ITIL. Information Theory and Image Coding

Information theory provides us with mathematical tools to determine
the channel capacity required to transmit a certain image or class of
images over the channel. Two results from this theory give us a basis

for image coding, they are [3]

0 < H(U) < log,(A) (1

and

H(U,) < NH(U) @

where H is the entropy function,

H(U) = - p,log,(p,) (3)

i

and U is a scalar source, Uy is an N dimensional source, p; is the
probability of source symbol u;, and A is a source with uniform
distribution. The first equation states that compression of the image
data can be achieved if the statistical distribution of the data is not
uniform, while the second equation states that further compression can
be achieved if the data is dependant or correlated.

The theory behind these two equations together with the rate
distortion theory form the basis of all image coding algorithms.
Basically the above two equations determine that the output of the
coder should consist of an independent uniformly distributed sequence

while the rate distortion function determines the minimum distortion
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at which this can be achieved for a fixed rate. The grey scale histogram
of an image is normally not uniform, i.e. figures 4 and 5 show the
histograms of the test images. By applying equation (1), the average
bit rate can be computed for this image. Most images also contain a
fair amount of correlation between the image pels. If a method could
be devised to remove this correlation, equation (2) predicts a lowering
in the average bit rate. In transform image coding the correlation is
reduced by using an energy compacting transform. This property of
the transform will be discussed in more detail in Section VIIL.

Information theory also provides the means by which to analyze,
in a mathematical sense, the transmission of sources where some
distortion of the source is acceptable. This is done in the framework of
the rate distortion theory. A brief overview of the origin of the rate
distortion function is given in the rest of this section. Most of the
overview is based on the references [3] and [18].

The problem addressed by the rate-distortion theory is the
minimisation of the channel capacity requirement while holding the
average distortion at or below an acceptable level. More specific, the
rate distortion function R(D) is the minimum value of the mutual
information I(U,V) for a given distortion level D [3]. By keeping the
rate lower than the channel capacity C, i.e R(D)<C, the possibility of

obtaining distortion D is ensured.
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The information theoretic measure of information transmitted is
the average mutual information between U and V, and is defined for

a block length N as:

Qv U,
ZP(U,C) Qwv.Iu,)

LV) =2 5 PU)QV, U log @)
B

Each block is described by one of a denumerable set of messages (U, ]
with probability P(U;). Any given system, i.e. channel, is described
mathematically by the conditional probability Q(V; U;) of message v
being output by the decoder for a given source output U,. The mutual

information may also be written as

L,(U,V)=Hy(U) - H/(U|V) (5)

where Hy(U V) is the entropy of the source given the observed decoder
output. In other words the mutual information is equal to the entropy
of the source minus the entropy of the source given the decoder
output V.

If distortion is introduced then the decoder output only contains
statistical information about U and as a result thereof L(U,V) decreases.
In the worst case V contains no information about U, so that

Hy(U V)=Hy(U) and L(X,Y)=0.
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For the time discrete continuous-amplitude sources, the mutual
information and average distortion functions are defined with integrals
in place of the summations. Given the distortion d(u,v) between u and
v, the rate distortion results can be summarised as follows for block
messages:

R(D*)- lim = inf I(UV) ©6)

N—o q:D(p)<D*

: log 1014) )

I(u,v) fp(u)q(vlu) B dv du
D(q) = [d(u,0) p(u) 4ol u) dodu (8)
H0) = [ p(u) qlolu) du ©)

It is very difficult to solve these equations and it is normally only done
for homogeneous, isotropic, Gaussian sources with a mean square

error criterion. The rate for this particular Gaussian source is given by

(18]

R(D')~—~%10g§: for ¢*>D* (10)

The rate distortion theory is used in a later section to simulate the
optimal encoding of images.
The next section looks at the statistical models used to facilitate

a mathematical treatment of image coding.
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IV. Image Statistical Models

Images are sometimes represented by simple stochastic models in order
to develop useful algorithms or to compare the performance of various
processes on an image mathematically. A stochastic process can be
completely described by its joint probability density [1]. In general,
high-order joint probability densities of images are usually not known,
nor are they easily modeled [4]. For practical reasons the images are
characterised by their mean and covariance functions.

