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Appendix A

Established structural approximation
methods

A.1 Governing equations

The theory of elasticity is clearly set out in the book by Timoshenko [53]. The basic equations
are summarized here for the sake of completeness and basic comprehension.

Consider the partial differential equations

V2y =0 (A.1)

This is known as Laplace’s equation. If we only consider the two-dimensional case, we obtain

Pu o _
dz? =~ Oy

(A.2) is a special form of (2.7). If b is not equal to zero, it is known as Poisson’s equation
which governs many types of engineering problems such as seepage and aquifer analysis,
heat conduction, diffusion processes, torsion, fluid motion and others [54]. This equation is
generally associated with equilibrium or steady state problems and is known as an elliptic
partial differential equation as discussed in [28].

b (A.2)

We can define a basic coordinate system (z;,z2,z3) that corresponds to displacements
(u1,u2,us). We also define our main stresses o;; on a body in the same directions and
the surface tractions (pi, p2, p3). This is shown in Figure A.1.

For the stresses of the body volume in Figure A.1 we have the equilibrium equations
8015

9%i; 4 _ A3
axj+bz 0 (A.3)

Where the b; term represents the body force per unit volume (internal). We consider
(n1,m2,n3) as the direction cosines of the outward normal vector 7 as indicated in Figure
A.1. We can now relate the surface tractions p; to the stresses with the relationship

80
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Figure A.1: The main coordinates, displacements, stresses and tractions in three dimensions

Di = 04515 (A4)

The deformations of the boundary are a function of the displacements which have the com-
ponents (uj,uz,u3) at every point on the boundary. The strain is a description of the
deformation per unit length; thus we can write the strains in terms of the deformations.

o l(auz + 3uj
Cii = 2 83}]‘ 83:,-

) (A.5)

The strain-displacement equations are also called the kinematic equations of deformation
equations; they yield the strain field given the displacement field. The constitutive equations
connect the stress and strain fields. For linear elasticity however, a considerable simplification
occurs because the relation becomes algebraic, linear and homogeneous. Thus for this case
the stress-strain relations may be written in component notation as

Tij = Lifjkl€kl (A~6)

The Ejjr module of elasticity in this case does not presume the same mechanical properties
of the material in all directions. They are components of a fourth order tensor E called the
elasticity tensor. The elasticity module generally satisfies the following symmetries

Eijki = Ejint = Eijix (A7)

This relation reduces the number from 3* = 81 constants to 62 = 36 constants. Furthermore,
it is a requirement that the elastic energy that is stored must be positive and if the body
admits strain energy! the elastic module must satisfy the additional symmetries

Eijni = By (A.8)

This reduces the number of independent constants to 21. Further symmetries occur if the
material is isotropic and the module of elasticity can be expressed in terms of Young’s
modulus £ and Poisson’s ratio v.

1The material is not only elastic but hyperelastic.
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The states of stresses and strains in a body are related through the constitutive relationship
for the material as shown in [54] generally they are PDEs. This is shown to be

_E [ v

S l4vl—2v

0ij Sijerk + €ij) (A.9)
where v is Poisson’s ratio, £ the Modulus of elasticity and &;; is Kronecher delta (6;; = 1

when 7 = j and 0 if 7 # 7).

A.1.1 One dimension

The only possibility in one dimension is a stress ¢ along the direction x and its corresponding
strain €. The stress strain relationship reduces to

o= Fe (A.10)

A.1.2 Two dimensions
Plane stress

A thin planar body subjected to in-plane loading on its edge surface is said to be in plane
stress [40]. The state of stress is then specified by only o, oy, 7., [53]. It may be assumed
that these three components are independent of z and thus they do not vary through the
thickness [53].

Plane strain

Plane strain occurs when a body of uniform cross section is subjected to transverse loading
along its length [40]. This simplification usually occurs when the dimension of the body in
the z direction is very large [53]. Here ¢, v,, and v,, are taken to be zero [40].

A.1.3 Mechanics of the boundary value problem

Consider an elastic bar of length [, constant cross sectional area A, Young’s modulus E
and a temperature coefficient a. A point load P is applied to the end of the bar and an
arbitrarily distributed load is applied to the length of the bar Figure A.2. The problem is
purely one-dimensional and will have only one Euclidean coordinate, namely x; € [0,{] [55].
An infinitesimal section of the bar is now chosen. The equilibrium is shown schematically in

Figure A.3.

By physical reasoning, the state of equilibrium can be written as

—F 4+ (F+dF)+ pdz; =0

+4E
p d.’L‘l“
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u(0) =0

Figure A.2: One-dimensional bar problem

AN

F F+dF

i
y

dz

Figure A.3: Equilibrium of an infinitesimal bar element

P + F>1 =0
The strain-displacement relationship for this problem can be written as

du
€11 = —"dw =uU,;
1

The constitutive law (material law) for this problem is obtained as

g = E(611 - CYAT)
F=A0 = AE(ﬁll - OZAT)

The boundary conditions that are applied to the problem are described by

83
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(A.14) is the so-called essential boundary condition.

(A.15) is the so-called natural boundary condition. It is important to make this distinction
since their implementation into finite element equations are different. To define the varia-
tional form of the equilibrium equations, we need to characterize two classes of functions

[55].

1. The candidate or trial solutions to u

a) These solutions must satisfy the essential boundary conditions [55].
b) They must also satisfy fé Ul qdr; < 00; |laf| < m. (Wesay u € H™ where H™
is a Sobolev space [55].) In this case m =1 [55].

2. Weighting functions, test functions or variation funtions, U [55].

a) We require U to satisfy the homogeneous part of the essential boundary conditions
[55]). U € HJ*, where the 0 subscript refers to the homogeneous part [55].

The boundary value problem as defined above is known as the strong form of the boundary
value problem. In the finite element displacement method, the equilibrium equation can be
written in its variational form as (A.16) where U are the weighting functions

/Ol Ulp+ Fy)dz =0 (A.16)

(A.16) corresponds to weighting the error or residual over the domain with respect to a
weighting function U which may be arbitrary. The solution of this form is identical to the
solution of the equilibrium equation if U(z;) is allowed to be arbitrary with the constraint
that U is required to satisfy the homogeneous part of the essential boundary conditions

(Point 2a above) [55].

The weak form of the boundary value problem

Integration by parts of (A.16), to reduce the order of the derivatives of u

! I !
/0 Ulp + Fy)dz, = FUJ, —/ FU \dz, +/ Updey = 0 (A.17)
0 0
Now we need to satisfy exactly

Strain-displacement
Constitutive law F = AFu, — AEa/AT (A.18)
Boundary conditions: F(I) = P

This is called the variational equation which is equivalent to the equation of virtual work.
The solution is the weak or generalized solution. U(z;) is the same as the virtual displace-
ment and is sometimes also written in the form du(z,). The weak form is also called the
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variational boundary value problem. The above formulation leads to a symmetric form and
to a weakening of the smoothness requirements on u since we are only working with the first
derivative [55].

The Galerkin method: discretization

Our first step in the direction of a solution method is to construct finite dimensional approx-
imations to the trial solutions u and the weighting functions U. u” is denoted as a member
of the collection of functions used to approximate u and U”* as a member of the functions
used to approximate U. In fact u” is an approximate solution to the weak form [55].

To approximate the trial functions we use a set of basis functions ¢*, k = 1... N and we
obtain

ul = ¢kqF sum on k (A.19)

(Note: k is not a power.) The trial function is therefore made up of the accumulation of
chosen basis functions multiplied by unknown coefficients, ¢*, k = 1... N [55].

There are various ways in which the weighting function can be chosen, but we will use the
Bubnov-Galerkin method which assumes the same basis functions as are used for the trial
solutions [55]. Hence we obtain

Ur = ¢FQF (A.20)

We can also write both equations in matrix form

u =N ¢ U" N Q (A.21)
1xN;\;1/ IXNM

These are substituted into the weak form to give an approximate solution in

{ l l
/0 UtABW:day = [ Urp(or)da + [ ABaATU!day (A.22)

(A.22) is sometimes referred to as the Galerkin equation. Approximate methods of the type
considered are examples of so-called weighted residual methods. We are in fact weighting the
residual of the equilibrium equations p + F';. By substitution of U" and u*, (A.22) becomes
(A.23) [55].

