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3 TRAJECTORY-PLANNING THROUGH 

INTERPOLATION BY OVERLAPPING CUBIC ARCS 

AND CUBIC SPLINES 

3.1 Basic interpolation problem in trajectory planning 

Given: 

(i) a set of nodal points {Pi =(xpYi),i=O,l,...,N} along a general curve Ctobe followed by a working 

point (wp) from Po to P:,< as shown in Figure 3.1, 

(ii) prescribed tangential speeds ofwp, So and SN at Po and PN respectively, 

(iii) either prescribed tangential acceleration So at Po or SN at PN ofwp, and 

(iv) 	 dy at both Po and PN • 

dx 

Then it is required to determine: 

(a) an acceptable time interval [0, T] during which the curve is executed, 

(b) time parametric curves X(t) and Y(t) , te[O,T] that interpolate the nodal points (xpYi),and 

(c) continuous time parametric curves for velocities X(t) and yet) as well as for the accelerations 

X(t) and Yet), te[O,T]. 

y 
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Figure 3.1: Basic interpolation problem. 

PN(X) 
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Without loss in generality consider the case in (iii) where SN is known at PN • Objectives (a), (b) and (c) 

may then be achieved by following the procedure outlined in the following subsections. 

3.1. 1 Determination of time parametric intervals 

In order to achieve objective (a) stipulated above, the first task is to determine the total path length S 

from Po to PN' This is done as follows: for each arc (x i-I> YH) to (x i'Yi)' i =1,2, ... , N , determine the 

corresponding path length s,. Firstly determine a cubic interpolating polynomial approximation Pi (x) 

over each arc interval, i.e. y(x)::::: p,(x) , x E [xi-] ,x;] (or x(y)::::: Pi(Y)' Y E [Yi-I ,Yi ] depending on what 

is the most convenient). 

3.1.1.1 Determination of interpolating and overlapping cubic arcs 

It is assumed that for any three consecutive nodal points (nodes) PH' Pi and Pi+1, i =1,2, ... , N -1 in the 

given set ofnodal points {Pi =(x i' Yi)' i 0,1,... , N} , at least one of the following conditions must hold: 

i 

I 

! 

Table 3.1 

In the event of non-compliance with all four the above conditions, the set of nodal points is considered 

insufficient since it implies that the section ofthe curve, represented by the three nodes that do not satisfy 

any of the conditions, cannot be expressed in the form where one of the coordinate variables is a unique 

valued function of the other. An extreme example of this non-uniqueness is depicted in Figure 3.2 which 

shows a complete curve C represented by the three nodes Po, PI and P2 • 

Y 

Condition l(a): Xi+1 >x i >x H 

Condition l(b): Xi+I<Xi<X H 

Condition 2(a): Yi+1 > Yi > Yil 

Condition 2(b): Yi+I<Yi<YH 

L--------------------------------------.X 
Figure 3.2: Insufficient set of nodal points. 
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Clearly < XI while XI > xo ' violating both conditions lea) and l(b), and further y 2 < y, whilex 2 

YI > Yo , violating both conditions 2(a) and 2(b). This situation can easily be remedied by specifying, for 

example, two additional nodes, resulting in a set of five nodal points, as shown in Figure 3.3. 

y 
C 

/--J 

~--------------------------------------~X 

Figure 3.3: Sufficient set of nodal points. 

The five nodal points shown in Figure 3.3, {Pi =(X i' yJ, i =O,I,...,4} may be grouped to form three 

overlapping triplets of consecutive nodes, Le. 

I x 2 > XI > Xo (satisfYing condition lea)) 
i Triplet 1: 

• y 2 < Y1 and y 1 > Yo (violating conditions 2( a) and 2 (b)) 

I 
! 

X3 < x 2 and x 2 > Xl (violating conditions I (a) and l(b)) 
. Triplet 2: 

I y 3 < Y2 < Y1 (satisfYing condition 2(b ) 

1------.;---------+-lx--<--X--<-x-2-(s~tisfYing condition 1 (b» 
4 3 

Triplet 3: (P2 ,P3 ,P4 ) 

i y 4 < Y3 < Y2 (satisfYing condition 2(b» 

Table 3.2 

Curve C shown in Figure 3.3 may now be approximated by four (in general N) overlapping interpolating 

arcs shown separately in Figures 3.4, 3.5 and 3.6. Along each arc one variable may be expressed as a 

unique function of the other depending on which condition in Table 3.1 is satisfied. In particular it may 

be desired to represent each arc by a cubic polynomial interpolating function. 

Chapter 3 92 



TRAJECTORY -PLANNING THROUGH INTERPOLA nON BY OVERLAPPING CUBIC ARCS AND CUBIC SPLINES 

y Cubic arc 1 

2 

Figure 3.4: Cubic arc 1. 

It follows by inspection that arc 1 in Figure 3.4, passing through the three nodes of triplet 1, may be 

represented by a unique valued function ofx (see Tables 3.1 and 3.2). In particular it may be expressed 

as a cubic polynomial in x of the form: 

PI (x) =a l + b,(x- x o) + c l (X-XO)2 + d ,(x-xo)} , X E [X O'x 2 ] (3.1 ) 

The derivative of (3.1) with respect to x is given by 

~p,(x)=b,+2c,(x-xo)+3dl(x-xo)2, xE[xo,xz1 (3.2)
dx 

The four unknown coefficients of the cubic interpolating polynomial (ai' b l ,c 1 and d!) may be uniquely 

determined by utilizing the initial known gradient, i.e. dy at Po (see given data (iv), at the start of 
dx 

Section 3.1), as well as the three nodal points of triplet 1. More specifically substituting each of the three 

nodal points of triplet 1 into equation (3.1), results in three independent equations: 

(3.3) 

(3.4) 

(3.5) 

dyl '\The fourth independent equation follows from substituting the initial gradient dy at Po 
J

into
[dx dx Po 

equation (3.2): 

dyl = dy(xo) ~~ (x) =b (3.6)d d d PI 0 I
X Po X X 

With a l and b l known from expressions (3.3) and (3.6) respectively, one may solve for c 1 and d} using 

expressions (3.4) and (3.5): 
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from (3.4): c t 

where e l = Yt -at-b1(x l, xo) ,and substituting the expression for c 
(xl-X O)" 

1 

into (3.5): yz =at+bt(x2-xo)+(el-d,(xl-xo))(x2 xo)2 +d l(x 2 x o)3 

Y2 al-bl(x2-xo)-et(x2 Xo)2
and therefore d I 

(Xl Xo)3 (XI XO)(x 2 Xo)2 

It is proposed here that the cubic interpolating polynomial PI(X) constructed in this manner be called a 

clamped three-order interpolating cubic arc, or simply a C-3 node cubic arc. 

Although cubic arc 1 interpolates through points Po, PI and P2 and is thus valid over the interval 

[X O,x 2 ], it will only be used to represent the cubic polynomial function over the first interval [xo,x t], 

Cubic arc 1 is forced through the three nodes of triplet 1 (see Table 3.1) with only the initial gradient 

(:\J being enforced. The approximation p,(x) is therefore expected to deteriorate in gradient 

accuracy in the vicinity of node P2 and this is the reason why it will only be used over [x 0' X t]. To 

obtain a more reliable approximation between nodes PI and Pz an overlapping strategy is employed to 

avoid the accumulation of excessive gradient approximation errors, which will result in increasingly 

inaccurate fitted cubic arcs. 

y Cubic arc 2 

~-------------------------------------.x 

Figure 3.5: Cubic arc 2. 

The cubic arc 2 passing through the three nodes of triplet 2, (see Figure 3.5) is also represented by a 

cubic polynomial function this time of y (see also Table 3.1 and Table 3.2). This function is formally 

expressed as 
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P2(y)=a 2 +b2(y YI)+C 2 (Y YI)2+d2(y-yY, ye[Yi>Y3 ] (3.7) 

The derivative of (3.7) with respect to Y is 

d 
-P2 (y) =b2 + 2c2(y -YI) + 3d2(y YI) (3.8)
dy 

Again the initial gradient of cubic arc 2 at PI r:xIi is required together with the three nodes of triplet 
\ Y P, J 

2 to calculate the four unknown coefficients (a2' b2 ,cz and d 2) of polynomial (3.7). Here, at the start of 

arc 2 (as for the subsequent arcs) the value of the gradient is not explicitly prescribed and is therefore 

unknown. However, once the four unknown coefficients of the previous cubic arc 1 have been 

determined, equation (3.2) provides an approximation to the required gradient at PI' i.e. 

