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2 KINEMATIC AND KINETIC MODELING OF A PLANAR 

MACHINING CENTER 

2.1 Introduction 

The books by Nikravesh [65] and Haug [66] emphasize the importance of the application of computer­

aided analysis techniques to multi-body mechanical systems. This section gives a brief overview of the 

more important aspects of computer-aided analysis of mechanical systems as highlighted in the 

introductory chapter of the book by Nikravesh [65]. 

A mechanical system is defined as a collection of bodies (or links) in which some or all of the bodies can 

move relative to each other. Furthermore, mechanical systems may range from the very simple to the 

very complex, and a specific mechanical system may experience either planar (two-dimensional) or 

spatial (three-dimensional) motion. 

Any mechanical system can be represented schematically as a multi-body system where the actual shape 

or outline of a body may not be of immediate concern in the process of analysis. Of primary importance 

though, are the connectivity of the joints and the physical characteristics of the elements in the system. 

The analysis of a mechanical system is an important tool in the design process, i.e. the process of 

determining which physical characteristics are necessary for a mechanical system to perform a 

prescribed task. Figure 2.1 shows a block diagram of the "analysis branch" called mechanics, which is 

the study of motion, time and forces. 
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Mechanics 

Study of motion, time and forces 

DynamicsI Statics 

Study of non-stationary systems I Study of stationary systems 

Kinematics 

Study of motion (displacement, 

velocity & acceleration) 

regardless of the forces that 

produce the motion 

I 

Kinetics 

Study of motion and its 

relationship with the forces that 

produce the motion 

Figure 2.1: Mechanics and its sub-disciplines. 

There are two approaches to mechanics: the graphical approach and the analytical approach. Many 

classical methods of analysis in mechanics have relied upon graphical and often quite complicated 

techniques. These techniques are based on geometrical interpretations of the system under consideration. 

Contrary, the method of solution by vector algebra is an analytical approach, and is more systematic 

when compared to the graphical approach. A problem formulated analytically can be solved repeatedly 

for different parameter values, a task that is ideally suited to a computer program. The usefulness of 

writing a computer program becomes even more apparent when the mechanical system under 

consideration is complex to the extent that, if the system is considered for kinematic analysis, a graphical 

approach would be very tedious as well as inaccurate. 

The purpose ofcomputer-aided analysis of mechanical systems is to develop basic methods for computer 

formulation and solution of the equations of motion. This requires systematic techniques for formulating 

the equations and numerical methods for solving them. A computer program for the analysis of 

mechanical systems can either be a special-purpose program or a general-purpose program. 

A special-purpose program is a rigidly structured computer code that deals with only one type of 

application. The equations of motion for that particular application are derived a priori and then 

formulated into the program. As input to the program, the user can provide information such as the 

dimensions and physical characteristics of each part. Such a program can be made computationally 

efficient and its storage requirement can be minimized, with the result that it will be suitable for 

implementation on small personal computers. The major drawback of a special-purpose program is its 

lack of flexibility for handling other types of applications. 

40Chapter 2 



KINEMATIC AND KINETIC MODELING OF A PLANAR MACHINING CENTER 

Since the primary interest here is the dynamic analysis of a specific machining center, a special-purpose 

program is required. The systematic formulation of the relevant equations as applied to the planar 

machining center, is dealt with in Sections 2.2 2.6. The special-purpose computer program that 

resulted, is tested in Section 2.7. 

2.2 Rigid body model 

Machining centers are used to control the relative motion between a workpiece and a cutting tool such 

that the workpiece is shaped into a desired component. The planar machining center under 

consideration consists of a planar Gough-Stewart platform with which either the tool or the workpiece 

can be moved and orientated in the plane. 

More specifically, the planar Gough-Stewart platform consists of a moving platform connected to a fixed 

base via three linear actuators as shown in Figure 2.2. Changes in the actuator lengths result in changes 

in the position and orientation of the moving platform. This planar Gough-Stewart platform corresponds 

exactly to the simplified planar Stewart platform studied by Haug et al. [67]. 

moving platfonn 

fixed base 

Figure 2.2: Planar Gough-Stewart platform. 

A rigid body model is used for analysis purposes of the planar Gough-Stewart platform. Per definition a 

rigid body is a system of particles for which the distances between particles remain unchanged. Since all 

solid materials change shape to some extent when forces are applied to them, the concept of rigidity is 

only acceptable if the movement associated with the changes in shape is small compared with the overall 

movement of the body. In general this requirement is more than satisfied for most machining centers. 

In order to specify the state of the planar Gough-Stewart platform, it is first necessary to define 

coordinates that specify the location and orientation of each body in the mechanism. Consider the 

illustrative example shown in Figure 2.3. The Oxy -coordinate system shown in Figure 2.3 is the global 
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reference frame, and a body-fixed O;~/ll; -coordinate system is embedded in body i. This implies that 

the position and orientation of body i can be specified in the plane by the position vector ri , and the 

angle of rotation $; of the body-fixed 0 i ~/ll; -coordinate system relative to the global coordinate system. 

The angle $; is considered positive if the rotation from positive x-axis to positive ~i -axis is 

counterclockwise (CCW). 

Figure 2.3: Locating point P relative to the body-fixed and global coordinate systems (after 
[65]). 

A fixed point Pi on body i can be located from the origin of the 0; ~i11; -axes by the vector st. The 

body-fixed point Pi can also be located from the origin of the global Oxy -reference frame by vector r/ . 

In general body i is not fixed, and therefore the physical vectors if, it and SiP are time varying vectors. 

Hence, the vector representations ri and rt of vectors i; and iiP have components that vary with time t 

when represented in the global Oxy -reference frame, i.e. 

X(t)] d-P, p=[xP(t)]an r.. r.[ y(t) ill YP(t) i 

Vector -st has fixed components when represented in the local 0i~i11i -reference frame, since point Pi is 

fixed in body i : 

The superscript prime f indicates that the relevant vector is represented in the local coordinate system. It 

follows that vector sr represented in the global Oxy -reference frame has time varying components 

indicated by s~. Figure 2.4 shows the geometrical relationship that exists between the global 

representation s~ ,and the local representation s;P ofvector st. 
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y 

Figure 2.4: Translation between the local and global vector representations. 

It follows directly from Figure 2.4 that 

or more concisely 

Sin$i] 
COS$i 

(2.1) 


Furthermore, with reference to Figure 2.3: 

In summary, it is noted that the position and orientation of body i may be represented in the x-y plane 

by the three-vector representation qi consisting of the global components of vector and the r i 

orientation angle $1' i.e. 

(2.2) 


The three components of qi are called the planar coordinates ofbody i. It follows that for a system ofb 

bodies situated in the x-y plane, the vector ofcoordinates for the b bodies is a 3b-vector given by 

(2.3) 


Since the planar Gough-Stewart platform consists of eight bodies (see Figure 2.5), the coordinate vector 

of the entire mechanical system is a 24-vector, i.e. 

T T T]T (2.4) 

where corresponding to Nikravesh [65], q without a subscript denotes the vector of coordinates for the 

entire system. 

q = [ ql ,Q2 ,···,q8 
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y 

Figure 2.5: Planar Gough-Stewart platform, schematically represented as a mechanical system 
of eight bodies. 

2.3 Kinematic constraint equations 

In accordance with the definition of Nikravesh [65], the eight individual bodies that collectively fonn the 

planar Gough-Stewart platfonn shown in Figure 2.5, are called links. The combination of two links in 

contact constitutes a kinematic pair, or joint. An assemblage of interconnected links is called a kinematic 

chain. A mechanism is fonned when at least one of the links of the kinematic chain is held fixed and 

any of its other links can move. The fixed link of the planar Gough-Stewart platfonn (link 8 in Figure 

2.5) is the ground or frame. Note that the origin of link 8 is chosen to coincide with the origin of the 

global Oxy -reference frame, and that the local 08 ~8118 -coordinate system, and the global Oxy -reference 

frame are identically orientated. Furthennore, the origin of each local 0 j ~il1i -coordinate system, 

i =1,2,... ,7 , is chosen to coincide with the center of mass of respective bodies 1,2,... ,7 , and these local 

coordinate systems are orientated as shown in Figure 2.5. 