A common model used, for natural images, is that of the two
dimensional, stationary, first-order Markov process [1]. If f; represents
the picture brightness at the point (i , j) , then for this process the

autocorrelation function may be written

R(m,n) = ELf; fun jun] = P'"7" (11)
where 0<p<l1
and zero mean is normally assumed E[f;] =0. The assumption of zero
mean is nonessential, since the mean can always be easily computed
and subtracted if necessary to obtain a zero mean image.

To test the validity of the assumption the correlation of the two
test images have been computed, horizontally and vertically, and is
compared with the theoretical Markov model in figures 6 and 7. For
large block sizes the images follow the model for small shifts from the

origin.
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V. The Human Visual System

The human visual system (HVS) is a very complex system. At this time
there is no accurate model that can simulate the visual interpretation of
the HVS. However, a few simple models have been presented by
various authors [16,21,22,23,27]. These empirical results were basically
achieved by doing subjective threshold judging tests.

The results of the judging tests by Mannos and Sakrison [16] lead

to a transfer function of approximately the form

A(f) = 26 (0.0192+0.114 f ) exp [-(0.114 f '] (12)

where f, is the radial frequency in cycles/degree. The equation has a
peak value of one at 8 cycles/degree and diminishes at 64
cycles/degree. They also derived a nonlinear transfer function for the

HVS given by

fu) = u®® (13)

Plots of the two equations are given in figure 8.

A. Rate Distortion Simulation

To determine the best picture that any coding scheme may produce,
the same rate distortion simulation procedure was followed that led to
the generation of the empirical equations (12) and (13) [16]. To
calculate the rate distortion function one must specify both the
distortion measure and the probability distribution of the source. At
present we are unable to specify the probability distribution of an
image source. The best we can do is to specify the mean and

correlation function for the image.
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Furthermore the only tractable model of a random field for which the
mean and correlation function specify the joint distribution of the
random variables is the Gaussian random field. However, the
Gaussian source is a "worst case" hypothesis because it has the largest
entropy of all sources with the same average power [19,27]. This "worst
case" means that if the simulations are done with a Gaussian model and
the actual model is not Gaussian then the non-Gaussian source will
achieve better results than was estimated. In transform coding the
distribution of the errors in the spatial domain will be nearly Gaussian.
This can be seen from the central limit theorem, i.e. the errors are the
sums of independent errors in the transform coefficient. For a
homogeneous (invariant to a shift in origin) Gaussian field with image
dimension large compared to correlation distance, the rate distortion

function is given in parametrical form by the pair of equations [19]

R = L[] log, [S(F..f,) /nldf.df, (14)
2 sty
a*G = [Jmin(S(f,.f,),n] df, df, (15)

where 5(f,f,) is the power spectral density of the input image V(x,y).
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If Vk,j is the Fourier coefficients of V(x,y), then those coefficients for

which

E[IV, 1*1=Q, <n (16)

are not transmitted. The remaining coefficients are transmitted in such
a way that the received coefficients B,; have a distribution such that
V; - By; are Gaussian with zero mean, variance i, and is independent

of B, This can be simulated [16,19] by setting

?Lk —11
= Kk
Bk’j = = [de_a— Nk‘}_] (17)

k,f

in which N, ; are zero-mean complex random variables, independent of
Vi» and whose real and imaginary parts are uncorrelated. The

variance of N, is given by

Ay 18
ELVe] - —2 (=) (18)

The simulation then consists of the following steps:
s Apply the nonlinear function (13) to the input image
ulx,yl, ie. wlxyl=f(ulxyl).
2, Compute the power spectral density S [f, f, ] of w[xy] by
using a smoothed periodogram technique, i.e. averaging
the power spectral density computed from small

overlapping sections of w[x,y].
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3. Weigh the power spectral density with the frequency

sensitivity of the human visual system using (12), i.e.