(3.9) 

Thus in computing the coefficients of approximating arc 2 the condition dxl :;:: [dP t (Xl)]-l is used. 
dy p dx 

I 

Polynomial P2 (x) will only be used to describe the arc between nodes Pj and P2 • 

y 

P4 -7 ........C... Cubic arc 3 

P4(x)7 C~bic arc 4 

~----------------------------------~x 

Figure 3.6: Cubic arcs 3 and 4. 

Cubic arc 3 passing through the three nodes of triplet 3 (see Figure 3.6) is different to the previous arcs 

in that both conditions 1(b) and 2(b) are satisfied (see Table 3.1 and Table 3.2). This implies that cubic 

arc 3 can be expressed as a cubic polynomial function of either x or y and a choice has to be made. If 

this situation occurs, only one of the following two conditions will be satisfied: 

Condition 3(a): 

Condition 3(b): 

Table 3.3 
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For the case depicted in Figure 3.6, cubic arc 3 satisfies condition 3(a) in Table 3.3, and it is therefore 

clearly preferable to express the arc as a cubic polynomial function of x: 

(3.10) 

The unknown coefficients of cubic polynomial (3.10) are determined in a similar manner to those of 

cubic arc 2 (equation (3.7», with the initial gradient at P, taken as :~ I., [dp~~')r. Again p, (x) 

will only be used over the first interpolating interval, i.e., between nodes P2 and P3 (Figure 3.6). 

Having determined cubic arc 3, it remains to find a suitable cubic interpolating polynomial function 

P4(X), XE[X 3 ,XJ, which is to represent the final interval to P4 of the total curve underP3 

consideration. 

The overlapping strategy may be continued for the final part of the curve by fitting a cubic arc through 

nodes P4, P3 and P2 , and utilizing the given gradient at P4 (see given data (iv) at the beginning of 

Section 3.1). The polynomial has the form 

P4(X) = a 4 + b4(x-x4)+c 4(x- X4)2 + d 4 (x-x4)3 , X E [x 4 ,X Z ] (3.11 ) 

The derivative of (3 .11) with respect to x is 

~p4(x)=b4+2C4(x-x4)+3d4(x-x4)2, X E[X 4 ,XJ (3.12)
dx 

With the given final gradient at P and interpolating through the three nodes P , P and P , four4 4 3 2dx 

independent equations in the unknown coefficients follow from expressions (3.11) and (3.12) as before. 

These equations may be simultaneously solved to give a 4 , b4, c4 and d 4 • The resultant interpolating 

polynomial p 4 (x) , representing arc 4 and to be used over the final interval between nodes P3 and P4, is 

also indicated in Figure 3.6. 

The following truth table shows how the different conditions listed in Table 3.1 and Table 3.3 determine 

the dependent variable for a specific arc. The rows show different combinations of satisfied and violated 

conditions, where a 1 indicates that a specific condition is satisfied and a 0 that it is violated. 
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I 
i 

Condition Condition Condition Condition Condition Condition Dependent 

1(a) 1(b) 2(a) 2(b) 3(a) 3(b) variable 

1 0 0 0 
i 

x 

° 1 0 0 x 

° 0 1 0 y 

0 0 0 1 Y 

1 0 x 
1 0 1 0 

i 
0 1 Y 

1 0 x 
1 0 0 1 

0 1 y 

1 0 x 

° 1 1 0 
0 1 Y 

1 0 x 

° 1 0 1 
0 I y 

i 

I 

I 

i 

I 

i 

I 

I 
Table 3.4 

Here, for illustrative purposes, the presentation of the overlapping cubic arc methodology for 

constructing an approximation to a curve defined by nodal points Po, PI ,..., P N' has been restricted to the 

case N =4. The extension of the method to the more general case where N may be larger than 4 is clear 

and obvious. 

3.1.1.2 Computation of total path length S 

With p,(x) (or Pj(Y» representing the approximation to the curve to be used over [xH,xJ known, the 

corresponding curve length Sj may be obtained by integration. From the differential relationship 

ds2 == dx 2 + dl it follows that ds ~l + (~)2 dx and therefore the curve length s, is given by 

Sj = r ~1 + C! Pj(x»2dx == rf(x)dx 
H 

for each i:= 1,2, ... , N 

It is convenient to do the integration numerically by using the composite Simpson's rule for n 

subintervals [55]: 

r h[ ~ ](~If(x)dx':':;"3 f(a)+2 f.f(x 2j ) +4f.f(x2i- , )+ f(b) (3.13) 

. (b a)
where n IS even, h =--, and x k = a + kh for k = O,l,... ,n 

n 

Chapter 3 97 



TRAJECTORY-PLANNING THROUGH INTERPOLATION BY OVERLAPPING CUBIC ARCS AND CUBIC SPLINES 


The total path length S ofcurve C is then given by 

(3.14) 

3.1.1.3 Dependence of curve length on parameter t 

Assume that the distance s of the working point (wp) along the curve is represented by a cubic 

polynomial in time t of the form: 

s(t)=a.+bst+cse+dse, tE[O,T] (3.15) 

Expression (3.15) is associated with a known initial curve length s(O) So (usually So = 0), a known 

initial tangential speed s(O) = Vo (usually Vo = 0), as well as a known final curve length seT) S 

(usually found via expression (3.14) above). 

For the time being, assume that a gradual increase in tangential speed is required over the time interval 

t E [0, T], such that a specified tangential speed v· is attained at time T, i.e. seT) v'. The time 

derivative of(3.15), representing the tangential speed over the total path is 

set) = bs + 2cs t+ 3d, e, t E [0, T] (3.16) 

The acceleration over the total path may be obtained from the time derivative of (3 .16): 

set) 2c. + 6d, t, t E [0, T] (3.17) 

It is further required that the magnitude of the final tangential acceleration has to be zero, i.e. seT) = ° . 

Now, with s(O) so, seT) S, s(O) = va' seT) =v· and seT) = 0 known, one may solve for as' bs' cs ' 

d s and T as follows: 

s(O) = as So 

S(O) bs Vo 

seT) S= as + b, T + c, T2 + d, T3 	 (3.18) 

seT) = v· b s + 2c, T + 3d, T2 	 (3.19) 

seT) =0 2c,+6d, T 	 (3.20) 

from (3.20): Cs = -3d, T 	 (3.21) 

and substituting (3.21) into (3.19): v· v 0 - 3d, T2 , from which it follows that 

(3.22) 

. 
Substituting (3.22) into (3.21): c. = v 	 - Vo (3.23)

T 
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and substituting (3.22) and (3.23) into (3.18): S =So + T( ~o + 2;·) from which it finally follows that 

T= 3(S- so) 
(3.24)

Vo + 2v· 

Note that if the initial time instant to *0, the corresponding polynomial set) can readily be obtained by 

the simple replacement of T by T - to in expressions (3.18) - (3.24) and the corresponding replacement 

oft by t to in expressions (3.17) - (3.19). 

For each node Pi (xi,yJ, i =O,I,...,N the total path length up to the specific node may be determined 

from (3.14): 

S; = ~:Sj , i =O,I,...,N (3.25) 
j~I 

Further, with Si' i = 1,2, ... , N -1 known, the Newton-Raphson iterative method may be used to solve for 

the corresponding nodal times t;, i 1,2, ... ,N-1 [55]. This well-known and powerful numerical 

method solves for the root ofa non-linear equation of the fonn f(x) == 0 via the iterative scheme: 

, x(j-l) f(x U- I» . 

xl)~ = [ (' )] , J == 1,2, ... df(x )-1 ) 

dx 

where an initial estimate x (0) is given. 

To solve for a specific t; corresponding to distance S" requires the solution of the non-linear equation 

f(tJ s(tJ - S, 0 

where from (3.15): s(t,) == as + b. ti + Cs t/ + d, t/ , and thus, more explicitly, the equation to be solved 

becomes 

An equation corresponding to the above, is to be solved for each i =1,2, ... , N - 1 . 

Since tN == T is known from (3.24), good initial approximations for t;, i = 1,2, ... ,N-1 may be found: 

t/O) ={~). i=1,2,... ,N-1 

Starting with an initial approximate root given by the above, the Newton-Raphson method generates, for 

h · f" {(j). 012 }eac l, a sequence 0 apprOXImatIons t{ , J= " ,... : 

Chapter 3 99 



TRAJECTORY-PLANNING THROUGH INTERPOLATION BY OVERLAPPING CUBIC ARCS AND CUBIC SPLINES 

The iteration continues until convergence is obtained. In practice, with a tolerance E >°specified, the 


Newton-Raphson iteration continues for each i until one of the following convergence criteria is met: 


It/i) - t/i-1)1 < E 


t.w - t (j-1)II t t (j) ° Cl <E,t.:t=
t. J I 

I 

3.1.2 Cubic spline representations for X(t) and yet) 

With the time interval [0, T] during which the curve is executed determined (see objective (a) Section 

3.1), and the nodal times t;> i:= 1,2, ... , N - 1 known, time parametric curves X(t), and Y (t), t E [0, T] 

interpolating the nodal points (x;,y;) (see objective (b) Section 3.1), can be determined. 

