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Abstract 

Keywor ds : speech segmentation, speech recognition, recurrent neural networks, ex­

tended recurrent neural networks, bi-directional recurrent neural networks, hidden 

Markov models 

Speech recognition is fast becoming an attractive form of communicat ion between hu­

mans and machines, due to the recent advances made in the field. The technology is, 

however, far from being acceptable when used in an unlimited form. Many attempts 

have been made to overcome some of the many difficu lties faced in the automatic 

recognition of human speech by machine. 

This dissertation attempts to accomplish two ambi tious goals. The first is t he reliable, 

automatic segmentation of speech signals, in a speaker independent manner, where 

no higher level lexical knowledge is used in the process. The system is limited to 

segmentation in an off-line manner. T he second is to improve the phoneme recognit ion 

accuracy of a state-of- the-art hidden Markov model (HMM) based recognition system, 

using the segmentation information. A new technique of incorporating segmentation 

information into the Viterbi decoding process is presented, and it is shown that this 

technique outperforms other attempts to include the segmentation probabilities. 

T he segmentat ion system consists of a bi-directional recurrent neural network (BRNN), 

also called an extended recurrent neural network (ERNN). In contrast to convent ional 

recurrent neural networks, that only use speech vectors from the past, present and 

possibly a fixed window of the future, BRNNs use all of t he past, present and future 
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speech vectors. The problem of the choice of the fixed size window is thus eliminated, 

at the cost of difficult real-time implementation. The BRNN can be trained using 

a modified form of backpropagation through time (BPTT ). The input to the BRNN 

is the entire speech sentence and the two BRNN outputs are the probability that a 

boundary between phonemes occurs in that frame of speech, as well as the probability 

that no boundary occurs. The segmentation system segments the speech signal into 

phonemes, using only the speech signal, and no higher level lexical knowledge ·such as 

the sequence of phonemes. 

The recognition system can incorporate the segmentation probabilities in one of two 

ways. The first is to modify the HMM transition probabilities by combining the HMM 

transition probabilities and the BRNN outputs. The second method, developed in this 

dissertation, involves the use of an adaptive word (phoneme) transition penalty. Previ­

ously, only a fixed transition penalty was used between words (phonemes). By making 

the transition penalty adaptive (based on segmentation information) , the phoneme 

recognition performance can be significantly improved. It is also shown that the adap­

t ive word transition penalty outperforms the HMM transition probability modification 

technique, used by others. 

All of the experiments used in this dissertation are conducted on the TIM IT database, 

in order to provide a convenient way to compare the results to that of others in the 

field. The hidden Markov toolkit (HTK) from Cambridge University is used for all 

phoneme recognition experiments. 
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Uittreksel 

Sleutelwoorde: spraaksegmentering, spraakherkenning, terugvoer neurale netwerke, 

uitgebreide terugvoer neurale netwerke, bidireksionele terugvoer neurale netwerke, ver­

skuilde Markov mode lie 

Spraakherkenning is tans een van die mees populere intervlakke tussen mens en masjien. 

Talle probleme word egter nog steeds met hierdie tegnologie ondervind, veral wanneer 

dit in 'n onbeperkte vorm gebruik word. 

Hierdie verhandeling pak twee ambisieuse doelwitte aan. Die eerste is die betroubare, 

outomatiese segmentering van spraakseine. Die stelsel word beperk tot 'n aflyn taak. 

Die tweede doelwit is om die foneemherkenning akkuraatheid van 'n hoe verrigting ver­

skuilde Markov model (VMM) gebaseerde herkenning stelsel te verbeter, deur van die 

segmentering inligting gebruik te maak. Hier word 'n nuwe tegniek, om die segmente­

ring inligting in die Viterbi dekodering proses in te sluit , voorgestel en daar word gewys 

dat hierdie tegniek beter resultate lewer as ander metodes wat tans gebruik word. 

Die segmenteringstelsel bestaan uit 'n bidireksionele terugvoer neurale netwerk (BTNN) , 

ook 'n uitgebreide terugvoer neurale netwerk (UTNN) genoem. Konvensionele terugvoer 

neurale netwerke gebruik slegs spraakvektore van die verlede, hede en moontlik vaste 

venster van die toekoms. In kontras hiermee, gebruik BT IN'e al die inligting van die 

verlede, hede en die toekoms. Die probleem van die keuse van 'n vaste grootte venster 

word dus vermy ten koste van 'n moeilike intydse implementasie. Die BTNN kan afgerig 

word met 'n aangepaste weergawe van terugvoering deur tyd (TVDT). Die inset na die 
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BTNN is die volledige sin met spraak en die twee BTNN uitsette is die waarskynlikheid 

dat 'n grens tussen foneme in daardie raam van spraak voorkom, as ook die waarskyn­

likheid dat geen grens voorkom nie. Die segmenteringstelsel segmenteer die spraak in 

foneme deur slegs van die spraaksein gebruik te maak. Geen hoer vlak leksiese kennis, 

so os bv. die volgorde van foneme , word gebruik nie. 

Die herkenningstelsel kan die segmentering waarskynlikhede in een van twee maniere 

insluit. Die eerste is om die VMM oOl'gang waarskynlikhede aan te pas deur die VMM 

oorgang waarskynlikhede en BTNN uitsette te kombineer. Die tweede metode, ontwik­

kel in hierdie verhandeling, maak van aanpasbare woord (foneem) oorgang penalisasie 

gebruik. VOOl'heen was slegs van vaste oOl'gang penalisasie tussen woorde (foneme) 

gebruik gemaak. Deur die oOl'gang penalisasie term aanpasbaar te maak (gebaseer 

op segmentering inligting), kan die foneemherkenning akkuraatheid aansienlik verhoog 

word. Daar word ook gewys dat aanpasbare woord oorgang penalisasie die VMM 

oOl'gang waarskynlikheid aanpassing tegniek, so os deur ander gebruik, oortref. 

Al die eksperimente wat in hierdie verhandeling gedoen word, word op die TIMIT 

databasis gedoen, om sodoende 'n gerieflike manier daar te stel vir die vergelyking van 

result ate met die van ander in die veld. Die stel van verskuilde Markov model pro­

gramme (HTK) van Cambridge Universiteit word vir aile foneemherkenning eksperi­

mente gebruik. 
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Chapter 1 

Introduction 

The process of communication between humans is mainly based on the ability to recog­

nise and understand the speech signals transferred between them. Speech forms an 

integral part of the way humans interact with each other, as it is a highly effective and 

efficient way of exchanging information. 

The automatic recognition of human speech by machine is regarded as a particularly 

difficult problem [11. After decades of research, the goal of recognition of fluent , spon­

taneous speech, and the comprehension of its meaning, from any speaker in any en­

vironment, is far from being realised. The main success of speech recognition is due 

to the realisation that machines are not yet able to reach the performance of humans, 

and consequently, applying the technology only in a constrained way. This includes 

the use of only one speaker instead of many speakers (speaker dependent vs. speaker 

independent systems) , the use of a small instead of a large vocabulary, and a well 

structured dialogue between man and machine, instead of an entirely open conversa­

tion. By realising the limitations of the current technology, and applying it only in an 

application specific way, speech recognition systems can be built that have acceptable 

performance. 

Most speech recognition systems use some form of parametric model. The parame-
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Chapter 1 Introduction 

ters of these models are usually estimated from a database of training data during 

a training phase. After training the recogniser, speech can be recognised , using the 

trained models. The recognition phase thus refers to the process of recognising which 

models correspond to different parts of the speech signal. Usually the models of the 

recogniser correspond to some subword unit , such as a phoneme, since the models for 

these subword units can be reliably estimated with a limited amount of data. 