! I !
QT / NTAEN ydz, = QTNTP + QT / NTp(z1)dz; + QT / NTAEaATdz,  (A.23)
0 o 0
Since U* can be arbitrary, Q) can also be arbitrary and (A.23) becomes (A.24),

! ! !
/0 N,{AEN,ldmlq: NITP-l-/O NTpdz, +/0 N?;AEaATd:cl (A.24)
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or

l i i
[ /0 NTAEN dz)]q = NTP + /0 NTpday + /0 NTAEaATdz, (A.25)

or

Kq=R¢+R, + Ry (A.26)

K designates the stiffness matrix (N x N)

q designates the unknown displacement coefficients (N x 1)

Ry designates the generalized or equivalent point loads (N x 1)

R designates the generalized or equivalent distributed loads (N x 1)
R; designates the generalized or equivalent thermal loads (N x 1)

The Bubnov-Galerkin method leads to symmetry of the stiffness matrix and the requirement
of only one set of basis functions [55]. The only task remaining to find u” is the solution of
the generalized equilibrium equations of (A.26).

A.2 Finite difference method

A.2.1 Introduction

The finite difference method (FDM) is a very general way of solving PDEs for all types of
problems. Smith [28] deals with this in great detail. Since the structural problems under
consideration are governed by the Laplace equations, (A.2), we will only consider finite
difference methods for solving this PDE. It is valuable to be familiar with this approach
because such knowledge will reinforce our understanding of finite element procedures [56].
The approach is also very similar to approaches that could be used for CA.

A.2.2 Methodology

If we divide a function y(z) into equally distant spaces § so that we obtain discrete values
Y1,Y2,Y3... for x = 0,z = 6,2 = 24.. ., we can approximate the first derivatives of y(z) at
corresponding points

dy Y1 — Yo dy Y2 — Y1
= Ry A ~ A.27
(dm)x—O 4 dz =4 4 ( )

In the same manner we can obtain the second derivatives as shown

d*y dy dy Y2 — 2y1 + Yo
oy ~ [ Y _ (% _ Y2 T A.28
<dx2>m=5 (dx)xms (d(t =0 62 ( )
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Suppose we have a smooth function f(z,y) we can use approximate solutions to partial
derivatives similar to (A.27) and (A.28) for the points specified in Figure A.4.

of L hi—fo of  fa—fo

oz & ay &
Pf _hi-2f+fs Pf  hi—2fotfa
dz2 ~ 82 dz2 82 (4.29)

A
)
4.
-3 1
T

Figure A.4: Finite difference two-dimensional grid

To gain better insight into how this can be used, we can consider the shear stresses within
a long uniform cylinder in torsion. The governing PDE is shown to reduce to
0%¢ 82¢

¢ is the stress function which must be constant along the boundary of the cross section, 8 is
the angle of twist per unit length of the bar, and u is the modulus of shear [53].Using (A.29),
we can transform (A.30) into a finite difference equation

313(¢1 + 2 + ¢3 + pa — o) = —2ub (A.31)

In this way every torsional problem reduces to a set of numerical values of the stress function
¢ which satisfy (A.31) at every nodal point within the boundary of the cross section and
become constant along the boundary [53]. As the simplest example, a bar of square cross
section a x a will be considered and a square net with a mesh side § = a will be used as
shown in Figure A.5.

From symmetry we can conclude that it is sufficient to consider only one eighth of the cross
section shown in Figure A.5 [53]. If we determine values for the stress function ¢ at points
o, # and v we shall know ¢ at all nodal points on the net within the boundary [53]. We can
now rewrite (A.31) as (A.32) by using symmetry.
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Figure A.5: Finite difference torsion bar example cross section

28 — 4o = —2u06°
2 + v — 48 = —2u04°
4B — 4y = —2uh6* (A.32)

(A.32) can now be solved to obtain o = 1.375u05? | 8 = 1.750405% and v = 2.250006% [53].
The required stress function is thus determined by these numerical values at all nodal points
within the boundary and by zero values at the boundary [53].

Methods of solution belong essentially to either a class of direct methods or a class of
iterative methods [28]. Direct methods solve the system of equations in a known number of
arithmetic operations and errors in the solution arise entirely from rounding errors introduced
during computation [28]. These direct methods are elimination methods of which the best
known examples are the Gaussian elimination method and the triangular decomposition
method which factorizes the matrix A of the equation Ax = B into A = LU, where L and
U are upper and lower triangular matrices respectively [28]. In the latter method, once the
decomposition has been determined, the solution is calculated from LUx = B by setting
Ux =y and then solving Ly = b for y by forward substitution and Ux =y for x by back
substitution [28]. With both methods it is usually necessary to employ partial pivoting with
scaling to control the growth of rounding errors [28].
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A.2.3 Methods of successive approximations

To increase the accuracy of the solution, it is necessary to refine the mesh used. But the
number of equations that must be solved becomes larger and larger. The solution can be
greatly simplified by using methods of successive approximations [53]. An iterative method
for solving equations is one in which a first approximation is used to calculate a second
approximation which is in turn used to calculate a third and so on. The iterative procedure
is said to be convergent when the differences between the exact solution and the successive
approximation tend to zero as the number of iterations increase. In general, an exact solution
is never obtained in a finite number of steps, but this does not matter. What is important
is that the successive approximation converges very rapidly to values that are correct to a
specific accuracy. One would consider using iterative methods when a direct method requires
faster computer storage space than is available and the matrix coeflicients are sparse but
well conditioned. This situation often arises with the difference equations approximating
elliptic boundary value problems [28], as is the case with Laplace’s equation (A.1) governing
elastostatic problems.

To illustrate this, we return to the two-dimensional case with Poisson’s equation, (A.2). The
corresponding finite difference equation is given by.

%(031 +¢2 + ¢3 + 1) = o (A.33)

(A.33) implies that the approximate value of the function ¢ at the nodal point O of the
square net is equal to the average value of the function at the four adjacent nodal points.
We suppose that for a simple system we obtain the system of equations in (A.34) where
aii#OfOI‘Z’: 1...4

a1y + a12x2 + a13%3 + a1424 = by
a21%1 + a2x2 + a23®3 + az244 = by
a3121 + a32x2 + 333 + a34%4 = b3

A41%1 + 422 + 4373 + G447y = by (A.34)

Rewriting (A.34) in the form of the unknowns gives

1
21 = — (b1 — a12%2 — a13T3 — a14%4)
ail
1
22 = — (by — 42121 — G233 — A24T4)
a22
1
r3 = — (bs — as1%1 — azT2 — A43T4)
Q33
1
Ty = — (bsy — a1 T1 — a42T2 — A43%3) (A.35)

44
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Jacobi method

We denote our first approximation to z; by xgl) and the second by wz@) etc., and assume that
n of them have been calculated, i.e. :1:1(-") is known for i = 1...4. The Jacobi iterative method
expresses the (n + 1)th iterative values exclusively in terms of the nth iterative values and

the iterations corresponding to (A.35) are defined by (A.36).

n+1 1
:cg ) e (b1 — a12x2 — 6113373 — a14T )
a11
n+1 ]- 7
xg )= — (b2 a21.’E1 — a23x3 - a24x£ )>
az2
n+1 1 (n)
.’Bg ) — (b3 - a31:1:1 - a32:1:2 — A43T4
ass
1) 1
.’I,"(ln+ = — (b4 — a41x1 — (14251,‘ - a43x ) (A36)
Q44

Gauss-Seidel method

In this method the (n + 1)th iterative values are used as soon as they become available.
Iterations corresponding to (A.35) are defined by (A.37)

" 1
:Cg +) _ (bl - 1112117% " a13:c — Q142 )
a1
n 1 n n
ZI?g +1) = — <b2 - aglmg +1) -— 93 1173 - a24x‘(1 ))
az2
n 1 n n
:cg W= o (bs - aaﬂg ) _ 032517 — 3474 ))
433
n 1 n k25 TL
xfl ) _ = (b4 — a4lx§ ) a42:1:g +1 ) (A.37)
a44

This increases the rate at which the solution converges, which means the number of iterations
required to obtain a solution is reduced.

