
Discriminative and Bayesian techniques for

hidden Markov model speech recognition

systems

by

Darryl William Purnell

PHILOSOPHIAE DOCTOR (ENGINEERING)

in the Faculty of Engineering

UNIVERSITY OF PRETORIA

February 2001

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Summary

The collection of large speech databases is not a trivial task (if done properly). It is

not always possible to collect, segment and annotate large databases for every task or

language. It is also often the case that there are imbalances in the databases, as a

result of little data being available for a specific subset of individuals. An example of

one such imbalance is the fact that there are often more male speakers than female

speakers (or vice-versa). If there are, for example, far fewer female speakers than

male speakers, then the recognizers will tend to work poorly for female speakers (as

compared to performance for male speakers).

This thesis focuses on using Bayesian and discriminative training algorithms to improve

continuous speech recognition systems in scenarios where there is a limited amount of

training data available. The research reported in this thesis can be divided into three

categories:

• Overspecialization is characterized by good recognition performance for the data

used during training, but poor recognition performance for independent testing

data. This is a problem when too little data is available for training purposes.

rl/Iethods of reducing overspecialization in the minimum classification error algo-

rithm are therefore investigated .

• Development of new Bayesian and discriminative adaptation/training techniques

that can be used in situations where there is a small amount of data available.

One example here is the situation where an imbalance in terms of numbers of

male and female speakers exists and these techniques can be used to improve

recognition performance for female speakers, while not decreasing recognition

performance for the male speakers.

• Bayesian learning, where Bayesian training is used to improve recognition perfor-

mance in situations where one can only use the limited training data available.

These methods are extremely computationally expensive, but are justified by the

improved recognition rates for certain tasks. This is, to the author's knowledge,

the first time that Bayesian learning using Markov chain Monte Carlo methods

have been used in hidden Markov model speech recognition.

The algorithms proposed and reviewed are tested using three different datasets (TIMIT,

TIDIGITS and SUNSpeech), with the tasks being connected digit recognition and con-

tinuous speech recognition. Results indicate that the proposed algorithms improve

recognition performance significantly for situations where little training data is avail-

able.

Keywords: speech recognition, hidden Markov model training, minimum classifica-

tion error, Bayesian adaptation, Bayesian learning, maximum a posteriori parameter

estimation, sparse data

Samevatting

Die versameling van groot spraakdatabasisse is nie 'n maklike taak nie. Dit is nie altyd

moontlik om groot databasise to versamel, in segmente te verdeel en te annoteer vir

elke taak of taal nie. Dit is ook dikwels die geval dat daar 'n wanbalans bestaan in

'n databasis, as gevolg van die onverkrygbaarheid van data vir 'n spesifieke subgroep

van individue. Een voorbeeld van so 'n wanbalans is die feit dat daar dikwels meer

manssprekers as vrouesprekers is (of andersom). In so 'n geval, sal die herkenner

gewoonlik nie goed werk vir vrouens nie, maar sal relatief goed werk vir mans.

Hierdie tesis fokus op die gebruik van Bayes en diskriminerende afrigtingstegnieke om

kontinuspraakherkenningstelsels te verbeter in scenarios waar min afrigdata beskikbaar

is. Die navorsing waaroor hier gerapporteer word, kan in drie dele verdeel word:

• Oor-spesialisasie word gekarakteriseer deur goele herkenning vir die afrigdata,

maar slegte herkenning vir onafhanklike toetsdata. Hierdie probleem onstaan

wanneer te min data beskikbaar is vir afrigtingsdoeleindes. Metodes om oor-

spesialisasie in minimum klassifikasiefout afrigting te verminder word dus hier

ondersoek .

• Nuwe Bayes en diskriminerende afrigtings- en aanpassingstegnieke om herkenning

te verbeter in situasies waar min data beskikbaar is. Een voorbeeld is die situ-

asie waar 'n wanbalans in terme van die aantal vroue- en manssprekers bestaan.

Hierdie tegnieke kan gebruik work om die herkenningstempo te verbeter vir die

• Bayes afrigting word gebruik om herkenning te verbeter in situasies waar min

data beskikbaar is, en geen taakspesifieke data nie. Hierde metode is uiters

berekeningintensief, maar ek glo dat die verbetering in herkenningstempo dit

regverdig. Hierdie is, na ons medewete , die eerste keer dat Markov ketting Monte

Carlo gebaseerde Bayesian afrigting in verskuilde Markov model spraakherken-

ningstelsels gebruik word.

Die voorgestelde algoritmes is getoets met drie verskillende spraakdatabasise: TIMIT,

TIDIGITS en SUNSpeech. Die take is kontinusyferherkenning en kontinuspraakherken-

ning. Resultate toon dat die voorgestelde algoritmes goed werk vir situasies waar min

afrigtingsdata beskikbaar is.

Sleutelwoorde: spraakherkenning, verskuilde Markov model afrigting, minimum klas-

sifikasiefout, Bayes aanpasing, Bayes afrigting, maksimum a posteriori parameter skat-

ing, min afrigdata

Acknowledgements

First and foremost, I would like to thank Professor Liesbeth Botha for the advice and

guidance she gave me during the last three years.

I would also like to thank Christoph Nieuwoudt and Johann Holm, with whom I had

many interesting and thought-provoking discussions.

Finally, I would like to thank my family and friends for their support and encourage-

ment throughout.

Contents

3.4.3

3.4.4

5.4.2 TIMIT................................ 189

5.4.3 TIDIGITS.............................. 192

Chapter 1

Introduction

Communication through speech is an integral part of our lives. Automatic speech

recognition for machines (computers) therefore provides a natural and effective way of

communicating with machines. We are, however, far from creating a machine which

can understand spoken discourse on any subject, by all speakers and for all conditions.

Much research and development of speech recognition systems will be required before

this goal is achieved.

Hidden Markov models (HMMs) have been the dominant approach to speech recog-

nition since the 1980s [94, 92]. HMMs are statistical models used to characterize the

spectral properties of the frames of a pattern.

A Markov model is a system that can be described as being in one of N distinct states at

any given time. At regularly spaced, discrete times, the system undergoes a change of

state, depending on a set of probabilities associated with each state. This is known as a

discrete-time Markov process. Hidden Markov models are doubly embedded stochastic

processes with an underlying stochastic process that is not directly observable (hidden)

but can be observed indirectly through another set of stochastic processes that produce

the sequence of observations. The observation is therefore a probabilistic function of

the state. Section 2.1 will describe HMMs and their use in speech recognition in more

detail.

Hidden Markov model speech recognition systems typically consist of two main parts,

namely

1. Feature extraction. Here features, which will be used to recognize the utterance,

are extracted from the speech signal. One of the most common features used are

the Mel-frequency cepstral coefficients (MFCCs), which can be obtained from the

power spectrum of the speech signal. Section 2.1.1 gives a detailed description of

the feature extraction process as used in this thesis.

2. Hidden Markov models. HMMs are used to represent the temporal nature of

the speech signal. A word or phonetic unit is typically represented by a single

HMM, with each state in the HMM representing an acoustic unit within the word

or phonetic unit. In a continuous digit recognition task, for example, HMMs

would be used to represent the digits a through 9 and other events such as

silence and inter word pauses. In continuous density HMMs, a weighted sum

of Gaussian distributions is used to represent the probability of an observation

(features extracted) being generated by that state. Section 2.1 presents a detailed

description of the HMM system used in this thesis.

The assumption made when using a hidden Markov model (HMM) or any statistical

model, is that the process can be characterized as a parametric random process. It is

furthermore assumed that these parameters can be determined or estimated in a precise,

well-defined manner. HMMs are usually trained using the maximum likelihood (ML)

criterion. vVhen creating continuous speech recognition systems, sparse training data

is often a problem. This limits the effectiveness of the conventional approaches, such

as maximum likelihood parameter estimation.

not always possible to collect, segment and annotate large databases for every task,

language or dialect. The collection of large speech databases is an expensive and time

consuming task. It is doubtful whether there will ever be a substitute for sufficient,

well recorded and annotated data when creating speech recognition systems. However,

given that it is not always possible to collect sufficient data, this thesis focuses on using

Bayesian and discriminative training algorithms to improve continuous speech recog-

nition systems in scenarios where there is a limited amount of training data available.

1.1 Adaptation

Adaptation is a process for adjusting seed models or training data (non-task-specific)

to create more specialized models using a small amount of task-specific adaptation

data. There are many applications of adaptation algorithms, including:

• Speaker adaptation Speaker adaptation is a well researched and documented

[67, 74, 32, 6, 20, 31, 21] example of adaptation, where little speaker-dependent

data is available for creating a speaker-specific model. Using the speaker-independent

model or dataset of many speakers, adaptation techniques can be used to create

an improved speaker-dependent model. It is impractical to use the algorithms de-

scribed in this thesis for speaker adaptation due to their computational expensive

nature .

• Gender adaptation It is well documented [117, 51, 118] that usage of gender

dependent models for male and female speakers improves performance. Adap-

tation can be used to improve the gender dependent performance in situations

where there is limited training data available. If, for example, we have a rea-

sonable amount of training data for female speakers but little for male speakers,

we could adapt the female model or data using the male training data, thereby

improving the recognition performance for male speakers.

• Language and dialect adaptation As mentioned, the collection of a compre-

hensive database for a new language or dialect is a difficult and time consuming

procedure. Much of the work in multi-language research has focused on creating

speech recognition systems which can recognize speech from multiple languages

[47, 10, 29, 25], or bootstrapping of new monolingual models for a new language

using existing models [116, 102].

Alternatively, we can apply adaptation techniques to reduce the amount of lan-

guage or dialect-specific training data required. Recently, some studies [112, 15,

30, 63, 85] have therefore used adaptation techniques to improve the recogni-

tion performance for a new language or dialect, using existing models of other

languages or dialects.

Two main families of adaptation schemes have been proposed in the past, namely

Bayesian adaptation and transformation-based adaptation procedures.

The maximum a-posteriori (MAP) estimation procedure [67, 43, 45] attempts to find

the parameters (0) which maximize the posterior probability of the parameters given

the training data, i.e.

OMAP = argmaxP(OIX) = argma.TP(XIO)P(O)
() ()

where X is the training data. P(O) is the prior distribution of the model parameters

and expresses any knowledge about the parameters or model prior to any data being

observed. P(XIO) is the probability of the observation X being generated by the model

with parameters O. P(X) has not been included in Eq. (1.1) as it is a normalizing

constant and does not affect the mode ((hf AP) of the posterior distribution P(OIX).

The MAP framework provides a way of incorporating prior information in the estima-

tion process, which is useful when dealing with problems caused by limited training

data. This prior information can be subjective or information obtained from non-

task-specific data or models. MAP estimation has sometimes been referred to as

Bayesian learning in the speech recognition literature. MAP estimation is an approx-

imate Bayesian learning algorithm and will therefore not be referred to as Bayesian

learning in this thesis.

When using MAP estimation for adaptation purposes, the non-task-specific information

is encapsulated in the prior distribution. For example, in speaker adaptation, speaker

independent data or models will be used to create the prior, along with any other

subjective information. MAP starts from the seed model performance and converges

asymptotically to task-specific performance as the amount of adaptation data increases.

The usage of the MAP algorithm will be investigated in Chapter 4.

The following summarizes the advantages and disadvantages of Bayesian and transformation-

based (Section 1.1.2) approaches,

• Bayesian adaptation requires relatively large amounts of adaptation data (com-

pared to transformation-based methods).

• Transformation-based methods are typically much faster in that they require very

small amounts of training data.

• Transformation-based adaptation has the advantage that it can be applied either

directly to the features, or to the HMM parameters.

• A disadvantage of transformation-based methods is that they tend not to take

full advantage of larger amounts of adaptation data.

• Transformation-based adaptation is usually text-dependent, whereas Bayesian

adaptation is typically text-independent.

• Bayesian adaptation has good asymptotic properties: performance converges to

speaker-dependent performance as the amount of adaptation speech increases.

Transformation-based techniques estimate a transformation of seed model parameters,

thereby creating the new task-specific model. The transformation is typically linear

[33, 69], though non-linear transforms have also been used [1]. When using a linear

transformation, we estimate the following transformation,

where y is the seed model parameter vector, x is the new adapted model parameters,

A and b are the transformation matrix and offset vector.

The transformation will typically contain far fewer parameters compared to the model

we are transforming. We will therefore be able to estimate a reasonably accurate

transformation when very little data is available. Generally, when the adaptation data

is limited, transformation-based adaptation can therefore efficiently transform all the

HMM parameters using cluster-dependent transformations.

M

P(oISt) =L csiN(o, Pig, 'Eig),

i=l

M

P(oISt) =L csiN(o, AgJ1ig + bg, A9~igA~).
i=1

Only the parameters Ag, bg, 9 = 1 ... Ng need to be estimated, where Ng is the number

of distinct transformations.

The transformation is typically estimated using the maXImum likelihood criterion

[33, 69], in which case it is known as maximum likelihood linear regression (MLLR).

Recently the maximum a-posterior (MAP) criterion has been used to estimate the

transformation parameters (MAPLR) [22], allowing the use of prior information in the

estimation of the transformation. The minimum classification error criterion (MCE)

has also been used [96, 95].

Combinations of Bayesian and transformation-based adaptation methods have been

shown to combine some of the advantages of the two approaches. Hybrid algorithms

using MLLR adaptation followed by MAP adaptation (MLLR-MAP) have been used

with much success for speaker adaptation [32, 110] and cross-language adaptation [84].

The MAP adaptation algorithm, followed by the MCE discriminative training proce-

dure (MAP-MCE) [74] has also been used to improve on the MAP and MCE procedures

for speaker adaptation.

1.2 Training

Here, only the task-specific training data is available and one can therefore not use

adaptation techniques to improve the performance of the resultant system. An example

here would be training a speech recognizer for a new language, where only a small

amount of data has been recorded and data from other languages is not available or

other complications do not allow the use of adaptation.

Conventional maximum likelihood (ML) estimation attempts to maximize the likeli-

hood of the training data given the model parameters of the corresponding class. The

models from other classes do not participate in the parameter estimation. By maxi-

mizing the likelihood of the correct model, but not minimizing the likelihood of other

competing models, it cannot be guaranteed that the ML models will optimally dis-

criminate against incorrect classes in recognition and therefore minimize recognition

error. Several methods have been proposed to improve this by including discriminative

information in the training criterion.

The maximum mutual information (MMI) criterion, which minimizes the class condi-

tional entropy has been used to create a training procedure which is more discrimina-

tive [88, 87, 62, 113]. However, as is the case with the ML criterion, MMI does not

necessarily minimize the classification error.

The aim of minimum classification error (MCE) training is to correctly discriminate

the observations of an HMM for best recognition results and not to fit the distributions

to the data. Discriminative training of hidden Markov models (HMMs) using MCE

training has been used in several speech recognition tasks with much success. Tasks

where MCE training has been used to improve recognition performance include: con-

nected digit recognition [59, 23, 65, 108], the English "E"-set {b,c,d,e,g,p,t,v,z} [23],

speaker adaptation [74] and continuous speech [65].

MCE is somewhat prone to overspecialization, especially when training data is limited.

Overspecialization is characterized by good recognition performance for the data used

during training, but poor recognition performance for independent testing data. MCE

also tends to further emphasize any mismatch between the training and testing sets,

resulting in a degradation in testing set performance after a maximum has been reached.

Methods of reducing overspecialization in the minimum classification error algorithm

will be investigated in Chapter 3.

The fundamental concept of Bayesian learning or analysis is that the plausibilities of

alternative hypotheses are represented by probabilities, with inference being performed

by evaluating these probabilities. The result of Bayesian learning is a probability

distribution over model parameters that expresses our beliefs regarding how likely the

different model parameter values are.

Given a vector y = (Yl, ... , Yn) of n observations, we have the conditional probability

distribution P(yIO), which depends on the k parameters OT = (01,.", Ok)' To start the

process of Bayesian learning we define a prior distribution P(O) for the parameters O.

Using Bayes' rule, the conditional distribution of 0 given the observed data (posterior

distribution) is

P(OI) = P(yIO)P(O)
y P(y)'

The prior distribution is an important part of any Bayesian method, as it expresses our

knowledge about the distributions prior to any data being observed. Using the prior

distribution P(O) and likelihood P(yjB) we can calculate the posterior distribution

P(Oly) which is then used to classify an unknown observation. Note that P(y) is a

normalization term and is usually ignored.

respect to the posterior distribution. This is typically a non-trivial task and the integral

must either be numerically computed or simplified by approximating the posterior

using some parametric form. An approximation which is often used assumes that

the posterior is well approximated by a Normal distribution [72, 54, 58]. Assuming

such a simple parametric form allows the integral to be easily computed. Such an

approximation has the disadvantage that a complex multi-modal posterior distribution

cannot be accurately approximated.

Markov chain Monte Carlo methods [36, 37, 38, 39, 26, 79, 111] can be used to numer-

ically integrate the above model prediction with respect to the posterior distribution,

and have been used for this purpose in the field of neural networks by Neal [82]. These

methods make no assumption concerning the form of the posterior distribution.

The maximum a-posteriori (MAP) estimation method has been used extensively in

speech recognition and can be considered an approximate Bayesian learning procedure

if the posterior distribution is sufficiently peaked about its mode (assuming a single

mode).

Bayesian learning allows us to use more complex models when little training data is

available (as compared to point estimate techniques). The usage of Bayesian learning

using a Markov chain Monte Carlo algorithm will be investigated in Chapter 5.

Conventional estimation algorithms (such as maximum likelihood estimation) rely on a

reasonable amount of training data to give accurate parameter estimates. The accuracy

of the parameter estimate is directly related to the recognition performance of the

speech recognition system and is therefore of extreme importance. Overtraining, the

phenomenon where training set performance is better than the performance for an

independent testing set, is also more prevalent when training data is limited (it is

As mentioned, the collection of large speech databases is an expensive and time con-

suming task. As a result, it is not always possible to collect, segment and annotate

large databases for every task, language and dialect. The sparse training data problem

is therefore a real and important problem that must be addressed. This thesis therefore

investigates and proposes several techniques which improve the recognition accuracy

for sparse training data scenarios.

1.4 Organization of this thesis

In Chapter 2, the relevant hidden Markov model theory is reviewed. The hidden

Markov model speech recognition system is also briefly described. The speech corpora

used to experimentally evaluate the work in this thesis are described and relevant

results from the literature are reported. Finally, overtraining is discussed in terms of

the bias/variance problem.

Chapter 3 introduces minimum classification error (MCE) training. Overtraining is dis-

cussed within the MCE framework, and several modifications which limit overtraining

are proposed. Various aspects of the MCE algorithm and the proposed modifications

are discussed and experimentally evaluated.

Chapter 4 focuses on the application of Bayesian theory to adaptation in continuous

speech recognition. The classical maximum a-poste7'iori (MAP) adaptation algorithm

of Gauvain and Lee [45]is reviewed. An alternative gradient-based method of obtaining

the MAP estimate, which does not use a parametric prior distribution, is introduced.

A Bayesian inspired modification to the MCE training procedure is proposed. This

method effectively tries to obtain the MAP point of the correct classification probability

distribution of the parameters. Finally, the three different methods discussed in this

chapter are experimentally compared.

In Chapter 5, Bayesian learning is introduced and an implementation for continuous

speech recognition is discussed. Monte Carlo methods relevant to this work are in-

troduced and discussed. The implementation of Bayesian learning within an HMM

framework is described. The resultant system is tested for three situations where lim-

ited data is available for training purposes.

Finally, in Chapter 6, the discussions and results of previous chapters are summarized

and conclusions are made. Suggestions for future research are also given.

1. New modifications to the MCE algorithm are proposed in Chapter 3. These

modifications limit the effect of overtraining which is prevalent when using MCE

training.

2. A new gradient-based MAP adaptation algorithm (GMAP) that does not make

any assumptions concerning the form of the prior distribution is proposed in

Chapter 4. This algorithm is shown to outperform the standard MAP approach

of Gauvain and Lee [45] for the conditions tested.

3. A new MCE based MAP adaptation algorithm is proposed and tested in Chapter

4. This algorithm too is shown to work better than the standard MAP approach,

as well as being better than standard MCE.

4. Bayesian learning is introduced. An original implementation of Bayesian learning

for hidden Markov model speech recognition is introduced and discussed. This

is, to the author's knowledge, the first time that Bayesian learning using Markov

chain Monte Carlo has been used for hidden Markov model speech recognition.

Chapter 2

Background

In this chapter the basic hidden Markov model (HMM) theory and notation is pre-

sented. The implementation details of the HMM software, as well as the speech datasets

used in this work are also described. Finally, the bias/variance problem is discussed,

relating model complexity to overtraining.

This section documents the relevant HMM theory, as well as any implementation spe-

cific details. The configuration of the base system is also described.

The Hidden Markov model Toolkit for Speech Recognition (HMTSR) used in this

thesis was developed by the author and Nieuwoudt [83] during their Ph.D. studies.

The toolkit is used by several post-graduate students in the Speech Recognition group

at the University of Pretoria.

It is not realistic to present a thorough review of hidden Markov modeling theory in

this chapter; the reader is therefore referred to books such as that of Rabiner and Juang

Background

Thirteen Mel-frequency cepstral coefficients (MFCCs), along with their first and second

order differentials are used. The following describes the feature extraction process:

• A first order filter is used to pre-emphasize the speech signal [90, p. 112], to

spectrally flatten the signal and to limit finite precision effects later in feature

extraction. The filter transfer function used is

• The preemphasized speech signal is blocked into frames [90, p. 113] of length

16ms, with overlap of 6ms. The frames are therefore 10ms apart. The number

of samples (Ns) is determined by the block length (time) and the sampling rate.

A sampling rate of 16kHz would therefore result in a block of 256 samples.

• A Hamming window [90, p. 114] is used to minimize signal discontinuities at the

beginning and end of each frame. A Hamming window has the following form:

21(n
w(n) = 0.54 - 0.46cos(--)

Ns -1

• The power spectrum of the windowed frame is calculated using the fast Fourier

transform.

• The power spectrum is filtered using Nf meI-spaced filters [90, p. 183-190]. The

filters have triangular bandpass frequency responses. The number of filters is set

using the following formula Nf = ro'Und(0.0015 . Sr), where Sr is the sampling

rate. A sampling rate of 16kHz therefore results in 24 meI-spaced filters being

used .

• The discrete cosine transform (DCT) of the natural logarithm of the 24 filter

outputs is computed .

• A second-order polynomial fitting [90, p. 194] of 5 consecutive MFCCs is used to

estimate the first and second order derivatives of the MFCCs. This incorporates

temporal information (external to the frame) into the features.

Note that the values in the above feature extraction process were determined empiri-

cally and will not necessarily perform best in all circumstances.

1. The number of states N. The individual states are labeled as {I, 2, ... , N}, and

the state at time t is denoted as qt.

2. The number of mixture components per state M. Figure 2.1 shows a continuous

density HMM with 3 states (N = 3) and 4 Gaussian mixture components (M =

4).

3. The state-transition probability distribution A = {aij}, where aij is the prob-

ability of being in state j at time t + 1 after having been in state i at time t,

Background

I I \ \
C2V I \ \

I \
I I '- \ C24

1l\Llli

4. The observation probability distribution B

where

For a continuous density HMM the observation probability is represented as a

finite mixture of the form
M

bj(o) = L cjkN(o, J),jk, "Ejk).
k=l

A complete specification of an HMM includes the parameters N, M, aij, 'lfi, and the

mixture parameters Cjk, J1,jk and "£jk. The complete parameter set above of an HMM

will be represented as

The MFCC features are largely uncorrelated. A diagonal covariance matrix ("£jk) is

therefore used in this work, which greatly reduces the number of parameters that are

Left-to-right hidden Markov models limit transitions to forward transitions only, i.e.

aij = 0 'II j < i. Left to right hidden Markov models with no skipping transitions are

used in this work where aij = 0 'II j =1= i and j =1= (i + 1).

The probability of an observation sequence 0 = (01,02, ... , OT) given the model 0

(P(OIO)) can be obtained by summing over all possible state sequences q = (q1q2 ... qT),

P(OIO) = L P(O, qlO) = L P(Olq, O)P(qIO).
all q all q

T

P(O, qlO) = nqobq, (01)!!("qHq, . bq, (0,))

T

= rr(aqt-lqt· bqt(Ot)),
t=1

The Viterbi algorithm is used to find the single best state sequence q = (q1 q2 ... qT)

and its probability P(O, qlO), for a given observation sequence 0 = (0102 ... OT). The

Forward-Backward procedure is used to determine the probability of an observation

sequence given the model 0, i.e., P(OIO). Due to efficiency considerations, the best

state sequence is used for recognition and some training procedures, as opposed to

using all possible state sequences.

Embedded training is often used after the above training steps. A short discussion of

the training procedures and related algorithms follows:

• The transition probabilities, initial probabilities, number of states and Gaussians

per state are set by the user in a configuration file. In this work, the transition

probabilities were always initialized as

i = 1,

otherwise.

• The Gaussian mixture weights are initialized as 1/M, for an 111 Gaussian mixture

state.

• Labeled data is divided into equal sized segments, one segment for each state in

the HMM. The speech segments are used to initialize the HMM mixture means

and variances by using the segmental K-means algorithm to cluster the features

into Iv! clusters (M Gaussian mixture state), the means and variances of which

are used to initialize the mixtures for the associated state.

Alternately, in the absence of labeled data, utterances are divided into equal sized

blocks using the transcription given. Further training then proceeds using search-based

training.

Maximum likelihood training The Baum- Welch method, also known as expecta-

tion maximization (EM) [28], is used to iteratively maximize the likelihood P(OIB).

To describe the procedure of segmental re-estimation of the parameters, we first define

~(i, j), the probability of being in state i at time t and state j at time t + 1. We also

define ft(i) as the probability of being in state i at time t and ftU, k) as the probability

of being in state j at time t with the kth mixture component accounting for 0t.

The forward-backward algorithm [90, p. 334] is used to estimate the above probabilities

given the current model. The parameter re-estimation formulas used are,

Segmental training The forward-backward algorithm used in maximum likelihood

training is relatively computationally expensive and slow. A segmental training step

[61] is therefore used to quickly obtain a relatively good estimate of the model param-

eters (prior to using the EM/ML algorithm). The Viterbi algorithm is used to perform

a forced-alignment, in which the best state sequence is obtained. The state alignment

is then used to reestimate the model parameters. This is often called segmental train-

ing, as the observation sequence is segmented (state aligned), with the segments being

used to reestimate the parameters of the associated states. It would, however, only be

fair to mention that the forward-backward algorithm does have a stronger theoretical

background.

The same re-estimation formulas as that used in the ML/EM algorithm (Eqs. (2.12)

to (2.15)) are also used here. The probabilities ~t(i,j), 1't(i) and 1'(j, k) are, however,

estimated as follows

~t(i,j) = S(qt - i)S(qt+l - j)

1't(i) = S (qt - i)

(" k) - S(_") cjkN(°t, J1jk, ~jk)
1't J, - qt J bj(Ot)

(2.16)

(2.17)

(2.18)

8(il={:
Embedded training It is often advantageous to use a search algorithm (see Section

2.1.5), not only to perform a state alignment, but also HMM alignment. Here a search

algorithm is used along with the transcription of the speech units to automatically

align (segment) the speech data (HMM alignment). We are therefore not relying on

any manually created labels, but allowing the current model to determine where a

label should begin and end. The search is limited to the transcription of the relevant

utterance. Some optional HMM models are permitted inside the transcription, this is

to allow models such as silence to be inserted (by the search), where they might not

occur in the transcription. The re-estimation is performed in exactly the same way as

done in the segmental training step. In some situations, where some or all of the data

is not labeled, this step is essential. For a dataset which is not labeled at all, such as

,
~/6o/(tJ(~

h /S-~ s 'f:.1X

the TIDIGIT dataset, only the initialization step and embedded training is performed

(the other training phases rely on labelled data).

Mixture splitting An alternative that has been found to work well is Gaussian

splitting [100, 87]. Here, we initialize only one mixture component per state and then

split the mixture component with the highest mixture component weight into two

separate Gaussians. This is done at the end of each training iteration, until all allowed

mixtures components have a non-zero mixture weight. The Gaussians are split in the

direction of maximum variance. This is done by setting the mean and variance of the

new Gaussian equal to the existing Gaussian and then moving the mean vectors a small

distance away from each other in the direction of maximum variance. The weights of

the two new Gaussians are set to be equal to one half that of the original Gaussian.

Figure 2.2 shows a two-dimensional example of a two-component Gaussian mixture

where the component with the largest weight (0.7) is split into two new Gaussians,

creating a mixture containing three Gaussians. Note that the mean and variance of

the new Gaussians will tend to change considerably after the next training iteration.

If, during training, a mixture weight were to become zero, the Gaussian associated

with the largest weight will be split. This technique has been used for all experiments

in this work.

Hidden Markov models implicitly model state duration probability with a Geometric

distribution, i.e.

,f2 = 0.35
I \

" " Cl = 0.3(C ~
I, ',1 ------i ':1
I l
I
:'
:'
:'
:\ I
: \ I
',\ I.
,\. I.'
" •••• ", t'

duration density is inappropriate for most systems. We would prefer to explicitly model

the duration probability in some analytic form. Initial duration modeling approaches

[90] assigned each state a discrete duration probability, which was incorporated into the

search algorithm. These algorithms were, however, computation ally expensive. Post-

processing approaches [91, 93], which were more computationally efficient, added the

duration contribution to the Viterbi metric after candidate paths had been identified.

If the best path is not one of the candidate paths, then this method fails.

Burshtein [16] proposed a duration modeling approach, which adds the duration metric

at each frame transition in the Viterbi algorithm.

The modified Viterbi algorithm keeps track of the duration ds(t) of each state s at

time t. Letting Afi denote the duration, at which the gamma distribution of state i is

a maximum, then the duration penalty Pij of making a transition from state i at time

t to state j at time t+ 1 is

0 di(t) < Mi and Z = J

log(di(t+l)) di(t) ~ !vIi and Z = J
Pij = di(t) (2.22)

log(di(t)) di(t) < !vIi and i=lj

log(Mi) di(t) ~ !vIi and i =I j.

Auto-transitions are therefore not penalized before the duration is Mi. After the dura-

tion Mi, we penalize gradually. Upon exit from the state, the overall duration metric

is log(di(t)), which is as it should be. Word duration modeling is implemented in much

the same way.

The duration model parameters are estimated using the Viterbi state-alignment. After

determining the mean and variance of the duration from the state alignment, the

parameters a and fJ are estimated for each state using Eqs. (A.I4) and (A.I5). A

similar approach to duration modeling was also proposed by Du Preez [35]. Burshtein's

approach has been implemented and is used, where indicated, in this thesis.

Continuous speech recognition requires the segmentation and labeling of continuous

speech. Fortunately, there are efficient methods of segmenting and labeling continuous

speech at word and phoneme levels. Various (search) algorithms exist, each with ad-

vantages and disadvantages. However, only those algorithms implemented and used in

this work will be described here.

Grammar networks and language models A grammar network/language model

is used to determine which transitions may be taken, or what probability there is

of taking a certain transition. A grammar is an explicit set of rules limiting which

models/words/phonemes may follow others. The grammar is implemented as a finite

state network (FSN), which is created from a text based grammar. Note that each FSN

node is associated with a single HMM, but there may be multiple nodes associated with
•

the same HMM.

Trellis search The trellis search algorithm [106] is a frame-synchronous implemen-

tation of the Viterbi search algorithm, which allows transitions between models or

grammar nodes.

N-best search It is often necessary to obtain the N-best HMM sequences. The

N-best strings are often used to obtain a confidence measure for a recognition output.

MCE training uses the N-best strings to obtain a measure of misclassification. If the

problem is simple enough, the N-best HMM sequences can be obtained by aligning

all possible HMM sequences. This is, however, not feasible for most, if not all, speech

recognition applications. As a result, efficient N-best search algorithms have been

developed [106, 103]. The disadvantage, is that none of these algorithms are guaran-

teed to give the true N-best sequences (although most times there will only be small

differences in probability and not the sequences).

The N-best search implemented and used in this work is the tree-trellis algorithm

proposed by Soong and Huang [106]. The search comprises two stages, namely

The standard trellis search algorithm is modified, to store a partial path map.

The partial path map contains the likelihood scores of all partial paths leading

Background

After the trellis search algorithm has been performed, a backward tree search

is started from the terminal node. This part of the search is done time asyn-

chronously. The search tree is implemented using the A* algorithm [99, 86]. The

A * search restricts the search by using an admissible heuristic h, such that h

never overestimates the cost to reach the goal. Here, we use the partial path

map, which gives the exact cost.

2.2 Overtraining

Overspecialization (or overtraining) occurs in most training algorithms where a finite

number of examples are available for training. If the training data set was perfectly

representative of the test set (this would only truly occur when an infinite number of

training examples were available), there would be no difference between training set

and testing set performance. However, in practice data sets are limited in size and the

test set performance tends to be worse than the training set performance. This is a

result of the model becoming too specialized and not generalizing well.

Model complexity influences overtraining, especially when little training data is avail-

able. This phenomenon can be described in terms of the bias/variance problem.

2.2.1 The Bias/Variance Dilemma

Here, due to its less complex and easily interpreted nature, the bias/variance problem

will be discussed within a regression framework. It is, however, just as relevant to

classification problems.

The regression problem is to create a function f(xl>') using a training set D, with

D = (:1:1, Y1), ... ' (xn, Yn), where we wish to estimate y for an observation x. Typically,

the function 1 is fixed and we wish to merely estimate the function parameters A.