Speech is usually recorded and stored on a sentence by sentence basis. The purpose 

of speech segmentation is to determine the boundaries of the recognition units, so 

that each model of the recogniser can be trained with the correct segment of speech 

corresponding to the model. Speech segmentation also finds use in segmental speech 

recognition systems, where speech is first segmented , after which the segments are 

classified. Segmentation can thus be used only during the training phase, or during 

both the training and recognition phase. Other uses of speech segmentation include the 

determination of sentence boundaries, for the automatic creation of speech sentences 

(e.g. for the creation of speech databases) from continuous speech, such as broadcast 

audio , determination of word boundaries, improving recognition performance, etc. 

The task of speech segmentation is also of critical importance for speech synthesis. 

Most successful speech synthesis systems today typically employ the use of segment 

concatination of speech units (i. e. phonemes, diphones, syllables, etc.) from input 

training corpora of between 1 to 10 hours of speech. More natural speech synthesis is 

possible if effective segmentation can be performed to extract reliable synthesis units [2J. 

Speech segmentation algorithms can be broadly classified as belonging to one of two 

categories, namely those that make use of the underlying sequence of recognition units 

(i.e. forced alignment) , and those that do not. In the first case only the boundaries 

need to be determined for a fixed number of specified units . In the latter case, the 

number of recognition units, as well as where the boundaries occur between them in 

time, are unknown. 

This dissertation presents a recurrent neural network segmentation system, capable 
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Chapter 1 Introduction 

of segmenting speech into phonemes, in a speaker independent manner. The system 

does not make use of the underlying sequence of phonemes, as such a sequence is not 

always available or reliable (as in conversational speech). This is especially true for 

the phoneme recognition experiments conducted here, as the sequence of phonemes is 

unknown prior to the recognition process. It will also be shown how the locations of 

the phoneme boundaries are incorporated into the speech recogniser in a novel way, in 

order to improve the recognition performance of the baseline system. 

1.1 Problem statement 

A need exists for the reliable, automatic determination of speech subword unit bound­

aries . The incorporation of the information from the boundary locations into a baseline 

recogniser also needs to be investigated, as this could potentially improve recognition 

performance. The research given here thus aims to meet the following objectives, 

namely to 

• provide a general system capable of segmenting pre-recorded speech signals in a 

speaker-independent manner , where the desired result is the location of phoneme 

boundaries (at the frame level), 

• establish a baseline phoneme recognition system against which the methods de­

veloped here can be tested, 

• incorporate the information of phoneme boundary locations into a phoneme 

recogniser, in order to improve the phoneme recognition performance, and 

• develop a new technique of incorporating segmentation information in a phoneme 

recogniser. 

In order to make the research viable, a number of assumptions must be made, including 
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Chapter 1 Introduction 

• the use of an available, general purpose speech recognition system from Cam­

bridge University, called the hidden Markov toolkit (HTK) [3], which will be 

used for all recognition experiments, 

• evaluation of the methods only on American English (the TIMIT database), 

which reflects read speech and not spontaneous speech, and 

• processing of speech only in an off-line manner (i.e. where all of the speech is 

available at all times). 

1.2 Summary of related work 

This section presents a concise literature survey of concepts related to those used in this 

dissertation. For a complete review of speech recognition theory, the book by Rabiner 

and Juang [1] is recommended. 

The comparison of different speech segmentation and recognition algorithms is a diffi­

cult task. Researchers tend to use different databases and performance measures. Only 

results on the TIMIT database are thus given here , unless other results can provide 

further insight into a particular algorithm or technique. 

The TIMIT database [4] was designed to provide speech data for the acquisition of 

acoustic-phonetic knowledge. It is also used for the development and evaluation of 

automatic speech recognition systems. The speech was recorded at Texas Instruments 

(TI), transcribed at the Massachusetts Institute of Technology (MIT), and maintained, 

verified, and prepared for CD-ROM production by the US National Institute of Stan­

dards and Technology (NIST). It is currently available from the Linguistic Data Con­

sortium (LDC). This database contains a total of 6300 spoken sentences, where 630 

speakers each spoke a total of 10 sentences. The 10 sentences are made up of 2 dialect 

sentences (SA), 5 phonetically compact sentences (SX) and 3 phonetically diverse sen­

tences (SI). For all our experiments, the SA sentences were ignored. This resulted in 
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Chapter 1 Introduction 

3696 training files and 1344 test files (from which a subset of 192 sentences makes up 

the core test set) . 

The concepts presented in this dissertation make use of three parts, namely speech 

signal processing, segmentation, and recognition. Each of these components is discussed 

in the following sections in more detail. 

1.2.1 Speech signal processing 

Speech signal processing is usually the first step in segmenting or recognising speech. 

The main aim of this stage is to provide features which are better suited to the segmen­

tation or recognition process than the raw data. T he total number of these features is 

typically much smaller than the total number of raw speech samples. 

Many different signal processing methods exist. General speech signal processing meth­

ods are discussed in [5]. Mel frequency cepstrum coefficients (MFCCs) are discussed in 

[6], as well as generalised MFCCs. Linear prediction coefficients (LPC) are discussed in 

[7], while auditory nerve representation is discussed in [8], and the bandpass liftering 

of speech in [9]. Vector quantisation (VQ) , usually used in discrete HMM systems, 

is discussed in [10] and [11]. An algorithm to estimate the fundamental frequency of 

speech is given in [12]. The following paragraphs give the specific features used in the 

segmentation methods of the next section. 

Vorstermans et ai. [1 3] used an auditory model that incorporates an auditory filter 

bank, a bank of hair-cell models that emphasised the transitions at t he phonetic bound­

aries , and a bank of envelope detectors that measured the envelopes of the hair-cell 

outputs in t he different channels of the model. An acoustic vector was constructed 

every 10 ms, that contained an auditory spectrum (20 channels), difference spectrum, 

voicing evidence, a fundamental frequency (if enough voicing evidence was present), 

and energy from an energy function sampled at multiples of 2 ms (obtained by accu­

mulating the hair-cell output envelopes across the different channels). 
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Chapter 1 Introduction 

Pauws et al. [14] used five measurements that took into account the fact that unvoiced 

sounds are generally characterised by an energy concentration in the relatively high 

frequency region, while voiced sounds have an energy concentration in the lower fre­

quencies. Speech and silence were distinguished through the use of an energy level 

measurement. The five measurements thus included the short-time energy, normalised 

such that silence was characterised by a value close to 1, normalised low-frequency 

energy in the range of 50 to 1200 Hz, normalised high-frequency energy in the range 

2000 to 4000 Hz, the zero crossing rate , and the first linear predictive coefficient of a 

first-order LPC model. The 16 filter bank values, their first and second derivatives, and 

energy were also used. Pre-emphasis was used, with a coefficient of 0.95, as well as a 

Hamming window of 20 ms length with frame shifts of 2.5 ms, 5 ms, and 10 ms. 

Bonafonte et al. [15] calculated an acoustic vector every 10 ms, by analysing speech 

frames of 20 ms using a Hamming window. For each frame, 20 mel-scaled filters were 

transformed to 12 MFCCs and a measure of the power, as well as their first and second 

derivatives were calculated. Only the 12 MFCCs were used to refine the boundary 

positions. 