Successive over-relaxation method

If :1:,(-") is added to and subtracted from the right side of the Gauss-Seidel equation, (A.37)
is rewritten as

n n 1 n n n
$§ - 5’;5 ) + [a_- (bl - auacg g al2'75g ) a13x1(3 ) a14$‘(1 ))]
11

1
s o) 4 [ L

(n+1)

(b2 — a1 T — a22;1:gn) - a23wgn) — a24xin))]
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n n 1 n n n n
xg +1) = :1::(3 ) + l:—‘ (bg - (131.’E§ +1) b (lgzlcg +) bt 633.’1,':(3 ) — a34x£ )>]

33
n n ]. n n n n
CIL& = fE‘(; ) + [;;: (b4 - a41$£ o a42w§ - a43xg - a44x‘(1 ))] (A.38)

It is seen that the expressions in the square brackets are the corrections or changes made to
;L'Z(."), 1 =1...4, by one Gauss-Seidel iteration [28]. If successive corrections are all one-signed
as they usually are for the approximating difference equation of elliptic problems, it would
be reasonable to expect convergence to be accelerated if each equation of (A.38) were given
a larger correction term than is defined by (A.38) [28]. This idea leads to the successive
over-relaxation (SOR) which is defined by (A.39).

2 = (M) 4 [f; (b1 —anz” — apal™ — a5 — a14x‘(‘n))]

2 = M+ [a%z (62 — aga{"™ — apa” — agsad — 024%(1”))]

xgn“) = acg") + [aﬁ% (63 — a31x§”+1) — a32xgn+l) - aggxgn) — a34w£n))]
:cinﬂ) = xf{" + [%4 (b4 - a41$§n+1) - a42$gn+1) - G43wgn+1) - a44$z(1n) ] (A.39)

The factor w, called the acceleration parameter or relaxation factor, generally lies in the
range 1 < w < 2 [28]. The determination of the optimum value of w for maximum rate of
convergence is discussed in [28] but is beyond the scope of this research.

A.2.4 Practicality for structural analysis

In the problem of the torsion bar in Figure A.5 the boundary conditions are specified directly
in the form of the stress function. This is, however, not possible with most problems since the
boundary conditions applied are specified displacements ( essential boundary conditions) and
forces applied (natural boundary conditions). For a general problem it is possible to obtain
either displacements or stresses where the boundary conditions are applied. This fact makes
finite differences inapplicable in common problems. Table A.1 summarizes some widely used
finite difference approximations, also called finite difference stencils or molecules [56]. These
stencils are derived from the partial derivatives to be used for successive approximations.
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Finite difference

Differentiation approximation Molecules
h h
dw |, Wiy~ Wiy >}

dz li 2h C :

SPwy. i1 2witwioy
e O—@—O

Pw). Wig2=2Wi41+2Wimy — Wiz
dxd 13 2h3

dw. Wipa—4wig1 46w —dw;_1+wi—3
dzt I$ ha
V2w|i,j —4w,',j+W.'+1,j+w.",$+1+w-‘—1,j+wu‘,1‘-1

[20wi,; — 8(wit1,j + wiy;

+wi 41 + wij—1) + 2(Wigr 41
V“wl,-,j Fwi-q 41+ Wioy 41+ wi+1,j—1)

FWigo,j + Wiz j + Wi j42

+w; j_2)/h*

Table A.1: Established finite difference computational molecules
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A.3 Finite element method

A.3.1 Introduction

In a 1941 mathematics lecture, published in 1943, Courant suggested piece-wise polynomial
interpolation over triangular sub-regions as a way to obtain approximate numerical solutions.
He recognized this approach as a Rayleigh-Ritz solution of a variation problem. This is the
finite element method (FEM) as we know it today. Courant’s work was forgotten until
engineers had independently developed it [55].

None of the preceding work was practical at the time because there were no computers
to perform the calculations. By 1953 engineers were writing stiffness equations in matrix
notation and solving the equations with digital computers. The classical paper Stiffness
and deflection analysis of complex structures by Turner, Clough and Topp appeared in 1956.
With this paper and others, explosive development of FEM in engineering began. The name
“finite element” was coined in 1960. By 1963 the method was recognized as rigorously
sound, and it became a respected area of study for academics. As late as 1967, engineers
and mathematicians worked with finite elements in apparent ignorance of one another.

Currently, finite elements are the most generally used method in structural analysis. FEM
has the capability of dealing with both linear and non-linear problems and can be constructed
using various types of formulations.

There are various ways of introducing the FEM. It can be introduced rather physically, as is
done with the displacement formulation as found in most introductory courses. The approach
works well for teaching basics but is somewhat superficial and does not allow the reader to
think of new possibilities, an attitude that has to be developed in further analyses. One can
also proceed along purely mathematical lines, the approach taken by mathematicians. For
the engineer, a purely mathematical course should serve to broaden his or her knowledge
base and not as an introduction to finite element analysis [55].

The vast amount of finite element formulations available designed for specific tasks makes it
impossible to describe a full definition of finite elements in this document. Instead, the ap-
proach will be to simply explain enough of the method to allow us to analyse the problems
with which the CA analysis will be compared. The formulation will adopt a mathemati-
cal point of view but with practical implementation since it is an existing method that is
most often used to solve the governing equation in structural analyses. This also allows for
comparison to boundary element methods which consist of a more complicated formulation
and implementation. Finite elements are probably by far the most used and the most well-
known method in structural analyses and should thus be considered as an extremely suitable
standard for comparison.
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A.3.2 Methodology

One dimension

In the FEM domain of a bar as discussed in section A.1.3, the bar is divided into intervals
and the displacements field is assumed to be constructed from piece-wise linear functions.
Some degree of continuity is imposed at the boundaries between the pieces or elements.
The degree of continuity in the field variable must be the same as one order lower than its
differential order in the weak form [55].

If we use the same notation as in section A.1.3, we can divide the bar into n — 1 intervals.

Typical ritz “hat” function

Figure A.6: Typical ritz function used in the analysis of one-dimensional bar problem

A piece-wise linear function can be made up as the linear combination of the Ritz functions
¢ shown in Figure A.7. The ¢* shown in Figure A.6 are functions that equal 1 at a particular
node k and vanish at all others [55].

u=¢¢¢ k=1,2,3...n (A.40)

¢3

¢1

X
Figure A.7: Linear combination of the ritz functions

We notice that ¢* forms a local basis for the displacement variable as it is identically zero
except in elements adjoining node k. Only the adjacent elements will be coupled. The
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piece-wise linear finite element functions are the most widely used finite element functions
for one-dimensional models [55].

We now consider the one-dimensional bar problem shown in Figure A.2. We consider the
solution to this problem to be obtained using two finite elements as shown in Figure A.8.

Node

0N 0o

. 1f2 , 1/2

Figure A.8: Simple bar FEM mesh

Since the bar is constrained at the left hand side, the first shape function ¢! will not influence

the solution since the displacement is specified to be zero in that point. The second ¢* and
third ¢® shape functions are defined by

o o o<az<i
2 _ l 2
¢ = { 2—-2 log<l
_ 1 Leg<l
¢3:{ Yo sl (A.41)
2
To solve the displacement u we can rewrite (A.40) as

u= ¢ + 8 = (67 { ’ } (A.42)

The strains at the represented nodes are defined by

2
i =ug = [¢21¢31]{ 33 } (A.43)

To obtain the strain, we need to find the partial derivatives of our shape function as defined
by (A.41). The derivatives are obtained as

2 l
1 — §<$<l

1
5<$<f} (A.44)
0<IE<§

o~

&
)
f
——
O~

We use this known function in the weak form of our governing equation, (A.25). The
evaluation of the left hand side of (A.26) can be shown to be
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] (A.45)

Now we can consider the solution to the distributed load as set out in (A.26)

{5 e

fees {4

L( 2 _ 2

Elerr?ent 1 Elem‘;nt 2
_x_"’_l% 2 — xT Il
= p {10 + r
0 72 - wllz j

(A.46)

The nodal load P is only applied at the third node. It can be added to the right hand side
as

[1]

(A.47)
We can now write out our solution which is a combination of (A.45), (A.46) and (A.47)

96
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TS E )]

With p and P known, the only unknowns to solve in this equation are the displacements ¢*
and ¢°. Once the displacements are known, we use (A.10) and (A.43) to calculate the stress
as

l +P[(1)] (A.48)

WS | e o

o = B[] { ’ } (A.49)

Two dimensions

We will now consider a two-dimensional problem under plane stress as described in section
A.1.3 and its governing equations described by (A.3), (A.5) and (A.9). In Figure A.9 we

define a rectangular element used to model the membrane.