Given the data (V), and x, an appropriate measure of the suitability of I('/A) as a

predictor of y is the mean-squared error (MSE), or

E[(y - E[ylx])2Ix, V]

+ (J(x; V) - E[ylx])2.

The expectation E[(y-E[ylx])2Ix, V] is not dependent on the data or on the estimator

I. The distance (J(x; V) - E[ylx])2 therefore measures the effectiveness of 1 as a

predictor of y. The mean-squared error of 1 as an estimator of the regression E[ylx]

where Ev is the expectation with respect to the training set V, i.e. the average over

the ensemble of possible datasets V. Equation (2.24) can be rewritten in terms of bias

and variance [46],

(Ev[J(x; V)] - E[ylx])2

+ Ev[(J(x; V) - Ev[J(x; V)])2].

The term (Ev[J(x; V)] - E[ylx])2 is the bias of the estimator and measures any sys-

tematic tendency for it to give the incorrect answer. An estimator (or classifier) is said

Background

is the variance in the estimator error, and measures the sensitivity of the estimator to

any randomness in the training examples.

The bias and variance of an estimator are typically affected by, among others, model

type, model complexity and the parameter estimation algorithm. Unfortunately, re-

ducing the bias typically increases the variance (and vice versa). Reducing the sum

of the bias and variance (or mean-squared error of .f), therefore generally requires a

trade-off between their contributions.

The trade-off between bias and variance is usually optimized by varying the complexity

of the model. This trade-off between bias and variance can be illustrated using a one-

dimensional regression problem. Figure 2.3 shows one such example. In this case, a

polynomial of degree n is fitted to the noisy data by minimizing the mean-squared

error. Results using n = 2, n = 5 and n = 50 are shown.

MSE = 0.0107

(a)

MSE = 0.0005

(b)

MSE = 0.0021

(c)

Figure 2.3: One hundred observations of the raised cosine function (0.5cos(lOxjpi) + 1) plus
noise. Noise has zero-mean Gaussian distribution, with standard deviation 0.1. The solid
curve is the target function, and dotted curve the polynomial fit of degree n, with (a) n = 2,
(b) n = 5 and (c) n = 50.

The polynomial fit in (a) is relatively poor, and is a result of the inability of the model

(or function) to represent the underlying process. The solution in (a) has a large mean-

squared error due mainly to the bias term. The polynomial fitted in (c) has a high

degree n, and has started fitting the noise; here the variance term accounts for most of

the mean-squared error. The polynomial fit shown in (b) is the result of a model which

is complex enough to fit the true underlying process (low bias), yet simple enough such

that the noise in the data is not modeled as well (low variance).

The optimal choice of model complexity will also vary with the amount of available

training data. More training data will reduce the variance and so more complex models

can be used. However, when there is relatively little data available, less complex models

will be preferred.

The principles in the above discussion are incorporated in Occam's Razor. Simply

stated, Occam's Razor is a principle that states that unnecessarily complex models

should not be preferred to simpler ones. The bias/variance dilemma is often problem-

atic when using single point estimates in sparse training data situations. The effects of

the bias variance problem will be encountered in Chapter 4 where, for certain sparse

data scenarios, less complex models are preferable. In Chapter 5 the usage of Bayesian

learning is investigated. Bayesian learning reduces the variance of the estimate or so-

lution and therefore results in more complex models being preferred over less complex

ones in such sparse data scenarios.

2.3 Experimental procedure

The main goal of the experiments designed in this study is to investigate the relative

effectiveness of the algorithms proposed in comparison with conventional algorithms.

This work therefore attempts to keep as much in common for all other aspects of

the speech models associated with both the conventional and the proposed techniques

and to keep the recognizer structure as simple as possible. The basic HMM system

described in Section 2.1 has been used throughout.

There is little point in presenting discrete phoneme recognition (phoneme classifica-

tion) results as this can be misleading. A phoneme classifier that only chooses the

most frequently observed phonemes will tend to perform well for phoneme classifica-

tion. Such a classifier will, however, not necessarily work well for other tasks such as

continuous word or phoneme recognition. Continuous phoneme recognition results are

therefore reported throughout this thesis. The recognition accuracy of the system is

reported, where accuracy is defined as:

A
Phones - Subs - Dels - Ins

ccuracy = Ph 'ones

where Phones refers to the number of phones in the correct transcription, Subs the

number of substitutions, Dels the number of deletions and Ins the number of inser-

tions. Error rates reported are simply 100% - Accuracy.

It is necessary to determine whether the recognition accuracy of a new system is better

than that of an existing baseline or reference system. A test of significance can therefore

be performed to determine whether this is probably true or not. We must therefore

decide between the two hypotheses:

where Pn is the recognition accuracy of the new system and H is the baseline or

reference accuracy. A one-tailed test is used, since we are interested in determining

whether the improvement in recognition accuracy is better than a reference system

performance.

The maximum probability with which we would be willing to risk the error of rejecting

a hypothesis when we should have accepted it is called the level of significance. If, for

example, a level of significance of 0.01 were attained, then we would be 99% confident

that we had made the correct decision in accepting the hypothesis.

a 0.05 and 0.01 level of significance for the three speech databases used (described

in Section 2.4). The baseline accuracy is assumed to be 50%, i.e. the worst case

improvement required (a 70% baseline performance, for example, will require a smaller

improvement to reach the same level of significance).

Table 2.1: Improvements in recognition accuracy required to attain a 0.05 and 0.01 level of
significance for the three speech databases used. The baseline accuracy is assumed to be 50%.
The number of phonemes in the relevant testing sets, used to determine the significance level,
are also listed.

Database Phonemes Level of significance

0.05 0.01

TIMIT 59858 0.34% 0.48%

TIDIGITS 28330 0.49% 0.69%

SUNSpeech 9026 0.87% 1.23%

The improvements in accuracy required (Table 2.1) are typically smaller than one

percent, but greater than 0.1%. Results will therefore be specified to one decimal

place. In this work, improvements that are significant to a level of 0.01 will simply be

referred to as significant.

2.4 Speech datasets

This section describes the speech corpora used in this thesis. Three different datasets

are used, namely: TIMIT, TIDIGITS and SUNSpeech.

The TI:tvIIT [4] corpus of read speech was designed to provide speech data for the

acquisition of acoustic-phonetic knowledge and for the development and evaluation of

automatic speech recognition systems. TIMIT contains a total of 6300 sentences, 10

sentences spoken by each of 630 speakers from 8 major dialect regions of the United

States.

The sentences found in TIMIT consist of 2 dialect "shibboleth" sentences, 450 phoneti-

cally compact sentences, and 1890 phonetically diverse sentences. The dialect sentences

(SA sentences) were meant to expose the dialectal variants of the speakers and were

read by all 630 speakers. The phonetically-compact sentences were designed to provide

a good coverage of pairs of phones, while the phonetically-diverse sentences (the SI

sentences) were selected from existing text sources so as to add diversity in sentence

types and phonetic contexts. Table 2.2 summarizes the sentences found in the TIMIT

database.

Sentence Unique Number of Total Sentences per

type sentences speakers speaker

Dialect (SA) 2 630 1260 2

Compact (SX) 450 7 3150 5

Diverse (SI) 1890 1 1890 3

Total 2342 6300 10

Following convention the standard TIMIT 39-phone set is used. The 63 phones found

in the TIMIT database are reduced to 39 by combining models as done by Lee [68].

The TIMIT dataset is used in experiments in Chapters 3, 4 and 5. In Chapter 3

overtraining is investigated using the suggested training and testing sets. Chapters

4 and 5 however, present gender adaptation experiments and limited training data

experiments using TIMIT.

there is limited training data for female speakers. The small female training set consists

of speech data from two speakers from each of the eight dialect regions. No sentence

text appears in both the training and test sets. A small gender independent training

set will be required for testing the algorithms presented in Chapters 3 and 5. One such

set has been created by randomly selecting two male and two female speakers from

each of the eight dialect regions found in the TIMIT dataset.

Table 2.3 describes the different training and test sets used. Gender specific testing

sets are used in Chapters 4 and 5.

Table 2.3: Description of TIMIT training and testing sets used

Description Label Number of speakers Number of Duration

Male Female Total Sentences (minutes)

Training sets:

Full (standard) T 326 136 462 4620 236.5
Male TM 326 0 326 3260 165.2
Female TF 0 136 136 1360 71.3
Female-small TFS 0 16 16 160 8.2
Small (gender indep.) Ts 16 16 32 320 16.1

Testing set (standard) 112 56 168 1680 86.4

The TIMIT dataset has been used extensively in the speech recognition literature

to experimentally test algorithms and hypotheses. The following summarizes a few

such cases, so as to ensure that the reader has a fair idea of what performance can be

expected for TIMIT. Only system configurations similar to that used here are reported.

Rathinavela and Deng [96] investigated the usage of state-dependent linear trans-

forms of Mel-warped DFT features. The authors performed discrete (not continuous)

phoneme recognition to test ML and MCE trained H~IMs, as well as their "optimum-

transformed HMM". Table 2.4 summarizes the results reported for simple left-to-right

3 state, 5 mixture HMM models.

Table 2.4: Summary of TIMIT results reported in [96]

Model/Training Phonetic classification rate (%)

ML-HMM 59%

MCE-HMM 66%

MCE-THMM 69%

McDermott [75] used the TIMIT database to evaluate the effectiveness of MCE for

continuous speech recognition. Table 2.5 summarizes the TIMIT results presented by

McDermott in [75].

Table 2.5: Summary of TIMIT accuracy results reported by McDermott [75]

Number of mixtures ML MCE ML+bigrams MCE+bigrams

1 48.8 56.0 61.0

4 55.0 61.9 62.4 66.2

8 57.1 62.7 64.8 67.3

16 59.9 63.2 66.8 68.7

Yuk and Flanagan [119] investigate the use of neural network based adaptation methods

applied to telephone speech recognition using TIMIT and NTIMIT [56]. Recognition

accuracy of 62.2% is reported for TIMIT using their base system, a 3 state left-to-right

mono-phone HMM with 30 Gaussian distributions per state.

Moreno and Stern [80] compared speech recognition accuracy for high quality recorded

speech and speech as it appears over long-distance telephone lines. The performance of

the CMU SPHINX system was compared for the TIMIT and NTIMIT [56] databases.

Recognition accuracy of 52.7% was reported for the TIMIT test set.

The TIDIGITS [70]was designed and collected for the purpose of designing and eval-

uating algorithms for speaker-independent recognition of connected digit sequences.

The corpus contains read utterances from 326 speakers (111 men, 114 women, 50 boys,

and 51 girls) each speaking 77 digit sequences. The data was collected in a quiet

environment and digitized at 20 kHz.

The digit sequences are made up of the digits: "zero", "oh", "one", "two", "three",

"four", "five", "six", "seven", "eight", and "nine". The 77 digit sequences spoken by

each of the speakers can be broken up as follows: 22 single-digit sequences (2 of each

of the 11 digits) and 11 each of randomly generated 2,3,4,5 and 7-digit sequences.

The database is divided into two subsets, one to be used for algorithm design and the

other for evaluation. The division yielded speaker independent training and testing

sets, each containing half of the male and female speakers. The boys and girls test and

training utterances are not used in this work.

As with TIMIT, the TIDIGIT dataset is used for gender adaptation and reduced data

experiments in later chapters. It is for these experiments that reduced subsets are

created for female speakers in the dataset. A reduced speaker set (Tws) is created,

using four randomly chosen female speakers, using all 77 digit sequences per speaker.

The above set is further reduced by using only 7 digit sequences per speaker (2 single-

digits and one each of 2,3,4,5 and 7 digit sequences). Table 2.6 presents the training

and testing sets used for the TIDIGITS corpus.

Description Label Number of speakers Digit Duration

Male Female Total sequences (minutes)

Training sets:

Full (standard) T 55 57 112 8624 253.4

Man TM 55 0 55 4235 121.9

Woman Tw 0 57 57 4389 131.5

Woman-small Tws 0 5 5 385 10.1

Woman-very-small Twvs 0 5 5 35 55 s

Testing sets:

Full 55 57 112 8623 254.4

Man 55 0 55 4235 123.1

Woman 0 57 57 4389 131.3

Normandin [87]proposed an approach for splitting Gaussian mixture components based

on maximum mutual information estimation (MMIE) training. Experiments using the

TIDIGITS dataset were conducted. Recognition word (digit) error rates of between

1.6% (1 mixture per state) and 1.0% (16 mixtures per state) were obtained for models

with variable numbers of states. Utilizing their mixture splitting algorithm, however,

resulted in a digit error rate of 0.71%.

Jiang et at. [57] investigated a new Bayesian predictive classification (BPC) approach

for robust speech recognition where a mismatch between training and testing conditions

occurred. TIDIGITS was used, along with other datasets, to test their new approximate

BPC algorithm. Using a 10 state, 10 mixture per state continuous density HMM, digit

error rates of 2.2% and 2.4% were reported for their baseline system and new BPC

system respectively, when using the standard TIDIGITS dataset.

The SUN Speech database was compiled by the Department of Electrical and Electronic

Engineering of the University of Stellenbosch to contain phonetically labelled speech in

both English and Afrikaans. The data was recorded in a controlled environment, with

12 bit resolution and a 16kHz sampling rate. Sixty sentences comprising four sentence

sets were chosen to exhibit the diversity of phonemes in the two languages. Details of

the number of speakers and the number of sentences spoken by each group of speakers

are given in Table 2.7.

Table 2.7: Description of SUN Speech database: number of male and female speakers and
total number of speakers for each sentence set

Language Number of speakers Sentence set Number of sentences

Male Female Total

Afrikaans 24 16 40 1 10

18 12 30 2 10

English 33 17 50 3 20

22 4 26 4 20

A total of 59 phonetic categories, including both a silence and unknown category,

were used to segment both the Afrikaans and the English speech. It was attempted

to assign the labels phonetically, i.e. according to the sound produced, rather than

phonologically assigning the labels, i.e. according to what was supposed to be said.

The SUN Speech database is used for cross-language adaptation experiments in this

work. Subdivision of the dataset was therefore dictated by the requirements for cross-

language adaptation.

be obtained by using data from the first sentence set for training and data from the

second sentence set for testing. We however, need to create a smaller training subset,

so as to recreate a scenario where extremely little Afrikaans training data is available.

The database is not entirely consistent in that some speakers, but not all, spoke sen-

tences from more than one sentence set. Those speakers who spoke all of the Afrikaans

sentences were used to create a reduced Afrikaans set. This has the added utility of

creating a speaker-dependent (SD) test set; although this set is not used in this thesis.

The reduced Afrikaans training set will be referred to as the "adaptation set", as it is

used as such in many of the experiments.

The full English set is used for training purposes (it is not required for testing). Table

2.8 gives the details of the subdivision of the database into training and testing sets.

Table 2.8: Details of SUNSpeech training and testing sets used

Language Description Label Number of Speakers Sentence Duration

Male Female Total set (minutes)

English Training E 55 21 76 3 and 4 135.5

Training set A 23 16 39 1 22

Training subset As 2 6 8 1 5.5
Afrikaans

SD test set 2 6 8 2 7.7

SI test set 14 1 15 2 13

The usage of this database in the speech recognition literature is somewhat limited.

Waardenburg et al. [115] investigated the isolated recognition of stop consonants using

HMMs. More recently, Nieuwoudt and Botha [84, 85] investigated cross-language usage

of acoustic information using this dataset, where continuous word recognition results

were presented. To the authors knowledge, no continuous phoneme recognition results

Chapter 3

Minimum classification error

training

Although there are several learning algorithms (such as maximum mutual information

and minimum discriminative information) which can be classified as discriminative

training techniques, this chapter will exclusively describe Minimum classification error

learning and several modifications thereof.

Conventional maximum likelihood (ML) estimation attempts to maximize the like-

lihood of the training data given the model parameters of the corresponding class.

The models from other classes do not participate in the parameter estimation. By

maximizing the likelihood of the correct model, but not minimizing the likelihood of

other competing models, it cannot be guaranteed that the ML models will optimally

discriminate against incorrect classes in recognition. Maximum likelihood estimation

can be problematic in situations where the distribution of the data to be recognized

is significantly different from the distribution of the model, as noted in the literature

[81, 14, 75].

A theory of error-corrective training for pattern classification was first proposed by

Amari [2], where an adaptive procedure was developed and shown to converge to a

local minimum of the classification error function.

Franco and Serralheiro [42] proposed a training procedure which aims explicitly at

reducing the recognition error and increasing discrimination between classes. The

algorithm is based on a criterion function which is the quadratic error between target

state probabilities and the a-posteriori state probabilities given the training data. The

target state probabilities are forced to be one for the correct state and zero for incorrect

states. This criterion function was then used to adjust HMM parameters heuristically

to improve the training set recognition rate.

Chen and Soong [19] introduced an N-best candidates based frame-level discriminative

training algorithm based on an N-best tree-trellis algorithm [106]. A frame-level loss

function was defined and minimized using the gradient descent method. The loss func-

tion was defined as a half-wave rectified log-likelihood difference between the correct

and selected competing hypotheses. The loss function is accumulated over all training

utterances. Their algorithm was tested using a connected Chinese digit recognition ex-

periment and a large vocabulary isolated word experiment. Significant improvements

over traditional ML were reported, with the string error rate being reduced from 17.0%

to 10.8% for the connected digit experiment and the isolated word recognition error

rate being reduced from 7.2% to 3.8%.

Maximum mutual information (MMI) A more formal, information theoretic

approach based on the maximum mutual information criterion has been used to train

HMM based speech recognition systems [88, 87, 62, 113]. The following description

of MMI is a summary of that found in [75]. The MMI approach attempts to find the

model parameters e which minimize the conditional entropy Ho(CIX) of the random

He(CIX) = - z= P(C = c, X = x)logPe(C = clX = x),

which represents the uncertainty of C given that we have observed X. The entropy of

a discrete random variable C, which is a measure of the uncertainty of C, is defined as

He(C) = - z= P(C = c)logPe(C = c).

Minimizing the conditional entropy, can therefore be accomplished by maximizing the

mutual information between C and X , Ie(C; X), i.e.

~ Pe (C = c, X = x)
Ie(C; X) = ~ P(C = c, X = x)log Pe(C = c)Pe(X = x)'

c,x

MMI maximizes the difference between Pe(C = c, X = x) and Pe(X = :r;) = L:c Pe(C =

c, X = or). Unfortunately, maximizing the mutual information does not necessarily

minimize the classification error.

Minimum classification error Juang and Katagiri [60] proposed a new formulation

for the minimum classification error problem, together with a fundamental technique

for designing classifiers that approach the objective of minimum classification error.

The method was applied to multilayer neural networks, with significant improvements

in performance over traditional training methods.

The minimum classification error training method, as introduced by Juang and Katagiri

[60], has been used extensively in speech recognition. Applications thereof include

training of neural networks [60, 104] and dynamic time warping (DTW) [64, 17, 76, 77]

and hidden Markov models. The remainder of this section presents a concise literature

survey of the usage of the MCE procedure to train HMM systems for speech recognition.

Chou et at. [23] introduced a segmental generalized probabilistic descent (GPD) train-

ing algorithm for HMM based speech recognizers using Viterbi decoding. Instead of

using the forward-backward procedure, they proposed using the best state sequence

obtained using the Viterbi algorithm. Instead of using a complicated constrained GPD

algorithm, they apply segmental GPD to transformed HMM parameters, thereby en-

suring that the HMM constraints are maintained. They reported results for both the

E-set and TIDIGIT database. Significant improvements in phonetic classification from

76% to 88.3% were reported for the E-set problem when using a 10 state, 5 mixture

HMM. Their results for the connected digit experiment (TIDIGITS) resulted in an im-

provement in continuous digit recognition rates from 98.7% to 98.8%. A more general

and complete article was later published [59].

Chou et at. [24] later introduced a minimum string error rate training algorithm, based

in the N-best string models. Here, the MCE criterion is applied at string level, with

the goal of minimizing the string error rate in continuous and large vocabulary speech

recognition tasks. The N most confusable strings are obtained by using the tree-trellis

N-best search of Soong and Huang [106]. Their MCE algorithm was tested using the

TIDIGIT database and the speaker independent portion of the DARPA naval resource

management (RM) speech recognition task. An improvement in string error rate from

1.3% to 1.0% was reported for the TIDIGIT dataset, while a word error rate reduction

of 17%-20% was observed when using the DARPA RM task.

McDermott [75] investigated the usage of string-level MCE. A second order optimiza-

tion algorithm to minimize the string-level MCE criterion was described and found to

be a reasonable alternative to the GPD algorithm. l'vlcDermott defined a more gen-

eral MCE loss function which attempted to represent finer grained differences between

the correct and incorrect strings, however, no significant advantage was found as a

result of using this new loss function. A second loss function, also designed to reflect

phoneme/word accuracy was proposed, but not evaluated. The TIMIT dataset was

used to compare string-level MCE and the baseline ML-trained HMM systems, the

results of which are summarized in Table 2.5.

Kwon and Un [65] proposed a new method of finding discriminative state weights

recursively using the MCE algorithm. They relax the HMM constraints on ~tate-

weights, such that the sum of the mixture weights for an HMM sum to the number

of states. The mixture weights for an individual state can therefore sum to a value

greater or smaller than one. This results in what could be called state-weighting, where

certain states have higher weights than others. The MCE algorithm was then used to

estimate the weights. Experimental results showed that recognizers with phoneme-

based and word-based state-weights achieved a 20% and 50% decrease in word error

rate respectively for isolated word recognition, and a 5% decrease in error rate for

continuous speech recognition.

Other applications of MCE within a speech recognition framework include speaker

adaptation [74], keyword spotting [109], speaker identification [105] and feature ex-

traction [9, 8].

The implementation of MCE discussed in this thesis is based on the work of Chou et

at. [23,59, 24]. The work presented in this chapter has been summarized in our ICSLP

2000 article [89].

3.2 Minimum classification error training

The aim of minimum classification error (MCE) training is to correctly discriminate

the observations of an HMM for best recognition results and not to fit the distributions

This section will briefly describe and discuss the MCE algorithm; for a more detailed

discussion the reader is referred to the original work of Juang and Katagiri [60] and

Juang et al. [59].

The following is a brief introduction to Bayes risk and Bayes decisions; for a more

detailed text on this subject the reader is referred to the books of DeGroot [27] and

Duda and Hart [40]. The optimal choice of answer for an inference problem is a 0 E e
which maximizes the expected utility [7],

Ix u(C(x; 0) Ix)p(x)dx,

where C(x; 0) is the classifiers decision for the observation x, u is a function attaching

utilities to each consequence of a decision and X is the set containing all possible

observations. Alternatively, we could work with a loss function l(C(x)lx), where

where f is an arbitrary, fixed function. The optimal solution is then the value of 0

which maximizes the expected loss,

Ix l(C(x; 0) jx)p(x)dx.

The conditional loss l(Cilx), or the risk of classifying the observation x into class i can

be defined as

N

l(CiIX) = L '\jP(Cjlx),
j=l

where P(Cj Ix) is the a-posteriori probability of choosing the class j given the data x,

which can be easily obtained using Bayes' theorem if the class-conditional densities of

the data are known. The value Aij is the cost of classifying a class i observation as

class j. Typically, the costs used in the loss function are chosen to be the zero-one loss

function or

which associates zero cost with correct classifications and unity cost for incorrect clas-

sifications. For this special case the conditional loss becomes

l(Cilx) =LP(Cjlx)
#j

which is the probability of an error in classification and the minimum risk classifier

is the classifier which delivers the minimum classification error. The classifier which

C(x) = Ci where i = argmaxP(Cjlx).
j

Discriminative training

The error rate for a finite data set is a piecewise constant function of the classifier

parameter 0 and therefore a poor candidate for optimization using a numerical search.

It is therefore necessary to define an optimization criterion which provides a reasonable

estimate of the error probability.

C(x) = Ci where i = argmaxPj(OIOj),
j

where Pj(OIOj) is the log-likelihood of the input utterance or observation sequence

(0 = {Ol,02,'" ,on}) for the j-th model.

It is therefore necessary to express the operational decision rule (Eq. (3.12)) in a

functional form. A class misclassification measure which attempts to emulate the

decision rule is therefore defined [59],

N

d(O) = -In[Pi(O!Oi)] + In[~ L e1n[Pj(OIOj)]1/P/1/,

j,jf-i

where TJ is a positive number, and N is the number of N-best incorrect classes which

are used in the misclassification measure. The value of TJ influences the behaviour of the

right-hand term in Eq. (3.13); for TJ = 00 the term becomes maXj,jf-iPj(O/Oj). A large

TJ will result in the misclassification measure only incorporating the closest incorrect

class, whereas a small TJ will include contributions from all of the incorrect classes. The

misclassification measure is a continuous function of the classifier parameters. A value

It is worth noting, that using TJ = 1 and loss function l(d) = d [101] results in an

optimization criterion very close to that of MMI (Eq. (3.4)). The zero-one loss function

can be any continuous zero-one function, but is typically the following sigmoid function

1l(d) = ---1+ e-oyd+,\ ,

where A is typically set to zero (or slightly smaller than zero). A loss value less than

0.5 indicates a misclassification has occurred (assuming A = 0).

N

l(O; e) = L li(O; e)I(X E Ci),
i=l

As mentioned in Section 3.2.1, the optimal solution for an inference problem is that

which minimizes the expected loss. For a classification problem involving N classes,

the expected loss is defined as

N

L(e) = Eo[l(O; e)] = L1 .li(O; e)p(O)dO.
i=l OEC,

The generalized probabilistic descent (GPD) algorithm [60] is used to minimize the

expected loss. The GPD algorithm is given by:

Discriminative training

where Ut is a positive definite matrix, Et is the learning rate or step size of the adap-

tation, and Ot is the model parameters at time step t. It can be shown [60] that the

expected loss converges to a local minimum when using the GPD algorithm and the

following conditions are satisfied

00LEt -+ 00, and
t=1
00

LEZ < 00.

t=1

Pi(OIOi) = L Pi(O, q!Oi),
all q

where q is a given state sequence, requires the use of the relatively computationally

expensive forward-backward procedure [90, p. 334]. We can, however, also use the

maximum of the joint observation-state probability, i.e.

Pi(OIOi) ~ max[Pi(O, qIOd]·
q

Since the best state sequence is segmented using the Viterbi algorithm and this seg-

mented sequence is used in the calculation of Pi(OIOi), this instance of the MCE algo-

rithm based on Eq. (3.22) is often referred to as segmental MCE.

The GPD algorithm is an unconstrained optimization technique and given that certain

constraints must be maintained for HMMs, some modifications are required. Instead

of using a complicated constrained GPD algorithm, Chou et ai. [23] applied GPD to

transformed HMM parameters. The parameter transformations ensure that there are

no constraints in the transformed space where the updates occur. The following HMM

constraints should be maintained,

The parameter transformations given in Table 3.1 are therefore used before and after

parameter adaptation (Eq. 3.18).

Parameter Transformed Forward Reverse

parameter transform transform
it"

a a·· aij = In(aij)
e 'J Transition probabilitieslJ lJ aij = L:. ea;j

Cjk Cjk ejk = In(cjk) ijk Mixture weightsCjk = L: Ck.e J

fLjkl fLjkl
-. - I!i.!oi.

fLjkl = ajklfLjkl Gaussian meanfLJkl - (Tkl

ajkl ajkl o-jkl = In(ajkl) ajkl = eajkl Gaussian std. dev.

The sensitivity of the mean parameter update is determined by the size of the associated

variance. The positive definite matrix Ut should therefore be chosen carefully, so as

to compensate for this sensitivity. Chou et ai. [23] used a diagonal matrix, where the

diagonal elements were equal to the variances (for the mean parameter update). This

is equivalent to using the mean parameter transformation in Table 3.1 with the matrix

Ut equal to the identity matrix and has been used throughout. Under these conditions,

GPD reverts to the simpler gradient descent algorithm (for all parameters), where

It can be easily verified that the partial derivative of li(di) (Eq. (3.15)) with respect

to the misclassification measure (di) is

fJli- = rvd·(1 - d·)8d
i

I t t .

Calculation of the parameter update defined in Eq. (3.18) or (3.23) requires the gradi-

ent function \7l(O; e) or 81~~;1J). In what follows, the gradients and parameter updates

for the four parameter types (mean, variance, mixture weights and transition proba-

bilities) are derived.

According to Eq. (3.23) the parameter update for the mean vectors of HMM i is as

follows:

The partial derivative of li(On; en) with respect to jJ,.;~,can be obtained using the chain

rule

where g~;i can be calculated using Eq. (3.24), and from Eq. (3.13) we get

{

_ aj(O;On)
~d· a-Ii)U t _ fLjkl

Oil(~l - e'1fi(O;On) aj(O;On)
] 'I;""' '1fj(O;On) a-(i)

L.j,joli e fLjkl

(i)
oln(bj (Ot)) = (i)(2)-d/21,,(i)I-1/2(b(i)())-1 (Ot! __ (i))

-(i) e]k 1f LJ]k] °t (i) M]kl
OMjkl ajk1

2

_l'l;""'D (~ __ (i))
2 L.I=l (i) fLjkl

e "jkl

Having updated the transformed mean using Eq. (3.25), the correct mean can be found

using the inverse transformation M)~l(n + 1) = il)~l(n)a;~l(n + 1).

The partial derivative g~:is obtained using Eq. (3.24) and again from Eq. (3.13) we

have

· eCjk(n+l)
(2) () _ .

ejk n + 1 - -L-k-e-Cj-d-n-+l-) .

In the derivation of the MCE algorithm in the previous sections, it was assumed that

the whole training observation 0 must be one of N classes. MCE can, however, be

applied at the level of various speech units, such as phonemes, words and sentences.

Here, a search is used to automatically segment (state and HMM alignment) and label

the utterance for usage within the MCE framework. More specifically, the correct

alignment and the N-best incorrect alignments are required, for which an N-best search

is used.

The application of MCE to strings of phoneme or word units is known as string-level

MCE or embedded MCE [59, 78, 75, 24]. Here, the observation 0 is a concatenated

string of observations belonging to different classes. In this situation, MCE is used to

minimize the string error rate and not the individual phoneme or word error rates. Note

that although the phoneme or word error rates are not directly minimized, minimizing

the string error rate will tend to decrease the phoneme and word error rates.

The MCE procedure remains the same, except that in this case the correct string

and N-best strings are required, as opposed to the single correct and N-best incorrect

acoustic units. The N-best search proposed by Soong and Huang [106] to generate the

N-best alignments and subsequently used by Chen and Soong [18, 19] and McDermott

[75] for string-level MCE was implemented and used in our work.

Figure 3.1 shows a state occupancy diagram for a simple example where embedded

MCE is used. Here, the observation is of the word "boot", containing the phonetic units

b, uw and t, with silence on either side. The state occupancy diagram for the correct

string is given at the top, with the state occupancy diagram of the most confusable

incorrect string below it. Let us assume, for the purpose of this example, that we

are only working with the correct string and the single best incorrect string. State

occupation is indicated with thick black or grey lines. A grey line is used to indicate

when an error in state occupancy occurs.

When state occupancy is correct for both the correct and best incorrect string (black

lines in incorrect string state occupancy in Figure 3.1), the gradient of Eq. (3.13)

with respect to the parameters will be zero (gradients due to correct and incorrect

strings are equal, but of opposite sign). The models d and aw in the incorrect string

are a substitution and insertion respectively and the state alignments associated with

these units are therefore incorrect. Although the units uw and t are in the correct

position, the state alignment is not correct and the state alignments displayed in grey

will result in the associated state being penalized. Therefore, incorrect state occupancy

will result in the model associated with the correct alignment being reinforced and the

model associated with the incorrect class penalized according to the update functions

defined earlier.

3.4 Discussion and Experiments

The following sections will discuss and experimentally validate a number of issues

related to the use and implementation of the MCE algorithm. They are:

The TIMIT dataset, described in Section 2.4.1, were used for this purpose. Two

training sets were used, namely the standard TIMIT training set T and the small

gender independent training set Ts, which were described in Section 2.4.1. The relevant

training and testing set details are reproduced in Table 3.2 for convenience. The basic

configuration of the system is as described in Section 2.1. A 3 state, 5 mixture HMM

is used to model each of the 39 phonetic units in the TIMIT dataset.

Discriminative training

Correct segmentation and labelling

Sil ~rr r rl j fl············ ..~
· 'Ll lJ I I I ' I

t ~!,·....mi!mj mm imiTrlm 1m
]

I : : f '

"11nrr r nlj

~

·.. i .i)nl ...J

uw .. ·····1 nnni ·······f ..j

"I!I

~

'!.,jb .. ··.1 j'j
"1 +n';

· I I I I i I I 1 I
Sil ~nH·~rf! Jill!

10 i I I I I ! I IT
I [Incorrect segmentation and labellin~ I

Sil ~l"""'i i'liit ..~
· i i I I I I I. i I i

I ~t!jjll:,;i_ j,,;;.•••••~t,:..i •••••71··..1~,Ijl··lli ·111

~

·"I.: ····lllnr nl~lff j
aw ,.

1
. ···i

l
····[···[Ii ········1' •. + .if ri .