Olsen [16J used 31 triangular filters spaced linearly along the logarithmic mel scale, 

where each filter overlapped 50% with its two neighbours. Normalised log energy was 

also used. All the feature vectors were obtained from a 25.6 ms Hamming window with 

a 10 ms frame period. A total of 15 MFCCs, normalised log energy, and their first and 

second order derivatives, were used. 

Lee [17] used 14 MFCCs with log energy, computed at 5 ms intervals. Pellom and 

Hansen [2, 18] parameterised the speech waveform every 5 ms, by a vector consisting 

of 12 MFCCs and normalised log-frame energy, as well as their first derivatives. 

Jeong and Jeong [19] used a 256 point rectangular window, spaced at half a window 

size, and the LPC Burg algorithm for cepstrum analysis. The acoustic vector was 

then constructed from 16 whitened LPC cepstrum coefficients , obtained by using the 

whitening method. Policker and Geva [20] also used 12 LPC coefficients. 
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Chapter 1 Introduction 

Cosi [21 , 22, 23] allowed the use of many different kinds of features in an interactive 

segmentation and labelling automatic module (SLAM). The joint synchrony / mean­

rate (S/ M-R) model of auditory speech processing (ASP) , fast Fourier transform (FFT) 

cepstrum, LPC based spectrograms, energy, pitch, and zero crossing, are some of these. 

The use of auditory model (AM) techniques was strongly supported. 

Smith [24, 25] used an auditory front end , which used a Gammatone filter bank that 

band passed the signal into a number of channels. These were then rectified to model 

the effect of a set of inner hair cells. 

Chang et ai. [261 calculated a feature vector every 10 ms after several stages of pro­

cessing. The first step was to compute a power spectrum every 10 ms over a 25 ms 

window. The power spectrum was then partitioned into quarter-octave channels be­

tween 0.3 and 4 kHz and logarithmically compressed in order to preserve the general 

shape of the spectrum distributed across frequency and time. 

Regel [271 used normalised energy (frequency range 100 to 900 Hz), logarithm of the 

normalised energy, normalised autocorrelation coefficient at unit delay, first linear pre­

diction (LP) coefficient, logarithm of the normalised LP error , and normalised ampli­

tude, frequency, and bandwidth of the absolute maximum in the spectrum, to classify 

speech into one of a few broad categories ("silence", "voiceless", "voiced fricative", and 

"voiced non-fricative"). For classification of frames into the phone components, knowl­

edge of the first classification stage allowed special features to be used for each of the 

broad categories. For the category "voiced non-fricative", normalised energy, logarithm 

of the normalised energy (frequency range 640 to 2800 Hz), normalised autocorrelation 

coefficient at unit delay, and normalised amplitude, frequency, and bandwidth of the 

lowest three formants were used. For voiceless sounds, the logarithm of the normalised 

LP error, normalised energy, logarithm of the normalised energy in five non-overlapping 

frequency ranges, normalised autocorrelation coefficient at unit delay, and normalised 

amplitude, frequency, and bandwidth of the absolute maximum in the spectrum were 

used. For the voiced fricative sounds, the same features were used as for voiceless 
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Chapter 1 Introd uction 

sounds, except for normalised amplitude, frequency, and bandwidth of the absolute 

maximum in the spectrum. 

Fukada et ai. [281 calculated an acoustic vector every 10 ms. The acoustic vector 

included the 12 MFCCs, power, and the first derivatives of these. A window of 25.6 ms 

was used. 

In conclusion, it can be seen that many different speech features have been used in the 

past. MFCCs and energy have however proven to be the choice in recent years, not 

only for segmentation but also the recognition of speech. In the work presented here, 

the same MFCC and energy features will thus be used for segmentation and recognition 

tasks. 

1.2.2 Speech segmentation 

Linguistically constrained (explicit) segmentation 

When the underlying sequence of phones is known, the segmentation algorithm only 

has to calculate the location in time of the boundaries between the phones (i.e. referred 

to as "forced alignment"). These methods perform reasonably well, as the higher level 

of lexical information (phoneme sequence) is used in the segmentation process. It is 

important to note that in most cases text information is provided, so reliable word 

to phoneme sequence look-up is necessary. This also assumes that speech production 

of the word set occurs without alternative pronounciations, otherwise the segmenter 

must consider alternative pronounciations during processing. The following is a short 

summary of some of these methods. 

Vorstermans et aI. [131 developed a system for the automatic segmentation and labelling 

of speech. The system first did initial segmentation by identifying major changes (land­

marks) in the acoustic signal obtained from an auditory model. This was achieved by a 
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Chapter 1 Introduction 

landmark identification, generation and elimination stage. Up to 4 consecutive initial 

segments were then merged to construct a set of candidate phonetic segments. A mul­

t ilayer percept ron (MLP) was subsequently used in a phonetic segmentation stage to 

compute the probability of a boundary being a phonetic boundary, given the evidence 

of a preceding phonetic boundary and acoustic evidence. Phonetic classification was 

then performed through the use of another MLP that classified the acoustic vector 

into one of 5 broad phonetic classes, where the MLP's outputs were also interpreted 

as probabilities. A Viterbi search procedure aligned the speech with a state-transition 

model , derived from the transcription of the utterance, by taking the outputs of the 

two MLPs in the phonetic segmentation and classification stages into consideration. 

The result of the Viterbi search was a set of boundaries and labels, that maximised 

the combined likelihood of the phonetic boundaries and phone sequence, given the pro­

vided transcription and acoustic observations. The system was easily adaptable from 

one language to another, without the requirement of extensive linguistic knowledge or 

large (manually segmented and labeled) training databases of that language. A correct 

boundary placement of 76% (within 20 ms of the desired boundary location) was ob­

tained on the core test set of the TIMIT database (5 SX sentences per speaker), with 

48 phone labels. The speech was aligned against t he manual transcriptions (only using 

the labels , not the manually provided boundary locations) of the TIMIT database, 

after adapting the baseline Flemish system, using 100 sentences of the TIMIT training 

set. A further gain of 5% on the overall system performance was achieved by also using 

the manually provided boundary locations, with about 200 training sentences, but it 

was not stated what the gain in segmentation accuracy was. 

Pauws et al. [14] made use of the time alignment of the speech waveform against a 

sequence of I-IMMs, where each I-IMM represented a phoneme-like unit in the phonetic 

transcription of the utterance. Initialisation of the I-IMMs was performed by a 3-stage 

hierarchical procedure. The first stage involved the segmentation into broad phonetic 

classes (voiced, unvoiced and silence), on the basis of the phonetic transcription alone. 

This provided robust anchor points for the second stage, namely sequence-constrained 

vector quantisation (SCVQ), where the broad phonetic class regions were further de-

Electrical, Electronic and Computer Engineering 9 

 
 
 



Chapter 1 Introduction 

composed into their constituent phoneme-like units. Finally Baum-Welch estimation 

was used to fine-tune the HMMs. Segmentation was then performed by the Viterbi 

alignment of the utterances with the HMMs. An accuracy of 89.51 % was obtained for 

a 20 ms tolerance, and 95.37% for a 30 ms tolerance, on a database consisting of 827 

isolated words of the Dutch language. Learning was performed on the database to be 

segmented. 

Bonafonte et ai. [15] used hidden Markov models and the Viterbi algorithm to obtain 

an initial segmentation of the speech. A corrective procedure was then applied, which 

considered the segments of the segmented speech as homogeneous regions. A model was 

estimated for each segment of the utterance and Gaussian probability density functions 

(PDFs) were used to model the feature vector. Hypotheses for moving the boundary 

one frame to the left or to the right were then analysed. Boundaries were iteratively 

moved until no further changes occur. The result was that the boundary positions 

were refined and segmentation error was significantly decreased. They obtained an 

accuracy of 64.4% with a 12 ms window, and 81.3% with a 20 ms window, on the 

TIMIT database. 

