
Chapter 1

Introduction

Communication through speech is an integral part of our lives. Automatic speech

recognition for machines (computers) therefore provides a natural and effective way of

communicating with machines. We are, however, far from creating a machine which

can understand spoken discourse on any subject, by all speakers and for all conditions.

Much research and development of speech recognition systems will be required before

this goal is achieved.

Hidden Markov models (HMMs) have been the dominant approach to speech recog-

nition since the 1980s [94, 92]. HMMs are statistical models used to characterize the

spectral properties of the frames of a pattern.

A Markov model is a system that can be described as being in one of N distinct states at

any given time. At regularly spaced, discrete times, the system undergoes a change of

state, depending on a set of probabilities associated with each state. This is known as a

discrete-time Markov process. Hidden Markov models are doubly embedded stochastic

processes with an underlying stochastic process that is not directly observable (hidden)

but can be observed indirectly through another set of stochastic processes that produce

the sequence of observations. The observation is therefore a probabilistic function of

the state. Section 2.1 will describe HMMs and their use in speech recognition in more

detail.

Hidden Markov model speech recognition systems typically consist of two main parts,

namely

1. Feature extraction. Here features, which will be used to recognize the utterance,

are extracted from the speech signal. One of the most common features used are

the Mel-frequency cepstral coefficients (MFCCs), which can be obtained from the

power spectrum of the speech signal. Section 2.1.1 gives a detailed description of

the feature extraction process as used in this thesis.

2. Hidden Markov models. HMMs are used to represent the temporal nature of

the speech signal. A word or phonetic unit is typically represented by a single

HMM, with each state in the HMM representing an acoustic unit within the word

or phonetic unit. In a continuous digit recognition task, for example, HMMs

would be used to represent the digits a through 9 and other events such as

silence and inter word pauses. In continuous density HMMs, a weighted sum

of Gaussian distributions is used to represent the probability of an observation

(features extracted) being generated by that state. Section 2.1 presents a detailed

description of the HMM system used in this thesis.

The assumption made when using a hidden Markov model (HMM) or any statistical

model, is that the process can be characterized as a parametric random process. It is

furthermore assumed that these parameters can be determined or estimated in a precise,

well-defined manner. HMMs are usually trained using the maximum likelihood (ML)

criterion. vVhen creating continuous speech recognition systems, sparse training data

is often a problem. This limits the effectiveness of the conventional approaches, such

as maximum likelihood parameter estimation.

not always possible to collect, segment and annotate large databases for every task,

language or dialect. The collection of large speech databases is an expensive and time

consuming task. It is doubtful whether there will ever be a substitute for sufficient,

well recorded and annotated data when creating speech recognition systems. However,

given that it is not always possible to collect sufficient data, this thesis focuses on using

Bayesian and discriminative training algorithms to improve continuous speech recog-

nition systems in scenarios where there is a limited amount of training data available.

1.1 Adaptation

Adaptation is a process for adjusting seed models or training data (non-task-specific)

to create more specialized models using a small amount of task-specific adaptation

data. There are many applications of adaptation algorithms, including:

• Speaker adaptation Speaker adaptation is a well researched and documented

[67, 74, 32, 6, 20, 31, 21] example of adaptation, where little speaker-dependent

data is available for creating a speaker-specific model. Using the speaker-independent

model or dataset of many speakers, adaptation techniques can be used to create

an improved speaker-dependent model. It is impractical to use the algorithms de-

scribed in this thesis for speaker adaptation due to their computational expensive

nature .

• Gender adaptation It is well documented [117, 51, 118] that usage of gender

dependent models for male and female speakers improves performance. Adap-

tation can be used to improve the gender dependent performance in situations

where there is limited training data available. If, for example, we have a rea-

sonable amount of training data for female speakers but little for male speakers,

we could adapt the female model or data using the male training data, thereby

improving the recognition performance for male speakers.

• Language and dialect adaptation As mentioned, the collection of a compre-

hensive database for a new language or dialect is a difficult and time consuming

procedure. Much of the work in multi-language research has focused on creating

speech recognition systems which can recognize speech from multiple languages

[47, 10, 29, 25], or bootstrapping of new monolingual models for a new language

using existing models [116, 102].

Alternatively, we can apply adaptation techniques to reduce the amount of lan-

guage or dialect-specific training data required. Recently, some studies [112, 15,

30, 63, 85] have therefore used adaptation techniques to improve the recogni-

tion performance for a new language or dialect, using existing models of other

languages or dialects.

Two main families of adaptation schemes have been proposed in the past, namely

Bayesian adaptation and transformation-based adaptation procedures.

The maximum a-posteriori (MAP) estimation procedure [67, 43, 45] attempts to find

the parameters (0) which maximize the posterior probability of the parameters given

the training data, i.e.

OMAP = argmaxP(OIX) = argma.TP(XIO)P(O)
() ()

where X is the training data. P(O) is the prior distribution of the model parameters

and expresses any knowledge about the parameters or model prior to any data being

observed. P(XIO) is the probability of the observation X being generated by the model

with parameters O. P(X) has not been included in Eq. (1.1) as it is a normalizing

constant and does not affect the mode ((hf AP) of the posterior distribution P(OIX).

The MAP framework provides a way of incorporating prior information in the estima-

tion process, which is useful when dealing with problems caused by limited training

data. This prior information can be subjective or information obtained from non-

task-specific data or models. MAP estimation has sometimes been referred to as

Bayesian learning in the speech recognition literature. MAP estimation is an approx-

imate Bayesian learning algorithm and will therefore not be referred to as Bayesian

learning in this thesis.

When using MAP estimation for adaptation purposes, the non-task-specific information

is encapsulated in the prior distribution. For example, in speaker adaptation, speaker

independent data or models will be used to create the prior, along with any other

subjective information. MAP starts from the seed model performance and converges

asymptotically to task-specific performance as the amount of adaptation data increases.

The usage of the MAP algorithm will be investigated in Chapter 4.

The following summarizes the advantages and disadvantages of Bayesian and transformation-

based (Section 1.1.2) approaches,

• Bayesian adaptation requires relatively large amounts of adaptation data (com-

pared to transformation-based methods).

• Transformation-based methods are typically much faster in that they require very

small amounts of training data.

• Transformation-based adaptation has the advantage that it can be applied either

directly to the features, or to the HMM parameters.

• A disadvantage of transformation-based methods is that they tend not to take

full advantage of larger amounts of adaptation data.

• Transformation-based adaptation is usually text-dependent, whereas Bayesian

adaptation is typically text-independent.

• Bayesian adaptation has good asymptotic properties: performance converges to

speaker-dependent performance as the amount of adaptation speech increases.

Transformation-based techniques estimate a transformation of seed model parameters,

thereby creating the new task-specific model. The transformation is typically linear

[33, 69], though non-linear transforms have also been used [1]. When using a linear

transformation, we estimate the following transformation,

where y is the seed model parameter vector, x is the new adapted model parameters,

A and b are the transformation matrix and offset vector.

The transformation will typically contain far fewer parameters compared to the model

we are transforming. We will therefore be able to estimate a reasonably accurate

transformation when very little data is available. Generally, when the adaptation data

is limited, transformation-based adaptation can therefore efficiently transform all the

HMM parameters using cluster-dependent transformations.

M

P(oISt) =L csiN(o, Pig, 'Eig),

i=l

M

P(oISt) =L csiN(o, AgJ1ig + bg, A9~igA~).
i=1

Only the parameters Ag, bg, 9 = 1 ... Ng need to be estimated, where Ng is the number

of distinct transformations.

The transformation is typically estimated using the maXImum likelihood criterion

[33, 69], in which case it is known as maximum likelihood linear regression (MLLR).

Recently the maximum a-posterior (MAP) criterion has been used to estimate the

transformation parameters (MAPLR) [22], allowing the use of prior information in the

estimation of the transformation. The minimum classification error criterion (MCE)

has also been used [96, 95].

Combinations of Bayesian and transformation-based adaptation methods have been

shown to combine some of the advantages of the two approaches. Hybrid algorithms

using MLLR adaptation followed by MAP adaptation (MLLR-MAP) have been used

with much success for speaker adaptation [32, 110] and cross-language adaptation [84].

The MAP adaptation algorithm, followed by the MCE discriminative training proce-

dure (MAP-MCE) [74] has also been used to improve on the MAP and MCE procedures

for speaker adaptation.

1.2 Training

Here, only the task-specific training data is available and one can therefore not use

adaptation techniques to improve the performance of the resultant system. An example

here would be training a speech recognizer for a new language, where only a small

amount of data has been recorded and data from other languages is not available or

other complications do not allow the use of adaptation.

Conventional maximum likelihood (ML) estimation attempts to maximize the likeli-

hood of the training data given the model parameters of the corresponding class. The

models from other classes do not participate in the parameter estimation. By maxi-

mizing the likelihood of the correct model, but not minimizing the likelihood of other

competing models, it cannot be guaranteed that the ML models will optimally dis-

criminate against incorrect classes in recognition and therefore minimize recognition

error. Several methods have been proposed to improve this by including discriminative

information in the training criterion.

The maximum mutual information (MMI) criterion, which minimizes the class condi-

tional entropy has been used to create a training procedure which is more discrimina-

tive [88, 87, 62, 113]. However, as is the case with the ML criterion, MMI does not

necessarily minimize the classification error.

The aim of minimum classification error (MCE) training is to correctly discriminate

the observations of an HMM for best recognition results and not to fit the distributions

to the data. Discriminative training of hidden Markov models (HMMs) using MCE

training has been used in several speech recognition tasks with much success. Tasks

where MCE training has been used to improve recognition performance include: con-

nected digit recognition [59, 23, 65, 108], the English "E"-set {b,c,d,e,g,p,t,v,z} [23],

speaker adaptation [74] and continuous speech [65].

MCE is somewhat prone to overspecialization, especially when training data is limited.

Overspecialization is characterized by good recognition performance for the data used

during training, but poor recognition performance for independent testing data. MCE

also tends to further emphasize any mismatch between the training and testing sets,

resulting in a degradation in testing set performance after a maximum has been reached.

Methods of reducing overspecialization in the minimum classification error algorithm

will be investigated in Chapter 3.

The fundamental concept of Bayesian learning or analysis is that the plausibilities of

alternative hypotheses are represented by probabilities, with inference being performed

by evaluating these probabilities. The result of Bayesian learning is a probability

distribution over model parameters that expresses our beliefs regarding how likely the

different model parameter values are.

Given a vector y = (Yl, ... , Yn) of n observations, we have the conditional probability

distribution P(yIO), which depends on the k parameters OT = (01,.", Ok)' To start the

process of Bayesian learning we define a prior distribution P(O) for the parameters O.