Since a unique time instant t; E[O,T] is associated with each nodal point (XpYi), i=O,l, ...,N and 

since 0= to < t) < ... < tN = T , separate cubic spline interpolations X(t) and yet) may be fitted to the 

respective nodal point sets, (xi'tJ and (Yi'tJ . 

According to Burden and Faires [55] cubic spline interpolation, which fits cubic polynomials between 

each successive pair of nodes, is the most common piecewise polynomial approximation. Based on their 

defmition, the cubic spline interpolant X(t) , is a function that satisfies the following conditions: 

X(t) is a cubic polynomial, denoted XJt) ,on subinterval [tl' t'+I] for each i = 0,1,... , N 

X(t;) =x; for each i = O,l,...,N 

X'+I(t i+1) X,(t i+1) foreachi=0,1, ...,N-2 

X'+1(t'+I)=X,(t;+I) for each i=O,l,...,N 2 

X'+I(tl+J Xi(t,+J for each i = O,l, ...,N - 2 

One of the following set of boundary conditions is satisfied: 

X(to) = X;(tN) = °(free or natural boundary) 

or X(to) = Xo and X(tN) = xN (clamped boundary) 
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When the free boundary conditions are prescribed, the spline is called a natural spline, and its form 

approximates the shape that a long flexible rod would assume if forced to go through each of the nodal 

points. 

For the interpol ants X(t) and yet) to be constructed here, however, clamped boundary conditions are 

used, since they contain more information about the respective functions, and therefore lead to more 

accurate approximations. 

Assume for the moment that the derivatives at the end points (xo and xN ) are accurately known. To 

construct the cubic spline interpolant for x as a function of t, the conditions listed above are applied to 

the cubic polynomials of the following form: 

(3.26) 

The unknown coefficients a)(j, b)(j' CXi and d xi , i::::: O,l,...,N -1, may easily be determined as shown 

in [55]. 

If not explicitly known, the initial derivative Xo may be accurately approximated using Taylor 

where Xi corresponds to x(t,) and At, ::::: t, - to' i::::: 1,2,3,4. 

above expressions leads to the following set oflinear equations: 

XI -xo 
x 2 Xo 

X3 -xo 
x 4-xo 

::::: 

(Aty (Atl)3 (Aty
Atl 

2 6 24 
(At2)2 (At

2 
)3 (AtJ4

Atz 2 6 24 
(At3)2 (At] )3 (At3)4

At3 
2 6 24 

(At4)2 (At 4 )3 (At4)4
At4 

2 6 24 

Ignoring the higher order terms in the 

Xo 

Xo 
(3.27)

Xo 

Xo 

Expression (3.27) is a linear system of the form Ax::::: b , and can be solved directly using a scheme such 

as LU-factorization [55]. The solution vector x contains the sought after initial derivative xo' 
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The final derivative xN may be obtained in a similar manner, where the set of linear equations in matrix 

form is given by: 

XN-1 -XN 

XN_2-XN 

XN_
3 XN 

XN_4-XN 

= 


(~tl )2 _ (~tl)3 (~tlt
~tl 

2 6 24 
(~t2 )2 _ (~t2)3 (~t2t

-~t2 
2 6 24 

(~tJ2 _ (~tJ3 (~t3 )4
-~t3 

2 6 24 
(~t4 )2 (~t4 )3 (~t4 )4

~t4 
2 6 24 

x N 
XN 

(3.28)
XN 
xN 

with ~tj tN tN_i> i =1, 2, 3, 4. 

The advantage of using a cubic spline interpolation for X(t), t E [0, T] is that each constituent cubic 

polynomial Xj(t) involves four coefficients, so there is sufficient flexibility in the cubic spline 

procedure to ensure that the interpolant is not only continuously differentiable, but also has a continuous 

second derivative over the whole interval [0, T] (see [55]). 

Once ax;, bXj ' cx;, and dx;, i =O,l,...,N -1 (see (3.26» are determined, X(t) and X(t) are given by: 

X;(t) bx; +2c x;(t-t;)+3d xi (t-tY, i=0,1, ... ,N-1 (3.29) 

X;(t)=2c x; +6dx;(t-t;), i O,l,...,N-l (3.30) 

which are continuous functions over the interval [0, T] (see objective (c) Section 3.1). 

It follows that Y(t), yet) and yet) can be found in a similar manner. 

3.2 	 Practical problem of determining dy at Po and PN
dx 

In general the set of given nodal points {Pi (xi' Yi)' i =0,1,...,N} may represent a curve for which no 

y
explicit analytical expression exists, and therefore the exact initial and final gradients (d at Po and 

dx 

PN) will not be known. In this case approximations to these gradients with respect to x may be 

determined using Taylor expansions in an analogous manner as done for the time derivatives Xo and xN 

in Section 3.1.2 (see expressions (3.27) and (3.28». 
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In Section 3.1.1.1 it is apparent that the nodal points representing a curve must be chosen in such a way 

that certain conditions are satisfied (see Table 3.1 and Table 3.3). These conditions ensure that each 

consecutive cubic arc can be expressed as a function of either x or y. 

Returning to the illustrative example curve of Figure 3.3, it was shown that 5 nodal points along the 

curve are adequate in terms of the conditions listed in Table 3.1 and Table 3.3, provided that the exact 

initial and final gradients are known. However, if the exact values of the initial and final gradients are 

not known, the nodal points should be specified in such a way that sufficiently accurate approximations 

for these gradients may be calculated. 

y 

~-------------------------------------.x 

Figure 3.7: Additional nodal points specified. 

Figure 3.7 shows the same illustrative example curve, but with four additional nodal points. An 

y
approximate value for the initial gradient (d at Po, i.e. y~) may then be determined using the 

dx 

following Taylor expansions: 

(~ )2 (Ax )3 
Y ;:;;; Y + Ax y' + 1 y" + I y" + O(Ax )4

I 0 I 0 2! 0 3! 0 I 

(Ax )2 (Ax )3
= Y +~ y' + 2 y" + 2 y"' +O(~ )4Y2 0 2 0 2! 0 3! 0 2 

with 8x j =Xj x o ' i =1,2,3. 

The clustered distribution ofnodal points Po, PI' P2 and P3 shown in Figure 3.7 is justified considering 

the fact that the fourth order error term in the above Taylor expansions becomes smaller using smaller 

step sizes Ax 
l 

, Ax and Ax • Neglecting these error terms an approximate initial gradient y~ isz 3 

obtained by solving the following linear system: 
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y 

Y2' Yo ­

Y3 -Yo 

r Y} 

(~Xl )2 (~xy

~XI 
4 6 

(~X2 )2 (~X2)3 
~X2 (3.31 )

4 6 
(~XJ2 (~3)3 rm 

~X3 
4 6 

Similarly, an approximate final gradient y~ may be obtained by solving the linear system: 

(~xy (~XI)3
-~Xl 

r 1 
4 6 nYN N 

(~X2 )2 (~X2)3 
(3.32)~X2YN-2 YYN' y:4 6 

y)/y}/-3-YN (~X,)2 (~X3)3
-~X3 

4 6 

with ~Xi =x N -X N_i , i =1,2,3. 

Depending on the particular circumstances, approximations for dx at Po and PN may be determined in a 
dy 

similar manner using Taylor expansions. The choice between determining dy or dx at Po and PN 

dx dy 

depends on which of the following conditions are satisfied, and which are violated: 

Condition 4(a): 

Condition 4(b): 

Condition 4(c): 
r----..- ­ ..--,-----r------------',

Condition 4(d): 
I 

Condition 5(a): 

Condition 5(b): 

Condition 5(c): YN-3 > YN-2 > YN-I > YN 

Condition 5(d):
L-___________~__________~ 

Table 3.5 

Since four node points are involved in each condition, the clustered distributions of the nodal points Po, 

PI' and P3, as well as Ps ' P6 , and in Figure 3.7 are further justified considering theP2 P7 Ps 

requirement that at least two of the conditions listed in Table 3.5 must be satisfied for any set of nodal 

points. In particular, at least one of conditions 4(a), 4(b), 5(a) or 5(b), and one of conditions 4(c), 4(d), 

5(c) or 5(d) must be satisfied for the purposes of determining the sought after initial and final gradients. 
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For nodal points Po, PI' Pz and P3 shown in Figure 3.7 it is clear that both conditions 4(a) and 5(a) are 

satisfied, implying that either dy or dx can be determined at Po. Similarly for nodal points Ps, P6 , 

dx dy 

and Pg , both conditions 4(c) and 5(c) are satisfied, implying that either dy or dx can be determined P7 
dx dy 

at PN =Pg • In these eventualities, the appropriate choice is made by testing which of the additional 

conditions listed in Table 3.6 are satisfied. 