Olsen [16] also used hidden Markov models and Viterbi decoding of the speech utter­

ance to segment the utterance, as well as Lee [17]. They did not report any specific 

segmentation results, and thus none of their results are given here. 

Pellom and Hansen [2, 18] used dynamic programming (DP) to investigate the effect 

of different signal processing methods on the segmentation accuracy. Here the effect of 

noise on the segmentation performance was also investigated. They achieved segmen­

tation accuracies of 47.9%, 69.9%, 85.9%, 95.9% and 98.4% for tolerances of less than 

5 ms, 10 ms, 20 ms, 40 ms, and 60 ms, respectively, on the TIMIT database. 

Jeong and Jeong [19] used a higher order Markov process, and the mean field solution 

to the segmentation problem, in a closed loop system consisting of combined bottom-up 

(segmentation, recognition and labelling) and top-down (labelling, speech generation 

and segmentation) processing. A recursive procedure provided an estimation of the 
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segmentation and phone label. Their system transformed the incoming continuous 

signal into one of the 61 phone classes at the rate of 73.7% when TIMIT was used. 

Cosi [21 , 22, 231 developed an interactive segmentation and labelling automatic module 

(SLAM) . A multi-level segmentation theory was used. Speech was considered as a 

temporal sequence of quasi-stationary acoustic segments, where similarity of points 

in a segment is greater than for those between different segments. The segmentation 

problem was thus reduced to a clustering problem, where a decision was taken based on 

the similarity between the signal immediately preceding and following it. Initial "seed 

regions", which constitute the basis for the "hierarchical structuring", were created 

by a recursive technique that used a Euclidean similarity measure. Adjacent regions 

were then merged and a dendrogram was constructed. Pattern recognition techniques 

found the optimal segmentation path given the dendrogram structure and the target 

phonemic transcription. 

Linguistically unconstrained (implicit) segmentation 

When the underlying sequence of phonemes is unknown, the segmentation algorithm 

must not only estimate the location in time of the boundaries between phonemes, but 

also the number of boundaries (or alternatively the number of phones) . These methods 

generally perform worse than those of the previous section, but are more versatile. The 

following is a short summary of some of these methods. 

Smith [24, 251 used a general sound segmentation system to segment speech into 

phonemes. The sound signal was bandpass-filtered into a number of channels, rec­

tified to model the effect of a set of inner hair cells, and filtered using an onset/ offset 

filter. This made the transformed representation sensitive to energy rises and falls. 

The next step was to divide the onset/ offset representation into two positive-going sig­

nals, an onset signal and offset signal. Both of these signals were then logarithmically 

compressed to increase the dynamical range of the system. These signals were sharp-

Electrical, Electronic and Computer Engineering 11 

 
 
 



Chapter 1 Introduction 

ened with an integrate-and-fire neural network, where the data was integrated across 

frequency bands and across time. The effect of this was to produce sharp onset firing 

responses across adjacent channels in response to a sudden increase in energy in some 

channels, thus grouping onsets both tonotopicaliy and temporaliy. The outputs of the 

neural network sharpening stage were the onset and offset maps. The onsets were used 

for segmentation as the offsets tended to be more gradual and the continuous signal 

was divided at each onset. A minimum segment length of 25 ms was used, and the 

sharpness of the segmentation was varied by setting the minimum number of onset 

(offset) spikes which had to occur in the 10 ms window before that onset or offset line 

was taken to signal a segment start (end). Two male and two female sentences from 

each of the 8 dialect regions of TIMIT were segmented using this method . An average 

of 59% of the phoneme boundaries were correctly found (the estimated boundary and 

true boundary of a phoneme was within 15 ms of each other). 

Chang et a1. [26] used an array of independent, temporal flow neural networks that 

classified each frame into one of five articulatory-based phonetic-feature classes, namely 

place, manner of articulation, voicing, lip-rounding, and front-back articulation (for 

vocalic segments). They used a separate class for silence. These phonetic-feature labels 

were then combined and used as the input to an MLP network that gave a preliminary 

phonetic label to a frame. The last stage was a Viterbi-like decoding process that 

produced a sequence of phonetic-segment labels along with the times of the boundaries 

between them. They achieved 38.4%, 76.0% and 83.7% hits , and 58.5%, 20.9% and 

13.2% false alarms, for a frame tolerance of 10 ms, 20 ms and 30 ms, respectively on 

the Oregon Graduate Institute (OGI) Numbers95 corpus. 

Regel [27] used two classification stages in an acoustic-phonetic transcription system. In 

the first stage a decision was made in favour of one of four categories, namely "silence", 

"voiceless", "voiced fricative", and "voiced non-fricative". A Bayes classifier was used for 

this purpose. The second stage consisted of the classification of the frames into phone 

components, using the results of the first step. In this stage only special features were 

used for each class. A Bayes classifier was also used for this purpose. The resultant 
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probabilities of the two stages were then multiplied together to obtain an estimate of the 

a posteriori probability of the phone component. Adjacent frames were then combined 

in a two-stage process. In the first step, similar frames were lined up with simultaneous 

smoothing. In the second step, essential segments were extracted and attempts made 

to fill the gap between two essential segments, using a similarity measurement. T he 

results given are not directly comparable to the work presented here, and are thus not 

gl'ven. 

Policker and Geva [20] regarded the speech signal as a non-stationary time series. They 

developed a model and a set of algorithms to estimate the parameters of the non­

stationary time series. Fuzzy clustering methods were used to estimate the continuous 

drift in the time series distribution and to interpret the resulting temporal member­

ship matrix as weights in a time varying, mixture probability distribution function. 

A decision rule was imposed on the distribution temporal change, where a limiting 

procedure of any cluster crossing the 0.5 probability level, was used. This resulted in 

segmentation of the speech signal into phonemes. No specific results were given. 

Andre-Obrecht [29] (also in Basseville and Nikiforov [30]) used a statistical approach. I' 

The signal was modeled by an autoregressive (AR) statistical model. Test statistics 

were then used to sequentially detect changes in the parameters of the model. Three 

different segmentation algorithms were presented, differing in the assumption of the ex­

citation of the model (glottal impulses), and the choice of the test statistics (generalised 

likelihood, or statistics of cumulative sum type). The segmentation was performed on 

a sample-by-sample basis, and not a frame-by-frame basis, allowing more accurate lo­

cation of boundaries, and the possibility of using shorter segments. Their results are 

not directly comparable to the work presented here , and are thus not given. 

A Bayesian autoregressive changepoint detector (BCD) was used by Emejla and Sovka [31] . 

A three-step algorithm was used to segment the speech. In the first step, a segmenta-

l Examples of some of these methods can also be found on the Internet at 

http: //www .cnmat. berkeley.edu/- tristan/ Thesis/timedomain.html 

Electrical, Electronic and Computer Engineering 13 

 
 
 



Chapter 1 Introduction 

tion point was assigned to the centre of sound units composed of vowels and semivowels. 

This was done because the BCD was highly sensitive to spectral changes and was rather 

used to refine the positions gained from the first step . By using segmentation points 

inside stationary parts of the signal , the autoregressive order to the left and right 

sides of the data segment could be estimated with higher accuracy. The second step 

used a BCD between each pair of given segmentation points in the stationary parts 

of the speech. The final step used a BCD with data between the stationary segmen­

tation point and the segmentation point gained in the second iteration. This method 

was suitable for vocal-consonant-vocal (VCV) structured utterances. No comparable 

results to the work presented here were given. 