I I 1... I• ·11·········1······1·· ·I~··I . ····I········j ·····1

uw ~!:ll41JltlJ
Ii! I I I ! I I i

d ~fl,ltIJm] j11
• I I I I .il I I I I i

Sil ~~+ ll.·I···········Jllf.····· nnn·'ll,,, 'n ,I , ,I
1
0

I I I I IT
Figure 3.1: State occupancy diagram of the correct and an incorrect string

Description Label Number of speakers Number of Duration

Male Female Total sentences (minutes)

Training sets:

Full (standard) T 326 136 462 4620 236.5

Small (gender indep.) Ts 16 16 32 320 16.1

Testing set (standard) 112 56 168 1680 86.4

Online (stochastic) optimization algorithms use a single training example to determine

the parameter update (Eq. (3.18) in this case) for each training example. The deter-

ministic (batch-mode) descent algorithm computes the combined gradient for all the

training examples in the training set, which is then used in the parameter update.

The online descent algorithm can perform better in situations where there is redun-

dancy in the training data. The number of passes through the data to find a local

minimum is therefore often less for online than for batch-mode optimization. It is,

however, necessary to randomly select examples without replacement when using the

online algorithm. If not done, oscillatory and non-optimal behaviour might be observed

in the optimization process, as a result of data set structure.

Figure 3.2 presents the performance of online and batch-mode MCE using the standard

TIMIT training and testing sets. The learning rates for both algorithms were set

just below the point at which they became unstable. The online descent algorithm

is considerably faster in terms of training time, as opposed to deterministic (batch)

gradient descent. Maximum training and testing set performance is better when using

online optimization - batch-mode optimization has found a less optimal local minimum.

Online descent is therefore preferred and is used throughout.

Discriminative training

online, train --
online, test --------.
batch, train .
batch, test

56
o

Epochs

Figure 3.2: 'fraining and testing set performance for standard string-level MCE using the
batch and online optimization algorithms

The smoothness of the zero-one loss function (Eq. (3.15)) is somewhat critical to the

performance of the MCE algorithm. A zero-one loss function which is reasonably sharp,

limits the effect of individual examples on the loss and allows only those examples on

or near the decision boundaries to affect the parameter update. Outliers will therefore

effectively not be included in the gradient calculation, thereby promoting robustness.

A smoother loss function, is less likely to be caught in local minima. This effect will

be further discussed in Section 3.4.3.

McDermott [75] stated that too much smoothing would result in a discrepancy between

the function being optimized and the target, minimum classification error. I, however,

do not believe that this is the case, as an extremely smooth sigmoid loss function is

linear in the region of interest and so the misclassification measure, which is designed

to emulate the decision rule, is therefore directly minimized. It is, however, true that

a discrepancy results between the function being optimized and the target when the

zero-one loss function is relatively sharp. Here, the function being optimized can

be interpreted as "minimum classification error for only those utterances which have

misclassification measures close to zero".

Figure 3.3 shows a histogram of the misclassification measure values for the utterances

in the TIMIT training set, when using a 3 state 5 mixture HMM. All of the misclassifi-

cation measure values are greater than zero, which implies that none of the utterances

were correctly classified (only strictly true when 'f7 = (0). The sigmoid loss function

(Eq. (3.15)) output for 1= 0.1, 1= 0.01 and 1= 0.001 are also shown. It is impor-

tant that the derivative of the loss function must be significant for a large part of the

training data. The loss function with 1= 0.1 is too sharp and only has a reasonable

derivative for small misclassification measure values, which will result in only a few

of the utterances influencing the update. One would, therefore, not expect the MCE

algorithm to work well for 1= 0.1. The loss function using 1= 0.01 is mostly linear

for a reasonable part of the training data, and has a significant derivative for a large

part of the training data. Using 1= 0.001 results in a loss function which is effectively

linear for all of the training utterances. The optimal value for 1will therefore, probably

lie somewhere around 0.01.

Figure 3.4 shows the TIMIT test set accuracy versus the sigmoid loss function param-

eter 1for both the full training set T and the small training set Ts 1. As expected,

1= 0.1 results in a sigmoid function which is too sharp and the accuracy attained

(58.3% for T) is therefore considerably worse than that attained using smaller values

of I. Peak accuracy of 64.7% results when 1= 0.01 is used for the training set T. The

MCE algorithm is considerably less effective when the small training set is used (Ts),

resulting in a peak testing set performance of only 53.8%.

1Note that phone recognition accuracy results (Eq. (2.26)) are reported throughout this chapter

,,
,

,

,,,

, ,

i/....,::f .

en 150
Q)
(.)
c
~
Q)

5

o
-400

0.1
0.01

0.001

600
o

800

Figure 3.3: Histogram of the misclassification measure before embedded MCE training for
the TIM IT training set. The sigmoid loss functions with 'Y= 0.1, 'Y= 0.01 and'Y = 0.001 are
plotted.

The question must be asked, "Why is a smoothed zero-one loss function needed?". The

main reason why one would introduce a sigmoid function is to promote stability in the

training process and to ensure that the resultant gradient function (and therefore the

parameter update) is finite and continuous.

Figure 3.5 shows an example of a simple two class problem where a sigmoid loss function

could result in the best minimum not being attained. Here we assume that the two

classes can each be modeled by a single Gaussian distribution. Let us also assume

that we know the variances are fixed and equal to one. The ML estimates of the

means are (0.02, 4.23) for +'s and (0.25, 0.09) for x's. The theoretical minimum error

classification boundary is then as shown by line (a) in Figure 3.5.

<?- 60
>-u
~
:::::l
8 58
«

52
0.001

top-right corner will be close to zero and the class boundary (b), which has a lower

classification error, will not be reached using MCE. This situation occurs because

the true distributions are not Gaussian as we assumed they were. It is, therefore,

unfortunate that by using a (relatively sharp) zero-one loss function we are introducing

additional local minima. It is these local minima which can also in certain situations

save the algorithm from overtraining. This could be the case if there is excessive noise

in the training set, or if the data has been poorly labelled. Whether decision boundary

(b) is truly better than (a) can only be determined by using an independent test set.

The results of the previous section (3.4.2), where small values of r resulted in optimal

performance, support the above discussion. Table 3.3 gives the results for the MCE

algorithm with and without using a sigmoid loss function with r = 0.01. There is no

significant difference between the two algorithms, with the 0.1% difference for the large

training set T due more to rounding than any algorithmic difference.

This result is important for modifications and algorithms proposed later in this and

other chapters, where the algorithm or modification cannot be mathematically justified

XX Xx

X X >5x >t< X X

X X Xxx ~x'S<} x ~ X
~X 'ScXXX~?f

Xx X~ x

x x>f< *'S<: X x ~ X x
£.X x x x x x X x

.. X . x x.;< x.,~.

-4
-4

Figure 3.5: Example of where a sharp sigmoid does not shift the ML class boundary (a) to
boundary (b), with lower classification error.

Table 3.3: Comparison of MCE accuracy results when using a sigmoid loss function and no
sigmoid loss function

Training set sigmoid no sigmoid

'Y = 0.01

T 64.7 64.6

Ts 53.8 53.8

when using a sigmoid loss function. If there is a concern over the stability of the

algorithm, a sigmoid loss function with a small value of 'Y can be used, so that the

loss function is linear for a reasonable part of the training data. We can then ignore

the sigmoid loss function when incorporating such modifications in the loss function or

Minimum classification error (J'vICE) training is somewhat prone to overspecialization.

This section investigates various techniques \vhich improve performance and general-

In Section 2.2 overtraining was discussed from a model complexity perspective. Here,

it is the parameter estimation algorithm which results in further overspecialization. It

is also an unfortunate tendency of MCE and other discriminative training algorithms

to result in a decrease in testing set performance after maximum performance has been

attained (in terms of training time).

p

/.f
,'i
ii ,

// ,,'
II I

Ii'
/i "
!.' I
i./I

/f,'
,iiI

/.i/
,I.',

i.'J

l
"It

f
!
I

._-._--{~)

------1?)

Figure 3.6 shows the typical form of results obtained for the training and testing sets

(a). Limiting specialization of the classifier would result in reducing the difference

between training and testing set error rates. We would, for example, prefer result (b)

in Figure 3.6 to result (a). We also wish to limit the degradation in performance after

maximum performance has been reached. An algorithm which has the characteristics

of (c) in Figure 3.6 would be advantageous in that a cross-validation set would not be

required to choose the best model in an unbiased way.

Regularization techniques are often used to improve generalization. In regularization,

a penalty term F(O) which is called a regularizer is added to the original objective

function, creating a new objective function, i.e.

L(O; 0) = i(O; 0) + (F(O).

The regularizer conveys a-priori knowledge about the process which is to be learned.

Shimodaira et ai. [104] presented a method to prevent over-fitting and improve the

generalization performance of the MCE algorithm when applied to neural networks. A

simple version of the Tikhonov regularizer [11] was used for this purpose in [104]. This

regularizer requires that the second order derivative of the likelihood with respect to

the model parameters be computed. That is, however, not a simple task for hidden

Markov models and was not incorporated in our work. The following sections discuss

the two approaches that were followed to reduce overtraining.

It can be expected that overspecialization would result in the variances of certain of the

Gaussian mixtures becoming very small. To reduce overfitting, a penalty term propor-

tional to the sum of the square (or power) of the inverse of the variances (precisions)

of the Gaussians of the HMM states is therefore proposed. This is as expressed in Eq.

(3.48), and is added to the loss function of MCE (Eq. (3.15)).

Figure 3.7 shows the derivative of this penalty term with respect to the variance (a;kl)'

The gradient is negative and becomes large for very small variances. A negative gra-

dient used in the parameter update (Eq. (3.30)) will result in the variance becoming

-1000

'E
Ql

'C -1500~
(!J

-2000

-3000
0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005

2
O"jkl

larger. Note that if there were no other gradients resulting from the standard MCE

update, the variances would continue to grow larger.

The values a, p and ~ are constants that are empirically determined. As seen in Figure

3.7, the constants p and ~ determine the form of the penalty term. The constant a is a

scaling factor and is used to increase the contribution of the penalty term independently

of the variance value. One has been added to PO"Jkl to ensure that the gradient is finite

for (J"jkl = O.

This results in what could be called "precision decay", thereby ensuring that variances

do not become too small. This has the indirect consequence of reducing overfitting.

It was empirically found that ~ = 3 produced the best results. Figure 3.8 shows the

performance of the MCE algorithm using the variance penalty term (MCE+ VPEN)

versus the parameters a and p when using the small training set Ts. Peak performance

of 54.8% is attained when using a = 1000 and p = 1000 (versus 53.8% without the

penalty term).

54.9

54.8

~ 54.7
:J2.
~ 54.6>.
~ 54.5
~
~ 54.4

54.3

54.2

54.1
100

55

54.5

54;?e..... 53.5
>.
~ 53
~ 52.5:i.

52

51.5

51
100 1000

P

(a) (b)
Figure 3.8: Testing set performance for the modified MCE with variance penalty
(MCE+VPEN) using the small training set Ts, (a) versus a for p = 1000 and (b) versus
p for a = 1000

Figure 3.9 shows the advantage of using the above penalty term. Here, the parameter

values ~ = 3, p = 1000 and a = 1000 have been used, with no sigmoid loss function.

The results are similar when using a sigmoid loss function. The test set results are

better (2.1% relative improvement in error rate), while the training set performance

has decreased.

Table 3.4 presents the results of using a sigmoid function versus not using it when

using the variance penalty term with the MCE algorithm. Interestingly, a sigmoid

function works better when the full training set is used, while the MCE algorithm

without a sigmoid loss function performs better when the small training set is used.

Note that the optimal values for parameters ex and p differ for each configuration and

were empirically determined for each case.

Table 3.4: Accuracy results for the MCE algorithm (sigmoid versus no sigmoid) when using
the variance penalty term

Training sigmoid no sigmoid

set 1=0.01

T 65.4 64.7

Ts 53.8 54.8

Chapter 3

100
MCE (train) --

95 MCE (test) --------
MCE+VPEN (train)

90 MCE+VPEN (test)

85

~ 80~
>-
0 75~
:J
0
0 70«

65

60

55 -----------------

50
o 5 10 15 20 25 30

epochs

Figure 3.9: Training and testing set performance for standard string MCE and modified MCE
with variance penalty (MCE+VPEN), no sigmoid loss

One potential problem with string-level MCE is that parts of the training string that

do not result in errors are effectively ignored and therefore do not reinforce the associ-

ated parameters. Focusing solely on errors will result in overspecialization. Adding a

weighted likelihood term (of the correct class) to the MCE loss function may therefore

reduce overtraining. This will tend to reinforce correct substrings, while still penalizing

errors. The misclassification measure in Eq. (3.13) then becomes

1 N
d(O) = -(1 +~) In~(O; ()d + In[N L eT/lnPj(O;Oj)]l/T/,

j,ji-i

where ~ is the weighting of the additional likelihood term, Pi (0; ()i)' This modification

has been chosen so as to increase the gradient resulting from correct substrings by a

factor ~. However, when using a sigmoid loss function, no modification (to misclassifi-

cation measure or loss function) can be made that will increase the gradient associated

with correct substrings by a uniform factor /'i" while not affecting that associated with

incorrect substrings. Such a modification can therefore not be mathematically justified

when using a smoothed zero-one loss function. It can, however, be implemented as

a simple heuristic where the gradient for the correct class is simply multiplied by a

weighting factor (1 + /'i,).

Figure 3.10 presents the results for the MCE algorithm using the weighted likelihood

term (MCE+ WL) for the small training set (Ts). Significantly, using a sigmoid function

does not work nearly as well as the algorithm without a sigmoid loss function when

using the weighted likelihood term. Peak performance of 55.0% is attained when using

a weight /'i, = 1.5, for the algorithm without a sigmoid loss function (versus 53.8% with

/'i, = 0).

55

54.8

54.6

~ 54.4~
>-c.>co 54.2"-:Jc.>c.>« 54

53.8

53.6
MCE+WL (no sigmoid)

MCE+WL (sigmoid)
MCE

1.5

Figure 3.10: Testing set performance for MCE with the weighted likelihood term (MCE+WL)
plotted versus /'i,.

Figure 3.11 shows the performance of the MCE algorithm with and without using the

weighted likelihood term versus the number of training epochs, for the small training

set. A sigmoid function is not used. Maximum testing set performance is better

when using the weighted likelihood term, but more significantly, it stops degradation

of performance after peaking (preferred result (c) in Figure 3.6). Results when using

a sigmoid loss function are similar with a slightly worse error rate being achieved.

100

95

90

85

~ 80~
>.
0 75<U:;
0
0 70«

65

60

I), = 0, TRAIN--
I), = 0, TEST ---------

I), = 0.6, TRAIN----------
I), = 0.6, TEST -----

50
o 5 10 15 20 25 30

epochs

Figure 3.11: 'Ifaining and testing set performance for standard string MCE and modified
MCE with the weighted likelihood term (MCE+WL), sigmoid loss function not used

Table 3.5 presents the results when using the weighted likelihood term with the MCE

algorithm for both the small and full training datasets. Here, in conjunction with the

weighted likelihood term, using no sigmoid function performs best for both datasets.

This is due to the fact that the implementation thereof for the algorithm using a sigmoid

loss function is not mathematically justified and is merely a heuristic implementation

thereof.

Table 3.5: Accuracy results for the MCE algorithms using the weighted likelihood term
(MCE+WL)

Training sigmoid no sigmoid

set 'Y= 0.01

T 64.7 65.1

Ts 54.3 55.0

Presenting arbitrarily long strings to the string-level MCE algorithm is not optimal. An

error at a specific point in time will potentially result in the incorrect segmentation at

that time (not just incorrect labelling), and such an error in segmentation will therefore

influence the recognition and segmentation of subsequent acoustic units. The usage

of a language model will also tend to result in an error at any given point resulting

in further errors later in the utterance. Errors occurring earlier during recognition of

a string therefore influence the recognition for the rest of the string. Our confidence

in the accuracy of segmentation and classification after an error has occurred will

therefore tend to be low. As the N-best string outputs from the recognizer are used as

discriminative training examples, the number of incorrect strings are limited. Most of

these "incorrect" strings differ only in a few places, resulting in only a few potential

errors being addressed during discriminative training.

To improve the above, presenting smaller word-based strings to the string-level MCE

algorithm is investigated. This is particularly appropriate when training speech rec-

ognizers on speech databases which have long sentences. This, however, requires that

one has a dataset which is also labeled at word level.

A sentence would therefore be presented to the string-level MCE algorithm word by

word in isolation. The N-best hypotheses (string of phones) would therefore be gen-

erated for each word individually (using the relevant part of the utterance) and used

to determine the MCE gradients and updates. This is as opposed to the standard

string-level MCE algorithm where the N-best hypotheses are generated for the entire

sentence.

Figure 3.12 compares results for sentence- and word-based MCE for the small training

set, plotted versus the number of training epochs. A sigmoid loss function is not used.

The improvement in performance is marked, resulting in a 7.4% relative reduction in

error rate. Another advantage here is that the usage of word-based string MCE limits

50
o 5 10 15 20 25 30

epochs

Figure 3.12: Training and testing set performance for standard string MCE and word-string
MCE when using the small training set Ts (no sigmoid loss)

The results for both small and full training sets are presented in Table 3.6. Here, using

a sigmoid loss function proves to be marginally better (and probably not significant)

when the small training set (Ts) is used. This is, however, not the case when the full

training set (T) is used, where using a sigmoid loss function produced a recognition

accuracy which is marginally worse than that attained when not using a sigmoid loss

function. Improvement in error rates relative to that obtained by standard MCE are

significant (accuracy of 66.7% versus 64.7%), irrespective of whether a sigmoid loss

function is used or not.

Table 3.7 gives a summary of the results when using the different modifications pro-

posed for MCE in this chapter. The full training set (T) is used. MCE training alone

produces a 17.7% relative reduction in error rate over baseline maximum likelihood

Table 3.6: Accuracy results for the word-based string MCE algorithms (MCE+WORD).
Relative improvement in error rate compared to standard MCE are given in brackets

Training sigmoid no sigmoid

set 1=0.01

T 66.3 (5.1%) 66.7 (5.9%)

Ts 57.9 (8.9%) 57.2 (7.4%)

(ML) training. However, employing the modifications results in a relative reduction in

error of up to 23.3% being attained over ML training.

Table 3.7: Summary of phoneme error rate results for MCE and modifications on the full
training set T

I Training method I Phoneme error rate % I
Baseline (ML) 43.0

sigmoid no sigmoid

MCE 35.5 35.4

MCE+VPEN 34.6 35.3

MCE+WL 35.3 34.9

MCE+WORD 33.7 33.3

MCE+WORD+VPEN 33.3 33.0

MCE+WORD+WL 33.7 33.3

Table 3.8 gives a summary of the results when using the different modifications and

the small training set (Ts) is used. Here, standard string-level MCE only results in a

2.5% relative reduction in error rate over baseline maximum likelihood (ML). However,

employing the proposed modifications results in a relative reduction in error rate of up

to 12.2% being attained. The modifications have more of an effect when less training

data is available and overtraining is more prevalent.

Tables 3.7 and 3.8 provide results obtained when combining the word-based string MCE

algorithm and the other modifications (penalty and weighted likelihood). Unfortu-

Table 3.8: Summary of phoneme error rate results for MCE and modifications on the small
training set Ts

I Training method I Phoneme error rate % I
Baseline (ML) 47.4

sigmoid no sigmoid

MCE 46.2 46.2

MCE+VPEN 46.2 45.2

MCE+WL 45.7 45.0

MCE+WORD 42.1 42.8

MCE+WORD+VPEN 41.6 42.2

MCE+WORD+WL 42.1 42.8

nately, the weighted likelihood term fails to improve upon the performance of the word-

based string-level MCE algorithm for either of the two datasets (MCE+WORD+WL

versus MCE+WORD in the tables). This indicates that the effect of the two modifica-

tions is similar, which can be seen in the results presented for the individual procedures

earlier. Both, for example, reduce degradation in performance after maximum testing

set performance is reached. Limited improvements in performance were obtained when

the variance penalty term was combined with the word-based string-level MCE algo-

rithm.

Significant improvements in performance on the testing sets are obtained using the

modifications to MCE as proposed. The modifications proposed are relatively simple to

implement and limit overspecialization to some degree. The additional computational

expense resulting from the use of the proposed modifications is very small and is not

measurable. Although variation in performance did result from the use or non-use of a

sigmoid function, there is little evidence to suggest that anyone of the two possibilities

is a better choice, with the resultant variation in performance generally being relatively

small compared to the improvements in error rate due to the modifications.

3.5 Summary

This chapter described the MCE algorithm and its usage within a continuous speech

recognition framework. The algorithm performs gradient descent on a criterion func-

tion which is a close approximation of the classification error. For the TIMIT database,

usage of the MCE criterion resulted in significant gains in performance over the stan-

dard ML training procedure.

The effect of a smoothed zero-one loss function was discussed and experimentally de-

termined for the TIMIT dataset; where it was found that small values of the sigmoid

parameter 'Yperformed best. Furthermore, the need for a zero-one loss function was

questioned and the conclusion was reached that there is little evidence that there is an

advantage or disadvantage to using a smoothed zero-one loss function. This result was

used later in modifying the MCE criterion (adding a weighted likelihood term), where

the modification could not be mathematically justified when a non-linear loss function

was used.

Overtraining within the MCE framework was discussed and three modifications were

proposed. The first modification attempted to stop the mixture variances from becom-

ing very small, which results when little data is available. The second modification

added a weighted likelihood term to the MCE criterion, thereby reinforcing correct

substrings, as well as improving discrimination for incorrect substrings. Finally, a

word-based string-level MCE algorithm was proposed, in which smaller word-based

substrings were used, instead of the the entire string. Significant gains in performance

resulted when using these modifications with the TIMIT database.

Chapter 4

Bayesian adaptation

In the previous chapter the usage of the MCE procedure in sparse data scenarios was

investigated. In certain scenarios, however, one has a reasonable amount of non-task-

specific training data available which can be used for training purposes. This chapter

therefore investigates the usage of adaptation techniques that can use non-task-specific

data as well as the limited task-specific data to create a better recognition system than

could be attained though only using the task-specific data.

The standard maximum a-posteriori (MAP) adaptation technique is introduced and

discussed. The MAP algorithm, however, makes assumptions about the form of the

prior probability distribution used. This can be a problem when the prior is relatively

complex. Two new adaptation algorithms are therefore proposed, a gradient-based

MAP algorithm and an MCE-based adaptation algorithm. These adaptation algo-

rithms make no assumptions about the form of the prior distribution used.

Section 4.1 introduces the basic Bayesian theory necessary for the algorithms in this

chapter. The choice of prior distribution is discussed in Section 4.2. Section 4.3 re-

views the maximum a posteriori estimation (MAP) algorithm as proposed by Gauvain

and Lee [45]. An alternative gradient-based method of obtaining the MAP estimate

Bayesian adaptation

is described in Section 4.4. A Bayesian inspired modification to the MCE training

procedure is then proposed in Section 4.5. Finally, the different methods discussed in

this chapter are experimentally compared in Section 4.6.

We can define a probabilistic model P(XIB) for any random process X, in which a set

of parameters B determine its probability distribution. P(XIB) is called the likelihood

function. We however want to infer B in our probabilistic model, using data which we

have obtained.

The result of Bayesian learning is a probability distribution P(BIX) which expresses our

beliefs of how likely individual parameters B are, given the training data X. P(BIX)

is called the posterior distribution. When classifying an unknown observation, the

probability that the unknown observation was generated by the same process as that

which generated the observations for a given class must be calculated. This is done by

integrating the likelihood function with respect to the posterior distribution. Section

4.1.3 will present a more detailed discussion of this process.

Bayesian methods can be used for the inference of parameter values in a model, given

the data. We can, however, also use Bayesian methods for the purpose of model com-

parison, where preferences are assigned to alternative models of differing complexity.

David Mackay [72] focused primarily on the usage of Bayesian methods for the training

and comparison of neural network models. Mackay used Bayesian methods to compare

models of differing complexity and topology. Most people would include the above two

uses of Bayesian methods in the data modeling process.

A further application of Bayesian methods is in the adaptation of existing models.

An example of this in speech recognition is maximum a-posteriori (MAP) parameter

estimation. MAP is a point estimate and one does not integrate with respect to the

posterior distribution. Many would therefore claim that MAP is not a true Bayesian

method. If, however, one assumes that the posterior distribution is sufficiently peaked

about the most probable B (maximum a-posteriori probability), then the MAP proce-

dure is a reasonable approximation of Bayesian learning. MAP can be used for several

purposes, including parameter smoothing and adaptation. Parameter smoothing ap-

plies extra constraints to the model parameters so as to reduce the effect of insufficient

training data. This can be achieved using MAP by incorporating vague heuristic infor-

mation in the prior distribution. In adaptation, however, non-task-specific information

is available and is used to determine the prior distribution used in MAP estimation.

The remainder of this section will summarize the pertinent Bayesian theory used in

this chapter. For a more complete introductory text on Bayesian statistics, the reader

is referred to Box and Tiao [13] and DeGroot [27]. The theory and discussions in this

section will be biased towards speech recognition applications of Bayesian adaptation.

Given a vector y = (Yl, ... , Yn) of n observations, with probability distribution P(yIB),

which depends on the k parameters BT = (B1, ... , Bk) with probability distribution

P(B), then given the observed data y, the conditional distribution of B is

P(BI) = P(yIB)P(O)
y P(y)'

The denominator in Eq. (4.1), P(y), is a normalizing factor, which ensures that the

integral of P(Oly) is equal to one. It can be written as follows:

P(y) = .I P(yIO)P(O)dO.

prior distribution and expresses what is known about the model parameters before

any data is observed. The posterior distribution P(Bly), tells us what is known about

the model parameters, given that data has been observed. In what follows, the prior

distribution and posterior distribution will sometimes simply be referred to as the

The distribution P(yIB) is often referred to as the data likelihood and can be written

L(Bly). Then in effect, P(yIB) is regarded as a function of y and not of B.

In many Bayesian methods, the normalizing constant is not necessary and Eq. (4.1) is

written as

If we assume that the observations are independent, then we can write Bayes' theorem

as follows

P(Oly) (J(P(O) IT L(Oly1il) = [P(O) gL(Oly1il)] ,It L(OIY('») (4.4)

n

ex P(BIYl,"" Yk) II L(Bly(i)) (k < n). (4.5)
i=k+l

Bayes' theorem, therefore describes the process of learning as data becomes available.

We can therefore, as Eq. (4.5) suggests, compute the posterior for a given set of data

and then use that posterior as a "prior" when more data becomes available. This result

is of utmost importance to the methods proposed later in this chapter.

The result of Bayesian learning is a probability distribution (posterior) which expresses

our beliefs of how likely individual parameters values are. This is crucial, as it allows

learning to be performed using probability theory.

In a Bayesian approach to HMM parameter estimation and recognition, the objective

is to find a predictive distribution (P(xIX) = J P(xIO)P(OIX)dO) for an unknown

utterance, given the utterance observations, as well as the training observations. Let

the observation sequence for the ith example be written as Oi. For n training examples

P(OIO) = P(OIO)P(O)
P(O)

ex P(OIO)P(O).

P(OiIO) = IIP(oijIO),
j=l

where nu is the number of observations in the training utterance Oi. In a Bayesian

framework, when we wish to classify an unknown input, we need to calculate the

following probability,

P(OunknownIO~i), ... , O~)) = J P(OunknownIO)P(OIO~i), ... , O~))de, (4.8)

where i is the class and Ounknown is the unknown observation sequence. The classifier

decision is the class resulting in the highest value of Eq. (4.8), i.e.

C(O). h . - P(O IOU) aU))unknown = 1, were 1, - argmax unknown l' ... , n ,
j

4.1.4 Maximum a-posteriori probability estimate

Assuming the posterior is sufficiently peaked around the most probable point (OM AP),

we can approximate Eq. (4.8) as

OMAP = argmaxP(OIOl, ... , On)
o

= argr:ax [P(Ol, ... , OnIO)P(O)].

If we had no prior knowledge about 0, then we would choose a non-informative (im-

proper) prior to be used in Eq. (4.11), i.e., P(O) = constant. Equation (4.11) then

reduces to the normal maximum likelihood (ML) formulation.

Bayesian adaptation

4.1.5 MAP adaptation in speech recognition

This section presents a concise literature survey of the usage of the MAP procedure

for HMM parameter estimation in speech recognition.

Lee et al. [67] introduced a MAP algorithm, where the parameters of multivariate

Gaussian state observation densities of HMM models were adapted for speaker adap-

tation. They showed that for an alpha digit task, with only a small amount of speaker

specific data, their MAP estimated HMM gave better results than an ML estimated

HMM.

Gauvain and Lee [43] extended the MAP formulation for HMMs to handle parame-

ters of mixtures of Gaussian densities. It was shown that MAP estimation can be

used for parameter smoothing, speaker adaptation, speaker clustering and corrective

training. Gauvain and Lee [45] later presented a theoretical framework for MAP esti-

mation for HMMs with Gaussian mixture state densities, where they proposed using an

expectation-maximization (EM) approach to finding the MAP estimate. In this work,

the MAP formulation was also extended to include the estimation of the transition

probabilities and initial state probabilities. The application of their MAP algorithm

to corrective training and parameter smoothing [44] and speaker adaptation [66] were

also reported.

Huo et at. [53, 52] studied the usage of MAP estimation for semi-continuous (or tied

mixture) HMMs. Zavaliagkos et al. [120] also investigated using various degrees of

parameter tying, so as to force MAP to adapt parameters for which adaptation data

is not available.

The MAP estimation algorithm can be used for various purposes, including parameter

smoothing [44], speaker adaptation [67, 66, 32], dialect adaptation [41] and cross-

language adaptation [85, 84]. In this chapter, we are primarily interested in the usage

of the MAP estimation algorithm for adaptation purposes as opposed to applications

such as parameter smoothing and corrective training. Model adaptation is a process

for adjusting seed models to create more specialized models using a small amount of

adaptation data. Figure 4.1 illustrates an abstraction of the MAP adaptation algorithm

as it would typically be used in speaker adaptation. The process is very similar for

other adaptation applications of the algorithm, such as for cross-language adaptation.

Speaker independent
training set

Estimate prior MAP estimation Adapted model

In this section, the choice of the prior density family is discussed. The prior distribution

is an important part of any Bayesian method, as it expresses our knowledge about the

distributions prior to any data being observed. It is especially important when there

is little data available.

Conjugate prior (see Appendix A) distributions have been chosen in this work, not

only because of the convenient relationship between prior and posterior, but also due

to their usage in the literature. If the prior distribution of () belongs to a conjugate

family of distributions, then for a likelihood of a specific form, the posterior distribution

of () must also belong to the same family as that of the prior distribution. Note that

with most of the approaches developed in this and later chapters it is not necessary

nor even convenient to have conjugate prior distributions. It is, however, essential to

use a conjugate prior for the application of the EM algorithm to the MAP estimation

problem (Section 4.3).

The prior distribution for all the parameters of the Gaussian mixtures of the HMMs

is chosen to be a normal-Wishart distribution, where the conditional of /-l (mean) and

R (precision matrix, with R = I;-l) are given as follows: The conditional distribution

of /-l (when R = r), is a multivariate normal distribution with mean vector m and

precision matrix vr for m E RD and v > O. The marginal distribution of R is a

Wishart distribution with a degrees of freedom and precision matrix T. The priors for

the transition probabilities and Gaussian mixture weights are chosen to be Dirichlet

distributions. Table 4.1 summarizes the HMM parameters and their prior distributions.

Table 4.1: Summary of the HMM parameters and chosen prior distributions. A Wishart
distribution is represented with Wand a Dirichlet with V

Parameter Prior distribution Prior parameters

/-ljklRjk = rjk N(mjk, (Vjkrjk)-1/2) mean: mjk, preczswn: Vjkrjk

Rjk (I;jk1
) W(njk, Tjk) degrees of freedom: njk, preczswn: Tjk

c- D(6j) 6J J

ai D(ai) ai

The prior of the parameters (/-ljk and rjk) of the Gaussian mixture component k of

state j can therefore be written (from Eqs. (A.5) and (A.l)) as [27]:

Bayesian adaptation

ggaussian (r jk, fLjk Injk, lIjk, mjkl Tjk) =(27f) - %llIjkr jk I!e- !Vjk (J.tjk -mjk)T Tjk(J.tjk -mjk)

~ (n-D-I) It ()
CITjkl 2 Irjkl 2 e-Z- T TjkTjk ,

where (njk, lIjkl mjk, rjk) are the prior distribution parameters. The value c is a normal-

izing constant which ensures that the integral of the prior is equal to one. Assuming

a diagonal covariance (or precision) matrix, the log of the Gaussian distribution prior

(Eq. (4.12)) can be written as

where D:i is the prior parameter vector associated with the transition probabilities ai

from state i and N being the number of states in the HMM.

If we assume independence for parameters of the Gaussians, mixture weights and tran-

sition probabilities, the joint prior density g(O) for all the parameters of the HMM can

be written as the product of the prior p.dJ's defined in Eqs. (4.12), (4.14) and (4.15),

N M

g(8) = IT (9tTon,(a; I"i)9w'i.qh' (e;IOi)g9,o""ion(E", !'i.In", Vi', "'''' Ti.»), (4.16)

where M is the number of Gaussian mixture components per state. The joint prior

density for all HMMs can, assuming independence, be written as the product of the

joint prior distributions (Eq. (4.16)) of the individual HMMs.

4.3 Expectation-Maximization MAP

Gauvain and Lee [45] introduced a method of estimating the MAP point for all the

HMM parameters as defined in Table 4.1 using an expectation maximization (EM)

approach. Their method and related theory will be briefly reviewed in this section.