ICondition 6(a): \x 3 ­ X0 I~ Iy 3 - Yo! 

i 

Condition 6(b): IX3 xol < IY3 -Yo\ 

Condition 7(a): IXN XN_31~ IYN YN-31 

Condition 7(b): IXN -XN_3 !< IYN YN-3! 
Table 3.6 

For example, since for nodes Po and P3 shown in Figure 3.7, condition 6(a) is satisfied, the obvious 

choice is to determine dy at node Po' Similarly, since condition 7(a) is satisfied for nodes Ps and Pg , 

dx 

dy is to be determined at node P N Pg • 

dx 

The following truth table shows how the conditions from Table 3.5 and Table 3.6 determine the form of 

the gradient to be used at node Po' As before, the rows show different combinations of satisfied and 

violated conditions, where a I indicates that the specific condition is satisfied, and a 0 that it is violated. 

Condition 

4(a) 

1 

Condition 

4(b) 

0 

Condition 

5(a) 

0 

Condition 

5(b) 

0 

I 
i 

I 
i 

Condition 

6(a) 

Condition 

6(b) 

Gradient at I 

Po i 

dy 

dx 

i 

0 

0 

1 

0 

0 

1 

0 

0 

dy 
dx 

dx 
-
dy 

0 0 0 1 
dx 
-
dy 
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I 
! dy 

dx 
1 

I 
0 

11 0 I0 I I I dx 
1 ­0 

! dy
I I 

dy
01 

dx
I11 00 
I dx 

-0 i 1 
dyi 

i 

I dy
1 0 II dx 

I1 10 0 
dx 
-10i dy 

I 
dy

0 
dx 

I1 10 0 
dx I 

I I 
i 

l l I 

-

I 
Table 3.7 

A similar truth table may be drawn up showing how the different combinations of conditions determine 

the form of the gradient to be used at P N • 

Of course, with dy (or dx ) determined at nodes Po 
dx dy 

and P
N 

using the above strategy, dx 
dy 

(or dy) at 
dx 

nodes Po and PN is simply given by the reciprocal relationship: 

1 
dX(Yr·)

dy 
[dY(X,.)]-1

dx or 
dy(x,.) 
~ 

[dx(y)J­
dx i for i = 1, N 
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3.3 Synthesis of more general curves 


y 

"X 

Figure 3.8: General curve where the prescribed speed is achieved. 

Section 3.1.1.3 deals with the simplified situation of tangential acceleration along the prescribed curve 

until a specified tangential speed v· is achieved at time tN = T. A more realistic example is shown in 

Figure 3.8 where the motion is executed in three segments: tangential acceleration along curve C1 , 

constant tangential speed along curve Cn , and tangential deceleration along curve C • The set of nodalm 

points associated with the general curve ofFigure 3.8 is {Pj (xi' Yj ),i 0,1,... , NI'".,N II ,,,., N Ill} . 

This Section proposes a methodology by means of which node numbers N I and N II may automatically 

be assigned, given the prescribed constant tangential speed v· along C II and the maximum allowable 

tangential acceleration SALLOW' 

In what follows "speed" and "acceleration" refer to tangential speed and tangential acceleration, unless 

otherwise specified. 

3.3.1 Linear segment with cubic blends 

Assume that node numbers N I and N II are given. Node number N III is automatically known, since it 

is the final node in the specified data series. Path lengths SI' SII and SIll' corresponding to the 

respective curves C 1 , Cli and Cm, may then be determined by following the procedure outlined in 

Sections 3.1.1.1 and 3.1.1.2. 
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The acceleration curve C in Figure 3.8, corresponds to the situation already discussed in Section r 

3.1.1.3, i.e. a gradual increase in speed is required over the time interval t E [0, Tj ], such that the 

prescribed speed v' is attained at time Tj • 

For curve C! the distance along curve Sl at any instant t is represented by the cubic polynomial in time 

(see expression (3.15»: 

SI(O == a,l+ bsl t+csi e +dsl e, t E [O,TI] (3.33) 

with quadratic expression 8] (t) =bSi + 2c s1 t + 3dsi e,for the speed (3.34) 

and linear form Si (t) t, for the acceleration (3.35) 

8

2cSl + 6dsl 

The motion along the acceleration curve C1 is associated with boundary conditions that are similar to the 

ones given in Section 3.1.1.3; namely 

SI(O)=SO (usually So =0) 

sl(T1)=SI 

SI(O)=VO (usually Vo =0) 

j (T1)=v' 

sl(TJ == 0 

The unknown coefficients a sl ' ' and d ] , as well as Tj are determined in exactly the same manner b Sj c s1 S

as explained in Section 3.1.1.1 (expressions (3.18) - (3.24». With the coefficients and the time instant 

T] known, the nodal times t;, i == 1,2, ... ,N 1 may be obtained using Newton's method (see Section 

3.1.1.3). 

Along the constant speed segment C ll in Figure 3.8 the distance sl! along the curve from nodal point 

PN is given by the following linear relationship in time: 
1 

(3.36) 


For each node Pi == (x" y;), i N I + 1, N 1 + 2, ... , Nil' the total path length S; from Po up to the specific 


node Pi may be determined from (3.25): 


S, = ~>j ,i = N] + 1, N j + 2, ... , N II (3.37) 
j=1 

The corresponding nodal times t;, i N 1+ 1, N 1+ 2, ... ,N II then follow from (3.36): 

Sj -S] T ' N 1 N 2 N-'--.---'- + I' 1 == I +, 1 + ,.. " II (3,38) 
V 
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For the final deceleration segment Cm in Figure 3.8, the distance along the curve Sill from nodal point 

is also given by a cubic polynomial function of time:PN" 

slll(t)=asm+bsm(t-TII)+csm(t Tu)2+dsm(t-Tn)3, tE[TII,Tm] (3.39) 

sm(t) == bSIll + 2cslIl ( t - Til) + 3dsm ( t - TII)2 (3.40) 

Sm(t) = 2csm + 6dslll (t - Tu) (3.41) 

Since a decrease in speed is required along the deceleration segment Cm , the following boundary 

conditions are enforced: 

Sill (Tu) = v· 

sm(Tm) == 0 

sllI(Tu ) = 0 

from which the coefficients a.lII , ' and the final time instant T III can be determined: bslll ' cslII d slII 

0:. csIll 

(3.42) 

(3.43) 

and with b. = v· it follows from (3.43): m . 
v 

(3.44) 

and substituting (3.44) into (3.42): 

(3.45) 


Newton's method is then used to determine the corresponding nodal times t" i =Nil + 1, N II + 2, ... ,Nm 

in the manner already described in Section 3.1.1.3. 

It follows that the motion, described in terms of the distance set) along the general curve shown in 

Figure 3.8, is a linear segment with cubic blends (LSCB), since the cubic motions along curves C 1 and 
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CII! are merged or blended with the constant velocity motion along curve CII at the respective blend 

times TI and Til as shown in Figure 3.9 (see [60]). 

s 

o~~------~----~------~--------~~t 
TJ Till Tn Till 

T 
Figure 3.9: Linear segment with cubic blends (LSCB). 

Blend time T( is given by (3.24): 

(3.46) 


which reduces to T( 3S~ with So =0 and vo =0. 
2v 

Similarly, blend time TIl is given by (3.45): 

T -T = 3(Sm- Su) (3.47)
III II 2v' 

The latter two equations indicate that if the nodal points N ( and N II are chosen in such a way that 

Sm Su S( , then time spans (T( - 0) and (T[II - Til) are equal. In this case the LSCB, as shown in 

Figure 3.9, is "centro-symmetric" with respect to the midpoint [T~I1 ,S~II] (see [60]). 