Using Bayes' rule, the conditional distribution of 0 given the observed data (posterior

distribution) is

P(OI) = P(yIO)P(O)
y P(y)'

The prior distribution is an important part of any Bayesian method, as it expresses our

knowledge about the distributions prior to any data being observed. Using the prior

distribution P(O) and likelihood P(yjB) we can calculate the posterior distribution

P(Oly) which is then used to classify an unknown observation. Note that P(y) is a

normalization term and is usually ignored.

respect to the posterior distribution. This is typically a non-trivial task and the integral

must either be numerically computed or simplified by approximating the posterior

using some parametric form. An approximation which is often used assumes that

the posterior is well approximated by a Normal distribution [72, 54, 58]. Assuming

such a simple parametric form allows the integral to be easily computed. Such an

approximation has the disadvantage that a complex multi-modal posterior distribution

cannot be accurately approximated.

Markov chain Monte Carlo methods [36, 37, 38, 39, 26, 79, 111] can be used to numer-

ically integrate the above model prediction with respect to the posterior distribution,

and have been used for this purpose in the field of neural networks by Neal [82]. These

methods make no assumption concerning the form of the posterior distribution.

The maximum a-posteriori (MAP) estimation method has been used extensively in

speech recognition and can be considered an approximate Bayesian learning procedure

if the posterior distribution is sufficiently peaked about its mode (assuming a single

mode).

Bayesian learning allows us to use more complex models when little training data is

available (as compared to point estimate techniques). The usage of Bayesian learning

using a Markov chain Monte Carlo algorithm will be investigated in Chapter 5.

Conventional estimation algorithms (such as maximum likelihood estimation) rely on a

reasonable amount of training data to give accurate parameter estimates. The accuracy

of the parameter estimate is directly related to the recognition performance of the

speech recognition system and is therefore of extreme importance. Overtraining, the

phenomenon where training set performance is better than the performance for an

independent testing set, is also more prevalent when training data is limited (it is

As mentioned, the collection of large speech databases is an expensive and time con-

suming task. As a result, it is not always possible to collect, segment and annotate

large databases for every task, language and dialect. The sparse training data problem

is therefore a real and important problem that must be addressed. This thesis therefore

investigates and proposes several techniques which improve the recognition accuracy

for sparse training data scenarios.

1.4 Organization of this thesis

In Chapter 2, the relevant hidden Markov model theory is reviewed. The hidden

Markov model speech recognition system is also briefly described. The speech corpora

used to experimentally evaluate the work in this thesis are described and relevant

results from the literature are reported. Finally, overtraining is discussed in terms of

the bias/variance problem.

Chapter 3 introduces minimum classification error (MCE) training. Overtraining is dis-

cussed within the MCE framework, and several modifications which limit overtraining

are proposed. Various aspects of the MCE algorithm and the proposed modifications

are discussed and experimentally evaluated.

Chapter 4 focuses on the application of Bayesian theory to adaptation in continuous

speech recognition. The classical maximum a-poste7'iori (MAP) adaptation algorithm

of Gauvain and Lee [45]is reviewed. An alternative gradient-based method of obtaining

the MAP estimate, which does not use a parametric prior distribution, is introduced.

A Bayesian inspired modification to the MCE training procedure is proposed. This

method effectively tries to obtain the MAP point of the correct classification probability

distribution of the parameters. Finally, the three different methods discussed in this

chapter are experimentally compared.

In Chapter 5, Bayesian learning is introduced and an implementation for continuous

speech recognition is discussed. Monte Carlo methods relevant to this work are in-

troduced and discussed. The implementation of Bayesian learning within an HMM

framework is described. The resultant system is tested for three situations where lim-

ited data is available for training purposes.

Finally, in Chapter 6, the discussions and results of previous chapters are summarized

and conclusions are made. Suggestions for future research are also given.

1. New modifications to the MCE algorithm are proposed in Chapter 3. These

modifications limit the effect of overtraining which is prevalent when using MCE

training.

2. A new gradient-based MAP adaptation algorithm (GMAP) that does not make

any assumptions concerning the form of the prior distribution is proposed in

Chapter 4. This algorithm is shown to outperform the standard MAP approach

of Gauvain and Lee [45] for the conditions tested.

3. A new MCE based MAP adaptation algorithm is proposed and tested in Chapter

4. This algorithm too is shown to work better than the standard MAP approach,

as well as being better than standard MCE.

4. Bayesian learning is introduced. An original implementation of Bayesian learning

for hidden Markov model speech recognition is introduced and discussed. This

is, to the author's knowledge, the first time that Bayesian learning using Markov

chain Monte Carlo has been used for hidden Markov model speech recognition.

Chapter 2

Background

In this chapter the basic hidden Markov model (HMM) theory and notation is pre-

sented. The implementation details of the HMM software, as well as the speech datasets

used in this work are also described. Finally, the bias/variance problem is discussed,

relating model complexity to overtraining.

This section documents the relevant HMM theory, as well as any implementation spe-

cific details. The configuration of the base system is also described.

The Hidden Markov model Toolkit for Speech Recognition (HMTSR) used in this

thesis was developed by the author and Nieuwoudt [83] during their Ph.D. studies.

The toolkit is used by several post-graduate students in the Speech Recognition group

at the University of Pretoria.

It is not realistic to present a thorough review of hidden Markov modeling theory in

this chapter; the reader is therefore referred to books such as that of Rabiner and Juang

Background

Thirteen Mel-frequency cepstral coefficients (MFCCs), along with their first and second

order differentials are used. The following describes the feature extraction process:

• A first order filter is used to pre-emphasize the speech signal [90, p. 112], to

spectrally flatten the signal and to limit finite precision effects later in feature

extraction. The filter transfer function used is

• The preemphasized speech signal is blocked into frames [90, p. 113] of length

16ms, with overlap of 6ms. The frames are therefore 10ms apart. The number

of samples (Ns) is determined by the block length (time) and the sampling rate.

A sampling rate of 16kHz would therefore result in a block of 256 samples.

• A Hamming window [90, p. 114] is used to minimize signal discontinuities at the

beginning and end of each frame. A Hamming window has the following form:

21(n
w(n) = 0.54 - 0.46cos(--)

Ns -1

• The power spectrum of the windowed frame is calculated using the fast Fourier

transform.

• The power spectrum is filtered using Nf meI-spaced filters [90, p. 183-190]. The

filters have triangular bandpass frequency responses. The number of filters is set

using the following formula Nf = ro'Und(0.0015 . Sr), where Sr is the sampling

rate. A sampling rate of 16kHz therefore results in 24 meI-spaced filters being

used .

• The discrete cosine transform (DCT) of the natural logarithm of the 24 filter

outputs is computed .

• A second-order polynomial fitting [90, p. 194] of 5 consecutive MFCCs is used to

estimate the first and second order derivatives of the MFCCs. This incorporates

temporal information (external to the frame) into the features.

Note that the values in the above feature extraction process were determined empiri-

cally and will not necessarily perform best in all circumstances.

1. The number of states N. The individual states are labeled as {I, 2, ... , N}, and

the state at time t is denoted as qt.

2. The number of mixture components per state M. Figure 2.1 shows a continuous

density HMM with 3 states (N = 3) and 4 Gaussian mixture components (M =

4).

3. The state-transition probability distribution A = {aij}, where aij is the prob-

ability of being in state j at time t + 1 after having been in state i at time t,

Background

I I \ \
C2V I \ \

I \
I I '- \ C24

1l\Llli

4. The observation probability distribution B

where

For a continuous density HMM the observation probability is represented as a

finite mixture of the form
M

bj(o) = L cjkN(o, J),jk, "Ejk).
k=l

A complete specification of an HMM includes the parameters N, M, aij, 'lfi, and the

mixture parameters Cjk, J1,jk and "£jk. The complete parameter set above of an HMM

will be represented as

The MFCC features are largely uncorrelated. A diagonal covariance matrix ("£jk) is

therefore used in this work, which greatly reduces the number of parameters that are

Left-to-right hidden Markov models limit transitions to forward transitions only, i.e.

aij = 0 'II j < i. Left to right hidden Markov models with no skipping transitions are

used in this work where aij = 0 'II j =1= i and j =1= (i + 1).

The probability of an observation sequence 0 = (01,02, ... , OT) given the model 0

(P(OIO)) can be obtained by summing over all possible state sequences q = (q1q2 ... qT),

P(OIO) = L P(O, qlO) = L P(Olq, O)P(qIO).
all q all q

T

P(O, qlO) = nqobq, (01)!!("qHq, . bq, (0,))

T

= rr(aqt-lqt· bqt(Ot)),
t=1

The Viterbi algorithm is used to find the single best state sequence q = (q1 q2 ... qT)

and its probability P(O, qlO), for a given observation sequence 0 = (0102 ... OT). The

Forward-Backward procedure is used to determine the probability of an observation

sequence given the model 0, i.e., P(OIO). Due to efficiency considerations, the best

state sequence is used for recognition and some training procedures, as opposed to

using all possible state sequences.

Embedded training is often used after the above training steps. A short discussion of

the training procedures and related algorithms follows:

• The transition probabilities, initial probabilities, number of states and Gaussians

per state are set by the user in a configuration file. In this work, the transition

probabilities were always initialized as

i = 1,

otherwise.

• The Gaussian mixture weights are initialized as 1/M, for an 111 Gaussian mixture

state.

• Labeled data is divided into equal sized segments, one segment for each state in

the HMM. The speech segments are used to initialize the HMM mixture means

and variances by using the segmental K-means algorithm to cluster the features

into Iv! clusters (M Gaussian mixture state), the means and variances of which

are used to initialize the mixtures for the associated state.

Alternately, in the absence of labeled data, utterances are divided into equal sized

blocks using the transcription given. Further training then proceeds using search-based

training.

Maximum likelihood training The Baum- Welch method, also known as expecta-

tion maximization (EM) [28], is used to iteratively maximize the likelihood P(OIB).

To describe the procedure of segmental re-estimation of the parameters, we first define

~(i, j), the probability of being in state i at time t and state j at time t + 1. We also

define ft(i) as the probability of being in state i at time t and ftU, k) as the probability

of being in state j at time t with the kth mixture component accounting for 0t.

The forward-backward algorithm [90, p. 334] is used to estimate the above probabilities

given the current model. The parameter re-estimation formulas used are,

Segmental training The forward-backward algorithm used in maximum likelihood

training is relatively computationally expensive and slow. A segmental training step

[61] is therefore used to quickly obtain a relatively good estimate of the model param-

eters (prior to using the EM/ML algorithm). The Viterbi algorithm is used to perform

a forced-alignment, in which the best state sequence is obtained. The state alignment

is then used to reestimate the model parameters. This is often called segmental train-

ing, as the observation sequence is segmented (state aligned), with the segments being

used to reestimate the parameters of the associated states. It would, however, only be

fair to mention that the forward-backward algorithm does have a stronger theoretical

background.