This algorithm will, for the rest of this thesis, often be referred to as simply the MAP

algorithm.

MAP estimation is relatively simple if the family of p.d.f.'s P(·IO),O E e possesses

a sufficient statistic of fixed dimension for the parameter 0 we wish to estimate. A

sufficient statistic T only exists if P(OIO) can be factored [27] as follows for all values

of 0 and 0:

Here, the function u is positive and does not depend on 0, while the function v is non-

negative and depends on the data (observations) 0 only through T(O). For hidden

Markov models, due to the underlying hidden process, a sufficient statistic of fixed

dimension does not exist. This is known as an "incomplete data" problem. When using

hidden Markov models, the true state sequence q = {ql, ... , qT} and the true sequence

of associated mixture components 1 = {ll, ... , It} are not observed or known. As a

result, the observed data 0 is not sufficient to be able to directly estimate the HMM

parameters (incomplete data). For HMMs, the complete data x is the combination

of the observations 0, state sequence q and mixture component sequence 1, i.e. x =

The term incomplete data (y) implies two sample spaces X and Y, and a many-to-one

mapping from X to y. Given x E X and y E Y, where x is not observed directly

but indirectly through the observed data y, a mapping x -t y(x) exists from X to Y,

with x known only to be in X(x), the subset of X determined by the equation y =

y(x). We refer to x as the "complete data". Note that there are many complete-data

specifications j(xIO) that will generate a given incomplete-data specification g(yIO).

The expectation-maximization(EM) algorithm [5, 28, 71] discussed next is an iterative

procedure for approximating ML estimates in cases involving incomplete data.

Expectation maximization, as described in this section, is typically used for maximum

likelihood (ML) estimation. Expectation maximization re-estimation is based on an

auxiliary function Q(O, 0) defined in terms of the current parameter set 0 and the new

parameter set 0. The auxiliary function is defined as the expectation of the complete-

data log-likelihood log[j(xIO)] given the observed incomplete data y and the current

parameter set 0, i.e.

which exists for all pairs (0,0). The EM iteration is defined as follows:

Maximization (M-step): Choose 0 which maximizes Q(O, 0). We simply differen-

tiate Q(O, 0) with respect to 0 and find a maximum (i.e. solve 8Qj:'O) = 0).

For an HMM, the complete-data likelihood is the joint likelihood of 0, q = {Ql, ... , qr}

the unobserved state sequence and 1 = {ll, ... , It} the unobserved sequence of associ-

ated mixture components (y = (0, q, 1)).

Q(O,O) = LE[J(O, qIO)logl(O, qIO)]
q

where 1(0, q!O) is the probability of observing the data 0 for state sequence q given

the parameter set O. The utility of Q(O, 0) stems in part from the fact that if Q(O, 0) >
Q(O, B), then 1(010) > I(OIB). This property is shown in Eqs. (4.20) and (4.21).

- '"' [(/(0, q/O))]Q(B,O) - Q(B, 0) = ~ E 1(0, q/B)log 1(0, qlB) (4.20)

- '"' [(/(O,qIO))]Q(B,O) - Q(B, 0) S ~ E 1(0, qlB) 1(0, qlB) - 1

s 1(010) - I(OIB).

Hence, Q(B,O) > Q(B, B) implies that f(OIO) > f(OIB). Therefore, when Q(B,O) as

defined in Eq. (4.19) is maximized in the maximization step, then f(OIO) will also

be maximized. The EM algorithm described here will be used in the next section to

iteratively obtain the MAP estimate.

Although the expectation maximization procedure (Eq. (4.19)) is typically used to

find the ML estimate, we wish to use it to obtain the MAP estimate. Dempster et al.

[28] pointed out that the posterior mode (MAP point) can also be estimated using the

EM algorithm by maximizing Q(O, fJ) + log[g(O)] at the M-step of each EM iteration.

It was also shown that log[J(xIO)] + log[g(O)] increases at each EM iteration and an

expression for the rate of convergence was provided.

It is relatively straightforward to show [45] that the auxiliary function of the EM algo-

rithm applied to the MAP problem can be decomposed into the sum of three auxiliary

functions, Q1r(ft,O), QA(A,O) and Qy(Y,O), with Y = (c, p" t). The three auxiliary

functions are maximized independently, resulting in the following re-estimation formu-

las:

The values '"Yt(i), 'Yt(i,j) and (t(i,j) are obtained using the forward-backward algorithm

[90, p. 334].

Instead of maximizing j(OIO) (using the forward-backward algorithm), we can, using

Viterbi alignment, maximize j(O, qIO), the joint posterior density of the parameter

set ° and the state sequence q. It can easily be shown, as for the segmental k-means

algorithm [61], that alternate maximization over q and ° results in a non-decreasing

j(oCn), qCn) 10), with

qCn+l) = argmaxj(O, qloCn))
q

oCn+l) = argmaxj(O, qCn+l)IO).
()

The most likely state sequence in Eq. (4.28) is obtained using the Viterbi algorithm.

The EM algorithm can once again be used to perform the maximization in Eq. (4.29).

The re-estimation formulae (4.22) to (4.26) used in the forward-backward MAP esti-

mate are used here, however, the probabilities (t(i,j), 'Yt(i) and 'Yt(j, k) are obtained

from the best state sequence (and not using the forward-backward algorithm) as fol-

lows:

~t(i,j) = 6(qt - i)6(qt+l - j),

rt(i) = 6(qt - i),

d (0 k) - 6(_ o)CjkN(Ot,/Ljk,~jk)
an rt J, - qt J bj(Ot) ,

(4.30)

(4.31)

(4.32)

The segmental MAP approach described above has been implemented and used in this

work. An embedded version of the MAP algorithm has also been implemented and

used, which uses the trellis search algorithm (Section 2.1.5) to obtain the best state

and HMM sequence for a given utterance. The embedded MAP algorithm uses a search

to automatically segment and label the acoustic units, and therefore does not rely on

a labelled database being available. This is essential for databases, such as TIDIGITS,

which are not manually labelled either at phoneme or word levels.

In Section 4.2 the form of the prior distributions and the distribution parameters were

described. In this section, the estimation of the prior parameters will be discussed. The

prior distribution should, in a true Bayesian approach, incorporate a-priori knowledge

of the parameters we are attempting to estimate.

Two methods of estimating the prior parameters will be discussed here, namely em-

pirical Bayes and a simpler method typically used in MAP adaptation. The empirical

Bayes method is not used, but is included so that the two methods can be compared.

When estimating the prior parameters we will only be using the prior data. The

adaptation data cannot be used in any way when determining the prior parameters.

In Empirical Bayesian methods [73, 97] the prior distribution g(O) is estimated by

finding a distribution function g that satisfies the relationship

h(O) = J j(OIO)g(O)dO,

It is, however, necessary to ensure that the distribution g(O) obtained is unique. The

search for g(O) could be an almost impossible task if we don't choose g(O) to be part of a

given parametric family g(O; a, {3,...) of distributions, where a, {3,... are the unknown

prior parameters.

In this case, we do not know h(O) exactly, but estimate an empirical distribution

function hn(O) obtained from a sample of n observations on the random variable

whose distribution function is h(O). We therefore have the approximate relationship

hn(O) ~ J j(OIO)g(O)dO.

There are several methods for solving Eq. (4.34), i.e. finding g(O), including maximum-

likelihood (ML) and the method of moments. The solution of Eq. (4.34) is not a trivial

task.

Though the empirical Bayes approach is not implemented or used for the MAP esti-

mation in this work, it is important to understand the empirical Bayes approach and

we therefore digress at this point to study a simple example taken from [73].

Given observed data x, a model j(OIO) = j(xl.iVf), being a simple Normal distribu-

tion with mean IvI and standard deviation of 1 and a prior g(M) that is a Normal

f(xIM) = N(M, 1),

g(M) = N(/1, (2
),

then hn(O) = fc(x) = J f(xIM)g(M; /1, a)dM = N(/1, 1 + (2). The maximum likeli-

hood estimates of the prior parameters jl and (j2 are [73, p. 53]

n-1
(j2 = max(O, (__)82 - 1),

n

where x is the sample mean and 82 is the sample variance of past observations. Note

that the estimate of the prior is not directly affected by the number of samples used,

as would be the case with the posterior distribution.

A significantly simpler method [45] of estimating the prior distribution from a given

set of data would be to maximize the joint likelihood of 0 and (), i.e. f(O, ()I¢», over

() and ¢>. Here ¢> is the parameter vector of the prior distribution.

Starting with an initial estimate of ¢>, and iteratively using alternate maximization over

() and ¢>, i.e.

()(n) = argmax[j(O, 0l¢>(n))]
()

¢>(n)= argmax[g(o(n)I¢»],
¢

we can estimate the pnor parameters ¢ and model parameters () which maximize

f(O,()I¢). The solution of Eq. (4.35) is the mode of the posterior (MAP estimate) for

the current prior parameter set. The solution of Eq. (4.36) is the ML estimate of the

prior parameters based on the current HMM parameters .

• ML estimation thereof is not simple as a result of the chosen prior distribution

of Section 4.2.

• More prior density parameters must be estimated than for the HMM itself. This

is called overparameterization and is a problem.

The overparameterization problem can be overcome by adding certain constraints to

the prior parameters, so as to reduce the number of prior parameters to be estimated.

The prior family is limited to the posterior density family of the complete data model

when no prior information is available. It is then easily shown [45] that the following

constraints can be imposed:

(4.37)

(4.38)

solving the overparameterization problem to some extent. The parameter 6ik is the

mixture weight prior parameter in Eq. (4.14), with nik and l/jk being prior parameters

in Eq. (4.12) for state i and mixture component k.

Note that using Eqs. (4.35) and (4.36) when no prior information is available will result

in () being the mode of the likelihood function (ML estimate) and we therefore set the

mode of the prior to be equal to the parameters of a given HMM. Given that the prior

family has been chosen to be the same as that of the complete-data likelihood it makes

sense that the mode of the prior will be the ML point estimate.

The prior parameters mjk, Tjk and Ctij are therefore directly estimated from the ML

HMM models, while 6ik and nik are obtained using Eqs. (4.37) and (4.38). The param-

eters nik and Vik do not determine the mode of the prior distribution, but determine

the degree to which the prior is peaked about its mode. The parameter Vik is therefore

a parameter chosen by the user and is typically chosen as a global parameter.

The value of the parameter v should therefore incorporate a priori knowledge about

the suitability of the ML model for the task at hand. If the data used to obtain the

prior was from the same task as that used to obtain the final MAP point, then we would

expect to use a relatively large value for v. However, if there was a large mismatch

between the prior data and data used to obtain the MAP point, then we are not that

sure of the prior and a smaller v would therefore be chosen. An example of where this

might occur is in cross-language adaptation, where data from a given language is used

to create a prior and the target language's data, along with the prior is used to obtain

the MAP point estimate. The influence of v on the performance of the MAP algorithm

will be experimentally be determined in Section 4.6.

Let us investigate the usage of the "mode of posterior" method to determine the prior

parameters for the example discussed earlier. The forms of the prior and likelihood

functions are identical and therefore there is no problem of overparameterization. If

we were to choose the prior mode directly from the ML point, then one would choose

fJ, = x which is exactly the same as that obtained using the empirical Bayes method.

The value of (J2 is, however, still unknown and it determines the degree to which the

prior is peaked about its mode. We could arbitrarily fix it, as we have done with v

above, but we could also choose it to be proportional to the sample variance 82.

If the data samples used were taken from the same source, it would have been better

to assume a non-informative (constant) prior distribution and used all the examples

to determine the posterior. Note that from Section 4.1.2 we would deduce that if one

needed a prior, then the sequential nature of Bayes' theorem tells us that the posterior

for the observed data would be the appropriate prior for any subsequently observed

data.

If we once again look at the example used in the previous two sections, it is rel-

atively simple to show that the posterior f(Mlx) for the given data x assuming a

non-informative prior would be

where f.1 = x and 0-2 = ttS2. As expected, the posterior becomes more peaked around

its mode f.1 as more data is observed. Following Eq. (4.5), we should use this posterior,

as the prior for any new data that is observed.

Neither of the two methods described previously result in a prior which becomes more

peaked as the amount of observed data increases. This is a potential problem, as it

does not account for the fact that some HMMs (or states or mixtures) will have been

observed more often than others. However, the two methods could potentially help

the algorithm when there is a reasonable mismatch between prior data and the task

specific data.

The sequential nature of Bayes can be used to determine the MAP estimate by using

the posterior of the prior data as the prior distribution (Eq. (4.5)). However, there

will typically be more prior data than adaptation data, and the prior distribution will

therefore tend to dominate in the calculation of the posterior using Eq. (4.5). Any

reasonable mismatch between the prior data and task-specific data will also tend to be

a problem. These problems can, however, be addressed by simply weighing the prior

distribution (posterior of previously observed data) with a value which is a function

of the mismatch (a-priori knowledge/belief) and the amount of prior and adaptation

data.

The MAP estimation method proposed by Gauvain and Lee [45], assumes that the

prior used is of a specific form. This is potentially a limiting factor in the performance

of that MAP algorithm. In this section a gradient based MAP estimation algorithm is

developed which does not make assumptions about the form of the prior distribution.

This algorithm will, so as to prevent confusion, be referred to as the GMAP algorithm.

The above statement is not entirely true, as a prior of fixed form is used. It is, however,

a non-informative prior which is used in the calculation of the new prior, which in turn

is then used in the adaptation process. Though, if true prior knowledge about the

model or system is available, it can be expressed through this parametric prior.

In the proposed algorithm, the prior will not be estimated at all, but will be implicitly

included in the update procedure. It will, however, be far more computationally expen-

sive than the regular MAP algorithm. The improved performance will, however, offset

the extra computational difficulties for certain tasks. This adaptation algorithm will

probably not find a place in rapid adaptation needed in some speaker adaptation tasks.

It should, however, be more than useful in tasks such as cross-language adaptation and

some speaker adaptation tasks where training time is not critical.

In the discussion in section 4.3.3, I explained under which circumstances one can use

the posterior (or weighted version thereof) of the given "prior" data as the prior distri-

bution. There is no problem with this, except when the same data is used to estimate

the prior and the MAP point of the posterior distribution and should not be done. In

Section 4.1.2, it was pointed out that the posterior of a given set of data can be used

as the prior for another independent set of data when calculating the posterior of the

union of the two sets.

The first part in square brackets is the posterior of a set of data (1 ... k) and is used as

the prior for the remainder of the data. The posterior of this reference or "prior" set,

used as the prior in the adaptation framework will tend to dominate Eq. (4.40) when

there are more training examples than adaptation examples (i.e. when k » n - k).

MAP adaptation is typically used in situations where this will occur. It therefore makes

sense to weigh the "prior" in some way so as to ensure that it does not dominate. In

our implementation, the weighting is done as follows

The value i.p has the effect of flattening and widening the prior when 0 ::; i.p < 1 and

making it more peaked around the mode when i.p > 1. Figure 4.2 presents an example

of a Normal distribution with a mean of zero and standard deviation of two, which has

been raised to the value of i.p = 0.2 and i.p = 2.

It is convenient at this point to express the posterior in terms of an energy function,

which will be optimized to find the MAP estimate. This will become increasingly

relevant in Chapter 5.

Bayesian adaptation

0.3

0.25

0.2

~:is
Cll 0.15.c
Ea..

0.1

0.05

0
-10 -5 0 5 10

Figure 4.2: Example of the effects of raising a distribution to a power (assuming it is nor-
malized)

P(OIO) ex: e-E(OjO)

where E(O; 0) is the "potential energy" function. Any probability function can be

written in this way by defining E(O; 0) = -logP(OIO) - log(Q) for a given constant

Q (Q = 1).

Writing the posterior (Eq. (4.6)) in the above form, and assuming independence of the

observations, we get

n

E(O; 0) = -log[P(O)) - L log[POiIO)).
i=l

The above equation assumes that an informative prior P(0) is available. We could

again use a parametric prior estimated from the training data as done in the normal

MAP approach (Section 4.3). Instead of estimating a prior of fixed form, the prior has

been directly included into the posterior calculation (Eq. (4.41)), which can be written

E(0; 0) = 'P [-logl P(0) I- t logl P(0,10)]] - '~, loglP(0,/0)],

where examples 1, ... , k are the prior (reference) set and examples (k + 1), ... , n are

the adaptation set.

The steepest descent algorithm [12] can now be used to iteratively estimate the MAP

point on the posterior defined in Eq. (4.44), i.e.

g(i) (n + 1) = g(i) (n) _ E aE(g)
ag(i) ,

where E is the learning rate or step size of the update. The steepest descent algorithm

(Eq. (4.45)) is an unconstrained optimization technique and given that certain con-

straints must be maintained for HMMs, some modifications are required. The next

section will investigate the usage of transformations to ensure that the constraints are

maintained.

Instead of using a complicated constrained steepest descent algorithm, we can, as

with minimum classification error (MCE) training (Section 3.2), use transformations

to maintain the above constraints during parameter adaptation.

The standard parameter transformations given in Table 3.1 are repeated here in Table

4.2 for convenience. These transformations ensure that the unconstrained steepest

descent algorithm can be used in the transformed parameter space.

Table 4.2: Parameter transformations used in MCE

Parameter Transformed Forward Reverse

parameter transform transform
a· .

a·· aij aij = In(aij)
e tJ Transition probabilitiesIJ aij =)".iiij

Cjk ejk = In(cjk)
i'jk Mixture weightsCjk Cjk =)".eCjk

{Ljkl {Ljkl -. -~ J-.ljkl = C5jklJ-.ljkl Gaussian meanJ-.lJkl - a·kl

C5jkl C5jkl ajkl = In(C5jkl) C5jkl = eijjkl Gaussian std. dev.

These transformations should be kept in mind when calculating both the prior and

likelihood derivatives.

The updates for the individual parameter types will now be derived using Eqs. (4.44)

and (4.45). Note that the adaptation is done in the transformed parameter space

and the parameters are then transformed back to the original parameter space. The

derivation of the parameter updates are given in this section. Some of the derivatives

will also be used later in Chapter 5.

The parameter update for the Gaussian mixture mean Mjkl using the steepest descent

algorithm of state j, mixture k and element l is

-(i) () -(i) () DE(Bn)
J-.ljkl n + 1 = J-.ljkl n - f -(i)'

Dp'jkl

aE(On) _ _ a In[P(O)] _ ~ a In[P(OiIO)]
~-(i) - <.p ~-(i) <.p L.J ~-(i)
U!1jkl U!1jkl i=l U!1jkl

_ ~ a In[P(OiIO)]
L.J a-(i)

i=k+1 !1jkl

where 60 is the Kronecker delta function and by) (Of) is the observation probability

(Eq. (2.5)) of state j of HMM i at time t. Assuming a diagonal covariance matrix, we

get

C)
aln(b/ (Of)) = (i)(2)-d/21~(i)I-1/2(b(i)())-1 (Otl __ (i»)

~ _(i) eJk 1r Jk J Of (i) !1Jkl
U~~ ~~

1 ",D (~ _(i)) '2
-'2 L..1=1 _(i) -Jljkle (Tjkl

Note that the derivatives are sometimes written in terms of the original parameter and

not in terms of the transformed parameter. The partial derivative of In[P(O)] with

respect to fl;21 can be obtained from Eq. (4.13),

ag(iJ) 1 -2 _
---- = - -va- . 2("-kW-kl-l'vf-k1)· a-kl~-(l) 2 Jkl f"""J J J J
u!1jkl

= - vajkH!1jkl - Nfjk1).

Bayesian adaptation

Having updated the transformed mean using Eq. (4.46), the correct mean can be found

using the inverse transformation f.L;21(n+ 1) = jL;21(n)a;~I(n + 1) from Table 4.2.

The steepest descent update for the Gaussian mixture variance a;kl for state j, mixture

k and element l is

-(i) () _ -(i) () BE(Bn)ajkl n + 1 - ajkl n - E -(i)
Bajkl

(")
81n(b/ (Ot)) = (i)(2)-d/21,,(i)I-1/2(b(i)())-1

-(i) CJk rr L.Jk J 0t
8ajkl

The partial derivative of In[P(B)] with respect to (j;~l can again be obtained from Eq.

(4.13),

8g(0)
8-(i)ajkl

After the update in the transformed space the new standard deviation can be found

using a;~l(n + 1) = eD-jk/(n+1).

-(i)(+ 1) _ -(i)() _ 8E(Bn)cjk n - cjk n f -(i)
8Cjk

The partial derivative of Eq. (2.9) with respect to c;~is

(i)
oln(bj (Ot)) = (i) [(2)-d/21' (i)/-1/2(b(i)())-1

-(i) CJk 7r O'Jk J °tOCjk

(

i))2
-! ""v Ot/-tikl

_ 1]2 L.,,1=1 i)
e <Tiki

The prior distribution for the mixture weights is a Dirichlet distribution and we there-

fore obtain the partial derivative of In[P(O)] with respect to c;~from Eq. (4.14).

o In[P(O)] _ og(O) OC)~
~-(i) ---;;(if ~-(i)
uCjk uCjk uCjk

(i)
= L:[(e5'm _l)oln(cjm) . OCjm]

m J OCjm oc;~ (4.60)

=L:[(e5jm - 1) . c;; . (e5(k - m)Cjm - CjkCjm)]

m

=(e5jk - 1) - L(e5jm - l)cjm'

_(i)() _ -(i)() oE(On)
aij n + 1 - aij n - E _ (i)

oa··IJ

The partial derivative of Eq. (2.9) with respect to a~Y is

oln[P (0 i)] T _ . _ [.]
-(i) = L L 5(qt-l - ~)5(qt - 8) 5(J - 8) - aij .oaij t=l s

The prior distribution for the transition probabilities is a Dirichlet distribution and we

therefore obtain the partial derivative of In[P(O)] with respect to C}~ from Eq. (4.15).

a In[P(O)]
o:l-(i)va··lJ

ii ..e 'J

Lkeiiij'

Although the GMAP algorithm has been developed such that an initial parametric

prior can be used (to incorporate true a-priori information), it is unlikely that any

such information will exist. This algorithm will therefore often be used with a non-

informative initial prior. This results in the prior gradient being zero, with no effect

on the resultant update.

The term MAP-MCE is sometimes used to refer to the usage of the MCE algorithm,

but starting at the MAP point. This section describes an entirely different technique,

which has been named MAPMCE in this work for the reason that it estimates the MAP

point of the posterior of the probability of choosing the correct class (MCE), i.e. it

optimizes the classification error (as criterion function) with respect to the parameters

while incorporating a prior in the formulation.

Bayesian adaptation

In Section 3.2 it was mentioned that the MCE loss function is a reasonable estimate

of the error probability. Given that this is the case, we can estimate the MAP point

for the posterior distribution of the probability of choosing the correct class, namely

where Ci is the correct class and P(CiIO, 0) is the probability of choosing the correct

class Ci given the current model parameters ° and the observations O.

Rewriting Eq. (4.41) for the posterior in Eq. (4.65) and using the MCE loss function,

P(CiIO,O) in Eq. (4.66) instead of the likelihood function L(OIO) (or P(OIO)), we get

As mentioned in Section 4.4.3, there is little chance of a parametric prior being available

for the gradient based MAP algorithm and this is also the case for the MAPMCE algo-

rithm. The rest of this procedure will therefore be developed without the parametric

prior P(O).

Following the same reasoning as in Section 4.4, we can express Eq. (4.67) in terms of

an energy function,

k n

E(O; 0) = -cpL In[(l -l(Oi; 0))] - L In[(l - l(Oi; 0))].
i=l i=k+l

Unfortunately the gradient (a~~())) for Eq. (4.68) is not finite, with a~~()) = 00 for any

l(Oi; 0) = 1.

Although this is not an entirely accurate estimate of the probability, it results in the

following, more convenient, energy function

k n

E(O; 0) = cPL l(Oi; 0) + L l(Oi; 0),
i=l i=k+l

where l(Oi; 0) is the MCE loss function (Eq. (3.15)) for observation i. Equation (4.70)

is intuitively pleasing as it is simply a weighted version of the standard MCE algorithm

in the sense that the "prior" terms (i = 1 ... k) are weighted by cp. An error in the

"prior" or reference set will therefore not be penalized as heavily as an error in the

adaptation set (0 :s; cp :s; 1). The algorithm will therefore try to minimize errors in

both sets, but will place more emphasis on errors that occur in the adaptation set.

The implementation of this algorithm, requires the following simple modification to

the standard MCE algorithm which was described in Chapter 3: if an observation is in

the "prior" dataset, then the gradient with respect to the model parameters (\71(0; 0))

used in the GPD update (Eq. (3.18)) must be weighed with cp.

4.6 Experiments

The goal of this section is to experimentally compare the three algorithms discussed

earlier in this chapter (MAP, GMAP and MAPMCE) in conditions where limited

training data is available, with a reasonable amount of non-task-specific data available

for adaptation purposes.

Before continuing, it is necessary to explain the convention I have used to describe (or

label) the algorithms used:

• MAP - A MAP algorithm labelled as "MAP Tx (Ty)" uses the dataset Tx as

its adaptation set and the ML model created using Ty to determine the prior

distribution. Here, Eqs. (4.22) through (4.26) are used.

• GMAP - A GMAP algorithm labelled as "GMAP Tx (Ty)" uses the dataset Tx

as its adaptation set and the ML model created using Ty as a starting point.

Note that the prior dataset is not included in the description as it is a constant

for each experiment. Here, Eqs. (4.46) through (4.64) are used.

• MAPMCE - A MAPMCE algorithm labelled as "MAPMCE Tx (Ty)" uses the

dataset Tx as its adaptation set and the ML model created using Ty as a starting

point. As with GMAP, the prior dataset is not included in the description thereof.

Here, Eq. (4.70) is implemented using Eq. (3.25) through Eq. (3.46).

The number of iterations used for each procedure differed. When using MAP, 10

iteration typically proved to be sufficient with the testing set performance converging

at or before 10 iterations. GMAP required between 10 and 30 iterations for the testing

set performance to converge, while the MAPMCE algorithm also required between 10

and 30 iterations to attain peak testing set performance. The number of iterations

required for the gradient-based algorithms (GMAP and MAPMCE) is dependent on

the step size E, the size of the datasets and the weighting factor <po

In situations where HMMs of differing complexity are used, the number of states and

mixtures will be included in the description. For example, the algorithm description

"MAP 3,5 Tx (Ty)" refers to the MAP algorithm using a 3 state, 5 mixture HMM.

This section compares the three adaptation algorithms within a language adaptation

framework. The SUNSpeech dataset described in Section 2.4 is used for this purpose.

The subsets of the dataset described in Section 2.4.3 are used for this experiment.

Table 4.3 presents the Afrikaans test set accuracy of the base system (described in

Section 2.1) for the different training sets. As expected, the performance of the system

trained using the English subset (31.9% and 33.9% for 5 and 10 mixtures respectively)

is worse than that trained using either the full Afrikaans training set (48.6% and 51.5%)

or the reduced Afrikaans training subset (42.5% and 41.2%). Training using combined

English and Afrikaans sets produces relatively poor results as compared to only using

the associated Afrikaans set.

Table 4.3: Base system results for SUNSpeech Afrikaans test set

English (E) 31.9% 33.9%

Afrikaans train (A) 48.6% 51.5%

Afrikaans train + English (A + E) 37.9% 41.4%

Afrikaans adapt (As) 42.5% 41.2%

Afrikaans adapt + English (As + E) 34.2% 37.6%

Using 10 mixture components as opposed to 5 improves results, except when using

the reduced Afrikaans training set where a reduction in performance occurs. This

phenomenon can be ascribed to the bias/variance problem discussed in Section 2.2.1.

The more complex 10 mixture HMM has a lower bias, and will therefore work better

in situations where there is sufficient data available. In situations where there is little

data available, the variance term becomes dominant and so the less complex model (5

mixture HMM) works best.

The recognition results appear relatively low, as compared to that obtained for con-

tinuous recognition on other continuous phoneme recognition tasks, such as TIMIT.

The recognition performance of the same syste.m using the TIMIT database is 57.0%

and 60.0% for 3 state models using 5 and 10 mixtures respectively. There are several

reasons that could account for the disparity in recognition performance, including:

• There are a total of 59 phonetic categories (including silence and unknown) used

in SUNSpeech. This is as compared to, for example, TIMIT where there are 39

phonetic categories. The task is therefore somewhat more complex .

• The SUNSpeech dataset labels include an unknown class, which accounts for 1.9%

of the labels in the test set. The unknown class is not modeled, this will result

in at best a 1.9% poorer error rate. The unknown class includes any sounds or

speech that cannot be included in any of the other 58 phonetic categories.

This section presents the results obtained for the MAP algorithm described in Section

4.3 using the SUNSpeech dataset. The adaptation set and prior are an integral part of

the MAP algorithm and will therefore be included in any description thereof.

Figure 4.3 presents the MAP adaptation results for a 3 state, 5 mixture system when

only the reduced Afrikaans training set (As) is available. The line labelled "ML As"

gives the base maximum likelihood performance (42.5%) of a 3 state, 5 mixture model

trained on the Afrikaans adaptation set only. The MAP algorithms "MAP As (E)"

and "MAP As(As + E)" use a prior created using the English training set (E) and a

prior made using the union of the English and Afrikaans adaptation sets (As + E).

45.5

45

44.5

44

~~ 43.5>-
0
~
:J 430
0«

42.5

42

41.5

41

MAP As (E)
MAP As (As + E)

ML As

Figure 4.3: MAP adaptation results plotted versus the prior parameter v (Eq. (4.12)) for
adaptation set As using an English prior (E) and a prior created using pooled English and
Afrikaans adaptation set (As + E) for a 3 state, 5 mixture model.

Peak performance of 45.4% phoneme accuracy is attained using the pooled set (As+E)

to create the prior (5% relative improvement in error rate). The MAP algorithm using a

prior created using the English training set only performed considerably worse, reaching

a peak performance of 44.0% (2.6% relative improvement in error rate).

Both implementations attain peak performance with [/ = 20. As expected, the perfor-

mance of the MAP algorithm is highly dependent on the value chosen for the parameter

v. If v is too small, the prior would not be informative enough and little prior infor-

mation is therefore obtained from the prior training set. A large value of v, on the

other hand, would result in a prior that is too restrictive, thereby keeping the resultant

model very close to the model trained on the prior training set. The recognition accu-

racy is therefore expected to tend towards that of an NIL model trained using the only

the adaptation set (ML As) for very small values of l/. Conversely, the recognition

accuracy is expected to tend towards that of the ML model trained using the prior

training set (E) for large values of l/.

There is, however, an optimal value for l/ between these two extremes. This occurs

when information from both sets is being used optimally.

Figure 4.4 shows the the MAP adaptation results for a 3 state, 5 mixture HMM system

when the full Afrikaans training set (A) is used as the adaptation set. The results for

the MAP algorithm using both the English set prior and a pooled prior created using

both the English set and full Afrikaans training set (A + E) are compared.

50~~~
>.
0 49.5III:;
0
0«

49

48.5

48

47.5

'", """'" '"",

MAP A (E)
MAP A (A+E)

MLA

The recognition accuracy for the base ML system (ML A) is 48.6%. The MAP algo-

rithm using the pooled prior (A + E) with peak performance of 50.8% (4.3% relative

improvement of error rate), once again performed better than the MAP algorithm

using only the English prior (E) with a peak performance of 50.2% (3.1% relative

Here, peak performance was attained for v = 5 for both algorithms, which is less than

that required when the smaller Afrikaans training set is used. As the amount of task-

specific training data increases, one would expect the optimal value of v to decrease,

as has been demonstrated in this experiment.

One would also expect the MAP algorithm to become less useful as the amount of task-

specific training data increases. This is evident here, with the relative improvement in

performance (4.3%) being less than that obtained for the small Afrikaans training set

(5%).

The results for a 3 state, 10 mixture HMM model experiment using only the reduced

Afrikaans set (As) are shown in Figure 4.5 (the priors are either E or As + E). Maxi-

mum recognition accuracy of 44.8% is attained using the pooled prior, while the MAP

algorithm using only the English prior again does not work as well managing a maxi-

mum of 43.8%.

The results are very similar to that obtained for the less complex 3 state, 5 mixture

HMM. It is, however, apparent that the absolute performance is worse than that of the

the 3 state, 5 mixture model (44.8% versus 45.4%).

Table 4.4 summarizes the best accuracies attained using the MAP algorithm for the

different configurations. Note that the 3 state, 10 mixture model is consistently worse

than the 5 mixture variant when the small Afrikaans training set is used. It is also

noticeable that the effect of the MAP algorithm is reduced as the amount of Afrikaans

data (adaptation data) is increased.

Importantly, the MAP algorithm was not able to improve on the ML results for the 3

state 10 mixture model, when using the English prior with the full Afrikaans training

set.

>.
~ 42.5
:Joo« 42

MAP As (E)

40.5 MAP As (As + E)
MLAs

Figure 4.5: MAP adaptation results for a 3 state, 10 mixture HMM using the small Afrikaans
training set

The gradient based MAP algorithm presented in Section 4.4 is tested using the SUN-

Speech dataset here. Incorporating the adaptation data in both the prior and adap-

tation datasets results in the adaptation data (Eq. (4.44)) having an effective weight

of (1 + <p) with the prior data having a weight of <po The same result can be accom-

plished, without incorporating the adaptation data in the prior data, by choosing a

new weighting factor <p' = (1:<p)' There is therefore no point in pooling the English

and Afrikaans datasets and using the resultant dataset as a prior dataset, as was done

for the standard MAP algorithm. As a result, the English dataset is used as the prior

dataset for all experiments conducted in this section.

