
Chapter 4

Bayesian adaptation

In the previous chapter the usage of the MCE procedure in sparse data scenarios was

investigated. In certain scenarios, however, one has a reasonable amount of non-task-

specific training data available which can be used for training purposes. This chapter

therefore investigates the usage of adaptation techniques that can use non-task-specific

data as well as the limited task-specific data to create a better recognition system than

could be attained though only using the task-specific data.

The standard maximum a-posteriori (MAP) adaptation technique is introduced and

discussed. The MAP algorithm, however, makes assumptions about the form of the

prior probability distribution used. This can be a problem when the prior is relatively

complex. Two new adaptation algorithms are therefore proposed, a gradient-based

MAP algorithm and an MCE-based adaptation algorithm. These adaptation algo-

rithms make no assumptions about the form of the prior distribution used.

Section 4.1 introduces the basic Bayesian theory necessary for the algorithms in this

chapter. The choice of prior distribution is discussed in Section 4.2. Section 4.3 re-

views the maximum a posteriori estimation (MAP) algorithm as proposed by Gauvain

and Lee [45]. An alternative gradient-based method of obtaining the MAP estimate

Bayesian adaptation

is described in Section 4.4. A Bayesian inspired modification to the MCE training

procedure is then proposed in Section 4.5. Finally, the different methods discussed in

this chapter are experimentally compared in Section 4.6.

We can define a probabilistic model P(XIB) for any random process X, in which a set

of parameters B determine its probability distribution. P(XIB) is called the likelihood

function. We however want to infer B in our probabilistic model, using data which we

have obtained.

The result of Bayesian learning is a probability distribution P(BIX) which expresses our

beliefs of how likely individual parameters B are, given the training data X. P(BIX)

is called the posterior distribution. When classifying an unknown observation, the

probability that the unknown observation was generated by the same process as that

which generated the observations for a given class must be calculated. This is done by

integrating the likelihood function with respect to the posterior distribution. Section

4.1.3 will present a more detailed discussion of this process.

Bayesian methods can be used for the inference of parameter values in a model, given

the data. We can, however, also use Bayesian methods for the purpose of model com-

parison, where preferences are assigned to alternative models of differing complexity.

David Mackay [72] focused primarily on the usage of Bayesian methods for the training

and comparison of neural network models. Mackay used Bayesian methods to compare

models of differing complexity and topology. Most people would include the above two

uses of Bayesian methods in the data modeling process.

A further application of Bayesian methods is in the adaptation of existing models.

An example of this in speech recognition is maximum a-posteriori (MAP) parameter

estimation. MAP is a point estimate and one does not integrate with respect to the

posterior distribution. Many would therefore claim that MAP is not a true Bayesian

method. If, however, one assumes that the posterior distribution is sufficiently peaked

about the most probable B (maximum a-posteriori probability), then the MAP proce-

dure is a reasonable approximation of Bayesian learning. MAP can be used for several

purposes, including parameter smoothing and adaptation. Parameter smoothing ap-

plies extra constraints to the model parameters so as to reduce the effect of insufficient

training data. This can be achieved using MAP by incorporating vague heuristic infor-

mation in the prior distribution. In adaptation, however, non-task-specific information

is available and is used to determine the prior distribution used in MAP estimation.

The remainder of this section will summarize the pertinent Bayesian theory used in

this chapter. For a more complete introductory text on Bayesian statistics, the reader

is referred to Box and Tiao [13] and DeGroot [27]. The theory and discussions in this

section will be biased towards speech recognition applications of Bayesian adaptation.

Given a vector y = (Yl, ... , Yn) of n observations, with probability distribution P(yIB),

which depends on the k parameters BT = (B1, ... , Bk) with probability distribution

P(B), then given the observed data y, the conditional distribution of B is

P(BI) = P(yIB)P(O)
y P(y)'

The denominator in Eq. (4.1), P(y), is a normalizing factor, which ensures that the

integral of P(Oly) is equal to one. It can be written as follows:

P(y) = .I P(yIO)P(O)dO.

prior distribution and expresses what is known about the model parameters before

any data is observed. The posterior distribution P(Bly), tells us what is known about

the model parameters, given that data has been observed. In what follows, the prior

distribution and posterior distribution will sometimes simply be referred to as the

The distribution P(yIB) is often referred to as the data likelihood and can be written

L(Bly). Then in effect, P(yIB) is regarded as a function of y and not of B.

In many Bayesian methods, the normalizing constant is not necessary and Eq. (4.1) is

written as

If we assume that the observations are independent, then we can write Bayes' theorem

as follows

P(Oly) (J(P(O) IT L(Oly1il) = [P(O) gL(Oly1il)] ,It L(OIY('») (4.4)

n

ex P(BIYl,"" Yk) II L(Bly(i)) (k < n). (4.5)
i=k+l

Bayes' theorem, therefore describes the process of learning as data becomes available.

We can therefore, as Eq. (4.5) suggests, compute the posterior for a given set of data

and then use that posterior as a "prior" when more data becomes available. This result

is of utmost importance to the methods proposed later in this chapter.

The result of Bayesian learning is a probability distribution (posterior) which expresses

our beliefs of how likely individual parameters values are. This is crucial, as it allows

learning to be performed using probability theory.

In a Bayesian approach to HMM parameter estimation and recognition, the objective

is to find a predictive distribution (P(xIX) = J P(xIO)P(OIX)dO) for an unknown

utterance, given the utterance observations, as well as the training observations. Let

the observation sequence for the ith example be written as Oi. For n training examples

P(OIO) = P(OIO)P(O)
P(O)

ex P(OIO)P(O).

P(OiIO) = IIP(oijIO),
j=l

where nu is the number of observations in the training utterance Oi. In a Bayesian

framework, when we wish to classify an unknown input, we need to calculate the

following probability,

P(OunknownIO~i), ... , O~)) = J P(OunknownIO)P(OIO~i), ... , O~))de, (4.8)

where i is the class and Ounknown is the unknown observation sequence. The classifier

decision is the class resulting in the highest value of Eq. (4.8), i.e.

C(O). h . - P(O IOU) aU))unknown = 1, were 1, - argmax unknown l' ... , n ,
j

4.1.4 Maximum a-posteriori probability estimate

Assuming the posterior is sufficiently peaked around the most probable point (OM AP),

we can approximate Eq. (4.8) as

OMAP = argmaxP(OIOl, ... , On)
o

= argr:ax [P(Ol, ... , OnIO)P(O)].

If we had no prior knowledge about 0, then we would choose a non-informative (im-

proper) prior to be used in Eq. (4.11), i.e., P(O) = constant. Equation (4.11) then

reduces to the normal maximum likelihood (ML) formulation.

Bayesian adaptation

4.1.5 MAP adaptation in speech recognition

This section presents a concise literature survey of the usage of the MAP procedure

for HMM parameter estimation in speech recognition.

Lee et al. [67] introduced a MAP algorithm, where the parameters of multivariate

Gaussian state observation densities of HMM models were adapted for speaker adap-

tation. They showed that for an alpha digit task, with only a small amount of speaker

specific data, their MAP estimated HMM gave better results than an ML estimated

HMM.

Gauvain and Lee [43] extended the MAP formulation for HMMs to handle parame-

ters of mixtures of Gaussian densities. It was shown that MAP estimation can be

used for parameter smoothing, speaker adaptation, speaker clustering and corrective

training. Gauvain and Lee [45] later presented a theoretical framework for MAP esti-

mation for HMMs with Gaussian mixture state densities, where they proposed using an

expectation-maximization (EM) approach to finding the MAP estimate. In this work,

the MAP formulation was also extended to include the estimation of the transition

probabilities and initial state probabilities. The application of their MAP algorithm

to corrective training and parameter smoothing [44] and speaker adaptation [66] were

also reported.

Huo et at. [53, 52] studied the usage of MAP estimation for semi-continuous (or tied

mixture) HMMs. Zavaliagkos et al. [120] also investigated using various degrees of

parameter tying, so as to force MAP to adapt parameters for which adaptation data

is not available.

The MAP estimation algorithm can be used for various purposes, including parameter

smoothing [44], speaker adaptation [67, 66, 32], dialect adaptation [41] and cross-

language adaptation [85, 84]. In this chapter, we are primarily interested in the usage

of the MAP estimation algorithm for adaptation purposes as opposed to applications

such as parameter smoothing and corrective training. Model adaptation is a process

for adjusting seed models to create more specialized models using a small amount of

adaptation data. Figure 4.1 illustrates an abstraction of the MAP adaptation algorithm

as it would typically be used in speaker adaptation. The process is very similar for

other adaptation applications of the algorithm, such as for cross-language adaptation.

Speaker independent
training set

Estimate prior MAP estimation Adapted model

In this section, the choice of the prior density family is discussed. The prior distribution

is an important part of any Bayesian method, as it expresses our knowledge about the

distributions prior to any data being observed. It is especially important when there

is little data available.

Conjugate prior (see Appendix A) distributions have been chosen in this work, not

only because of the convenient relationship between prior and posterior, but also due

to their usage in the literature. If the prior distribution of () belongs to a conjugate

family of distributions, then for a likelihood of a specific form, the posterior distribution

of () must also belong to the same family as that of the prior distribution. Note that

with most of the approaches developed in this and later chapters it is not necessary

nor even convenient to have conjugate prior distributions. It is, however, essential to

use a conjugate prior for the application of the EM algorithm to the MAP estimation

problem (Section 4.3).

The prior distribution for all the parameters of the Gaussian mixtures of the HMMs

is chosen to be a normal-Wishart distribution, where the conditional of /-l (mean) and

R (precision matrix, with R = I;-l) are given as follows: The conditional distribution

of /-l (when R = r), is a multivariate normal distribution with mean vector m and

precision matrix vr for m E RD and v > O. The marginal distribution of R is a

Wishart distribution with a degrees of freedom and precision matrix T. The priors for

the transition probabilities and Gaussian mixture weights are chosen to be Dirichlet

distributions. Table 4.1 summarizes the HMM parameters and their prior distributions.

Table 4.1: Summary of the HMM parameters and chosen prior distributions. A Wishart
distribution is represented with Wand a Dirichlet with V

Parameter Prior distribution Prior parameters

/-ljklRjk = rjk N(mjk, (Vjkrjk)-1/2) mean: mjk, preczswn: Vjkrjk

Rjk (I;jk1
) W(njk, Tjk) degrees of freedom: njk, preczswn: Tjk

c- D(6j) 6J J

ai D(ai) ai

The prior of the parameters (/-ljk and rjk) of the Gaussian mixture component k of

state j can therefore be written (from Eqs. (A.5) and (A.l)) as [27]:

Bayesian adaptation

ggaussian (r jk, fLjk Injk, lIjk, mjkl Tjk) =(27f) - %llIjkr jk I!e- !Vjk (J.tjk -mjk)T Tjk(J.tjk -mjk)

~ (n-D-I) It ()
CITjkl 2 Irjkl 2 e-Z- T TjkTjk ,

where (njk, lIjkl mjk, rjk) are the prior distribution parameters. The value c is a normal-

izing constant which ensures that the integral of the prior is equal to one. Assuming

a diagonal covariance (or precision) matrix, the log of the Gaussian distribution prior

(Eq. (4.12)) can be written as

where D:i is the prior parameter vector associated with the transition probabilities ai

from state i and N being the number of states in the HMM.

If we assume independence for parameters of the Gaussians, mixture weights and tran-

sition probabilities, the joint prior density g(O) for all the parameters of the HMM can

be written as the product of the prior p.dJ's defined in Eqs. (4.12), (4.14) and (4.15),

N M

g(8) = IT (9tTon,(a; I"i)9w'i.qh' (e;IOi)g9,o""ion(E", !'i.In", Vi', "'''' Ti.»), (4.16)

where M is the number of Gaussian mixture components per state. The joint prior

density for all HMMs can, assuming independence, be written as the product of the

joint prior distributions (Eq. (4.16)) of the individual HMMs.

4.3 Expectation-Maximization MAP

Gauvain and Lee [45] introduced a method of estimating the MAP point for all the

HMM parameters as defined in Table 4.1 using an expectation maximization (EM)

approach. Their method and related theory will be briefly reviewed in this section.

This algorithm will, for the rest of this thesis, often be referred to as simply the MAP

algorithm.

MAP estimation is relatively simple if the family of p.d.f.'s P(·IO),O E e possesses

a sufficient statistic of fixed dimension for the parameter 0 we wish to estimate. A

sufficient statistic T only exists if P(OIO) can be factored [27] as follows for all values

of 0 and 0:

Here, the function u is positive and does not depend on 0, while the function v is non-

negative and depends on the data (observations) 0 only through T(O). For hidden

Markov models, due to the underlying hidden process, a sufficient statistic of fixed

dimension does not exist. This is known as an "incomplete data" problem. When using

hidden Markov models, the true state sequence q = {ql, ... , qT} and the true sequence

of associated mixture components 1 = {ll, ... , It} are not observed or known. As a

result, the observed data 0 is not sufficient to be able to directly estimate the HMM

parameters (incomplete data). For HMMs, the complete data x is the combination

of the observations 0, state sequence q and mixture component sequence 1, i.e. x =

The term incomplete data (y) implies two sample spaces X and Y, and a many-to-one

mapping from X to y. Given x E X and y E Y, where x is not observed directly

but indirectly through the observed data y, a mapping x -t y(x) exists from X to Y,

with x known only to be in X(x), the subset of X determined by the equation y =

y(x). We refer to x as the "complete data". Note that there are many complete-data

specifications j(xIO) that will generate a given incomplete-data specification g(yIO).

The expectation-maximization(EM) algorithm [5, 28, 71] discussed next is an iterative

procedure for approximating ML estimates in cases involving incomplete data.

Expectation maximization, as described in this section, is typically used for maximum

likelihood (ML) estimation. Expectation maximization re-estimation is based on an

auxiliary function Q(O, 0) defined in terms of the current parameter set 0 and the new

parameter set 0. The auxiliary function is defined as the expectation of the complete-

data log-likelihood log[j(xIO)] given the observed incomplete data y and the current

parameter set 0, i.e.

which exists for all pairs (0,0). The EM iteration is defined as follows:

Maximization (M-step): Choose 0 which maximizes Q(O, 0). We simply differen-

tiate Q(O, 0) with respect to 0 and find a maximum (i.e. solve 8Qj:'O) = 0).

For an HMM, the complete-data likelihood is the joint likelihood of 0, q = {Ql, ... , qr}

the unobserved state sequence and 1 = {ll, ... , It} the unobserved sequence of associ-

ated mixture components (y = (0, q, 1)).

Q(O,O) = LE[J(O, qIO)logl(O, qIO)]
q

where 1(0, q!O) is the probability of observing the data 0 for state sequence q given

the parameter set O. The utility of Q(O, 0) stems in part from the fact that if Q(O, 0) >
Q(O, B), then 1(010) > I(OIB). This property is shown in Eqs. (4.20) and (4.21).

- '"' [(/(0, q/O))]Q(B,O) - Q(B, 0) = ~ E 1(0, q/B)log 1(0, qlB) (4.20)

- '"' [(/(O,qIO))]Q(B,O) - Q(B, 0) S ~ E 1(0, qlB) 1(0, qlB) - 1

s 1(010) - I(OIB).

Hence, Q(B,O) > Q(B, B) implies that f(OIO) > f(OIB). Therefore, when Q(B,O) as

defined in Eq. (4.19) is maximized in the maximization step, then f(OIO) will also

be maximized. The EM algorithm described here will be used in the next section to

iteratively obtain the MAP estimate.

Although the expectation maximization procedure (Eq. (4.19)) is typically used to

find the ML estimate, we wish to use it to obtain the MAP estimate. Dempster et al.

[28] pointed out that the posterior mode (MAP point) can also be estimated using the

EM algorithm by maximizing Q(O, fJ) + log[g(O)] at the M-step of each EM iteration.

It was also shown that log[J(xIO)] + log[g(O)] increases at each EM iteration and an

expression for the rate of convergence was provided.

It is relatively straightforward to show [45] that the auxiliary function of the EM algo-

rithm applied to the MAP problem can be decomposed into the sum of three auxiliary

functions, Q1r(ft,O), QA(A,O) and Qy(Y,O), with Y = (c, p" t). The three auxiliary

functions are maximized independently, resulting in the following re-estimation formu-

las:

The values '"Yt(i), 'Yt(i,j) and (t(i,j) are obtained using the forward-backward algorithm

[90, p. 334].

Instead of maximizing j(OIO) (using the forward-backward algorithm), we can, using

Viterbi alignment, maximize j(O, qIO), the joint posterior density of the parameter

set ° and the state sequence q. It can easily be shown, as for the segmental k-means

algorithm [61], that alternate maximization over q and ° results in a non-decreasing

j(oCn), qCn) 10), with

qCn+l) = argmaxj(O, qloCn))
q

oCn+l) = argmaxj(O, qCn+l)IO).
()

The most likely state sequence in Eq. (4.28) is obtained using the Viterbi algorithm.

The EM algorithm can once again be used to perform the maximization in Eq. (4.29).

The re-estimation formulae (4.22) to (4.26) used in the forward-backward MAP esti-

mate are used here, however, the probabilities (t(i,j), 'Yt(i) and 'Yt(j, k) are obtained

from the best state sequence (and not using the forward-backward algorithm) as fol-

lows:

~t(i,j) = 6(qt - i)6(qt+l - j),

rt(i) = 6(qt - i),

d (0 k) - 6(_ o)CjkN(Ot,/Ljk,~jk)
an rt J, - qt J bj(Ot) ,

(4.30)

(4.31)

(4.32)

The segmental MAP approach described above has been implemented and used in this

work. An embedded version of the MAP algorithm has also been implemented and

used, which uses the trellis search algorithm (Section 2.1.5) to obtain the best state

and HMM sequence for a given utterance. The embedded MAP algorithm uses a search

to automatically segment and label the acoustic units, and therefore does not rely on

a labelled database being available. This is essential for databases, such as TIDIGITS,

which are not manually labelled either at phoneme or word levels.

In Section 4.2 the form of the prior distributions and the distribution parameters were

described. In this section, the estimation of the prior parameters will be discussed. The

prior distribution should, in a true Bayesian approach, incorporate a-priori knowledge

of the parameters we are attempting to estimate.

Two methods of estimating the prior parameters will be discussed here, namely em-

pirical Bayes and a simpler method typically used in MAP adaptation. The empirical

Bayes method is not used, but is included so that the two methods can be compared.

When estimating the prior parameters we will only be using the prior data. The

adaptation data cannot be used in any way when determining the prior parameters.

In Empirical Bayesian methods [73, 97] the prior distribution g(O) is estimated by

finding a distribution function g that satisfies the relationship

h(O) = J j(OIO)g(O)dO,

It is, however, necessary to ensure that the distribution g(O) obtained is unique. The

search for g(O) could be an almost impossible task if we don't choose g(O) to be part of a

given parametric family g(O; a, {3,...) of distributions, where a, {3,... are the unknown

prior parameters.

In this case, we do not know h(O) exactly, but estimate an empirical distribution

function hn(O) obtained from a sample of n observations on the random variable

whose distribution function is h(O). We therefore have the approximate relationship

hn(O) ~ J j(OIO)g(O)dO.

There are several methods for solving Eq. (4.34), i.e. finding g(O), including maximum-

likelihood (ML) and the method of moments. The solution of Eq. (4.34) is not a trivial

task.

Though the empirical Bayes approach is not implemented or used for the MAP esti-

mation in this work, it is important to understand the empirical Bayes approach and

we therefore digress at this point to study a simple example taken from [73].