The same re-estimation formulas as that used in the ML/EM algorithm (Eqs. (2.12)

to (2.15)) are also used here. The probabilities ~t(i,j), 1't(i) and 1'(j, k) are, however,

estimated as follows

~t(i,j) = S(qt - i)S(qt+l - j)

1't(i) = S (qt - i)

(" k) - S(_") cjkN(°t, J1jk, ~jk)
1't J, - qt J bj(Ot)

(2.16)

(2.17)

(2.18)

8(il={:
Embedded training It is often advantageous to use a search algorithm (see Section

2.1.5), not only to perform a state alignment, but also HMM alignment. Here a search

algorithm is used along with the transcription of the speech units to automatically

align (segment) the speech data (HMM alignment). We are therefore not relying on

any manually created labels, but allowing the current model to determine where a

label should begin and end. The search is limited to the transcription of the relevant

utterance. Some optional HMM models are permitted inside the transcription, this is

to allow models such as silence to be inserted (by the search), where they might not

occur in the transcription. The re-estimation is performed in exactly the same way as

done in the segmental training step. In some situations, where some or all of the data

is not labeled, this step is essential. For a dataset which is not labeled at all, such as

,
~/6o/(tJ(~

h /S-~ s 'f:.1X

the TIDIGIT dataset, only the initialization step and embedded training is performed

(the other training phases rely on labelled data).

Mixture splitting An alternative that has been found to work well is Gaussian

splitting [100, 87]. Here, we initialize only one mixture component per state and then

split the mixture component with the highest mixture component weight into two

separate Gaussians. This is done at the end of each training iteration, until all allowed

mixtures components have a non-zero mixture weight. The Gaussians are split in the

direction of maximum variance. This is done by setting the mean and variance of the

new Gaussian equal to the existing Gaussian and then moving the mean vectors a small

distance away from each other in the direction of maximum variance. The weights of

the two new Gaussians are set to be equal to one half that of the original Gaussian.

Figure 2.2 shows a two-dimensional example of a two-component Gaussian mixture

where the component with the largest weight (0.7) is split into two new Gaussians,

creating a mixture containing three Gaussians. Note that the mean and variance of

the new Gaussians will tend to change considerably after the next training iteration.

If, during training, a mixture weight were to become zero, the Gaussian associated

with the largest weight will be split. This technique has been used for all experiments

in this work.

Hidden Markov models implicitly model state duration probability with a Geometric

distribution, i.e.

,f2 = 0.35
I \

" " Cl = 0.3(C ~
I, ',1 ------i ':1
I l
I
:'
:'
:'
:\ I
: \ I
',\ I.
,\. I.'
" •••• ", t'

duration density is inappropriate for most systems. We would prefer to explicitly model

the duration probability in some analytic form. Initial duration modeling approaches

[90] assigned each state a discrete duration probability, which was incorporated into the

search algorithm. These algorithms were, however, computation ally expensive. Post-

processing approaches [91, 93], which were more computationally efficient, added the

duration contribution to the Viterbi metric after candidate paths had been identified.

If the best path is not one of the candidate paths, then this method fails.

Burshtein [16] proposed a duration modeling approach, which adds the duration metric

at each frame transition in the Viterbi algorithm.

The modified Viterbi algorithm keeps track of the duration ds(t) of each state s at

time t. Letting Afi denote the duration, at which the gamma distribution of state i is

a maximum, then the duration penalty Pij of making a transition from state i at time

t to state j at time t+ 1 is

0 di(t) < Mi and Z = J

log(di(t+l)) di(t) ~ !vIi and Z = J
Pij = di(t) (2.22)

log(di(t)) di(t) < !vIi and i=lj

log(Mi) di(t) ~ !vIi and i =I j.

Auto-transitions are therefore not penalized before the duration is Mi. After the dura-

tion Mi, we penalize gradually. Upon exit from the state, the overall duration metric

is log(di(t)), which is as it should be. Word duration modeling is implemented in much

the same way.

The duration model parameters are estimated using the Viterbi state-alignment. After

determining the mean and variance of the duration from the state alignment, the

parameters a and fJ are estimated for each state using Eqs. (A.I4) and (A.I5). A

similar approach to duration modeling was also proposed by Du Preez [35]. Burshtein's

approach has been implemented and is used, where indicated, in this thesis.

Continuous speech recognition requires the segmentation and labeling of continuous

speech. Fortunately, there are efficient methods of segmenting and labeling continuous

speech at word and phoneme levels. Various (search) algorithms exist, each with ad-

vantages and disadvantages. However, only those algorithms implemented and used in

this work will be described here.

Grammar networks and language models A grammar network/language model

is used to determine which transitions may be taken, or what probability there is

of taking a certain transition. A grammar is an explicit set of rules limiting which

models/words/phonemes may follow others. The grammar is implemented as a finite

state network (FSN), which is created from a text based grammar. Note that each FSN

node is associated with a single HMM, but there may be multiple nodes associated with
•

the same HMM.

Trellis search The trellis search algorithm [106] is a frame-synchronous implemen-

tation of the Viterbi search algorithm, which allows transitions between models or

grammar nodes.

N-best search It is often necessary to obtain the N-best HMM sequences. The

N-best strings are often used to obtain a confidence measure for a recognition output.

MCE training uses the N-best strings to obtain a measure of misclassification. If the

problem is simple enough, the N-best HMM sequences can be obtained by aligning

all possible HMM sequences. This is, however, not feasible for most, if not all, speech

recognition applications. As a result, efficient N-best search algorithms have been

developed [106, 103]. The disadvantage, is that none of these algorithms are guaran-

teed to give the true N-best sequences (although most times there will only be small

differences in probability and not the sequences).

The N-best search implemented and used in this work is the tree-trellis algorithm

proposed by Soong and Huang [106]. The search comprises two stages, namely

The standard trellis search algorithm is modified, to store a partial path map.

The partial path map contains the likelihood scores of all partial paths leading

Background

After the trellis search algorithm has been performed, a backward tree search

is started from the terminal node. This part of the search is done time asyn-

chronously. The search tree is implemented using the A* algorithm [99, 86]. The

A * search restricts the search by using an admissible heuristic h, such that h

never overestimates the cost to reach the goal. Here, we use the partial path

map, which gives the exact cost.

2.2 Overtraining

Overspecialization (or overtraining) occurs in most training algorithms where a finite

number of examples are available for training. If the training data set was perfectly

representative of the test set (this would only truly occur when an infinite number of

training examples were available), there would be no difference between training set

and testing set performance. However, in practice data sets are limited in size and the

test set performance tends to be worse than the training set performance. This is a

result of the model becoming too specialized and not generalizing well.

Model complexity influences overtraining, especially when little training data is avail-

able. This phenomenon can be described in terms of the bias/variance problem.

2.2.1 The Bias/Variance Dilemma

Here, due to its less complex and easily interpreted nature, the bias/variance problem

will be discussed within a regression framework. It is, however, just as relevant to

classification problems.

The regression problem is to create a function f(xl>') using a training set D, with

D = (:1:1, Y1), ... ' (xn, Yn), where we wish to estimate y for an observation x. Typically,

the function 1 is fixed and we wish to merely estimate the function parameters A.

Given the data (V), and x, an appropriate measure of the suitability of I('/A) as a

predictor of y is the mean-squared error (MSE), or

E[(y - E[ylx])2Ix, V]

+ (J(x; V) - E[ylx])2.

The expectation E[(y-E[ylx])2Ix, V] is not dependent on the data or on the estimator

I. The distance (J(x; V) - E[ylx])2 therefore measures the effectiveness of 1 as a

predictor of y. The mean-squared error of 1 as an estimator of the regression E[ylx]

where Ev is the expectation with respect to the training set V, i.e. the average over

the ensemble of possible datasets V. Equation (2.24) can be rewritten in terms of bias

and variance [46],

(Ev[J(x; V)] - E[ylx])2

+ Ev[(J(x; V) - Ev[J(x; V)])2].

The term (Ev[J(x; V)] - E[ylx])2 is the bias of the estimator and measures any sys-

tematic tendency for it to give the incorrect answer. An estimator (or classifier) is said

Background

is the variance in the estimator error, and measures the sensitivity of the estimator to

any randomness in the training examples.

The bias and variance of an estimator are typically affected by, among others, model

type, model complexity and the parameter estimation algorithm. Unfortunately, re-

ducing the bias typically increases the variance (and vice versa). Reducing the sum

of the bias and variance (or mean-squared error of .f), therefore generally requires a

trade-off between their contributions.

The trade-off between bias and variance is usually optimized by varying the complexity

of the model. This trade-off between bias and variance can be illustrated using a one-

dimensional regression problem. Figure 2.3 shows one such example. In this case, a

polynomial of degree n is fitted to the noisy data by minimizing the mean-squared

error. Results using n = 2, n = 5 and n = 50 are shown.

MSE = 0.0107

(a)

MSE = 0.0005

(b)

MSE = 0.0021

(c)

Figure 2.3: One hundred observations of the raised cosine function (0.5cos(lOxjpi) + 1) plus
noise. Noise has zero-mean Gaussian distribution, with standard deviation 0.1. The solid
curve is the target function, and dotted curve the polynomial fit of degree n, with (a) n = 2,
(b) n = 5 and (c) n = 50.

The polynomial fit in (a) is relatively poor, and is a result of the inability of the model

(or function) to represent the underlying process. The solution in (a) has a large mean-

squared error due mainly to the bias term. The polynomial fitted in (c) has a high

degree n, and has started fitting the noise; here the variance term accounts for most of

the mean-squared error. The polynomial fit shown in (b) is the result of a model which

is complex enough to fit the true underlying process (low bias), yet simple enough such

that the noise in the data is not modeled as well (low variance).

The optimal choice of model complexity will also vary with the amount of available

training data. More training data will reduce the variance and so more complex models

can be used. However, when there is relatively little data available, less complex models

will be preferred.

The principles in the above discussion are incorporated in Occam's Razor. Simply

stated, Occam's Razor is a principle that states that unnecessarily complex models

should not be preferred to simpler ones. The bias/variance dilemma is often problem-

atic when using single point estimates in sparse training data situations. The effects of

the bias variance problem will be encountered in Chapter 4 where, for certain sparse

data scenarios, less complex models are preferable. In Chapter 5 the usage of Bayesian

learning is investigated. Bayesian learning reduces the variance of the estimate or so-

lution and therefore results in more complex models being preferred over less complex

ones in such sparse data scenarios.