As a result of using the steepest descent algorithm, one would expect this algorithm

to easily fall into local minima. The starting point, should therefore influence the

Table 4.4: Summary of the MAP accuracy results obtained for the SUNSpeech database.
Relative improvement in error rate over baseline performance is given in brackets.

I Description

Baseline ML (As) 42.5% (0.0%) 41.2% (0.0%)

MAP As (E) 44.0% (2.6%) 43.9% (4.6%)

MAP As (As + E) 45.4% (5.0%) 44.8% (6.1%)

Baseline ML (A) 48.6% (0.0%) 51.5% (0.0%)

MAP A (E) 50.2% (3.1%) 51.25% (-0.5%)

MAP A (A+E) 51.1% (4.9%) 52.4% (1.9%)

performance of the algorithm to some degree. Figure 4.6 presents the results using

the gradient based MAP algorithm for a 3 state, 5 mixture HMM, starting at (a) the

English ML model, (b) the ML model for the small Afrikaans training set and (c) the

best MAP estimate from the previous section. The baseline (ML) accuracies for the

large dataset (ML A) and small training set (ML As) are also plotted.

Starting the algorithm using the English ML model, results in relatively poor accuracy

(peak accuracy of 35%), considerably worse than that of the ML model of the small

Afrikaans training set. Using the ML model of the small Afrikaans training set and the

best MAP estimate (which produced an accuracy of 45.4%) as starting points, produces

good improvements in accuracy relative to that of the ML model (peak accuracy of

46.0% and 47.1 % respectively).

Figure 4.7 shows the performance of the gradient based MAP algorithm for both 5 and

10 mixture HMMs. The starting point was chosen as the best MAP estimate for all

algorithms presented in this graphic.

It is important to note that here, the performance of the 10 mixture HMM is better

than that of the 5 mixture HMM. This is, as opposed to that of standard MAP and

the ML algorithms, where the 3 state 10 mixture HMM performed slightly worse.

Chapter 4

50

48

46

44
~~
>-
0 42I1l:J
0
0« 40

38

36

------------ ---- - - ---- - - ---- - - -- -- - - --- - - - ---- - -- -- - --- - --- - - - - - --- ---- ------- --------- -- - -- -----

~

GMAP 3,5 As (As)

GMAP 3,5 As (MAP)
GMAP 3,5 As (E)

MLA
ML As

34
0.01

The weighting factor <p (Eq. (4.44)) has much the same effect as the parameter lJ

(Eq. (4.12)) has in the standard MAP algorithm. Although it is not easily observable

from the results presented here, this algorithm exhibits asymptotic behaviour in the

extremes of <po For <p = 0 the training examples in the prior set would be ignored and

the algorithm would become an ML algorithm. A value of 1 would weight prior and

adaptation examples equally and the algorithm becomes an ML algorithm trained on

the pooled dataset.

Table 4.5 summanzes the results obtained when using the GMAP algorithm. The

GMAP algorithm produces significant improvements on the baseline performance when

the small Afrikaans training set is available. Note that this is not the case when the

English set is used as starting point, and the starting point should therefore be chosen

carefully. Smaller, but significant improvements are realized when the full Afrikaans

training set is used.

50

~~
>-
0 48I1l:s
0
0~

46 GMAP 3,5 As (MAP)
GMAP 3,10 As (MAP)

GMAP 3,5 A (MAP)
GMAP 3,10 A (MAP)

MLA

ML As

42
0.01

The MAPMCE algorithm presented in Section 4.5 is tested using the SUNSpeech

dataset here. The English dataset is used as the prior dataset for all experiments

conducted in this section.

In Chapter 3 it was argued that it was not necessary to use a sigmoid (or smoothed

zero-one) loss function and results indicated that there was little to be gained from

the use thereof. It is therefore necessary to again investigate the effect of a smoothed

zero-one loss function within the MAPMCE framework.

Figure 4.8 presents the results using the MAPMCE algorithm for a 3 state 5 mixture

model using the small Afrikaans training set, starting from the English ML model.

The results for both sigmoid and no-sigmoid loss functions are shown. The baseline

performance, namely that of the ML model trained using the small Afrikaans set, is

Description Mixtures

5 10

Baseline ML (As) 42.5% 41.2%

GMAP As (E) 35.0% 34.9%

GMAP As (As) 46.0% 46.2%

GMAP As (MAP) 47.1% 47.2%

Baseline ML (A) 48.6% 51.5%

GMAP A (MAP) 51.3% 52.5%

The MAPMCE algorithm using a sigmoid loss function attains a peak accuracy of

32.4% for small values of cpo This is not sufficient to improve on the baseline perfor-

mance of the ML model. The MAPMCE algorithm which does not make use of a

sigmoid loss function, however, performs considerably better and manages to improve

on the baseline performance. A peak accuracy of 43.5% is attained, resulting in a

relative improvement in error rate of 1.8% as compared to that of the baseline ML

system.

These results confirm the discussion in Chapter 3, showing that the sigmoid function

merely serves to introduce additional local minima, and therefore hinders the algorithm

from reaching a meaningful local minimum. All subsequent experiments using the

MAPMCE algorithm will therefore not use a smoothed zero-one loss function.

Figure 4.9 shows the results of the MAPMCE algorithm for various configurations.

The ML results for a 3 state, 5 mixture HMM are shown for both the full (ML 3,5 A)

and reduced Afrikaans (ML 3,5 As) training sets for reference purposes. The starting

point for all the results presented here is the best associated MAP estimate.

Bayesian adaptation

... ---_._.- ---_ - .. __ .._-- _ .. _ " _.- ..•...•-::::~.- - .. - _--_ __ .. -- _.- ..-._-_ -.-.- ..-
,/////

//,/////

,,;,,"

";";",,.,,

..•.,. ..

,/,//'/

•.•.•."
......'

..,..",,,,,

~ 38!?....
>-o
~
:J 36oo«

MAPMCE, sigmoid
MAPMCE, no sigmoid

ML As

Figure 4.8: MAPMCE adaptation results for the small Afrikaans training set when using the
English ML model as starting point

We would prefer an algorithm to perform better with more complex models, with

performance increasing as the model complexity increased. Unfortunately, here the

algorithm performs best for the reduced dataset, when using the less complex 5 mixture

per state HMM. As expected, the opposite is true when the full training set is used,

resulting in the more complex model performing best.

Table 4.6 summarizes the results obtained for the MAPMCE algorithm when usmg

the SUNSpeech dataset. Here, unlike the GMAP algorithm an improvement in perfor-

mance is realized when using the English ML model as starting point, although this is

not the case when using a sigmoid loss function. The MAP point estimate was once

again found to be the best starting point for the },/IAPMCE algorithm. Reasonable

improvements are attained for both the small and full Afrikaans training sets.

,

- -

----- - --- - - -- - - - - - -- - - --- - - - - - - - - --- --------- - ----- - - - - - --- - - - - - - - - - - - - - - - -
- -- - - ----- - - - -- -

- -

>-
~ 48
::Joo«

42
0.001

MAPMCE 3,5 As (MAP)
MAPMCE 3,10 As (MAP)

MAPMCE 3,5 A (MAP)

MAPMCE 3,10 A (MAP)
ML 3,5 As

ML 3,5 A

Figure 4.9: MAPMCE adaptation results for both Afrikaans training sets using the best
MAP point as starting point

Table 4.7 summarizes the best results obtained using the different algorithms for the

SUNSpeech dataset. Considerable improvements are realized from the usage of the

three algorithms when the small Afrikaans training set is used, with the GMAP algo-

rithm performing best under these conditions (8.0% and 10.2% relative improvement

in error rate for the 5 and 10 mixture models respectively).

Smaller, but finite, improvements are attained when the full Afrikaans training set is

available. Here, the MAPMCE algorithm produces the largest improvements (6.8% and

3.1% relative improvement in error rate for the 5 and 10 mixture HMMs respectively).

The MAP algorithm, although it manages to improve on the baseline performance,

produces the worst results of the three algorithms for the configurations and scenarios

tested. Note, however, that the MAP algorithm was integral to the optimal perfor-

Description Mixtures

5 10

MAPMCE As (E) 43.5% 43.3%

MAPMCE As (MAP) 46.3% 46.0%

MAPMCE A (MAP) 52.1% 53.0%

mance of the GMAP and MAPMCE algorithms, as the best MAP estimate was used

as starting point.

Table 4.7: Summary of the best results obtained for the SUNSpeech dataset. Relative im-
provement in error rate over baseline is given in braces.

I Description

Baseline ML As 42.5 (0.0%) 41.2 (0.0%)

MAP As (As + E) 45.4 (5.0%) 44.8 (6.1%)

GMAP As (MAP) 47.1 (8.0%) 47.2 (10.2%)

MAPMCE As (MAP) 46.3 (6.6%) 46.0 (8.2%)

Baseline ML A 48.6 (0.0%) 51.5 (0.0%)

MAP A (A+E) 51.1 (4.9%) 52.4 (1.9%)

GMAP A (!vIAP) 51.3 (5.3%) 52.5 (2.1%)

MAPMCE A (MAP) 52.1 (6.8%) 53.0 (3.1%)

The collection of large speech databases is not a trivial task (if done properly). It is

not always possible to collect, segment and annotate large databases for every task

or language. It is also often the case that there are imbalances in the databases. An

example of one such imbalance is the fact that there is often more male speakers than

female speakers (or vice-versa). If there is, for example, far fewer female speakers than

male speakers, then the recognizers will tend to work poorly for female speakers (as

compared to performance for male speakers).

This experimental section attempts to recreate such a scenario, where relatively little

female speaker training data is available, so as to test the three algorithms discussed

earlier in this chapter under these conditions. Table 4.8 details the TIMIT training and

testing sets used in the experiments presented in this section. Note that the default

TIMIT training set has an imbalance with respect to male and female speakers, with 326

male speakers and 136 female speakers. The standard TIMIT training set is therefore

used as one such example.

Table 4.8: Description of TIMIT training and testing sets used

Descri ption Label Number of speakers Sentences Duration

Male Female Total (minutes)
,

Training sets:

Full (standard) T 326 136 462 4620 236.5

Male TM 326 0 326 3260 165.2

Female TF 0 136 136 1360 71.3

Female-small TFS 0 16 16 160 8.2

Testing set (standard) 112 56 168 1680 86.4

Male test set 112 0 112 1120 56.8

Female test set 0 56 56 560 29.7

Although there is an imbalance in the standard training set, with the female speaker

accounting for only 29.5% of the training set, it is necessary to investigate the effect of

an even smaller number of female speakers. It is for this purpose, that a small female

training set has been created, consisting of 16 speakers (2 from each of the 8 dialect

regions in TIMIT). The small female training set (TFS) is therefore approximately 5%

the size of the full male training set (TM) and 12% of the full female training set (TF).

A more detailed description of the TIMIT database can be found in Section 2.4.

• The full male training set (TM) and the small or reduced female training set (TFS)

are available for training.

1. Adaptation performance - the ability of the algorithm to improve the accuracy

of the test set associated with the adaptation set,

2. Training performance - the ability of the algorithm to improve the accuracy of

the combined testing set ("standard" testing set in Table 4.8).

The rationale behind the above two criteria, is that although the MAP algorithm is

a good adaptation technique, it will possibly not perform as well in situations where

we want good performance for both adaptation and reference (prior) sets. There are

numerous situations where one would prefer better combined performance. Often, for

example, when a severe imbalance in the number of female and male speakers occurs

and a gender independent recognizer is used, the performance for the one grouping will

tend to be relatively poor (and so too the combined performance).

The combined performance, however, can be somewhat misleading. A reasonable com-

bined performance can be produced if a system works well for one group and poorly for

another. For example, a system that attains 90% correct recognition for male speakers

but only 30% for female speakers would, assuming equal numbers of male and female

speakers, therefore give 60% correct recognition for the combined set. The minimum

performance for the two sets will also be presented, i.e. in the above example the 30%

recognition rate will be reported. \Vhen summarizing results, only those algorithms

and their configurations which maximize either the female, combined and minimum

testing set performance will be listed.

Table 4.9 presents the baseline ML results obtained for the TIMIT database. It is

evident, as expected, that if one were to create a gender specific recognizer, that the

models trained using the gender dependent subsets are best. The small female training

set produces results which are worse than that obtained using the full female training

set for both male and female testing sets (and consequently the combined testing set).

Table 4.9: Base system (ML) results for TIMIT

Training set Test set accuracy

Male Female Combined Minimum

Full training set T 57.3% 56.5% 57.0% 56.5%

Male training subset TM 59.1% 43.0% 53.7% 43.0%

Female training subset Tp 40.1% 61.0% 47.2% 40.1%

Small female training subset Tps 39.9% 56.8% 45.6% 39.9%

Tps +TM 59.1% 46.7% 54.9% 46.7%

The ML model resulting from the combination (pooling) of the male and the small

female training subsets (Tps + TM) results in better combined performance than that

attained by any ML model other than that of the full training dataset. The performance

for the female testing set is, however, poor and it is only better than that of the ML

model trained using the male training subset only.

A 3 state, 5 mixture HMM is used for all experiments using the TIMIT database in this

section. The general configuration of the HMM recognizer, is as described in Section

2.1.

The usage of the MAP algorithm for both adaptation and training purposes will now

be tested for both scenarios where limited training data is available for female speakers.

Figure 4.10 presents the MAP results when the small female training set is used. A

pooled prior created from the pooled dataset (TM + TFS) is used. The performance

for the female testing set peaks at IJ = 100, giving a peak accuracy of 57.4%. The

accuracy for the male testing set improves as IJ gets larger, i.e. as the prior becomes

more restrictive and the final result is closer to the ML estimate obtained from the

pnor.

Combined performance peaks at IJ = 2000 giving a peaked combined performance of

56%. The solution resulting in the best combined performance would probably not be

acceptable due to the disparity in results for the male and female testing sets (57.8%

and 52.4% respectively). A better solution is that which maximizes the minimum

performance of the two sets, this occurs for IJ = 700 which gives 55.1% accuracy for

both male and female sets.

Figure 4.11 shows the MAP results when using the full female training set (TF). A

pooled prior (TM + TF) is used. Peak performance of 61.0% is attained for the female

training set for IJ = 50. The performance for the male testing set, as with the previous

experiment, increases as IJ becomes larger.

Although the graphic does not show the point at which the male and female perfor-

mance is equal or at which point maximum combined performance is produced, it will

undoubtedly be very close to that at which IJ = 00 or the performance of the ML model

(of the pooled set).

The MAP results for the TIMIT database are summarized in Table 4.10. Using MAP

for gender adaptation (improving female test set performance) when using the small

training set results in a relatively small improvement in error rate (1.4% for IJ = 100)

Chapter 4

60

58

56

54

;g
~ 52>.
0
~
::J 500
0~

48

46

44
...... --

42
10

"",
""',,"

,/
--.-,,1"

/

,/////'/

female --
male --------

combined .

Figure 4.10: MAP adaptation results for the small female training set, using a pooled prior
(TM + TFS)

when using the small female subset. No improvement is observed when the full female

training set is used, where 61.0% accuracy is attained, equal to that realized using the

ML model for the full female testing set.

A considerable improvement in minimum accuracy is attained when usmg reduced

female training set, where a 15.8% relative reduction in error is realized (46.7% ---+

55.1%). Note that the best minimum accuracy (55.1%) using MAP is not much worse

as that attained when using the full training set (56.5%). The MAP algorithm does

not improve on the minimum accuracy attained of the ML model when using the full

training set.

The results for the MAP algorithm using a prior created using the pooled dataset have

been presented. The results for the MAP algorithm using a prior created from the male

training set have not been included as they are similar for adaptation (female testing

set accuracy) and worse in terms of the combined and minimum test set accuracies.

female --
male --------

combined ---------

~ 55g....
>-o
I1l:J
oo
~ 50

Figure 4.11: MAP adaptation results for the full female training set, using a pooled prior
(TM + TF)

The GMAP algorithm is experimentally evaluated here, for the two situations described

earlier. The full male training set (TM) is available in both situations and is used as

the prior dataset throughout.

The results obtained using the GMAP algorithm for the small female training set are

shown in Figure 4.12. The initial starting point used here is the ML model created

from the pooled data (TM +TFS)' The performance for the female testing set increases

as <p decreases. It is therefore evident that for this scenario, the GMAP algorithm will

give best performance for the female test set when ep = 0 (the ML estimate using the

small female testing set).

Algorithm Test set accuracy (%)

Male Female Combined Minimum

MAP TFS (TFS + TM), V = 100 47.6 57.4 50.9 47.6

MAP TFS (TFS + TM), V = 700 55.1 55.1 55.1 55.1

MAP TFS (TFS + TM), v = 2000 57.8 52.4 56.0 52.4

MAP TF (TF + TM), v = 50 41.1 61.0 47.8 41.1

MAP TF (TF + TM), v = 00 57.3 56.5 57.0 56.5

racy of 56.4%, while the minimum accuracy is maximized when ep = 0.02 resulting in a

55.3% peak minimum accuracy. Although it was not an objective of this experiment,

a slight improvement in male testing set performance is attained for ep = 0.5, where a

59.2% accuracy is realized.

Figure 4.13 shows the GMAP results the full female training set. The best female

testing set performance for the range of ep shown occurs for ep = 0.02, where an accuracy

of 60.5% is attained. The female testing accuracy for ep = 0 should, however, be the

same as that of the ML model estimated using the full female training set (61.0%). The

peak combined performance (57.0%) is attained when ep = 1, while the peak minimum

performance (56.7%) results when ep = 0.8.

Note that the value of ep resulting in optimal minimum testing set accuracy is larger

when the entire female training set is used. If there is no imbalance in the numbers

of male and female speakers, then one would expect the optimal value of ep to be

one (assuming that recognition accuracy would be the same for equivalent amounts

of data). As more and more training data becomes available for female speakers, the

contribution thereof to the posterior distribution becomes larger. The optimal value

of ep therefore increases, so that the adaptation data does not dominate.

48 female --
male --------

combined ---------
46
0.001

Figure 4.12: GMAP adaptation results for the small female training set, using the pooled
data (TM + TFS) ML model as a starting point

sonable improvements in minimum and combined testing set results are realized using

the GMAP algorithm with the small female training set, where a 16.1% and 3.3%

relative improvement in error rates are achieved respectively.

The GMAP algorithm, however, failed to improve on the female testing set performance

attained using the ML trained model using the corresponding female training set, for

both scenarios where the small and full female training sets are used.

The MAPMCE algorithm presented in Section 4.5 is tested using the TIMIT dataset

given the conditions described earlier. The male speaker training set is used as the

prior dataset for all experiments conducted in this section.

Bayesian adaptation

female --
male --------

combined -------..

~
;: 52
o
~
13 50.:i.

40
0.001

Figure 4.13: GMAP adaptation results for the full female training set, using a pooled data
(TM + TF) ML model as starting point

Figure 4.14 presents the MAPMCE results for the small female training set using the

pooled ML model as a starting point. Note that here the female testing set performance

does not improve to the extent that it becomes better than that of the male testing

set. The peak minimum and female testing set performances are therefore obtained for

the same value of cp = 0.1, which produces a peak accuracy of 56.3% for both criteria.

The best combined performance of 62.2% is attained when cp = 0.5, though this is only

slightly better than that attained at the peak minimum accuracy point, which results

in a combined performance of 62.1%.

Figure 4.15 shows the MAPMCE results for the small female training set, but with

the best MAP point used as starting point. Here, the female testing set performance

is considerably better, with a peak performance of 60.3% being attained for cp = 0.2.

The accuracies attained for the male testing set are, however, somewhat worse with

a peak male testing set accuracy of 63.0% resulting for cp = 1.0. The best combined

Algorithm Test set accuracy (%)

Male Female Combined Minimum

GMAP TFS (TFS + TM), <P= 0.001 50.5 55.8 52.6 50.5

GMAP TFS (TFS + TM), <P= 0.02 55.3 55.6 55.4 55.3

GMAP TFS (TFS + TM), <P= 0.1 58.0 53.8 56.4 53.8

GMAP TFS (MAP), <P= 0.01 46.2 57.0 50.0 46.2

GMAP TFS (MAP), <P= 0.08 55.0 55.1 55.1 55.0

GMAP TFS (MAP), <p = 0.2 57.2 52.0 55.4 52.0

GMAP TF (TF + TM), <P= 0.02 43.6 60.5 49.5 43.6

GMAP TF (TF + TM), <P= 0.8 56.7 56.7 56.7 56.7

GMAP TF (TF + TM), <P= 1.0 57.2 56.2 57.0 56.2

GMAP TF (MAP), <P= 0.01 41.2 60.9 47.8 41.2

GMAP TF (MAP), <p = 0.7 57.0 57.0 57.0 57.0

GMAP TF (MAP), <p = 1.0 57.7 55.9 57.1 55.9

accuracy is 61.4% for <p = 1.0, which is worse than that produced by the MAPMCE

algorithm using the ML model trained using the pooled dataset as starting point.

The peak minimum test set accuracy is 60.3% (<p = 0.2), which is considerably better

than that attained (56.3%) using the pool dataset ML model as starting point. Al-

though the combined testing set performance is better using the previous variant of

the MAPMCE algorithm, one would rather choose to use the later version due to the

considerably improved minimum and female testing set performance.

Table 4.12 summarizes the MAPMCE results using both the small and full female

training sets. Large improvements in the minimum, combined and female testing set

performances are attained for both the small and full female training sets. Using the

MAP point estimate as starting point produced the best female and minimum testing

set performances. Maximum combined testing set performance was, however, attained

female --
male --------

combined //-

////////-/---

62

~•..........~
>. ---u 60«l:;
U
U
<{

58

54
0.01

Figure 4.14: MAPMCE adaptation results for the small female training set, using the full
male training set as prior (TM) with the pooled ML model as starting point

Table 4.13 summarizes the best adaptation results (female testing set accuracy) ob-

tained using the different algorithms for the TIMIT dataset. The MAP and GMAP

algorithms did not improve female testing set performance when the full female train-

ing set was used. MAP improved the female test set accuracy to a limited degree when

the small female training set was available. The MAPMCE algorithm performed best,

with relative improvements in error rate of 8.1% and 13.1% resulting for the small Tps

and full Tp female training sets respectively.

Table 4.14 summarizes the best training results (minimum testing set accuracy) ob-

tained using the different algorithms for the TIJ\IIT dataset. The MAP and GMAP

60

~~
>.
u 58~
:J
U
U
<{

56

female --
male --------

combined ---------

Figure 4.15: MAPMCE adaptation results for the small female training set, using the full
male training set as prior (TM) with the best MAP estimate as starting point

algorithm produced reasonable improvements in error rate when the small female train-

ing set was used (15.8% and 16.1% respectively). Little or no improvement was attained

using these two algorithms when the full female training set was used. MAPMCE, once

again produced marked improvements in the minimum testing set accuracy, with 25.5%

and 14.5% relative improvement in error rate for the small and full female training sets

respectively.

In this section, the three algorithms (MAP, GMAP and MAPMCE) will be compared

within the framework of a continuous digit recognition task. As in the previous section,

a situation is created where the number of female speakers is limited. The adaptation

algorithms are therefore required to improve female test set performance, as well as for

Description Test set accuracy (%)

Male Female Combined Minimum

MAPMCE TFS (TFS + TM), rp = 0.2 65.1 56.3 62.1 56.3

MAPMCE TFS (TFS + TM), rp = 0.5 65.5 55.9 62.2 55.9

MAPMCE TFS (TFS + TM), rp = 1.0 65.7 55.2 62.1 55.2

MAPMCE TFS (MAP) (rp = 0.2) 61.5 60.3 60.9 60.3

MAPMCE TFS (MAP) (rp = 1.0) 63.0 59.8 61.4 59.8

MAPMCE TF (MAP) (rp = 0.2) 60.0 66.1 61.8 60.0

MAPMCE TF (MAP) (rp = 1.0) 62.8 65.1 63.4 62.8

Table 2.6 presents the training and testing sets used in the experiments conducted

in this section. The standard TIDIGITS training set comprises 77 digit sequences

from each of the 57 female speakers in the dataset and 55 male speakers. There is

therefore not an imbalance in the numbers of male and female speakers. Two subsets

of the female training set are therefore created, so as to simulate the situation where

relatively little data from female speakers is available.

The first subset (Tws) consists of five female speakers selected at random from the

complete female training set and all of the associated 77 digit sequences. The total

duration of the resultant training set (Tw s) is 10.1 minutes long, which is approximately

7.7% the size of the full female training set. The second, smaller female training set

(Twvs) is a subset of the first, where the digit sequences of each of the speakers has

been reduced to one each of the 1,2,3,4,5 and 7 digit sequences per speaker (randomly

selected). The number of speakers is also reduced to 4, resulting in a female training

set which is 55 seconds in duration and approximately one tenth the size of the first

female training subset.

Table 4.13: Summary of the best adaptation results obtained for the TIMIT dataset. Relative
improvement in error rate is given in braces.

Description Female test set accuracy (%)

Baseline ML TFS 56.8 (0.0%)

MAP TFS (TFS + TM), V = 100 57.4 (1.4%)

GMAP TFS (TFS + TM), cp = 0 56.8 (0.0%)

MAPMCE TFS (MAP), cp = 0.2 60.3 (8.1%)

Baseline ML TF 61.0 (0.0%)

MAP TF (TF + TM), v = 50 61.0 (0.0%)

GMAP TF (TF + TM), cp = 0 61.0 (0.0%)

MAPMCE TF (MAP), cp = 0.2 66.1 (13.1%)

The second subset (Twvs) is extremely small, but it will be shown that reasonable

performance can be realized even for such a small training set. Note that although the

female training sets are small the full male training set is assumed to be available for

As in the last section, the algorithms will be compared by their ability to adapt mod-

els (female testing set performance) and performance of gender independent training

(combined and minimum test set accuracy).

Table 4.16 details the performance of an 8 state, 5 mixture ML trained HMM trained

using the datasets described above. The results using the full training sets are presented

as a reference for the experimental results using the reduced datasets.

Reasonable accuracies are realized when only the small female training set (Tw s) is

available. Peak female testing set accuracy of 95.6% is attained when using a model

trained using only the small female training set. Pooling the small female training set

and the full male training set (TM +Tws) decreases the performance for the female test-

ing set slightly, but improves male, combined and minimum testing set performances

markedly.

Table 4.14: Summary of the best minimum test set accuracy obtained for the TIMIT dataset.
Relative improvement in error rate is given in braces.

Description Minimum test set accuracy (%)

Baseline ML TFS + TM 46.7 (0.0%)

MAP TFS (TFS + TM), V = 700 55.1 (15.8%)

GMAP TFS (TFS + TM), rp = 0.02 55.3 (16.1%)

MAPMCE TFS (MAP), rp = 0.2 60.3 (25.5%)

Baseline ML T 56.5 (0.0%)

MAP TF (TF + TM), v = 50 56.5 (0.0%)

GMAP TF (TF + TM), rp = 0.8 56.7 (0.5%)

MAPMCE TF (MAP), rp = 1.0 62.8 (14.5%)

Using the very small female training set (Twvs) results in poor results (25.2% accuracy

for the female testing set). Pooling with the male training set, once again greatly

improves results. It is, however, interesting to note that the ML trained model using

only the male training set results in better results.

When computing the relative improvement obtained using the algorithms, the best

results obtained when using only the available training data will be used. Table 4.17

shows the best ML results that can be achieved for the two scenarios, where the amount

of female training data is limited. Note that, as mentioned, the best results obtained

when the very small female training set is available is that of the ML model trained

using only the male training set and the associated results are therefore used.

As discussed, the combined performance is not a good measure of the suitability of a

particular model or algorithm. The ML model trained using only the male (or female)

training set is a good example of this problem, a combined performance of 90.6%

seems reasonable, but there is a large difference between female and male testing set

performance (97.4% vs. 84.0%), which is not desired.

Description Label Number of speakers Digit Duration

Male Female Total sequences (minutes)

Training sets:

Full (standard) T 55 57 112 8623 253.4

Man TM 55 0 55 4235 121.9

Woman Tw 0 57 57 4389 131.5

Woman-small Tws 0 5 5 385 10.1

Woman-very-small Twvs 0 4 4 28 55 s

Testing set 55 57 113 8623 254.4

The standard MAP algorithm presented in Section 4.3 is now tested within connected

digit recognition task using the TIDIGITS database. As with the previous databases

used to test the MAP algorithm, a pooled prior was found to perform better than that

created from only the reference (male) training set. The prior used in all experiments

presented in this section is therefore created using the pooled dataset containing the

male training set and the relevant female training set.

Figure 4.16 shows the MAP adaptation results for the scenario where the small female

training set (Tws) is available. The pooled data set (Tws + TM) is used to create the

prior. Peak female testing set performance of 97.4% is attained for v = 200, which

also results in a peak combined performance of 97.2% The peak minimum accuracy of

97.2% occurs at v = 300, relatively close to the combined performance peak.

Figure 4.17 presents the MAP adaptation results for the scenario where the smallest

female training set (Twvs) is available. The amount of female adaptation data is ex-

tremely small, and as a result the female testing set performance cannot be improved

to the extent that it is better than that of the male testing set (for the specific config-

Training set Test set accuracy (%)

Male Female Combined Minimum

Full training set (T) 97.5 98.4 97.9 97.5

Man, training set (TM) 97.4 84.0 90.6 84.0

Woman, training set (Tw) 90.3 98.8 94.6 90.3

Woman, small training set (Tws) 78.0 95.6 87.0 78.0

TM +Tws 97.6 94.4 95.9 94.4

Woman, very small set (Twvs) 15.6 25.2 20.5 15.6

TM + Twvs 91.3 80.1 85.6 80.1

Available data Test set accuracy (%)

Male Female Combined Minimum

TM,Tws 97.6 95.6 95.9 94.4

TM,Twvs 97.4 84.0 90.6 84.0

uration). Peak female, combined and minimum testing set accuracies of 84.4%, 87.2%

and 84.4% respectively are attained for v = 200. The female and minimum testing

set performances are slightly better than that of the ML model trained using the male

training set only (a relative improvement in error rate of 2.5%). The combined test set

accuracy is, however, considerably worse than that obtained using the best ML model

(-36.2%).

Table 4.18 summarizes the results obtained using the MAP adaptation algorithm for

the two training datasets. Reasonable improvements in error rates are attained when

the larger female training set (Tws) is available. However, the MAP algorithm fails to

significantly improve the minimum and female testing set accuracy when the smallest

female training (Twvs) set is used. Importantly, a decrease in combined performance

Bayesian adaptation

97
96 ///'------

95

94

~
;: 93
u
~
13 92!:i.

91

90

89

88
female --

male -------.
combined .

87
10

Figure 4.16: MAP adaptation results for an 8 state, 5 mixture HMM using the small female
training set (Tw s) as the adaptation set and the pooled training set (Tw s + TM) to create
the prior.

results when using the MAP algorithm in the extreme situation, where the smallest

female training set is used.

The GMAP algorithm presented in Section 4.4 is tested using the TIDIGIT dataset

given the conditions described earlier. The male speaker training set is used as the

prior dataset for all experiments conducted in this section.

Figure 4.18 details the GMAP adaptation results for an 8 state, 5 mixture HMM

when the small female training set (Tw s) is available. The algorithm attains peak

performance of 97.6% for the female testing set when y = 0.05, which is a 45.5% relative

improvement in error rate. A slight, though insignificant improvement in accuracy for

85

~~
>-u 80~
:l
U
U«

75

female --
male --------

combined ---------
65

10

Figure 4.17: MAP adaptation results when the smallest female training set (Twvs) is avail-
able

the male testing set can be attained if we set ep = 0.5. Peak combined and minimum

testing set performances both occur when ep = 0.2, where a 97.5% accuracy is realized

(for both). This equates to a 39% and 55.4% relative improvement in error rate for the

combined and minimum testing set accuracies respectively.

The GMAP results for scenario where the very small female training set is available are

presented in Figure 4.19. Here, as with MAP, the female testing set performance can

not be improved to the degree that it is higher than that for the male testing set (for the

range of ep presented). One would, however, expect the male training set performance

to drop below that of the female testing set as ep --+ 0, which is the ML estimate using

only the female training data. A peak female testing set accuracy of 88.8% results for

ep = 0.01, which is a 30.0% relative improvement in error rate (compared to the male

training set (TAd ML model).

Description Test set accuracy (%)

Male Female Combined Minimum

MAP 8,5 Tws(Tws + TM),1/ = 200 97.0 97.4 97.2 97.0

MAP 8,5 Tws(Tws + TM),1/ = 300 97.2 97.2 97.2 97.2

MAP 8,5 Tws(Tws + TM),1/ = 105 97.6 94.9 96.2 94.9

MAP 8,5 Twvs(Twvs + TM),1/ = 200 90.0 84.4 87.2 84.4

MAP 8,5 Twvs(Twvs + TM),1/ = 105 91.2 79.5 85.2 79.5

racy as that of the female testing set (88.8% at r.p = 0.01), which is also a 30.0% in error

rate. The combined performance is a maximum at either r.p = 0.02 or r.p = 0.01 where

a combined accuracy of 89.9% results (a relative increase in error rate of 7.4%). Here,

the combined error rate is still worse than that attained using the ML model trained

using the male dataset, though as discussed, this is not a good measure of model or

algorithm performance.