Given observed data x, a model j(OIO) = j(xl.iVf), being a simple Normal distribu-

tion with mean IvI and standard deviation of 1 and a prior g(M) that is a Normal

f(xIM) = N(M, 1),

g(M) = N(/1, (2
),

then hn(O) = fc(x) = J f(xIM)g(M; /1, a)dM = N(/1, 1 + (2). The maximum likeli-

hood estimates of the prior parameters jl and (j2 are [73, p. 53]

n-1
(j2 = max(O, (__)82 - 1),

n

where x is the sample mean and 82 is the sample variance of past observations. Note

that the estimate of the prior is not directly affected by the number of samples used,

as would be the case with the posterior distribution.

A significantly simpler method [45] of estimating the prior distribution from a given

set of data would be to maximize the joint likelihood of 0 and (), i.e. f(O, ()I¢», over

() and ¢>. Here ¢> is the parameter vector of the prior distribution.

Starting with an initial estimate of ¢>, and iteratively using alternate maximization over

() and ¢>, i.e.

()(n) = argmax[j(O, 0l¢>(n))]
()

¢>(n)= argmax[g(o(n)I¢»],
¢

we can estimate the pnor parameters ¢ and model parameters () which maximize

f(O,()I¢). The solution of Eq. (4.35) is the mode of the posterior (MAP estimate) for

the current prior parameter set. The solution of Eq. (4.36) is the ML estimate of the

prior parameters based on the current HMM parameters .

• ML estimation thereof is not simple as a result of the chosen prior distribution

of Section 4.2.

• More prior density parameters must be estimated than for the HMM itself. This

is called overparameterization and is a problem.

The overparameterization problem can be overcome by adding certain constraints to

the prior parameters, so as to reduce the number of prior parameters to be estimated.

The prior family is limited to the posterior density family of the complete data model

when no prior information is available. It is then easily shown [45] that the following

constraints can be imposed:

(4.37)

(4.38)

solving the overparameterization problem to some extent. The parameter 6ik is the

mixture weight prior parameter in Eq. (4.14), with nik and l/jk being prior parameters

in Eq. (4.12) for state i and mixture component k.

Note that using Eqs. (4.35) and (4.36) when no prior information is available will result

in () being the mode of the likelihood function (ML estimate) and we therefore set the

mode of the prior to be equal to the parameters of a given HMM. Given that the prior

family has been chosen to be the same as that of the complete-data likelihood it makes

sense that the mode of the prior will be the ML point estimate.

The prior parameters mjk, Tjk and Ctij are therefore directly estimated from the ML

HMM models, while 6ik and nik are obtained using Eqs. (4.37) and (4.38). The param-

eters nik and Vik do not determine the mode of the prior distribution, but determine

the degree to which the prior is peaked about its mode. The parameter Vik is therefore

a parameter chosen by the user and is typically chosen as a global parameter.

The value of the parameter v should therefore incorporate a priori knowledge about

the suitability of the ML model for the task at hand. If the data used to obtain the

prior was from the same task as that used to obtain the final MAP point, then we would

expect to use a relatively large value for v. However, if there was a large mismatch

between the prior data and data used to obtain the MAP point, then we are not that

sure of the prior and a smaller v would therefore be chosen. An example of where this

might occur is in cross-language adaptation, where data from a given language is used

to create a prior and the target language's data, along with the prior is used to obtain

the MAP point estimate. The influence of v on the performance of the MAP algorithm

will be experimentally be determined in Section 4.6.

Let us investigate the usage of the "mode of posterior" method to determine the prior

parameters for the example discussed earlier. The forms of the prior and likelihood

functions are identical and therefore there is no problem of overparameterization. If

we were to choose the prior mode directly from the ML point, then one would choose

fJ, = x which is exactly the same as that obtained using the empirical Bayes method.

The value of (J2 is, however, still unknown and it determines the degree to which the

prior is peaked about its mode. We could arbitrarily fix it, as we have done with v

above, but we could also choose it to be proportional to the sample variance 82.

If the data samples used were taken from the same source, it would have been better

to assume a non-informative (constant) prior distribution and used all the examples

to determine the posterior. Note that from Section 4.1.2 we would deduce that if one

needed a prior, then the sequential nature of Bayes' theorem tells us that the posterior

for the observed data would be the appropriate prior for any subsequently observed

data.

If we once again look at the example used in the previous two sections, it is rel-

atively simple to show that the posterior f(Mlx) for the given data x assuming a

non-informative prior would be

where f.1 = x and 0-2 = ttS2. As expected, the posterior becomes more peaked around

its mode f.1 as more data is observed. Following Eq. (4.5), we should use this posterior,

as the prior for any new data that is observed.

Neither of the two methods described previously result in a prior which becomes more

peaked as the amount of observed data increases. This is a potential problem, as it

does not account for the fact that some HMMs (or states or mixtures) will have been

observed more often than others. However, the two methods could potentially help

the algorithm when there is a reasonable mismatch between prior data and the task

specific data.

The sequential nature of Bayes can be used to determine the MAP estimate by using

the posterior of the prior data as the prior distribution (Eq. (4.5)). However, there

will typically be more prior data than adaptation data, and the prior distribution will

therefore tend to dominate in the calculation of the posterior using Eq. (4.5). Any

reasonable mismatch between the prior data and task-specific data will also tend to be

a problem. These problems can, however, be addressed by simply weighing the prior

distribution (posterior of previously observed data) with a value which is a function

of the mismatch (a-priori knowledge/belief) and the amount of prior and adaptation

data.

The MAP estimation method proposed by Gauvain and Lee [45], assumes that the

prior used is of a specific form. This is potentially a limiting factor in the performance

of that MAP algorithm. In this section a gradient based MAP estimation algorithm is

developed which does not make assumptions about the form of the prior distribution.

This algorithm will, so as to prevent confusion, be referred to as the GMAP algorithm.

The above statement is not entirely true, as a prior of fixed form is used. It is, however,

a non-informative prior which is used in the calculation of the new prior, which in turn

is then used in the adaptation process. Though, if true prior knowledge about the

model or system is available, it can be expressed through this parametric prior.

In the proposed algorithm, the prior will not be estimated at all, but will be implicitly

included in the update procedure. It will, however, be far more computationally expen-

sive than the regular MAP algorithm. The improved performance will, however, offset

the extra computational difficulties for certain tasks. This adaptation algorithm will

probably not find a place in rapid adaptation needed in some speaker adaptation tasks.

It should, however, be more than useful in tasks such as cross-language adaptation and

some speaker adaptation tasks where training time is not critical.

In the discussion in section 4.3.3, I explained under which circumstances one can use

the posterior (or weighted version thereof) of the given "prior" data as the prior distri-

bution. There is no problem with this, except when the same data is used to estimate

the prior and the MAP point of the posterior distribution and should not be done. In

Section 4.1.2, it was pointed out that the posterior of a given set of data can be used

as the prior for another independent set of data when calculating the posterior of the

union of the two sets.

The first part in square brackets is the posterior of a set of data (1 ... k) and is used as

the prior for the remainder of the data. The posterior of this reference or "prior" set,

used as the prior in the adaptation framework will tend to dominate Eq. (4.40) when

there are more training examples than adaptation examples (i.e. when k » n - k).

MAP adaptation is typically used in situations where this will occur. It therefore makes

sense to weigh the "prior" in some way so as to ensure that it does not dominate. In

our implementation, the weighting is done as follows

The value i.p has the effect of flattening and widening the prior when 0 ::; i.p < 1 and

making it more peaked around the mode when i.p > 1. Figure 4.2 presents an example

of a Normal distribution with a mean of zero and standard deviation of two, which has

been raised to the value of i.p = 0.2 and i.p = 2.

It is convenient at this point to express the posterior in terms of an energy function,

which will be optimized to find the MAP estimate. This will become increasingly

relevant in Chapter 5.

Bayesian adaptation

0.3

0.25

0.2

~:is
Cll 0.15.c
Ea..

0.1

0.05

0
-10 -5 0 5 10

Figure 4.2: Example of the effects of raising a distribution to a power (assuming it is nor-
malized)

P(OIO) ex: e-E(OjO)

where E(O; 0) is the "potential energy" function. Any probability function can be

written in this way by defining E(O; 0) = -logP(OIO) - log(Q) for a given constant

Q (Q = 1).

Writing the posterior (Eq. (4.6)) in the above form, and assuming independence of the

observations, we get

n

E(O; 0) = -log[P(O)) - L log[POiIO)).
i=l

The above equation assumes that an informative prior P(0) is available. We could

again use a parametric prior estimated from the training data as done in the normal

MAP approach (Section 4.3). Instead of estimating a prior of fixed form, the prior has

been directly included into the posterior calculation (Eq. (4.41)), which can be written

E(0; 0) = 'P [-logl P(0) I- t logl P(0,10)]] - '~, loglP(0,/0)],

where examples 1, ... , k are the prior (reference) set and examples (k + 1), ... , n are

the adaptation set.

The steepest descent algorithm [12] can now be used to iteratively estimate the MAP

point on the posterior defined in Eq. (4.44), i.e.

g(i) (n + 1) = g(i) (n) _ E aE(g)
ag(i) ,

where E is the learning rate or step size of the update. The steepest descent algorithm

(Eq. (4.45)) is an unconstrained optimization technique and given that certain con-

straints must be maintained for HMMs, some modifications are required. The next

section will investigate the usage of transformations to ensure that the constraints are

maintained.

Instead of using a complicated constrained steepest descent algorithm, we can, as

with minimum classification error (MCE) training (Section 3.2), use transformations

to maintain the above constraints during parameter adaptation.

The standard parameter transformations given in Table 3.1 are repeated here in Table

4.2 for convenience. These transformations ensure that the unconstrained steepest

descent algorithm can be used in the transformed parameter space.

Table 4.2: Parameter transformations used in MCE

Parameter Transformed Forward Reverse

parameter transform transform
a· .

a·· aij aij = In(aij)
e tJ Transition probabilitiesIJ aij =)".iiij

Cjk ejk = In(cjk)
i'jk Mixture weightsCjk Cjk =)".eCjk

{Ljkl {Ljkl -. -~ J-.ljkl = C5jklJ-.ljkl Gaussian meanJ-.lJkl - a·kl

C5jkl C5jkl ajkl = In(C5jkl) C5jkl = eijjkl Gaussian std. dev.

These transformations should be kept in mind when calculating both the prior and

likelihood derivatives.

The updates for the individual parameter types will now be derived using Eqs. (4.44)

and (4.45). Note that the adaptation is done in the transformed parameter space

and the parameters are then transformed back to the original parameter space. The

derivation of the parameter updates are given in this section. Some of the derivatives

will also be used later in Chapter 5.

The parameter update for the Gaussian mixture mean Mjkl using the steepest descent

algorithm of state j, mixture k and element l is

-(i) () -(i) () DE(Bn)
J-.ljkl n + 1 = J-.ljkl n - f -(i)'

Dp'jkl

aE(On) _ _ a In[P(O)] _ ~ a In[P(OiIO)]
~-(i) - <.p ~-(i) <.p L.J ~-(i)
U!1jkl U!1jkl i=l U!1jkl

_ ~ a In[P(OiIO)]
L.J a-(i)

i=k+1 !1jkl

where 60 is the Kronecker delta function and by) (Of) is the observation probability

(Eq. (2.5)) of state j of HMM i at time t. Assuming a diagonal covariance matrix, we

get

C)
aln(b/ (Of)) = (i)(2)-d/21~(i)I-1/2(b(i)())-1 (Otl __ (i»)

~ _(i) eJk 1r Jk J Of (i) !1Jkl
U~~ ~~

1 ",D (~ _(i)) '2
-'2 L..1=1 _(i) -Jljkle (Tjkl

Note that the derivatives are sometimes written in terms of the original parameter and

not in terms of the transformed parameter. The partial derivative of In[P(O)] with

respect to fl;21 can be obtained from Eq. (4.13),

ag(iJ) 1 -2 _
---- = - -va- . 2("-kW-kl-l'vf-k1)· a-kl~-(l) 2 Jkl f"""J J J J
u!1jkl

= - vajkH!1jkl - Nfjk1).

Bayesian adaptation

Having updated the transformed mean using Eq. (4.46), the correct mean can be found

using the inverse transformation f.L;21(n+ 1) = jL;21(n)a;~I(n + 1) from Table 4.2.

The steepest descent update for the Gaussian mixture variance a;kl for state j, mixture

k and element l is

-(i) () _ -(i) () BE(Bn)ajkl n + 1 - ajkl n - E -(i)
Bajkl

(")
81n(b/ (Ot)) = (i)(2)-d/21,,(i)I-1/2(b(i)())-1

-(i) CJk rr L.Jk J 0t
8ajkl

The partial derivative of In[P(B)] with respect to (j;~l can again be obtained from Eq.

(4.13),

8g(0)
8-(i)ajkl

After the update in the transformed space the new standard deviation can be found

using a;~l(n + 1) = eD-jk/(n+1).

-(i)(+ 1) _ -(i)() _ 8E(Bn)cjk n - cjk n f -(i)
8Cjk

The partial derivative of Eq. (2.9) with respect to c;~is

(i)
oln(bj (Ot)) = (i) [(2)-d/21' (i)/-1/2(b(i)())-1

-(i) CJk 7r O'Jk J °tOCjk

(

i))2
-! ""v Ot/-tikl

_ 1]2 L.,,1=1 i)
e <Tiki

The prior distribution for the mixture weights is a Dirichlet distribution and we there-

fore obtain the partial derivative of In[P(O)] with respect to c;~from Eq. (4.14).

o In[P(O)] _ og(O) OC)~
~-(i) ---;;(if ~-(i)
uCjk uCjk uCjk

(i)
= L:[(e5'm _l)oln(cjm) . OCjm]

m J OCjm oc;~ (4.60)

=L:[(e5jm - 1) . c;; . (e5(k - m)Cjm - CjkCjm)]

m

=(e5jk - 1) - L(e5jm - l)cjm'

_(i)() _ -(i)() oE(On)
aij n + 1 - aij n - E _ (i)

oa··IJ

The partial derivative of Eq. (2.9) with respect to a~Y is

oln[P (0 i)] T _ . _ [.]
-(i) = L L 5(qt-l - ~)5(qt - 8) 5(J - 8) - aij .oaij t=l s

The prior distribution for the transition probabilities is a Dirichlet distribution and we

therefore obtain the partial derivative of In[P(O)] with respect to C}~ from Eq. (4.15).

a In[P(O)]
o:l-(i)va··lJ

ii ..e 'J

Lkeiiij'

Although the GMAP algorithm has been developed such that an initial parametric

prior can be used (to incorporate true a-priori information), it is unlikely that any

such information will exist. This algorithm will therefore often be used with a non-

informative initial prior. This results in the prior gradient being zero, with no effect

on the resultant update.

The term MAP-MCE is sometimes used to refer to the usage of the MCE algorithm,

but starting at the MAP point. This section describes an entirely different technique,

which has been named MAPMCE in this work for the reason that it estimates the MAP

point of the posterior of the probability of choosing the correct class (MCE), i.e. it

optimizes the classification error (as criterion function) with respect to the parameters

while incorporating a prior in the formulation.

Bayesian adaptation

In Section 3.2 it was mentioned that the MCE loss function is a reasonable estimate

of the error probability. Given that this is the case, we can estimate the MAP point

for the posterior distribution of the probability of choosing the correct class, namely

where Ci is the correct class and P(CiIO, 0) is the probability of choosing the correct

class Ci given the current model parameters ° and the observations O.

Rewriting Eq. (4.41) for the posterior in Eq. (4.65) and using the MCE loss function,

P(CiIO,O) in Eq. (4.66) instead of the likelihood function L(OIO) (or P(OIO)), we get

As mentioned in Section 4.4.3, there is little chance of a parametric prior being available

for the gradient based MAP algorithm and this is also the case for the MAPMCE algo-

rithm. The rest of this procedure will therefore be developed without the parametric

prior P(O).

Following the same reasoning as in Section 4.4, we can express Eq. (4.67) in terms of

an energy function,

k n

E(O; 0) = -cpL In[(l -l(Oi; 0))] - L In[(l - l(Oi; 0))].
i=l i=k+l

Unfortunately the gradient (a~~())) for Eq. (4.68) is not finite, with a~~()) = 00 for any

l(Oi; 0) = 1.

Although this is not an entirely accurate estimate of the probability, it results in the

following, more convenient, energy function

k n

E(O; 0) = cPL l(Oi; 0) + L l(Oi; 0),
i=l i=k+l

where l(Oi; 0) is the MCE loss function (Eq. (3.15)) for observation i. Equation (4.70)

is intuitively pleasing as it is simply a weighted version of the standard MCE algorithm

in the sense that the "prior" terms (i = 1 ... k) are weighted by cp. An error in the

"prior" or reference set will therefore not be penalized as heavily as an error in the

adaptation set (0 :s; cp :s; 1). The algorithm will therefore try to minimize errors in

both sets, but will place more emphasis on errors that occur in the adaptation set.

The implementation of this algorithm, requires the following simple modification to

the standard MCE algorithm which was described in Chapter 3: if an observation is in

the "prior" dataset, then the gradient with respect to the model parameters (\71(0; 0))

used in the GPD update (Eq. (3.18)) must be weighed with cp.

4.6 Experiments

The goal of this section is to experimentally compare the three algorithms discussed

earlier in this chapter (MAP, GMAP and MAPMCE) in conditions where limited

training data is available, with a reasonable amount of non-task-specific data available

for adaptation purposes.

Before continuing, it is necessary to explain the convention I have used to describe (or

label) the algorithms used:

• MAP - A MAP algorithm labelled as "MAP Tx (Ty)" uses the dataset Tx as

its adaptation set and the ML model created using Ty to determine the prior

distribution. Here, Eqs. (4.22) through (4.26) are used.

• GMAP - A GMAP algorithm labelled as "GMAP Tx (Ty)" uses the dataset Tx

as its adaptation set and the ML model created using Ty as a starting point.

Note that the prior dataset is not included in the description as it is a constant

for each experiment. Here, Eqs. (4.46) through (4.64) are used.

• MAPMCE - A MAPMCE algorithm labelled as "MAPMCE Tx (Ty)" uses the

dataset Tx as its adaptation set and the ML model created using Ty as a starting

point. As with GMAP, the prior dataset is not included in the description thereof.

Here, Eq. (4.70) is implemented using Eq. (3.25) through Eq. (3.46).

The number of iterations used for each procedure differed. When using MAP, 10

iteration typically proved to be sufficient with the testing set performance converging

at or before 10 iterations. GMAP required between 10 and 30 iterations for the testing

set performance to converge, while the MAPMCE algorithm also required between 10

and 30 iterations to attain peak testing set performance. The number of iterations

required for the gradient-based algorithms (GMAP and MAPMCE) is dependent on

the step size E, the size of the datasets and the weighting factor <po

In situations where HMMs of differing complexity are used, the number of states and

mixtures will be included in the description. For example, the algorithm description

"MAP 3,5 Tx (Ty)" refers to the MAP algorithm using a 3 state, 5 mixture HMM.

This section compares the three adaptation algorithms within a language adaptation

framework. The SUNSpeech dataset described in Section 2.4 is used for this purpose.

The subsets of the dataset described in Section 2.4.3 are used for this experiment.

Table 4.3 presents the Afrikaans test set accuracy of the base system (described in

Section 2.1) for the different training sets. As expected, the performance of the system

trained using the English subset (31.9% and 33.9% for 5 and 10 mixtures respectively)

is worse than that trained using either the full Afrikaans training set (48.6% and 51.5%)

or the reduced Afrikaans training subset (42.5% and 41.2%). Training using combined

English and Afrikaans sets produces relatively poor results as compared to only using

the associated Afrikaans set.