2.3 Experimental procedure

The main goal of the experiments designed in this study is to investigate the relative

effectiveness of the algorithms proposed in comparison with conventional algorithms.

This work therefore attempts to keep as much in common for all other aspects of

the speech models associated with both the conventional and the proposed techniques

and to keep the recognizer structure as simple as possible. The basic HMM system

described in Section 2.1 has been used throughout.

There is little point in presenting discrete phoneme recognition (phoneme classifica-

tion) results as this can be misleading. A phoneme classifier that only chooses the

most frequently observed phonemes will tend to perform well for phoneme classifica-

tion. Such a classifier will, however, not necessarily work well for other tasks such as

continuous word or phoneme recognition. Continuous phoneme recognition results are

therefore reported throughout this thesis. The recognition accuracy of the system is

reported, where accuracy is defined as:

A
Phones - Subs - Dels - Ins

ccuracy = Ph 'ones

where Phones refers to the number of phones in the correct transcription, Subs the

number of substitutions, Dels the number of deletions and Ins the number of inser-

tions. Error rates reported are simply 100% - Accuracy.

It is necessary to determine whether the recognition accuracy of a new system is better

than that of an existing baseline or reference system. A test of significance can therefore

be performed to determine whether this is probably true or not. We must therefore

decide between the two hypotheses:

where Pn is the recognition accuracy of the new system and H is the baseline or

reference accuracy. A one-tailed test is used, since we are interested in determining

whether the improvement in recognition accuracy is better than a reference system

performance.

The maximum probability with which we would be willing to risk the error of rejecting

a hypothesis when we should have accepted it is called the level of significance. If, for

example, a level of significance of 0.01 were attained, then we would be 99% confident

that we had made the correct decision in accepting the hypothesis.

a 0.05 and 0.01 level of significance for the three speech databases used (described

in Section 2.4). The baseline accuracy is assumed to be 50%, i.e. the worst case

improvement required (a 70% baseline performance, for example, will require a smaller

improvement to reach the same level of significance).

Table 2.1: Improvements in recognition accuracy required to attain a 0.05 and 0.01 level of
significance for the three speech databases used. The baseline accuracy is assumed to be 50%.
The number of phonemes in the relevant testing sets, used to determine the significance level,
are also listed.

Database Phonemes Level of significance

0.05 0.01

TIMIT 59858 0.34% 0.48%

TIDIGITS 28330 0.49% 0.69%

SUNSpeech 9026 0.87% 1.23%

The improvements in accuracy required (Table 2.1) are typically smaller than one

percent, but greater than 0.1%. Results will therefore be specified to one decimal

place. In this work, improvements that are significant to a level of 0.01 will simply be

referred to as significant.

2.4 Speech datasets

This section describes the speech corpora used in this thesis. Three different datasets

are used, namely: TIMIT, TIDIGITS and SUNSpeech.

The TI:tvIIT [4] corpus of read speech was designed to provide speech data for the

acquisition of acoustic-phonetic knowledge and for the development and evaluation of

automatic speech recognition systems. TIMIT contains a total of 6300 sentences, 10

sentences spoken by each of 630 speakers from 8 major dialect regions of the United

States.

The sentences found in TIMIT consist of 2 dialect "shibboleth" sentences, 450 phoneti-

cally compact sentences, and 1890 phonetically diverse sentences. The dialect sentences

(SA sentences) were meant to expose the dialectal variants of the speakers and were

read by all 630 speakers. The phonetically-compact sentences were designed to provide

a good coverage of pairs of phones, while the phonetically-diverse sentences (the SI

sentences) were selected from existing text sources so as to add diversity in sentence

types and phonetic contexts. Table 2.2 summarizes the sentences found in the TIMIT

database.

Sentence Unique Number of Total Sentences per

type sentences speakers speaker

Dialect (SA) 2 630 1260 2

Compact (SX) 450 7 3150 5

Diverse (SI) 1890 1 1890 3

Total 2342 6300 10

Following convention the standard TIMIT 39-phone set is used. The 63 phones found

in the TIMIT database are reduced to 39 by combining models as done by Lee [68].

The TIMIT dataset is used in experiments in Chapters 3, 4 and 5. In Chapter 3

overtraining is investigated using the suggested training and testing sets. Chapters

4 and 5 however, present gender adaptation experiments and limited training data

experiments using TIMIT.

there is limited training data for female speakers. The small female training set consists

of speech data from two speakers from each of the eight dialect regions. No sentence

text appears in both the training and test sets. A small gender independent training

set will be required for testing the algorithms presented in Chapters 3 and 5. One such

set has been created by randomly selecting two male and two female speakers from

each of the eight dialect regions found in the TIMIT dataset.

Table 2.3 describes the different training and test sets used. Gender specific testing

sets are used in Chapters 4 and 5.

Table 2.3: Description of TIMIT training and testing sets used

Description Label Number of speakers Number of Duration

Male Female Total Sentences (minutes)

Training sets:

Full (standard) T 326 136 462 4620 236.5
Male TM 326 0 326 3260 165.2
Female TF 0 136 136 1360 71.3
Female-small TFS 0 16 16 160 8.2
Small (gender indep.) Ts 16 16 32 320 16.1

Testing set (standard) 112 56 168 1680 86.4

The TIMIT dataset has been used extensively in the speech recognition literature

to experimentally test algorithms and hypotheses. The following summarizes a few

such cases, so as to ensure that the reader has a fair idea of what performance can be

expected for TIMIT. Only system configurations similar to that used here are reported.

Rathinavela and Deng [96] investigated the usage of state-dependent linear trans-

forms of Mel-warped DFT features. The authors performed discrete (not continuous)

phoneme recognition to test ML and MCE trained H~IMs, as well as their "optimum-

transformed HMM". Table 2.4 summarizes the results reported for simple left-to-right

3 state, 5 mixture HMM models.

Table 2.4: Summary of TIMIT results reported in [96]

Model/Training Phonetic classification rate (%)

ML-HMM 59%

MCE-HMM 66%

MCE-THMM 69%

McDermott [75] used the TIMIT database to evaluate the effectiveness of MCE for

continuous speech recognition. Table 2.5 summarizes the TIMIT results presented by

McDermott in [75].

Table 2.5: Summary of TIMIT accuracy results reported by McDermott [75]

Number of mixtures ML MCE ML+bigrams MCE+bigrams

1 48.8 56.0 61.0

4 55.0 61.9 62.4 66.2

8 57.1 62.7 64.8 67.3

16 59.9 63.2 66.8 68.7

Yuk and Flanagan [119] investigate the use of neural network based adaptation methods

applied to telephone speech recognition using TIMIT and NTIMIT [56]. Recognition

accuracy of 62.2% is reported for TIMIT using their base system, a 3 state left-to-right

mono-phone HMM with 30 Gaussian distributions per state.

Moreno and Stern [80] compared speech recognition accuracy for high quality recorded

speech and speech as it appears over long-distance telephone lines. The performance of

the CMU SPHINX system was compared for the TIMIT and NTIMIT [56] databases.

Recognition accuracy of 52.7% was reported for the TIMIT test set.

The TIDIGITS [70]was designed and collected for the purpose of designing and eval-

uating algorithms for speaker-independent recognition of connected digit sequences.

The corpus contains read utterances from 326 speakers (111 men, 114 women, 50 boys,

and 51 girls) each speaking 77 digit sequences. The data was collected in a quiet

environment and digitized at 20 kHz.

The digit sequences are made up of the digits: "zero", "oh", "one", "two", "three",

"four", "five", "six", "seven", "eight", and "nine". The 77 digit sequences spoken by

each of the speakers can be broken up as follows: 22 single-digit sequences (2 of each

of the 11 digits) and 11 each of randomly generated 2,3,4,5 and 7-digit sequences.

The database is divided into two subsets, one to be used for algorithm design and the

other for evaluation. The division yielded speaker independent training and testing

sets, each containing half of the male and female speakers. The boys and girls test and

training utterances are not used in this work.

As with TIMIT, the TIDIGIT dataset is used for gender adaptation and reduced data

experiments in later chapters. It is for these experiments that reduced subsets are

created for female speakers in the dataset. A reduced speaker set (Tws) is created,

using four randomly chosen female speakers, using all 77 digit sequences per speaker.

The above set is further reduced by using only 7 digit sequences per speaker (2 single-

digits and one each of 2,3,4,5 and 7 digit sequences). Table 2.6 presents the training

and testing sets used for the TIDIGITS corpus.

Description Label Number of speakers Digit Duration

Male Female Total sequences (minutes)

Training sets:

Full (standard) T 55 57 112 8624 253.4

Man TM 55 0 55 4235 121.9

Woman Tw 0 57 57 4389 131.5

Woman-small Tws 0 5 5 385 10.1

Woman-very-small Twvs 0 5 5 35 55 s

Testing sets:

Full 55 57 112 8623 254.4

Man 55 0 55 4235 123.1

Woman 0 57 57 4389 131.3

Normandin [87]proposed an approach for splitting Gaussian mixture components based

on maximum mutual information estimation (MMIE) training. Experiments using the

TIDIGITS dataset were conducted. Recognition word (digit) error rates of between

1.6% (1 mixture per state) and 1.0% (16 mixtures per state) were obtained for models

with variable numbers of states. Utilizing their mixture splitting algorithm, however,

resulted in a digit error rate of 0.71%.

Jiang et at. [57] investigated a new Bayesian predictive classification (BPC) approach

for robust speech recognition where a mismatch between training and testing conditions

occurred. TIDIGITS was used, along with other datasets, to test their new approximate

BPC algorithm. Using a 10 state, 10 mixture per state continuous density HMM, digit

error rates of 2.2% and 2.4% were reported for their baseline system and new BPC

system respectively, when using the standard TIDIGITS dataset.

The SUN Speech database was compiled by the Department of Electrical and Electronic

Engineering of the University of Stellenbosch to contain phonetically labelled speech in

both English and Afrikaans. The data was recorded in a controlled environment, with

12 bit resolution and a 16kHz sampling rate. Sixty sentences comprising four sentence

sets were chosen to exhibit the diversity of phonemes in the two languages. Details of

the number of speakers and the number of sentences spoken by each group of speakers

are given in Table 2.7.

Table 2.7: Description of SUN Speech database: number of male and female speakers and
total number of speakers for each sentence set

Language Number of speakers Sentence set Number of sentences

Male Female Total

Afrikaans 24 16 40 1 10

18 12 30 2 10

English 33 17 50 3 20

22 4 26 4 20

A total of 59 phonetic categories, including both a silence and unknown category,

were used to segment both the Afrikaans and the English speech. It was attempted

to assign the labels phonetically, i.e. according to the sound produced, rather than

phonologically assigning the labels, i.e. according to what was supposed to be said.