Table 4.19 summarizes the results obtained using the GMAP algorithms for the various

scenarios created using the TIDIGIT dataset. The results for the GMAP algorithm

using the ML model of the pooled dataset (Twvs + TM) as a starting point are also

presented (for the small female dataset). It is noticeable that here, the usage of the

best MAP point estimate results in a small, but significant improvement in error rates

(for the three criteria used to evaluate the algorithms).

The MAPMCE algorithm presented in Section 4.5 is tested using the TIDIGIT dataset

given the conditions described earlier in this section. The male speaker training set is

used as the prior dataset for all experiments conducted in this section.

97.5

97

96.5

~ 96
~
>-
0 95.5~
:J
0
0~ 95

94.5

94

93.5
female --

male -------.
combined -- .

93
0.001

Figure 4.18: GMAP adaptation results for an 8 state, 5 mixture HMM using the small female
training set (Tws) as the adaptation set and the male training set (TM) as prior. The best
MAP point is used as starting point.

Figure 4.20 presents the MAPMCE results for an 8 state, 5 mixture HMM when the

small female training set is available. The male training set is used as the prior dataset

and the best MAP estimate is used as a starting point. It is interesting to note that

the female testing set accuracy is above that of the male testing set for the range of

<p presented. The male, female, combined and minimum test set accuracies peak at

<p = 0.5, where their respective accuracies are 98.1%, 98.5%, 98.3% and 98.1%. The

associated relative improvement in error rate is therefore 65.9% for the female testing

set, 58.5% for the combined testing set performance and 66.1% for the minimum testing

The female testing set results are, however, considerably worse than that of the male

testing set when using the MAPMCE algorithm for the scenario where the very small

female training set is available, as shown in Figure 4.21. The peak female, combined

and minimum testing set accuracies all occur at r.p = 0.05. A peak female testing set

82 female --
male --------

combined ---------
80
0.001

Figure 4.19: GMAP adaptation results for an 8 state, 5 mixture HMM using the very small
female training set (Twvs) as the adaptation set and the male training set (TM) as prior.
The ML estimate trained using the pooled training set is used as starting point.

accuracy of 93.0% is attained, which equates to a 56.3% relative improvement in error

rate. Large improvements are also realized for the combined and minimum testing set

performance measures, where a 95.1% combined testing set accuracy (47.9% relative

improvement) and 93.0% minimum testing set accuracy (56.3% relative improvement)

are attained.

Table 4.20 summarizes the results obtained using the MAPMCE algorithm under the

two scenarios created using the TIDIGITS dataset. The results for the MAPMCE

algorithm using the ML model of the pooled dataset (Tws + TM) as starting point

are also presented (for the small female training set). Once again, as with the GMAP

algorithm, using the best MAP point as the starting point has proved to be a better

choice (compared to using the ML estimate of the pooled dataset). The results for the

MAP1VICE algorithm for the smallest female training set using the best MAP point as

starting point have not been included as they are very similar to that obtained using

Description Test set accuracy (%)

Male Female Combined Minimum

GMAP Tws (MAP), <p = 0.05 96.8 97.6 97.2 96.8

GMAP Tws (MAP), <p = 0.2 97.5 97.5 97.5 97.5

GMAP Tws (MAP), <p = 0.5 97.6 96.8 97.3 96.8

GMAP Tws (Tws + TM), <p = 0.05 97.4 97.4 97.4 97.4

GMAP Tws (Tws + TM), <P = 1.0 97.6 95.4 95.9 95.4

GMAP Twvs (Twvs + TM), <P = 0.01 91.2 88.8 89.9 88.8

GMAP Twvs (Twvs + TM), <P = 1.0 92.7 81.2 87.0 81.2

the ML model of the pooled dataset.

Table 4.20: MAPMCE results for an 8 state, 5 mixture HMM for TIDIGITS

Description Test set accuracy (%)

Male Female Combined Minimum

MAPMCE Tws(Tws + TM), <P = 0.05 98.7 97.7 98.2 97.7

MAPMCE Tws(Tws + TM), <P = 0.5 98.7 97.2 97.9 97.2

MAPMCE Tws(MAP), <p = 0.5 98.1 98.5 98.3 98.1

MAPMCE Twvs(Twvs + TM), <P = 0.05 97.9 93.0 95.1 93.0

MAPMCE Twvs(Twvs + TM), <P = 1.0 97.9 91.1 93.8 91.1

Table 4.21 summarizes the female testing set results obtained for the TIDIGITS dataset

using the three algorithms which have been evaluated in this section. The best min-

imum testing set accuracies are summarized in Table 4.22. Looking at the normal

results, it is evident that the MAPMCE algorithm performs best, with the GMAP

algorithm performing well.

98.6

98.4

98.2

~ 98~
>-u
~
::J
u 97.8u«

97.6

97.4

97.2
0.001

female --
male --------

combined _._.

Figure 4.20: MAPMCE adaptation results for an 8 state, 5 mixture HMM using the small
female training set (Tw s) as the adaptation set and the male training set (TM) as prior. The
best MAP point is used as starting point.

The MAP algorithm, although it does not perform as well as the other algorithms,

does manage reasonable improvements in testing set performances for the larger, small

female training set. It does not, however, significantly improve results when the very

small female training set is used. The GMAP and MAPMCE algorithms produce far

better results under these extreme conditions.

Duration modeling Duration modeling is a technique, which is often used to im-

prove recognition accuracy in continuous digit recognition applications. It is therefore

important to determine the effect of duration modeling on the performance of the al-

gorithms tested. Note that the MAPMCE (and GMAP) algorithm can be used to

estimate the duration modeling parameters. So as to ensure a fair comparison, this

potential improvement has not been used and the duration parameters are therefore

estimated with the ML algorithm using the relevant model and available training data.

female --
male --------

combined .

~ 95
1:)
co:J
8 94«

91
0.01

Figure 4.21: MAPMCE adaptation results for an 8 state, 5 mixture HMM using the very
small female training set (Twv s) as the adaptation set and the male training set (TM) as
prior. The best MAP point is used as starting point.

It is evident, from tables 4.21 and 4.22 that MAPMCE does not perform as well

when used with duration modeling, and even results in a decrease in accuracy for

the minimum test set accuracy measure when used with the small female training set

(compared to the baseline system with duration modeling).

The MAP algorithm works better, both in absolute and relative terms, when usmg

duration modeling. The GMAP algorithm, however, works best of all when used with

duration modeling, resulting in recognition performances which are considerably better

than that realized by the MAPMCE and MAP algorithms.

The MCE (MAPMCE) algorithm, due to its discriminative nature, incorporates dura-

tion information into the HMM without us explicitly modeling it. This is as a result

of the MCE algorithm trying to reduce insertions and deletions. Much of the improve-

ments realized when using the MCE algorithm therefore overlap with those attained

Table 4.21: Comparison of best results for the female test set, with and without duration
modeling. The relative improvement in error rate compared to the baseline ML accuracy is
given in brackets.

Description Female test set accuracy (%)

Normal Duration

ML TM +Tws 95.6 (0.0%) 97.6 (0.0%)

MAP Tws (Tws + TM), V = 200 97.4 (40.9%) 98.5 (37.5%)

GMAP Tws (MAP), r.p = 0.05 97.6 (45.5%) 98.5 (37.5%)

MAPMCE Tws (MAP), r.p = 0.5 98.5 (65.9%) 98.5 (37.5%)

MLTM 84.0 (0.0%) 91.8 (0.0%)

MAP Twvs (Twvs + TM), v = 200 84.4 (2.5%) 94.6 (34.1%)

GMAP Twvs (Twvs + TM), r.p = 0.01 88.8 (30.0%) 96.3 (54.9%)

MAPMCE Twvs (Twvs + TM), r.p = 0.05 93.0 (56.3%) 94.4 (31.7%)

when using duration modeling. It is for this reason that the MAPMCE algorithm does

not work as well when duration modeling is used.

In Section 4.6.1 the three algorithms, MAP, GMAP and MAPMCE were used within

a language adaptation framework. The algorithms were used to adapt English seed

data or models to create a language specific recognizer for Afrikaans. Either the full

Afrikaans training set or a reduced subset thereof was used as the adaptation set.

The MAPMCE algorithm performed best when the full Afrikaans dataset was used,

resulting in relative improvements in error rate of up to 6.8% and 3.1% for a 5 and

10 mixture HMM respectively (3 states). The GMAP algorithm resulted in reasonable

performance increases, with a 5.3% and 2.1% relative improvement in error rate being

attained for a 5 and 10 mixture HMM respectively. The standard MAP algorithm,

resulted in similar, but slightly worse, improvements as that produced by the GMAP

Table 4.22: Comparison of best results for the minimum accuracy criterion, with and without
duration modeling. The improvement in error rate due to the usage of duration modeling is
also given.

Description Minimum accuracy (%)

Normal Duration

ML TM +Tws 94.4 (0.0%) 97.6 (0.0%)

MAP Tws (Tws + TM), 1/ = 200 97.0 (46.4%) 97.9 (12.5%)

GMAP Tws (MAP), rp = 0.2 97.5 (55.3%) 98.4 (33.3%)

MAPMCE Tws (MAP), rp = 0.5 98.1 (66.0%) 97.5 (-4.2%)

MLTM 84.0 (0.0%) 91.8 (0.0%)

MAP Twvs (Twvs + TM), 1/ = 200 84.4 (2.5%) 94.6 (34.1%)

GMAP Twvs (Twvs + TM), rp = 0.01 88.8 (30.0%) 96.3 (54.9%)

MAPMCE Twvs (Twvs + TM), rp = 0.05 93.0 (56.3%) 94.4 (31.7%)

When the small Afrikaans training set was used, the MAPMCE algorithm did not per-

form as well as the GMAP algorithm, which produced relative improvements in error

rate of 8.0% and 10.2% for a 5 and 10 mixture HMMs respectively. The MAP algo-

rithm resulted in relatively poor improvements in accuracy (compared to the GMAP

algorithm) .

In Section 4.6.2 the three algorithms were evaluated within a gender adaptation frame-

work, using the TIMIT dataset. The TIMIT dataset has an imbalance in the number

of male and female speakers, and the male training set was therefore used as the prior

dataset and the female dataset as the adaptation set. A smaller female dataset was also

created, so as to determine the effect of the algorithms when an even larger imbalance

exists. Two criteria were used to evaluate the algorithms, namely adaptation perfor-

mance and training performance. The female testing set accuracy and the minimum

of the female and male testing set accuracies were used to determine the performance

for these two criteria.

Here, the MAPMCE algorithm performed best for both datasets and both testing cri-

teria, resulting in marked improvements in accuracy. The MAP and GMAP algorithms

resulted in little or no improvement in accuracy for the female testing set (adaptation).

Reasonable improvements in the minimum testing set accuracy were attained by these

two algorithms when the small female training set is used, with the GMAP algorithm

performing slightly better than the standard MAP algorithm.

In Section 4.6.3 the algorithms were tested within a gender adaptation framework for

a connected digit task. The TIDIGIT database was used for this purpose. Here, once

again the MAPMCE algorithm worked best, followed by the GMAP algorithm and

the MAP algorithm performing worst. However, when duration modeling is used, the

GMAP algorithm results in the best performance, with relative improvements in digit

accuracy of up to 54.9%.

When comparing MCE or MAPMCE to non-discriminative algorithms such as MAP

and GMAP, one must be careful as they are often not directly comparable. MCE

as mentioned, due to its discriminative nature, automatically tends to incorporate

duration and language modeling information into the HMMs. This means that when

duration modeling or language modeling is used, the effect thereof will be smaller when

using MCE. McDermott [75] noted this, when he used a bigram language model with

MCE and compared it to using a bigram model with ML trained HMMs.

Table 4.23 gives the execution times for the three algorithms (MAP, GMAP and

MAPMCE) on a Pentium III 600MHz computer. The times given are for one iter-

ation only; total execution time is equal to execution time given in Table 4.23 times

the number of iterations used. Given that the GMAP and MAPMCE algorithms re-

quired more iterations (around 30) than that required by MAP (10 iterations), it is

evident that the GMAP and MAPMCE algorithms are considerably more computa-

tionally expensive than the MAP algorithm. The improved performance, however,

warrants the additional computational expense.

Table 4.23: Execution times (in minutes) for one iteration (update) of the three algorithms
(MAP, GMAP and MAPMCE) on a Pentium III 600MHz computer. The prior data set
(square brackets) and adaptation set (round brackets) are included in the dataset description.

Dataset MAP GMAP MAPMCE

SUNSpeech (A) [E] 1.3 13.4 37.7

TIMIT (TF) [TM] 4.2 16.9 54.1

TIDIGITS (Tw) [TM] 0.3 4.8 18.0

4.7 Summary

This chapter introduced Bayesian adaption and its usage within a continuous speech

recognition framework. The MAP algorithm of Gauvain and Lee [45] was described.

A gradient-based MAP algorithm which makes no assumption about the form of the

prior was proposed and the implementation thereof was discussed. A Bayesian inspired

MCE-based adaptation algorithm (MAPMCE) was also proposed. The MAPMCE

algorithm is an extension of the MCE algorithm and the implementation thereof is

relatively simple.

The three algorithms were experimentally evaluated in Section 4.6, using the SUN-

Speech database for language adaptation, and the TIMIT and TIDIGIT databases for

gender adaptation experiments. On the whole, the MAPMCE algorithm proved to

work best, with the GMAP algorithm performing reasonably well. The MAP algo-

rithm, in general, resulted in considerably worse performance than either the GMAP

or MAPMCE algorithms.

Chapter 5

Bayesian learning

This chapter develops a Bayesian approach to learning for HMMs in speech recognition.

Markov chain Monte Carlo methods which can be used to numerically integrate the

posterior distribution as required by the Bayesian learning approach form part of this

discussion. The implementation of Bayesian learning for HMMs in speech recognition

is presented, including the requirement of maintaining the original HMM constraints,

choice of prior and utterance recognition. This work shows that the Bayesian learning

approach can be successfully applied to complex models when the amount of training

data is small. This is contrary to the notion that one must limit the complexity of the

model when training data is limited, as was discussed in Section 2.2.1.

This work was inspired by the work of Neal [82], who proposed a Markov chain Monte

Carlo based Bayesian learning procedure for neural networks. In this chapter, the

Bayesian learning procedure used by Neal will be implemented and adapted for usage

with hidden Markov models and speech recognition. Previous applications of Bayesian

learning in speech recognition have concentrated on using approximations. One such

approximation is that of Huo et at. [54, 58] who used a Gaussian distribution to

approximate the posterior distribution. The MAP estimation algorithm (Chapter 4)

can also be regarded as an approximate Bayesian approach. However, my formulation

is the first Markov chain Monte Carlo based Bayesian learning approach used for hidden

Markov model speech recognition systems.

The Bayesian learning framework is introduced here and past work both within the

field of speech recognition and in the more general field of neural networks is discussed.

Bayesian methods can be used for the inference of parameter values in a model given

the data. Bayesian methods have also been used for the purpose of model compari-

son. David Mackay [72] focused primarily on the usage of Bayesian methods for the

comparison and training of neural networks. Most people would include the above two

uses of Bayesian methods in the data modeling process.

The remainder of this section will summarize the relevant Bayesian theory used in this

chapter. Certain sections from Chapter 4 have been reproduced for readability. For a

more complete introductory text on Bayesian statistics, the reader is referred to Box

and Tiao [13], DeGroot [27] and Bishop [12]. The theory and discussions in this section

will be biased towards speech recognition applications of Bayesian learning.

The fundamental concept of Bayesian analysis is that the plausibilities of alternative

hypotheses are represented by probabilities, with inference being performed by evalu-

ating these probabilities.

Given a vector y = (Y1, ... , Yn) of n observations, with probability distribution P(yIO),

which depends on the k parameters OT = (01, ... , Ok). The parameter vector 0 has the

probability distribution P(O). Given the observed data, the conditional distribution of

P(()I) = P(yl())P(())
y P(y)'

The denominator in Eq. (5.1), P(y), is a normalizing factor, which ensures that the

integral of P(()ly) is equal to one. It can be written as follows:

P(y) = J P(yl())P(())d().

Equation (5.1) is referred to as Bayes' theorem. The distribution P(()), is called the

prior distribution and expresses what is known about the model parameters before

any data is observed. The posterior distribution P(()Iy), tells us what is known about

the model parameters given that data has been observed. In what follows, the prior

distribution and posterior distribution will again sometimes simply be referred to as

The distribution P(yl()) is often referred to as the data likelihood and can be written

L(()ly). This is valid when P(y/()) is regarded as a function of y and not of ().

In many Bayesian methods, the normalizing constant is not necessary and Eq. (5.1) is

written as

The result of Bayesian learning is a probability distribution (posterior) which expresses

our beliefs of how likely individual parameters values are. This is the basis for Bayesian

In a Bayesian approach to HMM parameter estimation and recognition, the objective

is to find a predictive distribution for an unknown utterance, given the observations

of the utterance, as well as the training observations. Let the observations for the

ith utterance be written as Oi' For n training utterance examples 0 = (01, ... , On),

Bayes' theorem (Eq. (4.1)) can be written as

P(OIO) = P(OIO)P(O)
P(O)

ex P(OIO)P(O).

P(OIO) = IIP(OiIO).
i=l

P(OunknownIO~i), ... , O~») = J P(OunknownIO)P(OIO~i), ... , O~»)dO, (5.6)

where i is the class and Ounknown is the unknown observation. The classifier decision

C is the class resulting in the highest value of Eq. (5.6), i.e.

C(O). h . - P(O IOU) OU»)unknown = Z were z - argmax unknown l' ... , n ,
j

Unfortunately, due to the nature of the incomplete data problem caused by the un-

derlying hidden processes of an HMM, the evaluation of Eq. (5.6) is non-trivial. If,

however, the posterior (P(BIO)) is well approximated by a Gaussian, then Eq. (5.6)

can be approximated as follows [72]:

where B is D-dimensional, BMAP is the maximum a-posteriori point (mode of the pos-

terior P(BIO)) and A is the modal dispersion matrix, i.e., A = - V-I, where V is the

Hessian matrix of second derivatives of the log of the posterior evaluated at the mode

of the posterior.

This approximation has been used extensively in Bayesian approaches. MacKay [72]

used this approximation in his work on model selection for neural networks. Huo et

at. [54, 58] proposed a quasi-Bayesian predictive classification approach for continuous

density HMMs, in which they used this approximation. Another approximation was

also proposed by Huo et at. [57], which used the following Viterbi-based approximation,

P(OunknownIOI, ... , On) ~ max J P(OunknownIB)P(BIOI, ... ,On)dB, (5.9)
q,1

where q is a state sequence and 1 is the sequence of associated mixture components. A

modified Viterbi algorithm was used to compute the above approximation.

We can, however, use Monte Carlo (MC) methods to obtain a better approximation of

Eq. (5.6) than Eq. (5.8) or Eq. (5.9). MC methods make no assumption concerning the

form of the distribution, as done in the above approximations. In theory, MC methods

can approximate Eq. (5.6) for complex distributions with multiple modes, as well as

distributions for which the dominant contribution of the integral results from areas

in parameter space which are not near a mode. l\Iarkov chain Monte Carlo methods

[12, 82] will therefore be used in this implementation and will be described in Section

In the field of neural networks, Neal [82] used the "Hybrid Monte Carlo" method (de-

scribed later in Section 5.2.3) for Bayesian learning. The following are some of the

applications using Monte Carlo algorithms that have been reported for speech recog-

nition or speech processing. Vermaak and Niranjan [114] used a Markov chain Monte

Carlo algorithm for speech enhancement. Robert et at. [98] presented a Markov chain

Monte Carlo strategy to obtain a marginal MAP estimate. Godsill and Andrieu [48]

used Markov chain Monte Carlo methods for the separation and recovery of convolu-

tively mixed autoregressive processes. We will, however, use Markov chain MC methods

to implement Bayesian learning for HMM speech recognizers.

5.1.3 Bias/variance problem

Let us once again look at the bias/variance problem discussed in Section 2.2.1 as it

is central to the Bayesian learning approach. Integrating over the posterior, as in Eq.

(5.6), results in the variance term of Eq. (2.25) being greatly reduced. Adjusting the

complexity of models based on the amount of training data in a Bayesian framework

therefore makes little sense as the variance term effectively disappears (except for

extreme sparse training data). More complex models, which perform worse when using

a single point estimate (ML), will therefore perform better than less complex models

in a Bayesian implementation. We will, however, prefer simpler models due to other

reasons, such as computational complexity.

Numerical integration with respect to the posterior P(BIO) using a fixed number of

samples N will, however, increase the variance of the solution. The effect of the number

of samples used will be investigated in the experimental section later in this chapter.

Bayesian learning

Hidden Markov models are relatively complex and have many parameters to estimate.

It is, therefore useful to specify the joint distribution of some of these parameters in

terms of a common hyperparameter 'Ywhich has a prior distribution of its own. This

is known as a hierarchical model.

The prior distribution P((}) can then be written in terms of the hyperparameters as

follows (assuming independence),

D

P((}) = .I Ph) gP((}ib)d'Y

where Ph) is the prior distribution of the hyperparameter 'Y, P((}il'Y) IS the prior

distribution of the parameter (}i given the hyperparameter.

A hierarchical model, if well formulated, can be considerably more intelligible than

using a direct prior distribution. We can also in this way, incorporate vague heuristic

information into the prior, as will be done in Section 5.3.

As mentioned in Section 5.1.2, we want to evaluate Eq. (5.6), which is the ex-

pectation of the function P(Ounknown!(}) with respect to the posterior distribution

P((}IOl, ... , On). Such expectations can be estimated using Monte Carlo methods,

by summing P(Ounknownl(}(j)) using N samples of () (the ith sample denoted by (}(i))

generated from the posterior distribution P((}IO) for j = {I, ... , N}, i.e.

N

P(OunknownIOl,.'" On) ;:::;;L P(Ollnknownl(}(j)),
j=l

where the samples Oi, ... , ON are generated by a process such that the distribution

thereof is that of the posterior P(OIO).

The sampling methods described in this section were developed for situations where

probability distribution cannot be directly sampled. Sampling from a one-dimensional

Gaussian distribution can, for example, be done directly.

Suppose we wish to generate a sample from a distribution P(O) for 0 E e, but cannot

do so directly. This can be done by constructing a Markov chain with state space e,
which is easy to simulate, and whose equilibrium distribution is P(O).

The following are sufficient conditions for such an algorithm to approach the desired

distribution [111]:

• Invariance with respect to the distribution P. If for all pairs of configurations 0

and 0',

P(O -t 0')
P(O' -t 0)

and at step n we have Pn (0) = P 00 (0), then at step n + 1 we will have Pn+l (0) =

P00 (0). The desired distribution is therefore an equilibrium distribution. This

condition is called the detailed balance condition, and any chain which satisfies it

is said to be reversible. The resulting distribution P(0) persists once established

and is therefore invariant (or stationary) .

• Ergodicity. This condition specifies that the probability distribution at step n + 1

should be closer to Poo(O) than at step n. An algorithm which complies with

condition will converge to its equilibrium condition from any initial configuration.

In the following sections, three Markov chain Monte Carlo methods will be described.

The above conditions (detailed balance and ergodici ty) will be used to determine the

suitability of each method for the implementation of Bayesian learning. We will in

particular find that Gibbs sampling (Section 5.2.1) is not ergodic and will therefore

not be used (directly) to sample the posterior distribution P(OIO) of an HMM. The

stochastic dynamics (Section 5.2.2) and hybrid Monte Carlo (Section 5.2.3) methods

meet both of the above conditions and we will therefore be able to use either of these

5.2.1 Gibbs sampling

Gibbs sampling [82, 7] can be used to sample the distribution of a multi-dimensional

parameter. Gibbs sampling is also known as the heatbath method in the physics liter-

In Gibbs sampling a Markov chain is simulated, in which the new n-dimensional sample

O(t+l) is generated from O(t) using the following iterative procedure:

Generate oit+1) from the conditional distribution of 01 given O~t), o~t) , O~t).

Generate O~t+l) from the conditional distribution of e2 given eit+1), o~t) , e~t).

G t e(t+l) f th d't' Id' 'b t' f e' e(t+1) ll(t+1) ll(t) 1J(t)enera e i rom e con 1 lOna Istn u lOn0 i gIven 1 , ... ui-l , Ui+l ... , Un .

G t ll(t+1) f h d" I d' 'b' f e . e(t+l) e(t+1)enera e Un rom t e con ItlOna Istn utlOn 0 n gIven 1 , , n-l .

Generate eit+2) from the conditional distribution of e1 given O~t+l), O~t+l) ... , e~t+l).

The transition resulting from the above steps being executed leaves the desired distri-

bution Q invariant and is reversible. Gibbs sampling is, however, not necessarily an

ergodic Markov chain and depending on the situation will not converge to its equilib-

rium distribution if we do not start from the desired distribution.

Djuric and Chun [34] proposed a method of estimating non-stationary (duration mod-

eling) discrete hidden Markov models. The posterior of the model parameters was

sampled using a Gibbs sampler. Their implementation was tested on an extremely

simple HMM consisting of 3 states and with 5 possible emission variables. Histograms

of the posterior samples for certain parameters were presented, showing that the mode

of the posterior was reasonably accurate.

Gibbs sampling is dependent on being able to sample the distribution of one parameter

conditional on the other parameters. For continuous density HMMs, the conditional

distribution of one parameter given the values of the other parameters is non-trivial,

where any parameter of a given state is dependent on all the other parameters of all the

states. Gibbs sampling is, therefore, not a suitable sampling method that can be used

to sample the posterior of an HMM. The posterior of HMMs will be multi-modal and

due to the fact that Gibbs sampling is not ergodic, it will also not necessarily converge

to the correct distribution under these conditions.

We will not use Gibbs sampling in itself, but rather as part of the stochastic dynamics

and hybrid Monte Carlo algorithms described later in this section.

The stochastic dynamics method [82] for sampling of distributions, otherwise known as

the refreshed molecular dynamics method, was introduced by Anderson [3] and applied

to the field of quantum chromodynamics by Duane and Kogut [36, 38]. It is also some-

times known in the literature as the hybrid method, because it contains two standard

update steps - uniformly sampling values of variables q and p which have a fixed total

energy H(q,p), and sampling states with different values of H. Here, the stochastic

dynamics method is used to generate the samples of the posterior distribution P(OIO),

which will be used to numerically integrate Eq. (5.6).

Let us assume that we wish to sample from a distribution for a variable q, which has

n dimensions. In the systems for which the techniques described in this section were

developed, q is typically the coordinates of the particles in a physical system. In our

work, q will be the HMM parameters, i.e. q = e. We therefore have a system with

continuously valued coordinates qi, with the probability of the variable q defined as

P(q) ex: e(-E(q)),

where E(q) is the potential energy function. Any non-zero probability function, can

be written in this form by defining E(q) = -In[P(q)] - In(Z) for Z > o.

A momentum variable p is introduced which has n components, one for each of the

components of q. Here, the kinetic energy is used which is

n 2

K(p) =L;~,
i=l l

with mi being the "mass" associated with each component. It will be assumed, for the

rest of this discussion, that mi = 1 for all parameters. The terms state and configuration

will be used to indicate the combination of the system coordinates (q = e) and momenta

(p), i.e. state = configuration = (p, q). The total energy is H(p, q) = E(q) + K(p)

and the probability for q and p is therefore

P(p, q) ex: e-H(p,q).

Oqi oHat = OPi = Pi
OPi oH
ot Oqi

• The volume of regions of phase space is conserved, i.e. if we follow points in

some region of volume V, we find that the region where these points end up after

a given time T also has volume V. This is important as the probability of a

configuration is really the probability density times the volume element in phase

• The motion is reversible. After having simulated Hamilton's equations for a time

T, we can change the sign of the momenta, apply Hamilton's equations for the

same period of time and end at the original starting point.

An update which consists of generating a random number R, multiplying all the mo-

menta by -1 if R < ~ and then integrating Hamilton's equations for a given time

interval satisfies the conditions required by the fundamental theorem [111].

Since each Pi is independent of the qi and the other Pi, the probability distribution

of the momenta can be sampled by using Gibbs sampling and assuming each to be

a Gaussian distributed random number. Note that, it is not necessary to randomly

reverse the momenta as described above, as the Gibbs sampling is just as likely to

generate Pi as -Pi. This is known as "refreshing" the momentum variable p.

The length of time T over which Hamilton's equations are integrated is a critical

parameter which must be found. Figure 5.1 illustrates the path of the stochastic

dynamic method for different integration times. If the time T is small, the coordinates

q will not change much and the result is effectively a random walk of parameter space

(Figure 5.1 (a)). Alternately, a large integration time T will result in a path which is

periodic in nature and we will waste our time in generating such a long path which

could easily end up close to where we started (Figure 5.1 (b)). There is therefore

an optimal value of T which lies somewhere between the two extremes (Figure 5.1

(c)). In certain situations this can be done analytically [39], but in realistic systems

the simulation time T must be empirically determined. Fortunately, however, there

is often a relatively large range of T which give good results. Ultimately, we wish to

ensure that the correlation between updates is a minimum.

Figure 5.1: Movement through parameter space using the stochastic dynamics sampling
method. The underlying distribution being sampled is indicated using a dotted line. (a)
Small time period T; a random walk of parameter space. (b) Large time period T; a waste
of time in "periodic" movement. (c) More optimal simulation time T.

In practice, we cannot integrate the Hamiltonian dynamics exactly. The leapfrog inte-

gration scheme described next can, however, be used to approximate the Hamiltonian

dynamics.

Leapfrog integration In the leapfrog integration scheme [111] approximations of

the position and momentum, qi(t + E) and Pi(t + E) from qi(t) and Pi(t) are obtained as

follows:

Bayesian learning

In order to follow the Hamiltonian dynamics for a given time T, Eqs. (5.18) to (5.20)

are applied in order for L = ~ steps. When applying the leapfrog step more than once,

the last momentum update (Eq. (5.20)) and the first (Eq. (5.18)) of the next step

can be combined. All but the very first and very last momentum half-steps can be

merged. Figure 5.2 illustrates the leapfrog integration scheme of q and p over a time

interval [0, T] using the energy and momentum steps defined in Eqs. (5.18) to (5.20).

If preferred, Eqs. (5.18) to (5.20) can be rewritten such that we start with an energy

half-step followed by a full momentum step.

~

-- ---/~', ~--
I

I "I

II " I / /

', __- 7/
o ~ E ~€ 2E

~ , -'--

Figure 5.2: The leap frog integration scheme of q and p over a time interval [0, TJ. The
position q is evaluated at the points marked with circles and the momentum p at the points
marked with squares. The dashed line indicates the momentum update and the solid line
indicates the energy update.

Each of the energy and momentum steps has an error of order E
3 [111]. Integrating

for L leapfrog steps will therefore result in an error of order LE3. A step size E is

chosen which is small enough to give an acceptable error. If we choose L ~ 1, which is
€

often done, then the error is of order E
2

. The hybrid Monte Carlo algorithm discussed

next, is based on the stochastic dynamics method and was developed to eliminate these

systematic errors introduced by leapfrog integration.

The hybrid Monte Carlo algorithm of Duane et at. [37] for sampling of distributions

eliminates the systematic errors of the stochastic dynamics method resulting from the

finite integration step size, where the total energy is not conserved during leapfrog inte-

gration. The Hybrid Monte Carlo algorithm is an extension of the stochastic dynamics

method and uses the Metropolis algorithm [79] to eliminate the bias introduced by the

errors resulting from the leapfrog integration of the Hamiltonian dynamics.

The Metropolis algorithm The Metropolis algorithm was introduced in 1953 by

Metropolis et at. [79]. It has since been extensively used, and is the basis for the

simulated annealing optimization method: Letting A be the current configuration and

B a potential configuration (q,p) generated such that P(A -t B) = P(B -t A), where

P(A -t B) is the probability of generating the trial configuration B given the current

configuration A. If P(B) > P(A) then configuration B is accepted. If P(B) ::; P(A),

then the configuration B is accepted with probability ~~~~. If B is rejected, the next

configuration is A.

The hybrid Monte Carlo algorithm uses the Metropolis algorithm to determine whether

or not to accept a new configuration generated using the refresh and integration step of

the stochastic dynamics method. A hybrid Monte Carlo algorithm step can therefore

be described as follows:

2. Starting with the current state (p, q), perform L leapfrog steps to generate a trial

next configuration (p', q').

3. Accept the trial next configuration with probability min(1, exp(H(p, q)-H(p', q')),

otherwise choose the new state to be the same as the old.

If Hamilton's equations were simulated exactly, the change in H would be zero and

the trial configuration would always be accepted. 'When an approximation is used

(leapfrog), H will change and a trial configuration will sometimes be rejected. This ex-

actly eliminates the bias introduced by leapfrog. Note that it is important to maintain

a relatively high acceptance rate, so as to minimize correlation between consecutive

states.

It is expected that the work required in simulating Hamilton's equations for a fixed

time will grow with the volume (V) of the system as T ex V~ [26, 50], as compared

to growth proportional to V for the stochastic dynamics method. Although this is

a relatively slow growth, as pointed out by Toussaint [111], the stochastic dynamics

method will be eventually be preferred for systems which are very large. Due to current

computational resources, and the large size of HMM systems, the hybrid Monte Carlo

algorithm turned out to be infeasible for our work. This will, however, undoubtedly

change as computers become faster with time.

We have, up until now, only investigated the theoretical aspects of implementing

Bayesian learning. The next section will discuss implementation issues for a Bayesian

learning approach for HMM speech recognizers.

5.3 Implementation of Bayesian HMM learning

The training process for the implementation of Bayesian learning described in this

chapter generates the Nm samples of the posterior P(OIO) required to numerically

integrate Eq. (5.6) during recognition of an unknown utterance. This section will

discuss several aspects of the implementation for the training and recognition processes.

