that achieves
similar results is that of companding (compressing and expanding) a
signal and using uniform quantisation. The compander quantiser is

discussed in the next paragraph.
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B. Companders

A compander (compressor-expander) is a uniform quantiser preceded
and succeeded by nonlinear transformations as shown in figure 17. The
random variable x is first passed through a nonlinear memoryless
transformation g(.) to yield another random variable w. This random
variable is uniformly quantised to give ye{yi}, which is non-linearly
transformed by k(.) to give the output z. The overall transformation

from x to z is a nonuniform quantiser. The functions k(.) and g(.) can

be easily derived:

NON-LINEAR QUANTISER

X NON-L INEAR W UNIFORM Y INUERSE 2
TRANSFORMATION QUANTISER NON-L INERR
al.) TRANSFORMAT 10N
hi.)

Figure 17  Compander for nonlinear quantisation
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We wish to find a function g(x) such that the random variable

Y = g(X) (40)

transforms the input cumulative distribution function (cdf) Fylx] to a
desired output cdf F,[y]. The cumulative distribution function is a

monotone increasing function, that is
Elx]sE &) i &= (41)
Since Y=g[X], we have
P{Y<yl=P{X<x} (42)

where P is the probability of occurrence.

From the left hand side in (42) and using (40) we have
Flyl-Plysyl}=-P{g(X)<gx))} (43)
Replacing (43) in (42)
E [gt)]=F[x] (44)

In (44) fy[x] is the pdf of the input to the quantiser and f,[g(x)] is the

desired pdf. The function g(x) can be computed by inverting (44)

g(x) = F;'[Fy[x1] (45)
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For a uniform output pdf, between maximum and minimum values

f(y) becomes

fy) = —— (46)
Substituting (46) into (45) gives
g =(y -~y .)F[x]l+y_ . (47)

The expansion is done by computing the inverse of this function, i.e.

h(z)=-g'(x) with z-=g) (48)

The performance that can be achieved with the compander and the
Max-Lloyd quantiser is similar [4]. However, the compander is simpler
to compute and easier to implement for common distributions, i.e. the
Laplacian distribution. As an example of the application of equations
(47) and (48) the forward and inverse transformation functions were
computed for the Laplacian distribution, the derivation is given in

Appendix B. Other companders, i.e Gaussian and Rayleigh, are given

by Pratt [1].
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C. Source Encoding
For source coding the entropy of the output sequence is specified, if the
distribution of the input is known this allows us to compute the step
size of the quantiser. For ease of implementation the uniform quantiser
is normally used [57]. The uniform quantiser with source coding is
normally a sub-optimal quantiser, except for the Laplacian distribution,
for which it is the optimum quantiser [53,57,59].

A method to compute the optimal bin width is given by
Eggerton and Sirnath [56]. They determined the entropy of the

quantised coefficients to be approximately given by, (see Appendix C)

H(x*) = H(x) + BA - log,A
where A = stepswe, (49)
B is a function of the variance,

H(x) is the entropy of the source.

If the coefficients are assumed to be Laplacian distributed, the variables

of (49) was found to be [57]

H®) - log, (| 20¢) log,e  (bits)

_ 0.096 (50)
8]

B

where G is the standard deviation
The bin width can now be obtained from (49) by equating H(x") with
the desired bit rate. Once the coefficients have been quantised, an

optimal source encoding method, i.e. Huffman coding, can be used.
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The uniform quantiser with source coding were used in simulations on
the test image’s. A comparison between the Lloyd-Max quantiser and
the source encoding quantiser is given in figure 18, with the results for
images coded with 2.0, 1.0 and 0.5 bits/pel given in figures 19-21. Itis
clear from the graph that the source coder performs better than the
Lloyd-Max quantiser. This is in agreement with theoretical predictions
[71.

For efficient quantisation, it has been shown in the discussion
regarding the quantisers, that knowledge of the coefficient density
functions is necessary. The next paragraph investigates the different

functions that has been proposed in the literature.
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Figure 18  Comparison of the performance of the Source Encoder
versus the Lloyd-Max quantiser. Transform=DCT (8x8)

Figure 19  The image GIRL DCT coded to 2.0 bits/pel, using

uniform quantisation with source encoding.
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Figure 20 The image GIRL DCT coded to 1.0 bits/pel, using
uniform quantisation with source encoding.

The image GIRL DCT coded to 0.5 bits/pel, using
uniform quantisation with source encoding.