(_a’_b) (aa _b)
lt '2

Figure A.9: Simple membrane FEM element

The displacements of each node can be approximated in a similar fashion as with our one-
dimensional element. We can therefore rewrite (A.40) into a form where ¢ denotes the node
under consideration as

u; = ¢ k=1,...4 (A.50)

A node is defined at each corner and similar to the ritz hat function in our one-dimensional
problem, we want a shape function ¢ such that it has a value of 1 at the node under
consideration and zero at all other nodes. These functions should be linearly independent and
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provide continuity of displacement with reference to Figure A.9. The four shape functions
can be written as

o=4(-2)(-)
o=H(+2)(1-2)
0=(+2)(12)
o=4(-2) (3 =

Since different finite elements have different shapes, we need to transform the z; and z;
axis to normalized coordinates with axes ¢; and (; where our element is always square in
these normalized coordinates. In order to determine the shape functions in these normalized
coordinates the values of @ and b in A.9 are set equal to one, resulting in the following shape
functions.

#=10-0)01-G)
#=70+0)(1-G)
#=1040)(1+0)
¢ =10-00+6) (4.52)

Suppose that the finite elements occupy a domain 2, and are surrounded by a boundary I'.
Suppose too that a distributed load p is applied along the boundary between nodes 1 and
2. We know that the displacements are described by (A.50). We define our finite element
formulation from (A.25) as

/ BTCBdf g = / NTp*dl (A.53)
AL A
Stiffness Consistent Nodal Loads

C is the constitutive matrix and derived from basic continuum mechanics. B contains
derivatives of the shape functions matrix which are contained in N. As with the one-
dimensional case, we will consider the left and right hand side of (A.53) separately. The left
hand side is expressed in (A.54) for a two-dimensional membrane element with a thickness
t.

k= / B’ CBde,de,t (A.54)
A
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In (A.54) we reduced our domain ) to an area A with our two axis (z; ) as defined in

Figure A.9. We can now translate the entire equation to our normalized axis as set out with
(A.52) rewriting (A.54) with dz, = ad(y, dzy = bd(,. This yields

1 1
m T bt A.55
k /_ 1 /_  BTCBdGi1dGa (A.55)

We can now move the constants a, b and ¢ in (A.55) out of the integral and use numerical
integration to solve the problem as

m n

k™ = athZBT(Q,C]’)CB(Q,(]')w,‘wj (A56)

=1 j=1

The only aspect of (A.56) that has not been dealt with is the strain-displacement operator B.
Consider the displacements of the first two nodes only since this is sufficient to describe this
operator. We can write the displacements of the nodes as a function of the shape functions
equation. By doing this (A.40) becomes (A.52) in matrix form as

rC]l

(3 ' 0 & 0 & 0 5
= b A.57
{Uz} [0 $2 0 ¢ 0 & % ( )
3
92
a4
| ¢ )

Strain e if difined as the derivative of our displacement equation, (A.12). Thus, we can write
the strain as

2 90

oz 1 ¢2 0 ¢3 0 ¢4 0 ]

=Lu=LNg= 0 2 A.58

€ U \B,_,q {_3__@}[0 b 0 ¢ 0 ¢ 0 o q ( )
8r, Ozo

The strain-displacement operator B can be written as

¢ 0 ¢4 0 % 0 44 0
0 6% 0 ¢ 0 g 0 ¢
o oh & S 6% & o

Where ¢, = % and ¢, = gf;, the strain-displacement operator B can be written in the

normalized coordinates by making use of the relation

B = (A.59)

96 _ 94 0
0o Oz 0C,

In a more general form, (A.60) can be written as

(A.60)
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Do = ¢idai
or ¢,a = qu,z
dzy Bz
where J = [ s 5o } (A.61)
8¢ 9

J is known as the Jacobian matrix. For the rectangular element in Figure A.9 it is obvious

oz _ dza _
that 5 =@ and 7 =b.

The edge tractions can be calculated in accordance with (A.53) in the normalized coordinates
as

1 1

& =[5 fra (742

Consistent nodal load
(A.62) results in equivalent nodal loads for the distributed force applied. If the force had any
other form besides that of a fixed traction value p*, the traction would have to be written in
the form of the generalized coordinates p*(¢y,(z). It is, however, clear that the integral being
evaluated in (A.62) is dependent on the form functions. This will give rise to the following
system of equations:

Kq=R
or in a more general numerical form
AX =F (A.63)

Thus the finite element method creates a system of equations that solves the displacements
at the nodes under consideration. With the displacements known, the strains are known
for the problem and from the stress-strain relationship, (A.9) the stresses can be calculated.
The strains are the derivatives of the displacements and are thus less accurate than the
displacements [55].

In the previous example only one element was discussed. For more than one element, the
principles remain the same, the only difference being that most nodes except for those on the
boundary will form part of more than one element. Each element is set up in the normalized
coordinates and the stiffness is translated to the global coordinates. The stiffness component
of each element must be added together to form the global stiffness matrix. The size of the
system of equations under consideration is dependent on the number of nodes in the system
m, the number of degrees of freedom per node n and the number of nodes restrained by the
essential boundary conditions e. Thus the total number N in the system to be solved can be
calculated as

N=(mxn)—e (A.64)
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It is clear that to better approximate the governing equations, the finite elements used should
decrease in size resulting in more elements. One way in which the accuracy of each element
is improved is by using more nodes per element. Thus far we have discussed isoparametric
formulation where it is assumed that the interpolation function (shape function) is of the
same order as the assumed displacement function. To be able to use higher order elements
with such functions, the same principles apply. The shape function must be equal to one
in the node under consideration and be zero in all other nodes. If we consider one nine-
noded element (the equivalent of four connected four-noded elements) in the normalized
local coordinates ((;,(z), the element is still square with a maximum of one and a minimum
of minus one. This occurs if we consider the first point at (1,1) and its corresponding shape
function can be set up by logic. If the line exists where {; = —1, the function is required to
be zero so a term X ((; + 1) is added to the equation. This will make all the terms on the
line zero for the form function. The next line can be drawn at ¢; = 0 (middle nodes on (;).
For this a term x(; is added. Now on the (; there are two more that must be set equal to
zero where (; = —1 and where (; = 0. In order to do this, x((2 + 1)(; is added. Now the
first form function

6= 3(G+ D06+ 1) (4.65)

By substituting the values of (; = 1 and {, = 1 into (A.65) which must be equal to one at
this point, the fraction § = % is obtained. The remaining form functions can be constructed
in the same manner.

A.3.3 Implementation

Thus far, the implementation of the problem to be solved has been considered using analytical
solutions. We use computer programs to solve the finite element equations. Kwon [57] offers
a good explanation on how to become acquainted with the implementation. He uses Matlab
as the programming language which makes the code easy to change and use. The code
provided will be used to calculate the displacements of the single element problem shown in
Figure A.10. This problem cannot be considered to be truly representative, but it has to
deliver a constant stress in the direction of the applied load.

Using modified code from [57], the displacements as shown in Table A.2 and then the stresses
as shown in Table A.3 were calculated.