Another important and desirable feature of the proposed LSCB motion, is the fact that the corresponding 

speed and acceleration curves are continuous as depicted in Figure 3.10. 
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s 

s 

v' 

o'-------.,----.\-.t 

s 

Or--~------~---.t 

Figure 3.10: LSCB motion with its accompanying speed and acceleration curves. 

The initial acceleration 81 (0) is obtained by substituting (3.46) into (3.23) giving 

which, after substituting into (3.35) yields 

_ 2(v· - v 0 )(v0 +2 v • ) 
2Col - (3.48)

3(SI -so) 

Expression (3.48) simplifies further if v 0 =0 and So 0, as is usually the case, to give 

"j(O) 4(V·)2S (3.49)
3S] 

. 
Further, by substituting d,m = -v 2 as well as (3.47) into (3.41), the final acceleration is given 

3(Tm - Til) 

by 
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.. (T) -4(V')2 
(3.50)

SIll III = 3(S -S )
III II 

If SIll - SIl = SI , the magnitude of the initial acceleration SI (0) is equal to the magnitude of the final 

acceleration S III (Till) due to the symmetry that exists in this case (compare expressions (3.49) and 

(3.50». It is of particular interest to note that for this symmetrical situation, the magnitudes of the 

accelerations at the initial and final times are not only equal but correspond to the maximum acceleration 

magnitude that occurs along the total curve. 

3.3.2 Treatment of constraint on acceleration 

The practical requirement that the prescribed motion is to be executed as fast as possible, is usually 

subject to a prescribed maximum allowable acceleration magnitude SALLOW' A procedure is now 

described that may be used to select appropriate node numbers N 1 and N II such that the following 

specific acceleration constraints are not violated: 

(3.51 ) 

(3.52) 


Since by (3.35) and (3.41) the acceleration along both C1 and CIl! vary linearly with time, it follows that 

if the specific constraints (3.51) and (3.52) are satisfied, that the constraint on the acceleration is also 

satisfied at each instant along the whole path. 

As before, for each node Pi = (xPy;), i O,I,... ,N IlP the total path length up to the specific node may 

be detennined using expression (3.25). A special nodal point N MID' corresponding to a point 

approximately halfway along the total curve (i.e. for which SN """ Sm ) can be identified using the 
MID 2 

following criterion: 

(3.53) 


As a first iteration in finding the appropriate choices for nodes N I and N II , assume that nodes N 1 and 

N 1I coincide with node N MID as shown in Figure 3.11. 
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y 

TI = TMID = Tn 

Figure 3.11: General curve showing the midpoint NMID• 

From (3.53) it follows that Sm SMID;?: SMID' and with nodes N I and Nil coinciding with node N MID' it 

further follows that Sm - Sn ;?: SI which, when substituted into (3.49) and (3.50), gives 

(3.54) 


Consequently, for the situation depicted in Figure 3.11, if the initial acceleration S1(0) satisfies 

constraint (3.51), the final acceleration sm(Tm) will also satisfy constraint (3.52) and, indeed, the 

constraint on the magnitude of the acceleration will be satisfied at each instant along the total curve. 

3.3.2.1 Attainment of central speed v· 

If the initial acceleration for the situation shown in Figure 3.11 satisfies constraint (3.51), the desired 

central speed v· may be reached at node N MID . For practical purposes the ideal objectives are, 

however: 

1. 	 to attain the desired central speed v· in the shortest possible time without exceeding the TJ 


allowable maximum acceleration magnitude SALLOW' and 


2. 	 to maintain the desired speed v· for the longest possible time span (Tn - T j ) provided that, over the 

final time interval [Tn' Till] , the maximum deceleration magnitude does not exceed the allowable 

magnitude 5 ALLOW' 

With reference to objective 1 above, expressions (3.46) and (3.48) respectively indicate that for a specific 

speed v· , a shorter path length SI will result in a shorter time TI and a larger initial acceleration 8) (0) . 

By shifting, for example, node N I to coincide with node N MID - 1 the associated path length Sl and 

corresponding time T j will be reduced, while the associated initial acceleration 51 (0) will become 

larger. This increased initial acceleration is then tested against constraint (3.51), and if the constraint is 
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still satisfied, node N I is shifted further to coincide with node N MID - 2. These integer shifts are 

continued until, after p integer shifts, the choice of node N I , coinciding with node N MlD - P , is such 

that the initial acceleration satisfies constraint (3.51), while the choice N I = N MID - (p + 1) violates the 

constraint. 

With regard to objective 2, inspection of expressions (3.47) and (3.50), indicates that a decrease in the 

path length (SIll - SlI) will result in a shorter time span (TIll - TIl), and a larger final acceleration 

magnitude iSm(Tm )1· For example, if node N n is shifted to coincide with node N MID + 1 and thus 

shortens the path length (Sm SII) and the time span (Till - Til), it will result in a larger final 

acceleration magnitude ISm(Tm)l. If the larger ISllI(Tm)1 satisfies constraint (3.52), node Nu may be 

shifted further to coincide with node N MID + 2 ,etc. These integer shifts may be continued until, after q 

shifts, node Nil' coinciding with node N MID + q is such that the final acceleration magnitude Is III (Till )1 

satisfies constraint (3.52), while the choice Nil = N MID + (q + 1) violates the constraint. 

3.3.2.2 Violation of maximum allowable acceleration 

If the initial acceleration, for the situation depicted in Figure 3.11 with specified central velocity v·, 

violates constraint (3.51), a different strategy is proposed which ensures that the maximum allowable 

acceleration is not exceeded. For this case, the motion along the curve shown in Figure 3.11, consists of 

two blended cubic polynomials in time. The blend time is TMID as shown in Figure 3.12: 

s 

Figure 3.12: Blended cubic polynomials. 

Chapter 3 114 



TRAJECTORY-PLANNING THROUGH INTERPOLATION BY OVERLAPPING CUBIC ARCS AND CUBIC SPLINES 

More specifically, the two objectives set in this case are: 

1. to accelerate as fast as possible along curve C [ without violating constraint (3.51), and 

2. to decelerate as fast as possible along curve Cil without violating constraint (3.52). 

Objective 1 implies a different set of boundary conditions for determining the coefficients of the cubic 

polynomial function representing the path length along curve C[ (see expression (3.33». These new 

boundary conditions are 

s[ (0) = So (usually So 0) 

from which a s[' b sl ' col' dOl' and TMID may be determined as follow: 

s (0)::: a ::: SIsO 

S (O):::b =v[ s 0 

Sand therefore c ::: ALLOW 
sl 2' 

(3.55) 

(3.56) 

and thus 

d ::: -SALLOW (3.57)
sf 6TMID 

SALLOW (T )2Substituting (3.57) into (3.55): sl(TMID )::: SMID So +VOTMID +-- MID 
3 

which gives TMID 

and which reduces to 

T =+ /3SMID (3.58)MID -Vi .. 
SALLOW 
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The positive root gives the sought after time instant TMID . 


From (3.34) and substituting the values ofthe coefficients determined above, the speed at node N MID is 


. () SALLOW 
V MID =SI TMID =vo +-2-™1D 

which reduces to 

~3SMIDSALLOW (3.59) 
2 


if So =0 and v 0 O. 


The cubic polynomial function of time representing the deceleration segment C III in Figure 3.11 is given 

by expression (3.39). The unknown coefficients a,lII' b,m' C,III and d'lI! as well as T III are solved for 

by using similar boundary conditions as before: 

slll(TIl ) SMID 

slll(Tm)=0 

sm(TIJ = 0 

Substituting these conditions in the corresponding general expressions (3.39), (3.40) and (3.41) for s, s 
and s , and following the identical steps represented by equations (3.42) to (3.45) finally yields: 

=bSIlI V M1D 

0csIIl 

As with the LSCB motion (see Figure 3.10), the blended cubic polynomials also result in continuous 

speed and acceleration curves as shown in Figure 3.13. 
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s 

~~----+-------~t 

O~------~------~t 

of-------=-'''<:--------++t 

Figure 3.13: Blended cubic polynomials motion with its associated speed and acceleration 
curves. 

From the above acceleration curve, it is clear that the initial acceleration is equal to the allowable 

maximum acceleration, i.e. 5JO) SALLOW' Since the final acceleration magnitude ISm(Tm)1 is either 

smaller than or equal to the initial acceleration magnitude 51 (0) (see expression (3.54)), ISn/TIll)1 

automatically satisfies acceleration constraint (3.52). 