The primary purpose of the above schematic representation of the planar Gough-Stewart platfonn is to 

identifY the connectivity of the bodies or links, i.e. to identifY the kinematic pairs or joints. A kinematic 

pair imposes certain conditions on the relative motion between the two bodies it comprises. When these 

conditions are expressed in analytical fonn, they are called equations ofconstraint. Constraint equations 
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are denoted by <1> with a superscript indicating the constraint type and the number of algebraic equations, 

and a subscript indicating the joined bodies, Thus <1>;~j2) denotes the revolute (r) joint constraint of 

joined bodies i andj, which consists of two equations, Similarly <1>;~j2) denotes the translational joint (t) 

constraint ofjoined bodies i and j, which also contains two equations, 

2.3.1 Revolute joints 

With reference to Figure 2,5, the connections between the moving platform (link 1) and the upper 

portions of the actuator legs (links 2, 3 and 4) are revolute joints. This is also the case for the 

connections between ground (link 8) and the lower portions of the actuator legs (links 5, 6 and 7). 

In order to find the two algebraic equations of <1>;~j2) , consider the schematic representation of a revolute 

joint connecting bodies i and j as shown in Figure 2.6, Point P denotes the center of the joint and can be 

considered to be two coincident points; i.e. point Pi on body i and point Pj on body j. 

Figure 2.6: Revolute joint P connecting bodies i and j (after [65]). 


The vectors SiP and st respectively describe the location of point P on body i and body j. Taken 


together with vectors i j and ij' the constraint equations for the revolute joint are obtained from the 


closed vector loop expression: 


or in terms of global positional two-vectors: 

which is equivalent to 

<1>(r,2) == r + A.s~P - r. As'P =0 (2.5)
1-) 1 1 1 J ) J 

Expression (2.5) consists of two algebraic equations, i.e. 
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(2.6) 

These two constraint equations reduce the number of degrees of freedom (DOF) of the system of bodies 

shown in Figure 2.6, by two. Consequently, if the two bodies of Figure 2.6 are not connected to any 

other bodies, then the system has four DOF. 

In particular, the constraint equations of the six revolute joints of the planar Gough-Stewart platform 

shown in Figure 2.5 are: 

<D(r,2) = [Xl + ~~ COS$I 11~ sin$1 x 2 - ~~ C~S$2 + 11f Sin$2] =[0] (2.7)
1-2 - YI +~~ sin$1 +11~ COS$I Y2 -~2 s1O$2 -112 COS$2 0 

<D(r.2) XI +~~cOS$,-11~sin$, -X3 
(2.8) 

YI +~~sin$1 + 11t COS$I -Y3 
1-3 [ 

(2.9) 

<D(r,2) 
5-8 (2.10) 


(2.11 ) 


(2.12) 


The simplification in expressions (2.10), (2.11) and (2.12) follow from the particular choice of position 

and orientation of the chosen local 08~8118 -coordinate system. 

2.3.2 Translational joints 

The three actuator legs shown in Figure 2.2, each consists of two links that translate with respect to each 

other parallel to an axis known as the line oftranslation. In particular, and with reference to Figure 2.5, 

the left actuator leg is a translational joint between links 2 and 5, the middle actuator leg is a translational 

joint between links 3 and 6 and the right actuator leg is a translational joint between links 4 and 7. 

Figure 2.7 shows a schematic representation of a translational joint between links i and j, from which the 

two algebraic equations of <D;~j2) may be derived. 
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Figure 2.7: A translational joint between bodies i and j (after [65]). 

A constraint is required to eliminate the relative motion between the two bodies In a direction 

perpendicular to the line of translation. In order to satisfy this constraint, the two vectors s; and d 

shown in Figure 2.7 must remain parallel. These vectors are defined by locating three points on the line 

of translation - points Q; and P; on body i, and point Pj on body j. The first algebraic equation of 

<1>;:f) follows from the fact that the vector product of two parallel vectors is zero, i.e. 

s; x d:::: ij 

h ' h C I b I f ~. - [(x: -X~)l d h I b I fw IC , lor the goa components 0 vector Sl' I.e. Si: s; :::: P Q an t ego a components 0 
(Yi y;) 

~ ~ [(X P XP
)]

vector d , i.e. d: d = ~ ~, is equivalent to (see [65]): 
(Yj - YI ) 

(2.13) 


The second constraint of <1>~~j2) eliminates the relative rotation between bodies i and j, through the 

condition that 

(2.14) 


where 4>~ and 4>r are the initial orientation angles. 

The two constraint equations for a translational joint are therefore given by 

(x; -x~)(Yr Y;) (~r -:;)(y~ -Y~)l:::: [0]<1>(t,2) (2.15)I-J [ 4>;-4>j-(4); -4>j) ° 
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As in the case of the revolute joint, the translational joint reduces the number of degrees of freedom of a 

system by two. 

Expression (2.13) may be expanded to give 

(2.16) 


with 

p ):p • '" p '"Yi =Yi+'-;)i SIn"'i+l1 i COS"'i 

Q - ):Q' '" Q '"Yi - Yi + '-;)i SIn"'i + l1 i COS"'i 

Constraint (2.16) may therefore explicitly be stated in terms of the planar coordinates of two bodies. 

With reference to Figure 2.5 the relevant vectors of translational joint 2 5 are defined using points A 

and O2 in link 2, and point 05 in link 5. This implies that general constraint (2.16) corresponding to 

translational joint 2 5, is: 

xO'yO, _xAyo, +XAyO,
2 5 2 5 2 2 

with 

XO, =X 
2 2 

By substitution and simplification, the two constraint equations of the translational joint 2 - 5 of the 

planar Gough-Stewart platform shown in Figure 2.5 are: 

x2s~sin~2 +Y2S~COS~2 +x5s~sin~2 -Y2S~COS~2",,(t,2) 
-
"" (2.17)'V 2_5 

~2 -~s 

Note that since the S2 and Ss axes coincide with the line of translation of translational joint 2 - 5 , the 

initial rotational angles ~~ and ~~ (see expressions (2.14) and (2.15» fall away from the second 

constraint equation of <1>~~;) . 

Similarly the constraint equations of translational joints 3 6 and 4 7 are respectively found to be 

<1>(t,2) == [- x3S: sin~3 + y l,~ COS~3 + x 6S: sin~3 - y 6S~ COS~3l= [0] (2.18)
~6 ~3 ~6 ° 

<1>(t,2) 
4-7 (2.19) 
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2.3.3 Simplified constraints 

The remaining constraints are related to the fixed ground-link, i.e. link 8 of the planar Gough-Stewart 

platform (see Figure 2.5). In order to constrain the translation of the origin and angular motion of a fixed 

rigid body, the following three equations may be used as the necessary simplified constraints [65]: 

<1> Xi -C 1 0 (2.20) 

<1>=Yi -c2 =0 (2.21) 

(2.22) 

where c 1 , and c 3 are constant quantities. c 2 

Since the origin of the local OS ~811S -coordinate system coincides with the origin of the global Oxy­

reference frame, and the two coordinate systems are identically orientated (see Figure 2.5), expressions 

(2.20), (2.21) and (2.22) for link 8 of the planar Gough-Stewart platform, reduces to: 

<1> = Xs 0 (2.23) 

<1>=Y8=O (2.24) 

<1> = ~8 =0 (2.25) 

For the eight-link kinematic model of the planar Gough-Stewart platform, the 21 independent kinematic 

constraint equations given by expressions (2.7) - (2.12), (2.17) - (2.19) and (2.23) - (2.25) apply. For a 

system having m independent kinematic constraint equations and n coordinates, the number of degrees 

offreedom (DOF) is given by: 

k =n - m (2.26) 

Hence, the eight-link model of the planar Gough-Stewart platform has 24 coordinates, and consequently 

24-21 =3 DOF. 

2.4 Driving constraints 

Any set of k coordinates that are independent and are equal in number to the number of DOF of the 

system, determines the values of the remaining m dependent coordinates through the solution of the m 

independent kinematic constraint equations. Thus for the planar Gough-Stewart platform with three 

DOF, the values of three independent coordinates must be known to completely describe the system. 

In particular, the three planar coordinates describing the position and orientation of link 1, i.e. XI' YI 

and ~I are the three independent coordinates of the planar Gough-Stewart platform shown in Figure 2.5. 
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The applicable driving constraints are equations expressing each independent coordinate as a function of 

time, i.e.: 

(2.27) 


<I>(d-2,1) Yl -d (t)::::0 (2.28)2 

<I>(d-3,1) == ~l - d
3 
(t) 0 (2.29) 

Each driving constraint is denoted by <I> with the superscript indicating the driving constraint number, 

and the number of algebraic equations, e.g. <I>(HI) is driving constraint number I, which involves I 

equation. 

Expressions (2.27), (2.28) and (2.29) uniquely define the motion of link 1. With reference to Figure 2.2, 

link 1 is the moving platform of the planar Gough-Stewart platform and, with the planar machining 

center in mind, it is clear that in controlling the relative motion between the workpiece and cutting tool, 

either one can be attached to the moving platform with the other fixed in the plane. 