Node Displacement x Displacement y

1 -1.0069e-016 -9.6507e-017
2 5.0000e-001 8.4198e-017
3 5.0000e-001 -1.5000e-001
4 0 -1.5000e-001

Table A.2: Displacements calculated by FEM (single membrane element)
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4 3

y

Y

1 2

Figure A.10: FEM element patch test

Node Oy Ty TeY
1 5.0000e+005 1.1642e-010 9.0739e-011
2 5.0000e+005 5.8208e-011 6.9389¢e-011
3 5.0000e+005 5.8208e-011 6.4051e-011
4 5.0000e+-005 0 4.2701e-011

Table A.3: Stresses Calculated by FEM (single membrane element)

A.4 Boundary element method

A.4.1 Introduction

Boundary element methods (BEM) are approximations made only on the boundary or surface
of a domain. The approximation is based on a solution of a boundary integral equation.
Many important engineering problems can be reduced to mathematical models that belong
to a class of problems known as boundary value problems [58]. It is easy to understand
that for most geometries, boundary elements which only use a mesh on the surface will require
less elements than the same structure meshed with finite elements. The method also entails
that the dimension of the elements are always one dimension less than the dimension of the
defined problem. This entails that for a three-dimensional problem only two-dimensional
elements are required to mesh the surface. The discretization is even simpler when using
discontinuous elements [54]. The use of elements which sometimes do not meet at corners
and are consequently discontinuous in terms of their variables are possible [54]. However,
BEM can only be applied if the fundamental solution to the governing partial differential is
known. BEM entails two steps in the solving of the problem. The solution is first calculated
on the boundary and then internal points are calculated in two separate steps.
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A.4.2 Basic principles

Before BEM can be applied to a problem, a fundamental solution must be obtained. This
section will handle some basic concepts which will allow us to obtain a fundamental solution
later. The fundamental solution to Poisson’s equation, (A.2) in two dimensions is known to

be

u(p, ) = 5-tn(>) (4.66)

Con
In (A.66), p can be seen as the source point and q the observation point. Each of these two
points consists of two Cartesian coordinates which can be used to calculate the radius r in
(A.66). Differentiating (A.66) with respect to z at point ¢ we obtain

ou x9—<

= A.67

oz 2nr ' ( )
Similarly, an expression can be obtained with respect to y. An approximate solution u of
the form in (A.68) is now considered:

u = a1¢1 + a2¢2 + 03¢3 + ... (A68)

o; are unknown coefficients and the ¢;s are a set of linearly independent functions which are
known. In general engineering problems, a;’s are considered as nodal values as they have
a clear physical meaning. This is the manner of implementation for finite elements, finite
differences and boundary elements. Introducing the approximation of u into the governing
differential equation, it is clear that except for the case where enough coefficients and func-
tions are present in (A.68), the approximation produces an error or residual function [54].
The residual function can be defined as

R=Vu—b (A.69)

With approximations, errors also occur in the boundary conditions. The numerical methods
used in engineering try to reduce these errors to a minimum by applying different techniques.
This reduction is carried out by forcing the errors to be zero at certain points, regions or in
a mean sense [54]. This operation can generally be interpreted as distributing these errors
[54]. Forcing these errors to be zero is generally carried out by weighted residual techniques.
If we presume that we have a domain Q surrounded by a boundary I, one can introduce the
idea of multiplying (A.2) with an arbitrary weight function w to obtain

/Q (V2u — bwd = 0 (A.70)

The integration of (A.70) is done by integration of parts. This can be seen in [54]. The result
is (A.71) which is known as Green’s theorem. Although this theorem is in many cases the
starting point for many engineering applications, including boundary element formulations,
it is much more illuminating to use the concept of distribution as it illustrates the degree
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of continuity required of the function and the importance of the accurate treatment of the
boundary conditions [54]:

/Q (V0w — (V2w)uldf) = /F (5w = usm)dD (A.71)

The boundary I' can now be divided into two segments I'; and 'y such that ' = I'; 4T’ which
surround the domain Q. We furthermore define a unit vector n so that it has the properties
that it exists on every point on the boundary and at each point it is perpendicular to the
boundary. We also define the boundary conditions that must be satisfied.

_— = q on Fg (A72)

Rewriting (A.71) to separate the boundary and using the boundary conditions (A.72) we
obtain

(v~ twdn - [ (g - udr + [ (- a)%i:-dr ~0 (A.73)

This equation shows that one is trying to satisfy a differential equation in the domain {2 plus
two types of boundary conditions, the essential boundary conditions u = u on I'; plus the
natural boundary conditions ¢ = G on 'y [54]. (A.74) defines the residual functions (A.69)
on the segmented boundary.

Ri=u—u on [

on [ (A.74)

Ry=q—q

If we write (A.73) in terms of our residual functions we obtain

ow
_ 0w i _ ALT5
/Q RuwdQ /F Rywdl + /F Rygdr =0 (A.75)

Considering a special case of this function where the function u exactly defines the essential
boundary conditions, u = @ on I'y, which means R; = 0, (A.71) becomes

| Rwdg = [ Rywdr (A.76)
Q r
Again using integration by parts, (A.77) is obtained.

ow ow
Viwud? = — [ qudl - [ qudr [ a%dr &ar ATT
/n( w)u I, w T quat + T “on + I, “on ( )
(A.77) can be seen as the starting point for boundary element formulation of the Laplace
equation. This equation is also seen as the weak formulation on which it is presumed that

the essential boundary conditions have been satisfied.
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A.4.3 Fundamental solution

Now we will attempt to find a fundamental solution by making use of the principles described
in section A.4.2. If (A.9) and (A.5) are substituted into (A.3), the result obtained is the
Navier equation in terms of the displacements.

1 1
(I—E)Uj’jl + u ; + ;bl =0 (A78)

p is the shear modulus which is usually donated by G but in this case G will be used for
Galerkin’s vector.

E

e (A.79)

Kelvin’s solution of (A.78) when a unit contributed load applied at a point i in the direction
of the unit vector ¢ is given by

b1 = Aiel (ASO)

An easy way of computing the fundamental solution is by using the representation of the
displacements in terms of Galerkin’s vector [54]. Galerkin’s method implies that the same
weight function as the interpolating function is used. Therefore one assumes a vector G from
which the displacement components may be obtained as [54].

1

u; = Gimm — 507 U)Gm,jm (A.81)
Substitution of (A.80) and (A.81) into (A.78) gives
V3(V2G)) + %Aiel =0 (A.82)

Through a series of substitutions and integrations shown in [54] we can obtain an expression

for G

1, 1
= — - A.83
G 871_#7’ ln(r) ( )

This equation is valid for three dimensions. If we take each load as independent, one can
write

Gy = Goy, (A.84)

G, is the k component of Galerkin’s vector at any point when a unit load is applied at %’
in the [ direction [54]. If we now return to our equation obtained from Galerkin’s vector
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(A.81) and we presume at any point that we have uj; as the displacement at any point in
the k direction when a unit load is applied at ¢ in the | direction, we obtain

1

R A.85
2(1 — v)Glm,km ( )

uly = Glkymm —

By substituting (A.83) and (A.84) into (A.85) and simplifying it for two dimensions (A.86)

is obtained.

. _ 1 k7L
= g ((4v — 3)(in(r))bu + 5 ) (A.86)

Stresses at any point can be written using the strain-displacement relation (A.5) and the
stress-strain equation (A.9). By rearranging these equations they can be expressed as

Where we need to obtain Sj;; for (A.86) this is shown clearly in [54]. The tractions of surface
forces on the I' boundary with

Pr = Pipel (A.88)

Now we can write the traction components pj; in two dimensions as

rET

1 TN+ TENg . _] B ( 1’3 B ﬂ)] A89
47r(1—v)r[ " [(1 20)d1 + 2 oz + (1 - 2v) T (A.89)

x* ———
Py = —

To better explain the results obtained from (A.89) and (A.86), we will now consider a unit
load placed at point P along the 1 2 direction as shown in Figure A.11 from [59].

We now find that (A.86) and (A.89) can be written as matrices shown in (A.90) and (A.91).

] = | U v ] (A.90)
| U21 U

¥ [ Pl1 Pia A91

[p ] | P21 P22 ] ( )

In (A.90) and (A.91), u},, u}, are the deformations and pj,, pj, are the tractions. In this
case, a unit-concentrated load along direction 1 is placed at any point P inside or on the
surface of the two-dimensional body [59].