Petek et al. [32] investigated the robust automatic segmentation of spontaneous speech. 

They used the spectral variation function (SVF), which was defined as a correlation 

measure between successive windows of acoustic observation vectors, to segment the 

speech. They compared mel-frequency cepstra (MFC), relative spectral processing 

(RASTA), and forward-backward auditory masking dynamic cepstra (FBDYN) based 

SVF algorithms. The FBDYN-SVF method resulted in smoothing of the cepstra by 

the forward and backward masking lifter, giving an improvement over the other two 

methods. Their numerical results are not comparable to the work presented here, and 

are thus not given. 

Fukada et al. [28] used a bi-directional recurrent neural network (BRNN) to segment 

speech. The system was trained to segment the speech signal into phonemes, using a 

target value of 1 for a frame in which a boundary occurred, and a target value of 0.5 for 

the frames to the left and right of the boundary frame . Frames in which no boundary 

occurred were given the target value of o. The neural network estimated the probability 

of a boundary, given the acoustic vector. By using thresholds or a segment lattice, the 

segmentation points in the speech signal could be found. They found that the BRNN 

segmented the TIMIT database with 8.33%,76.01%, and 79 .61% accuracy for frame 

margins of 0, 1, and 2, respectively. They also found that normal MLP neural networks 

performed worse. An MLP with 1 context frame segmented t he TIMIT database with 

Electrical, Electronic and Computer Engineering 14 

 
 
 



Chapter 1 Introd uction 

l.46%, 6l.90%, and 68.64% accuracy, an MLP with 3 context frames 6.12%, 64.16%, 

and 70.94%, and an MLP with 5 context frames 6.20%, 64.69%, and 7l.64% for frame 

margins of 0, 1, and 2, respectively. 

Related segmentation tasks 

This section briefly highlights research done in related segmentation tasks. These tasks 

perform segmentation at a level higher than the phoneme level, or in a limited way. 

At the subword level, a number of other segmentation attempts are worth mentioning. 

Chan and Ng [33] discussed the separation of fricatives from aspirated plosives by 

means of temporal spectral variation. Ryeu and Chung [34] used chaotic recurrent 

neural networks (CRNN) to classify and segment Korean monosyllables. De Mori and 

Laface [35] used fuzzy algorithms to segment speech into vowel-consonant-vowel (VCV) 

pseudo syllables (PSS). In Shyu et al. [36], an automatic co-articulation segmentation 

algorithm was developed, that took co-articulation into account. Co-articulation was 

also taken into account by Yu and Oh [37], where a neural network (NN) was used 

to segment speech into non-uniform units. Co-art iculation information and neural 

networks were also used by Hosom and Cole [38], where the neural networks segmented 

speech into diphones. Steady-state zones of all phones carrying a diphone boundary 

were specified by a centroid vector, and together with an objective distance measure , 

hypothetical boundary cost functions were used to extract diphone elements in Kaeslin 

[39]. Temporal flow neural networks were used by Shastri et al. [40] for finding the 

temporal boundaries of syllabic units. Hsieh et al. [41] also segmented speech into 

syllables, using a hybrid neuro-fuzzy network. Cook and Robinson [42] used an MLP 

to determine the onset of syllables. 

The segmentation of speech into voiced, unvoiced, silence, and/ or mixed regions of 

speech can also be done. Examples include [43, 44, 45, 46, 47, 48, 49, 50, 51]. 

Segmentation can also be performed at the word level. Zelinski and Class [52] seg-
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mented an utterance into single words, using statistical principles. Christiansen et 

al. [53, 54] used a simple recurrent network (SRN) for this purpose. 

At the sentence level , Siegler et al. [55] used the Kullback Leibler (KL) distance metric 

to segment broadcast news audio into discrete utterances. Prosody-based automatic 

segmentation of speech into sentences and topics was investigated by Shriberg et al. [56]. 

Semantic dialogue unit (SDU) segmentation, which correspond roughly to speech act 

(utterance) segmentation, was provided by a multi-level segmentation algorithm in 

Lavie et al. [57]. Speech act detection was also performed by Ries [58], using HMM 

and neural network based methods. Swerts and Ostendorf [59] investigated prosodic 

and lexical indications of discourse structure and utterance purpose. Tzanetakis and 

Cook [60, 61] developed a framework for audio analysis based on classification and 

temporal segmentation. 

Segmentation at even higher level is also possible. A syntactic-prosodic labelling scheme 

was developed in Batliner et al. [62] that could segment speech into sentences or phrases. 

Renals et al. [63] developed a system that could segment speech into stories, for the 

indexing and retrieval of broadcast news. Speaker-based segmentation system for audio 

data indexing was performed by Delacourt and Wellekens [64]. Energy-based speech 

endpoint detectors were compared in Bush et al. [65]. 

1.2.3 Speech recognition 

This section does not focus on background of hidden Markov models, neural networks, 

fuzzy logic, or other methods as general techniques. Instead, a very brief literature 

survey of the application of these methods to speech recognition, is presented. 

For a detailed review of hidden Markov models, see [1, 66, 67, 68]. For neural networks, 

[69,70, 71, 72 , 73, 74, 75 , 76 , 77, 78, 79, 80] can be recommended. Fuzzy logic was also 

used frequently and background on the underlying theory and techniques can be found 

in [81] and [82] . In addition to fuzzy logic, [83] also explains neuro-fuzzy concepts. 
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Artificial intelligence concepts are explained in [84] . Numerical methods used can be 

found in [85, 86, 87]. Statistical theory can be found in [88] and [89], while general 

pattern recognition concepts can be found in [90]. 

Hidden Markov models have proven to be very well suited to recognising human speech. 

Some of the main advantages of HMMs are that they integrate well into systems incor­

porating both task syntax and semantics. Examples of HMM-based speech recognition 

include [1, 66, 67, 91, 92, 93, 94, 95, 961. Related to hidden Markov models is the con­

cept of dynamic programming, such as [97] and [98J. Dynamic time warping (DTW), as 

well as a probabilistic matching algorithm was used by [99]. Similar concepts, some in­

volving template matching, were also used by [100, 101, 102]. Fuzzy logic concepts were 

used by [103] and [104]. In using hidden Markov models , a number of assumptions are 

made. These include the assumptions that the speech signal can be well characterised 

as a parametric random process, that the parameters can be estimated in a precise, 

well-defined manner, and the fact that a first order Markov chain is usually used ([105] 

showed how higher-order HMMs can be used efficiently). Conventional HMM systems 

make use of an independence assumption of the observation. 

Neural networks have also found their way into the area of speech recognition. This is 

partially due to the thin biological connection that exists between neural networks and 

the human brain, and the fact that neural networks operate well as pattern classifiers 

and can estimate probabilities conveniently. Time delay neural networks were used in 

[106J and [107]. Neural-fuzzy concepts were combined with an HMM-based automatic 

speech recognition system in [108]. Spiking neural networks were used in [109] and 

[110]. Simple recurrent neural networks, also called Elman neural networks , were used 

in [1111 and [112] to discover symantic/semantic features of words , and in [113] was 

used for speech recognition, where the neural networks were trained with the leap-frog 

algorithm. Recurrent neural networks were used in [114, 115, 116, 117]. In [118] various 

different neural networks are discussed for use in the context of speech recognition. An 

advantage of neural networks for speech applicatious is that they are general and do 

not impose a rigid structure into the recognition process. Some weaknesses include the 
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increased size of training material over traditional HMMs, and their inability to allow 

for efficient adaption to changing noise conditions versus methods seen in HMMs. See 

[119] and [120] for more detailed information on the use of neural networks in speech 

recognition. 