These two possible scenarios are separately dealt with in the next two sub-sections, with specific 

reference to obtaining for a given tool path, expressions giving the required values of the three 

independent coordinates Xl' Yl and ~l at any given time instant. The details of deriving the analytical 

functions dl(t), d 2 (t) and d 3 (t) that appear in driving constraints (2.27) - (2.29) are explained in 

Chapter 3. 

2.4.1 Fixed workpiece 

Consider the scenario of the cutting tool mounted on the moving platform with an externally fixed 

workpiece as shown in Figure 2.8. In this case it is required that the cutting tool be moved along a 

prescribed tool path specified in the global Oxy -coordinate system. 
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/ 

Figure 2.8: Fixed workpiece scenario. 

At any given time instant it is assumed that the following are known: 

1. 	 the global position of the cutting tool tip (P in Figure 2.8) on the prescribed tool path, and 

2. 	 the angle f3 between the platform-mounted tool and the normal to the tool path at the point of contact 

(see Figure 2.8) and measured positive in the CCW direction. 

Assumption I implIes thatthe global represen1ahon of the time varying vector r,' ,i.e. r,' :r,' [::1 is 

known at every instant as the prescribed tool path is traced. The tool tip P can also be located relative to 

the origin of the local 0 1SITJ I-axes by the time varying vector it. The corresponding fixed components 

of vector it, when represented in the local 0 1SITJ! -reference frame, is it :s;p =[TJOP 1, where for any 

given tool length, the local TJ ~ -component is a known constant. 

The following vector loop equation may then be used to find the sought-after global position oflink I: 

or in global vector representation: 

In terms of components this vector equation may be written as 
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(2.30) 


Expression (2.30) contains two scalar equations, i.e. 

p p. '" 
Xl Xl 	+ TJ I Stn't'l (2.31 ) 

and 

(2.32) 


In order to compute Xl and YI , the orientation angle of link 1, ¢l' must also be known. At every time 

instant, as the cutting tool progresses along the prescribed tool path, the orientation angle ¢l is directly 

related to the known prescribed angle f3 (see assumption 2 in Section 2.4.1). To find this relationship, 

consider the simplified fixed workpiece situation depicted in Figure 2.9, where the mounted cutting tool 

is collinear with the normal to the tool path at the point ofcontact. 

~l 

Figure 2.9: Simplified fixed workpiece situation. 

For this situation, it is clear that f3 =0 and the orientation angle ¢l is equal to the gradient angle e of the 

tool path, where 

tane =	dy (2.33)
dx 

and dy represents the (known) gradient of the prescribed tool path y(x) at the point of contact. 
dx 

With the proposed convention that f3 be measured positive CCW from the normal to the tool path at the 

point of contact, the orientation angle for the fixed workpiece situation depicted in Figure 2.8 is 

(remembering that for CW rotations e and ¢l take on negative values): 
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.pI 9+ ~ (2.34) 

with .pI and 9 measured positive CCW from the horizontal, and ~ measured as defined above. 

Substituting expression (2.34) into expressions (2.31) and (2.32) gives: 

XI =x~ +11;sin(9+~) (2.35) 

and 

YI y; -11; cos(9 +~) (2.36) 

In summary, for the fixed tool scenario it follows that with x P, yP and ~ known at a specific time 

instant or point along the tool path, the corresponding independent coordinates of the planar Gough­

Stewart platform, x I' YI and .pI are respectively obtained by substituting the tool path gradient angle 9 

(see expression (2.33» into expressions (2.35), (2.36) and (2.34). 

2.4.2 Fixed cutting tool 

The second planar machining center scenario is where the workpiece is mounted to the moving platform, 

and the cutting tool is externally fixed. This case is depicted in Figure 2.10, and since the tool path is 

now prescribed in terms of the local 01~1111 -coordinate system, it is required that the workpiece be 

moved such that the fixed cutting tool traces the prescribed tool path. 

Figure 2.10: Fixed cutting tool scenario. 
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As in Section 2.4.1, it is also assumed here that at any time instant the following are known: 

1. 	 the local position of the cutting tool tip (P in Figure 2.10) on the prescribed tool path, and 

2. 	 the angle f3 (measured positive CCW), from the normal to the tool path at the point of contact, to the 

vertical axis of the fixed cutting tool (see Figure 2.10). 

Assumption 1 implies that the local representation of the time varying vector ,; , i.e. ,; :s;' = [ ~ :1is 

known at every instant as the fixed cutting tool traces the prescribed tool path. The origin of the global 

reference frame is chosen to coincide with the tool tip P. Hence, vector fj locating the moving platform 

(link 1 in Figure 2.5) has the same magnitude as vector st, but is directed in the exact opposite direction. 

To find the global components of vector fj' first consider the simplified fixed cutting tool situation 

shown in Figure 2.11. 

\9'«0)

\ 

~j 

Figure 2.11: Simplified fixed cutting tool situation. 

Clearly f3 =0 in this case, which implies that the tangent to the prescribed tool path at the point of 

contact P is perpendicular to the vertical axis of the fixed cutting tool. The gradient angle of the 

prescribed tool path in the local coordinate system is a' ,where 

tane' dYJI (2.37)
dS I 

and dYJ I (SI) represents the gradient of the prescribed tool path YJ I (S I) at the point of contact. 
dS I 
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The superscript prime indicates that the gradient angle is determined relative to the local 01~1111-

coordinate system. 

For the simplified situation shown in Figure 2.11, the orientation angle $1 is equal in magnitude but 

oppositely orientated to the gradient angle 0' , i.e. $1 =-0' . 

With $1 known, the global components ofvector fl are obtained using a translation that is similar to the 

one given by expression (2.1). In particular, the global components of vector fl shown in Figure 2.11 

are given by the following two scalar equations: 

(2.38) 

and 

(2.39)YI= 

However, for the non-zero angle p shown in Figure 2.10, the orientation angle $1 of the moving 

platform is: 

$1 =-0' - ~ (2.40) 

using the CCW sign convention previously defmed for all three angles. 

Substituting expression (2.40) respectively into expressions (2.38) and (2.39) gives: 

XI == -~~ cos(O' + P) 11~ sin(O' + P) (2.41) 

and 

YI ~; sin(O' + ~) -11~ cos(O' + P) (2.42) 

Consequently, for the fixed cutting tool scenario with ~;, 11; and Pknown at any specific time instant, 

the corresponding independent coordinates of the planar Gough-Stewart platform XI' Yl and $1 are 

respectively obtained by substituting the tool path gradient angle 0' (see expression (2.37)) into 

expressions (2.41), (2.42) and (2.40). 

2.5 Inverse kinematic analysis 

In the kinematic analysis of the planar Gough-Stewart platform, the kinematic constraint equations 

derived in Section 2.3, and the driving constraints derived in Section 2.4 are used. The first and second 

time derivatives of these constraint equations yield the velocity and acceleration equations. 
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The method of appended driving constraints [65], is used here for the kinematic analysis of the planar 

Gough-Stewart platform. This method is presented below in its most general form. 

Suppose that the vector of coordinates describing the configuration of a system is given by 

q [qpq2,... ,qnf where n is the total number of coordinates. If there are m kinematic constraints 

expressed in vector form by <1>(q) =0, then k driving constraints can be appended to the kinematic 

constraints to obtain n = m + k equations: 

<I> == <1>( q) =0 (2.43) 

<I>(d) == <1>(q, t) =0 (2.44) 

where the superscript (d) denotes the driving constraints. Expressions (2.43) and (2.44) represents n 

equations in n unknowns q which can be solved for any specific time t. 

The velocity equations are obtained by taking the time derivative ofexpressions (2.43) and (2.44): 

(2.45) 


<I>(d)q' + <I>(d) =0 
q t (2.46) 

where <I> q represents the Jacobian of the vector function <I> with respect to q and <I> t the partial 

derivative of the function with respect to t. 

Expression (2.45) follows from the fact that in general: 

<I>(q) (2.47) 

and therefore the time derivative of the i-th entry <Pi (q) in expression (2.47) is: 

(2.48) 


Similarly, expression (2.46) follows from the fact that in general the driving constraints are also explicit 

functions of time: 
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<I>;d) (q,t) 

el>(d)(q,t)= <I>~d)~q,t) (2.49) 

and therefore the corresponding time derivative of the i-th entry <I>~d) (q, t) in expression (2.49) is given 

by 

(2.50) 

The velocity equations (2.45) and (2.46) may also be written as 

(2.51) 


which represents n algebraic equations, linear in terms of q . 