3.4 Incorporation of an orientation angle ~. 

For certain applications of planar motion, the time parametric curves X(t) and yet) that interpolate the 

given set of nodal points {Pi =(xi' Yi)' i 0,1, ..., N}, are insufficient for the control of the particular 

mechanism, e.g. for a planar mechanism where the end-effector is to be orientated in a prescribed 

manner with respect to the tangent of the given path. 
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As an example, consider the situation where the orientation of the end-effector is to be exactly tangential 

to the curve, as the working point on the end-effector progresses along the prescribed curve. The gradient 

angle e at any point along the curve is given by 

tane = dy ~ dpJx) or [dP;(y)]-l (3.60)
dx dx dy 

Another convenient form of expression (3.60) is 

(3.61) 


With the time parametric curves X(t) and yet) known, the respective derivatives X(t) and YCt) are 

also known. Expression (3.61) may therefore be evaluated at nodal points Pi' i =O,I,... ,N to find the 

corresponding values of e;, i = 0,1,... , N. As will be described below, the actual orientation angle <p of 

the end-effector is related to the angle e in a non-straightforward manner as the working point executes 

the path. 

In computing e, care must be taken at nodes Po and PN , since the respective speeds at these nodes are 

often zero, i.e. sr(O)=vo=O and Sill (Tm) =0. With this being the case, X(O) Y(O)=O and 

X(Tm) = Y(TllI ) 0, and consequently expression (3.60) must be used instead of (3.61) to determine 

eo and eN' since dy is known at nodes Po and PN (see Section 3.2).
dx 

Since the arc tan function, through which e is determined via (3.60) or (3.61), only assumes values 

between 90° and + 90° , a special procedure must be adopted to determine the exact orientation angle 

<p as the working point on the orientated end-effector tangentially follows the prescribed curve. 
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e= 0° l,rep = 0° 
-:::::---=----"" 

B 

e=+ 90° 

~C 
----~~-----------------------~~.x 

~ e 90 

D 

Figure 3.14: Circular prescribed curve. 

Consider, for example, a prescribed circular curve as shown in Figure 3.14 with zero orientation angle ~ 

at B. Starting at point A with e and ~ -90° and progressing counterclockwise (CCW) around the 

circular curve the gradient angle e computed via (3.60) or (3.61) gradually increases with ~ from 

90° at A, to 0° at B, to + 90° at C. The CCW crossing of the x-axis at point C is however associated 

with a jump of -180° in the computed gradient angle e although ~ is still clearly increasing 

continuously. Progressing CCW along the lower half of the circle again sees a gradual increase in the 

gradient angle e from - 900 at C, to 0 0 at D, to +900 at A, while ~ continues to increase from 90° to 

2700 at A. At A where another jump of 1800 occurs in the computed value e if the X-axis is crossed 

CCW. 

A similar pattern is recognized using a clockwise (CW) tracing of the circular curve. Starting at point A, 

the computed gradient angle e gradually decreases from +90° at A, to 0° at D, to 90° at C while ~ 

decreases from 90° at A to 270 0 at C. The + 1800 jump that occurs in e with the CW crossing of 

the x-axis at C is followed by another gradual decrease in the gradient angle starting from + 90° at C, to 

00 at B, to 90° at A, while clearly ~ continues to decrease from - 270° at C to - 450° at A. 

The above-explained behavior of the gradient angle e is used in establishing a procedure to determine 

the orientation angle ~: 

If the jump between any two successive gradient angles ei-! and ej' i =1,2, ... , N is smaller than - 90° , 

i.e. ej ei-I :S; -900 
, a CCW-counter Iccw is incremented. Further reflection indicates that Iccw should 
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also be incremented if 0 < 0; 0i-J < 90°. Similarly if 0; - OJ-! 2900 or 900 < OJ - OJ-l < 0, a CW-

counter lew is incremented. Using these counters, the true associated orientation angles ~i' 

i::: 1,2,... ,N are given by 

(3.62) 


(3.63) 


In general expressions (3.62) and (3.63) respectively are given by: 

~i 0; +(Ieew)(1800)+~offset (3.64) 

(3.65) 


The term ~offset in expressions (3.64) and (3.65) is defined as the offset orientation angle of the end­

effector measured in a CCW convention from the tangent to the prescribed path at the point of contact as 

shown in Figure 3.15. 

e=+ 90° 

~c 

D 


e 0° 


Figure 3.15: Circular prescribed curve with an angular offset added to the end-effector 
orientation. 

Since the time instants tp i 0,1,2, ... , N are known (see Section 3.1.1.3), a cubic spline representation 

<1:>(t) may now be determined in exactly the same way as the cubic spline representations X(t) and 
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yet) (see Section 3.1.2). With the cubic spline <1>(t) known, the continuous first and second 

derivatives <D(t) and <I>(t) follow automatically. 

Any prescribed path may also be traced with the end-effector posed in a specified fixed orientation ~fix , 

thus eliminating the need to determine the cubic spline <1>(t) with its fITst and second derivatives <D(t) 

and <I>(t). 

3.5 Test problems 

The proposed trajectory planning methodology using Overlapping Cubic Arcs and (cubic) Splines 

(OCAS) is tested here on five different test functions. Appendix B contains a flow chart of the OCAS 

trajectory planning methodology. 

3.5.1 Parabolic test function 

The first test function is a parabola, where y is the quadratic function of x: 

2 

y(x) = 
x

(3.66)
2 

The accuracy of the approximating fit is dependent on the number and distribution of the given nodal 

points {Pj =(x" Yi)' i == 0,1,... , N}. The parabolic test function is approximated over the x-interval 

x E [~2,2] using 29 points spaced in such a way that they are more densely distributed at the beginning 

and end of the interval (see Figure 3.16). This is done to increase the accuracy of the calculation of the 

initial gradient dy at Po and final gradient dy at P as explained in Section 3.2. The nodal points are, 
dx dx 

N 

for the obvious reason of greater accuracy, chosen more densely in neighborhood of the turning point 

where the greatest change in direction occurs. 

. 2.00... 
1.50 • 

100 

• 

-2.00 -1.00 0.00 1.00 2.00 3.00 

x 

Figure 3.16: Nodal points used to approximate the parabolic test function. 
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In order to determine its accuracy, the fitted approximation is evaluated at chosen intermediate points 

between the pairs of consecutive nodes shown in Figure 3.16. Since the proposed OCAS-approach 

results in cubic spline representations for X(t) and yet) (see Section 3.1.2) over the time span between 

each pair of consecutive nodes, i.e. over tl - _ , i 1,2,... ,28, each interval may be subdivided to tl l 

obtain a specified number of equally spaced additional intermediate time instants. The respective cubic 

spline representations X(t) and yet) are then evaluated at the intermediate time instants to give the 

corresponding approximated intermediate x- and y-values along the curve. Each approximated 

intermediate x-value lies in the interval x E [-2,2], and may therefore be substituted into (3.66) to find 

the corresponding actual y-value. For each intermediate x-value, the y-error is taken as the absolute 

difference between the approximated y-value and the actual y-value. 

-3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 

x 

Figure 3.17: OCAS-approximation of parabolic test function. 

Figure 3.17 shows the x-y profile obtained from the OCAS-approximation. Each consecutive time span 

t; - tj-J' i 1,2,... ,28 is divided into 10 equal subintervals and the curve in Figure 3.17 therefore 

represent a plot at 281 division points. The maximum absolute y-error over this set of points is 

4.470 x 10-5 with an average error of 5.222 x 10-6 
• 

The trajectory planning along the parabolic profile was done by specifying a maximum al10wable 

acceleration magnitude of 0.7 meter per second square, i.e. 8ALLOW =0.7, and a specified central speed 

of 1.0 meter per second, i.e. v· = 1.0. These specifications resulted in the LSCB-motion (see Section 

3.3.1) shown in Figure 3.18. The blend times are TJ 2.922 s and Til 4.942 s with the final time 

Till = 7.864s. The initial acceleration is 81(0) 0.684 and the final acceleration is 8 (TIll) = -0.684m 

the magnitudes of which are both less than the specified maximum allowable acceleration magnitude 

SALLOW 0.7. 
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Figure 3.18: LSCB-motion for parabolic test function with its associated speed and acceleration 
curves. 

The cubic spline representations X(t) and yet) that represent the x- and y-coordinate positions as 

functions of time, and plotted at the 281 time instants, are shown in Figure 3.19, together with the graphs 

of the continuous x- and y- velocities (X(t) and Yet) designated as Vx and Vy) and accelerations 

(:X(t) and yet) designated as Ax and Ay) over the total time interval [0,7.864]. Note that the start 

point and end point of the prescribed trajectory follows from the cubic spline representations X(t) and 

Y(t) , Le. (-2,2) at t 0 and (2,2) at t 7.864s. 
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Figure 3.19: Plots of approximate coordinate positions, -velocities and -accelerations versus 

time for the parabolic test function. 