SIF1 = 1 A(f)I2S,[f]
(19)

where f, = | f2+f}

4. Using (14) iteratively, compute the p corresponding to
the desired rate.

5. Compute WIf, f, ] = FFT { w[x,y] }.

6. Weigh W with the HVS (12), ie. VIf, f, 1= A(f,)W(f, f,).

7 Compute the variance of the coefficients V, ;, i.e. apply
equation (16), setting all coefficients with variance lower
than u equal to zero and adding noise according to (17) &
(18) to the rest.

8. Compute the inverse FFT of B.

8. Apply the inverse of the HVS function (12) to the result of
step eight.

10.  Apply the inverse of the nonlinear function (13) to the
result of step nine, this gives the rate distortion simulated

picture.
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It should be noted that no provision has been made to accommodate
overheads in the average bit rate using this simulation, i.e. coding the
position of coded coefficients. To avoid this problem and to keep the
class of images as wide as possible, the simulations were done using
the first order Markov model. The power spectral density for this

model is given by (Appendix D),

Stm) = 262, %

aZ i 0)2
(20)
where o7 is the image variance,

and where the correlation p = e

The simulation results are shown in figures 9 and 10. The results show
that very good quality images are possible for bit rates of 1.0 and 0.5
bits/pel. These pictures can now be compared to those produced by
the actual codec. Based on the comparison one should be able to decide
how much more can be done to improve the codec performance. For
example one would be able to determine if the added complexity is
worth the gain in image quality. The next paragraph looks at the range

of frequencies for which (12) is valid in normal viewing situations.
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Rate Distortion Simulation: GIRL rate=1 bit/pel.

Figure 10
bit/ pel.

Rate Distortion Simulated Image: GIRL rate=0.5
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B. Parameters for the HVS

To apply (12) to the images used in this simulation it is necessary to
compute the frequency range for which it is valid. This can be done by
examining the system in figure 11. From this figure it is easy to

determine that the angle spanned by the viewing device is given by the

0=-2 tan'l[gJ (21)

where d is the distance from the screen, and 2r is the size of the screen.

relationship

For a distance from the viewing device of 50cm and a horizontal screen
size of 7.2" (9" diagonal) the horizontal viewing angle is 20.73 degrees.
For an image resolution of 256 pels horizontally, the maximum number
of cycles would be 128, which gives a frequency of 128/20.73 = 6.18

cycles/degree.

eye

screen

Figure 11 Determination of viewing angle from viewing distance and screen size.
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A few different viewing angles have been computed for changing
viewing distances and screen sizes, and are given in table I. From this
table it is clear that the frequency response of an image, with
resolution of 256x256, displayed on a device with the given physical

parameters is lacking in comparison with the resolution ability of the

human eye (64 cycles/ degree).

Horizontal Screen Size
Viewing - - *
Distance 4" Photo ul 1312 .
(5" diag.) (9" diag.) (14" diag.)

30cm 6.66 3.78 2.52

50cm 11.03 6.18 4.03

Im 22.01 12.25 7.91

2m 43.99 24.45 15.73

Table I Maximum normalised frequency available from different viewing devices for
an image resolution of 256x256

For images with a resolution of 512x512 pels the frequency response
will be exactly double that shown in the table.

The next section introduces the distortion measures that will be
used to determine image quality in a more mathematical sense. It
should be kept in mind that a subjective evaluation of the image coding

results should be used as final evaluation measure.
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VI. Image Quality

A very important part of the design of a high quality image coder is the
evaluation of the performance of different algorithms inside the image
codec itself. To do this it is necessary to specify a fidelity criterion, i.e.
some measure by which we can determine the quality of the
reconstructed image. The mean square error is frequently used in

image processing applications. It is defined as follows for images

1 N-1 N-1
e, = s Dok gro G, ) P (22)
N* x=0 y=0
where the input pels are designated by i , and the output pels are
designated by o . There are two definitions of signal to noise ratios