It is often the case that the best systems are hybrid ones. In speech recognition, hybrid 

systems perform particularly well. In [120] it is discussed how neural networks might 

be incorporated into HMM systems. Usually neural networks are used to estimate the 

observation density in the HMM states, or the a posteriori probability of a certain 

phone, given acoustic evidence. In 1121] it was shown how the a posteriori probability 

of a complete utterance could be estimated, as an alternative approach to the regular 

split into acoustic model and language model likelihood. A bi-directional recurrent 

neural network estimated the occurring probability terms. In [42] syllable boundary 

information was included to improve the recognition process. Their method made 

use of two models for each phone, one model when the phone occurs at a syllable 

onset, and one when it does not. In 1281 the transition probabilities of the HMMs 

were modified by a BRNN output. They also showed how the neural network could be 

used with a polynomial segment model (PSM) based recogniser. PSM based recognition 

systems do not rely on the observation independence assumption of conventional HMM 

systems. The neural network was used to segment the utterance into segments, where 

the boundary locations were determined by a segment lattice as a postprocessor. 

1.3 Approach and research hypotheses 

The work presented here addresses two types of problems, namely speech recognition 

and speech segmentation. It is also shown how information from the independent 

segmentation stage can be used to improve speech recognition. 

Figure 1.1 gives an overview of the approach followed here. It consists of two indepen­

dent components, namely a speech recognition component, and a speech segmentation 
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Figure 1.1: Overview of the approach t aken. 

component. A speech corpus contains label files and speech data files from a large 

number of speakers. These are used to make the system speaker independent. The 

signal processing module extracts features from the speech data that are useful for the 

recognition and segmentation stages. For simplicity, the recognition and segmenta­

tion stages presented here use the same set of features. Initially the recognition and 

segmentation components are trained independently using the corpus, and evaluated 

separately. Segmentation information is then used to improve the recognition perfor­

mance of the entire system. American English (the TIMIT database) is used as the 

speech database. 

As mentioned, one of the problems investigated here , is the problem of speech seg­

mentation. It is known that hidden Markov model systems perform segmentation 

automatically as part of the Viterbi decoding process. Neural networks can also be 

used for the segmentation process. This leads to the following hypothesis: 

• Hypothesis 1 - Recurrent neural networks will perform the segmentation task 

(into phonemes) better than HMMs. 
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The second major part of the work presented here , focuses on the improvement of 

HMM systems, using segmentation information. The following hypotheses are made 

for this purpose: 

• Hypothesis 2 - Modifying the transition probabilities of the HMM, using the 

segmentation information, can increase recognition performance. 

• Hypothesis 3 - Making the word transition penalty, that is normally constant 

in HMM systems, adaptive, based on the segmentation information, can increase 

the recognition performance. 

1.4 Contributions of this study 

The work presented here offers a number of contributions. Not only is a new technique 

presented, but both old and new techniques are evaluated using American English 

(TIM IT) speech. Before this dissertation, the use of segmentation information in the 

recognition process of a standard speech recognition system, was not commonly used. 

The contributions of this dissertation include 

• a high performance speech segmentation system, involving the use of a recurrent 

neural network, capable of segmenting speech into phonemes, without the use of 

higher-level lexical knowledge, 

• a new technique of incorporating segmentation probabilities into the speech recog­

nition system, in order to improve phoneme recognition performance,and 

• evaluation of the methods, of incorporating segmentation information into HTK, 

on the TIMIT database, is presented in order to see how well they perform in a 

state-of-the-art speech recognition system. 
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It is shown that the new technique developed here outperforms some techniques used 

by others. It is also shown that the technique is fairly efficient and can be easily 

incorporated into a standard recogniser. 

1.5 Dissertation outline 

Chapter 2 presents the background theory relevant to the work presented here, in speech 

signal processing (2.1), hidden Markov models (2.2), and recurrent neural networks 

(2.3) . 

Chapter 3 provides detail about the segmentation process. Aspects discussed include 

preprocessing (3 .1) , segmentation (3.2), using hidden Markov models (3.2.1) and re­

current neural networks (3.2 .2), postprocessing (3.3), and the accuracy measure used 

(3.4) . 

Chapter 4 deals with speech recognition. Baseline recognition (4.1), recognition using 

segmentation information (4.2), and the accuracy measure used (4.3), are discussed. 

Chapter 5 gives the experimental results. In this chapter the concepts of Chapters 

3 and 4 are evaluated, using the defined accuracy measures. Speech segmentation 

(5.1) methods include the use of hidden Markov models (5.1.1), as well as recurrent 

neural networks (5 .1. 2). Recognition experiments include the baseline system (5.2) and 

recognition using the segmentation information (5.3). 

Chapter 6 gives a summary and some conclusions are made. A summary ofresults (6.1), 

statistical significance testing (6.2), conclusions (6.3) and shortcomings and future work 

are discussed (6 .4). 

Finally, Appendix A gives the details on training recurrent neural networks. The back­

propagation through time (BPTT) technique is discussed in the context of recurrent 

neural networks, and it is shown how bi-directional recurrent NNs (BRNN) are trained. 
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Theory 

T he work presented here makes use of techniques from various disciplines. The aim 

of this chapter is to provide the necessary background theory to understand the work 

presented later. The experienced speech researcher would be familiar with these con­

cepts and therefore could move to Chapter 3 where the problem of speech segmentation 

is addressed. In Section 2.1 the signal processing techniques, used to extract features 

from the speech signal are discussed. Hidden Markov models are used for the phoneme 

recognition experiments and the relevant theory is discussed in Section 2.2. Finally 

recurrent neural networks are discussed in Section 2.3, as they are used to segment 

the speech signal into phonemes. This section should be read in conjunction with 

Appendix A where details on training of the recurrent neural networks are presented. 

2.1 Speech signal processing 

T he human vocal tract mechanism is unable to instantly produce different sounds in 

speech. Due to the transition-like nature between sounds, t here is a significant amount 

of correlation between segments of speech. By using parametric representations of the 

speech, rather than the speech signal itself, a more compact, reliable, and robust speech 
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recognition system can be built. The use of parametric representations also reduces the 

amount of computation needed for both training and decoding. The following front-end 

is typically used in speech recognition systems. 

Energy and mel 
cepstrum coefficients 

Delta energy 

Figure 2.1: Signal processing front-end used. 

The following sections describe each of these signal processing steps, in terms of the 

work presented here, in more detail. 
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2.1.1 Digitisation 

Speech digitisation is the process of converting analogue signals to digital values (num­

bers) , as digital computers can only work with numbers, not analogue values. 

The analogue signal is sampled at equally spaced intervals at a rate equal to what is 

called the sampling frequency, which should be at least twice the maximum frequency 

of interest in the speech signal. A sampling rate of 16 kHz is typically used for high 

quality speech, while telephone speech is usually sampled at 8 kHz. 

The number of levels , into which the analogue signal is quantised, is dependent on 

the number of bits used in the analogue-to-digital converter. Resolutions of 12 to 16 

bits are common. In addition, the quantisation levels are often spaced equally. This 

is referred to as linear quantisation, versus mu-law or A-law quantisation, where the 

quantisation levels are non-uniformly spaced. 