The prior used here is the same as in the gradient-based MAP algorithm described

in Section 4.4. The gradient of the energy function E(O) is required here for the

leapfrog integration. This gradient (derivative) of E(0) with respect to the individual

parameters of both HMM and prior are therefore exactly the same as in Chapter 4

(Eq. (4.47) to Eq. (4.64)) and are as a result, not reproduced here.

In Chapter 4 we used transformations to ensure that the original HMM constraints were

maintained. Unfortunately, we cannot use transformations when we wish to sample

a distribution. These are second order sampling techniques and using transforms will

deform the resultant distribution being sampled. To understand this, let us look at a

simple example.

Let us assume that we wish to sample the distribution of the standard deviation 0- of

a Gaussian model, and that the gradient of the energy function with respect to 0- is a

constant (k) for a given region in parameter space (i.e. ~~ = k). Here, the coordinate

variable q consists of only the variable 0-, i.e. q = {o-}. Given the momentum at time

t, p(t), a single leap frog momentum step (Eqs. (5.18) to (5.20)) will be

E E
p(t + 2) = p(t - 2) - Ek,

E
q(t + E) = q(t) + Ep(t + 2).

We would therefore expect the coordinate variable q to accelerate at a constant rate

(ex: -Ek) in this region of parameter space. If, however, we use the following transform

(j = In 0-, then the derivative of E with respect to (j becomes ko- and the leapfrog step

p(t + ~)= p(t - ~) - fko-
2 2·

f
ij (t + E) = ij (t) + EP(t + 2).

Note that p(t) = p(t)g~. Transforming these update equations back from the trans-

formed domain results in the following update

(
E E 2

P t + 2) = p(t - 2) - Eka ,

q(t + E) = q(t)eEP(t+1)/CT.

Note that neither the coordinate update q(t + E) or momentum update p(t + ~)are as

in Eq. (5.21), as they should be. The distribution sampled will therefore be a distorted

version of the true distribution.

Transformations were used in the gradient based MAP algorithm (GMAP) as there

we were only searching for the mode of the posterior and the position thereof will not

change when using transformations. But now it is not possible to use transformations

with the Markov chain Monte Carlo methods described. A constrained version of

the sampling algorithms is therefore implemented, in which the HMM constraints are

applied. In particular, the variances are not allowed to be below a predefined value

which is greater than zero (0.0001 has been used throughout).

It is non-trivial (if not impossible) to implement a constrained algorithm which main-

tains the constraints for the transition probabilities and mixture weights (i.e. Lj aij =

1 and Li Ci = 1), without using transformations. These parameters are therefore

treated as being fixed (at some estimate such as ML) and only the posterior distribu-

tion of the means and variances of the HMM Gaussian mixtures are therefore sampled.

The prior distribution for the HMM Gaussian mixture mean and variances is again

chosen to be a normal-Wishart distribution. Prior distributions are not required for

the mixture weights or transition probabilities, as they are assumed to be fixed (as

motivated above) and their posterior is not sampled. The normal-Wishart prior was

introduced in Section 4.2 and is reproduced here for convenience,

9gaussian (rjk, ILjk Injk, Vjk, mjk, Tjk) =(271") -~ IVjkrjk I ~ e-~Vjdl-tjk-mjk)Trjk(l-tjk-mjk)

c!rJkl-¥ Irjkl (n-~-l) e-~tr(rjkTjl/),

where (njk, Vjk, mjk, Tjk) are the prior distribution parameters associated with mixture

component k of state j. See Table 4.1 for a summary of the HMM parameters and

their associated priors and prior parameters. The value c is a normalizing constant

which ensures that the integral of the prior is equal to one.

I
mjk = IL

Tjk = (njk - D)~/,

(5.25)

(5.26)

results in the mode of the prior being at the point ILjk = IL' and ~jk = ~/. The

parameters njk and Vjk determine the degree to which the prior is peaked about its

mode.

Although not necessary, it makes sense (simplifies calculations) to reduce the number

of variables in the prior by expressing the parameters njk and Vjk in terms of a common

parameter Cjk,

njk = Cjk + D

Vjk = Cjk + 1,

(5.27)

(5.28)

The parameters Cjk, mjk and Tjk are now given their own distributions. These dis-

tributions and their parameters must be chosen in a meaningful way, such that the

hyperparameters contain a-priori knowledge (albeit vague). The choice of the distri-

butions and parameters are discussed next.

We would expect the parameters for the mixtures of a given state to be highly cor-

related. This is often not the case with HMMs, where a single state can represent

multiple acoustic units, which can result in a higher confusability.

Let us, for example, look at a three state HMM, with each state having several Gaussian

mixtures, used to represent the word "four". If, assuming, certain of the training

utterances are pronounced such that the "r" is not heard, then the last state will

probably represent both the consonant r and the vowel au which is the end of some

of the training utterances. The result is a model which is easier to confuse with other

utterances (or part thereof). For example, this HMM will give a high output for the

phone sequence f-ou-r-ou-r.

Illina and Gong [55]investigated this phenomenon, which they called trajectory folding.

One solution to this problem is to change the topology of the model. It was found

that using a trajectory mixture HMM (TMHMM) [107] and segment-based mixture

stochastic trajectory HMMs (MSTM) [49] reduced the effect of this problem.

Trajectory folding, is not only caused by differences in pronunciation, but can also be

caused by the training procedure. This is especially the case when the model is com-

plex and little training data is available. From the above discussion, it is evident that

states representing multiple acoustic units are not desirable. In an attempt to avoid

trajectory folding, the prior parameters of a given state have therefore been given com-

mon distributions and hyperparameters. Note that the prior parameter distributions

and the associated hyperparameters which have been chosen are not necessarily the

only (or best) possible choice. The manner in which the parameters are grouped is

a modeling choice, which is made on the basis of prior knowledge. Many possibilities

remain, and it is more than likely that the performances reported in this chapter can

be improved upon by making other choices.

The prior mean mjk of state j is given a normal distribution with mean Wj and standard

deviation c;j, i.e.

where /1;1 is the number of mixture components, and Wjl and C;jl are the hyperparameters

for the prior mean mjk.

Given that we wish to keep the hyperparameter distributions as intuitive as possible,

the distribution of the prior mode E' in Eq. (5.26) has been chosen to be a gamma

distribution (Section A.4) with parameters cPj and 'I/)j. The distribution of the prior

parameter Tjk (precision of /1jk) of state j can, using Eq. (5.26), therefore be written

where cPjl and 'l/Jjl are the hyperparameters of Tjkl. Note that from Eq. (5.25), the prior

mean mjk is also the mode of the prior with respect to the mean parameters. The

distribution for the prior parameter Cjk is also chosen to be a gamma distribution with

parameters v and (2, i.e.

(i)P(Cjk)=9(Cm,Cv), k=l, ... ,M,

parameters, their prior distributions, the prior parameters and their distributions can

be found in Table 5.1.

Table 5.1: Summary of the HMM parameters, prior distributions, hyperparameters and their
distributions. A Wishart distribution is represented with Wand a Gamma with g.

Parameter Prior distribution Prior parameter Distri bu tion

{tjklRjk = T"jk N(mjk, (Cjk + 1)T"jk)-1/2) mjk N(wj[, c;jl)

Rjk (~jkl) W((Cjk + D), Tjk) Cjk Q(v, (})

Tjk (njk - D)Q(<Pjl, 'l/Jjl)

Determining hyperparameters The ML estimate, which is used as the starting

point for the stochastic dynamics sampling, is used to estimate the hyperparameters

wh c;j (prior mean mjk in Eq. (5.29)) and <Pj, 'l/Jj (prior parameter Tjk in Eq. (5.30)).

The sample mean and variance (over the mixtures) of the mixture means {tjk for state

j of the ML estimate are reasonable estimates for the parameters Wjl and c;jl, i.e. Wjl

and c;jl are chosen to be

Likewise, the sample mean and variance of the mixture variances for state j of the ML

estimate are reasonable estimates for the mean and variance of distribution Q(<Pjl, 'l/Jjl).

Letting the sample mean of the mixture variance be o-j = ir 2:~1rJjk' and using Eqs.

(A.14) and (A.15), the parameters <Pj and 'l/Jj are therefore estimated as follows

Bayesian learning

The hyperparameters Cm and Cv (defined in Eq. (5.31)) are determined by the user

and express our trust in the ML estimate. Large values of Cm will result in prior

distributions which are peaked around the mode of the posterior, while small values

of Cm will result in a relatively non-informative prior distribution. The effect of these

hyperparameters on the performance of the system will be determined in the Section

In the stochastic dynamics method (Section 5.2.2), before using the leapfrog integration

scheme, the momenta are "refreshed" using Gibbs sampling. It is at this same step

in the stochastic dynamics method, where we will also update or "refresh" the prior

parameters using Gibbs sampling.

As a result of using hyperparameters, we have to obtain the prior using Eq. (5.10).

This is accomplished by Gibbs sampling of the hyperparameters 'Yafter each transition

(i.e. before leapfrog integration) of the stochastic dynamics or hybrid Monte Carlo

algorithm, which results in the numerical integration of Eq. (5.10).

The hyperparameters are easily sampled, as they are independent of other parameters

and hyperparameters and since their distributions have been chosen to be normal and

Gamma, standard techniques for generating normal and Gamma distributed variates

can be used.

Writing the posterior in the required form of an energy function as discussed in Section

5.2.2, we get the following "potential energy" function,

E(O) = -log[P(O)] - L 109[P(OiIO)].
i=l

2. Starting with the current state perform L leapfrog steps to generate a new con-

figuration. Here we require 8~~t) (Eqs. (5.18) and (5.20)). The energy function

is the same as that used for the gradient-based MAP algorithm in Chapter 4

(Eqs. (4.47) to (4.55)), and the gradient of the energy function with respect to

the HMM parameters is therefore exactly the same. The derivation thereof is not

repeated here.

3. Keep current configuration, repeat steps 1 through 3 until N samples are gener-

ated.

A segmental approach is used, in which we use the best state sequence, as opposed

to the sum of all possible sequences, i.e. the probability maxP(O, qlO) is used as an
q

approximation of P(OIO) = L::all q P(O, qIO). An embedded version has also been

implemented, which uses the modified-Viterbi trellis search (Section 2.1.5) to obtain

the best HMM and state sequence.

In a Bayesian framework, we evaluate Eq. (5.6) for each class and classify using the

following decision rule

C(O) = Ci where i = argmaxPj(OunknownIOl,"" On)'
j

Implementation of this decision rule is straightforward when applied to discrete (or

label-based) phoneme or word classification: use Eq. (5.11) to numerically determine

Pj(OunknownIOl, ... , On) for each class (phoneme or word).

The implementation of Eq. (5.37) for continuous speech recognition is not a trivial

task. Here, a class is a string of phonemes or words and there are many possible

combinations thereof. The direct implementation of Eq. (5.11), although relatively

simple to implement, would therefore not be viable in terms of computation complexity.

An alternative approximation would be to use an N-best search to generate the Ns

best strings and then evaluate Eq. (5.11) for only these combinations. Although

this is a reasonable approximation, it is still somewhat computationally expensive.

This approximation, although considerably less computationally expensive, is at best

Ns' Nm times slower than the equivalent standard HMM recognizer. Given that Ns will

typically have to be relatively large, this technique will unfortunately not be feasible

either.

The following is a simple, yet reasonable approximation of the classification process

described by Eq. (5.37). Although we wish to obtain P(OunknownIOl, ... , On), it

is not necessary to do it directly using Eq. (5.11). Formulating the problem in

terms of a single HMM, and not the sum of several sampled HMMs, we can write

P(OllnknownIOl, ... , On) as follows:

P(Ounknown!Ol, ... , On) = L P(Olq, 01",., On)P(qIOl, ... , On),
all q

where q is a state sequence (ql q2 ... qr). The probability of a new observation °given

the state sequence is

r
P(Olq, 01"", On) = IT P(Otlqt, 01, ... , On),

t=l

where independence of observations has been assumed. The probability of a single

observation 0t given a state sequence can be written as

where we have integrated with respect to the posterior of the Gaussian mixture pa-

rameters. We now numerically integrate Eq. (5.40) using Nm samples of the posterior

distribution P(OtIB(m)),

Nm

P(OtlqiJ 01, ... , On) ~ L P(Ot/B(m))
m=l
Nm

=L b~r;)(Ot),
m=l

where b~r;)(Ot) is the observation probability of 0t for state qt and the mth sample of

the posterior distribution.

It remains to decide on P(qIOl, ... ,On) in Eq. (5.38). Note that we have not allowed

the posterior of the transition probabilities to be sampled (as discussed in Section 5.3.1)

- a reasonable assumption would be that the posterior of the transition probabilities

is reasonably peaked and the ML estimate is a reasonable approximation, therefore

T

P(qI01' ... ' On) ~ P(qIB) = 7rqOIIaqtqt+l·

t=l

The probability of the observation sequence 0unknown given the training data 01, ... , On

for a given state sequence q can therefore be written as

Therefore, the procedure described above results in integration with respect to the

posterior of the Gaussian mixtures each time an observation probability is required.

This is, as opposed to integrating with respect to the full HMM posterior as in Eq.

Viterbi implementation Here, where we would have used a single observation prob-

ability in the normal Viterbi algorithm, we now calculate the sum of the observation

probabilities for the posterior samples (Eq. (5.41)). The implementation of the Viterbi

algorithm for this approximation is therefore almost trivial. To find the single best

state sequence, q = (q1q2 ... qT), for the given observation sequence 0= (0102 ... OT),

we use the following modified Viterbi algorithm:

Nm

61(i) = 7ri(L b;m)) 1 < i < N
m=l

7/Jt(j) = arg max [6t-1 (i)aij]
l<i<N

P* = max [6T(i)]
l'S:i'S:N

Extension to the trellis search, which is a frame-synchronous, modified implementation

of the Viterbi search, is trivial. This approximation has the advantage over direct

implementation of Eq. (5.11), and the N-best approximation, that it is only approxi-

mately Nm times slower than a standard HMM recognizer, where Nm is the size of the

sample.

5.4 Experiments

The goal of this section is to experimentally determine the utility of the Bayesian

learning approach described in this chapter. The hypothesis that will be tested here, is

that "Bayesian learning will improve performance markedly in situations where little

data is available for training purposes". In situations where sufficient training data is

available, the posterior will be peaked sharply about the MAP point and there will

therefore be little advantage in using Bayesian learning rather than MAP estimation

under such conditions.

The three datasets SUNSpeech, TIMIT and TIDIGITS are once again used here. How-

ever, the assumption here is that there is only a small amount of data available with

no non-task-specific data available for adaptation purposes. The results obtained using

Bayesian learning will be compared with that obtained using the adaptation techniques

described in Chapter 4 where non-task-specific data was assumed to be available.

Unless otherwise stated, the stochastic dynamics method was run for 100 iterations,

i.e. 100 samples were generated. The last Nm samples were used for recognition tasks.

For example, a recognition experiment using Nm = 30 will therefore use the last 30

samples, i.e. samples 71 through to 100.

Bayesian learning is not a deterministic process and there will therefore be a certain

variance in performance for the resultant systems. Each experiment was therefore

repeated 10 times, so as to provide an indication of the variance in accuracy that results.

Error bars are given for each result, indicating the minimum, mean and maximum

accuracy for a given configuration.

This section evaluates the Bayesian learning algorithm under the same conditions as

that used to test the adaptation techniques in Section 4.6.1, except that here, there is

no English training data available for cross-language adaptation purposes. The effect

of the sample size, parameters Cm, Cv, simulation time T and leapfrog step size L will

be experimentally determined for the SUNSpeech dataset in this section. Results will

be presented for both the small (As) and full (A) Afrikaans training sets. The speaker

independent Afrikaans testing set is used for evaluation purposes.

namely the full Afrikaans training set A in the SUNSpeech dataset and the reduced

training set As.

Table 5.2: Base system accuracy for SUNSpeech Afrikaans test set

Training set Mixtures

5 10

Afrikaans train (A) 48.6 51.5

Afrikaans adapt (As) 42.5 41.2

The following results are for a 3 state, 5 mixture HMM system, when only the small

Afrikaans training set is available. Selected results for the full dataset, as well as 3

state, 10 mixture HMMs will be presented later in this section.

Effect of sample size Figure 5.3 shows the effect of the sample size Nm on the

performance of the system. Firstly, it is noticeable that the performance for a single

sample, is already better than that attained by the ML estimate. This improvement is

primarily due to the regularization effect of the chosen prior and associated hyperpa-

rameters. The choice of prior and hyperparameters described in Section 5.3.2 therefore

seems justified.

Considerable improvements result from increasing the sample size, with 46.1% being

attained when using a sample size of 90 (a relative improvement in error rate of 6.2%).

The sudden decrease in recognition rate for 100 samples, is indicative of the fact that the

algorithm had not converged within the first 10 transitions (samples) of the stochastic

dynamics method.

The variance on the resulting systems is relatively high, but as expected decreases

as the number of samples used is increased. We would expect the variance in the

solution to tend towards zero as the number of samples tended towards infinity, l.e.

the numerical integration becomes the exact integration in Eq. (5.6).

47

46.5
T ,-,,

i
.,-

-'-,- , ,
46

, ,, ,

i
, ,, , , ,, , ,, , ,, , , ,, , , , ,, , , , , ,

45.5 ' , , , , ,, , ! , , , , ,
i I

, , ,, , J-, , ,, , ,, , ,
~ 45 , , ~-, -'-,e..... , ,,
>. , ,,
0 44.5

,
I1l

,,:; l- ,,
0
0« 44

,

43.5

43 ,

BLmean --
BL error bars "--+--,
Baseline ML .

42
o 40 50 60

Sample size

Figure 5.3: Performance of the Bayesian system (BL) versus the size of the sample used to
numerically integrate with respect to the posterior.

Effect of the hyperparameter Om As mentioned in Section 5.3.2 the parameter

Om, along with Ov, indirectly determines the degree to which the prior is peaked about

its mode. It contains our a priori trust in the ML model used as starting point.

Figure 5.4 presents the effects of Om on the performance of a 3 state, 5 mixture HMM

when the reduced training set is used. As can be seen, an optimal value for Om exists.

Values of Om which are too low do not force the regularization of the prior to be of

any consequence. Alternatively, values which are too large result in a prior which is

too restrictive and therefore unnecessarily restricting the posterior.

Figure 5.5 shows the results for a 3 state, 10 mixture system versus the parameter

Om' Note that, here the optimal value of Om is lower (Om = 5 or Om = 10) than that

obtained for the 3 state, 5 mixture system. The ML estimate for the more complex

10 mixture HMM system, is worse when little data is available (Table 5.2). The ML

estimate for the 10 mixture system can therefore not be "trusted" as much as the 5

46.5

46

45.5

45

~~ 44.5>-
()

~
::J

44()
()«

43.5

43

42.5

42
5

BLmean --
BL error bars c __+__'

Baseline ML .

15

Cm

Figure 5.4: Performance of the Bayesian system (BL) versus the hyperparameter Cm, for
Cv = 4, L = 100 and using a sample size of 60.

mixture system. A smaller value of Cm which makes the prior less informative, therefore

results in the peak performance for this system.

Effect of the hyperparameter Cv Figure 5.6 presents the effects of the Cv on the

performance of a 3 state, 5 mixture HMM when the reduced training set is used. Again,

extreme values of this parameter result in degradation in performance. Fortunately,

the performance of the system is relatively invariant to reasonable variations in this

given in Section 5.2.2, and is critical to the optimal usage of the stochastic dynamics

method. We therefore need to experimentally determine the effect of the number of

leapfrog steps used on the performance of the system. The step size is kept constant

Chapter 5

47.5

47

46.5

46

45.5
;e~ 45>-
0
<tl:; 44.50:i.

44

43.5

43

42.5

42

BLmean --
BL error bars c __+__'

Baseline ML ---------

Figure 5.5: Performance of the Bayesian system (BL) versus the hyperparameter em, for a
3 state, 10 mixture HMM and Cv = 4, L = 100 and using a sample size of 60.

Figure 5.7 shows the performance of the Bayesian system versus the number of leapfrog

steps L, for the configuration Cm = 15, Cv = 4 and using a sample size Ns = 60.

Remember that the simulation time is approximately equal to the step size E multiplied

by the number of leapfrog steps, i.e. T ~ EL. We expect that too few leapfrog steps

result in samples which are highly correlated, which results in a sample which is not

representative of the posterior. This can be seen in Figure 5.7, where using 10 leapfrog

steps results in relatively poor system performance, with the minimum accuracy being

System accuracy increases as the number of leapfrog steps increase, and peaks at

L = 100, where an average accuracy of 45.8% is attained. However, as mentioned

in Section 5.2.2, values of L which are too large will not only waste time, but could

worsen performance due to higher correlation between samples, resulting from the

,
il , ,, , ,, , ,, , , ,, :, , ,,

, ,----- ,, ,, ,, ,, ,
J ,,

J

BL mean --
BL error bars 1- __ +__..1

Baseline ML -_ .

........... __ ... __ ._- - _-_.- -- _ _------_ -._---_._---------_._-_ ... _------.-.-.---_._.-

,

~
~ 44.5
()
~
i3 44o«

42
1

Figure 5.6: Performance of the Bayesian system (BL) versus the hyperparameter Cv, for
Cm = 15, L = 100 and using a sample size of 60.

periodic nature of Hamilton's equations. This effect is also observed in Figure 5.7

where accuracy at L = 200 (45.75%) is slightly worse than that at L = 100.

Leapfrog step size Table 5.3 presents the results for the Bayesian system usmg

step sizes of E = 0.001 and E = 0.0002. The results presented until now have used a

learning rate of E = 0.0001. The number of steps used have been adjusted such that the

simulation time T is approximately the same. This ensures that the simulation time

T does not affect the results, as seen in the previous experiment. Using a step size of

E = 0.0002 results in an average absolute improvement of approximately 0.3%. Using

the smaller step size E = 0.0002, however, requires that 500 leapfrog step be used (for

equivalent simulation time). The extra 0.3% in absolute performance is, however, not

enough to justify the increase in simulation time (5 times).

46.5

46

45.5

45

~e...-
44.5>-

0
I1l::;

440
0«

43.5

43

42.5

42
0

BLmean --
BL error bars "--+--,
Baseline ML .

,,,,,·····r·· _-_ __ __..-------_._.
,,
J

100

L

Figure 5.7: Performance of the Bayesian system (BL) versus the number of leapfrog steps L
per transition, for Cm = 15, Cv = 4 and using a sample size of 60.

Summary of results Table 5.4 gives the best results obtained for the SUNSpeech

dataset when using the Bayesian learning algorithm described in this chapter. Note

that here, the 10 mixture model always performs best. This is as opposed to the ML

estimate, where the 10 mixture system performed worse that the 5 mixture system

when the small training set is used (Table 5.2).

Table 5.3: Comparison of test set accuracy for leapfrog integration using differing step sizes
(E = 0.001 and E = 0.0002) but having equivalent simulation time T ~ EL

Leapfrog Sample size

configuration 10 20 30 40 50 60 70 80 90 100

E = 0.001, L = 100 45.2 45.4 45.5 45.7 45.8 45.8 45.9 46.0 46.1 45.7

E = 0.0002, L = 500 45.6 45.8 46.0 45.9 46.1 46.1 46.3 46.3 46.4 46.0

Table 5.4: Summary of the results obtained using Bayesian learning with the SUNSpeech
dataset, for L = 100, E = 0.001. Relative improvement in error rate expressed as a percentage,
relative to the associated baseline performance given in Table 5.2 is given in brackets.

Training Mixtures Configuration Sample size

set 10 50 90

As 5 Cm = 15,Cv = 4 45.2 (4.7) 45.8 (5.7) 46.1 (6.2)

As 10 Cm = 5,Cv = 4 46.5 (9.0) 46.9 (9.7) 47.0 (9.9)

A 5 Cm = 10,Cv = 4 50.5 (3.7) 50.3 (3.3) 50.3 (3.3)

A 10 Cm = 10,Cv = 4 53.7 (4.5) 54.0 (5.2) 54.1 (5.4)

a sample size of 90 for the small training set. This equates to a relative improvement

in error rate of 9.9%. The same system using only 10 samples attained a 46.5% testing

set accuracy (9.0% relative improvement in error rate).

When using the full training set, it is once again the 10 mixture system which performs

best. Peak performance of 54.1% is attained for the 90 samples system, which is a

relative improvement in error rate of 5.4%. The considerably smaller 10 sample system

gives a 4.5% relative improvement in error rate (53.7% accuracy).

Whether one can justify using the 90 sample system, which is 9 times slower than

the 10 sample system and approximately 90 times slower than that of the equivalent

standard HMM system, is currently unlikely.

This section evaluates the Bayesian learning algorithm under the same conditions as

that used to test the MCE algorithm in Section 3.4, except that here, only the small

TIMIT training set Ts will be used. The procedure followed in selecting this dataset

has been described in Section 2.4.1. The full TIMIT testing set has been used for

all experiments presented in this section. A 3 state, 5 mixture HMM is used for all

experiments in this section. The base system test set performance for the 3 state, 5

mixture HMM when using the small TIMIT training set is 52.6%.

Here, so as not to unnecessarily duplicate results, only the effect of sample size and

parameter em will be experimentally evaluated - to show that performance is similar

for another dataset and language.

Effect of sample size Figure 5.8 shows the effect of the sample size Nm on the

performance of the Bayesian learning system. The performance for a sample size of

1 (Nm = 1) is, once again, in general better than that of the Baseline ML system -

further evidence that the choice of prior and hyperparameter is justified.

54.6

54.4

54.2 -,- .,-

i
,,,

54 l- i 1,
, ,

53.8
,, ,,

~
,

-'-
!?- ,-
>- 53.6
u
~
:::J 53.4uu

<{

53.2 ,

l T
,-

T T,- ,, , ,, ,, ,, , ,, ,, , , , ,, , , ~- ,, ,, ,,

BLMean --
BL Error bars "--+--,

Baseline ML .

,,,
J •••••••••• •••••••••••• ••••••••• __ • •• _. ••••••• __ ••••••••••••••••••••••••••••• __ • __ • _,

52.4
o

Figure 5.8: Performance of the Bayesian system (BL) versus the size of the sample used to
numerically integrate with respect to the posterior.

As with the SUNSpeech experiments, by far the greatest improvements resulted when

using 10 or fewer samples. Using 10 samples results in a system accuracy of 54.1%.

The performance increases to a reasonable degree for sample sizes greater than 10,

though whether the extra computational effort can be justified is once again somewhat

doubtful. Maximum performance of 54.4% is attained when using a sample size of 90,

though better performance would probably result when using a larger sample size. As

expected, the variance of the system accuracy does, in general, tend to decrease as the

sample size grows.

Effect of the parameter em Figure 5.9 presents the effect of the parameter Cm on

the performance of a 3 state, 5 mixture HMM based Bayesian system. Once again, an

optimal value exists (Cm = 15), with the performance of the system deteriorating for

values smaller or larger than this optimal value.

54.6

54.4

54.2

54

~ 53.8
~
>.
0 53.6~
::J
0
0« 53.4

53.2

53

52.8

52.6

BLmean --
BL error bars c __ +__,

Baseline ML ---------

12

Cm

Figure 5.9: Performance of the Bayesian system (BL) versus the hyperparameter Cm, for
Cv = 4, L = 100 and using a sample size of 60.

This section evaluates the Bayesian learning algorithm for a connected digit recognition

task. The TIDIGITS database, as described in Section 2.4.2, is used for this purpose,

where a small gender-independent dataset was created. The reduced speaker set (Ts)

was created, using five randomly chosen female speakers and five randomly chosen male

speakers, using all 77 digit sequences per speaker. The relevant training and testing

sets are summarized in Table 5.5.

The full TIDIGITS testing set has been used for the experiments presented in this

section. An 8 state, 5 mixture HMM is used for all experiments. The base system

test set performance for the 8 state, 5 mixture HMM when using the small TIDIGITS

training set is 95.8%. Once again, so as not to unnecessarily duplicate results, only the

effect of sample size and parameter Cm will be evaluated.

Table 5.5: Training and testing sets used with the TIDIGIT database

Description Label Number of speakers Digit Duration

Male Female Total sequences (minutes)

Training sets:

Full (standard) T 55 57 112 8623 253.4

Man TM 55 0 55 4235 121.9

Small Ts 5 5 10 770 21.5

Testing set 55 57 113 8623 254.4

Effect of sample size Figure 5.10 shows the performance of the Bayesian learning

system versus the sample size Nm, with Cm = 15, Cv = 4 and L = 100. As was the

case for the previous two datasets, the performance for a sample size of 1 (Nm = 1)

resulted in better performance (mean of 96.3%) than that of the Baseline ML system

(95.8%). A small improvement in accuracy (96.5%) is observed when a sample size

of two is used. However, larger sample sizes result in degradation of system accuracy,

A connected digit task is relatively simple compared to continuous phoneme recog-

nition. We can therefore expect that the posterior distribution for the HMM we are

estimating will not be as complex as that of the two scenarios previously used. For

a very simple task, one expects that a single mode posterior would result, and if the

posterior is peaked no significant improvement in performance will be attained when

using the Bayesian learning approach described in this chapter. With the connected

digit task, however, we do observe a small, though significant, improvement in perfor-

mance when using a sample size which is greater than one. The posterior of this task is

therefore slightly more complex than a single mode. The improvement in performance

may, for example, be attributable to a bi-modal posterior, with one mode representing

male speakers and the other mode representing female speakers.

96.7

96.6

96.5

96.4

~~ 96.3>.
u
ctl::;

96.2uu«
96.1

96

95.9

95.8
0

T ~-,,

1-
,

I
,,

l-: ,

l-
,,,,

BLMean --
BL Error bars ~--+--_.

Baseline ML .

15
Sample size

Figure 5.10: Performance of the Bayesian system (BL) versus the size of the sample used to
numerically integrate with respect to the posterior.

Increases. A decrease in performance indicates that the distribution of the samples

generated using the Markov chain Monte Carlo method is not that of the desired

distribution. In Section 5.4.1 an example of this phenomenon was observed, when

samples from a Markov chain were used before it had converged. Here, however, the

Markov chain has converged. The decrease in accuracy observed here is probably due to

the systematic errors introduced by the leapfrog algorithm. A finite step size will result

in a posterior sample which is slightly different from that of the true distribution. As the

sample size increases, the probability of including a sample which is not representative

of the true or desired distribution therefore increases, and as a result, the performance

of the system will tend to decrease as larger samples are used. This phenomenon has

only been observed here, and its effect is relatively small compared to the improvements

resulting when the posterior is relatively complex.

Effect of the parameter ern The performance of the system (not shown graphi-

cally) is somewhat invariant to the parameter Cm, probably due the the fact that little

or no improvement results from using the Bayesian learning procedure. Peak mean

performances of 96.47%, 96.46% and 96.50% are attained for Cm values of 10, 15 and

20 respectively.

In Section 5.4.1 the Bayesian learning procedure introduced in this chapter was tested

in a situation where a limited amount of training data was available for a new language

specific recognizer. The SUNSpeech dataset was used for this purpose. The effects of

the sample size, parameters Cm and Cv, simulation time T and leapfrog step size E were

determined for this scenario. Significant improvements in accuracy were attained when

using the Bayesian learning procedure. Relative improvements in mean error rates of

up to 9.9% and 5.4% were attained when using the small and full Afrikaans training

sets respectively.

A small gender independent training set was created using the TIMIT dataset, which

was used to test the system under much the same conditions (Section 5.4.2). A 3.8%

relative improvement in mean error rate was attained for this scenario. The effect of

sample size and the parameter Cv were found to be very similar to that observed when

using the SUNSpeech database.

In Section 5.4.3 the system was tested using a connected digit recognition task. The

TIDIGITS database was used to create a small gender-independent dataset, so as to

simulate the scenario where little training data was available for training a connected

digit recognizer. A relative improvement in error rate of 16.7% was attained when

using a sample size of two. Using only one sample resulted in an 11.9% relative im-

provement, due to the choice of prior and hyperparameters. A decrease in performance

was observed for sample sizes greater than two, which was ascribed to the systematic

errors resulting from the leapfrog integration algorithm.

If one was to have the luxury of having an independent cross-validation set, then the

resultant performances can be expected to be even better. Under these conditions, one

could create several samples of the posterior and then choose the best sample using the

cross-validation set. Although this will not necessarily give the truly best sample, it

will probably improve results such that they are closer to the maximum results attained

in this section.

5.5 Summary

This chapter introduced Bayesian learning and its usage within a continuous speech

recognition framework. Markov chain Monte Carlo methods, which are used to sam-

ple the posterior, were described. Implementation specifics such as maintaining the

HMM constraints, choice of the prior distributions and parameters, and an efficient

implementation for recognition were also discussed.

Section 5.4 experimentally evaluated the Bayesian learning procedure introduced in

this chapter. The SUNSpeech, TIMIT and TIDIGITS databases were used for this

purpose. The effects of sample size, hyperparameters Cm and Cv, simulation time T

and leapfrog step size E were determined. Significant improvements in system accuracy

were attained for the scenarios created using all three datasets. The improvements

realized for the connected digit task (TIDIGITS) were, however, mainly due to the

regularization effect of the prior, with a sample size of two resulting in peak perfor-

mance. This was attributed to the fact that the connected digit task is relatively simple

and the posterior thereof is therefore probably also relatively simple.