(SNR) which use the definition of the above error. The first is the

normalised signal to noise ratio

NSNR = 10 Log,, iz (23)
e

ms

where & is the variance of the original image. The second definition

is that of the peak signal to noise ratio (PSNR), defined as

(255 )%

PSNR = 10 Log,, (24)

ms

Although the mse measure does not agree with subjective evaluations
of coded images, the mse gives an indication of the physical accuracy

of reconstruction, and as such it is a useful measure.
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The mse measure indicates the accuracy of both subjectively-
important and subjectively-redundant image reconstruction. It has been
found from experience that the mse only starts to fail as a good
measure when the signal to noise ratio is relatively low, ie. when
coding of subjectively redundant information cannot be tolerated. Since
this is normally the case for bit rates below one bit per pixel, a HVS
frequency response weighted mse measure will also be used. This
measure was also used by Davisson [18], and is defined as follows: If
If is the spectrum of the input image and O; is the spectrum of the

reconstructed image then the weighted mse (wmse) is given by

N-1 N-1
e2 = % > |Af(x,y) |2 [If(x,y)—Of(x,y))2 (25)
x=0 y=0

where A, is the frequency response of the HVS given by (12). The HVS
was implemented for a nine inch diagonal viewing device viewed from
half a metre. From table I the maximum observable frequency would
then be 6.18 cycles/degree. This would mean that the HVS frequency
response would be that of a high pass filter.

The next section examines the basic transform image codec
structure. It gives a description of all the different sections, gives
results of images coded with this codec and then proceeds to an

analysis of the origins of the errors in transform coding.
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VII. Basic Transform Image Coding Structure

For the high quality coding and transmission of still pictures one needs
to exploit all structure or redundancy present within the image.
Transform image coding has been found to be a robust and efficient
way to achieve this [1,4,5,6,7,61,62]. This section starts with a brief
overview of the structure of a typical intraframe codec, which is
followed by a more detailed discussion of the different aspects
involved.

In transform coding the image is first decorrelated by using a
suitable transform. This step is normally reversible and contributes
little to the overall image degradation, except for round-off errors in
integer implementations. With a suitable transform the decorrelation
step can achieve efficient energy compacting, as will be discussed in
more detail in a following section.

The next step involves the quantisation of the coefficients, and
it is in this step that the actual image compression takes place. This
step is irreversible and is responsible for the majority of degradation in
the reconstructed image. The statistics of the coefficients are normally
exploited in the quantisation step to minimize the distortion.

The last step is channel encoding, and involves addiﬁg some
redundancy to minimise the effect of channel errors. This step is
important because of the efficient representation of the image data,

which implies that a small error might have a significant influence on
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the output image. The decoder section at the receiver starts with
channel decoding followed by a reconstruction of the coefficients and
an inverse transform.

The next section will look at the selection and desirable
properties of the transform to make the transform coding as efficient as

possible.

A. Transforms

A truly optimum transform would result in the best picture quality
using the least number of bits. This is a criterion which is difficult to
specify quantitatively. A simpler criterion is to require that the
transform coefficients be statistically independent, but this requires
knowledge of the probability density function of images which we do
not yet have. Using second order statistics we can find a transform that
results in uncorrelated coefficients. From the view of the information
theory (see equation 2), the transform attempts to decrease the entropy

of the image by taking advantage of dependencies in the source.
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A significant unitary transform is the Karhunen-Loeve transform
(KLT) for random fields. It is the complete orthonormal set of basis

images b(.) determined from the eigenvalue equation

S>> rlk,l;m,mbG,j;m,m=% bG,j;k, 0 (26)

where 7(.) is the image covariance function.
The optimality of the KLT for image processing stems from the
following two properties [51]:

1. It completely decorrelates the transform coefficients, i.e.

Cov [v, (T),v, (T)=c; (T)§ 3§ — for T-® (27)

where T denotes an arbitrary N°xN” unitary transform, @ is the
KLT and o*(T) is the variances of the T-transform coefficients
o(T).

2. Compared to all other unitary transforms, the KLT packs the

maximum expected energy in a given number of samples, say

M, ie.