A.4.4 Boundary integral formulation

We now consider that one needs to minimize the errors involved in the numerical approxima-
tion of the governing equations in elastostatics (A.3). We know that we have to satisfy the
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P12

3
P11

P
Lot

Figure A.11: The fundamental solution in two dimensions with unit force along direction 1

prescribed displacements (Essential boundary conditions) and tractions (Natural boundary
conditions). If we rewrite (A.70) in terms of our governing equation, (A.3), we obtain

/Q(Ukj,j + be)uzpdQ = 0 (A.92)

In this equation we define our weight function as a displacement type function u}. We now
use integration by parts similar to section A.4.2 (details shown in [54]) to obtain

ul + /F phourdl = /F wloprdl + /Q ul bed) (A.93)

This equation is known as Somigliana’s identity and gives the value of the displacements at
any internal points in terms of the boundary values u; and py, the forces throughout the
domain and the known fundamental solution [54]. (A.93) is valid for any particular point
‘i’ where forces are applied [54]. However, for the solution to a boundary element problem
we are interested in the values at the boundary I' and not over the whole domain Q. A
singularity occurs when solving the integral equation (A.93) at the boundary. The solution
to this problem is obtained by defining the boundary I' in the sense of Cauchy Principal
values c},. This is described in detail in [54] and (A.94) results.

cfku§+Ap7kude :/Fu}"kpkdlj—l-/ﬂu;‘kbkdﬂ (A.94)
In two dimensions we can define ci; as (A.95) when it is inside €.
10
[c] = [ 01 ] (A.95)

When ¢}, is on the boundary and the boundary I' is smooth, we obtain (A.96).
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d-|

When ¢, is not smooth, this matrix becomes very difficult to calculate. In two dimensions
we will later define the general expression in terms of the angles of the elements.

o= O

] (4.96)

O W=

A.4.5 Boundary element formulation

To be able to obtain a numerical solution we must discretize the boundary into a series of
elements over which displacements and tractions are calculated at specific nodal points. We
begin by defining the v and p functions which apply over each element 'j’ as (A.97) and
(A.98) respectively.

u = du’ (A.97)

p=0p (A.98)

The values of the matrices u/ and p’ have a dimension of [N x 1] where N is equal to the
number of nodes per element n, multiplied by m degrees of freedom per node. The matrix
® then has the dimension of [m x N]. NE elements now exist into which the boundary I’
is divided. We can now write (A.94) in terms of a discretized system using (A.90), (A.91),
(A.97) and (A.98) into (A.99)

/F u*@dr) P+ i:: ( /Q s u*bdQ) (A.99)

J

 NE _ NE
cut+ Y (/ p*q)dF) W= (

i=1

We notice that our body force term b on the domain  is divided into M internal cells over
which the boundary force integrals are computed [54]. These body force terms can usually
be avoided by taking the body force integrals to the boundary [54]. We can now also use
the transformation of coordinates exactly similar to that used in finite elements. For the
internal domain we write

d2 = ||J]|d¢1d(; (A.100)

And similarly for the boundary we obtain

dT = ||Glld¢, (A.101)

J is the full Jacobian matrix in two dimensions. G is the reduced Jacobian matrix.

Il = % = ([‘ﬁl—(] [C;—C]) (A.102)




W UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

YUNIBESITHI YA PRETORIA

APPENDIX A. ESTABLISHED STRUCTURAL APPROXIMATION METHODS 109

With (A.101) and (A.100), we can write (A.99) as (A.103) by making use of numerical

integration.

NE
cut 4 Z (Z wi(p" @) HGH) w =3 (Ewk (u™®) IIGII) P+ (E wy(u"b") ||J||)
Jj=1 J=1 \j=1 5=
(A.103)
[ is the number of integration points on the surface elements and wy is the weight at those

points [54]. Once (A.103) has been numerically integrated to correspond to a particular node
's" it can be written as

N N M

cu' + Y HY9wl = > Glip + > B*® (A.104)
j:l j:l s=1

N is the number of nodes, u’ and p’ are the displacements and tractions at node ’j’ [54].

H% .G and B are the matrices obtained after numerically integrating (A.103). We can
now simplify the left hand side of (A.104) by considering

HY9 = Hii if i#j
Hi=Hit+cd if i=j (A.105)

If we consider the contribution of all the s’ nodes we obtain a global system of equations in

HU =GP + B (A.106)

The vectors U and P represent all the values of the displacements and tractions before
applying the boundary conditions [54]. These conditions can be introduced by rearranging
the columns in H and G and passing all the unknowns to a vector X on the left hand side
[54]. This gives the final system of equations

AX=F (A.107)

We also note that the B vector has been incorporated into F. By solving the linear system
of equations all the unknown displacements and tractions are obtained.

A.4.6 Implementation

We can now consider a boundary I' divided into elements and at first we supply each element
with a single node in the middle of the element. It follows that we have a smooth boundary
and we can use (A.96) in (A.104) to obtain a system of equations to solve the unknowns.
It is clear in Figure A.12 that this results in a constant element formulation causing large
discontinuities between elements since it assumes a single solution is valid for the entire
element.
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Control point

Element

Figure A.12: Constant element solution BEM

Various methods such as “Saw tooth” correction exist to improve the solution of the constant
element formulation. But in general it is a well-known fact that low order BEM perform very
poorly in structural analysis. To improve this situation we have to put nodes at the edge
of elements which in turn entails that we have to obtain a new [¢] matrix for the boundary
which is not smooth. To obtain this matrix we consider the limit of the fundamental solution
of tractions in (A.108). This is more clearly illustrated in Figure A.13

1] = lim ( /F 6 p*dF) (A.108)

Figure A.13: Corner point

(A.109) gives the equation to describe the two-dimensional case. If we use the conventions
described in Figure A.13 we obtain the limit

4(1 —v)(m + 0, — 0;) + sin 20; — sin 20, cos 20, — cos 26,
cos 203 — cos 26, 4(1 — v)(m + 0, — 0;) + sin 26, — sin 26,
(A.109)

=D
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-1
= — A.110
b 8r(l —v) ( )
We can now calculate the new [c] matrix
ik = ok + i (A.111)

This now allows us to use elements with nodes on the end of each element. But in order
to stimulate traction discontinuities over the boundary, the concept of double nodes can
be employed [60]. This means that we have two nodes with exactly the same coordinates
connected to two different elements. If we have one node at each end of the element we
obtain linear elements but, however, this causes problems with curved geometries. It would
thus be better to employ an element with two nodes at its corners and one in the middle. For
these quadratic elements we can write (A.97) and (A.98) as (A.112) and (A.113) respectively

v= [uz ] _{ 01 ®2 01 ¢2 0l ¢2] | =2 (A.112)

21 0 & 0 ¢ 0 pi i
= = =& A.113
P [m} [0 2 0 ¢2 0 & P, P ( )
3
51
P
The ¢;s are the quadratic interpolation functions as set out in (A.114) in the local coordinate
system.

b= 3¢~ 1)
¢ = (1-¢%)

¢ = 30+ 1)
(A.114)

By using the same interpolation functions ¢;s as we used in (A.112) and (A.113) for the
transformation of the coordinates of the nodes we obtain
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_ | T1q _ ¢1 0 ¢1 0 ¢1 0 T . .
R PRI A1 I

We can now consider a simple example of a square geometry with four elements, one on each
side and three nodes per element, when we obtain the setup as shown in Figure A.14.

y— -

49—
N —
o ——»

e *
Figure A.14: Simple boundary element problem

Treatment of the boundary conditions are shown in Figure A.15. This clearly shows how
the double node concept is employed to satisfy traction discontinuities over the boundary.

a). L 4 @

44 @ —&

Figure A.15: Applying boundary conditions
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We note that the distributed load is treated by only using the value of the force at the
point at which it is applied since we are only interested in the tractions applied. This can
be very useful when considering a complex distributed load as seen in Figure A.16. This
problem would involve quite a complicated integration to be applied to a finite element. The
boundary element method allows us to use only the immediate value at the node. This,
however, entails that enough nodes have to be placed on the side with the complex load to
describe the load accurately.

——=

Figure A.16: Applying complex load

When solving the problem in Figure A.14, a modulus of elasticity £ = le6, Poisson’s ratio
v = 0.3 and a distributed load of 500000 was used. For this setup, the BEM should be
able to represent a constant deformation and stress Figure A.17 shows the solution to the
problem. The values used in this problem are not realistic but it does enable us to see if the
correct results were obtained. The plot shows the original geometry as well as the deformed
geometry.

12 T T T T T T

0Bt ] S SR S i
os- ............ ............ .............. .......................... S 4
04t f ............. ............ P P .......... .