Microphone TI 

Human 

Analogue Digital 
speech ,---, speech 

ADC 

Sampling 
rate 

Figure 2.2: The digitisation process commonly used in ASR. 

As can be seen from Figure 2.2, a human thus speaks a sentence to be recognised by 

the system. The speech signals are transmitted as vibrations of air to a microphone, 

which then converts the air pressure variations into electrical signals. The result is an 

analogue signal representing the spoken utterance. An analogue anti-aliasing filter (not 

shown) prevents aliasing effects, but this is not discussed here , and assumed to be part 

of the analogue-to-digital conversion (ADC) process. An ADC converts the analogue 

signal to a sequence of numbers (digital), to be processed by a computer. 
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2.1.2 Pre-emphasis filter 

One of the problems that a speech recognition system must face , is the fact that a 

message (sequence of spoken sounds) will have frequency components that are high at 

low frequencies , but small amplitude at high frequencies [122]. This is also sometimes 

referred to as the lip effect. This also occurs because the speech signal is typically rep­

resented as a volume velocity [68], but microphones typically measure sound pressure. 

This difference results in a 6 dB spectral roll-off. 

S (f) 
M 

-w W f 

S (f) 
o 

-W W f 

Figure 2.3: Purpose of the pre-emphasis filter. 

The top part of Figure 2.3 above illustrates this concept. Here it can be seen that the 

power spectral density of the message usually falls off appreciably at higher frequencies. 

These high frequency components (that may carry vital information for accurate speech 

recognition) will thus be of a much lower magnitude than those at low frequencies. As 

such, the speech recognition process will not yield the best possible results. It is thus 
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needed to equalise the frequency band over which important signal frequency compo­

nents in the message exist, to obtain a spectrally flat frequency spectrum, as shown in 

the bottom part of Figure 2.3. This procedure is called pre-emphasis. Pre-emphasis 

reduces the effects of glottal pulses and radiation impedance, and enhances the spectral 

properties of the vocal tract [123, 124]. This makes the signal less susceptible to finite 

precision effects later in the signal processing front-end [1]. 

In order to perform equalisation, or pre-emphasis, a high-pass filter is usually used. 

Since the digitised speech samples are processed sequentially, an FIR filter is a natural 

implementation. The general form of an FIR fil ter is given (in the z-transform form) 

as 

N 

H(z) = L a(k)z- k, (2.1) 
k=O 

where N is the order of the FIR filter and ark) is the k'th coefficient, and a(O) = 1. A 

high-pass, pre-emphasis filter, is the just a one coefficient version of this, or 

(2 .2) 

where a determines the pole location of the filter. This is a fixed form of pre-emphasis, 

as a does not slowly vary with transmission conditions, noise backgrounds, etc. A value 

of between 0.9 and 1.0 is typically used for a. 

The easiest way to implement the filter of Equation (2. 2), is to convert the z-transform 

equation into a difference equation (in the time domain). It is known that (from 

Equation (2.2)) 

H(z) = 1 - az- 1
, 
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but 

and thus it is possible to write 

8(z) 
H(z) = S(z)' 

8(z) = S(z) . (1 - az-' ), 

with the difference equation which follows as 

s(n) = s(n) - as(n - 1) , 

Theory 

(2.3) 

where s(n) is the output of the pre-emphasis filter, s(n) is the input, and s(n - 1) is 

the previous (one step delayed) input to the pre-emphasis filter. 

Although pre-emphasis, as discussed here (using a high-pass filter), is a necessary step 

and greatly improves speech recognition performance, it has a major disadvantage. 

While the filter spectrally flattens the range of frequencies of interest, in which useful 

information lies, it also raises the spectral energy of high frequencies outside the signal 

bandwidth [6]. These very high frequencies are often associated with noise, and pre­

emphasis thus also amplifies noise in the signal. Despite this disadvantage, it remains 

to be popularly used. 

2.1.3 Blocking 

After the signal has been pre-emphasised, the next step is to chop the signal into 

smaller pieces. These smaller pieces are called frames. Usually the frames are chosen 
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as overlapping segments of speech, in order to reduce the noise in spectral estimates 

(increase correlation between adjacent frames). Figure 2.4 illustrates this process. 

F'="Wid~ . 
~ Frame shift 

I Frame #1 
~-----' 

Frame #2 

Frame #3 

• 
• 

• 

Total utterance 

Frame#N 

Figure 2.4: Blocking of the speech signal into overlapping frames. 

The frame width is usually chosen to be between 20 and 30 ms with a frame shift (or 

period) of 5 to 10 ms. The bigger the window width , the better the spectral resolution, 

but the lower the time resolution. A low frame shift results in good temporal resolution, 

but is computationally expensive. 

2.1.4 Signal bias removal 

Signal bias removal refers to the process whereby the mean value (here called the signal 

bias), is removed from the signal. To estimate the mean, the average value of the signal 

is calculated over the current window through the following equation 
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(2.4) 

where there are N samples in the window and Xi is the i'th sample. The signal bias 

is then removed by subtracting x from every sample in the window. This technique is 

useful to remove any DC offset in the signal (e.g. introduced by the ADC) . 

2.1.5 Windowing 

By blocking t he speech signal into short segments, signal discontinuities occur at the 

beginning and end of each frame [IJ. To alleviate this problem, each signal is multiplied 

by a function, called a window. This process is described by the following equation: 

OS; n S; N - 1, (2.5) 

where xl(n) is the resultant , windowed signal, sl(n) is the original signal , w(n) is the 

window with which the frame is multiplied , and N is the number of samples in the 

frame. The window with which the frame is multiplied , is typically chosen to be the 

Hamming window, defined by the following equation [1 J: 

( 21m ) w(n) = 0.54 - 0.46· cos N _ 1 ' (2.6) 

for 0 S; n < Nand w(n) == 0 elsewhere. Here w(n) is called the window, and N is the 

number of samples in the frame with which it should be multiplied. 

The purpose of the window is to give more emphasis to samples in the centre of the win­

dow. Combined, the overlapping frame analysis and windowing, ensures that smoothly 

varying parametric estimates can be obtained . 
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2.1.6 Spectral analysis 

For the spectral analysis of the speech signal (the blocked frames of speech multiplied 

by the window), a Fast Fourier Transform (FFT) of the signal is first computed (called 

a short-time FFT, because the FFT is taken only over short time segments). This 

procedure is based on the two equations [86] 

w = e2ni / N and - , 

N - l 

Yn = 2::: wnkX
k , 

k=O 

(2.7) 

(2.8) 

where W is a complex number, as defined in Equation (2.7), N is the size of the FFT 

(usually a multiple of 2), and the Yn's are the FFT components of the signal, with the 

original signal values denoted by the .x 's . 

After the FFT of the signal is taken, the next step is to calculate the squared magnitude 

of the spectrum. The squared magnitude spectrum is just the squared, absolute value 

of the FFT components (complex numbers), and is also called the power spectrum of 

the signal (or the energy spectrum if the square root is taken) . This can be illustrated 

with the equation 

0:; k < K , (2.9) 

where K can be equal to N, the size of the FFT. Because only half of the (symmetric) 

spectrum is considered, K is taken to be equal to N /2 . The result of spectral analysis 

is thus the squared magnitude spectrum, or power spectrum of the signal, as defined 

in Equation (2.9). 
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2.1.7 Energy and mel cepstrum coefficients 

Energy and mel-scale frequency coefficients are the features most often used in speech 

recogni tion systems today. These coefficients provide a parameterised form of the 

speech that significantly reduces the data rate of the speech input , while still main­

taining virtually all of the speech information [61. 