The SUN Speech database is used for cross-language adaptation experiments in this

work. Subdivision of the dataset was therefore dictated by the requirements for cross-

language adaptation.

be obtained by using data from the first sentence set for training and data from the

second sentence set for testing. We however, need to create a smaller training subset,

so as to recreate a scenario where extremely little Afrikaans training data is available.

The database is not entirely consistent in that some speakers, but not all, spoke sen-

tences from more than one sentence set. Those speakers who spoke all of the Afrikaans

sentences were used to create a reduced Afrikaans set. This has the added utility of

creating a speaker-dependent (SD) test set; although this set is not used in this thesis.

The reduced Afrikaans training set will be referred to as the "adaptation set", as it is

used as such in many of the experiments.

The full English set is used for training purposes (it is not required for testing). Table

2.8 gives the details of the subdivision of the database into training and testing sets.

Table 2.8: Details of SUNSpeech training and testing sets used

Language Description Label Number of Speakers Sentence Duration

Male Female Total set (minutes)

English Training E 55 21 76 3 and 4 135.5

Training set A 23 16 39 1 22

Training subset As 2 6 8 1 5.5
Afrikaans

SD test set 2 6 8 2 7.7

SI test set 14 1 15 2 13

The usage of this database in the speech recognition literature is somewhat limited.

Waardenburg et al. [115] investigated the isolated recognition of stop consonants using

HMMs. More recently, Nieuwoudt and Botha [84, 85] investigated cross-language usage

of acoustic information using this dataset, where continuous word recognition results

were presented. To the authors knowledge, no continuous phoneme recognition results

Chapter 3

Minimum classification error

training

Although there are several learning algorithms (such as maximum mutual information

and minimum discriminative information) which can be classified as discriminative

training techniques, this chapter will exclusively describe Minimum classification error

learning and several modifications thereof.

Conventional maximum likelihood (ML) estimation attempts to maximize the like-

lihood of the training data given the model parameters of the corresponding class.

The models from other classes do not participate in the parameter estimation. By

maximizing the likelihood of the correct model, but not minimizing the likelihood of

other competing models, it cannot be guaranteed that the ML models will optimally

discriminate against incorrect classes in recognition. Maximum likelihood estimation

can be problematic in situations where the distribution of the data to be recognized

is significantly different from the distribution of the model, as noted in the literature

[81, 14, 75].

A theory of error-corrective training for pattern classification was first proposed by

Amari [2], where an adaptive procedure was developed and shown to converge to a

local minimum of the classification error function.

Franco and Serralheiro [42] proposed a training procedure which aims explicitly at

reducing the recognition error and increasing discrimination between classes. The

algorithm is based on a criterion function which is the quadratic error between target

state probabilities and the a-posteriori state probabilities given the training data. The

target state probabilities are forced to be one for the correct state and zero for incorrect

states. This criterion function was then used to adjust HMM parameters heuristically

to improve the training set recognition rate.

Chen and Soong [19] introduced an N-best candidates based frame-level discriminative

training algorithm based on an N-best tree-trellis algorithm [106]. A frame-level loss

function was defined and minimized using the gradient descent method. The loss func-

tion was defined as a half-wave rectified log-likelihood difference between the correct

and selected competing hypotheses. The loss function is accumulated over all training

utterances. Their algorithm was tested using a connected Chinese digit recognition ex-

periment and a large vocabulary isolated word experiment. Significant improvements

over traditional ML were reported, with the string error rate being reduced from 17.0%

to 10.8% for the connected digit experiment and the isolated word recognition error

rate being reduced from 7.2% to 3.8%.

Maximum mutual information (MMI) A more formal, information theoretic

approach based on the maximum mutual information criterion has been used to train

HMM based speech recognition systems [88, 87, 62, 113]. The following description

of MMI is a summary of that found in [75]. The MMI approach attempts to find the

model parameters e which minimize the conditional entropy Ho(CIX) of the random

He(CIX) = - z= P(C = c, X = x)logPe(C = clX = x),

which represents the uncertainty of C given that we have observed X. The entropy of

a discrete random variable C, which is a measure of the uncertainty of C, is defined as

He(C) = - z= P(C = c)logPe(C = c).

Minimizing the conditional entropy, can therefore be accomplished by maximizing the

mutual information between C and X , Ie(C; X), i.e.

~ Pe (C = c, X = x)
Ie(C; X) = ~ P(C = c, X = x)log Pe(C = c)Pe(X = x)'

c,x

MMI maximizes the difference between Pe(C = c, X = x) and Pe(X = :r;) = L:c Pe(C =

c, X = or). Unfortunately, maximizing the mutual information does not necessarily

minimize the classification error.

Minimum classification error Juang and Katagiri [60] proposed a new formulation

for the minimum classification error problem, together with a fundamental technique

for designing classifiers that approach the objective of minimum classification error.

The method was applied to multilayer neural networks, with significant improvements

in performance over traditional training methods.

The minimum classification error training method, as introduced by Juang and Katagiri

[60], has been used extensively in speech recognition. Applications thereof include

training of neural networks [60, 104] and dynamic time warping (DTW) [64, 17, 76, 77]

and hidden Markov models. The remainder of this section presents a concise literature

survey of the usage of the MCE procedure to train HMM systems for speech recognition.

Chou et at. [23] introduced a segmental generalized probabilistic descent (GPD) train-

ing algorithm for HMM based speech recognizers using Viterbi decoding. Instead of

using the forward-backward procedure, they proposed using the best state sequence

obtained using the Viterbi algorithm. Instead of using a complicated constrained GPD

algorithm, they apply segmental GPD to transformed HMM parameters, thereby en-

suring that the HMM constraints are maintained. They reported results for both the

E-set and TIDIGIT database. Significant improvements in phonetic classification from

76% to 88.3% were reported for the E-set problem when using a 10 state, 5 mixture

HMM. Their results for the connected digit experiment (TIDIGITS) resulted in an im-

provement in continuous digit recognition rates from 98.7% to 98.8%. A more general

and complete article was later published [59].

Chou et at. [24] later introduced a minimum string error rate training algorithm, based

in the N-best string models. Here, the MCE criterion is applied at string level, with

the goal of minimizing the string error rate in continuous and large vocabulary speech

recognition tasks. The N most confusable strings are obtained by using the tree-trellis

N-best search of Soong and Huang [106]. Their MCE algorithm was tested using the

TIDIGIT database and the speaker independent portion of the DARPA naval resource

management (RM) speech recognition task. An improvement in string error rate from

1.3% to 1.0% was reported for the TIDIGIT dataset, while a word error rate reduction

of 17%-20% was observed when using the DARPA RM task.

McDermott [75] investigated the usage of string-level MCE. A second order optimiza-

tion algorithm to minimize the string-level MCE criterion was described and found to

be a reasonable alternative to the GPD algorithm. l'vlcDermott defined a more gen-

eral MCE loss function which attempted to represent finer grained differences between

the correct and incorrect strings, however, no significant advantage was found as a

result of using this new loss function. A second loss function, also designed to reflect

phoneme/word accuracy was proposed, but not evaluated. The TIMIT dataset was

used to compare string-level MCE and the baseline ML-trained HMM systems, the

results of which are summarized in Table 2.5.

Kwon and Un [65] proposed a new method of finding discriminative state weights

recursively using the MCE algorithm. They relax the HMM constraints on ~tate-

weights, such that the sum of the mixture weights for an HMM sum to the number

of states. The mixture weights for an individual state can therefore sum to a value

greater or smaller than one. This results in what could be called state-weighting, where

certain states have higher weights than others. The MCE algorithm was then used to

estimate the weights. Experimental results showed that recognizers with phoneme-

based and word-based state-weights achieved a 20% and 50% decrease in word error

rate respectively for isolated word recognition, and a 5% decrease in error rate for

continuous speech recognition.

Other applications of MCE within a speech recognition framework include speaker

adaptation [74], keyword spotting [109], speaker identification [105] and feature ex-

traction [9, 8].

The implementation of MCE discussed in this thesis is based on the work of Chou et

at. [23,59, 24]. The work presented in this chapter has been summarized in our ICSLP

2000 article [89].

3.2 Minimum classification error training

The aim of minimum classification error (MCE) training is to correctly discriminate

the observations of an HMM for best recognition results and not to fit the distributions

This section will briefly describe and discuss the MCE algorithm; for a more detailed

discussion the reader is referred to the original work of Juang and Katagiri [60] and

Juang et al. [59].

The following is a brief introduction to Bayes risk and Bayes decisions; for a more

detailed text on this subject the reader is referred to the books of DeGroot [27] and

Duda and Hart [40]. The optimal choice of answer for an inference problem is a 0 E e
which maximizes the expected utility [7],

Ix u(C(x; 0) Ix)p(x)dx,

where C(x; 0) is the classifiers decision for the observation x, u is a function attaching

utilities to each consequence of a decision and X is the set containing all possible

observations. Alternatively, we could work with a loss function l(C(x)lx), where

where f is an arbitrary, fixed function. The optimal solution is then the value of 0

which maximizes the expected loss,

Ix l(C(x; 0) jx)p(x)dx.

The conditional loss l(Cilx), or the risk of classifying the observation x into class i can

be defined as

N

l(CiIX) = L '\jP(Cjlx),
j=l

where P(Cj Ix) is the a-posteriori probability of choosing the class j given the data x,

which can be easily obtained using Bayes' theorem if the class-conditional densities of

the data are known. The value Aij is the cost of classifying a class i observation as

class j. Typically, the costs used in the loss function are chosen to be the zero-one loss

function or

which associates zero cost with correct classifications and unity cost for incorrect clas-

sifications. For this special case the conditional loss becomes

l(Cilx) =LP(Cjlx)
#j

which is the probability of an error in classification and the minimum risk classifier

is the classifier which delivers the minimum classification error. The classifier which

C(x) = Ci where i = argmaxP(Cjlx).
j

Discriminative training

The error rate for a finite data set is a piecewise constant function of the classifier

parameter 0 and therefore a poor candidate for optimization using a numerical search.

It is therefore necessary to define an optimization criterion which provides a reasonable

estimate of the error probability.

C(x) = Ci where i = argmaxPj(OIOj),
j

where Pj(OIOj) is the log-likelihood of the input utterance or observation sequence

(0 = {Ol,02,'" ,on}) for the j-th model.