Figure 21
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D. Coefficient Statistics
After the image has been subdivided into a number of smaller blocks,
to take advantage of the spatial variant nature of images, these blocks
are transformed using the DCT or a similar transform to decorrelate the
images. The different coefficients, of similar index, are then grouped
together and quantised using one of the quantisation methods just
described. Since all of these methods need to know the distribution of
the coefficients a priori, in order to determine decision levels or to
achieve a certain rate, the determination of a representative distribution
is important.

Several distributions have been suggested by various authors.
Pratt [1] suggested that the DC coefficient should have a Rayleigh
distribution since it was the sum of positive values, and that, based on
the central limit theorem, the other coefficients should be Gaussian.
Netravali and Limb [7] agreed with the above assumption and also
stated that the histogram of non DC coefficients were roughly bell-
shaped. On the other hand, some authors [30] thought that the non-
DC coefficients were not Gaussian, but Laplacian. A few authors
agreed that the DC coefficient was Gaussian. These different
assumptions have led Reininger and Gibson [30] to perform goodness-
of-fit tests on the transform coefficients in order to identify the
distribution that best approximates the statistics of the coefficients. In
the tests they considered the Gaussian, Laplacian, Gamma, and

Rayleigh distributions. The test that they used was the well-known
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Kolmogorov-Smirnov test. The results of their paper indicate that for
a large class of images, the DC coefficient is best modeled by a
Gaussian distribution, and the non-DC coefficients are best modeled by
the Laplacian distribution.

The histograms of the coefficients of the two test images were
computed, see figure 22. The results shown in figure 22 were for the
coefficient [1,1] as well as the DC coefficient. The images were
transformed with an 8x8 DCT transform. The results show that the
non-DC coefficients were Laplacian distributed as experimentally
determmed. The DC coefficient could however not be described as
anywhere near Gaussian, but it is recognised that a larger database was
used in [30]. It was decided to code the DC-coefficient using a uniform
distribution and the other coefficients using a Laplacian distribution.
The next paragraph will investigate the question as to which coefficients
should be coded and how many bits should be used for every

coefficient.

E. Bit Assignment

Bit assignment is normally discussed in the literature under Block
quantisation. Block quantisation is an efficient scheme to quantise a
block of independently distributed random variables. In block
quantisation each element of a vector is quantised on an element by
element basis. These elements are normally not quantised equally well

as will become clear in the following paragraph.
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Figure 22 Coefficient distributions for the images GIRL using an 8x8 DCT.

The output of a two dimensional DCT is considered to be a

vector under block quantisation. The energy compactation property of

HIGH QUALITY CODING OF IMAGES PAGE:54



Fy
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

W= YUNIBESITHI YA PRETORIA

the DCT will result in lower index or "frequency" components having
a larger variance than the high index coefficients. Coefficients having
a larger variance will have a more pronounced influence on the
reconstructed image, and therefore need be coded more accurately.
The purpose of the bit assignment algorithm is to generate a bitmap
matrix that contains information regarding the number of bits to use for
each coefficient. The sum of all the entries in this matrix should be
equal to the desired average bit rate.

Several methods exist for computing this bitmap matrix, all of
them have in common that the number of bits assigned to a coefficient
is proportional to the variance of that coefficient. Applying the rate
distortion theory for a Gaussian distributed block source and a
minimum mean square error criterion the optimal bit assignment was

found to be [1,7],

A,

1
b.b-0+% _log. - °
& OH A‘z "'A'N)I/N

: 2
(51)
where A, is the variance of the i th element,

0 = desired average number of bits

where b; is the number of bits assigned to the ith element. The
theoretical performance of the rate-distortion theoretic scheme is not
generally realisable. This is because a Shannon quantiser is assumed,
which is difficult to achieve practically [7], and the optimally assigned

number of bits is not necessarily integer, and may even be negative.
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Rounding to zero or the nearest integer is required, which may offset
the optimality of the bit assignment.

Besides the rate distortion theoretic method, there is a
computational approach to bit allocation [58]. This approach allocates
the total number of available bits to the vector on a bit-by-bit basis
using a marginal analysis technique.