The time derivative of expressions (2.45) and (2.46) yields the acceleration equations: 

el> qij + (el> qq)q q = 0 (2.52) 

el>(d)q" + (el>(d)q') q' + 2el>(d)q' + el>(d) = 0 (2.53)q q q qt tt 

These expressions are obtained through the following argument. Considering the more general 

expression (2.46), which also contains t explicitly, it is clear that the left hand side is a vector function F 

ofq, q and t: 

F(q, q, t) el> q ( q, t)q + el> t (t, q) (2.54) 

where for convenience the superscript has been dropped. The time derivative of (2.54) may therefore be 

written as 

(2.55) 


where Fq = [ el> qq]q + el> tq , 

Fq = [ el> qq]q + el> t<i =el> q and 

Substituting the above into (2.55) and then in (2.46) gives 

dF =[el>qqLq+el>tqq+el>qij+el>qtq+el>tt 0 
dt 

from which (2.53) [and also (2.52)] follows directly. 
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Accelerations equations (2.52) and (2.53) may also be written as 

(2.56) 


which represents n algebraic equations linear in terms of q . 

For the planar Gough-Stewart platform under consideration, expreSSIon (2.43) represents the 21 

equations given by expressions (2.7) - (2.12), (2.17) - (2.19) and (2.23) - (2.25), and expression (2.44) 

represents the three driving constraints given by expressions (2.27) - (2.29). These 24 nonlinear 

equations in 24 unknowns q [x"YI ,<PI ,x2,y2,<P2, ... ,xg,yg,<pgf (see expression (2.4» may therefore be 

solved for any specified time t. 

More specifically, at any specified time t, expressions (2.27) (2.29) provide the Xl' YI and <PI values. 

With reference to Figure 2.5, the global coordinates of points A and Bare 

(2.57) 
B ):oB ' '"Y = YI + ':>1 sm"'l 

Note that for the specific choice of the local coordinate system of body 1 coinciding with the center of 

mass of body 1 (see Section 2.3), ~~ < 0 . 

The global positions of points C, D and E are also known for any specific design of the planar Gough­

Stewart platform. 

The orientation angles of links 2 - 7 may be determined using the "two-argument arc tangent function" 

a tan 211'.). In particular, a tan 2l(1'.1 denotes the angle whose tangent is y divided by x. Moreover, 
\x X; 

both the magnitudes and signs of x and yare used in the definition, so that angles are uniquely defined in 

all four quadrants. For example: atan2(~j\ =-135 0 
, and atan2(.!..:Q1 45° (see [60]). 

-1.0 1.0; 

For the specific choice oflocal axes shown in Figure 2.5, the respective orientation angles of links 2 and 

5, links 3 and 6 as well as links 4 and 7 are equal, i.e. 
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(2.58) 


I AD)a tan2lY - y (2.59)
x A _x D 

(2.60) 


Note that the revolute joint constraints given by expressions (2.7) - (2.12), as well as the translational 

joint constraints given by expressions (2.17) - (2.19) are implicitly satisfied in expressions (2.58) ­

(2.60). 

The global positions of links 2 - 7 follow directly from the transformation given by expression (2.1), i.e. 

Y2 yA-~~sin$2 

Y3 ::::: yA ~: sin$3 

B ):B''!''
Y4 =y -~4 Slll'!'4 

(2.61) 
c ):C·,!,.

Ys =y -~s Slll'!'5 

X6 XD - ~~ COS$6 Y6 yD - ~~ sin$6 

x7 =X E - ~; COS$7 Y7 =yE ~; sin$7 

The global positions and orientation of link 8 (ground) is given by expressions (2.23) - (2.25), i.e. 

Xs ::= 0, Ys =0 and $s =O. With a known coordinate vector q =[Xl'YI'$pX2 'Y2,$2, ... ,Xg ,ys,$s]T, the 

Jacobian matrix J = [ :~:)] of the planar Gough-Stewart platfonn is uniquely defmed (see following 

expression (2.62»: 
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The right hand side of expression (2.51) as applied to the planar Gough-Stewart platfonn is 

o 
o 

(2.63) 

The partial derivatives of the three driving constraints with respect to time are the velocities of link 1, 

i.e.: ~d, (t) =XI (t), ~d2 (t) =YI (t) and ~d3(t) ~I (t), the calculation of which, for a specific tool 
at at at 

path, is explained in Chapter 3. 

Substituting expressions (2.62) and (2.63) into expression (2.51) results in 24 algebraic equations, linear 

in tenns of q, where q=[xl' Y1'~I'X2'Y2'~2 , ••• ,x8' Y8>~g]T is the velocity vector of the planar Gough­

Stewart platfonn. This linear system, of the general fonn Ax =C , is solved using the L-U factorization 

method. This method is a compact fonn of the Gaussian elimination method of operating on matrix A. 

After the operation is completed, the set of linear equations Ax =c is efficiently solved for any given c 

vector (see [65] and [55]). 

In the linear system (2.56), the Jacobian matrix (expression (2.62)) is also required to solve for the 

accelerations of the planar Gough-Stewart platform, i.e. for q=[x I' Yp$pX 2,:Y 2,$2 ,...,Xg,Yg,$sf. The 

right hand side of expression (2.56) is a 24 vector given by 
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(+, )'~~ cos., - (+,)'~~ co••, 

($, )'~;' sin., - ($, )'~~ sin $, 


(.,)'~~ cosq.,·· (.,)'~: cosq., 

(q.,)'~~sin$. -($,)'~:sin., 


($,)'~~cos$, -(+,)'~~cos$, 

(.,)'~~.in$, - (.,)'~~ sin $, 


(+,)'~; cos., 


(+,)'~; sin+, 


(+,)'~~ cos<l>, 

(+,)'~~.in<l>, 

(+,)'~;cos$, 

(+,)'1',; sin <1>,r -(<t>qq)qq 1 y,$, - y,+,~,~; cos<l>, + ~y, - 2y, - x,., + x,,j,,fo,~~ sin$, 

; - (<t>"'q') q' - 2<t>,d'q' - <t>'"'JL 1. q qt II o 
(2:<) 2X6 Y6+3~J;~COS$3 +~y) ~2Y6 -Xl.' +X6¢.1~i.:sin4l1 

o 

(2X.; - 2x, + y4~~ ~ Y1$" ~4;: cos • .; + ~y4- 2y1 X4$4 + X'.4 ~4~~ sin $.­


o 

o 

(2.64) 


The second partial derivatives of the driving constraints with respect to time are the accelerations of link 

2 2 2 
1, i.e.: a2dl (t) xl(t), a2d2 (t)::::y,(t) and a2d3 (t)=$I(t). Again the calculation of these

& & & 
accelerations for a prescribed tool path will be explained in Chapter 3. 

Substituting expressions (2.62) and (2.64) into expression (2.56) results in 24 algebraic equations, linear 

in terms of q , which can again be solved using the L-U factorization method. 

2.6 Kinetic analysis 

Kinetics is the study of motion and its relationship with the forces that produce the motion (see Figure 

2.1). Using Newton's second law, the equations of motion of a continuous rigid body are derived in 

Appendix A. This Section deals with the application of the equations of motion to a general system of 

unconstrained bodies experiencing planar motion. The underlying theory is also applied to a system of 

constrained bodies experiencing planar motion with specific reference to the planar Gough-Stewart 

platform. 

2.6.1 Planar equations of motion for a system of unconstrained bodies 

The equations of motion for a single unconstrained body moving in the plane (see Appendix A) may be 

written in matrix form as 
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(2.65) 


where for notational simplicity the polar moment of inertia j~~ is denoted by J.t (see [65]). The subscript 

i in expression (2.65) indicates that these are the equations ofmotion ofbody i. 

According to Nikravesh [65], expression (2.65) may also be written as 

(2.66) 

where M i = diag [m, m, J.tL 

qj [x,y,$]~ and 

Furthermore, for a system ofb unconstrained bodies, expression (2.66) is repeated b times to give 

Mq=g (2.67) 

where M diag [MI'M 2 , ••• ,Mb ], 

T T T]T dq =[ ql ,q2 ,···,qb an 

T T T]Tg [ gJ ,g2 ,···,gb . 


The system mass matrix M is a n x n constant diagonal matrix, and vectors q, q, q and g are n vectors. 


Note that n =3b , where n is the number of coordinates of the system ofb bodies (see expression (2.3». 


2.6.2 Planar equations of motion for a system of constrained bodies. 

If the system of bodies is interconnected by kinematic joints, it is referred to as a system of constrained 

bodies. 

In general the system vector of coordinates for b constrained bodies is denoted by q (see expression 

(2.3». Furthermore the kinematic joints in the system can be represented as m independent constraints 

<I>(q) =0 as given in expression (2.43). These m independent equations are normally nonlinear in terms 

of q (see expression (2.47». 