It is therefore necessary to express the operational decision rule (Eq. (3.12)) in a

functional form. A class misclassification measure which attempts to emulate the

decision rule is therefore defined [59],

N

d(O) = -In[Pi(O!Oi)] + In[~ L e1n[Pj(OIOj)]1/P/1/,

j,jf-i

where TJ is a positive number, and N is the number of N-best incorrect classes which

are used in the misclassification measure. The value of TJ influences the behaviour of the

right-hand term in Eq. (3.13); for TJ = 00 the term becomes maXj,jf-iPj(O/Oj). A large

TJ will result in the misclassification measure only incorporating the closest incorrect

class, whereas a small TJ will include contributions from all of the incorrect classes. The

misclassification measure is a continuous function of the classifier parameters. A value

It is worth noting, that using TJ = 1 and loss function l(d) = d [101] results in an

optimization criterion very close to that of MMI (Eq. (3.4)). The zero-one loss function

can be any continuous zero-one function, but is typically the following sigmoid function

1l(d) = ---1+ e-oyd+,\ ,

where A is typically set to zero (or slightly smaller than zero). A loss value less than

0.5 indicates a misclassification has occurred (assuming A = 0).

N

l(O; e) = L li(O; e)I(X E Ci),
i=l

As mentioned in Section 3.2.1, the optimal solution for an inference problem is that

which minimizes the expected loss. For a classification problem involving N classes,

the expected loss is defined as

N

L(e) = Eo[l(O; e)] = L1 .li(O; e)p(O)dO.
i=l OEC,

The generalized probabilistic descent (GPD) algorithm [60] is used to minimize the

expected loss. The GPD algorithm is given by:

Discriminative training

where Ut is a positive definite matrix, Et is the learning rate or step size of the adap-

tation, and Ot is the model parameters at time step t. It can be shown [60] that the

expected loss converges to a local minimum when using the GPD algorithm and the

following conditions are satisfied

00LEt -+ 00, and
t=1
00

LEZ < 00.

t=1

Pi(OIOi) = L Pi(O, q!Oi),
all q

where q is a given state sequence, requires the use of the relatively computationally

expensive forward-backward procedure [90, p. 334]. We can, however, also use the

maximum of the joint observation-state probability, i.e.

Pi(OIOi) ~ max[Pi(O, qIOd]·
q

Since the best state sequence is segmented using the Viterbi algorithm and this seg-

mented sequence is used in the calculation of Pi(OIOi), this instance of the MCE algo-

rithm based on Eq. (3.22) is often referred to as segmental MCE.

The GPD algorithm is an unconstrained optimization technique and given that certain

constraints must be maintained for HMMs, some modifications are required. Instead

of using a complicated constrained GPD algorithm, Chou et ai. [23] applied GPD to

transformed HMM parameters. The parameter transformations ensure that there are

no constraints in the transformed space where the updates occur. The following HMM

constraints should be maintained,

The parameter transformations given in Table 3.1 are therefore used before and after

parameter adaptation (Eq. 3.18).

Parameter Transformed Forward Reverse

parameter transform transform
it"

a a·· aij = In(aij)
e 'J Transition probabilitieslJ lJ aij = L:. ea;j

Cjk Cjk ejk = In(cjk) ijk Mixture weightsCjk = L: Ck.e J

fLjkl fLjkl
-. - I!i.!oi.

fLjkl = ajklfLjkl Gaussian meanfLJkl - (Tkl

ajkl ajkl o-jkl = In(ajkl) ajkl = eajkl Gaussian std. dev.

The sensitivity of the mean parameter update is determined by the size of the associated

variance. The positive definite matrix Ut should therefore be chosen carefully, so as

to compensate for this sensitivity. Chou et ai. [23] used a diagonal matrix, where the

diagonal elements were equal to the variances (for the mean parameter update). This

is equivalent to using the mean parameter transformation in Table 3.1 with the matrix

Ut equal to the identity matrix and has been used throughout. Under these conditions,

GPD reverts to the simpler gradient descent algorithm (for all parameters), where

It can be easily verified that the partial derivative of li(di) (Eq. (3.15)) with respect

to the misclassification measure (di) is

fJli- = rvd·(1 - d·)8d
i

I t t .

Calculation of the parameter update defined in Eq. (3.18) or (3.23) requires the gradi-

ent function \7l(O; e) or 81~~;1J). In what follows, the gradients and parameter updates

for the four parameter types (mean, variance, mixture weights and transition proba-

bilities) are derived.

According to Eq. (3.23) the parameter update for the mean vectors of HMM i is as

follows:

The partial derivative of li(On; en) with respect to jJ,.;~,can be obtained using the chain

rule

where g~;i can be calculated using Eq. (3.24), and from Eq. (3.13) we get

{

_ aj(O;On)
~d· a-Ii)U t _ fLjkl

Oil(~l - e'1fi(O;On) aj(O;On)
] 'I;""' '1fj(O;On) a-(i)

L.j,joli e fLjkl

(i)
oln(bj (Ot)) = (i)(2)-d/21,,(i)I-1/2(b(i)())-1 (Ot! __ (i))

-(i) e]k 1f LJ]k] °t (i) M]kl
OMjkl ajk1

2

_l'l;""'D (~ __ (i))
2 L.I=l (i) fLjkl

e "jkl

Having updated the transformed mean using Eq. (3.25), the correct mean can be found

using the inverse transformation M)~l(n + 1) = il)~l(n)a;~l(n + 1).

The partial derivative g~:is obtained using Eq. (3.24) and again from Eq. (3.13) we

have

· eCjk(n+l)
(2) () _ .

ejk n + 1 - -L-k-e-Cj-d-n-+l-) .

In the derivation of the MCE algorithm in the previous sections, it was assumed that

the whole training observation 0 must be one of N classes. MCE can, however, be

applied at the level of various speech units, such as phonemes, words and sentences.

Here, a search is used to automatically segment (state and HMM alignment) and label

the utterance for usage within the MCE framework. More specifically, the correct

alignment and the N-best incorrect alignments are required, for which an N-best search

is used.

The application of MCE to strings of phoneme or word units is known as string-level

MCE or embedded MCE [59, 78, 75, 24]. Here, the observation 0 is a concatenated

string of observations belonging to different classes. In this situation, MCE is used to

minimize the string error rate and not the individual phoneme or word error rates. Note

that although the phoneme or word error rates are not directly minimized, minimizing

the string error rate will tend to decrease the phoneme and word error rates.

The MCE procedure remains the same, except that in this case the correct string

and N-best strings are required, as opposed to the single correct and N-best incorrect

acoustic units. The N-best search proposed by Soong and Huang [106] to generate the

N-best alignments and subsequently used by Chen and Soong [18, 19] and McDermott

[75] for string-level MCE was implemented and used in our work.

Figure 3.1 shows a state occupancy diagram for a simple example where embedded

MCE is used. Here, the observation is of the word "boot", containing the phonetic units

b, uw and t, with silence on either side. The state occupancy diagram for the correct

string is given at the top, with the state occupancy diagram of the most confusable

incorrect string below it. Let us assume, for the purpose of this example, that we

are only working with the correct string and the single best incorrect string. State

occupation is indicated with thick black or grey lines. A grey line is used to indicate

when an error in state occupancy occurs.

When state occupancy is correct for both the correct and best incorrect string (black

lines in incorrect string state occupancy in Figure 3.1), the gradient of Eq. (3.13)

with respect to the parameters will be zero (gradients due to correct and incorrect

strings are equal, but of opposite sign). The models d and aw in the incorrect string

are a substitution and insertion respectively and the state alignments associated with

these units are therefore incorrect. Although the units uw and t are in the correct

position, the state alignment is not correct and the state alignments displayed in grey

will result in the associated state being penalized. Therefore, incorrect state occupancy

will result in the model associated with the correct alignment being reinforced and the

model associated with the incorrect class penalized according to the update functions

defined earlier.

3.4 Discussion and Experiments

The following sections will discuss and experimentally validate a number of issues

related to the use and implementation of the MCE algorithm. They are:

The TIMIT dataset, described in Section 2.4.1, were used for this purpose. Two

training sets were used, namely the standard TIMIT training set T and the small

gender independent training set Ts, which were described in Section 2.4.1. The relevant

training and testing set details are reproduced in Table 3.2 for convenience. The basic

configuration of the system is as described in Section 2.1. A 3 state, 5 mixture HMM

is used to model each of the 39 phonetic units in the TIMIT dataset.

Discriminative training

Correct segmentation and labelling

Sil ~rr r rl j fl············ ..~
· 'Ll lJ I I I ' I

t ~!,·....mi!mj mm imiTrlm 1m
]

I : : f '

"11nrr r nlj

~

·.. i .i)nl ...J

uw .. ·····1 nnni ·······f ..j

"I!I

~

'!.,jb .. ··.1 j'j
"1 +n';

· I I I I i I I 1 I
Sil ~nH·~rf! Jill!

10 i I I I I ! I IT
I [Incorrect segmentation and labellin~ I

Sil ~l"""'i i'liit ..~
· i i I I I I I. i I i

I ~t!jjll:,;i_ j,,;;.•••••~t,:..i •••••71··..1~,Ijl··lli ·111

~

·"I.: ····lllnr nl~lff j
aw ,.

1
. ···i

l
····[···[Ii ········1' •. + .if ri .

I I 1... I• ·11·········1······1·· ·I~··I . ····I········j ·····1

uw ~!:ll41JltlJ
Ii! I I I ! I I i

d ~fl,ltIJm] j11
• I I I I .il I I I I i

Sil ~~+ ll.·I···········Jllf.····· nnn·'ll,,, 'n ,I , ,I
1
0

I I I I IT
Figure 3.1: State occupancy diagram of the correct and an incorrect string

Description Label Number of speakers Number of Duration

Male Female Total sentences (minutes)

Training sets:

Full (standard) T 326 136 462 4620 236.5

Small (gender indep.) Ts 16 16 32 320 16.1

Testing set (standard) 112 56 168 1680 86.4

Online (stochastic) optimization algorithms use a single training example to determine

the parameter update (Eq. (3.18) in this case) for each training example. The deter-

ministic (batch-mode) descent algorithm computes the combined gradient for all the

training examples in the training set, which is then used in the parameter update.

The online descent algorithm can perform better in situations where there is redun-

dancy in the training data. The number of passes through the data to find a local

minimum is therefore often less for online than for batch-mode optimization. It is,

however, necessary to randomly select examples without replacement when using the

online algorithm. If not done, oscillatory and non-optimal behaviour might be observed

in the optimization process, as a result of data set structure.