>0, @2 ) > o (T) V 1sM<N? (28)

k,1 e S(@) k,le S(T)

where S(T) is the set containing M index pairs (k) corresponding
to the largest M variances in the T-transform domain. This
property serves as a basis for transform data compression

techniques.
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Although the optimal transform is explicitly known, its use in practice
results in problems such as:

* Different basis functions for every class of images as a

result of the non-stationarity of images,

* Singularities may exist in the covariance matrixes which

means that all the basis functions cannot be computed,

* No fast transform exist for the KLT.
For the Markov image model as described in section IV the discrete
cosine transform (DCT) has been found to be very similar to the KLT,
and can be derived as the limiting case of the KLT as the correlation
coefficient approaches one, i.e. p—1. The DCT has also been found to
perform better than other transforms in many image coding
applications [36,40,41,45]. The DCT does not perform well for negative

correlations or for correlations below 0.5.
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The forward DCT is defined by Ahmed, Natrajan and Rao [31]:

=Zc(u) - Q2j+l)umn
F(u N >, f(j)eo [ oIy 1,

j-0
u=0,1,.,N-1
where 55
c(u)=i for u=0
2
cu)=1 foru=12,.,N-1
c(u) =0 elsewhere.
and the inverse transform is
f(Gi)- NZIO c(u) F (u) cos [%] 0]

j=01,.,N-1
Since the DCT is separable, the two dimensional transform can be
computed by transforming the rows of the image followed by
transforming the columns using the one dimensional transform. Many
fast algorithms has been proposed for the DCT [31,32,33,34,35,37].

Normally the whole image is not transformed in a single
transform since the statistics in an image is highly spatially variant,
and from the information theory it would be better to group areas of
similar statistics together. Coding images using a full-image transform
normally results in a loss of detail, it is also time consuming, requires

a large amount of memory, and require higher precision mathematical
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processors. This leads to the spatially adaptive quantisation that will be

discussed in the next section.

1. Transform Block Size

The question that remains is that of block size. In real images
the assumption of a Markov model are not valid especially if the block
size is small [7]. Computer simulations on real pictures show [7] that
the mean square error (mse) produced by transform coding improve
with the size of the sub-picture, but it does not improve meaningfully
beyond 16x16. Natrevali [7] also showed that the subjective image
quality does not appear to improve much with block size beyond 4x4.

To determine the influence of block size on the image quality,
the test images were coded to 1.0 bits/pel for block sizes 4x4, 8x8, and
16x16. The coefficients were coded using a Laplacian pdf optimised
Lloyd-Max quantiser with optimal bit assignment for mean square error
minimisation. A graph of peak signal to noise ratio versus block size
is given on figure 12. Figures 13 to 15 contains the coded image results
for the different block sizes. The signal to noise ratio (S/N) increased
with an increase in block size. The difference in S/N decreases
between successive block sizes as the block size increases. The 4x4
block size showed a noticeable vector quantiser type noise along edges
in the image. There were little difference, in subjective image quality,
between transform block sizes of 8x8 and 16x16. Most of the

simulations done further on in the thesis will use a block size of 8x8.
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The reasons being that it allows for better adaption to local statistics,
and also because DCT-chips exist that can do 8x8 transform in real
time. The existence of the DCT-chips probably means that most of the
current real world systems will use this block size.

Since the quantisation forms such an important section of the
coder structure, it will be discussed in a separate section. The
following section will investigate the different approaches that is used

in the quantisation of the transform coefficients.

HIGH QUALITY CODING OF IMAGES PAGE:34



+
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Q=P YUNIBESITHI YA PRETORIA

41
40
39
38
37
36
35

34 :
> ?/////////{?
32 .

31

30
. v

28
4x4

PSNR (dB)

16x16

8x8
Block Size

Figure 12 Signal to Noise Ratio versus Block Size for the image
GIRL coded to 1.0 bits/pel.

Figure 13  GIRL coded using a DCT of size 4x4, 1.0 bits/pel.
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Figure 14 GIRL coded using an 8x8 DCT, 1.0 bits/pel.

Figure 15  GIRL coded using a 16x16 DCT, 1.0 bits/pel.
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