02k SRR SRR e ] R ]

=1

012 0:4 Ofs 0?8 ; 1 T2 14
Figure A.17: Constant deformation of a simple geometry

In order to see that the answer obtained has converged, the mesh has to be refined. In Figure
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A.18 the solution is plotted for a refined mesh which shows the same deformation as Figure

A7,

1.2 T T T T T
08- ............ TR TP Lo e i EE T B A «
b : : : 5 ;
4 9
0B s e SO FR I & for -
: : : ) :
04_ .............. .............. .............. S RRREES: EETTRTRRPRRY & ............ 4
q
o
_0.2 L 1 ) L i L
02 04 06 08 1 12 1.4

Figure A.18: Constant deformation of a refined mesh

The problem considered should also show a constant stress over the entire geometry. BEM
solves the tractions and displacements on the boundary and then solves the internal displace-
ments and stresses at the specified internal points by making use of Somigliana’s identity
(A.93). Table A.4 gives the internal values calculated by BEM using four internal points.
This is done using the mesh in Figure A.17.

Coordinates

T Yy T Ty

Tzy

0.2500000E+00
0.7500000E+00
0.2500000E+00
0.7500000E+00

0.2500000E+00
0.2500000E+00
0.7500000E+00
0.7500000E+00

0.4871852E+4-06
0.50556 77E+-06
0.4879818E+-06
0.5063640E4-06

-0.3897214E+04
0.1617945E+04
0.3100705E+04
-0.8215335E+03

0.3686987E+04
0.2063524E+04
0.2811925E+04
0.1188476E+04

Table A.4: Internal stresses (BEM)

Clearly the stress representation is not very accurate for the internal points since we know
that for this problem the stress in the x direction has to be constant over the whole surface.
Table A.5 gives the stress at the same internal points calculated using the refined mesh.

The x stresses in Table A.5 are clearly more accurate than for the single elements. But this
result is still poor in comparison with the results obtained in finite elements. We know that
in our boundary element formulation A.103, the errors are only minimized on the boundary
itself. The prediction of the displacements on the internal points are shown in Table A.6.

The displacement in the x direction is definitely more accurate than the stresses calculated
at the same internal point. The tractions on displacements on the boundary are, however,
calculated very accurately.



APPENDIX A. ESTABLISHED STRUCTURAL APPROXIMATION METHODS

W UNIVERSITEIT VAN PRETORIA

0 UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

Coordinates

T

y

Oy

Try

Oy

0.2500000E4-00
0.7500000E4-00
0.2500000E+-00
0.7500000E4-00

0.2500000E4-00
0.2500000E4-00
0.7500000E4-00
0.7500000E4-00

0.4994989E4-06
0.5002098E4-06
0.4994980E4-06
0.5002088E4-06

-0.5405129E+-04
-0.9422518E4-03
0.5405965E4-04
0.9414868E+03

0.3858706E4-04
-0.1184704E+-04
0.3859719E4-04
-0.1183872E+04

Table A.5: Internal stresses refined mesh (BEM)

Coordinates

115

Zz

y

Displacement x

Displacement y

0.2500000E4-00
0.7500000E4-00
0.2500000E4-00
0.7500000E+00

0.2500000E4-00
0.2500000E4-00
0.7500000E+-00
0.7500000E+00

0.4550087E-01
0.1323639E4-00
0.4549616E-01
0.1323686E4-00

-0.1889137E-01
-0.1938061E-01
-0.5655904E-01
-0.5606983E-01

Table A.6: Internal displacements refined mesh (BEM)

A.5 Finite element method and boundary element method
comparison

The boundary element formulation is mathematically complicated and its implementation
just as tedious. BEM and FEM have major differences. In a comparison it can be seen as
either an advantage or a disadvantage. These differences will be put out more clearly in this
section [38].

1 FEM: An entire domain mesh is required.
BEM: A mesh of the boundary only is required.
Comment: Because of the reduction in size of the mesh, one often hear people saying
that the problem size has been reduced by one dimension. This is one of the major
advantages of BEM - construction of meshes for complicated objects, particularly in
3D, is a very time-consuming exercise.

2 FEM: Entire domain solution is calculated as part of the solution.
BEM: Solution on the boundary is calculated first, and then the solution at domain
points (if required) is found as a separate step.
Comment: There are many problems where the details of interest occur on the bound-
ary, or are localized to a particular part of the domain, and hence an entire domain
solution is not required.

3 FEM: Reactions on the boundary are typically less accurate than the dependent vari-
ables.
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BEM: Both u and ¢ are of the same accuracy.

4 FEM: Differential equation is being approximated.
BEM: Only boundary conditions are being approximated.
Comment: The use of the Green-Gauss theorem and a fundamental solution in the
formulation means that the BEM involves no approximations of the differential Equa-
tion in the domain - only in its approximations of the boundary conditions.

5 FEM: Sparse symmetric matrix is generated.
BEM: Fully populated asymmetric matrices generated.
Comment: The matrices are generally of different sizes due to the differences in size
of the domain mesh compared to the surface mesh. There are problems where either
method can give rise to the smaller system and quickest solution - it depends partly on
the volume to surface ratio. For problems involving infinite or semi-infinite domains,

BEM is to be favored.

6 FEM: Element integrals are easy to evaluate.
BEM: Integrals are more difficult to evaluate, and some contain integrands that be-
come singular.
Comment: BEM integrals are far more difficult to evaluate. Also the integrals that
are the most difficult (those containing singular integrands) have a significant effect on
the accuracy of the solution, so these integrals need to be evaluated accurately.

7 FEM: Is widely applicable, and handles non-linear problems well.
BEM: Cannot handle all linear problems.
Comment: A fundamental solution must be found (or at least an approximate one)
before the BEM can be applied. There are many linear problems (e.g. virtually any
non-homogeneous equation) for which fundamental solutions are not known. There
are certain areas in which the BEM is clearly superior, but it can be rather restrictive
in its applicability.

8 FEM: Is relatively easy to implement.
BEM: Is much more difficult to implement.
Comment: The need to evaluate integrals involving singular integrands makes the
BEM at least an order of magnitude more difficult to implement than a corresponding
finite element procedure.
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Appendix B

Numerical optimization

B.1 Optimization formulation

B.1.1 Mathematical definition

Mathematical optimization is the process by which we attempt to minimize a problem of
the general mathematical form

Minimize  f(z),z = (z1,22,...,2,) € R" (B.1)

Subject to the constraints

g](:c)<0 ]:1>27 , M (B 2)
hj(.'t):O J = 1a2a ) T (B 3)
where the design variables are z;,zs,...,,

the objective function f(z)
the inequality constraints g;(z) and
the equality constraints A ()

The vector  that solves the problem (B.1) is denoted by z*. This is called the optimal
solution and f(z*) the optimal function value.

B.1.2 Solution methodology

When the objective function f(z) does not exist in terms of a simple analytical function
determining the optimal solution z* becomes a more complicated procedure. It may not be
possible to differentiate the equation and determine the minimum of all the turning points.
In engineering, the objective function usually has to be obtained via a simulation. This is
a timely process and thus it is not practical to evaluate all functions to determine which

117
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solution is the optimum solution. Instead numerical optimization consists of techniques
which allows us to find the optimum solution z* by evaluating few functions. The algorithms
can be divided into different classes and each class is based on certain principles. Since each
problem is different, some algorithms will perform better that others on different problems.

B.2 Genetic algorithm

B.2.1 Introduction

Genetic algorithms (GAs) make use of the survival of the fittest strategy found in nature to
search the solution space of a function. The principle of the survival of the fittest results in
the fittest individuals of any population reproducing and surviving to the next generation.
These species are well adapted to their environment. Inferior individuals also have the
possibility of surviving [61, 62].

Many optimization algorithms are limited to convex regular functions. Many functions
are, however, multi-modal, discontinuous and non-differentiable. These functions have been
optimized, using stochastic search techniques. The stochastic techniques do not make use of
traditional search techniques such as gradients, Hessians, linearity and continuity. Decision
rules or stochastic sampling is used instead to determine the next sampled point. GAs
can therefore be used to solve functions that do not possess properties such as continuity,
differentiability and satisfaction of the Lipschitz Condition [62].