Figure 3.2 presents the performance of online and batch-mode MCE using the standard

TIMIT training and testing sets. The learning rates for both algorithms were set

just below the point at which they became unstable. The online descent algorithm

is considerably faster in terms of training time, as opposed to deterministic (batch)

gradient descent. Maximum training and testing set performance is better when using

online optimization - batch-mode optimization has found a less optimal local minimum.

Online descent is therefore preferred and is used throughout.

Discriminative training

online, train --
online, test --------.
batch, train .
batch, test

56
o

Epochs

Figure 3.2: 'fraining and testing set performance for standard string-level MCE using the
batch and online optimization algorithms

The smoothness of the zero-one loss function (Eq. (3.15)) is somewhat critical to the

performance of the MCE algorithm. A zero-one loss function which is reasonably sharp,

limits the effect of individual examples on the loss and allows only those examples on

or near the decision boundaries to affect the parameter update. Outliers will therefore

effectively not be included in the gradient calculation, thereby promoting robustness.

A smoother loss function, is less likely to be caught in local minima. This effect will

be further discussed in Section 3.4.3.

McDermott [75] stated that too much smoothing would result in a discrepancy between

the function being optimized and the target, minimum classification error. I, however,

do not believe that this is the case, as an extremely smooth sigmoid loss function is

linear in the region of interest and so the misclassification measure, which is designed

to emulate the decision rule, is therefore directly minimized. It is, however, true that

a discrepancy results between the function being optimized and the target when the

zero-one loss function is relatively sharp. Here, the function being optimized can

be interpreted as "minimum classification error for only those utterances which have

misclassification measures close to zero".

Figure 3.3 shows a histogram of the misclassification measure values for the utterances

in the TIMIT training set, when using a 3 state 5 mixture HMM. All of the misclassifi-

cation measure values are greater than zero, which implies that none of the utterances

were correctly classified (only strictly true when 'f7 = (0). The sigmoid loss function

(Eq. (3.15)) output for 1= 0.1, 1= 0.01 and 1= 0.001 are also shown. It is impor-

tant that the derivative of the loss function must be significant for a large part of the

training data. The loss function with 1= 0.1 is too sharp and only has a reasonable

derivative for small misclassification measure values, which will result in only a few

of the utterances influencing the update. One would, therefore, not expect the MCE

algorithm to work well for 1= 0.1. The loss function using 1= 0.01 is mostly linear

for a reasonable part of the training data, and has a significant derivative for a large

part of the training data. Using 1= 0.001 results in a loss function which is effectively

linear for all of the training utterances. The optimal value for 1will therefore, probably

lie somewhere around 0.01.

Figure 3.4 shows the TIMIT test set accuracy versus the sigmoid loss function param-

eter 1for both the full training set T and the small training set Ts 1. As expected,

1= 0.1 results in a sigmoid function which is too sharp and the accuracy attained

(58.3% for T) is therefore considerably worse than that attained using smaller values

of I. Peak accuracy of 64.7% results when 1= 0.01 is used for the training set T. The

MCE algorithm is considerably less effective when the small training set is used (Ts),

resulting in a peak testing set performance of only 53.8%.

1Note that phone recognition accuracy results (Eq. (2.26)) are reported throughout this chapter

,,
,

,

,,,

, ,

i/....,::f .

en 150
Q)
(.)
c
~
Q)

5

o
-400

0.1
0.01

0.001

600
o

800

Figure 3.3: Histogram of the misclassification measure before embedded MCE training for
the TIM IT training set. The sigmoid loss functions with 'Y= 0.1, 'Y= 0.01 and'Y = 0.001 are
plotted.

The question must be asked, "Why is a smoothed zero-one loss function needed?". The

main reason why one would introduce a sigmoid function is to promote stability in the

training process and to ensure that the resultant gradient function (and therefore the

parameter update) is finite and continuous.

Figure 3.5 shows an example of a simple two class problem where a sigmoid loss function

could result in the best minimum not being attained. Here we assume that the two

classes can each be modeled by a single Gaussian distribution. Let us also assume

that we know the variances are fixed and equal to one. The ML estimates of the

means are (0.02, 4.23) for +'s and (0.25, 0.09) for x's. The theoretical minimum error

classification boundary is then as shown by line (a) in Figure 3.5.

<?- 60
>-u
~
:::::l
8 58
«

52
0.001

top-right corner will be close to zero and the class boundary (b), which has a lower

classification error, will not be reached using MCE. This situation occurs because

the true distributions are not Gaussian as we assumed they were. It is, therefore,

unfortunate that by using a (relatively sharp) zero-one loss function we are introducing

additional local minima. It is these local minima which can also in certain situations

save the algorithm from overtraining. This could be the case if there is excessive noise

in the training set, or if the data has been poorly labelled. Whether decision boundary

(b) is truly better than (a) can only be determined by using an independent test set.

The results of the previous section (3.4.2), where small values of r resulted in optimal

performance, support the above discussion. Table 3.3 gives the results for the MCE

algorithm with and without using a sigmoid loss function with r = 0.01. There is no

significant difference between the two algorithms, with the 0.1% difference for the large

training set T due more to rounding than any algorithmic difference.

This result is important for modifications and algorithms proposed later in this and

other chapters, where the algorithm or modification cannot be mathematically justified

XX Xx

X X >5x >t< X X

X X Xxx ~x'S<} x ~ X
~X 'ScXXX~?f

Xx X~ x

x x>f< *'S<: X x ~ X x
£.X x x x x x X x

.. X . x x.;< x.,~.

-4
-4

Figure 3.5: Example of where a sharp sigmoid does not shift the ML class boundary (a) to
boundary (b), with lower classification error.

Table 3.3: Comparison of MCE accuracy results when using a sigmoid loss function and no
sigmoid loss function

Training set sigmoid no sigmoid

'Y = 0.01

T 64.7 64.6

Ts 53.8 53.8

when using a sigmoid loss function. If there is a concern over the stability of the

algorithm, a sigmoid loss function with a small value of 'Y can be used, so that the

loss function is linear for a reasonable part of the training data. We can then ignore

the sigmoid loss function when incorporating such modifications in the loss function or

Minimum classification error (J'vICE) training is somewhat prone to overspecialization.

This section investigates various techniques \vhich improve performance and general-

In Section 2.2 overtraining was discussed from a model complexity perspective. Here,

it is the parameter estimation algorithm which results in further overspecialization. It

is also an unfortunate tendency of MCE and other discriminative training algorithms

to result in a decrease in testing set performance after maximum performance has been

attained (in terms of training time).

p

/.f
,'i
ii ,

// ,,'
II I

Ii'
/i "
!.' I
i./I

/f,'
,iiI

/.i/
,I.',

i.'J

l
"It

f
!
I

._-._--{~)

------1?)

Figure 3.6 shows the typical form of results obtained for the training and testing sets

(a). Limiting specialization of the classifier would result in reducing the difference

between training and testing set error rates. We would, for example, prefer result (b)

in Figure 3.6 to result (a). We also wish to limit the degradation in performance after

maximum performance has been reached. An algorithm which has the characteristics

of (c) in Figure 3.6 would be advantageous in that a cross-validation set would not be

required to choose the best model in an unbiased way.

Regularization techniques are often used to improve generalization. In regularization,

a penalty term F(O) which is called a regularizer is added to the original objective

function, creating a new objective function, i.e.

L(O; 0) = i(O; 0) + (F(O).

The regularizer conveys a-priori knowledge about the process which is to be learned.

Shimodaira et ai. [104] presented a method to prevent over-fitting and improve the

generalization performance of the MCE algorithm when applied to neural networks. A

simple version of the Tikhonov regularizer [11] was used for this purpose in [104]. This

regularizer requires that the second order derivative of the likelihood with respect to

the model parameters be computed. That is, however, not a simple task for hidden

Markov models and was not incorporated in our work. The following sections discuss

the two approaches that were followed to reduce overtraining.

It can be expected that overspecialization would result in the variances of certain of the

Gaussian mixtures becoming very small. To reduce overfitting, a penalty term propor-

tional to the sum of the square (or power) of the inverse of the variances (precisions)

of the Gaussians of the HMM states is therefore proposed. This is as expressed in Eq.

(3.48), and is added to the loss function of MCE (Eq. (3.15)).

Figure 3.7 shows the derivative of this penalty term with respect to the variance (a;kl)'

The gradient is negative and becomes large for very small variances. A negative gra-

dient used in the parameter update (Eq. (3.30)) will result in the variance becoming

-1000

'E
Ql

'C -1500~
(!J

-2000

-3000
0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005

2
O"jkl

larger. Note that if there were no other gradients resulting from the standard MCE

update, the variances would continue to grow larger.

The values a, p and ~ are constants that are empirically determined. As seen in Figure

3.7, the constants p and ~ determine the form of the penalty term. The constant a is a

scaling factor and is used to increase the contribution of the penalty term independently

of the variance value. One has been added to PO"Jkl to ensure that the gradient is finite

for (J"jkl = O.

This results in what could be called "precision decay", thereby ensuring that variances

do not become too small. This has the indirect consequence of reducing overfitting.

It was empirically found that ~ = 3 produced the best results. Figure 3.8 shows the

performance of the MCE algorithm using the variance penalty term (MCE+ VPEN)

versus the parameters a and p when using the small training set Ts. Peak performance

of 54.8% is attained when using a = 1000 and p = 1000 (versus 53.8% without the

penalty term).

54.9

54.8

~ 54.7
:J2.
~ 54.6>.
~ 54.5
~
~ 54.4

54.3

54.2

54.1
100

55

54.5

54;?e..... 53.5
>.
~ 53
~ 52.5:i.

52

51.5

51
100 1000

P

(a) (b)
Figure 3.8: Testing set performance for the modified MCE with variance penalty
(MCE+VPEN) using the small training set Ts, (a) versus a for p = 1000 and (b) versus
p for a = 1000

Figure 3.9 shows the advantage of using the above penalty term. Here, the parameter

values ~ = 3, p = 1000 and a = 1000 have been used, with no sigmoid loss function.

The results are similar when using a sigmoid loss function. The test set results are

better (2.1% relative improvement in error rate), while the training set performance

has decreased.

Table 3.4 presents the results of using a sigmoid function versus not using it when

using the variance penalty term with the MCE algorithm. Interestingly, a sigmoid

function works better when the full training set is used, while the MCE algorithm

without a sigmoid loss function performs better when the small training set is used.

Note that the optimal values for parameters ex and p differ for each configuration and

were empirically determined for each case.