Table 4.3: Base system results for SUNSpeech Afrikaans test set

English (E) 31.9% 33.9%

Afrikaans train (A) 48.6% 51.5%

Afrikaans train + English (A + E) 37.9% 41.4%

Afrikaans adapt (As) 42.5% 41.2%

Afrikaans adapt + English (As + E) 34.2% 37.6%

Using 10 mixture components as opposed to 5 improves results, except when using

the reduced Afrikaans training set where a reduction in performance occurs. This

phenomenon can be ascribed to the bias/variance problem discussed in Section 2.2.1.

The more complex 10 mixture HMM has a lower bias, and will therefore work better

in situations where there is sufficient data available. In situations where there is little

data available, the variance term becomes dominant and so the less complex model (5

mixture HMM) works best.

The recognition results appear relatively low, as compared to that obtained for con-

tinuous recognition on other continuous phoneme recognition tasks, such as TIMIT.

The recognition performance of the same syste.m using the TIMIT database is 57.0%

and 60.0% for 3 state models using 5 and 10 mixtures respectively. There are several

reasons that could account for the disparity in recognition performance, including:

• There are a total of 59 phonetic categories (including silence and unknown) used

in SUNSpeech. This is as compared to, for example, TIMIT where there are 39

phonetic categories. The task is therefore somewhat more complex .

• The SUNSpeech dataset labels include an unknown class, which accounts for 1.9%

of the labels in the test set. The unknown class is not modeled, this will result

in at best a 1.9% poorer error rate. The unknown class includes any sounds or

speech that cannot be included in any of the other 58 phonetic categories.

This section presents the results obtained for the MAP algorithm described in Section

4.3 using the SUNSpeech dataset. The adaptation set and prior are an integral part of

the MAP algorithm and will therefore be included in any description thereof.

Figure 4.3 presents the MAP adaptation results for a 3 state, 5 mixture system when

only the reduced Afrikaans training set (As) is available. The line labelled "ML As"

gives the base maximum likelihood performance (42.5%) of a 3 state, 5 mixture model

trained on the Afrikaans adaptation set only. The MAP algorithms "MAP As (E)"

and "MAP As(As + E)" use a prior created using the English training set (E) and a

prior made using the union of the English and Afrikaans adaptation sets (As + E).

45.5

45

44.5

44

~~ 43.5>-
0
~
:J 430
0«

42.5

42

41.5

41

MAP As (E)
MAP As (As + E)

ML As

Figure 4.3: MAP adaptation results plotted versus the prior parameter v (Eq. (4.12)) for
adaptation set As using an English prior (E) and a prior created using pooled English and
Afrikaans adaptation set (As + E) for a 3 state, 5 mixture model.

Peak performance of 45.4% phoneme accuracy is attained using the pooled set (As+E)

to create the prior (5% relative improvement in error rate). The MAP algorithm using a

prior created using the English training set only performed considerably worse, reaching

a peak performance of 44.0% (2.6% relative improvement in error rate).

Both implementations attain peak performance with [/ = 20. As expected, the perfor-

mance of the MAP algorithm is highly dependent on the value chosen for the parameter

v. If v is too small, the prior would not be informative enough and little prior infor-

mation is therefore obtained from the prior training set. A large value of v, on the

other hand, would result in a prior that is too restrictive, thereby keeping the resultant

model very close to the model trained on the prior training set. The recognition accu-

racy is therefore expected to tend towards that of an NIL model trained using the only

the adaptation set (ML As) for very small values of l/. Conversely, the recognition

accuracy is expected to tend towards that of the ML model trained using the prior

training set (E) for large values of l/.

There is, however, an optimal value for l/ between these two extremes. This occurs

when information from both sets is being used optimally.

Figure 4.4 shows the the MAP adaptation results for a 3 state, 5 mixture HMM system

when the full Afrikaans training set (A) is used as the adaptation set. The results for

the MAP algorithm using both the English set prior and a pooled prior created using

both the English set and full Afrikaans training set (A + E) are compared.

50~~~
>.
0 49.5III:;
0
0«

49

48.5

48

47.5

'", """'" '"",

MAP A (E)
MAP A (A+E)

MLA

The recognition accuracy for the base ML system (ML A) is 48.6%. The MAP algo-

rithm using the pooled prior (A + E) with peak performance of 50.8% (4.3% relative

improvement of error rate), once again performed better than the MAP algorithm

using only the English prior (E) with a peak performance of 50.2% (3.1% relative

Here, peak performance was attained for v = 5 for both algorithms, which is less than

that required when the smaller Afrikaans training set is used. As the amount of task-

specific training data increases, one would expect the optimal value of v to decrease,

as has been demonstrated in this experiment.

One would also expect the MAP algorithm to become less useful as the amount of task-

specific training data increases. This is evident here, with the relative improvement in

performance (4.3%) being less than that obtained for the small Afrikaans training set

(5%).

The results for a 3 state, 10 mixture HMM model experiment using only the reduced

Afrikaans set (As) are shown in Figure 4.5 (the priors are either E or As + E). Maxi-

mum recognition accuracy of 44.8% is attained using the pooled prior, while the MAP

algorithm using only the English prior again does not work as well managing a maxi-

mum of 43.8%.

The results are very similar to that obtained for the less complex 3 state, 5 mixture

HMM. It is, however, apparent that the absolute performance is worse than that of the

the 3 state, 5 mixture model (44.8% versus 45.4%).

Table 4.4 summarizes the best accuracies attained using the MAP algorithm for the

different configurations. Note that the 3 state, 10 mixture model is consistently worse

than the 5 mixture variant when the small Afrikaans training set is used. It is also

noticeable that the effect of the MAP algorithm is reduced as the amount of Afrikaans

data (adaptation data) is increased.

Importantly, the MAP algorithm was not able to improve on the ML results for the 3

state 10 mixture model, when using the English prior with the full Afrikaans training

set.

>.
~ 42.5
:Joo« 42

MAP As (E)

40.5 MAP As (As + E)
MLAs

Figure 4.5: MAP adaptation results for a 3 state, 10 mixture HMM using the small Afrikaans
training set

The gradient based MAP algorithm presented in Section 4.4 is tested using the SUN-

Speech dataset here. Incorporating the adaptation data in both the prior and adap-

tation datasets results in the adaptation data (Eq. (4.44)) having an effective weight

of (1 + <p) with the prior data having a weight of <po The same result can be accom-

plished, without incorporating the adaptation data in the prior data, by choosing a

new weighting factor <p' = (1:<p)' There is therefore no point in pooling the English

and Afrikaans datasets and using the resultant dataset as a prior dataset, as was done

for the standard MAP algorithm. As a result, the English dataset is used as the prior

dataset for all experiments conducted in this section.

As a result of using the steepest descent algorithm, one would expect this algorithm

to easily fall into local minima. The starting point, should therefore influence the

Table 4.4: Summary of the MAP accuracy results obtained for the SUNSpeech database.
Relative improvement in error rate over baseline performance is given in brackets.

I Description

Baseline ML (As) 42.5% (0.0%) 41.2% (0.0%)

MAP As (E) 44.0% (2.6%) 43.9% (4.6%)

MAP As (As + E) 45.4% (5.0%) 44.8% (6.1%)

Baseline ML (A) 48.6% (0.0%) 51.5% (0.0%)

MAP A (E) 50.2% (3.1%) 51.25% (-0.5%)

MAP A (A+E) 51.1% (4.9%) 52.4% (1.9%)

performance of the algorithm to some degree. Figure 4.6 presents the results using

the gradient based MAP algorithm for a 3 state, 5 mixture HMM, starting at (a) the

English ML model, (b) the ML model for the small Afrikaans training set and (c) the

best MAP estimate from the previous section. The baseline (ML) accuracies for the

large dataset (ML A) and small training set (ML As) are also plotted.

Starting the algorithm using the English ML model, results in relatively poor accuracy

(peak accuracy of 35%), considerably worse than that of the ML model of the small

Afrikaans training set. Using the ML model of the small Afrikaans training set and the

best MAP estimate (which produced an accuracy of 45.4%) as starting points, produces

good improvements in accuracy relative to that of the ML model (peak accuracy of

46.0% and 47.1 % respectively).

Figure 4.7 shows the performance of the gradient based MAP algorithm for both 5 and

10 mixture HMMs. The starting point was chosen as the best MAP estimate for all

algorithms presented in this graphic.

It is important to note that here, the performance of the 10 mixture HMM is better

than that of the 5 mixture HMM. This is, as opposed to that of standard MAP and

the ML algorithms, where the 3 state 10 mixture HMM performed slightly worse.

Chapter 4

50

48

46

44
~~
>-
0 42I1l:J
0
0« 40

38

36

------------ ---- - - ---- - - ---- - - -- -- - - --- - - - ---- - -- -- - --- - --- - - - - - --- ---- ------- --------- -- - -- -----

~

GMAP 3,5 As (As)

GMAP 3,5 As (MAP)
GMAP 3,5 As (E)

MLA
ML As

34
0.01

The weighting factor <p (Eq. (4.44)) has much the same effect as the parameter lJ

(Eq. (4.12)) has in the standard MAP algorithm. Although it is not easily observable

from the results presented here, this algorithm exhibits asymptotic behaviour in the

extremes of <po For <p = 0 the training examples in the prior set would be ignored and

the algorithm would become an ML algorithm. A value of 1 would weight prior and

adaptation examples equally and the algorithm becomes an ML algorithm trained on

the pooled dataset.

Table 4.5 summanzes the results obtained when using the GMAP algorithm. The

GMAP algorithm produces significant improvements on the baseline performance when

the small Afrikaans training set is available. Note that this is not the case when the

English set is used as starting point, and the starting point should therefore be chosen

carefully. Smaller, but significant improvements are realized when the full Afrikaans

training set is used.

50

~~
>-
0 48I1l:s
0
0~

46 GMAP 3,5 As (MAP)
GMAP 3,10 As (MAP)

GMAP 3,5 A (MAP)
GMAP 3,10 A (MAP)

MLA

ML As

42
0.01

The MAPMCE algorithm presented in Section 4.5 is tested using the SUNSpeech

dataset here. The English dataset is used as the prior dataset for all experiments

conducted in this section.

In Chapter 3 it was argued that it was not necessary to use a sigmoid (or smoothed

zero-one) loss function and results indicated that there was little to be gained from

the use thereof. It is therefore necessary to again investigate the effect of a smoothed

zero-one loss function within the MAPMCE framework.

Figure 4.8 presents the results using the MAPMCE algorithm for a 3 state 5 mixture

model using the small Afrikaans training set, starting from the English ML model.

The results for both sigmoid and no-sigmoid loss functions are shown. The baseline

performance, namely that of the ML model trained using the small Afrikaans set, is

Description Mixtures

5 10

Baseline ML (As) 42.5% 41.2%

GMAP As (E) 35.0% 34.9%

GMAP As (As) 46.0% 46.2%

GMAP As (MAP) 47.1% 47.2%

Baseline ML (A) 48.6% 51.5%

GMAP A (MAP) 51.3% 52.5%

The MAPMCE algorithm using a sigmoid loss function attains a peak accuracy of

32.4% for small values of cpo This is not sufficient to improve on the baseline perfor-

mance of the ML model. The MAPMCE algorithm which does not make use of a

sigmoid loss function, however, performs considerably better and manages to improve

on the baseline performance. A peak accuracy of 43.5% is attained, resulting in a

relative improvement in error rate of 1.8% as compared to that of the baseline ML

system.

These results confirm the discussion in Chapter 3, showing that the sigmoid function

merely serves to introduce additional local minima, and therefore hinders the algorithm

from reaching a meaningful local minimum. All subsequent experiments using the

MAPMCE algorithm will therefore not use a smoothed zero-one loss function.

Figure 4.9 shows the results of the MAPMCE algorithm for various configurations.

The ML results for a 3 state, 5 mixture HMM are shown for both the full (ML 3,5 A)

and reduced Afrikaans (ML 3,5 As) training sets for reference purposes. The starting

point for all the results presented here is the best associated MAP estimate.

Bayesian adaptation

... ---_._.- ---_ - .. __ .._-- _ .. _ " _.- ..•...•-::::~.- - .. - _--_ __ .. -- _.- ..-._-_ -.-.- ..-
,/////

//,/////

,,;,,"

";";",,.,,

..•.,. ..

,/,//'/

•.•.•."
......'

..,..",,,,,

~ 38!?....
>-o
~
:J 36oo«

MAPMCE, sigmoid
MAPMCE, no sigmoid

ML As

Figure 4.8: MAPMCE adaptation results for the small Afrikaans training set when using the
English ML model as starting point

We would prefer an algorithm to perform better with more complex models, with

performance increasing as the model complexity increased. Unfortunately, here the

algorithm performs best for the reduced dataset, when using the less complex 5 mixture

per state HMM. As expected, the opposite is true when the full training set is used,

resulting in the more complex model performing best.

Table 4.6 summarizes the results obtained for the MAPMCE algorithm when usmg

the SUNSpeech dataset. Here, unlike the GMAP algorithm an improvement in perfor-

mance is realized when using the English ML model as starting point, although this is

not the case when using a sigmoid loss function. The MAP point estimate was once

again found to be the best starting point for the },/IAPMCE algorithm. Reasonable

improvements are attained for both the small and full Afrikaans training sets.

,

- -

----- - --- - - -- - - - - - -- - - --- - - - - - - - - --- --------- - ----- - - - - - --- - - - - - - - - - - - - - - - -
- -- - - ----- - - - -- -

- -

>-
~ 48
::Joo«

42
0.001

MAPMCE 3,5 As (MAP)
MAPMCE 3,10 As (MAP)

MAPMCE 3,5 A (MAP)

MAPMCE 3,10 A (MAP)
ML 3,5 As

ML 3,5 A

Figure 4.9: MAPMCE adaptation results for both Afrikaans training sets using the best
MAP point as starting point

Table 4.7 summarizes the best results obtained using the different algorithms for the

SUNSpeech dataset. Considerable improvements are realized from the usage of the

three algorithms when the small Afrikaans training set is used, with the GMAP algo-

rithm performing best under these conditions (8.0% and 10.2% relative improvement

in error rate for the 5 and 10 mixture models respectively).

Smaller, but finite, improvements are attained when the full Afrikaans training set is

available. Here, the MAPMCE algorithm produces the largest improvements (6.8% and

3.1% relative improvement in error rate for the 5 and 10 mixture HMMs respectively).

The MAP algorithm, although it manages to improve on the baseline performance,

produces the worst results of the three algorithms for the configurations and scenarios

tested. Note, however, that the MAP algorithm was integral to the optimal perfor-

Description Mixtures

5 10

MAPMCE As (E) 43.5% 43.3%

MAPMCE As (MAP) 46.3% 46.0%

MAPMCE A (MAP) 52.1% 53.0%

mance of the GMAP and MAPMCE algorithms, as the best MAP estimate was used

as starting point.

Table 4.7: Summary of the best results obtained for the SUNSpeech dataset. Relative im-
provement in error rate over baseline is given in braces.

I Description

Baseline ML As 42.5 (0.0%) 41.2 (0.0%)

MAP As (As + E) 45.4 (5.0%) 44.8 (6.1%)

GMAP As (MAP) 47.1 (8.0%) 47.2 (10.2%)

MAPMCE As (MAP) 46.3 (6.6%) 46.0 (8.2%)

Baseline ML A 48.6 (0.0%) 51.5 (0.0%)

MAP A (A+E) 51.1 (4.9%) 52.4 (1.9%)

GMAP A (!vIAP) 51.3 (5.3%) 52.5 (2.1%)

MAPMCE A (MAP) 52.1 (6.8%) 53.0 (3.1%)

The collection of large speech databases is not a trivial task (if done properly). It is

not always possible to collect, segment and annotate large databases for every task

or language. It is also often the case that there are imbalances in the databases. An

example of one such imbalance is the fact that there is often more male speakers than

female speakers (or vice-versa). If there is, for example, far fewer female speakers than

male speakers, then the recognizers will tend to work poorly for female speakers (as

compared to performance for male speakers).

This experimental section attempts to recreate such a scenario, where relatively little

female speaker training data is available, so as to test the three algorithms discussed

earlier in this chapter under these conditions. Table 4.8 details the TIMIT training and

testing sets used in the experiments presented in this section. Note that the default

TIMIT training set has an imbalance with respect to male and female speakers, with 326

male speakers and 136 female speakers. The standard TIMIT training set is therefore

used as one such example.

Table 4.8: Description of TIMIT training and testing sets used

Descri ption Label Number of speakers Sentences Duration

Male Female Total (minutes)
,

Training sets:

Full (standard) T 326 136 462 4620 236.5

Male TM 326 0 326 3260 165.2

Female TF 0 136 136 1360 71.3

Female-small TFS 0 16 16 160 8.2

Testing set (standard) 112 56 168 1680 86.4

Male test set 112 0 112 1120 56.8

Female test set 0 56 56 560 29.7

Although there is an imbalance in the standard training set, with the female speaker

accounting for only 29.5% of the training set, it is necessary to investigate the effect of

an even smaller number of female speakers. It is for this purpose, that a small female

training set has been created, consisting of 16 speakers (2 from each of the 8 dialect

regions in TIMIT). The small female training set (TFS) is therefore approximately 5%

the size of the full male training set (TM) and 12% of the full female training set (TF).

A more detailed description of the TIMIT database can be found in Section 2.4.

• The full male training set (TM) and the small or reduced female training set (TFS)

are available for training.

1. Adaptation performance - the ability of the algorithm to improve the accuracy

of the test set associated with the adaptation set,

2. Training performance - the ability of the algorithm to improve the accuracy of

the combined testing set ("standard" testing set in Table 4.8).

The rationale behind the above two criteria, is that although the MAP algorithm is

a good adaptation technique, it will possibly not perform as well in situations where

we want good performance for both adaptation and reference (prior) sets. There are

numerous situations where one would prefer better combined performance. Often, for

example, when a severe imbalance in the number of female and male speakers occurs

and a gender independent recognizer is used, the performance for the one grouping will

tend to be relatively poor (and so too the combined performance).

The combined performance, however, can be somewhat misleading. A reasonable com-

bined performance can be produced if a system works well for one group and poorly for

another. For example, a system that attains 90% correct recognition for male speakers

but only 30% for female speakers would, assuming equal numbers of male and female

speakers, therefore give 60% correct recognition for the combined set. The minimum

performance for the two sets will also be presented, i.e. in the above example the 30%

recognition rate will be reported. \Vhen summarizing results, only those algorithms

and their configurations which maximize either the female, combined and minimum

testing set performance will be listed.

Table 4.9 presents the baseline ML results obtained for the TIMIT database. It is

evident, as expected, that if one were to create a gender specific recognizer, that the

models trained using the gender dependent subsets are best. The small female training

set produces results which are worse than that obtained using the full female training

set for both male and female testing sets (and consequently the combined testing set).

Table 4.9: Base system (ML) results for TIMIT

Training set Test set accuracy

Male Female Combined Minimum

Full training set T 57.3% 56.5% 57.0% 56.5%

Male training subset TM 59.1% 43.0% 53.7% 43.0%

Female training subset Tp 40.1% 61.0% 47.2% 40.1%

Small female training subset Tps 39.9% 56.8% 45.6% 39.9%

Tps +TM 59.1% 46.7% 54.9% 46.7%

The ML model resulting from the combination (pooling) of the male and the small

female training subsets (Tps + TM) results in better combined performance than that

attained by any ML model other than that of the full training dataset. The performance

for the female testing set is, however, poor and it is only better than that of the ML

model trained using the male training subset only.