GAs require the determination of six issues: solution representation (representation of design
variables), selection, genetic operators that make up the reproductive function (including
crossover and mutation), the creation of the initial population, termination criteria and the
evaluation function. Each of these issues will be discussed [62].

B.2.2 Solution representation

A chromosome representation function determines how the problem is structured in the GA
and the genetic operators that are used. The function is required to describe each individual
in the population of interest. An initial design population is made up a of a sequence of
genes. Each chromosome represents a design variable. The design vectors in the design
population are improved in subsequent generations by means of the selection, crossover and
mutation operators [61, 62].

B.2.3 Selection function

A probabilistic selection operation is performed based upon an individual’s fitness. The
operation is such that fitter individuals have a greater chance of being selected to form the
mating pool. Individuals may be selected more than once and all individuals in the pool
have a chance of being selected [61, 62].

A common selection method uses the following approach:
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1. Assign a probability of selection P; to each individual j based on its fitness value.

2. Compare the series of random numbers N that is generated against the cumulative
probability of the population C; = 3=7_, P;.

3. Select the appropriate individual ¢ and copy to the new population if C;_; < U(0,1) <
C;.

There are a number of different methods of selection determining how probabilities are
assigned to individuals: roulette wheel, tournament selection and ranking selection.

Roulette wheel

The roulette wheel selection is also known as the expected value selection [63]. The objective
function is converted from a maximization to a minimization problem by multiplying the
objective function with -1. A constant must be added to functions with negative values as
function values must be positive. The probability P; for each design is calculated as follows:
p-__B i=1,2,3,... (B.4)

Z '31198128 FJ

1=

where F; denotes the fitness of individual 7.

Tournament selection

Tournament selection selects 7 individuals randomly and inserts the best j into the new
population. The procedure is repeated until N individuals have been selected. Tournament
selection simulates the process whereby individuals in the population compete for mating

rights [61, 62].

Ranking methods

In ranking method, after ranking in descending order, the relative member’s fitness P; is
expressed as the relative fitness of each member .

t;

= B.5

R f:l tl ( )
where ( -4
e+1—1)°

R, T S B.6

¢ is any value between 1 and 10 and e is the population size. The cumulative probability
space g; is constructed using the relative fitness p; [61, 62].

Normalized geometric ranking defines P; as:

Pi=qd(1-q ™ (B.7)
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where ¢ is the probability of selecting the best individual, r is the rank of the individual
where 1 is the best, P is the population size and

’ q
(A Y (B5)

B.2.4 Genetic operators

Genetic Operators are used to create new solutions based on solutions that already exists in
the population. Crossover and mutation are the two basic types of operators. Crossover pro-
duces a new individual from two individuals. Crossover allows selected individuals to trade
characteristics. Mutation alters one individual in the production of a new solution. Muta-
tion protects against complete loss of genetic diversity by randomly changing characteristics

of the design variable [61, 62].

Binary mutation and simple crossover are defined for X and Y binary. Binary mutation flips
each bit in every individual in the population with probability p,, as shown in (B.9) [62].

z; otherwise

Simple crossover generates a random number r from a uniform distribution from 1 to m and
creates two new individuals X and ¥~ according to (B.10) and (B.11) [62].

’_ T; ifi<r
e { Yi otherwise (B.10)
r_ Z; ifi<r (B 11)
vi= Yi otherwise .

Uniform mutation, non-uniform mutation, multi-non-uniform mutation, boundary mutation,
simple crossover, arithmetic crossover and heuristic crossover are defined for X and Y real.
Uniform mutation randomly selects one variable j and sets it equal to a uniform random

number U(a;b;) as shown by (B.12) [62].

T = .
t z; otherwise

Boundary mutation randomly selects one variable j and sets it equal to either its lower or

upper bound where r = U(0,1) shown by (B.13) [62].

a;  ifi=jr <05
o={b ifi=jr>05 (B.13)

z; otherwise

Non-uniform mutation randomly selects one variable j and sets it equal to a non-uniform
random number as seen in (B.14) and (B.15) [62].
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z; — (z; + a;) f(G) ifr; >0.5 (B.14)

T; otherwise

,—_.
x; =

{ z; + (b, — :C,)f(G) ifri <05

where

b

f(G)=(r2(1— G )) (B.15)

Grazx

1,72 = a uniform random number between (0, 1)
(G = current generation
Gmaz = the maximum number of generations
b = a shape parameter

The multi-non-uniform mutation operator applies the non-uniform operator to all of the
variables in the parent X [62].

Real-valued crossover is the same as the binary simple crossover shown in (B.10) and (B.11).
Arithmetic crossover results in two complimentary linear combinations of the parents, where

r=U(0,1) [62].

X =rX+(1-rY (B.16)

Y=1-rX+rY (B.17)

Heuristic crossover makes use of the fitness of the individuals to produce a linear extrapo-
lation of the two individuals. X is created where r = U(0,1) and X has a better fitness
than Y. If X is unfeasible, a new random number r must be generated and a new solution
created. After ¢ failures, the children should be made to equal the parents and the procedure

should stop [62].

p— J—

X =X+rX-Y) (B.18)

<7

Y =X (B.19)

if 2 > a;x; <b; Vi
0 otherwise

feasibility = { L (B.20)

B.2.5 Initialization function

An initial population must be supplied to the GA. A randomly generated solution is com-
monly chosen. GAs can, however, improve on existing solutions and the beginning population
can therefore consist of a mixture of randomly generated individuals seeded with potentially
good solutions [62].
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B.2.6 Termination criteria

The GA moves from one generation to the next generation and parents are selected and
reproduced until the criterion for termination has been met. This criterion is often specified
as a maximum number of generations. Termination can also be chosen as population con-
vergence, when the sum of the deviations among individuals becomes smaller than a certain
specification. Other criteria may be lack of improvement in the best solution over a specified
number of generations or the achievement of some arbitrarily “acceptable” threshold [62].

B.2.7 Objective function

Many forms of evaluation functions may be used in a GA. The minimal requirement of the
function is that it maps the population into a partially ordered set. Stochastic decision rules
make for the evaluation function being independent of the GA [62].
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ead proble
escription
[
Read problem Choose solution
input method
Autogenerate Autogenerate
mesh and mesh and
calculate calculate
solution solution
Calculate Output
Export and display von Mises calculated
stress results
results
End

Figure C.1: Boundary cell calculation
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Read problem
description

Extract boundary
cells and translate
\nto correspondin
cell states

Read problem

input variables

Initialize CA

~_

[

cell states

Store current

Update cells

~_

Not converged

Check converge

nce

~_C

‘Translate to continuous

Export and display L

Converged
results

RMS error

End

Figure C.2: CA simulation main
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ad proble
description
/
Read problem Calculate physical
input coordinates

Interpolate

Calibrate
contours

Export and display Plot contours

results

End

Figure C.3: Stress contour plot
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from file

CA

simulation

Calculate

Initialize \ / biect]
population / '\ objective

MAX not reached

functions

Calculate next
generation until
MAX reached

ind and compare
best

MAX reached

Output best

Figure C.4: Genetic algorithm
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Read problem
description

E)I(ltractdbtoundlarty
cells and translate
Read problem into d&i Initialize CA
input O e variables
Store current
cell states
Split lattice
Slaves update Not converged
cells
Combine lattice
Check convergence
’I‘rar}c§late to
Export and continuous
roblem and
display P calculate Converged
results RMS error
End

Figure C.5: CA parallel implementation number one
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Read problem
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Y ’

Extract boundary
Initialize CA
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cells and translate
Store current
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corresponding

cell states
Split lattice

Read problem
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~_

Not converged Not converged

Combine lattice
Check local

convergence Check convergence

~&

Translate to
continuous
problem and
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Export and
display
results

Converged

End

Figure C.6: CA parallel implementation number two
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Read problem
description

!

Extract boundary
cells and translate
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Read problem into
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input cell states variables

\
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cell states

Split lattice
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Check local
convergence

Not converged

Check global

Combine lattice

convergence
End
A
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display P calculate Converged
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CA parallel implementation number three

Figure C.T:
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Read GA parameters
from file

Initialize Send problem
data

slaves
to slaves

/

Slave
CA Initalize
simulation population
Generate next Calculate
generation ob jective
until Max functions
reached

Figure C.8: GA parallel implementation
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