With the specification that the end-effector be tangentially orientated with respect to the prescribed 


curve, (see Section 3.4), the cubic spline approximation cD(t) representing the orientation angle <\l 


[degrees] over the time interval [0,7.864] may be determined and is shown in Figure 3.20. Also shown 


in Figure 3.20 are the continuous orientation angular velocity curve <D(t) [rad/s] as well as the 


continuous orientation angular acceleration curve &(t) [rad/s 2 
]. 
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Figure 3.20: Plots of approximate orientation angle, orientation angular velocity and ­
acceleration for the parabolic test function. 
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3.5.2 Spike test function 

The second test function is a spike test function taken from [68]: 


1 

y(x)=-1-2 

(3.67) 
+x 

This spike test function is also approximated over the x-interval x E [-2,2]. The initial and final nodal 

points are Po =(xo,yo)=(2,0.2) and PN (XN'YN) (-2,0.2) respectively. In total 27 nodal points 

are specified as shown in Figure 3.21, with denser distributions of nodal points at the end points of the 

interval, as well as at the midpoint as is evident in Figure 3.21. 

1.20 l 

100·t·. . 
. . 

I 

8.80 1 

• 0.60 i 
0.40 J 

... ..... 0.20 i 

-3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 
x 

Figure 3.21: Nodal points used to specify the spike test function. 

As in the case of the parabolic test function of Section 3.5.1, each consecutive time span t; tl-l' 

i = 1,2,...,26 is divided into 10 subintervals by equally spaced additional time instants. The approximate 

x-y profile is drawn by plotting the values at the 261 division points as shown in Figure 3.22. Here the 

absolute maximum y-error resulting from this approximation is 1.359 x 10-4 with average error 

1.201 x 10-5 
• 

~I j0.60 

OAO 

0.20 

g o go 
ci N 
x 

Fignre 3.22: OCAS-approximation of spike test function. 
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With a specified central speed of v' =1.0 meter per second, and a specified maximum allowable 

acceleration SALLOW =0.5 ml S2 , the resulting motion is described by two blended cubic polynomials (see 

Section 3.3.2.2), as shown in Figure 3.23. The associated blend time is TMID =3.6148 s, and from the 

tangential speeds graph in Figure 3.23 it is clear that the speed at the blend time, v MID =0.9037 mis, is 

slightly less that the desired speed of v· 1.0 m Is. This is due to the fact that the magnitudes of both 

the initial and final curvature accelerations are equal to the maximum allowable acceleration of 

SALLOW 0.5 mlS2 • 

5.00 ] 
Blended Cubic PoIynonUlo Motion s(t) 
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Tang speedential 
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Figure 3.23: Blended cubic polynomials motion for spike test function with its associated speed 
and acceleration curves. 

Figure 3.24 shows plots of the x- and y-positions X(t) and Y(t) (with start point (2,0.2) at t =0 and 

end point (-2,0.2) at t 7.230 s), the x- and y-velocities X(t) and yet) (designated as Vx and Vy), 

and the x- and y-accelerations X(t) and yet) (designated as Ax and Ay) at the 261 time instants 

distributed over the time interval [0,7.230]. 
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Figure 3.24: Plots of the approximate coordinates, velocities and accelerations versus time for 
the spike test function. 

The tangentially orientated end-effector specification results in the cubic spline approximation <I>(t) 

[degrees] plotted in Figure 3.25, together with the corresponding plots of the continuous orientation 

angular velocity curve <P(t) [rad/s], and the continuous orientation angular acceleration curve <D(t) 
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Orientation angle Orientation angular acceleration Orientation angular velocity 

Figure 3.25: Plots of approximate orientation angle, orientation angular velocity and 
acceleration versus time for the spike test function. 

In order to verify expressions (3.64) and (3.65), an orientation angle offset <PoffSet = 30° is specified, and 

the associated cubic spline approximation <p(t) [degrees] is plotted in Figure 3.26. Also shown in 

Figure 3.26 are the corresponding plots of the continuous orientation angular velocity curve ci>(t) 

[ rad! s ], and the continuous angular acceleration curve <l>( t) [rad / s 2 ]. 

OffHt nrl.nutlo" anole Orlentatlon angular vetoctty Orientation angular acceleration 

7000 j 500 

Comparing the offset cubic spline approximation <p( t) of Figure 3.26 with the tangential cubic spline 

approximation <p(t) of Figure 3.25, it is clear that the specified offset (<PoffSe! =30°) resulted in an 

upward shift of the orientation angle curve. As expected, the orientation angular velocity and orientation 

angular acceleration curves of Figures 3.25 and 3.26 are in exact agreement. 

3.5.3 Circular test curve 

The ability of the proposed OCAS-approach to approximate curves that cannot be represented by 

unique-valued functions of one coordinate variable in terms of the other, is demonstrated here for the 

circle: 

(3.68) 

The nodal points {Pi =(xi' yJ, i 0,1, ... ,N} are specified usmg corresponding sweep angles 

0; E [0° ,720°], where the sweep angle is measured clockwise from the positive x-axis. For any specific 
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Figure 3.26: Plots of approximate offset orientatiou angle, orientation angular velocity and 
acceleration versus time for the spike test function. 
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sweep angle ~i' i O,l, ... ,N the corresponding x- and y-values are given by Xi =3cos ~i' and 

y, = 3sin~j respectively. Here the sequence of sweep angles {~J is chosen such that starting at ~ = 0 0 
, 

two complete CCW revolutions are followed. 

The spacing of the nodal points is again clustered around the beginning and end of the total interval as 

can be seen in Figure 3.27. A total of 79 nodal points cover the two revolutions of the circular path. The 

nodes for each revolution are shown separately in Figure 3.27. In particular, the first revolution 

(f:3E [0, 3600
]) is shown on the left-hand side of Figure 3.27, and the second revolution 

(i3 E [360°,7200 
]) is shown on the right-hand side of Figure 3.27. 
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Figure 3.27: Nodal points used to approximate two revolutions of the circular curve. 

As before, each time span tj tl-l' i 1,2,...,78 is divided into 10 equal subintervals for the purpose of 

mapping the computed approximation at the division points (see Section 3.5.1). The x-y-profile obtained 

from the OCAS-approximation at the specified division points is shown in Figure 3.28. For any given 

time instant the approximated x- and y-coordinates correspond to an approximated radius, from which 

the absolute radius error can be calculated. The maximum absolute radius error computed over the 781 

division points is 5.27 x 10-5 with an average error of 6.27 x 10'6 . 
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Figure 3.28: OCAS-approximation of circular test curve. 

The trajectory planning is done by limiting the maximum allowable acceleration to 0.5 meter per second 

square, i.e. SALLOW = 0.5 m/s2, and by specifying a central speed of 1.0 meter per second, i.e. 

v' 1.0 m/ s. These specifications resulted in a LSCB- motion with corresponding blend times 

TI = 4.712 s and Tn = 36.127 s (see Figure 3.29) and total path time TIll 40.841 s. The initial and 

final tangential accelerations are sI(0)=0.424m/s2 and s CT )=-0.424m/s2 both satisfying the m m

bound on the magnitude of accelerations. 
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Figure 3.29: LSCB-motion for the circular curve with its accompanying speed and acceleration 
curves. 

Figure 3.30 shows the x- and y-positions X(t) and yet) (with start point (3,0) at t = 0 and end point 

(3,0) at t = 40.841 s), the x- and y-velocities X(t) and yet) (designated as Vx and Vy), and the x­

andy-accelerations X(t) and Yet) (designated as Ax and Ay) over the time interval [0,40.841]. 
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Figure 3.30: Plots of the approximate coordinates, velocities and accelerations versus time for 
the circular curve. 

For the circular test curve, the situation depicted in Figure 3.14 occurs, where the specification of a 

tangentially orientated end-effector necessitates the monitoring of the behavior of the calculated gradient 

angle eto keep track of the end-effector orientation angle ~ (see Section 3.4). The corresponding cubic 

spline approximation <I>(t) [degrees] that results from the monitoring procedure outlined in Section 3.4 

is shown in Figure 3.31. Since the nodal points were specified within the sweep angle range of 

[0° ,720°], the orientation angle varies from - 90° to 630°. The corresponding orientation angular 

velocity curve <bet) [rad/s] and the orientation angular accelerations <D(t) [rad/s2 
] are also shown in 

Figure 3.31. 
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Figure 3.31: Plots of the approximate orientation angle, orientation angular velocity and 
orientation angular acceleration versus time for the circular test curve. 