A 3 state, 5 mixture HMM is used for all experiments using the TIMIT database in this

section. The general configuration of the HMM recognizer, is as described in Section

2.1.

The usage of the MAP algorithm for both adaptation and training purposes will now

be tested for both scenarios where limited training data is available for female speakers.

Figure 4.10 presents the MAP results when the small female training set is used. A

pooled prior created from the pooled dataset (TM + TFS) is used. The performance

for the female testing set peaks at IJ = 100, giving a peak accuracy of 57.4%. The

accuracy for the male testing set improves as IJ gets larger, i.e. as the prior becomes

more restrictive and the final result is closer to the ML estimate obtained from the

pnor.

Combined performance peaks at IJ = 2000 giving a peaked combined performance of

56%. The solution resulting in the best combined performance would probably not be

acceptable due to the disparity in results for the male and female testing sets (57.8%

and 52.4% respectively). A better solution is that which maximizes the minimum

performance of the two sets, this occurs for IJ = 700 which gives 55.1% accuracy for

both male and female sets.

Figure 4.11 shows the MAP results when using the full female training set (TF). A

pooled prior (TM + TF) is used. Peak performance of 61.0% is attained for the female

training set for IJ = 50. The performance for the male testing set, as with the previous

experiment, increases as IJ becomes larger.

Although the graphic does not show the point at which the male and female perfor-

mance is equal or at which point maximum combined performance is produced, it will

undoubtedly be very close to that at which IJ = 00 or the performance of the ML model

(of the pooled set).

The MAP results for the TIMIT database are summarized in Table 4.10. Using MAP

for gender adaptation (improving female test set performance) when using the small

training set results in a relatively small improvement in error rate (1.4% for IJ = 100)

Chapter 4

60

58

56

54

;g
~ 52>.
0
~
::J 500
0~

48

46

44
...... --

42
10

"",
""',,"

,/
--.-,,1"

/

,/////'/

female --
male --------

combined .

Figure 4.10: MAP adaptation results for the small female training set, using a pooled prior
(TM + TFS)

when using the small female subset. No improvement is observed when the full female

training set is used, where 61.0% accuracy is attained, equal to that realized using the

ML model for the full female testing set.

A considerable improvement in minimum accuracy is attained when usmg reduced

female training set, where a 15.8% relative reduction in error is realized (46.7% ---+

55.1%). Note that the best minimum accuracy (55.1%) using MAP is not much worse

as that attained when using the full training set (56.5%). The MAP algorithm does

not improve on the minimum accuracy attained of the ML model when using the full

training set.

The results for the MAP algorithm using a prior created using the pooled dataset have

been presented. The results for the MAP algorithm using a prior created from the male

training set have not been included as they are similar for adaptation (female testing

set accuracy) and worse in terms of the combined and minimum test set accuracies.

female --
male --------

combined ---------

~ 55g....
>-o
I1l:J
oo
~ 50

Figure 4.11: MAP adaptation results for the full female training set, using a pooled prior
(TM + TF)

The GMAP algorithm is experimentally evaluated here, for the two situations described

earlier. The full male training set (TM) is available in both situations and is used as

the prior dataset throughout.

The results obtained using the GMAP algorithm for the small female training set are

shown in Figure 4.12. The initial starting point used here is the ML model created

from the pooled data (TM +TFS)' The performance for the female testing set increases

as <p decreases. It is therefore evident that for this scenario, the GMAP algorithm will

give best performance for the female test set when ep = 0 (the ML estimate using the

small female testing set).

Algorithm Test set accuracy (%)

Male Female Combined Minimum

MAP TFS (TFS + TM), V = 100 47.6 57.4 50.9 47.6

MAP TFS (TFS + TM), V = 700 55.1 55.1 55.1 55.1

MAP TFS (TFS + TM), v = 2000 57.8 52.4 56.0 52.4

MAP TF (TF + TM), v = 50 41.1 61.0 47.8 41.1

MAP TF (TF + TM), v = 00 57.3 56.5 57.0 56.5

racy of 56.4%, while the minimum accuracy is maximized when ep = 0.02 resulting in a

55.3% peak minimum accuracy. Although it was not an objective of this experiment,

a slight improvement in male testing set performance is attained for ep = 0.5, where a

59.2% accuracy is realized.

Figure 4.13 shows the GMAP results the full female training set. The best female

testing set performance for the range of ep shown occurs for ep = 0.02, where an accuracy

of 60.5% is attained. The female testing accuracy for ep = 0 should, however, be the

same as that of the ML model estimated using the full female training set (61.0%). The

peak combined performance (57.0%) is attained when ep = 1, while the peak minimum

performance (56.7%) results when ep = 0.8.

Note that the value of ep resulting in optimal minimum testing set accuracy is larger

when the entire female training set is used. If there is no imbalance in the numbers

of male and female speakers, then one would expect the optimal value of ep to be

one (assuming that recognition accuracy would be the same for equivalent amounts

of data). As more and more training data becomes available for female speakers, the

contribution thereof to the posterior distribution becomes larger. The optimal value

of ep therefore increases, so that the adaptation data does not dominate.

48 female --
male --------

combined ---------
46
0.001

Figure 4.12: GMAP adaptation results for the small female training set, using the pooled
data (TM + TFS) ML model as a starting point

sonable improvements in minimum and combined testing set results are realized using

the GMAP algorithm with the small female training set, where a 16.1% and 3.3%

relative improvement in error rates are achieved respectively.

The GMAP algorithm, however, failed to improve on the female testing set performance

attained using the ML trained model using the corresponding female training set, for

both scenarios where the small and full female training sets are used.

The MAPMCE algorithm presented in Section 4.5 is tested using the TIMIT dataset

given the conditions described earlier. The male speaker training set is used as the

prior dataset for all experiments conducted in this section.

Bayesian adaptation

female --
male --------

combined -------..

~
;: 52
o
~
13 50.:i.

40
0.001

Figure 4.13: GMAP adaptation results for the full female training set, using a pooled data
(TM + TF) ML model as starting point

Figure 4.14 presents the MAPMCE results for the small female training set using the

pooled ML model as a starting point. Note that here the female testing set performance

does not improve to the extent that it becomes better than that of the male testing

set. The peak minimum and female testing set performances are therefore obtained for

the same value of cp = 0.1, which produces a peak accuracy of 56.3% for both criteria.

The best combined performance of 62.2% is attained when cp = 0.5, though this is only

slightly better than that attained at the peak minimum accuracy point, which results

in a combined performance of 62.1%.

Figure 4.15 shows the MAPMCE results for the small female training set, but with

the best MAP point used as starting point. Here, the female testing set performance

is considerably better, with a peak performance of 60.3% being attained for cp = 0.2.

The accuracies attained for the male testing set are, however, somewhat worse with

a peak male testing set accuracy of 63.0% resulting for cp = 1.0. The best combined

Algorithm Test set accuracy (%)

Male Female Combined Minimum

GMAP TFS (TFS + TM), <P= 0.001 50.5 55.8 52.6 50.5

GMAP TFS (TFS + TM), <P= 0.02 55.3 55.6 55.4 55.3

GMAP TFS (TFS + TM), <P= 0.1 58.0 53.8 56.4 53.8

GMAP TFS (MAP), <P= 0.01 46.2 57.0 50.0 46.2

GMAP TFS (MAP), <P= 0.08 55.0 55.1 55.1 55.0

GMAP TFS (MAP), <p = 0.2 57.2 52.0 55.4 52.0

GMAP TF (TF + TM), <P= 0.02 43.6 60.5 49.5 43.6

GMAP TF (TF + TM), <P= 0.8 56.7 56.7 56.7 56.7

GMAP TF (TF + TM), <P= 1.0 57.2 56.2 57.0 56.2

GMAP TF (MAP), <P= 0.01 41.2 60.9 47.8 41.2

GMAP TF (MAP), <p = 0.7 57.0 57.0 57.0 57.0

GMAP TF (MAP), <p = 1.0 57.7 55.9 57.1 55.9

accuracy is 61.4% for <p = 1.0, which is worse than that produced by the MAPMCE

algorithm using the ML model trained using the pooled dataset as starting point.

The peak minimum test set accuracy is 60.3% (<p = 0.2), which is considerably better

than that attained (56.3%) using the pool dataset ML model as starting point. Al-

though the combined testing set performance is better using the previous variant of

the MAPMCE algorithm, one would rather choose to use the later version due to the

considerably improved minimum and female testing set performance.

Table 4.12 summarizes the MAPMCE results using both the small and full female

training sets. Large improvements in the minimum, combined and female testing set

performances are attained for both the small and full female training sets. Using the

MAP point estimate as starting point produced the best female and minimum testing

set performances. Maximum combined testing set performance was, however, attained

female --
male --------

combined //-

////////-/---

62

~•..........~
>. ---u 60«l:;
U
U
<{

58

54
0.01

Figure 4.14: MAPMCE adaptation results for the small female training set, using the full
male training set as prior (TM) with the pooled ML model as starting point

Table 4.13 summarizes the best adaptation results (female testing set accuracy) ob-

tained using the different algorithms for the TIMIT dataset. The MAP and GMAP

algorithms did not improve female testing set performance when the full female train-

ing set was used. MAP improved the female test set accuracy to a limited degree when

the small female training set was available. The MAPMCE algorithm performed best,

with relative improvements in error rate of 8.1% and 13.1% resulting for the small Tps

and full Tp female training sets respectively.

Table 4.14 summarizes the best training results (minimum testing set accuracy) ob-

tained using the different algorithms for the TIJ\IIT dataset. The MAP and GMAP

60

~~
>.
u 58~
:J
U
U
<{

56

female --
male --------

combined ---------

Figure 4.15: MAPMCE adaptation results for the small female training set, using the full
male training set as prior (TM) with the best MAP estimate as starting point

algorithm produced reasonable improvements in error rate when the small female train-

ing set was used (15.8% and 16.1% respectively). Little or no improvement was attained

using these two algorithms when the full female training set was used. MAPMCE, once

again produced marked improvements in the minimum testing set accuracy, with 25.5%

and 14.5% relative improvement in error rate for the small and full female training sets

respectively.

In this section, the three algorithms (MAP, GMAP and MAPMCE) will be compared

within the framework of a continuous digit recognition task. As in the previous section,

a situation is created where the number of female speakers is limited. The adaptation

algorithms are therefore required to improve female test set performance, as well as for

Description Test set accuracy (%)

Male Female Combined Minimum

MAPMCE TFS (TFS + TM), rp = 0.2 65.1 56.3 62.1 56.3

MAPMCE TFS (TFS + TM), rp = 0.5 65.5 55.9 62.2 55.9

MAPMCE TFS (TFS + TM), rp = 1.0 65.7 55.2 62.1 55.2

MAPMCE TFS (MAP) (rp = 0.2) 61.5 60.3 60.9 60.3

MAPMCE TFS (MAP) (rp = 1.0) 63.0 59.8 61.4 59.8

MAPMCE TF (MAP) (rp = 0.2) 60.0 66.1 61.8 60.0

MAPMCE TF (MAP) (rp = 1.0) 62.8 65.1 63.4 62.8

Table 2.6 presents the training and testing sets used in the experiments conducted

in this section. The standard TIDIGITS training set comprises 77 digit sequences

from each of the 57 female speakers in the dataset and 55 male speakers. There is

therefore not an imbalance in the numbers of male and female speakers. Two subsets

of the female training set are therefore created, so as to simulate the situation where

relatively little data from female speakers is available.

The first subset (Tws) consists of five female speakers selected at random from the

complete female training set and all of the associated 77 digit sequences. The total

duration of the resultant training set (Tw s) is 10.1 minutes long, which is approximately

7.7% the size of the full female training set. The second, smaller female training set

(Twvs) is a subset of the first, where the digit sequences of each of the speakers has

been reduced to one each of the 1,2,3,4,5 and 7 digit sequences per speaker (randomly

selected). The number of speakers is also reduced to 4, resulting in a female training

set which is 55 seconds in duration and approximately one tenth the size of the first

female training subset.

Table 4.13: Summary of the best adaptation results obtained for the TIMIT dataset. Relative
improvement in error rate is given in braces.

Description Female test set accuracy (%)

Baseline ML TFS 56.8 (0.0%)

MAP TFS (TFS + TM), V = 100 57.4 (1.4%)

GMAP TFS (TFS + TM), cp = 0 56.8 (0.0%)

MAPMCE TFS (MAP), cp = 0.2 60.3 (8.1%)

Baseline ML TF 61.0 (0.0%)

MAP TF (TF + TM), v = 50 61.0 (0.0%)

GMAP TF (TF + TM), cp = 0 61.0 (0.0%)

MAPMCE TF (MAP), cp = 0.2 66.1 (13.1%)

The second subset (Twvs) is extremely small, but it will be shown that reasonable

performance can be realized even for such a small training set. Note that although the

female training sets are small the full male training set is assumed to be available for

As in the last section, the algorithms will be compared by their ability to adapt mod-

els (female testing set performance) and performance of gender independent training

(combined and minimum test set accuracy).

Table 4.16 details the performance of an 8 state, 5 mixture ML trained HMM trained

using the datasets described above. The results using the full training sets are presented

as a reference for the experimental results using the reduced datasets.

Reasonable accuracies are realized when only the small female training set (Tw s) is

available. Peak female testing set accuracy of 95.6% is attained when using a model

trained using only the small female training set. Pooling the small female training set

and the full male training set (TM +Tws) decreases the performance for the female test-

ing set slightly, but improves male, combined and minimum testing set performances

markedly.

Table 4.14: Summary of the best minimum test set accuracy obtained for the TIMIT dataset.
Relative improvement in error rate is given in braces.

Description Minimum test set accuracy (%)

Baseline ML TFS + TM 46.7 (0.0%)

MAP TFS (TFS + TM), V = 700 55.1 (15.8%)

GMAP TFS (TFS + TM), rp = 0.02 55.3 (16.1%)

MAPMCE TFS (MAP), rp = 0.2 60.3 (25.5%)

Baseline ML T 56.5 (0.0%)

MAP TF (TF + TM), v = 50 56.5 (0.0%)

GMAP TF (TF + TM), rp = 0.8 56.7 (0.5%)

MAPMCE TF (MAP), rp = 1.0 62.8 (14.5%)

Using the very small female training set (Twvs) results in poor results (25.2% accuracy

for the female testing set). Pooling with the male training set, once again greatly

improves results. It is, however, interesting to note that the ML trained model using

only the male training set results in better results.

When computing the relative improvement obtained using the algorithms, the best

results obtained when using only the available training data will be used. Table 4.17

shows the best ML results that can be achieved for the two scenarios, where the amount

of female training data is limited. Note that, as mentioned, the best results obtained

when the very small female training set is available is that of the ML model trained

using only the male training set and the associated results are therefore used.

As discussed, the combined performance is not a good measure of the suitability of a

particular model or algorithm. The ML model trained using only the male (or female)

training set is a good example of this problem, a combined performance of 90.6%

seems reasonable, but there is a large difference between female and male testing set

performance (97.4% vs. 84.0%), which is not desired.

Description Label Number of speakers Digit Duration

Male Female Total sequences (minutes)

Training sets:

Full (standard) T 55 57 112 8623 253.4

Man TM 55 0 55 4235 121.9

Woman Tw 0 57 57 4389 131.5

Woman-small Tws 0 5 5 385 10.1

Woman-very-small Twvs 0 4 4 28 55 s

Testing set 55 57 113 8623 254.4

The standard MAP algorithm presented in Section 4.3 is now tested within connected

digit recognition task using the TIDIGITS database. As with the previous databases

used to test the MAP algorithm, a pooled prior was found to perform better than that

created from only the reference (male) training set. The prior used in all experiments

presented in this section is therefore created using the pooled dataset containing the

male training set and the relevant female training set.

Figure 4.16 shows the MAP adaptation results for the scenario where the small female

training set (Tws) is available. The pooled data set (Tws + TM) is used to create the

prior. Peak female testing set performance of 97.4% is attained for v = 200, which

also results in a peak combined performance of 97.2% The peak minimum accuracy of

97.2% occurs at v = 300, relatively close to the combined performance peak.

Figure 4.17 presents the MAP adaptation results for the scenario where the smallest

female training set (Twvs) is available. The amount of female adaptation data is ex-

tremely small, and as a result the female testing set performance cannot be improved

to the extent that it is better than that of the male testing set (for the specific config-

Training set Test set accuracy (%)

Male Female Combined Minimum

Full training set (T) 97.5 98.4 97.9 97.5

Man, training set (TM) 97.4 84.0 90.6 84.0

Woman, training set (Tw) 90.3 98.8 94.6 90.3

Woman, small training set (Tws) 78.0 95.6 87.0 78.0

TM +Tws 97.6 94.4 95.9 94.4

Woman, very small set (Twvs) 15.6 25.2 20.5 15.6

TM + Twvs 91.3 80.1 85.6 80.1

Available data Test set accuracy (%)

Male Female Combined Minimum

TM,Tws 97.6 95.6 95.9 94.4

TM,Twvs 97.4 84.0 90.6 84.0

uration). Peak female, combined and minimum testing set accuracies of 84.4%, 87.2%

and 84.4% respectively are attained for v = 200. The female and minimum testing

set performances are slightly better than that of the ML model trained using the male

training set only (a relative improvement in error rate of 2.5%). The combined test set

accuracy is, however, considerably worse than that obtained using the best ML model

(-36.2%).

Table 4.18 summarizes the results obtained using the MAP adaptation algorithm for

the two training datasets. Reasonable improvements in error rates are attained when

the larger female training set (Tws) is available. However, the MAP algorithm fails to

significantly improve the minimum and female testing set accuracy when the smallest

female training (Twvs) set is used. Importantly, a decrease in combined performance

Bayesian adaptation

97
96 ///'------

95

94

~
;: 93
u
~
13 92!:i.

91

90

89

88
female --

male -------.
combined .

87
10

Figure 4.16: MAP adaptation results for an 8 state, 5 mixture HMM using the small female
training set (Tw s) as the adaptation set and the pooled training set (Tw s + TM) to create
the prior.

results when using the MAP algorithm in the extreme situation, where the smallest

female training set is used.

The GMAP algorithm presented in Section 4.4 is tested using the TIDIGIT dataset

given the conditions described earlier. The male speaker training set is used as the

prior dataset for all experiments conducted in this section.

Figure 4.18 details the GMAP adaptation results for an 8 state, 5 mixture HMM

when the small female training set (Tw s) is available. The algorithm attains peak

performance of 97.6% for the female testing set when y = 0.05, which is a 45.5% relative

improvement in error rate. A slight, though insignificant improvement in accuracy for

85

~~
>-u 80~
:l
U
U«

75

female --
male --------

combined ---------
65

10

Figure 4.17: MAP adaptation results when the smallest female training set (Twvs) is avail-
able

the male testing set can be attained if we set ep = 0.5. Peak combined and minimum

testing set performances both occur when ep = 0.2, where a 97.5% accuracy is realized

(for both). This equates to a 39% and 55.4% relative improvement in error rate for the

combined and minimum testing set accuracies respectively.

The GMAP results for scenario where the very small female training set is available are

presented in Figure 4.19. Here, as with MAP, the female testing set performance can

not be improved to the degree that it is higher than that for the male testing set (for the

range of ep presented). One would, however, expect the male training set performance

to drop below that of the female testing set as ep --+ 0, which is the ML estimate using

only the female training data. A peak female testing set accuracy of 88.8% results for

ep = 0.01, which is a 30.0% relative improvement in error rate (compared to the male

training set (TAd ML model).