Each kinematic joint introduces reaction forces between connecting bodies. These reaction forces, which 

are also referred to as constraint forces, are denoted by vector g(C) : 
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(C) = [g(C) T g(e)T g(e)T]Tg I '2 , •.• , b (2.68) 

where g;C) , i =1,2, ... , b is the vector of the resultant of the joint reaction forces acting on body i. The 

sum of the constraint forces g(e) and the external forces g provides the total forces acting on the system. 

Hence, expression (2.67) may be rewritten to read: 

Mq =g + g(e) (2.69) 

For a system of constrained bodies experiencing planar motion, the reaction forces represented by 

expression (2.68) may be expressed in tenns of the same coordinate system as the vector of coordinates 

q. 

Consider the planar example shown in Figure 2.12, where the reaction force :R is acting on the body i at 

the revolute joint P. The three coordinates of the body follow from expression (2.2), i.e., 

qj [rT ,$]; =[x,y,$]; and the local coordinate system is assumed to be centered at C j the center of 

mass ofbody i (see Section 2.3). For convenience the subscript i is dropped in what follows. 

-s 

c 

Figure 2.12: Planar body with reaction force applied at the revolute joint. 

dy 

"­
"­

p' 

\ 
\ 
\ 
\ 
I 
I 
I 

I 
I. 

Figure 2.13: Virtual displacement of planar body. 
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If the body undergoes a virtual displacement such that C' is the new position of the center of mass, and 

p' is the new position of the revolute joint (see Figure 2.13), the corresponding work done by the 

reaction force R is 
dW =R(x)(dx - sd$sin$) + R(y)(dy + sd$cos$) 

=R(x)dx + R(y)dy + (-R(x)s sin $ + R(y)s cos$)d$ 

g(x)dx + g(y)dy + g($)d$ 

Thus, the reaction force R may be represented by a three-vector g with each component associated with 

a planar coordinate, i.e., g =[g(x),g(ypg($)]T. The three components of g are consistent with the three 

coordinates x, yand $ and are called the generalized forces associated with the chosen coordinates q. 

The introduction of generalized forces allows for the constraint force vector gee) to be expressed in terms 

of the constraint equations <I> given by expression (2.43). In particular expression (2.43) contains m 

independent constraint equations <1>(q) =O. Furthermore, if the joints are assumed frictionless, the work 

done by the constraint forces in a virtual (infinitesimal) displacement dq is zero, i.e., 

(2.70) 

The Taylor series expansion of expression (2.43) about q is 

<1>(q + dq) = <1>(q) + <I> q dq (2.7l) 

if the higher order terms in dq are ignored. Since the virtual displacement dq must be consistent with 

the constraints (expression (2.43», it is required that 

<I>(q + dq) =0 (2.72) 

Substituting expressions (2.43) and (2.72) into expression (2.7l), yields 

<I> qdq 0 (2.73) 

According to Nikravesh [65] the vector ofn coordinates q may be partitioned into a set ofm dependent 

coordinates u and a set of n -m independent coordinates v, i.e., q == [uT, VT]T. This partitioning yields 

dq [du T ,dvT]T , <I> q =[<I> u' <I>.J and gee) [gi~~T,gl~)T r. 
Expression (2.70) may therefore be written as 

g (c) Tdu _gee) T dv (2.74)
(u) (v) 

and from expression (2.73) it follows that 

<I> udu =-<I> vdv (2.75) 

Appending these two expressions to each other gives 
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(e)T] [ (e)T] 
g~~ du - g~~ dv (2.76)[ 

Since <1> u is an m x m matrix with m independent rows, <1> u is a basis in R m , and g~~~ T may therefore 

be written as a linear combination ofthe m rows of <1> u , i.e., 

(2.77) 


where A is a m-vector ofmultipliers known as LaGrange multipliers. 

Substitution ofexpression (2.77) into expression (2.74) yields 

AT <1> du = _g(e) Tdv (2.78)
u (v) 

and from expression (2.75) it follows that 

_g(Cl Tdv- AT <1>,dv (v) (2.79) 

Since vector v is independent, expression (2.79) must hold for an arbitrary virtual displacement dv, 

which implies that 

(2.80) 


Furthermore, appending expressions (2.77) and (2.80) yields 

[gi~~1 [<1>! ]A (2.81 ) 
g (r l <1> T 

(v) v 

or simply 

(2.82) 


Finally substituting expression (2.82) into expression (2.69) gives the planar equations of motion for a 

system of constrained bodies, i.e.: 

Mq -<1>~A g (2.83) 

Thus for a given vector of external forces g, the forward dynamic analysis yields a unique solution for q, 

q, q and A when the constraint equations (2.43) are considered simultaneously with the differential 

equations of motion (2.83), and a proper set of initial conditions are specified. 

2.6.3 Constraint reaction forces 

The joint reaction forces given by expression (2.82) are studied here for the joints (kinematic pairs) of 

the planar Gough-Stewart platform. 
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2.6.3.1 Revolute joint 

Consider the revolute joint connecting bodies 1 and 2 of the planar Gough-Stewart platform (see Figure 

2.5). Figure 2.14 shows a schematic representation of the isolated revolute joint. 

Figure 2.14: Revolute joint connecting bodies 1 and 2 of the planar Gough-Stewart platform. 

The equations of motion ofbodies 1 and 2 follow from expression (2.83), i.e., 

(2.84) 

and 

(2.85) 

Using the applicable entries in the Jacobian matrix of the planar Gough-Stewart platform (see expression 

(2.62)), expression (2.84) may be written in expanded form: 

(2.86) 

Expression (2.86) may be written as a set of three separate equations: 

(2.87) 

(2.88) 

(2.89) 


Expression (2.87) indicates that besides the resultant external force f(x}l' another force "'I due to the 

constraints acts in the x-direction on body 1. Similarly, expression (2.88) indicates that besides external 

force f(Yh ,another constraint force "'2 acts in the y-direction on body 1. Figure 2.15 shows a free-body 

diagram ofbody 1, indicating constraint forces "'I and "'2' 
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Tjl 

A 

Figure 2.15: Free-body diagram of body 1 as part of the revolute joint with body 2. 

The moment arm of Al is ~;" sin<l>l with ~~ < 0, which results in a positive moment -(~~ sin<l>,)A1 

about 01 coinciding with the center of mass of body 1. Similarly, the moment arm of A2 is ~~ cos<l>l 

with ~;\ < 0, and therefore moment (~t cos <1>1 )A 2 acts in the negative rotational direction. 

Expression (2.85) may similarly be written in expanded form using the applicable entries in the Jacobian 

matrix (expression (2.62»: 

or 

(2.90) 

(2.91) 

(2.92) 

(2.93) 

Expressions (2.91) and (2.92) indicate that the constraint forces Al and A2 respectively act in the 

negative x and y-directions on body 2. The corresponding free-body diagram of body 2 is shown in 

Figure 2.16. 

A 

AI : 
A I 

~2 sin <1>2 ! 

\~~i 
, 

Figure 2.16: Free-body diagram of body 2 as part of the revolute joint with body 1. 
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From Figure 2.16 it follows that the moment arm of Al is l;: sin<pz with l;~ > 0, which yields a positive 

moment (l;: sin<P2)AI about Oz coinciding with the center of mass of body 2. Similarly, the moment 

arm of 1.2 is l;: cos<Pz with > 0, which gives a negative moment (l;: COS<P2 )1.2 about O2 • 

Note that the multipliers Al and 1.2 can assume both positive and negative values. In any case, the 

reaction forces acting at the revolute joint on the connecting bodies are always equal in magnitude and 

mutually opposite in direction. 

2.6.3.2 Translational joint 

Consider the translational joint between bodies 2 and 5 of the planar Gough-Stewart platform. Figure 

2.17 shows a schematic representation of the joint. 

Figure 2.17: Translational joint between bodies 2 and 5 ofthe planar Gough-Stewart platform. 

Following a similar argument as that outlined in Section 2.6.3.1, the equations of motion of body 2 may 

be written as: 

-l;~ sin<pz 


l;: cos<Pz 
 (2.94) 

x2)l;~ COS<P2 + (Ys - Y2)l;~ sin<p2 

or 

(2.95) 

(2.96) 

(2.97) 
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The free-body diagram of body 2 is sho\'m in Figure 2.18. Nikravesh [65] explains that the force 

associated with AI is the reaction force caused by the constraint equation which eliminates relative 

motion between bodies 2 and 5 in a direction perpendicUlar to the line of translation. It is therefore 

expected, as can easily be proved, that this reaction force (kI in Figure 2.18) is perpendicular to the line 

of translation. 

A 

,,,, 
!0 ,,,, 

I((~:: x 
2

) 

Figure 2.18: Free-body diagram of body 2 as part of the translational joint with body 5. 