Table 3.4: Accuracy results for the MCE algorithm (sigmoid versus no sigmoid) when using
the variance penalty term

Training sigmoid no sigmoid

set 1=0.01

T 65.4 64.7

Ts 53.8 54.8

Chapter 3

100
MCE (train) --

95 MCE (test) --------
MCE+VPEN (train)

90 MCE+VPEN (test)

85

~ 80~
>-
0 75~
:J
0
0 70«

65

60

55 -----------------

50
o 5 10 15 20 25 30

epochs

Figure 3.9: Training and testing set performance for standard string MCE and modified MCE
with variance penalty (MCE+VPEN), no sigmoid loss

One potential problem with string-level MCE is that parts of the training string that

do not result in errors are effectively ignored and therefore do not reinforce the associ-

ated parameters. Focusing solely on errors will result in overspecialization. Adding a

weighted likelihood term (of the correct class) to the MCE loss function may therefore

reduce overtraining. This will tend to reinforce correct substrings, while still penalizing

errors. The misclassification measure in Eq. (3.13) then becomes

1 N
d(O) = -(1 +~) In~(O; ()d + In[N L eT/lnPj(O;Oj)]l/T/,

j,ji-i

where ~ is the weighting of the additional likelihood term, Pi (0; ()i)' This modification

has been chosen so as to increase the gradient resulting from correct substrings by a

factor ~. However, when using a sigmoid loss function, no modification (to misclassifi-

cation measure or loss function) can be made that will increase the gradient associated

with correct substrings by a uniform factor /'i" while not affecting that associated with

incorrect substrings. Such a modification can therefore not be mathematically justified

when using a smoothed zero-one loss function. It can, however, be implemented as

a simple heuristic where the gradient for the correct class is simply multiplied by a

weighting factor (1 + /'i,).

Figure 3.10 presents the results for the MCE algorithm using the weighted likelihood

term (MCE+ WL) for the small training set (Ts). Significantly, using a sigmoid function

does not work nearly as well as the algorithm without a sigmoid loss function when

using the weighted likelihood term. Peak performance of 55.0% is attained when using

a weight /'i, = 1.5, for the algorithm without a sigmoid loss function (versus 53.8% with

/'i, = 0).

55

54.8

54.6

~ 54.4~
>-c.>co 54.2"-:Jc.>c.>« 54

53.8

53.6
MCE+WL (no sigmoid)

MCE+WL (sigmoid)
MCE

1.5

Figure 3.10: Testing set performance for MCE with the weighted likelihood term (MCE+WL)
plotted versus /'i,.

Figure 3.11 shows the performance of the MCE algorithm with and without using the

weighted likelihood term versus the number of training epochs, for the small training

set. A sigmoid function is not used. Maximum testing set performance is better

when using the weighted likelihood term, but more significantly, it stops degradation

of performance after peaking (preferred result (c) in Figure 3.6). Results when using

a sigmoid loss function are similar with a slightly worse error rate being achieved.

100

95

90

85

~ 80~
>.
0 75<U:;
0
0 70«

65

60

I), = 0, TRAIN--
I), = 0, TEST ---------

I), = 0.6, TRAIN----------
I), = 0.6, TEST -----

50
o 5 10 15 20 25 30

epochs

Figure 3.11: 'Ifaining and testing set performance for standard string MCE and modified
MCE with the weighted likelihood term (MCE+WL), sigmoid loss function not used

Table 3.5 presents the results when using the weighted likelihood term with the MCE

algorithm for both the small and full training datasets. Here, in conjunction with the

weighted likelihood term, using no sigmoid function performs best for both datasets.

This is due to the fact that the implementation thereof for the algorithm using a sigmoid

loss function is not mathematically justified and is merely a heuristic implementation

thereof.

Table 3.5: Accuracy results for the MCE algorithms using the weighted likelihood term
(MCE+WL)

Training sigmoid no sigmoid

set 'Y= 0.01

T 64.7 65.1

Ts 54.3 55.0

Presenting arbitrarily long strings to the string-level MCE algorithm is not optimal. An

error at a specific point in time will potentially result in the incorrect segmentation at

that time (not just incorrect labelling), and such an error in segmentation will therefore

influence the recognition and segmentation of subsequent acoustic units. The usage

of a language model will also tend to result in an error at any given point resulting

in further errors later in the utterance. Errors occurring earlier during recognition of

a string therefore influence the recognition for the rest of the string. Our confidence

in the accuracy of segmentation and classification after an error has occurred will

therefore tend to be low. As the N-best string outputs from the recognizer are used as

discriminative training examples, the number of incorrect strings are limited. Most of

these "incorrect" strings differ only in a few places, resulting in only a few potential

errors being addressed during discriminative training.

To improve the above, presenting smaller word-based strings to the string-level MCE

algorithm is investigated. This is particularly appropriate when training speech rec-

ognizers on speech databases which have long sentences. This, however, requires that

one has a dataset which is also labeled at word level.

A sentence would therefore be presented to the string-level MCE algorithm word by

word in isolation. The N-best hypotheses (string of phones) would therefore be gen-

erated for each word individually (using the relevant part of the utterance) and used

to determine the MCE gradients and updates. This is as opposed to the standard

string-level MCE algorithm where the N-best hypotheses are generated for the entire

sentence.

Figure 3.12 compares results for sentence- and word-based MCE for the small training

set, plotted versus the number of training epochs. A sigmoid loss function is not used.

The improvement in performance is marked, resulting in a 7.4% relative reduction in

error rate. Another advantage here is that the usage of word-based string MCE limits

50
o 5 10 15 20 25 30

epochs

Figure 3.12: Training and testing set performance for standard string MCE and word-string
MCE when using the small training set Ts (no sigmoid loss)

The results for both small and full training sets are presented in Table 3.6. Here, using

a sigmoid loss function proves to be marginally better (and probably not significant)

when the small training set (Ts) is used. This is, however, not the case when the full

training set (T) is used, where using a sigmoid loss function produced a recognition

accuracy which is marginally worse than that attained when not using a sigmoid loss

function. Improvement in error rates relative to that obtained by standard MCE are

significant (accuracy of 66.7% versus 64.7%), irrespective of whether a sigmoid loss

function is used or not.

Table 3.7 gives a summary of the results when using the different modifications pro-

posed for MCE in this chapter. The full training set (T) is used. MCE training alone

produces a 17.7% relative reduction in error rate over baseline maximum likelihood

Table 3.6: Accuracy results for the word-based string MCE algorithms (MCE+WORD).
Relative improvement in error rate compared to standard MCE are given in brackets

Training sigmoid no sigmoid

set 1=0.01

T 66.3 (5.1%) 66.7 (5.9%)

Ts 57.9 (8.9%) 57.2 (7.4%)

(ML) training. However, employing the modifications results in a relative reduction in

error of up to 23.3% being attained over ML training.

Table 3.7: Summary of phoneme error rate results for MCE and modifications on the full
training set T

I Training method I Phoneme error rate % I
Baseline (ML) 43.0

sigmoid no sigmoid

MCE 35.5 35.4

MCE+VPEN 34.6 35.3

MCE+WL 35.3 34.9

MCE+WORD 33.7 33.3

MCE+WORD+VPEN 33.3 33.0

MCE+WORD+WL 33.7 33.3

Table 3.8 gives a summary of the results when using the different modifications and

the small training set (Ts) is used. Here, standard string-level MCE only results in a

2.5% relative reduction in error rate over baseline maximum likelihood (ML). However,

employing the proposed modifications results in a relative reduction in error rate of up

to 12.2% being attained. The modifications have more of an effect when less training

data is available and overtraining is more prevalent.

Tables 3.7 and 3.8 provide results obtained when combining the word-based string MCE

algorithm and the other modifications (penalty and weighted likelihood). Unfortu-

Table 3.8: Summary of phoneme error rate results for MCE and modifications on the small
training set Ts

I Training method I Phoneme error rate % I
Baseline (ML) 47.4

sigmoid no sigmoid

MCE 46.2 46.2

MCE+VPEN 46.2 45.2

MCE+WL 45.7 45.0

MCE+WORD 42.1 42.8

MCE+WORD+VPEN 41.6 42.2

MCE+WORD+WL 42.1 42.8

nately, the weighted likelihood term fails to improve upon the performance of the word-

based string-level MCE algorithm for either of the two datasets (MCE+WORD+WL

versus MCE+WORD in the tables). This indicates that the effect of the two modifica-

tions is similar, which can be seen in the results presented for the individual procedures

earlier. Both, for example, reduce degradation in performance after maximum testing

set performance is reached. Limited improvements in performance were obtained when

the variance penalty term was combined with the word-based string-level MCE algo-

rithm.

Significant improvements in performance on the testing sets are obtained using the

modifications to MCE as proposed. The modifications proposed are relatively simple to

implement and limit overspecialization to some degree. The additional computational

expense resulting from the use of the proposed modifications is very small and is not

measurable. Although variation in performance did result from the use or non-use of a

sigmoid function, there is little evidence to suggest that anyone of the two possibilities

is a better choice, with the resultant variation in performance generally being relatively

small compared to the improvements in error rate due to the modifications.

3.5 Summary

This chapter described the MCE algorithm and its usage within a continuous speech

recognition framework. The algorithm performs gradient descent on a criterion func-

tion which is a close approximation of the classification error. For the TIMIT database,

usage of the MCE criterion resulted in significant gains in performance over the stan-

dard ML training procedure.

The effect of a smoothed zero-one loss function was discussed and experimentally de-

termined for the TIMIT dataset; where it was found that small values of the sigmoid

parameter 'Yperformed best. Furthermore, the need for a zero-one loss function was

questioned and the conclusion was reached that there is little evidence that there is an

advantage or disadvantage to using a smoothed zero-one loss function. This result was

used later in modifying the MCE criterion (adding a weighted likelihood term), where

the modification could not be mathematically justified when a non-linear loss function

was used.

Overtraining within the MCE framework was discussed and three modifications were

proposed. The first modification attempted to stop the mixture variances from becom-

ing very small, which results when little data is available. The second modification

added a weighted likelihood term to the MCE criterion, thereby reinforcing correct

substrings, as well as improving discrimination for incorrect substrings. Finally, a

word-based string-level MCE algorithm was proposed, in which smaller word-based

substrings were used, instead of the the entire string. Significant gains in performance

resulted when using these modifications with the TIMIT database.

	Front
	CHAPTER 1
	1.1 Adaptation
	1.2 Training
	1.3 Problem statement
	1.4 Organization of this thesis
	1.5 Contributions of this thesis

	CHAPTER 2
	2.1 Hidden Markov models
	2.2 Overtraining
	2.3 Experimental procedure
	2.4 Speech datasets

	CHAPTER 3
	3.1 Introduction
	3.2 Minimum classifiction error training
	3.3 Embedded MCE
	3.4 Discussion and experiments
	3.5 Summary

	Chapters 4-6
	Back