Description Test set accuracy (%)

Male Female Combined Minimum

MAP 8,5 Tws(Tws + TM),1/ = 200 97.0 97.4 97.2 97.0

MAP 8,5 Tws(Tws + TM),1/ = 300 97.2 97.2 97.2 97.2

MAP 8,5 Tws(Tws + TM),1/ = 105 97.6 94.9 96.2 94.9

MAP 8,5 Twvs(Twvs + TM),1/ = 200 90.0 84.4 87.2 84.4

MAP 8,5 Twvs(Twvs + TM),1/ = 105 91.2 79.5 85.2 79.5

racy as that of the female testing set (88.8% at r.p = 0.01), which is also a 30.0% in error

rate. The combined performance is a maximum at either r.p = 0.02 or r.p = 0.01 where

a combined accuracy of 89.9% results (a relative increase in error rate of 7.4%). Here,

the combined error rate is still worse than that attained using the ML model trained

using the male dataset, though as discussed, this is not a good measure of model or

algorithm performance.

Table 4.19 summarizes the results obtained using the GMAP algorithms for the various

scenarios created using the TIDIGIT dataset. The results for the GMAP algorithm

using the ML model of the pooled dataset (Twvs + TM) as a starting point are also

presented (for the small female dataset). It is noticeable that here, the usage of the

best MAP point estimate results in a small, but significant improvement in error rates

(for the three criteria used to evaluate the algorithms).

The MAPMCE algorithm presented in Section 4.5 is tested using the TIDIGIT dataset

given the conditions described earlier in this section. The male speaker training set is

used as the prior dataset for all experiments conducted in this section.

97.5

97

96.5

~ 96
~
>-
0 95.5~
:J
0
0~ 95

94.5

94

93.5
female --

male -------.
combined -- .

93
0.001

Figure 4.18: GMAP adaptation results for an 8 state, 5 mixture HMM using the small female
training set (Tws) as the adaptation set and the male training set (TM) as prior. The best
MAP point is used as starting point.

Figure 4.20 presents the MAPMCE results for an 8 state, 5 mixture HMM when the

small female training set is available. The male training set is used as the prior dataset

and the best MAP estimate is used as a starting point. It is interesting to note that

the female testing set accuracy is above that of the male testing set for the range of

<p presented. The male, female, combined and minimum test set accuracies peak at

<p = 0.5, where their respective accuracies are 98.1%, 98.5%, 98.3% and 98.1%. The

associated relative improvement in error rate is therefore 65.9% for the female testing

set, 58.5% for the combined testing set performance and 66.1% for the minimum testing

The female testing set results are, however, considerably worse than that of the male

testing set when using the MAPMCE algorithm for the scenario where the very small

female training set is available, as shown in Figure 4.21. The peak female, combined

and minimum testing set accuracies all occur at r.p = 0.05. A peak female testing set

82 female --
male --------

combined ---------
80
0.001

Figure 4.19: GMAP adaptation results for an 8 state, 5 mixture HMM using the very small
female training set (Twvs) as the adaptation set and the male training set (TM) as prior.
The ML estimate trained using the pooled training set is used as starting point.

accuracy of 93.0% is attained, which equates to a 56.3% relative improvement in error

rate. Large improvements are also realized for the combined and minimum testing set

performance measures, where a 95.1% combined testing set accuracy (47.9% relative

improvement) and 93.0% minimum testing set accuracy (56.3% relative improvement)

are attained.

Table 4.20 summarizes the results obtained using the MAPMCE algorithm under the

two scenarios created using the TIDIGITS dataset. The results for the MAPMCE

algorithm using the ML model of the pooled dataset (Tws + TM) as starting point

are also presented (for the small female training set). Once again, as with the GMAP

algorithm, using the best MAP point as the starting point has proved to be a better

choice (compared to using the ML estimate of the pooled dataset). The results for the

MAP1VICE algorithm for the smallest female training set using the best MAP point as

starting point have not been included as they are very similar to that obtained using

Description Test set accuracy (%)

Male Female Combined Minimum

GMAP Tws (MAP), <p = 0.05 96.8 97.6 97.2 96.8

GMAP Tws (MAP), <p = 0.2 97.5 97.5 97.5 97.5

GMAP Tws (MAP), <p = 0.5 97.6 96.8 97.3 96.8

GMAP Tws (Tws + TM), <p = 0.05 97.4 97.4 97.4 97.4

GMAP Tws (Tws + TM), <P = 1.0 97.6 95.4 95.9 95.4

GMAP Twvs (Twvs + TM), <P = 0.01 91.2 88.8 89.9 88.8

GMAP Twvs (Twvs + TM), <P = 1.0 92.7 81.2 87.0 81.2

the ML model of the pooled dataset.

Table 4.20: MAPMCE results for an 8 state, 5 mixture HMM for TIDIGITS

Description Test set accuracy (%)

Male Female Combined Minimum

MAPMCE Tws(Tws + TM), <P = 0.05 98.7 97.7 98.2 97.7

MAPMCE Tws(Tws + TM), <P = 0.5 98.7 97.2 97.9 97.2

MAPMCE Tws(MAP), <p = 0.5 98.1 98.5 98.3 98.1

MAPMCE Twvs(Twvs + TM), <P = 0.05 97.9 93.0 95.1 93.0

MAPMCE Twvs(Twvs + TM), <P = 1.0 97.9 91.1 93.8 91.1

Table 4.21 summarizes the female testing set results obtained for the TIDIGITS dataset

using the three algorithms which have been evaluated in this section. The best min-

imum testing set accuracies are summarized in Table 4.22. Looking at the normal

results, it is evident that the MAPMCE algorithm performs best, with the GMAP

algorithm performing well.

98.6

98.4

98.2

~ 98~
>-u
~
::J
u 97.8u«

97.6

97.4

97.2
0.001

female --
male --------

combined _._.

Figure 4.20: MAPMCE adaptation results for an 8 state, 5 mixture HMM using the small
female training set (Tw s) as the adaptation set and the male training set (TM) as prior. The
best MAP point is used as starting point.

The MAP algorithm, although it does not perform as well as the other algorithms,

does manage reasonable improvements in testing set performances for the larger, small

female training set. It does not, however, significantly improve results when the very

small female training set is used. The GMAP and MAPMCE algorithms produce far

better results under these extreme conditions.

Duration modeling Duration modeling is a technique, which is often used to im-

prove recognition accuracy in continuous digit recognition applications. It is therefore

important to determine the effect of duration modeling on the performance of the al-

gorithms tested. Note that the MAPMCE (and GMAP) algorithm can be used to

estimate the duration modeling parameters. So as to ensure a fair comparison, this

potential improvement has not been used and the duration parameters are therefore

estimated with the ML algorithm using the relevant model and available training data.

female --
male --------

combined .

~ 95
1:)
co:J
8 94«

91
0.01

Figure 4.21: MAPMCE adaptation results for an 8 state, 5 mixture HMM using the very
small female training set (Twv s) as the adaptation set and the male training set (TM) as
prior. The best MAP point is used as starting point.

It is evident, from tables 4.21 and 4.22 that MAPMCE does not perform as well

when used with duration modeling, and even results in a decrease in accuracy for

the minimum test set accuracy measure when used with the small female training set

(compared to the baseline system with duration modeling).

The MAP algorithm works better, both in absolute and relative terms, when usmg

duration modeling. The GMAP algorithm, however, works best of all when used with

duration modeling, resulting in recognition performances which are considerably better

than that realized by the MAPMCE and MAP algorithms.

The MCE (MAPMCE) algorithm, due to its discriminative nature, incorporates dura-

tion information into the HMM without us explicitly modeling it. This is as a result

of the MCE algorithm trying to reduce insertions and deletions. Much of the improve-

ments realized when using the MCE algorithm therefore overlap with those attained

Table 4.21: Comparison of best results for the female test set, with and without duration
modeling. The relative improvement in error rate compared to the baseline ML accuracy is
given in brackets.

Description Female test set accuracy (%)

Normal Duration

ML TM +Tws 95.6 (0.0%) 97.6 (0.0%)

MAP Tws (Tws + TM), V = 200 97.4 (40.9%) 98.5 (37.5%)

GMAP Tws (MAP), r.p = 0.05 97.6 (45.5%) 98.5 (37.5%)

MAPMCE Tws (MAP), r.p = 0.5 98.5 (65.9%) 98.5 (37.5%)

MLTM 84.0 (0.0%) 91.8 (0.0%)

MAP Twvs (Twvs + TM), v = 200 84.4 (2.5%) 94.6 (34.1%)

GMAP Twvs (Twvs + TM), r.p = 0.01 88.8 (30.0%) 96.3 (54.9%)

MAPMCE Twvs (Twvs + TM), r.p = 0.05 93.0 (56.3%) 94.4 (31.7%)

when using duration modeling. It is for this reason that the MAPMCE algorithm does

not work as well when duration modeling is used.

In Section 4.6.1 the three algorithms, MAP, GMAP and MAPMCE were used within

a language adaptation framework. The algorithms were used to adapt English seed

data or models to create a language specific recognizer for Afrikaans. Either the full

Afrikaans training set or a reduced subset thereof was used as the adaptation set.

The MAPMCE algorithm performed best when the full Afrikaans dataset was used,

resulting in relative improvements in error rate of up to 6.8% and 3.1% for a 5 and

10 mixture HMM respectively (3 states). The GMAP algorithm resulted in reasonable

performance increases, with a 5.3% and 2.1% relative improvement in error rate being

attained for a 5 and 10 mixture HMM respectively. The standard MAP algorithm,

resulted in similar, but slightly worse, improvements as that produced by the GMAP

Table 4.22: Comparison of best results for the minimum accuracy criterion, with and without
duration modeling. The improvement in error rate due to the usage of duration modeling is
also given.

Description Minimum accuracy (%)

Normal Duration

ML TM +Tws 94.4 (0.0%) 97.6 (0.0%)

MAP Tws (Tws + TM), 1/ = 200 97.0 (46.4%) 97.9 (12.5%)

GMAP Tws (MAP), rp = 0.2 97.5 (55.3%) 98.4 (33.3%)

MAPMCE Tws (MAP), rp = 0.5 98.1 (66.0%) 97.5 (-4.2%)

MLTM 84.0 (0.0%) 91.8 (0.0%)

MAP Twvs (Twvs + TM), 1/ = 200 84.4 (2.5%) 94.6 (34.1%)

GMAP Twvs (Twvs + TM), rp = 0.01 88.8 (30.0%) 96.3 (54.9%)

MAPMCE Twvs (Twvs + TM), rp = 0.05 93.0 (56.3%) 94.4 (31.7%)

When the small Afrikaans training set was used, the MAPMCE algorithm did not per-

form as well as the GMAP algorithm, which produced relative improvements in error

rate of 8.0% and 10.2% for a 5 and 10 mixture HMMs respectively. The MAP algo-

rithm resulted in relatively poor improvements in accuracy (compared to the GMAP

algorithm) .

In Section 4.6.2 the three algorithms were evaluated within a gender adaptation frame-

work, using the TIMIT dataset. The TIMIT dataset has an imbalance in the number

of male and female speakers, and the male training set was therefore used as the prior

dataset and the female dataset as the adaptation set. A smaller female dataset was also

created, so as to determine the effect of the algorithms when an even larger imbalance

exists. Two criteria were used to evaluate the algorithms, namely adaptation perfor-

mance and training performance. The female testing set accuracy and the minimum

of the female and male testing set accuracies were used to determine the performance

for these two criteria.

Here, the MAPMCE algorithm performed best for both datasets and both testing cri-

teria, resulting in marked improvements in accuracy. The MAP and GMAP algorithms

resulted in little or no improvement in accuracy for the female testing set (adaptation).

Reasonable improvements in the minimum testing set accuracy were attained by these

two algorithms when the small female training set is used, with the GMAP algorithm

performing slightly better than the standard MAP algorithm.

In Section 4.6.3 the algorithms were tested within a gender adaptation framework for

a connected digit task. The TIDIGIT database was used for this purpose. Here, once

again the MAPMCE algorithm worked best, followed by the GMAP algorithm and

the MAP algorithm performing worst. However, when duration modeling is used, the

GMAP algorithm results in the best performance, with relative improvements in digit

accuracy of up to 54.9%.

When comparing MCE or MAPMCE to non-discriminative algorithms such as MAP

and GMAP, one must be careful as they are often not directly comparable. MCE

as mentioned, due to its discriminative nature, automatically tends to incorporate

duration and language modeling information into the HMMs. This means that when

duration modeling or language modeling is used, the effect thereof will be smaller when

using MCE. McDermott [75] noted this, when he used a bigram language model with

MCE and compared it to using a bigram model with ML trained HMMs.

Table 4.23 gives the execution times for the three algorithms (MAP, GMAP and

MAPMCE) on a Pentium III 600MHz computer. The times given are for one iter-

ation only; total execution time is equal to execution time given in Table 4.23 times

the number of iterations used. Given that the GMAP and MAPMCE algorithms re-

quired more iterations (around 30) than that required by MAP (10 iterations), it is

evident that the GMAP and MAPMCE algorithms are considerably more computa-

tionally expensive than the MAP algorithm. The improved performance, however,

warrants the additional computational expense.

Table 4.23: Execution times (in minutes) for one iteration (update) of the three algorithms
(MAP, GMAP and MAPMCE) on a Pentium III 600MHz computer. The prior data set
(square brackets) and adaptation set (round brackets) are included in the dataset description.

Dataset MAP GMAP MAPMCE

SUNSpeech (A) [E] 1.3 13.4 37.7

TIMIT (TF) [TM] 4.2 16.9 54.1

TIDIGITS (Tw) [TM] 0.3 4.8 18.0

4.7 Summary

This chapter introduced Bayesian adaption and its usage within a continuous speech

recognition framework. The MAP algorithm of Gauvain and Lee [45] was described.

A gradient-based MAP algorithm which makes no assumption about the form of the

prior was proposed and the implementation thereof was discussed. A Bayesian inspired

MCE-based adaptation algorithm (MAPMCE) was also proposed. The MAPMCE

algorithm is an extension of the MCE algorithm and the implementation thereof is

relatively simple.

The three algorithms were experimentally evaluated in Section 4.6, using the SUN-

Speech database for language adaptation, and the TIMIT and TIDIGIT databases for

gender adaptation experiments. On the whole, the MAPMCE algorithm proved to

work best, with the GMAP algorithm performing reasonably well. The MAP algo-

rithm, in general, resulted in considerably worse performance than either the GMAP

or MAPMCE algorithms.

Chapter 5

Bayesian learning

This chapter develops a Bayesian approach to learning for HMMs in speech recognition.

Markov chain Monte Carlo methods which can be used to numerically integrate the

posterior distribution as required by the Bayesian learning approach form part of this

discussion. The implementation of Bayesian learning for HMMs in speech recognition

is presented, including the requirement of maintaining the original HMM constraints,

choice of prior and utterance recognition. This work shows that the Bayesian learning

approach can be successfully applied to complex models when the amount of training

data is small. This is contrary to the notion that one must limit the complexity of the

model when training data is limited, as was discussed in Section 2.2.1.

This work was inspired by the work of Neal [82], who proposed a Markov chain Monte

Carlo based Bayesian learning procedure for neural networks. In this chapter, the

Bayesian learning procedure used by Neal will be implemented and adapted for usage

with hidden Markov models and speech recognition. Previous applications of Bayesian

learning in speech recognition have concentrated on using approximations. One such

approximation is that of Huo et at. [54, 58] who used a Gaussian distribution to

approximate the posterior distribution. The MAP estimation algorithm (Chapter 4)

can also be regarded as an approximate Bayesian approach. However, my formulation

is the first Markov chain Monte Carlo based Bayesian learning approach used for hidden

Markov model speech recognition systems.

The Bayesian learning framework is introduced here and past work both within the

field of speech recognition and in the more general field of neural networks is discussed.

Bayesian methods can be used for the inference of parameter values in a model given

the data. Bayesian methods have also been used for the purpose of model compari-

son. David Mackay [72] focused primarily on the usage of Bayesian methods for the

comparison and training of neural networks. Most people would include the above two

uses of Bayesian methods in the data modeling process.

The remainder of this section will summarize the relevant Bayesian theory used in this

chapter. Certain sections from Chapter 4 have been reproduced for readability. For a

more complete introductory text on Bayesian statistics, the reader is referred to Box

and Tiao [13], DeGroot [27] and Bishop [12]. The theory and discussions in this section

will be biased towards speech recognition applications of Bayesian learning.

The fundamental concept of Bayesian analysis is that the plausibilities of alternative

hypotheses are represented by probabilities, with inference being performed by evalu-

ating these probabilities.

Given a vector y = (Y1, ... , Yn) of n observations, with probability distribution P(yIO),

which depends on the k parameters OT = (01, ... , Ok). The parameter vector 0 has the

probability distribution P(O). Given the observed data, the conditional distribution of

P(()I) = P(yl())P(())
y P(y)'

The denominator in Eq. (5.1), P(y), is a normalizing factor, which ensures that the

integral of P(()ly) is equal to one. It can be written as follows:

P(y) = J P(yl())P(())d().

Equation (5.1) is referred to as Bayes' theorem. The distribution P(()), is called the

prior distribution and expresses what is known about the model parameters before

any data is observed. The posterior distribution P(()Iy), tells us what is known about

the model parameters given that data has been observed. In what follows, the prior

distribution and posterior distribution will again sometimes simply be referred to as

The distribution P(yl()) is often referred to as the data likelihood and can be written

L(()ly). This is valid when P(y/()) is regarded as a function of y and not of ().

In many Bayesian methods, the normalizing constant is not necessary and Eq. (5.1) is

written as

The result of Bayesian learning is a probability distribution (posterior) which expresses

our beliefs of how likely individual parameters values are. This is the basis for Bayesian

In a Bayesian approach to HMM parameter estimation and recognition, the objective

is to find a predictive distribution for an unknown utterance, given the observations

of the utterance, as well as the training observations. Let the observations for the

ith utterance be written as Oi' For n training utterance examples 0 = (01, ... , On),

Bayes' theorem (Eq. (4.1)) can be written as

P(OIO) = P(OIO)P(O)
P(O)

ex P(OIO)P(O).

P(OIO) = IIP(OiIO).
i=l

P(OunknownIO~i), ... , O~») = J P(OunknownIO)P(OIO~i), ... , O~»)dO, (5.6)

where i is the class and Ounknown is the unknown observation. The classifier decision

C is the class resulting in the highest value of Eq. (5.6), i.e.

C(O). h . - P(O IOU) OU»)unknown = Z were z - argmax unknown l' ... , n ,
j

Unfortunately, due to the nature of the incomplete data problem caused by the un-

derlying hidden processes of an HMM, the evaluation of Eq. (5.6) is non-trivial. If,

however, the posterior (P(BIO)) is well approximated by a Gaussian, then Eq. (5.6)

can be approximated as follows [72]:

where B is D-dimensional, BMAP is the maximum a-posteriori point (mode of the pos-

terior P(BIO)) and A is the modal dispersion matrix, i.e., A = - V-I, where V is the

Hessian matrix of second derivatives of the log of the posterior evaluated at the mode

of the posterior.