It follows from (2.97), and as sho\'m in Figure 2.18, that the moment arm of the force COS~2AI about 

02 is (xs - xJ , and the moment arm of the force - S~ sin~2AI is (y5 Y2)' For the orientation of 

body 2 sho\'m in Figure 2.18, (xs - x 2) < °and (y 5 Y2) < 0, from which it follows that both moments 

(xs X2)S~COS~)"1 and (Ys Y2)s~sin~2AI are negative moments. 

The contribution of the second constraint equation, which eliminates relative rotation between bodies 2 

and 5, is a couple acting on body 2. Note that A2 may be a positive or negative quantity. 

The equations of motion of body 5 are similarly given by 

or 

(2.98) 

(2.99) 

(2.100) 

(2.101) 
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The corresponding free-body diagram of body 5 is sho'Wll in Figure 2.19. Note that ')..2 is the only 

constraint moment acting on body 5. 

Figure 2.19: Free-body diagram of body 5 as part ofthe translational joint with body 2. 

2.6.4 Vector of forces 

The external force vector g in expression (2.83), contains all the external forces acting on the individual 

bodies of the system, i.e., 

LT T Tyg = ~I ,g2 ,···,gb (2.102) 

To construct the vector g, the external force vector for each body must be determined. For a typical body 

i, the external force vector g; is 

(2.103) 


where f(xl;' f(Yl; and nj are respectively the sums of all force components in the x and y directions and 

the sum ofall the moments respectively. 

In the remainder of this sub-section, the two types of external forces that act on the planar Gough­

Stewart platform are discussed, and their contribution to g determined. 

2.6.4.1 Gravity 

The first external force acting on the moving bodies that make up the planar Gough-Stewartplatform is 

gravity. In accordance with Nikravesh [65], the direction of gravity is chosen to be in the negative y­

direction. If w; is the weight of the body i, i.e., w; mig , then the contribution of this force to the 

vector of force ofbody i is: 

g~gravitYl =[0,-w ,Or (2.104) 
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The first seven bodies of the planar Gough-Stewart platform in Figure 2.5, all have known weights 

contributing to the vector of external forces of each body, i.e., g;graVi,y) = [O,-w,Or , for i = 1,2, ... ,7 . 

Since the eighth body is the fixed ground, a zero weight is allocated to it, and a zero contribution is made 

to the vector ofexternal force ofbody 8. 

2.6.4.2 Single force 

The second type of external force that acts on the planar Gough-Stewart platform is what Nikravesh [65] 

refers to as a single force. This is due to the fact that the planar Gough-Stewart platform is to be used as 

a machining center. For both machining centers with either a fixed workpiece or a fixed cutting tool, 

there is a contact force between the cutting tool and the workpiece. This contact force may be modeled 

as a single force. 

Consider the general case, where a single force ii acts with a known direction at point Pi on body i as 

shown in Figure 2.20. 

y 

Figure 2.20: A body acted upon by a constant force (after [65]). 

The force i l in the above figure has components f(x)i and f(Y)i' If the local coordinates of PI are known 

as s;P =[~p, "P]; , then the global coordinates of point Pi are given by s; =Ais;P (see expression (2.1»). 

The moment of if about 0 i , which coincides with the center of mass ofbody i is 

ni =(S;Pfi \Z) 
-s;Y)/(X)i + s;X)if(Y)i (2.105) 

-(~; sin~i +11; cos~Jf(X)i + (~; COS~i -,,; sin~Jf(Y)i 

Note that S;P represents the expansion of s~ into a skew-symmetric matrix (see expression (A.18) and 

[65]). 
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The contribution of this force to the vector offorces ofbody i is 

g(single f) =[f f n]T 
i (x)' (y)' i 	 (2.106) 

In particular, the contact force between the cutting tool and the workpiece may also be referred to as a 

cutting force. For both the fixed workpiece and fixed tool cases of the planar Gough-Stewart platform 

machining center, this cutting force contributes to the vector of forces of body 1 (the moving platform). 

The contribution of the cutting force to the vector of forces of body 1 is subsequently labeled as 

(cutting f)g I • 

2.6.4.2.1 Fixed workpiece 

The same assumptions as listed under Section 2.4.1, are made here, namely that at any given time instant 

it is assumed that the following are known: 

1. 	 the global position ofthe cutting tool tip (P in Figure 2.8) on the prescribed tool path, and 

2. 	 the angle 13 between the platform mounted tool and the normal to the tool path at the point of contact 

(see Figure 2.8) and measured positive in the CCW direction. 

The free-body diagram of a typical fixed workpiece scenario is depicted in Figure 2.21. Since the cutting 

cutforce is applied to body 1 it is designated by fl • 

111 

o 

~I 

Figure 2.21: Free-body diagram for the fixed workpiece scenario. 

The cutting force flCU! is collinear with the tangent to the prescribed tool path at the point of contact, and 

it is modeled as a "resistance" force. This implies that the cutting force ftut is oppositely directed to the 

direction of travel, with magnitude assumed to be linearly dependent on the magnitude of tangential 

speed with which the prescribed tool path is traced IvCU!I. 
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It is assumed here that the vector VCtil has a known magnitude and direction, which are calculated as will 

be described in Chapter 3 (see also Section 2.5 expression (2.63». With the magnitude of the cutting 

velocity Ivcull known, the magnitude of the cutting force is given by: 

(2.107) 


where Celll is a "cutting force constant" expressed in Ns as a positive quantity corresponding to the 
m 

assumption made. 

cut : f l 
cutVector f,cu, is represented in the global reference frame by ft"t , i.e., f l =[ft,U;, ftyU;];. Similarly, 

vector VCUI is represented in the global reference frame by veul . Since the gradient angle e is known at 

the point of contact, i.e., tane dy (see expression (2.33», the components of the cutting force as 
dx 

shown in Figure 2.21 are given by 

fcut = 
I (2.108)-Ircutlcose

(x)1 

and 

fcut =-Ifcut , inEl 
(y)1 I S (2.109) 

The point of contact between the cutting tool and the workpiece is given by s;P as explained in [:p1 
Section 2.4.1. Hence the moment of f l 

cut about the center of mass of body 1, n~ut, may be determined 

using expression (2.105), i.e., 

n cut = -(n P cos,h ) rout ,h )fCUlp •
I '11 '!'I (x) I ( 111 sm'!'l (y)1 (2.110) 

The validity of expression (2.110) may be verified by considering the situation depicted in the free-body 

diagram (Figure 2.21). It is clear that the x-component of the cutting force ft,u;, in Figure 2.21 is 

negative. The moment arm of ft:~1 is 11; COS<PI' Thus, the first term in expression (2.110), 

(11; cos <PI )f(~;I' yields a positive moment. 

Similarly, the y-component of the cutting force f(~u;l in Figure 2.21 is negative, and the moment arm of 

f(~;l is 11; sin <PI . The second term of expression (2.110), - (11~ sin <PI )f(~u;1 , therefore also yields a 

positive moment in expression (2.110). 
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For the fixed workpiece scenario, the contribution ofthe cutting force to the force vector ofbody 1, is 

(Cutting f) =[fCUI fCUI n cut]Tg	 (2.l11)I (x)' (y), I 

where ft:;1 is given by expressions (2.1 08), f(~;1 is given by expressions (2.1 09), and n~uI is given by 

expression (2.110). 

2.6.4.2.2 Fixed cutting tool 

The same assumptions as listed in Section 2.4.2 apply here, i.e., at any time instant the following are 

assumed to be known: 

1. 	 the local position of the cutting tool tip (P in Figure 2.10) on the prescribed tool path, and 

2. 	 the angle ~ (measured positive CCW), from the normal to the tool path at the point of contact, to the 

vertical axis of the fixed cutting tool (see Figure 2.l0). 

The free-body diagram of a typical fixed cutting tool scenario is depicted in Figure 2.22. As in the case 

of the fixed workpiece, the cutting force is again applied to body 1 and designated by ft' . 
/ 

9' « 0) 

Figure 2.22: Free-body diagram for a fIxed cutting tool scenario. 

The modeling of the cutting force associated with the fixed cutting tool is done in a similar way to that 

done for the fixed workpiece. 

In particular, the cutting force fi 
cUI shown in Figure 2.22 is collinear with the tangent to the prescribed 

tool path at the point of contact. The tool path is specified in terms of the local 0 1~I 111 -coordinate 
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system. Furthermore, the direction of the cutting velocity vCU! is also specified in terms of the local 

01~llll-coordinate system (V CU!: v'CO! =[v~~~,v~~ty) and the magnitude of the cutting velocity Iv,cutl is 

also assumed to be known (see Chapter 3). 