The unexpected spikes at the beginning- and endpoints of the angular acceleration curve, as opposed to 

the smooth behavior of both X(t) and yet) in the same regions, are probably due to the slight 

inaccuracies introduced in the calculation of the gradient angle via expressions (3.60) and (3.61). 

Expression (3.60) uses the approximated gradient, while expression (3.61) uses the approximated x- and 

y-velocities to find the gradient angle e. 

For the circular test curve under consideration, the exact gradient angle e (and orientation angle ~) 

corresponding to a given sweep angle J3 may be determined (see Figure 3.32). 
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Figure 3.32: Exact gradient angle for a given sweep angle. 

The figure clearly shows that the relationship tan/3 =1. applies, from which it follows that the exact 
x 

gradient angle is e= /3 90°, which also allows for the exact determination of <p. With this information 

available a comparison can be made between the approximated and exact orientation angle at any point 

along the curve. 

Corresponding to the determination of the absolute radius error, the absolute difference between the 

approximated orientation angle, and the exact orientation angle is referred to as the orientation angle 

error. For the circular test curve, the maximum absolute orientation angle error over all the 781 division 

points is 5.714 x 10-4 rad, i.e. 0.03274° with an average error 3.742 x 10-5 rad, i.e. 0.00214°. 

3.5.4 Logarithmic spiral test curve 

The final analytical test curve is the logarithmic spiral taken from [69]: 

(3.69) 

which specifies the relationship between the polar coordinates (p, 13) of any point on the curve. 

As in the case of the circular curve of Section 3.5.3, the spiral curve can also not be expressed as a 

function of one coordinate variable in terms of the other. The nodal points {PI = (XpYi)' i == O,l, ...N} are 

generated via (3.69) where the polar angle plays the role of a sweep angle Pi' For the spiral test curve 

the sweep angle ranges from n to 5n , i.e. 13 E [ -n, - 5n]. Note that the sweep angle is incremented 

such that the logarithmic spiral curve is traced in a CW manner, as opposed to the CCW -tracing of the 

circular test curve (see Section 3.5.3). The 79 nodal points specified are shown in Figure 3.33 
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Figure 3.33: Nodal points used to approximate the spiral test curve. 

Using the same procedure as outlined before, the x-y profile may be mapped at 781 division points as 

shown in Figure 3.34. For each interpolated point the x and y coordinates yield an interpolated radius, 

i.e. 	r =~x 2 + y2 . Furthermore, for each interpolated point the relationship tan 13 applies as it does 
x 

for the circular test curve (see Figure 3.32). The calculated l3-angle is used in a special procedure similar 

to the one explained in Section 3.4, to determine the exact l3-polar coordinate associated with the 

interpolated point. Hence, by substituting the exact l3-polar coordinate into expression (3.69), the p-polar 

coordinate as well as the absolute radius error Ip - rl associated with the interpolated point may be 

determined. The maximum absolute radius error for the spiral test curve over the 781 division points is 

1.361 x 10-5 with average error 7.258 x 10-7 
• 

x 

Figure 3.34: OCAS-approximation of spiral test curve. 
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Here the bound on the maximum allowable acceleration is 0.7 meter per second square, and a central 

speed of v' =1mls is specified. The resulting LSCB motion is shown in Figure 3.35, for which the 

respective blend times are T I = 2.968 s and =4.275 s with total path time Till =7.224 s. TheT Il 

tangential accelerations are within the specified limits, SInce s(O) = 0.674 < 0.7 and 
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Figure 3.35: LSCB-motion for the spiral test curve with its accompanying speed and 
acceleration curves. 

The corresponding approximated x- and y-positions X(t) and yet) (with start point (-0.730,0) at 

t 0 and end point (-0.208,0) at t 7.224s), x- and y-velocities X(t) and yet) (designated as Vx 

and Vy), and x- and y-accelerations X(t) and V(t) (designated as Ax and Ay ) computed at the 781 


division points are plotted in Figure 3.36. 
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Figure 3.36: Plots of the approximate coordinates, velocities and accelerations versus time for 

the spiral test curve. 


As for the circular test curve, the orientation angles of the spiral test curve are determined using the 

monitoring procedure outlined in Section 3.4. The end-effector orientation angle of the spiral test curve 

varies between 84.29° and 635.71° as shown in Figure 3.37. 

Chapter 3 132 




TRAJECTORY -PLANNING THROUGH INTERPOLATION BY OVERLAPPING CUBIC ARCS AND CUBIC SPLINES 

200,00 

100.00 

000 

~100.00 

-20000 

-300.00 ~ '2,00 

-2,50::1 
-3_00

.fIOO.OO . 

-700.00 -3,50 

Figure 3.37: Plots of the approximate orientation angle, orientation angular velocity and 
orientation angular acceleration versus time for the spiral test curve. 

The orientation angular velocities [rad/s] and the orientation angular accelerations [rad/S2] are also 

shown in Figure 3.37. Again the spikes at end point of the angular acceleration curve are probably due 

to slight inaccuracies in the detennination of the orientation angle (see Section 3.5.3). 

Although specifYing an angular offset <Poffset = -45° shifts the orientation angle curve down as shown in 

Figure 3.38, the orientation angular velocity and orientation angular acceleration curves remain 

unchanged. In particular, the offset orientation angle of the spiral test curve varies between 39.29° and 

-680.71° . 
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Figure 3.38: Plots of the approximate offset orientation angle, orientation angular velocity and 
orientation angular acceleration versus time for the spiral test curve. 

3.5.5 Non-analytical test curve 

The final test curve is the non-analytical treble clef shown in Figure 3.39. The particular curve is a Non­

Unifonn Rational B-Spline (NURBS) generated with commercial Computer Aided Design (CAD) 

software, and fitted through the 42 nodal points also indicated in Figure 3.39. For trajectory planning 

purposes, the start- and end points are as indicated in Figure 3.39. 

This illustrative example is typical of a real life situation where the prescribed curve is an arbitrary 

smooth curve for which no analytical expression exists. 
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Figure 3.39: CAD-spline drawing through specified points of the treble clef test curve. 

The OCAS trajectory planning methodology is tested by specifying different sets of nodal points, where 

the nodal points of each set are differently spread along the CAD spline treble clef. In particular, three 

different sets of nodal points are chosen with respectively 22, 31 and 49 nodal points. The approximated 

OCAS x-y profiles computed at respectively 211, 301 and 481 division points are shown in Figure 3.40. 
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Figure 3.40: Three OCAS approximations of treble clef test curve. 
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By comparing Figure 3.40 with Figure 3.39, it is evident that the approximation capability of the OCAS 

trajectory planning methodology is accurate with relatively few specified nodal points. Using only 31 

nodal points yields a reasonably accurate fit, while using 49 nodal points yields an approximation which 

by inspection shows no deviation from the original CAD-spline treble clef. However, specifYing too few 

nodal points, and in an injudicious manner, results in a poor approximation as can be seen from the x-y 

profile computed for the 22 chosen nodal points in Figure 3.40. 

The results presented in Figure 3.40 also emphasize the importance of clustered distributions of nodal 

points near the extreme points (especially the end point) of the prescribed curve, which ensure accurate 

approximations to ~~ at Po and PN • 

Since the choice of 49 nodal points gives the best approximation, its associated trajectory planning 

results are also shown. Here the bound on the maximum allowable acceleration is 5 mm/ S2 , and a 

central speed of v' =10mm/s is specified. The resulting LSCB motion is shown in Figure 3.41, for 

which the respective blend times are T,::=5.l26s and TI/=40.1435s with total path time 

T III =44.693 s. The tangential accelerations are within the specified limits, since Sf (0) =3.834 < 5 and 
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Figure 3.41: LSCB-motion for the treble clef test curve with its accompanying speed and 
acceleration curves. 

The corresponding approximated x- and y-positions X(t) and yet) (with start point (27.0,44.0) at 

t 0 and end point (13.0,13.0) at t=44.693s),x-andy-velocities X(t) and yet) (designated as Vx 

and Vy), and x- and y-accelerations X(t) and yet) (designated as Ax and Ay) computed at the 481 

division points are plotted in Figure 3.42. 
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Figure 3.42: Plots of the approximate coordinates, velocities and accelerations versus time for 
the treble clef test curve. 

The treble clef prescribed curve is traced with the end-effector in a fixed horizontal orientation <jl 

hence the orientation angle curves are omitted here. 
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