The results attained show that there is much promise in the usage of the Bayesian

learning procedure proposed. Although considerably more computationally expensive

than most HMM training techniques, I believe, however, that the improved performance

warrants the additional computational expense.

Chapter 6

Conclusion

The problem addressed in this thesis is the design of a speech recognizer when only

sparse training data are available. The recording and subsequent segmenting and

annotation of large speech databases is an expensive and labour-intensive process.

The aim of the techniques developed in this thesis is therefore to improve recognition

performance of hidden Markov model (HMM) systems when training data is limited.

This thesis started by considering the minimum classification error (MCE) parameter

estimation procedure. The MCE criterion is closely related to the goal of ideal Bayes

classification. Overspecialization is, however, prevalent when using MCE, especially

when training data is limited. Several modifications to the standard MCE procedure

were therefore proposed which limited the effect of overtraining. The MCE algorithm

was used within a training framework (Section 1.2).

The usage of the maximum a-posteriori (MAP) estimation algorithm was investigated

for situations where little task-specific training data is available, but a reasonable

quantity of non-task-specific training data can be used. The MAP estimation procedure

was used within an adaptation framework (as described in Section 1.1) in this thesis,

where non-task-specific data was used in conjunction with limited task-specific data to

improve recognition performance for a specific task.

Finally, Bayesian learning was investigated and an implementation for HMM speech

recognition was proposed and implemented. Here no assumption is made about the

availability of non-task-specific data, and only the task specific data is used in the

training process. The Bayesian learning procedure as proposed and implemented in

this work is a training algorithm (Section 1.2), where only task-specific data is used.

The algorithms proposed and tested in this thesis have been found to be extremely

effective in situations where little training data is available. Significant improvements

in recognition performance have been attained for the sparse data scenarios used for

evaluation purposes. The algorithms proposed are, in general, considerably more com-

putationally expensive, with execution times for the GMAP and MAPMCE being of

the order of 3 hours and 10 hours respectively (depending on the task and computer

used) as compared to the 13 minutes required by MAP (or ML). The Bayesian learn-

ing procedure is extremely computationally expensive with the execution time being

around one to three days, depending on the task and computer used. The training

of speech recognition systems is typically done offline and the time taken to estimate

the model parameters is therefore often not critical. The additional computational ex-

pense can therefore be justified by the significantly improved recognition performance

resulting from the use of these algorithms.

1. New modifications to the MCE algorithm are proposed in Chapter 3. These

modifications limit the effect of overtraining which is prevalent when using MCE

training.

2. A new gradient-based MAP adaptation algorithm (GMAP) that does not make

any assumptions concerning the form of the prior distribution was proposed in

Chapter 4. This algorithm was shown to outperform the standard MAP approach

of Gauvain and Lee [45] for the conditions tested.

3. A new MCE based MAP adaptation algorithm was proposed and tested in Chap-

ter 4. This algorithm too was shown to work better than the standard MAP

approach, as well as being better than standard MCE.

4. Bayesian learning was introduced. An original implementation of Bayesian learn-

ing for hidden Markov model speech recognition was introduced and discussed.

This is, to the author's knowledge, the first time that Bayesian learning using

Markov chain Monte Carlo methods has been used for hidden Markov model

speech recognition.

6.2 Summary by Chapter

In Chapter 1 the topic of speech recognition was introduced, along with the topic of

data sufficiency and the effects thereof. The algorithms currently used to alleviate the

problem of insufficient data were briefly reviewed.

In Chapter 2 the basic theory of hidden Markov models and the speech recognition

system used in this thesis were described. Overtraining was discussed in terms of

the bias/variance dilemma. The experimental procedure common to all experiments

conducted in this thesis was described and details of the three speech databases used

for experimental evaluation were given.

In Chapter 3 the minimum classification error criterion was introduced and its usage

within a continuous speech recognition framework was discussed. The MCE criterion

realizes optimal decision boundaries in a Bayes sense. The MCE criterion focuses

on minimizing the probability of error. Classifiers trained using the MCE criterion

are therefore able to attain the goal of Bayes classification even when the modeling

assumptions are incorrect. Embedded or string-level MCE, where the recognition error

for entire strings is minimized, was discussed.

The effect of a smoothed zero-one loss function was discussed and experimentally de-

termined for the TIMIT dataset. Furthermore, the need for a zero-one loss function

was questioned and the conclusion was reached that there is little evidence to suggest

that there is an advantage or disadvantage to using a smoothed zero-one loss function.

This result was used later in modifying the MCE criterion, where the modification

could not be mathematically justified when a non-linear loss function was used.

Overtraining within the MCE framework was discussed and three modifications were

proposed. The first modification stops the mixture variances from becoming very

small, which we expect to happen when little data is available. The second added a

weighted likelihood term to the MCE criterion, thereby reinforcing correct substrings,

as well as improving discrimination for incorrect substrings. Lastly, a word-based

string-level MCE algorithm was proposed, in which smaller word-based substrings were

used, instead of the the entire string. Significant gains in performance resulted when

using these modifications with the TIMIT database. Improvements of up to 10% in

relative error rate on the test set were achieved for the TIMIT dataset.

In Chapter 4 Bayesian adapt ion and its usage within a continuous speech recognI-

tion framework was introduced. The MAP algorithm of Gauvain and Lee [45] was

described. A gradient-based MAP algorithm (GMAP) which makes no assumption

about the form of the prior was proposed and the implementation thereof was dis-

cussed. A Bayesian inspired MCE-based adaptation algorithm (MAPMCE) was also

proposed. The MAPMCE algorithm is a simple extension of the MCE algorithm and

its implementation is relatively simple.

The three algorithms were experimentally evaluated using the SUNSpeech database

for language adaptation, and using the TIMIT and TIDIGIT databases for gender

adaptation experiments. Figure 6.1 shows the best relative improvements in error

rate obtained using the MAP, GMAP and MAPMCE algorithms for the SUNSpeech,

TIMIT and TIDIGITS datasets. Relative improvements in error rate of up to 10.2%

were attained for the SUNSpeech dataset (using the GMAP algorithm). For the gender

adaptation task using the TIMIT dataset relative improvements in error rates of up

to 25.5% were attained (using the MAPMCE algorithm). Finally, relative improve-

ments in error rate of up to 66.0% (MAPMCE) were reported for the TIDIGITS based

gender adaptation task. When using duration modeling with the connected digit task

(TIDIGITS), the GMAP algorithm performed best (relative improvements in error rate

of 54.9%). The MAP algorithm, in general, performed somewhat worse.

6.1 10.2 8.2
SUNSpeech

o MAP

TIMIT

m!m GMAP

TIDIGITS

~ MAPMCE

Figure 6.1: Comparison of best relative improvements in error rates obtained using the
MAP, GMAP and MAPMCE algorithms for the three datasets used (SUNSpeech, TIMIT
and TIDIGITS).

In Chapter 5 Bayesian learning and its usage within a continuous speech recognition

framework was discussed. Markov chain Monte Carlo methods, which are used to sam-

ple the posterior, were described. Implementation specifics such as maintaining the

HMM constraints, the prior distributions and an efficient implementation for recogni-

tion were also discussed.

The SUNSpeech, TIMIT and TIDIGITS databases were used to experimentally eval-

uate the proposed Bayesian learning procedure. The effects of various algorithm con-

figurations were determined. Significant improvements in system accuracy were at-

tained for the scenarios created using the three datasets. Relative improvements in

error rates of up to 9.9%, 3.8% and 16.7% were attained for the SUNSpeech, TIM IT

and TIDIGITS databases respectively. The results attained show that there is much

promise in the usage of the Bayesian learning procedure proposed. Although consid-

erably more computationally expensive than standard HMM training, the improved

performance warrants the additional computational expense for certain situations.

The research performed in this thesis focused on the sparse data problem. The algo-

rithms described were applied to a relatively limited set of tasks and languages. Future

research could therefore incorporate a wider variety of typical scenarios where train-

ing data is limited, such as cross-database adaptation, speaker adaptation and dialect

adaptation. The application of the techniques described here, to context dependent

modeling, i.e. bi-phone or tri-phone modeling, will be an important extension of this

work. A detailed comparison of Bayesian adaptation techniques with transformation

based adaptation algorithms (MLLR, MAPLR) for a wide variety of sparse data sce-

narios will also be of much interest.

Bayesian methods can also be used for purposes other than the sparse data problem.

These include using Bayesian methods to choose the optimal model configuration for

a point estimate paradigm, as done by MacKay [72] in the field of neural networks.

The Bayesian learning procedure proposed can be improved upon and several aspects

thereof must therefore still be investigated, they include:

• sampling the complete posterior of all HMM parameters including transition

probabilities, mixture weights and if applicable, duration modeling parameters,

• using the Hybrid Monte Carlo method to sample the posterior distribution,

• making the modified Viterbi search (Section 5.3.5) more efficient, and

• other prior and hyperparameter configurations may result in even better system

performance.

Bibliography

[1] V. Abrash, A. Sankar, H. Franco, and M. Cohen. Acoustic adaptation using

nonlinear transformations of HMM parameters. In Proc. ICASSP '96, pages 729

- 732, Atlanta, GA, May 1996.

[2] S. Amari. A theory of adaptive pattern classifiers. IEEE Trans. Electron. Com-

put., 16:299-307, June 1967.

[3] H.C. Andersen. Molecular dynamics simulations at constant pressure and/or

temperature. Journal of Chemical Physics, 72:2384-2393, 1980.

[4] ARPA. The DARPA TIMIT Acoustic-Phonetic Continuous Speech Corpus.

Training and Test Data. NIST Speech Disc CD1-1.1, Dec. 1990.

[5] L. E. Baum, T. Petrie, G. Soules, and N. Weiss. A maximization technique

occuring in the statistical analysis of probabilistic functions of Markov chains.

The Annals of Mathematical Statistics, 41(1):164-171, 1970.

[6] J. R. Bellegarda, P. V. de Souza, D. Nahamoo, ~L Padmanabhan, M. A. Picheny,

and 1. R. Bahl. Experiments using data augmentation for speaker adaptation.

In Proc. ICASSP '95, pages 692 - 695, Detroit, MI, May 1995.

[8] A. Biem and S. Katagiri. Feature extraction based on minimum classification

error/generalized probabilistic descent method. In Proc. ICASSP '93, pages II-

275 - II-278, Minneapolis, IvIN, April 1993.

[9] A. Biem and S. Katagiri. Filter bank design based on discriminative feature

extraction. In Proc. ICASSP '94, pages 1-485 - 1-488, Adelaide, Australia, April

1994.

[10] J. Billa, K. Ma, J.W. McDonough, G. Zavaliagkos, D.R. Miller, K.N. Ross, and

A. EI-Jaroudi. Multilingual speech recognition: The 1996 Byblos callhome sys-

tem. In Proc. Eurospeech '97, pages 363-366, Rhodes, Greece, September 1997.

[11] C.M. Bishop. Curvature-driven smoothing: A learning algorithm for feed-forward

networks. IEEE Trans. Neural Networks, 4(5):882-884, 1993.

[12] C.M. Bishop. Neural networks for pattern recognition. Oxford Univ. Press, Ox-

ford, 1995.

[13] G.E.P. Box and G.C. Tiao. Bayesian Inference in Statistical Analysis. John

Wiley and Sons, New York, 1973,1992.

[14] P.F. Brown. The Acoustic-Modeling Problem in Automatic Speech Recognition.

PhD thesis, Department of Computer Science, Carnegie Mellon University, 1987.

[15] U. Bub, J. Kohler, and B. Imperl. In-service adaptation of multilingual hidden-

Markov-models. In Proc. ICASSP '97, pages 1451 - 1454, Munich, Germany,

April 1997.

[16] D. Burshtein. Robust parametric modeling of durations in hidden Markov models.

In Proc. ICASSP '95, pages 548 - 551, Detroit, MI, May 1995.

[17] P.-C. Chang and B.-H. Juang. Discriminative template training for dynamic

programming speech recognition. In Proc. ICASSP '92, pages 493-496, San

Francisco, CA, March 1992.

[18] J.-K. Chen and F. K. Soong. Discriminative training of high performance speech

recognizer using N-best candidates. In Proc. ICASSP '94, pages 1-625 - 1-628,

Adelaide, Australia, April 1994.

[19] J.-K. Chen and F.K. Soong. An N-best candidates-based discriminative training

for speech recognition applications. IEEE Tmnsactions on Speech and Audio

Processing, 2(1):206-216, January 1994.

[20] J. T. Chien, H.-C. Wang, and C. H. Lee. Improved Bayesian learning of hidden

Markov models for speaker adaptation. In Proc. ICASSP '97, pages 1027 - 1030,

Munich, Germany, April 1997.

[21] J.T. Chien. In-line hierarchical transformation of hidden Markov models for

speaker adaptation. In Proc. ICSLP '98, Sydney, Australia, November 1998.

[22] W. Chou. Maximum a posterior linear regression with elliptically symmetric

matrix variate priors. In Proc. Eurospeech '99, pages 1-4, Budapest, Hungary,

September 1999.

[23] W. Chou, B.-H. Juang, and C.-H. Lee. Segmental GPD training of HMM based

speech recognizer. In Proc. ICASSP '92, pages 473-476, San Francisco, 1992.

IEEE.

[24] W. Chou, C.-H. Lee, and B.-H. Juang. Minimum error rate training based on

N-best string models. In Proc. ICASSP '93, pages 1-652 - 1-655, Minneapolis,

MN, April 1993.

[25] C. Corredor-Ardoy, L. Lamel, M. Adda-Decker, and J-L. Gauvain. Multilingual

phone recognition of spontaneous telephone speech. In Proc. ICASSP '98, Seattle,

USA, May 1998.

[26] M. Creutz. Global Monte Carlo algorithms for many-fermion systems. Physical

Review D, 38(4):1228-1238, Aug 1988.

[27] IvI.H. DeGroot. Optimal Statistical Decisions. McGraw-Hill, New York, 1970.

[28] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from

incomplete data via the EM algorithm. Journal of the Royal Statistical Society

series B, 39: 1-38, 1977.

[29] L. Deng. Integrated-multilingual speech recognition using universal phonological

features in a functional speech production model. In Proc. ICASSP '97, pages

1007 - 10lD, Munich, Germany, April 1997.

[30] V. Diakoloukas, V. Digalakis, L. Neumeyer, and J. Kaja. Development of dialect-

specific speech recognizers using adaptation methods. In Proc. ICASSP '97, pages

1455 - 1458, Munich, Germany, April 1997.

[31] V.D. Diakoloukas and V.V. Digalakis. Maximum-likelihood stochachastic-

transformation adaptation of hidden Markov models. IEEE Transactions on

Speech and Audio Processing, 7(2):177-187, March 1999.

[32] V. Digalakis and L. Neumeyer. Speaker adaptation using combined transforma-

tion and Bayesian methods. In Proc. ICASSP '95, pages 680 - 683, Detroit, MI,

May 1995.

[33] V.V. Digalakis, D. Rtischev, and L.G. Neumeyer. Speaker adaptation using

constrained estimation of Gaussian mixtures. IEEE Transactions on Speech and

Audio Processing, 3(5):357-366, September 1995.

[34] P.M. Djuric and J.H. Chun. Estimation of nonstationary hidden Markov models

by MCMC sampling. In Proc. ICASSP '99, Phoenix, Arizona, USA, May 1999.

[35] J.A. Du Preez. Modelling durations in hidden Markov models with application

to word spotting. In Proc. IEEE South African symposium on Communications

and Signal Processing, pages 1-5, Fourways, South Africa, Aug. 1991.

[36] S. Duane. Stochastic quantization versus the microcanonical ensemble: getting

the best of both worlds. Nuclear Physics, B257:652-662, 1985.

[37] S. Duane, A.D. Kennedy, B.3. Pendleton, and D. Roweth. Hybrid Monte Carlo.

Physics Letters B, 195(2):216-222, Sep 1987.

[38] S. Duane and J.B. Kogut. Hybrid stochastic differential equations applied to

quantum chromo dynamics. Physical Review Letters, 55(25):2774-2777, Dec 1985.

[39] S. Duane and J.B. Kogut. The theory of hybrid stochastic algorithms. Nuclear

Physics, B275:398-420, 1986.

[40] R.O. Duda and P.E. Hart. Pattern classification and scene analysis. Wiley, New

York, 1973.

[41] V. Fischer, Y. Gao, and E. Janke. Speaker-independent upfront dialect adapta-

tion in a large vocabulary continuous speech recognizer. In Proc. ICASSP '98,

Seattle, USA, May 1998.

[42] H. Franco and A. Serralheiro. Training HMMs using a minimum recognition

approach. In Proc. ICASSP '91, pages 357-360, Toronto, Canada, May 1991.

[43] J-L. Gauvain and C.H. Lee. Bayesian learning for hidden Markov models with

Gaussian mixture state observation densities. Speech Communication, pages 205-

213, June 1992.

[44] J-L. Gauvain and C.H. Lee. Improved accoustic modeling with Bayesian learning.

In Proc. ICASSP '93, pages II-481-II-484, Minneapolis, MN, April 1993.

[45] J-L. Gauvain and C.H. Lee. Maximum a posteriori estimation for multivariate

Gaussian mixture observations of Markov chains. IEEE Transactions on Speech

and Audio Processing, 2(2):291-298, April 1994.

[46] S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the

bias/variance dilemma. Neural Computation, 4:1-58, 1992.

[47] J. Glass, G. Flammia, D. Goodine, M. Phillips, J. Polifroni, S. Sakai, S. Seneff,

and V. Zue. Multilingual spoken-language understanding in the MIT Voyager

system. Speech Communication, 17:1-18, August 1995.

[48] S.J. Godsill and C. Andrieu. Bayesian seperation and recovery of convolutively

mixed autoregressive sources. In Proc. ICASSP '99, Phoenix, Arizona, USA,

May 1999.

[49] Y. Gong and J.-P. Haton. Stochastic trajectory modeling for speech recognition.

In Proc. ICASSP '94, pages I-57 - I-60, Adelaide, Australia, April 1994.

[50] R. Gupta, G.W. Kilcup, and S. R. Sharpe. Tuning the hybrid Monte Carlo

algorithm. Physical Review D, 38(4):1278-1287, Aug 1988.

[51] S. K. Gupta, F. Soong, and R. Haimi-Cohen. High-accuracy connected digit

recognition for mobile applications. In Proc. ICASSP '96, pages 57 - 60, Atlanta,

GA, May 1996.

[52] Q. Huo and C. Chan. On-line Bayes adaptation of SCHMM parameters for speech

recognition. In Proc. ICASSP '95, pages 708 - 711, Detroit, MI, May 1995.

[53] Q. Huo, C. Chan, and C.-H. Lee. Bayesian learning of the SCHMM parameters

for speech recognition. In Proc. ICASSP '94, pages 1-221 - 1-224, Adelaide,

Australia, April 1994.

[54] Q. Huo, H. Jiang, and C. H. Lee. A Bayesian predictive classification approach

to robust speech recognition. In Proc. ICASSP '97, pages 1547 - 1550, Munich,

Germany, April 1997.

[55] 1. Illina and Y. Gong. Elimination of trajectory folding phenomenon: Trajectory

mixture and mixture stochastic trajectory model. In Proc. ICASSP '97, pages

1395 - 1398, Munich, Germany, April 1997.

[56] C. Jankowski, A. Kalyanswamy, S. Basson, and J. Spitz. NTIMIT: A phonetically

balanced, continuous speech, telephone bandwidth speech database. In Proc.

ICASSP '90, pages 109-112, Alburquerque, NM, April 1990.

[57] H. Jiang, K. Hirose, and Q. Huo. Robust speech recognition based on Viterbi

Bayesian predictive classification. In Proc. ICASSP '97, pages 1551 - 1554,

Munich, Germany, April 1997.

[58] H. Jiang, K. Hirose, and Q. Huo. Improving Viterbi Bayesian predictive classi-

fication via sequential Bayesian learning in robust speech recognition. In Proc.

ICASSP '98, Seattle, USA, May 1998.

[59] B.-H. Juang, W. Chou, and C.-H. Lee. Minimum classification error rate methods

for speech recognition. IEEE Transactions on Speech and Audio Processing,

5(3):257-265, May 1997.

[60] B.-H. Juang and S. Katagiri. Discriminative learning for minimum error classi-

fication. IEEE Transactions on Signal Processing, 40(12):3043-3054, December

1992.

[61] B.-H. Juang and L. R. Rabiner. The segmental K-means algorithm for estimating

parameters of hidden Markov models. IEEE Trans. Acoustics, Speech and Signal

Processing, ASSP-38(9), 1990.

[62] S. Kapadia, V. Valtchev, and S. J. Young. MMI training for continuous phoneme

recognition on the TIMIT database. In Proc. ICASSP '93, Minneapolis, MN,

April 1993.

[63] J. Kohler. Language adaptation of multilingual phone models for vocabulary

independent speech recognition tasks. In Proc. ICASSP '98, pages 417 - 420,

Seattle, USA, May 1998.

[64] T. Komori and S. Katagiri. Application of a generalized probabilistic descent

method to dynamic time warping-based speech recognition. In Proc. ICASSP

'92, pages 497-500, San Francisco, CA, March 1992.

[65] O.W. Kwon and C.K. Un. Performance of HMM-based speech recognizers with

discriminative state-weights. Speech Communication, 19:197-205, 1996.

[66] C-H. Lee and J-L. Gauvain. Speaker adaptation based on MAP estimation of

HMM parameters. In Proc. ICASSP '93, pages II-558-II-561, Minneapolis, MN,

April 1993.

[67] C-H. Lee, C-H Lin, and B-H Juang. A study on speaker adaptation of the

parameters of continuous density hidden Markov models. IEEE Trans. Signal

Processing, 39(4):806-814, April 1991.

[68] K. F. Lee and H. W. Hon. Speaker-independent phone recognition using hidden

Markov models. IEEE Trans. Acoustics, Speech and Signal Processing, ASSP-

37(11):1641, 1989.

[69] C. J. Leggetter and P. C. Woodland. Maximum likelihood linear regression

for speaker adaptation of continuous density hidden Markov models. Computer

Speech and Language, 9(2):171-185, April 1995.

[70] R. G. Leonard. A database for speaker-independant digit recognition. In Proc.

ICASSP '84, pages 42.11.1-42.11.4, 1984.

[71] L. A. Liporace. Maximum likelihood estimation for multivariate observations

of Markov sources. IEEE Transactions on Information Theory, 28(5):729-734,

Spetember 1982.

[72] David J.C. Mackay. Bayesian Methods for Adaptive Models. PhD thesis, Califor-

nia Institute of Technology, Pasadena, California, December 1991.

[73] J. S. Maritz and T. Lwin. Empirical Bayes Methods. Chapman and Hall, London,

1989.

[74] T. Matsui and S. Furui. A study of speaker adaptation based on minimum

classification error training. In Proc. Eurospeech '95, pages 81-84, Madrid, Spain,

September 1995.

[75] E. McDermott. Discriminative Training for Speech Recognition. PhD thesis,

Waseda University, Japan, March 1997.

[76] E. McDermott and S. Katagiri. Prototype-based discriminative training for var-

ious speech units. In Proc. ICASSP '92, San Francisco, CA, March 1992.

[77] E. McDermott and S. Katagiri. Prototype-based MCE/GPD training for word

spotting and connected word recognition. In Proc. ICASSP '93, pages II-291 -

II-294, Minneapolis, MN, April 1993.

[78] E. McDermott and S. Katagiri. String-level MCE for continuous phoneme recog-

nition. In Proc. Eurospeech '97, pages 123-126, Rhodes, Greece, September 1997.

[79] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, and A.H. Teller. Equation of

state calculations by fast computing machines. The Journal of Chemical Physics,

21(6):1087-1092, Jun 1953.

[80] P. J. Moreno and R. M. Stern. Sources of degradation of speech recognition in

telephone environments. In Proc. ICASSP '94, pages I-109 - I-112, Adelaide,

Australia, April 1994.

[81] A. Nadas, D. Nahamoo, and M. A. Picheny. On a model-robust training method

for speech recognition. IEEE Trans. Acoustics, Speech and Signal Processing,

ASSP-36(9):1432, 1988.

[83] C. Nieuwoudt. Cross-language acoustic adaptation for automatic speech recogni-

tion. PhD thesis, University of Pretoria, South Africa, April 2000.

[84] C. Nieuwoudt and E.C. Botha. Adaptation of acoustic models for multilingual

recognition. In Proc. Eurospeech '99, pages 907-910, Budapest, Hungary, Septem-

ber 1999.

[85] C. Nieuwoudt and E.C. Botha. Cross-language use of accoustic information for

automatic speech recognition. In Proc. ICSLP 2000, volume 3, pages 722-725,

Beijing, China, October 2000.

[86] N. Nilsson. Problem-Solving Methods in Artificial Intelligence. McGraw Hill,

New York, New York, 1971.

[87] Y. Normandin. Optimal splitting of HMM gaussian mixture components with

J\IMIE training. In Proc. ICASSP '95, pages 449 - 452, Detroit, MI, May 1995.

[88] Y. Normandin and S.D. Morgera. An improved MMIE training algorithm for

speaker-independent, small vocabulary, continuous speech recognition. In Proc.

ICASSP '91, pages 537-540, Toronto, Canada, May 1991.

[89] D.W. Purnell and E.C. Botha. Improved performance and generalization of min-

imum classification error training for continuous speech recognition. In Proc.

ICSLP 2000, volume 4, pages 165-168, Beijing, China, October 2000.

[90] L. Rabiner and B.-H. Juang. Fundamentals of Speech Recognition. Prentice-Hall,

Englewood Cliffs, NJ, 1993.

[91] L. R. Rabiner, J. G. Wilpon, and F. K. Soong. High performance connected

digit recognition using hidden Markov models. IEEE Trans. Acoustics, Speech

and Signal Processing, ASSP-37(8):1214, 1989.

[92] L.R. Rabiner. An introduction to hidden Markov models. IEEE Signal Processing

Magazine, 5:4-16, January 1988.

[93] L.R. Rabiner. A tutorial on hidden Markov models and selected applications in

speech recognition. Proc. of the IEEE, 77:257-286, Feb 1989.

[94] L.R. Rabiner and B.H. Juang. An introduction to hidden Markov models. IEEE

ASSP Magazine, pages 4-16, January 1986.

[95] C. Rathinavelu. Minimum classification error linear regression (MCELR) for

speaker adaptation using HMM with trend functions. In Proc. Eurospeech '97,

pages 2343-2346, Rhodes, Greece, September 1997.

[96] C. Rathinavelu and L. Deng. HMM-based speech recognition usmg state-

dependent linear transforms on mel-warped DFT features. In Proc. ICASSP

'96, pages 9 - 12, Atlanta, GA, May 1996.

[97] H. Robbins. The empirical Bayes approach to statistical decision problems. An-

nals of Mathematical Statistics, 35:1-20, 1964.

[98] C.P. Robert, A. Doucet, and S.J. Godsill. ~vlarginal MAP estimation using

Markov chain Monte Carlo. In Proc. ICASSP '99, Phoenix, Arizona, USA, May

1999.

[99] S. Russel and P. Norvig. Artificial Intelligence, A Modern Approach. Prentice

Hall, Upper Saddle River, New Jersey, 1995.

[100] A. Sankar. Robust HMM estimation with Gaussian merging-splitting and tied-

transform HMMs. In Proc. ICSLP '98, volume 6, pages 2499-2502, Sydney,

Australia, November 1998.

[101] R. Schluter and W. Machery. Comparison of discriminative training criteria. In

Proc. ICASSP '98, Seattle, USA, May 1998.

[102] T. Schultz and A. Waibel. Fast bootstrapping of LVCSR systems with multi-

lingual phoneme sets. In Proc. Eurospeech '97, pages 371-374, Rhodes, Greece,

September 1997.

[103] R. Schwartz and S. Austin. A comparision of several approximate algorithms

for finding multiple (NBEST) sentence hypotheses. In Proc. ICASSP '91, pages

701-704, Toronto, Canada, May 1991.

[104] H. Shimodaira, J. Rokui, and M. Nakai. Improving the generalization perfor-

mance of the MCE/GPD learning. In Proc. ICSLP '98, Sydney, Australia,

November 1998.

[105] O. Siohan, A.E. Rosenberg, and S. Parthasarathy. Speaker identification using

minimum classification error training. In Proc. ICASSP '98, Seattle, USA, May

1998.

[106] F. K. Soong and E.-F. Huang. A tree-trellis based fast search for finding the N

best sentence hypotheses in continuous speech recognition. In Proc. ICASSP '91,

pages 705-708, Toronto, Canada, May 1991.

[107] J. Su, H. Li, J.-P. Haton, and K.-T. Ng. Speaker time-drifting adaptation using

trajectory mixture hidden Markov models. In Proc. ICASSP '96, pages 709 -

712, Atlanta, GA, May 1996.

[108] R. A. Sukkar. Rejection for connected digit recognition based on GPD segmental

discrimination. In Proc. ICASSP '94, pages 1-393 - 1-396, Adelaide, Australia,

April 1994.

[109] R.A. Sukkar and J.G. Wilpon. A two pass classifier for utterance rejection in

keyword spotting. In Proc. ICASSP '93, pages II-451 - II-454, Minneapolis,

MN, April 1993.

[110] E. Thelen, X. Aubert, and P. Beyerlein. Speaker adaptation in the Philips system

for large vocabulary continuous speech recognition. In Proc. ICASSP '97, pages

1035 - 1038, Munich, Germany, April 1997.

[111] D. Toussaint. Introduction to algorithms for Monte Carlo simulations and their

application to QCD. Computer Physics Communications, 56:69-92, 1989.

[112] U. Uebler, M. Schussler, and H. Niemann. Bilingual and dialectal adaptation and

retraining. In Proc. ICSLP '98, volume 5, pages 1815-1818, Sydney, Australia,

November 1998.

[113] V. Valtchev, J.J. Odell, P.C. Woodland, and S.J. Young. MMIE training of large

vocabulary recognition systems. Speech Communication, 22:303-314, 1997.

[114] J. Vermaak and M. Niranjan. Markov chain Monte Carlo methods for speech

enhancement. In Proc. ICASSP '98, Seattle, USA, May 1998.

[115] T. Waardenburg, J.A. du Preez, and M.W. Coetzer. The automatic recognition

of stop consonants using hidden Markov models. In Proc. ICASSP '92, San

Francisco, CA, March 1992.

[116] B. 'Wheatley, K. Kondo, W. Anderson, , and Y. Muthusamy. An evaluation of

cross-language adaptation for rapid HMM development in a new language. In

Proc. ICASSP '94, pages 1-237 - 1-240, Adelaide, Australia, April 1994.

215

[117] P. Woodland, J. Odell, V. Valtchev, and S. Young. Large vocabulary continuous

speech recognition using HTK. In Proc. ICASSP '94, pages II-125 - II-128,

Adelaide, Australia, April 1994.

[118] P.C. Woodland, T. Hain, S.E. Johnson, T.R. Niesler, A. Tuerk, and S.J. Young.

Experiments in broadcast news transcription. In Proc. ICASSP '98, Seattle,

USA, May 1998.

[119] D. Yuk and J. Flanagan. Telephone speech recognition using neural networks

and Markov models. In Proc. ICASSP '98, pages 1872-1875, Seattle, USA, May

1998.

[120] G. Zavaliagkos, R. Schwartz, and J. Makhoul. Batch, incremental and instanta-

neous adaptation techniques for speech recognition. In Proc. ICASSP '95, pages

676 - 679, Detroit, MI, May 1995.

Appendix A

Probability distributions

A normal distribution with mean /1 and covariance matrix E is usually written as

N(/1, E). If we assume that the individual elements of the random variable x are

independent (diagonal covariance matrix), we can write Equation A.l as follows

Given a random sample of k-dimensional random vectors (Xl, X2, ... , Xn) from a mul-

tivariate normal distribution with zero mean and covariance matrix 1:, the random

variable V has a Wishart distribution [27] with n degrees of freedom and parametric

matrix 1: when,

V = LXixT.
i=l

Here, tr(1:-lv) is the trace of the matrix 1:-lv. The value c is a normalizing constant

which ensures that the integral of g(vln, 1:) is equal to one.

Given the random vector X = (Xl, X2, ... , Xk)T with the following properties: For

a point x = (Xl, X2,"" xkf in Rk, Xi > 0; i = 1, ... , k and 2:~=1Xi = 1, then the

random vector X has a Dirichlet distribution [27]:

where r(a) is the gamma function and a is the parametric vector of the distribution

and

log(g(xloo)) =lOg(r(001 + 002 + ... + OOk)) -lOg(r(001)) - '" -log(f(OOk))

+ (001 - 1)log(X1) + ... + (OOk- l)log(xk)'

A.4 The gamma distribution

A random variable X has a gamma distribution [27] with parameters a and f3 (a >

0, (3 > 0) if X has an absolutely continuous distribution whose p.dJ. is

{

L-xa-1e-(3x for X > 0
g(xloo, (3) = r(a)

o otherwise

Probability distributions

E(X) = ~

0:
Var(X) = (32'

If the mean J.L and variance a2 of a gamma distribution are known, the distribution

parameters 0: and (3can easily be obtained as follows:

(A.14)

(A.15)

In this thesis, a gamma distribution with parameters 0: and (3has been referred to as

Conjugate families of distributions

If the prior distribution of () belongs to a conjugate family of distributions [27], then

for any sample size n and any values of the observations in the sample, the posterior

distribution of () must also belong to the same family. A family of distributions with

this property is said to be closed under sampling.