The overall average quantisation error for an N-dimensional
source is

N
D-El (x2)] (52)

where x, is original element, %. is the reconstructed element

Let f(n) be the mean-square quantisation error (msqe) of an n-bit
quantiser for a source with unity variance. Then, (52) can be written
as

N

D=3 A f(n) (53)

i=1
where 7, is the number of bits assigned to the ith element of the vector.
The bit assignment is initialised by setting all the 7, equal to zero, i.e.
a zero bit map matrix. Using the variances of each coefficient a
marginal return can be computed for the coefficients. The marginal
returns basically determine which coefficient would gain most by

assigning another bit to that coefficient’s bitmap.
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The marginal returns are defined by

A=A LFCn)-f(n+1)]
where . is the variance of the i th element, (54)

f (n) is the msqe

The bit is allocated to the coefficient that has the largest marginal
return. This method is repeated until all the bits has been assigned.
The computational approach is superior to the rate-distortion theoretic
approach since there is no round-off error in the bit assignment.
However, its computational load is much heavier than the other
approach. The rate distortion approach further assumes that each
element of the vector is Gaussian distributed and that a Shannon
quantiser is employed. This is not the case for the coefficients of the
DCT transform which is predominantly Laplacian distributed [30].
When using a pdf optimised nonuniform quantiser the error for this
quantiser should be used in the bit assignment. A list of the msqge of
pdf-optimised nonuniform quantisers for Gaussian, Laplacian, and
Gamma distributions is given in Table II [4,58]. It is interesting to note
that the differential decrease in error for all distributions tends toward
that of the Shannon quantiser, i.e. four, for large n. This means that it

might not be necessary to compute the exact error values for large n.
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n f(n)
Shannon Gaussian Laplacian | Gamma
0 1.0 1.0 1.0 1.0
1 0.25 0.3634 0.5 0.668
2 0.0625 0.1188 0.1963 0.32
3 0.015625 0.03744 0.07175 0.1323
< 0.0039062 | 0.01154 0.02535 0.0501
5 0.00097656 | 0.003495 0.008713 | 0.01784
6 0.00024414 | 0.001041 0.002913 | 0.006073
7 0.00006104 | 0.0003035 | 0.0009486 | 0.001996
8 0.00001526 | 0.00008714 | 0.0003014 | 0.0006379
Table II Quantisation Errors of Shannon Quantiser and Max Quantisers for Gaussian,

Laplacian, and Gamma Distributions.

F. Adaptive Quantisation

It has been noted in previous discussions that the statistics of real
images are spatially variant. The performance of the quantiser could be
increased if we could make the quantiser adaptive to local statistics in
the image. The main advantage associated with adaptive quantisation
is the improvement in the ability of the codec to code detail in the
image.

Several methods to achieve this has been presented in the
literature [5,7,8,17]. Most of the techniques use some activity measure
defined for each block. This activity measure is mostly related to the
ac-energy or the variance of the block’s coefficients. In the method by

Chen [5], the image is classified into four different classes according to
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the variance of the blocks. A bitmap matrix is generated for every
class. This increases the overhead associated with the quantisation
information. It has been estimated by Chen that the overhead is
approximately 0.034 bits per class. This places a limit on the number
of classes that are practical for adaptive coding.

The purpose of this section is to investigate the relationship
between the improvement in image quality and the number of classes.
In other words the optimal number of classes will be determined using
empirical techniques. The classification will consist of computing the
ac-energy of each block and dividing the blocks equally between the
different classes. To keep the bit assignment optimal, the algorithm
assigns bits, using the marginal technique, concurrently to all bitmap
matrixes. In other words the bits are spread out between the classes on
a largest "error reduction” basis.

The results of the simulation is shown graphically in figure 23.
Figures 24 to 27 show the test images coded using one class and eight
classes respectively. It is clear from the results achieved that adaptive
quantisation based on an activity index improves the quality of the
image. Other more advanced techniques that exist but have not been
used in simulations are the use of masks in the computation of the
block energy. This basically involves generating masks that group
certain features of the image, i.e. horizontal, vertical, and diagonal
lines [17]. Some techniques use the sensitivity of the HVS to different

DCT coefficients to generate the masks [12]. Most of these techniques
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require a large number of adaptation of parameters to specific images,

making them less useful.
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Figure 23  Signal to Noise versus Number of Classes curves
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Figure 24 DCT (8x8) Coded Image: GIRL 1.0bits/pel, one
adaptation class.

DCT Coded Image: GIRL 1.0 bits/pel. 8 adaptation
classes.

Figure 25
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SR
Flgur e 26 DCT Coded Image: ROAD 1.0 bits/pel. 1 Adaptahon
Class.

g‘v Er‘ H_ -
F1gure 27 DCT Coded Image: ROAD 1.0 bits/pel. 4 Adaptatlon
Classes.
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