This approximation has been used extensively in Bayesian approaches. MacKay [72]

used this approximation in his work on model selection for neural networks. Huo et

at. [54, 58] proposed a quasi-Bayesian predictive classification approach for continuous

density HMMs, in which they used this approximation. Another approximation was

also proposed by Huo et at. [57], which used the following Viterbi-based approximation,

P(OunknownIOI, ... , On) ~ max J P(OunknownIB)P(BIOI, ... ,On)dB, (5.9)
q,1

where q is a state sequence and 1 is the sequence of associated mixture components. A

modified Viterbi algorithm was used to compute the above approximation.

We can, however, use Monte Carlo (MC) methods to obtain a better approximation of

Eq. (5.6) than Eq. (5.8) or Eq. (5.9). MC methods make no assumption concerning the

form of the distribution, as done in the above approximations. In theory, MC methods

can approximate Eq. (5.6) for complex distributions with multiple modes, as well as

distributions for which the dominant contribution of the integral results from areas

in parameter space which are not near a mode. l\Iarkov chain Monte Carlo methods

[12, 82] will therefore be used in this implementation and will be described in Section

In the field of neural networks, Neal [82] used the "Hybrid Monte Carlo" method (de-

scribed later in Section 5.2.3) for Bayesian learning. The following are some of the

applications using Monte Carlo algorithms that have been reported for speech recog-

nition or speech processing. Vermaak and Niranjan [114] used a Markov chain Monte

Carlo algorithm for speech enhancement. Robert et at. [98] presented a Markov chain

Monte Carlo strategy to obtain a marginal MAP estimate. Godsill and Andrieu [48]

used Markov chain Monte Carlo methods for the separation and recovery of convolu-

tively mixed autoregressive processes. We will, however, use Markov chain MC methods

to implement Bayesian learning for HMM speech recognizers.

5.1.3 Bias/variance problem

Let us once again look at the bias/variance problem discussed in Section 2.2.1 as it

is central to the Bayesian learning approach. Integrating over the posterior, as in Eq.

(5.6), results in the variance term of Eq. (2.25) being greatly reduced. Adjusting the

complexity of models based on the amount of training data in a Bayesian framework

therefore makes little sense as the variance term effectively disappears (except for

extreme sparse training data). More complex models, which perform worse when using

a single point estimate (ML), will therefore perform better than less complex models

in a Bayesian implementation. We will, however, prefer simpler models due to other

reasons, such as computational complexity.

Numerical integration with respect to the posterior P(BIO) using a fixed number of

samples N will, however, increase the variance of the solution. The effect of the number

of samples used will be investigated in the experimental section later in this chapter.

Bayesian learning

Hidden Markov models are relatively complex and have many parameters to estimate.

It is, therefore useful to specify the joint distribution of some of these parameters in

terms of a common hyperparameter 'Ywhich has a prior distribution of its own. This

is known as a hierarchical model.

The prior distribution P((}) can then be written in terms of the hyperparameters as

follows (assuming independence),

D

P((}) = .I Ph) gP((}ib)d'Y

where Ph) is the prior distribution of the hyperparameter 'Y, P((}il'Y) IS the prior

distribution of the parameter (}i given the hyperparameter.

A hierarchical model, if well formulated, can be considerably more intelligible than

using a direct prior distribution. We can also in this way, incorporate vague heuristic

information into the prior, as will be done in Section 5.3.

As mentioned in Section 5.1.2, we want to evaluate Eq. (5.6), which is the ex-

pectation of the function P(Ounknown!(}) with respect to the posterior distribution

P((}IOl, ... , On). Such expectations can be estimated using Monte Carlo methods,

by summing P(Ounknownl(}(j)) using N samples of () (the ith sample denoted by (}(i))

generated from the posterior distribution P((}IO) for j = {I, ... , N}, i.e.

N

P(OunknownIOl,.'" On) ;:::;;L P(Ollnknownl(}(j)),
j=l

where the samples Oi, ... , ON are generated by a process such that the distribution

thereof is that of the posterior P(OIO).

The sampling methods described in this section were developed for situations where

probability distribution cannot be directly sampled. Sampling from a one-dimensional

Gaussian distribution can, for example, be done directly.

Suppose we wish to generate a sample from a distribution P(O) for 0 E e, but cannot

do so directly. This can be done by constructing a Markov chain with state space e,
which is easy to simulate, and whose equilibrium distribution is P(O).

The following are sufficient conditions for such an algorithm to approach the desired

distribution [111]:

• Invariance with respect to the distribution P. If for all pairs of configurations 0

and 0',

P(O -t 0')
P(O' -t 0)

and at step n we have Pn (0) = P 00 (0), then at step n + 1 we will have Pn+l (0) =

P00 (0). The desired distribution is therefore an equilibrium distribution. This

condition is called the detailed balance condition, and any chain which satisfies it

is said to be reversible. The resulting distribution P(0) persists once established

and is therefore invariant (or stationary) .

• Ergodicity. This condition specifies that the probability distribution at step n + 1

should be closer to Poo(O) than at step n. An algorithm which complies with

condition will converge to its equilibrium condition from any initial configuration.

In the following sections, three Markov chain Monte Carlo methods will be described.

The above conditions (detailed balance and ergodici ty) will be used to determine the

suitability of each method for the implementation of Bayesian learning. We will in

particular find that Gibbs sampling (Section 5.2.1) is not ergodic and will therefore

not be used (directly) to sample the posterior distribution P(OIO) of an HMM. The

stochastic dynamics (Section 5.2.2) and hybrid Monte Carlo (Section 5.2.3) methods

meet both of the above conditions and we will therefore be able to use either of these

5.2.1 Gibbs sampling

Gibbs sampling [82, 7] can be used to sample the distribution of a multi-dimensional

parameter. Gibbs sampling is also known as the heatbath method in the physics liter-

In Gibbs sampling a Markov chain is simulated, in which the new n-dimensional sample

O(t+l) is generated from O(t) using the following iterative procedure:

Generate oit+1) from the conditional distribution of 01 given O~t), o~t) , O~t).

Generate O~t+l) from the conditional distribution of e2 given eit+1), o~t) , e~t).

G t e(t+l) f th d't' Id' 'b t' f e' e(t+1) ll(t+1) ll(t) 1J(t)enera e i rom e con 1 lOna Istn u lOn0 i gIven 1 , ... ui-l , Ui+l ... , Un .

G t ll(t+1) f h d" I d' 'b' f e . e(t+l) e(t+1)enera e Un rom t e con ItlOna Istn utlOn 0 n gIven 1 , , n-l .

Generate eit+2) from the conditional distribution of e1 given O~t+l), O~t+l) ... , e~t+l).

The transition resulting from the above steps being executed leaves the desired distri-

bution Q invariant and is reversible. Gibbs sampling is, however, not necessarily an

ergodic Markov chain and depending on the situation will not converge to its equilib-

rium distribution if we do not start from the desired distribution.

Djuric and Chun [34] proposed a method of estimating non-stationary (duration mod-

eling) discrete hidden Markov models. The posterior of the model parameters was

sampled using a Gibbs sampler. Their implementation was tested on an extremely

simple HMM consisting of 3 states and with 5 possible emission variables. Histograms

of the posterior samples for certain parameters were presented, showing that the mode

of the posterior was reasonably accurate.

Gibbs sampling is dependent on being able to sample the distribution of one parameter

conditional on the other parameters. For continuous density HMMs, the conditional

distribution of one parameter given the values of the other parameters is non-trivial,

where any parameter of a given state is dependent on all the other parameters of all the

states. Gibbs sampling is, therefore, not a suitable sampling method that can be used

to sample the posterior of an HMM. The posterior of HMMs will be multi-modal and

due to the fact that Gibbs sampling is not ergodic, it will also not necessarily converge

to the correct distribution under these conditions.

We will not use Gibbs sampling in itself, but rather as part of the stochastic dynamics

and hybrid Monte Carlo algorithms described later in this section.

The stochastic dynamics method [82] for sampling of distributions, otherwise known as

the refreshed molecular dynamics method, was introduced by Anderson [3] and applied

to the field of quantum chromodynamics by Duane and Kogut [36, 38]. It is also some-

times known in the literature as the hybrid method, because it contains two standard

update steps - uniformly sampling values of variables q and p which have a fixed total

energy H(q,p), and sampling states with different values of H. Here, the stochastic

dynamics method is used to generate the samples of the posterior distribution P(OIO),

which will be used to numerically integrate Eq. (5.6).

Let us assume that we wish to sample from a distribution for a variable q, which has

n dimensions. In the systems for which the techniques described in this section were

developed, q is typically the coordinates of the particles in a physical system. In our

work, q will be the HMM parameters, i.e. q = e. We therefore have a system with

continuously valued coordinates qi, with the probability of the variable q defined as

P(q) ex: e(-E(q)),

where E(q) is the potential energy function. Any non-zero probability function, can

be written in this form by defining E(q) = -In[P(q)] - In(Z) for Z > o.

A momentum variable p is introduced which has n components, one for each of the

components of q. Here, the kinetic energy is used which is

n 2

K(p) =L;~,
i=l l

with mi being the "mass" associated with each component. It will be assumed, for the

rest of this discussion, that mi = 1 for all parameters. The terms state and configuration

will be used to indicate the combination of the system coordinates (q = e) and momenta

(p), i.e. state = configuration = (p, q). The total energy is H(p, q) = E(q) + K(p)

and the probability for q and p is therefore

P(p, q) ex: e-H(p,q).

Oqi oHat = OPi = Pi
OPi oH
ot Oqi

• The volume of regions of phase space is conserved, i.e. if we follow points in

some region of volume V, we find that the region where these points end up after

a given time T also has volume V. This is important as the probability of a

configuration is really the probability density times the volume element in phase

• The motion is reversible. After having simulated Hamilton's equations for a time

T, we can change the sign of the momenta, apply Hamilton's equations for the

same period of time and end at the original starting point.

An update which consists of generating a random number R, multiplying all the mo-

menta by -1 if R < ~ and then integrating Hamilton's equations for a given time

interval satisfies the conditions required by the fundamental theorem [111].

Since each Pi is independent of the qi and the other Pi, the probability distribution

of the momenta can be sampled by using Gibbs sampling and assuming each to be

a Gaussian distributed random number. Note that, it is not necessary to randomly

reverse the momenta as described above, as the Gibbs sampling is just as likely to

generate Pi as -Pi. This is known as "refreshing" the momentum variable p.

The length of time T over which Hamilton's equations are integrated is a critical

parameter which must be found. Figure 5.1 illustrates the path of the stochastic

dynamic method for different integration times. If the time T is small, the coordinates

q will not change much and the result is effectively a random walk of parameter space

(Figure 5.1 (a)). Alternately, a large integration time T will result in a path which is

periodic in nature and we will waste our time in generating such a long path which

could easily end up close to where we started (Figure 5.1 (b)). There is therefore

an optimal value of T which lies somewhere between the two extremes (Figure 5.1

(c)). In certain situations this can be done analytically [39], but in realistic systems

the simulation time T must be empirically determined. Fortunately, however, there

is often a relatively large range of T which give good results. Ultimately, we wish to

ensure that the correlation between updates is a minimum.

Figure 5.1: Movement through parameter space using the stochastic dynamics sampling
method. The underlying distribution being sampled is indicated using a dotted line. (a)
Small time period T; a random walk of parameter space. (b) Large time period T; a waste
of time in "periodic" movement. (c) More optimal simulation time T.

In practice, we cannot integrate the Hamiltonian dynamics exactly. The leapfrog inte-

gration scheme described next can, however, be used to approximate the Hamiltonian

dynamics.

Leapfrog integration In the leapfrog integration scheme [111] approximations of

the position and momentum, qi(t + E) and Pi(t + E) from qi(t) and Pi(t) are obtained as

follows:

Bayesian learning

In order to follow the Hamiltonian dynamics for a given time T, Eqs. (5.18) to (5.20)

are applied in order for L = ~ steps. When applying the leapfrog step more than once,

the last momentum update (Eq. (5.20)) and the first (Eq. (5.18)) of the next step

can be combined. All but the very first and very last momentum half-steps can be

merged. Figure 5.2 illustrates the leapfrog integration scheme of q and p over a time

interval [0, T] using the energy and momentum steps defined in Eqs. (5.18) to (5.20).

If preferred, Eqs. (5.18) to (5.20) can be rewritten such that we start with an energy

half-step followed by a full momentum step.

~

-- ---/~', ~--
I

I "I

II " I / /

', __- 7/
o ~ E ~€ 2E

~ , -'--

Figure 5.2: The leap frog integration scheme of q and p over a time interval [0, TJ. The
position q is evaluated at the points marked with circles and the momentum p at the points
marked with squares. The dashed line indicates the momentum update and the solid line
indicates the energy update.

Each of the energy and momentum steps has an error of order E
3 [111]. Integrating

for L leapfrog steps will therefore result in an error of order LE3. A step size E is

chosen which is small enough to give an acceptable error. If we choose L ~ 1, which is
€

often done, then the error is of order E
2

. The hybrid Monte Carlo algorithm discussed

next, is based on the stochastic dynamics method and was developed to eliminate these

systematic errors introduced by leapfrog integration.

The hybrid Monte Carlo algorithm of Duane et at. [37] for sampling of distributions

eliminates the systematic errors of the stochastic dynamics method resulting from the

finite integration step size, where the total energy is not conserved during leapfrog inte-

gration. The Hybrid Monte Carlo algorithm is an extension of the stochastic dynamics

method and uses the Metropolis algorithm [79] to eliminate the bias introduced by the

errors resulting from the leapfrog integration of the Hamiltonian dynamics.

The Metropolis algorithm The Metropolis algorithm was introduced in 1953 by

Metropolis et at. [79]. It has since been extensively used, and is the basis for the

simulated annealing optimization method: Letting A be the current configuration and

B a potential configuration (q,p) generated such that P(A -t B) = P(B -t A), where

P(A -t B) is the probability of generating the trial configuration B given the current

configuration A. If P(B) > P(A) then configuration B is accepted. If P(B) ::; P(A),

then the configuration B is accepted with probability ~~~~. If B is rejected, the next

configuration is A.

The hybrid Monte Carlo algorithm uses the Metropolis algorithm to determine whether

or not to accept a new configuration generated using the refresh and integration step of

the stochastic dynamics method. A hybrid Monte Carlo algorithm step can therefore

be described as follows:

2. Starting with the current state (p, q), perform L leapfrog steps to generate a trial

next configuration (p', q').

3. Accept the trial next configuration with probability min(1, exp(H(p, q)-H(p', q')),

otherwise choose the new state to be the same as the old.

If Hamilton's equations were simulated exactly, the change in H would be zero and

the trial configuration would always be accepted. 'When an approximation is used

(leapfrog), H will change and a trial configuration will sometimes be rejected. This ex-

actly eliminates the bias introduced by leapfrog. Note that it is important to maintain

a relatively high acceptance rate, so as to minimize correlation between consecutive

states.

It is expected that the work required in simulating Hamilton's equations for a fixed

time will grow with the volume (V) of the system as T ex V~ [26, 50], as compared

to growth proportional to V for the stochastic dynamics method. Although this is

a relatively slow growth, as pointed out by Toussaint [111], the stochastic dynamics

method will be eventually be preferred for systems which are very large. Due to current

computational resources, and the large size of HMM systems, the hybrid Monte Carlo

algorithm turned out to be infeasible for our work. This will, however, undoubtedly

change as computers become faster with time.

We have, up until now, only investigated the theoretical aspects of implementing

Bayesian learning. The next section will discuss implementation issues for a Bayesian

learning approach for HMM speech recognizers.

5.3 Implementation of Bayesian HMM learning

The training process for the implementation of Bayesian learning described in this

chapter generates the Nm samples of the posterior P(OIO) required to numerically

integrate Eq. (5.6) during recognition of an unknown utterance. This section will

discuss several aspects of the implementation for the training and recognition processes.

The prior used here is the same as in the gradient-based MAP algorithm described

in Section 4.4. The gradient of the energy function E(O) is required here for the

leapfrog integration. This gradient (derivative) of E(0) with respect to the individual

parameters of both HMM and prior are therefore exactly the same as in Chapter 4

(Eq. (4.47) to Eq. (4.64)) and are as a result, not reproduced here.

In Chapter 4 we used transformations to ensure that the original HMM constraints were

maintained. Unfortunately, we cannot use transformations when we wish to sample

a distribution. These are second order sampling techniques and using transforms will

deform the resultant distribution being sampled. To understand this, let us look at a

simple example.

Let us assume that we wish to sample the distribution of the standard deviation 0- of

a Gaussian model, and that the gradient of the energy function with respect to 0- is a

constant (k) for a given region in parameter space (i.e. ~~ = k). Here, the coordinate

variable q consists of only the variable 0-, i.e. q = {o-}. Given the momentum at time

t, p(t), a single leap frog momentum step (Eqs. (5.18) to (5.20)) will be

E E
p(t + 2) = p(t - 2) - Ek,

E
q(t + E) = q(t) + Ep(t + 2).

We would therefore expect the coordinate variable q to accelerate at a constant rate

(ex: -Ek) in this region of parameter space. If, however, we use the following transform

(j = In 0-, then the derivative of E with respect to (j becomes ko- and the leapfrog step

p(t + ~)= p(t - ~) - fko-
2 2·

f
ij (t + E) = ij (t) + EP(t + 2).

Note that p(t) = p(t)g~. Transforming these update equations back from the trans-

formed domain results in the following update

(
E E 2

P t + 2) = p(t - 2) - Eka ,

q(t + E) = q(t)eEP(t+1)/CT.

Note that neither the coordinate update q(t + E) or momentum update p(t + ~)are as

in Eq. (5.21), as they should be. The distribution sampled will therefore be a distorted

version of the true distribution.

Transformations were used in the gradient based MAP algorithm (GMAP) as there

we were only searching for the mode of the posterior and the position thereof will not

change when using transformations. But now it is not possible to use transformations

with the Markov chain Monte Carlo methods described. A constrained version of

the sampling algorithms is therefore implemented, in which the HMM constraints are

applied. In particular, the variances are not allowed to be below a predefined value

which is greater than zero (0.0001 has been used throughout).

It is non-trivial (if not impossible) to implement a constrained algorithm which main-

tains the constraints for the transition probabilities and mixture weights (i.e. Lj aij =

1 and Li Ci = 1), without using transformations. These parameters are therefore

treated as being fixed (at some estimate such as ML) and only the posterior distribu-

tion of the means and variances of the HMM Gaussian mixtures are therefore sampled.

The prior distribution for the HMM Gaussian mixture mean and variances is again

chosen to be a normal-Wishart distribution. Prior distributions are not required for

the mixture weights or transition probabilities, as they are assumed to be fixed (as

motivated above) and their posterior is not sampled. The normal-Wishart prior was

introduced in Section 4.2 and is reproduced here for convenience,

9gaussian (rjk, ILjk Injk, Vjk, mjk, Tjk) =(271") -~ IVjkrjk I ~ e-~Vjdl-tjk-mjk)Trjk(l-tjk-mjk)

c!rJkl-¥ Irjkl (n-~-l) e-~tr(rjkTjl/),

where (njk, Vjk, mjk, Tjk) are the prior distribution parameters associated with mixture

component k of state j. See Table 4.1 for a summary of the HMM parameters and

their associated priors and prior parameters. The value c is a normalizing constant

which ensures that the integral of the prior is equal to one.

I
mjk = IL

Tjk = (njk - D)~/,

(5.25)

(5.26)

results in the mode of the prior being at the point ILjk = IL' and ~jk = ~/. The

parameters njk and Vjk determine the degree to which the prior is peaked about its

mode.