Since the magnitude of the cutting force is again assumed to be linearly dependent on the magnitude of 

cutting velocity, expression (2.107) remains valid here, and the magnitude is therefore given by 

fcutl = Ivcutlc
1 cut·I

The gradient angle of the prescribed tool path is known in terms of the local coordinates, tan 8' dll
, 

d~1 

(see expression (2.37)), hence the cutting force f l 
cut may be represented in the local 01~lll!- coordinate 

system by fl
cu, : f(cut [ft;u)t ,ft;;]~. The components of f(CUI are given by (see Figure 2.22) 

fcut = -If'CU! IcosE), (2.112)(t;)! I 

and 

fCUI = _If'cut Isin8' (2.113)(1])1 1 

The x- and y- components of the global cutting force representation fcut. fcut = [rout fcut]T may be 
I • I (xl' (y) 1 

determined from the transformation given by expression (2.1): 

f cut f cut '" fcut . '" 
(x)1 (t;)1 COS'!'I - (11)1 sm'!'l (2.114) 

and 

fcut f cut . '" fcut '" 
(y)! (~)! sm'!'l + (11)1 cos,!,! (2.115) 

or equivalently as 

ceut = A f,cut with A =[COS~I
1 1 1 I· "­sm'!'l 

With the global components of the cutting force known, the moment of ftut about the center of mass of 

body 1 may be determined using expression (2.105). Note that this moment n ~ut may also be determined 

using the local components of the cutting force, i.e. 

(2.116) 


The validity of expression (2.116) is borne out by inspection of the free-body diagram depicted in Figure 

2.22, from which it follows that the moment arm of f(~u)\ is ll~. Since the ~-component of the cutting 
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force in Figure 2.22 is directed in the negative ~-direction, the term -n~f(~;, in expression (2.116) 

results in a positive moment. Similarly, the moment arm of ft:;, is ~~ , and since the n-component of the 

cutting force in Figure 2.22 is in the positive n-<iirection, the term ~; ft~;, yields a positive moment. 

For the fixed cutting tool scenario, the contribution of the cutting force to the external force vector of 

body I is: 

g(cutting f) =[fcut fcut n cut]T 
1 (x» (y), 1 (2.117) 

where ft:;, is given by expression (2.114), f(~;, is given by expression (2.115) and n~ut is given by 

expression (2.116). 

2.6.5 Inverse dynamic analysis 

If the forces acting on a mechanical system are known, then the equations ofmotion can be solved to 

obtain the motion of the system [65]. This process is known as the forward dynamic analysis. In some 

problems, a specified motion for a mechanical system is sought and the objective is to determine the 

forces that must act on the system to produce such a motion. This process is usually referred to as 

inverse dynamiC or kinetostatic analysis. 

Haug [66] explains that inverse dynamic analysis is a hybrid form of kinematic and dynamic analysis in 

which the time history of positions or relative positions of one or more bodies in the system is 

prescribed, leading to complete determination of position, velocity, and acceleration of the system from 

the equations of kinematics. The equations of motion of the system are then solved, with known 

position, velocity, and acceleration, as algebraic equations to determine the forces that are required to 

generate the prescribed motion. 

In general, for a system of constrained bodies with n coordinates and m independent constraint 

equations, the inverse dynamic analysis therefore requires k driving constraints of the form 

<I>(d) =<I>(q,t) 0 (see expression (2.44)) to be specified. The number of driving constraints to be 

specified is equal to the number of degrees of freedom of the system, i.e. k n - m (see expression 

(2.26)). 

The three driving constraints of the planar Gough-Stewart platform under consideration have already 

been dealt with in Section 2.4. These constraints uniquely define the motion of body I (the moving 

platform) of the planar Gough-Stewart platform along a prescribed path. 
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Section 2.5 shows how the inverse kinematic analysis of the planar Gough-Stewart platform is done 

using the method of appended driving constraints. The inverse kinematic analysis yields the positions q, 

velocities q and accelerations q at each time instant as the prescribed path is traced. 

The objective of this sub-section is to determine the three actuator forces required to move the moving 

platform along the prescribed path. For this purpose the equations of motion of a system of constrained 

bodies (expression (2.83)) are rewritten to include the unknown forces, i.e., 

(2.118) 


where g(k) is the vector of known forces (see expression (2.102)), and g(u) is the vector of unknown 

forces. Expression (2.118) may be rewritten as 

(2.119) 


The unknown actuator forces are designated by fl, f2 and f3' and respectively act on bodies 2, 3 and 4 

as shown in Figure 2.23. By Newton's third law, for each force there is an equal and opposite reaction 

force. Hence, reaction forces fl , f2 and f3' respectively act on bodies 5, 6 and 7 and are also 

shown in the schematic Figure 2.23. 

In particular, the lines of action of forces fl and - fl coincide with the line of translation of the 

translational joint between bodies 2 and 5. Similarly, the lines of action of forces f2 and f2 coincide 

with the common line of translation of the translational joint between bodies 3 and 6, and the lines of 

action of forces f3 and - f3 coincide with the common line of translation ofbodies 4 and 7. 

/ 

Figure 2.23: Unknown actuator forces of the planar Gough-Stewart platform. 
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Figure 2.24 shows the free-body diagram of body 2 with the unknown actuator force (I applied to the 

body, as well as the constraint force kl and constraint moment /"'2 as a result of the translational 

coupling between bodies 2 and 5. 

A 

Figure 2.24: Free-body diagram of body 2 with the applied unknown actuator force f). 

From expression (2.119) it follows that the equations of motion ofbody 2 are given by: 

(2.120) 


where fl > 0 indicates that force (I is a "push-force" as chosen in Figure 2.24. Should the solution of 

expression (2.120) yield that f1 < 0, then force (I actually is a "pull-force" acting in the opposite 

direction. Also note that actuator force £] does not cause a couple about the center of mass ofbody 2. 

Expression (2.120) may also be written as 

o 
o (2.121) 

1 
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With regard to the reaction force £1' Figure 2.25 shows the free-body diagram of body 5 with the 

unknown reaction force - £1 applied to the body, as well as the constraint force kl and constraint 

moment - A2 as a result of the translational coupling between bodies 2 and 5. 

~5 

Figure 2.25: Free-body diagram of body 5 with the applied unknown reaction force - fl' 

From expression (2.119) it follows that the equations ofmotion ofbody 5 are given by: 

(2.122) 

where fl < 0 indicates that the reaction force - £1 is a "push reaction force" as chosen in Figure 2.25. 

Should the solution of expression (2.122) yield that fl > 0, the associated reaction force fl actually is a 

"pull reaction force" acting in the opposite direction. Note that there is no couple about the center of 

mass ofbody 5. 

Expression (2.120) may also be written as 

(2.123) 

Similar expressions are also obtained for bodies 3 and 6, as well as bodies 4 and 7. Hence, the equations 

ofmotion of the total planar Gough-Stewart platform system may be written as: 

(2.124) 


<l>q consist of the first 21 rows of the Jacobian matrix J(see expression (2.62)), 
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B is the following 24 x 3 matrix: 

!O 0 0 cos~, sin~, 0 0 0 0 0 0 0 -cos~, -sin~, 0 o 0 o 0000)'
B ~ lO 0 ° 0 0 0 cos$, sin $, a 0 0 0 0 0 0 - oos$. sin<j>. 0 o o a 0 0 

o 0 0 0 0 0 0 0 0 cos$, sin $, 0 0 0 0 o 0 cos 417 - sin;P1 o 0 0 0 ' 

A is a 21-vector containing the LaGrange multipliers, i.e., A= ["-1'''-2,''-3,... ,''-21]T , 

ffis the vector containing the magnitudes of the unknown actuator forces ff = [fl f2 fJT using the 

positive sign convention chosen in Figure 2.24, and 

g(k) is the vector of known external forces given acting on the planar Gough-Stewart platfonn 

r{g(grav;ty) + g(cuttingf))T g(gravity)T g(gravitY)T g(gravity)T g(gravity)T g(gravity)T g(gravity)T 0 0 oj
L~, 1 '2 '3 '4 '5 '6 '7 ", 

The cutting force g;cutting
f) is either given by expression (2.111) or expression (2.117) depending on the 

particular machining scenario, and finally expression (2.124) may be solved using a linear solver as 

explained in Section 2.5, to find the 24-vector [~]. 

2.7 Veri'fication of special purpose program 

In this section, the special-purpose program for analyzing the planar Gough-Stewart platfonn machining 

center is, tested and verified. 