Although not necessary, it makes sense (simplifies calculations) to reduce the number

of variables in the prior by expressing the parameters njk and Vjk in terms of a common

parameter Cjk,

njk = Cjk + D

Vjk = Cjk + 1,

(5.27)

(5.28)

The parameters Cjk, mjk and Tjk are now given their own distributions. These dis-

tributions and their parameters must be chosen in a meaningful way, such that the

hyperparameters contain a-priori knowledge (albeit vague). The choice of the distri-

butions and parameters are discussed next.

We would expect the parameters for the mixtures of a given state to be highly cor-

related. This is often not the case with HMMs, where a single state can represent

multiple acoustic units, which can result in a higher confusability.

Let us, for example, look at a three state HMM, with each state having several Gaussian

mixtures, used to represent the word "four". If, assuming, certain of the training

utterances are pronounced such that the "r" is not heard, then the last state will

probably represent both the consonant r and the vowel au which is the end of some

of the training utterances. The result is a model which is easier to confuse with other

utterances (or part thereof). For example, this HMM will give a high output for the

phone sequence f-ou-r-ou-r.

Illina and Gong [55]investigated this phenomenon, which they called trajectory folding.

One solution to this problem is to change the topology of the model. It was found

that using a trajectory mixture HMM (TMHMM) [107] and segment-based mixture

stochastic trajectory HMMs (MSTM) [49] reduced the effect of this problem.

Trajectory folding, is not only caused by differences in pronunciation, but can also be

caused by the training procedure. This is especially the case when the model is com-

plex and little training data is available. From the above discussion, it is evident that

states representing multiple acoustic units are not desirable. In an attempt to avoid

trajectory folding, the prior parameters of a given state have therefore been given com-

mon distributions and hyperparameters. Note that the prior parameter distributions

and the associated hyperparameters which have been chosen are not necessarily the

only (or best) possible choice. The manner in which the parameters are grouped is

a modeling choice, which is made on the basis of prior knowledge. Many possibilities

remain, and it is more than likely that the performances reported in this chapter can

be improved upon by making other choices.

The prior mean mjk of state j is given a normal distribution with mean Wj and standard

deviation c;j, i.e.

where /1;1 is the number of mixture components, and Wjl and C;jl are the hyperparameters

for the prior mean mjk.

Given that we wish to keep the hyperparameter distributions as intuitive as possible,

the distribution of the prior mode E' in Eq. (5.26) has been chosen to be a gamma

distribution (Section A.4) with parameters cPj and 'I/)j. The distribution of the prior

parameter Tjk (precision of /1jk) of state j can, using Eq. (5.26), therefore be written

where cPjl and 'l/Jjl are the hyperparameters of Tjkl. Note that from Eq. (5.25), the prior

mean mjk is also the mode of the prior with respect to the mean parameters. The

distribution for the prior parameter Cjk is also chosen to be a gamma distribution with

parameters v and (2, i.e.

(i)P(Cjk)=9(Cm,Cv), k=l, ... ,M,

parameters, their prior distributions, the prior parameters and their distributions can

be found in Table 5.1.

Table 5.1: Summary of the HMM parameters, prior distributions, hyperparameters and their
distributions. A Wishart distribution is represented with Wand a Gamma with g.

Parameter Prior distribution Prior parameter Distri bu tion

{tjklRjk = T"jk N(mjk, (Cjk + 1)T"jk)-1/2) mjk N(wj[, c;jl)

Rjk (~jkl) W((Cjk + D), Tjk) Cjk Q(v, (})

Tjk (njk - D)Q(<Pjl, 'l/Jjl)

Determining hyperparameters The ML estimate, which is used as the starting

point for the stochastic dynamics sampling, is used to estimate the hyperparameters

wh c;j (prior mean mjk in Eq. (5.29)) and <Pj, 'l/Jj (prior parameter Tjk in Eq. (5.30)).

The sample mean and variance (over the mixtures) of the mixture means {tjk for state

j of the ML estimate are reasonable estimates for the parameters Wjl and c;jl, i.e. Wjl

and c;jl are chosen to be

Likewise, the sample mean and variance of the mixture variances for state j of the ML

estimate are reasonable estimates for the mean and variance of distribution Q(<Pjl, 'l/Jjl).

Letting the sample mean of the mixture variance be o-j = ir 2:~1rJjk' and using Eqs.

(A.14) and (A.15), the parameters <Pj and 'l/Jj are therefore estimated as follows

Bayesian learning

The hyperparameters Cm and Cv (defined in Eq. (5.31)) are determined by the user

and express our trust in the ML estimate. Large values of Cm will result in prior

distributions which are peaked around the mode of the posterior, while small values

of Cm will result in a relatively non-informative prior distribution. The effect of these

hyperparameters on the performance of the system will be determined in the Section

In the stochastic dynamics method (Section 5.2.2), before using the leapfrog integration

scheme, the momenta are "refreshed" using Gibbs sampling. It is at this same step

in the stochastic dynamics method, where we will also update or "refresh" the prior

parameters using Gibbs sampling.

As a result of using hyperparameters, we have to obtain the prior using Eq. (5.10).

This is accomplished by Gibbs sampling of the hyperparameters 'Yafter each transition

(i.e. before leapfrog integration) of the stochastic dynamics or hybrid Monte Carlo

algorithm, which results in the numerical integration of Eq. (5.10).

The hyperparameters are easily sampled, as they are independent of other parameters

and hyperparameters and since their distributions have been chosen to be normal and

Gamma, standard techniques for generating normal and Gamma distributed variates

can be used.

Writing the posterior in the required form of an energy function as discussed in Section

5.2.2, we get the following "potential energy" function,

E(O) = -log[P(O)] - L 109[P(OiIO)].
i=l

2. Starting with the current state perform L leapfrog steps to generate a new con-

figuration. Here we require 8~~t) (Eqs. (5.18) and (5.20)). The energy function

is the same as that used for the gradient-based MAP algorithm in Chapter 4

(Eqs. (4.47) to (4.55)), and the gradient of the energy function with respect to

the HMM parameters is therefore exactly the same. The derivation thereof is not

repeated here.

3. Keep current configuration, repeat steps 1 through 3 until N samples are gener-

ated.

A segmental approach is used, in which we use the best state sequence, as opposed

to the sum of all possible sequences, i.e. the probability maxP(O, qlO) is used as an
q

approximation of P(OIO) = L::all q P(O, qIO). An embedded version has also been

implemented, which uses the modified-Viterbi trellis search (Section 2.1.5) to obtain

the best HMM and state sequence.

In a Bayesian framework, we evaluate Eq. (5.6) for each class and classify using the

following decision rule

C(O) = Ci where i = argmaxPj(OunknownIOl,"" On)'
j

Implementation of this decision rule is straightforward when applied to discrete (or

label-based) phoneme or word classification: use Eq. (5.11) to numerically determine

Pj(OunknownIOl, ... , On) for each class (phoneme or word).

The implementation of Eq. (5.37) for continuous speech recognition is not a trivial

task. Here, a class is a string of phonemes or words and there are many possible

combinations thereof. The direct implementation of Eq. (5.11), although relatively

simple to implement, would therefore not be viable in terms of computation complexity.

An alternative approximation would be to use an N-best search to generate the Ns

best strings and then evaluate Eq. (5.11) for only these combinations. Although

this is a reasonable approximation, it is still somewhat computationally expensive.

This approximation, although considerably less computationally expensive, is at best

Ns' Nm times slower than the equivalent standard HMM recognizer. Given that Ns will

typically have to be relatively large, this technique will unfortunately not be feasible

either.

The following is a simple, yet reasonable approximation of the classification process

described by Eq. (5.37). Although we wish to obtain P(OunknownIOl, ... , On), it

is not necessary to do it directly using Eq. (5.11). Formulating the problem in

terms of a single HMM, and not the sum of several sampled HMMs, we can write

P(OllnknownIOl, ... , On) as follows:

P(Ounknown!Ol, ... , On) = L P(Olq, 01",., On)P(qIOl, ... , On),
all q

where q is a state sequence (ql q2 ... qr). The probability of a new observation °given

the state sequence is

r
P(Olq, 01"", On) = IT P(Otlqt, 01, ... , On),

t=l

where independence of observations has been assumed. The probability of a single

observation 0t given a state sequence can be written as

where we have integrated with respect to the posterior of the Gaussian mixture pa-

rameters. We now numerically integrate Eq. (5.40) using Nm samples of the posterior

distribution P(OtIB(m)),

Nm

P(OtlqiJ 01, ... , On) ~ L P(Ot/B(m))
m=l
Nm

=L b~r;)(Ot),
m=l

where b~r;)(Ot) is the observation probability of 0t for state qt and the mth sample of

the posterior distribution.

It remains to decide on P(qIOl, ... ,On) in Eq. (5.38). Note that we have not allowed

the posterior of the transition probabilities to be sampled (as discussed in Section 5.3.1)

- a reasonable assumption would be that the posterior of the transition probabilities

is reasonably peaked and the ML estimate is a reasonable approximation, therefore

T

P(qI01' ... ' On) ~ P(qIB) = 7rqOIIaqtqt+l·

t=l

The probability of the observation sequence 0unknown given the training data 01, ... , On

for a given state sequence q can therefore be written as

Therefore, the procedure described above results in integration with respect to the

posterior of the Gaussian mixtures each time an observation probability is required.

This is, as opposed to integrating with respect to the full HMM posterior as in Eq.

Viterbi implementation Here, where we would have used a single observation prob-

ability in the normal Viterbi algorithm, we now calculate the sum of the observation

probabilities for the posterior samples (Eq. (5.41)). The implementation of the Viterbi

algorithm for this approximation is therefore almost trivial. To find the single best

state sequence, q = (q1q2 ... qT), for the given observation sequence 0= (0102 ... OT),

we use the following modified Viterbi algorithm:

Nm

61(i) = 7ri(L b;m)) 1 < i < N
m=l

7/Jt(j) = arg max [6t-1 (i)aij]
l<i<N

P* = max [6T(i)]
l'S:i'S:N

Extension to the trellis search, which is a frame-synchronous, modified implementation

of the Viterbi search, is trivial. This approximation has the advantage over direct

implementation of Eq. (5.11), and the N-best approximation, that it is only approxi-

mately Nm times slower than a standard HMM recognizer, where Nm is the size of the

sample.

5.4 Experiments

The goal of this section is to experimentally determine the utility of the Bayesian

learning approach described in this chapter. The hypothesis that will be tested here, is

that "Bayesian learning will improve performance markedly in situations where little

data is available for training purposes". In situations where sufficient training data is

available, the posterior will be peaked sharply about the MAP point and there will

therefore be little advantage in using Bayesian learning rather than MAP estimation

under such conditions.

The three datasets SUNSpeech, TIMIT and TIDIGITS are once again used here. How-

ever, the assumption here is that there is only a small amount of data available with

no non-task-specific data available for adaptation purposes. The results obtained using

Bayesian learning will be compared with that obtained using the adaptation techniques

described in Chapter 4 where non-task-specific data was assumed to be available.

Unless otherwise stated, the stochastic dynamics method was run for 100 iterations,

i.e. 100 samples were generated. The last Nm samples were used for recognition tasks.

For example, a recognition experiment using Nm = 30 will therefore use the last 30

samples, i.e. samples 71 through to 100.

Bayesian learning is not a deterministic process and there will therefore be a certain

variance in performance for the resultant systems. Each experiment was therefore

repeated 10 times, so as to provide an indication of the variance in accuracy that results.

Error bars are given for each result, indicating the minimum, mean and maximum

accuracy for a given configuration.

This section evaluates the Bayesian learning algorithm under the same conditions as

that used to test the adaptation techniques in Section 4.6.1, except that here, there is

no English training data available for cross-language adaptation purposes. The effect

of the sample size, parameters Cm, Cv, simulation time T and leapfrog step size L will

be experimentally determined for the SUNSpeech dataset in this section. Results will

be presented for both the small (As) and full (A) Afrikaans training sets. The speaker

independent Afrikaans testing set is used for evaluation purposes.

namely the full Afrikaans training set A in the SUNSpeech dataset and the reduced

training set As.

Table 5.2: Base system accuracy for SUNSpeech Afrikaans test set

Training set Mixtures

5 10

Afrikaans train (A) 48.6 51.5

Afrikaans adapt (As) 42.5 41.2

The following results are for a 3 state, 5 mixture HMM system, when only the small

Afrikaans training set is available. Selected results for the full dataset, as well as 3

state, 10 mixture HMMs will be presented later in this section.

Effect of sample size Figure 5.3 shows the effect of the sample size Nm on the

performance of the system. Firstly, it is noticeable that the performance for a single

sample, is already better than that attained by the ML estimate. This improvement is

primarily due to the regularization effect of the chosen prior and associated hyperpa-

rameters. The choice of prior and hyperparameters described in Section 5.3.2 therefore

seems justified.

Considerable improvements result from increasing the sample size, with 46.1% being

attained when using a sample size of 90 (a relative improvement in error rate of 6.2%).

The sudden decrease in recognition rate for 100 samples, is indicative of the fact that the

algorithm had not converged within the first 10 transitions (samples) of the stochastic

dynamics method.

The variance on the resulting systems is relatively high, but as expected decreases

as the number of samples used is increased. We would expect the variance in the

solution to tend towards zero as the number of samples tended towards infinity, l.e.

the numerical integration becomes the exact integration in Eq. (5.6).

47

46.5
T ,-,,

i
.,-

-'-,- , ,
46

, ,, ,

i
, ,, , , ,, , ,, , ,, , , ,, , , , ,, , , , , ,

45.5 ' , , , , ,, , ! , , , , ,
i I

, , ,, , J-, , ,, , ,, , ,
~ 45 , , ~-, -'-,e..... , ,,
>. , ,,
0 44.5

,
I1l

,,:; l- ,,
0
0« 44

,

43.5

43 ,

BLmean --
BL error bars "--+--,
Baseline ML .

42
o 40 50 60

Sample size

Figure 5.3: Performance of the Bayesian system (BL) versus the size of the sample used to
numerically integrate with respect to the posterior.

Effect of the hyperparameter Om As mentioned in Section 5.3.2 the parameter

Om, along with Ov, indirectly determines the degree to which the prior is peaked about

its mode. It contains our a priori trust in the ML model used as starting point.

Figure 5.4 presents the effects of Om on the performance of a 3 state, 5 mixture HMM

when the reduced training set is used. As can be seen, an optimal value for Om exists.

Values of Om which are too low do not force the regularization of the prior to be of

any consequence. Alternatively, values which are too large result in a prior which is

too restrictive and therefore unnecessarily restricting the posterior.

Figure 5.5 shows the results for a 3 state, 10 mixture system versus the parameter

Om' Note that, here the optimal value of Om is lower (Om = 5 or Om = 10) than that

obtained for the 3 state, 5 mixture system. The ML estimate for the more complex

10 mixture HMM system, is worse when little data is available (Table 5.2). The ML

estimate for the 10 mixture system can therefore not be "trusted" as much as the 5

46.5

46

45.5

45

~~ 44.5>-
()

~
::J

44()
()«

43.5

43

42.5

42
5

BLmean --
BL error bars c __+__'

Baseline ML .

15

Cm

Figure 5.4: Performance of the Bayesian system (BL) versus the hyperparameter Cm, for
Cv = 4, L = 100 and using a sample size of 60.

mixture system. A smaller value of Cm which makes the prior less informative, therefore

results in the peak performance for this system.

Effect of the hyperparameter Cv Figure 5.6 presents the effects of the Cv on the

performance of a 3 state, 5 mixture HMM when the reduced training set is used. Again,

extreme values of this parameter result in degradation in performance. Fortunately,

the performance of the system is relatively invariant to reasonable variations in this

given in Section 5.2.2, and is critical to the optimal usage of the stochastic dynamics

method. We therefore need to experimentally determine the effect of the number of

leapfrog steps used on the performance of the system. The step size is kept constant

Chapter 5

47.5

47

46.5

46

45.5
;e~ 45>-
0
<tl:; 44.50:i.

44

43.5

43

42.5

42

BLmean --
BL error bars c __+__'

Baseline ML ---------

Figure 5.5: Performance of the Bayesian system (BL) versus the hyperparameter em, for a
3 state, 10 mixture HMM and Cv = 4, L = 100 and using a sample size of 60.

Figure 5.7 shows the performance of the Bayesian system versus the number of leapfrog

steps L, for the configuration Cm = 15, Cv = 4 and using a sample size Ns = 60.

Remember that the simulation time is approximately equal to the step size E multiplied

by the number of leapfrog steps, i.e. T ~ EL. We expect that too few leapfrog steps

result in samples which are highly correlated, which results in a sample which is not

representative of the posterior. This can be seen in Figure 5.7, where using 10 leapfrog

steps results in relatively poor system performance, with the minimum accuracy being

System accuracy increases as the number of leapfrog steps increase, and peaks at

L = 100, where an average accuracy of 45.8% is attained. However, as mentioned

in Section 5.2.2, values of L which are too large will not only waste time, but could

worsen performance due to higher correlation between samples, resulting from the

,
il , ,, , ,, , ,, , , ,, :, , ,,

, ,----- ,, ,, ,, ,, ,
J ,,

J

BL mean --
BL error bars 1- __ +__..1

Baseline ML -_ .

........... __ ... __ ._- - _-_.- -- _ _------_ -._---_._---------_._-_ ... _------.-.-.---_._.-

,

~
~ 44.5
()
~
i3 44o«

42
1

Figure 5.6: Performance of the Bayesian system (BL) versus the hyperparameter Cv, for
Cm = 15, L = 100 and using a sample size of 60.

periodic nature of Hamilton's equations. This effect is also observed in Figure 5.7

where accuracy at L = 200 (45.75%) is slightly worse than that at L = 100.

Leapfrog step size Table 5.3 presents the results for the Bayesian system usmg

step sizes of E = 0.001 and E = 0.0002. The results presented until now have used a

learning rate of E = 0.0001. The number of steps used have been adjusted such that the

simulation time T is approximately the same. This ensures that the simulation time

T does not affect the results, as seen in the previous experiment. Using a step size of

E = 0.0002 results in an average absolute improvement of approximately 0.3%. Using

the smaller step size E = 0.0002, however, requires that 500 leapfrog step be used (for

equivalent simulation time). The extra 0.3% in absolute performance is, however, not

enough to justify the increase in simulation time (5 times).

46.5

46

45.5

45

~e...-
44.5>-

0
I1l::;

440
0«

43.5

43

42.5

42
0

BLmean --
BL error bars "--+--,
Baseline ML .

,,,,,·····r·· _-_ __ __..-------_._.
,,
J

100

L

Figure 5.7: Performance of the Bayesian system (BL) versus the number of leapfrog steps L
per transition, for Cm = 15, Cv = 4 and using a sample size of 60.

Summary of results Table 5.4 gives the best results obtained for the SUNSpeech

dataset when using the Bayesian learning algorithm described in this chapter. Note

that here, the 10 mixture model always performs best. This is as opposed to the ML

estimate, where the 10 mixture system performed worse that the 5 mixture system

when the small training set is used (Table 5.2).

Table 5.3: Comparison of test set accuracy for leapfrog integration using differing step sizes
(E = 0.001 and E = 0.0002) but having equivalent simulation time T ~ EL

Leapfrog Sample size

configuration 10 20 30 40 50 60 70 80 90 100

E = 0.001, L = 100 45.2 45.4 45.5 45.7 45.8 45.8 45.9 46.0 46.1 45.7

E = 0.0002, L = 500 45.6 45.8 46.0 45.9 46.1 46.1 46.3 46.3 46.4 46.0

Table 5.4: Summary of the results obtained using Bayesian learning with the SUNSpeech
dataset, for L = 100, E = 0.001. Relative improvement in error rate expressed as a percentage,
relative to the associated baseline performance given in Table 5.2 is given in brackets.