2.7.1 Jacobian matrix verification 

The Jacobian matrix derived for the planar Gough-Stewart platfonn (expression (2.62»), is of 

importance, since it is used in both the inverse kinematic analysis of the mechanism and the inverse 

dynamic analysis. In order to verify the correctness of the Jacobian matrix constructed here, and to be 

used in the special purpose program, the general purpose Kinematic Analysis Program (KAP) developed 

by Nikravesh [65] is applied to do the inverse kinematic analysis of a specific planar Gough-Stewart 

platfonn following the simple test trajectory shown in Figure 2.26. 
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Figure 2.26: Straight line motion. 

/ 

The length of the moving platform is chosen as 0.4 m, and the coordinates of the lower rotational joints 

C, D and E are as indicated in Figure 2.26. 

Three independent driving constraints of the form given by expressions (2.27) - (2.29) prescribe the 

motion of the planar Gough-Stewart platform. In particular, for the simple straight line trajectory shown 

in Figure 2.26, expressions (2.27), (2.28) and (2.29) are respectively: 

cI>(d-I,I) == XI + 0.1- 0.05e = 0 (2.125) 

cI>(d-2,1) YI + 0.1 - 0.05e = 0 (2.126) 

1t 1t 
-+ =0 (2.127)
12 6 

Driving constraints (2.125) and (2.126) control the displacement of the center of the moving platform 

(body 1 in Figure 2.5) in the x-y plane along a straight line from (-0.1, - 0.1) at t = 0, to 

(-0.05, 0.05) at tIs. Driving constraint (2.127) controls the rotation of the moving platform from 

its initial orientation <PI = 15° at t = 0, to its final orientation <PI = -150 at t = 1 s . 

The results obtained by KAP [65] for the velocities and accelerations of the seven moving bodies are in 

exact agreement with the results obtained using expressions (2.51) and (2.56), indicating that the 

Jacobian matrix ofthe planar Gough-Stewart platform constructed here (expression (2.62)) is correct. 

Furthermore, the analytical solution of the positions and orientations of the 7 bodies obtained from 

expressions (2.57) - (2.61) is also in exact agreement with the iterative solution obtained using KAP. 
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2.7.2 Inverse dynamic analysis verification 

The objective of this sub-section is to verifY the methodology for determining the unknown actuator 

forces as explained in Section 2.6.5. 

The verification of expression (2.124) is done noting that it may also be used to determine the static 

balance forces required to support the planar Gough-Stewart platform in static equilibrium. It follows 

that with the planar Gough-Stewart platform in static equilibrium, q= 0, and therefore expression 

(2.124) reduces to: 

(2.128) 


As explained in Sections 2.4 and 2.5, by prescribing the three driving constraints (expressions (2.27) ­

(2.29» at any specific time instant, the Jacobian matrix given by expression (2.62) is uniquely defined. 

Therefore for any given stationary platform configuration, equation (2.128) may be solved for the vector 

[~] using a linear solver. 

In expression (2.128): 

(I)q consist of the first 21 rows ofthe Jacobian matrix J(see expression (2.62», 

o ° 0 cosoj>, sin 4>, 0 0 0 0 0 0 0 -cos<l>, -sinoj>, 0 o 0 0 0 0 0 0 01" 


B = 0 0 0 0 0 0 cos<l>, sin oj>, 0 0 0 0 0 0 0 - cos<l>, sin <1>. 0 0 0 0 0 0 oj 

o 0 0 0 0 0 0 0 0 cos <1>, sin <1>, 0 0 0 0 0 o 0 -cos<l>, ···sin<l>, 0 0 0 0 'l

Ais a 2 I-vector containing the LaGrange multipliers, i.e., A 

(k) = [g(k)T g(k)T g(k)Tf 
g U 1 '2 '''., g • 

Consider the simple test example shown in Figure 2.27, where the vector of external forces is reduced to 

g(k) [1600, - 440, 250, 0, 0, 0,... , Or. 
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o 

1.0 1.0 

440 N r, 
1600N 

<(0, 1.732) 

Figure 2.27: Simplified static analysis example. 

The results obtained for the unknown actuator forces ff by solving expreSSIOn (2.128) are 

f! = -1400.8 N ,f2 1799.2 N and f3 =95 N . 

For this simple problem the unknown actuator force f3 may also be obtained by considering the sum of 

the moments about A, i.e.: I MAO: 250 - 440 + 2f3 = 0 and thus f3 =95 N . 

Also, summing the external forces in the x- and y-directions and substituting the value for f3 yields the 

following equations in the unknown actuator forces f! and f 2 : 

IF. = 0: fl cos60° - f2 cos 60° + 1600 = 0 (2.129) 

I Fy = 0: fl sin 60° + f2 sin 60° + f3 - 440 =0 (2.130) 

Solving (2.129) and (2.130) finally gives fl =-1400.8N and f2 1799.2N. This together with the 

value of f3 =95 N confirms the accuracy of the results obtained via (2.128). 

2.7.3 Fixed workpiece vs. fixed tool verification 

The two modes of operation of the machining center are explained in Sections 2.4.1 and 2.4.2. The 

objective of this section is to verify the actuator force computations, by reconciling the results for the 

fixed tool scenario with that of the fixed workpiece scenario. This is done by considering the case where 

the respective tool path specifications are such that the space path of the platform is identical for both 

scenanos. 
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For this illustrative example the fixed workpiece scenario is as depicted in Figure 2.28, and the cutting 

tool is omitted from the moving platfonn. 

y 

_~O;::.......::::o---.x 


starting point (0, 0) 

0.3 

(0,-0.3) 

Figure 2.28: Fixed workpiece scenario with prescribed circular path. 

The center ofmass of the moving platfonn (body 1 in Figure 2.5) is controlled to trace the circle defined 

by 

x 2 +(y+0.32 
) 0.32 (2.131) 

at a constant tangential speed of 0.1 ml s . 

This circle is traced in a CCW sense starting at (x, y) (0,0). It is furthennore required that the 

prescribed circular path be traced while a horizontal orientation is maintained by the moving platfonn, 

Le. $1 ;;: O. 

With the positional driving constraints and the fixed orientation prescribed, the inverse kinematic 

analysis may be done to obtain the acceleration vector ij = [ijr ,ij~ , ... ,ij~ r for any time instant. It is 

then used in the inverse dynamic analysis, which is done via the equations of motion given by expression 

(2.124). 

The following mass matrix is used for the example planar Gough-Stewart platfonn shown in Figure 

2.28: 

M =diag[M~ ,M; ,Mi ,... ,M~] (2.132) 

with 
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MI =[3, 3, 0.0625]T 


M2 M3 M4 =[0.6,0.6, 0.02]T 


M5 =M6 =M7 =[2.5, 2.5, 0.003f 


Ms =[0,0, O]T 

and specified in SI units. 

Figure 2.29 shows the computed actuator forces required to control the planar Gough-Stewart platform 

along the prescribed circular path at the specified constant tangential speed of 0.1 mls. The cutting force, 

discussed in Section 2.6.4.2.1, is neglected here. 
--I 

Fixed Workpiece Actuator forces 

50.00 -,-------~~------------~---~.-..--.--_. 

40.00 

30.00 

20.00 L.'-------~.._._.,J""------~_ 
~ 10.00 

0.00 +---~,_ 

-10.00 

-20.00 

Figure 2.29: Actuator forces for the fixed workpiece circular tool path. 

For the fixed tool scenario to be consistent with that of the fixed workpiece scenario, it is required to 

specify a prescribed path in the moving workpiece such that the motion in space of the moving platform 

is identical to the motion of the moving platform associated with the fixed workpiece example shown in 

Figure 2.28. For this to be so, the fixed cutting tool has to trace the prescribed solid circular path shown 

in Figure 2.30 in a CCW manner starting at (~I,"I1 ) =(0,0) . 1 
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/ ( center of mass of 
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Figure 2.30: Fixed tool scenario with prescribed circular path. 

In particular, the circular path in the local platform coordinate frame is defined by 

~12 + (Th -0.32 
) =0.3 2 (2.133) 

The global coordinate system is shown with its origin coinciding with the cutting tool tip. Using the 

transformations given by expressions (2.41) and (2.42), the motion of the moving platform in the global 

reference frame can be computed. This path is shown by the dashed circle in Figure 2.30 and 

corresponds exactly to the motion of the moving platform associated with the fixed workpiece example 

shown in Figure 2.28. Figure 2.31 shows the computed actuator forces required to manipulate the 

moving platform along the prescribed path of Figure 2.30. As is expected they are in exact agreement 

with the actuator forces shown in Figure 2.29. Note again that the cutting forces, discussed in Section 

2.6.4.2.2, are neglected here to ensure that the load conditions are equivalent for both scenarios. This 

allows for a comparison of results. The fact that the results are identical gives further confidence in the 

respective methods of analysis. 
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Fixed Tool Actuator forces 
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Figure 2.31: Actuator forces for the fixed tool circular tool path. 
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