Training Mixtures Configuration Sample size

set 10 50 90

As 5 Cm = 15,Cv = 4 45.2 (4.7) 45.8 (5.7) 46.1 (6.2)

As 10 Cm = 5,Cv = 4 46.5 (9.0) 46.9 (9.7) 47.0 (9.9)

A 5 Cm = 10,Cv = 4 50.5 (3.7) 50.3 (3.3) 50.3 (3.3)

A 10 Cm = 10,Cv = 4 53.7 (4.5) 54.0 (5.2) 54.1 (5.4)

a sample size of 90 for the small training set. This equates to a relative improvement

in error rate of 9.9%. The same system using only 10 samples attained a 46.5% testing

set accuracy (9.0% relative improvement in error rate).

When using the full training set, it is once again the 10 mixture system which performs

best. Peak performance of 54.1% is attained for the 90 samples system, which is a

relative improvement in error rate of 5.4%. The considerably smaller 10 sample system

gives a 4.5% relative improvement in error rate (53.7% accuracy).

Whether one can justify using the 90 sample system, which is 9 times slower than

the 10 sample system and approximately 90 times slower than that of the equivalent

standard HMM system, is currently unlikely.

This section evaluates the Bayesian learning algorithm under the same conditions as

that used to test the MCE algorithm in Section 3.4, except that here, only the small

TIMIT training set Ts will be used. The procedure followed in selecting this dataset

has been described in Section 2.4.1. The full TIMIT testing set has been used for

all experiments presented in this section. A 3 state, 5 mixture HMM is used for all

experiments in this section. The base system test set performance for the 3 state, 5

mixture HMM when using the small TIMIT training set is 52.6%.

Here, so as not to unnecessarily duplicate results, only the effect of sample size and

parameter em will be experimentally evaluated - to show that performance is similar

for another dataset and language.

Effect of sample size Figure 5.8 shows the effect of the sample size Nm on the

performance of the Bayesian learning system. The performance for a sample size of

1 (Nm = 1) is, once again, in general better than that of the Baseline ML system -

further evidence that the choice of prior and hyperparameter is justified.

54.6

54.4

54.2 -,- .,-

i
,,,

54 l- i 1,
, ,

53.8
,, ,,

~
,

-'-
!?- ,-
>- 53.6
u
~
:::J 53.4uu

<{

53.2 ,

l T
,-

T T,- ,, , ,, ,, ,, , ,, ,, , , , ,, , , ~- ,, ,, ,,

BLMean --
BL Error bars "--+--,

Baseline ML .

,,,
J •••••••••• •••••••••••• ••••••••• __ • •• _. ••••••• __ ••••••••••••••••••••••••••••• __ • __ • _,

52.4
o

Figure 5.8: Performance of the Bayesian system (BL) versus the size of the sample used to
numerically integrate with respect to the posterior.

As with the SUNSpeech experiments, by far the greatest improvements resulted when

using 10 or fewer samples. Using 10 samples results in a system accuracy of 54.1%.

The performance increases to a reasonable degree for sample sizes greater than 10,

though whether the extra computational effort can be justified is once again somewhat

doubtful. Maximum performance of 54.4% is attained when using a sample size of 90,

though better performance would probably result when using a larger sample size. As

expected, the variance of the system accuracy does, in general, tend to decrease as the

sample size grows.

Effect of the parameter em Figure 5.9 presents the effect of the parameter Cm on

the performance of a 3 state, 5 mixture HMM based Bayesian system. Once again, an

optimal value exists (Cm = 15), with the performance of the system deteriorating for

values smaller or larger than this optimal value.

54.6

54.4

54.2

54

~ 53.8
~
>.
0 53.6~
::J
0
0« 53.4

53.2

53

52.8

52.6

BLmean --
BL error bars c __ +__,

Baseline ML ---------

12

Cm

Figure 5.9: Performance of the Bayesian system (BL) versus the hyperparameter Cm, for
Cv = 4, L = 100 and using a sample size of 60.

This section evaluates the Bayesian learning algorithm for a connected digit recognition

task. The TIDIGITS database, as described in Section 2.4.2, is used for this purpose,

where a small gender-independent dataset was created. The reduced speaker set (Ts)

was created, using five randomly chosen female speakers and five randomly chosen male

speakers, using all 77 digit sequences per speaker. The relevant training and testing

sets are summarized in Table 5.5.

The full TIDIGITS testing set has been used for the experiments presented in this

section. An 8 state, 5 mixture HMM is used for all experiments. The base system

test set performance for the 8 state, 5 mixture HMM when using the small TIDIGITS

training set is 95.8%. Once again, so as not to unnecessarily duplicate results, only the

effect of sample size and parameter Cm will be evaluated.

Table 5.5: Training and testing sets used with the TIDIGIT database

Description Label Number of speakers Digit Duration

Male Female Total sequences (minutes)

Training sets:

Full (standard) T 55 57 112 8623 253.4

Man TM 55 0 55 4235 121.9

Small Ts 5 5 10 770 21.5

Testing set 55 57 113 8623 254.4

Effect of sample size Figure 5.10 shows the performance of the Bayesian learning

system versus the sample size Nm, with Cm = 15, Cv = 4 and L = 100. As was the

case for the previous two datasets, the performance for a sample size of 1 (Nm = 1)

resulted in better performance (mean of 96.3%) than that of the Baseline ML system

(95.8%). A small improvement in accuracy (96.5%) is observed when a sample size

of two is used. However, larger sample sizes result in degradation of system accuracy,

A connected digit task is relatively simple compared to continuous phoneme recog-

nition. We can therefore expect that the posterior distribution for the HMM we are

estimating will not be as complex as that of the two scenarios previously used. For

a very simple task, one expects that a single mode posterior would result, and if the

posterior is peaked no significant improvement in performance will be attained when

using the Bayesian learning approach described in this chapter. With the connected

digit task, however, we do observe a small, though significant, improvement in perfor-

mance when using a sample size which is greater than one. The posterior of this task is

therefore slightly more complex than a single mode. The improvement in performance

may, for example, be attributable to a bi-modal posterior, with one mode representing

male speakers and the other mode representing female speakers.

96.7

96.6

96.5

96.4

~~ 96.3>.
u
ctl::;

96.2uu«
96.1

96

95.9

95.8
0

T ~-,,

1-
,

I
,,

l-: ,

l-
,,,,

BLMean --
BL Error bars ~--+--_.

Baseline ML .

15
Sample size

Figure 5.10: Performance of the Bayesian system (BL) versus the size of the sample used to
numerically integrate with respect to the posterior.

Increases. A decrease in performance indicates that the distribution of the samples

generated using the Markov chain Monte Carlo method is not that of the desired

distribution. In Section 5.4.1 an example of this phenomenon was observed, when

samples from a Markov chain were used before it had converged. Here, however, the

Markov chain has converged. The decrease in accuracy observed here is probably due to

the systematic errors introduced by the leapfrog algorithm. A finite step size will result

in a posterior sample which is slightly different from that of the true distribution. As the

sample size increases, the probability of including a sample which is not representative

of the true or desired distribution therefore increases, and as a result, the performance

of the system will tend to decrease as larger samples are used. This phenomenon has

only been observed here, and its effect is relatively small compared to the improvements

resulting when the posterior is relatively complex.

Effect of the parameter ern The performance of the system (not shown graphi-

cally) is somewhat invariant to the parameter Cm, probably due the the fact that little

or no improvement results from using the Bayesian learning procedure. Peak mean

performances of 96.47%, 96.46% and 96.50% are attained for Cm values of 10, 15 and

20 respectively.

In Section 5.4.1 the Bayesian learning procedure introduced in this chapter was tested

in a situation where a limited amount of training data was available for a new language

specific recognizer. The SUNSpeech dataset was used for this purpose. The effects of

the sample size, parameters Cm and Cv, simulation time T and leapfrog step size E were

determined for this scenario. Significant improvements in accuracy were attained when

using the Bayesian learning procedure. Relative improvements in mean error rates of

up to 9.9% and 5.4% were attained when using the small and full Afrikaans training

sets respectively.

A small gender independent training set was created using the TIMIT dataset, which

was used to test the system under much the same conditions (Section 5.4.2). A 3.8%

relative improvement in mean error rate was attained for this scenario. The effect of

sample size and the parameter Cv were found to be very similar to that observed when

using the SUNSpeech database.

In Section 5.4.3 the system was tested using a connected digit recognition task. The

TIDIGITS database was used to create a small gender-independent dataset, so as to

simulate the scenario where little training data was available for training a connected

digit recognizer. A relative improvement in error rate of 16.7% was attained when

using a sample size of two. Using only one sample resulted in an 11.9% relative im-

provement, due to the choice of prior and hyperparameters. A decrease in performance

was observed for sample sizes greater than two, which was ascribed to the systematic

errors resulting from the leapfrog integration algorithm.

If one was to have the luxury of having an independent cross-validation set, then the

resultant performances can be expected to be even better. Under these conditions, one

could create several samples of the posterior and then choose the best sample using the

cross-validation set. Although this will not necessarily give the truly best sample, it

will probably improve results such that they are closer to the maximum results attained

in this section.

5.5 Summary

This chapter introduced Bayesian learning and its usage within a continuous speech

recognition framework. Markov chain Monte Carlo methods, which are used to sam-

ple the posterior, were described. Implementation specifics such as maintaining the

HMM constraints, choice of the prior distributions and parameters, and an efficient

implementation for recognition were also discussed.

Section 5.4 experimentally evaluated the Bayesian learning procedure introduced in

this chapter. The SUNSpeech, TIMIT and TIDIGITS databases were used for this

purpose. The effects of sample size, hyperparameters Cm and Cv, simulation time T

and leapfrog step size E were determined. Significant improvements in system accuracy

were attained for the scenarios created using all three datasets. The improvements

realized for the connected digit task (TIDIGITS) were, however, mainly due to the

regularization effect of the prior, with a sample size of two resulting in peak perfor-

mance. This was attributed to the fact that the connected digit task is relatively simple

and the posterior thereof is therefore probably also relatively simple.

The results attained show that there is much promise in the usage of the Bayesian

learning procedure proposed. Although considerably more computationally expensive

than most HMM training techniques, I believe, however, that the improved performance

warrants the additional computational expense.

Chapter 6

Conclusion

The problem addressed in this thesis is the design of a speech recognizer when only

sparse training data are available. The recording and subsequent segmenting and

annotation of large speech databases is an expensive and labour-intensive process.

The aim of the techniques developed in this thesis is therefore to improve recognition

performance of hidden Markov model (HMM) systems when training data is limited.

This thesis started by considering the minimum classification error (MCE) parameter

estimation procedure. The MCE criterion is closely related to the goal of ideal Bayes

classification. Overspecialization is, however, prevalent when using MCE, especially

when training data is limited. Several modifications to the standard MCE procedure

were therefore proposed which limited the effect of overtraining. The MCE algorithm

was used within a training framework (Section 1.2).

The usage of the maximum a-posteriori (MAP) estimation algorithm was investigated

for situations where little task-specific training data is available, but a reasonable

quantity of non-task-specific training data can be used. The MAP estimation procedure

was used within an adaptation framework (as described in Section 1.1) in this thesis,

where non-task-specific data was used in conjunction with limited task-specific data to

improve recognition performance for a specific task.

Finally, Bayesian learning was investigated and an implementation for HMM speech

recognition was proposed and implemented. Here no assumption is made about the

availability of non-task-specific data, and only the task specific data is used in the

training process. The Bayesian learning procedure as proposed and implemented in

this work is a training algorithm (Section 1.2), where only task-specific data is used.

The algorithms proposed and tested in this thesis have been found to be extremely

effective in situations where little training data is available. Significant improvements

in recognition performance have been attained for the sparse data scenarios used for

evaluation purposes. The algorithms proposed are, in general, considerably more com-

putationally expensive, with execution times for the GMAP and MAPMCE being of

the order of 3 hours and 10 hours respectively (depending on the task and computer

used) as compared to the 13 minutes required by MAP (or ML). The Bayesian learn-

ing procedure is extremely computationally expensive with the execution time being

around one to three days, depending on the task and computer used. The training

of speech recognition systems is typically done offline and the time taken to estimate

the model parameters is therefore often not critical. The additional computational ex-

pense can therefore be justified by the significantly improved recognition performance

resulting from the use of these algorithms.

1. New modifications to the MCE algorithm are proposed in Chapter 3. These

modifications limit the effect of overtraining which is prevalent when using MCE

training.

2. A new gradient-based MAP adaptation algorithm (GMAP) that does not make

any assumptions concerning the form of the prior distribution was proposed in

Chapter 4. This algorithm was shown to outperform the standard MAP approach

of Gauvain and Lee [45] for the conditions tested.

3. A new MCE based MAP adaptation algorithm was proposed and tested in Chap-

ter 4. This algorithm too was shown to work better than the standard MAP

approach, as well as being better than standard MCE.

4. Bayesian learning was introduced. An original implementation of Bayesian learn-

ing for hidden Markov model speech recognition was introduced and discussed.

This is, to the author's knowledge, the first time that Bayesian learning using

Markov chain Monte Carlo methods has been used for hidden Markov model

speech recognition.

6.2 Summary by Chapter

In Chapter 1 the topic of speech recognition was introduced, along with the topic of

data sufficiency and the effects thereof. The algorithms currently used to alleviate the

problem of insufficient data were briefly reviewed.

In Chapter 2 the basic theory of hidden Markov models and the speech recognition

system used in this thesis were described. Overtraining was discussed in terms of

the bias/variance dilemma. The experimental procedure common to all experiments

conducted in this thesis was described and details of the three speech databases used

for experimental evaluation were given.

In Chapter 3 the minimum classification error criterion was introduced and its usage

within a continuous speech recognition framework was discussed. The MCE criterion

realizes optimal decision boundaries in a Bayes sense. The MCE criterion focuses

on minimizing the probability of error. Classifiers trained using the MCE criterion

are therefore able to attain the goal of Bayes classification even when the modeling

assumptions are incorrect. Embedded or string-level MCE, where the recognition error

for entire strings is minimized, was discussed.

The effect of a smoothed zero-one loss function was discussed and experimentally de-

termined for the TIMIT dataset. Furthermore, the need for a zero-one loss function

was questioned and the conclusion was reached that there is little evidence to suggest

that there is an advantage or disadvantage to using a smoothed zero-one loss function.

This result was used later in modifying the MCE criterion, where the modification

could not be mathematically justified when a non-linear loss function was used.

Overtraining within the MCE framework was discussed and three modifications were

proposed. The first modification stops the mixture variances from becoming very

small, which we expect to happen when little data is available. The second added a

weighted likelihood term to the MCE criterion, thereby reinforcing correct substrings,

as well as improving discrimination for incorrect substrings. Lastly, a word-based

string-level MCE algorithm was proposed, in which smaller word-based substrings were

used, instead of the the entire string. Significant gains in performance resulted when

using these modifications with the TIMIT database. Improvements of up to 10% in

relative error rate on the test set were achieved for the TIMIT dataset.

In Chapter 4 Bayesian adapt ion and its usage within a continuous speech recognI-

tion framework was introduced. The MAP algorithm of Gauvain and Lee [45] was

described. A gradient-based MAP algorithm (GMAP) which makes no assumption

about the form of the prior was proposed and the implementation thereof was dis-

cussed. A Bayesian inspired MCE-based adaptation algorithm (MAPMCE) was also

proposed. The MAPMCE algorithm is a simple extension of the MCE algorithm and

its implementation is relatively simple.

The three algorithms were experimentally evaluated using the SUNSpeech database

for language adaptation, and using the TIMIT and TIDIGIT databases for gender

adaptation experiments. Figure 6.1 shows the best relative improvements in error

rate obtained using the MAP, GMAP and MAPMCE algorithms for the SUNSpeech,

TIMIT and TIDIGITS datasets. Relative improvements in error rate of up to 10.2%

were attained for the SUNSpeech dataset (using the GMAP algorithm). For the gender

adaptation task using the TIMIT dataset relative improvements in error rates of up

to 25.5% were attained (using the MAPMCE algorithm). Finally, relative improve-

ments in error rate of up to 66.0% (MAPMCE) were reported for the TIDIGITS based

gender adaptation task. When using duration modeling with the connected digit task

(TIDIGITS), the GMAP algorithm performed best (relative improvements in error rate

of 54.9%). The MAP algorithm, in general, performed somewhat worse.

6.1 10.2 8.2
SUNSpeech

o MAP

TIMIT

m!m GMAP

TIDIGITS

~ MAPMCE

Figure 6.1: Comparison of best relative improvements in error rates obtained using the
MAP, GMAP and MAPMCE algorithms for the three datasets used (SUNSpeech, TIMIT
and TIDIGITS).

In Chapter 5 Bayesian learning and its usage within a continuous speech recognition

framework was discussed. Markov chain Monte Carlo methods, which are used to sam-

ple the posterior, were described. Implementation specifics such as maintaining the

HMM constraints, the prior distributions and an efficient implementation for recogni-

tion were also discussed.

The SUNSpeech, TIMIT and TIDIGITS databases were used to experimentally eval-

uate the proposed Bayesian learning procedure. The effects of various algorithm con-

figurations were determined. Significant improvements in system accuracy were at-

tained for the scenarios created using the three datasets. Relative improvements in

error rates of up to 9.9%, 3.8% and 16.7% were attained for the SUNSpeech, TIM IT

and TIDIGITS databases respectively. The results attained show that there is much

promise in the usage of the Bayesian learning procedure proposed. Although consid-

erably more computationally expensive than standard HMM training, the improved

performance warrants the additional computational expense for certain situations.

The research performed in this thesis focused on the sparse data problem. The algo-

rithms described were applied to a relatively limited set of tasks and languages. Future

research could therefore incorporate a wider variety of typical scenarios where train-

ing data is limited, such as cross-database adaptation, speaker adaptation and dialect

adaptation. The application of the techniques described here, to context dependent

modeling, i.e. bi-phone or tri-phone modeling, will be an important extension of this

work. A detailed comparison of Bayesian adaptation techniques with transformation

based adaptation algorithms (MLLR, MAPLR) for a wide variety of sparse data sce-

narios will also be of much interest.

Bayesian methods can also be used for purposes other than the sparse data problem.

These include using Bayesian methods to choose the optimal model configuration for

a point estimate paradigm, as done by MacKay [72] in the field of neural networks.

The Bayesian learning procedure proposed can be improved upon and several aspects

thereof must therefore still be investigated, they include:

• sampling the complete posterior of all HMM parameters including transition

probabilities, mixture weights and if applicable, duration modeling parameters,

• using the Hybrid Monte Carlo method to sample the posterior distribution,

• making the modified Viterbi search (Section 5.3.5) more efficient, and

• other prior and hyperparameter configurations may result in even better system

performance.

	Front
	Chapters 1-3
	CHAPTER 4
	4.1 Introduction
	4.2 Prior distributions
	4.3 Expectation-maximization MAP
	4.4 Gradient basedf MAP
	4.5 MAPMCE
	4.6 Experiments
	4.7 Summary

	CHAPTER 5
	5.1 Introduction
	5.2 Monte Carlo methods
	5.3 Implementation of Bayesian HMM learning
	5.4 Experiments
	5.5 Summary
	CHAPTER 6
	6.1 Overview
	6.2 Summary by chapter
	6.3 Future research

	Back