To compute the cepstra, a bank of fil ters is constructed. The number of filters is usually 

chosen larger than the number of cepstra needed. T hese fil ters are equally spaced along 

the mel-scale frequency axis, but logarithmically spaced on the acoustic frequency axis. 

This is motivated by the fact t hat human percept ion of the frequency content of sounds, 

either for pure tones or for speech signals, does not follow a linear scale [1] . For each 

pure tone with an actual frequency, f, measured in Hz, a subjective pitch is perceived 

by humans, measured on a scale called the "mel" scale. T he conversion between acoustic 

frequency to mel frequency, can be done with the equation [6] 

mel frequency = 2595 ·Ioglo ( 1 + 7~0) , (2.10) 

where f is t he acoustic frequency, in Hz, to be converted to a frequency in mels. 

Conversely, the mel frequency can be converted into an acoustic frequency through the 

equation (inverse of Equation (2.10)) 

f = 700· (lOX/2595 - 1) , (2.11) 

where x is the mel frequency to be converted into the acoustic frequency, f. T he next 

step in the computation of the cepstra, is to construct a bank of filters. T hese fil ters are 

triangular fil ters, spaced equally along a mel-scale frequency axis, but logarithmically 

along the acoustic frequency axis. 

Figure 2. 5 shows the filter allocation in the frequency domain (acoustic frequency) . 
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H(f) 

f 

Figure 2.5: Filter allocation in the hequency domain. 

The logarithmic nature of the filter spacing, described by Equation (2 .10), is clearly 

seen in the figure . In this figure , each filter has a minimum and maximum frequency 

that correspond to the centre frequencies of the filters to the left and right, respectively. 

This results in filters having different bandwidths. In the logarithmic domain, however, 

these filters have equal bandwidth. 

After the mel filters have been constructed, the energy output of each filter must be 

calculated. The energy output of each of the filters can be calculated as [6] 

[( - 1 

E j = L ,PJ(k)Zk, 0-::: j < J, (2.12) 
k=O 

where Ej is the energy from the j'th filter, cPj(k) is the value of filter j's transfer 

function at k , J( is equal to half of the size of the FFT (e.g. 256 for a 512-point FFT) , 

and J is the number of filters. The filters must obey the constraint [6] 

K - l 

L cPj(k) = 1 'dj. (2 .13) 
k=O 

To calculate the mel-scale frequency coefficients, a set of weighting factors is first 

computed. These weighting factors can be computed through an inverse discrete cosine 

Electrical, Electronic and Computer Engineering 32 

 
 
 



Chapter 2 Theory 

transform, as [6, 102, 1] 

Vm ,j = { cos ( m:y(j + 0.5)) } O<O;j<J, (2.14) 

where J is again the number of filters, and m indicates the particular cepstrum coeffi­

cient. The mel-scale frequency components can then be calculated from 

J - l 

em = L j3j Vm,j 10glO (Ej ), (2.15) 
j=O 

where E j is the energy output of the j'th filter, as defined in Equation (2.12), Vm,j is 

the weighing factor defined in Equation (2.14) , and j3 is an amplification factor, which 

accommodates the dynamic range of the coefficients, em. The cepstra are normalised 

by the number of filters as 

(2.16) 

where enm is the final m'th mel cepstrum coefficient. The coefficients are sometimes 

liftered so that the higher and lower order cepstra have similar values. The cepstra are 

thus re-scaled to have similar magnitudes , according to 

, ( L. 7rm) 
enm = 1 + "2 sm Len"" (2.17) 

where L is the liftering coefficient and enm is defined in Equation (2.16). 

To obtain the power, component 0 of the cepstrum vector is sometimes taken, which is 

just the average value of the spectrum, or root mean square (RMS) value of the signal 

[5]. The logarithm of the true energy, however , normally replaces component 0 of the 

cepstrum (since it is unreliable), and can be calculated as 
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(

N - l ) 

E = IOglO ~ i; , (2 .18) 

where in is the windowed signal , and N is the number of samples in the window. 

The above calculations will thus compute the mel frequency cepstrum coefficients as 

well as an energy measure. These provide a good parametric representation of the 

speech signal as well as good discrimination between the different speech sounds. 

2.1.8 Normalisation 

Normalisation of the speech features is usually done to reduce variability of the features 

with environment changes, microphone mismatch , etc. Many different algorithms exist, 

but only cepstral mean normalisation, energy normalisation, and a simple linear re­

scaling technique will be discussed here. 

Cepstral mean normalisation 

After the cepstra have been computed, the next step is their normalisation. Both 

the power and the mel frequency coefficients can be normalised by the sentence-based 

mean. The first step is thus to compute the sentence-based mean, as 

1 
!J.(k) = T L x,(k) , (2.19) 

t 

where T is the number of frames of t he input utterance, k is the index of the cepstral 

coefficient, and Xt (k) is the k'th cepstral coefficient. Next , the cepstra are normalised 

by the sentence-based mean, by simply subtracting the mean, as follows: 
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.it(k) = .Tt(k) - p,(k), (2.20) 

where Xt (k) is the k'th normalised cepstrum coefficient. This technique is useful to 

compensate for long-term spectral effects such as those caused by different microphones 

and audio channels. 

Energy normalisation 

The log energy is normalised to have values between - Emin to 1.0 by subtracting the 

maximum value of the energy in the utterance from every energy value, and adding 1.0. 

This technique will cause silence to be indicated by a value of 1.0 and speech samples 

less than 1.0, and is in a convenient form for other processing tasks, such as silence 

detection. 

Simple linear re-scaling 

With this technique, each of the speech vector's components is normalised to have 

zero mean and unit variance. It is a simplified form of the more general whitening 

transform [691. In this dissertation, it was used before speech vectors were applied 

to the input of the neural network that segmented the speech, in order to avoid any 

saturation problems of the neural network transfer functions . The mean and variance 

were calculated over all of the speech in the corpus that was used for training purposes, 

as the mean and variance can vary somewhat from speech utterance to speech utterance, 

which would degrade the neural network performance. It is, however, not uncommon 

to calculate the mean and variance only on a sentence by sentence basis. The mean of 

one speech vector feature is calculated as 
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(2.21) 

where Tn is the number of frames of the n'th training utterance, k is the index of the 

feature in the speech vector, x~(k) is the k'th speech feature, and N is the number of 

training speech vectors. The variance of one of the speech features is calculated as 

(2.22) 

where u(k) is the standard deviation (square root of the variance). The speech vector 

components are then normalised by each of the feature means and standard deviations 

independently, as 

n(k) _ xr(k) - f.L(k) 
xnt - u(k) . (2.23) 

2.1.9 Delta energy and cepstrum coefficients 

By adding time derivatives to the basic static features, the performance of speech 

recognition systems can be greatly improved. These dynamic features capture the 

dynamic changes that occur in the speech. To calculate the first derivative of the 

static features, also called the delta feature, a regression formula [3] such as 

d _ L~-l B(Ct+B - Ct-o) 
t - 2 ",8 B2 ' 

LA= l 

(2 .24) 

is normally used, where d, is the delta coefficient at time t , computed in terms of the 

corresponding static coefficients Ct- O to C'+B, and B is the regression window. Equa­

tion (2.24) is used to calculate both the delta energy and delta cepstrum coefficients. 
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2.2 Hidden Markov models 

Hidden Markov models (HMMs) are probably the most popular technology of choice 

for large vocabulary speech recognition systems. This is primarily due to the efficiency 

with which HMMs model the variation in the statistical properties of speech, both in 

the time and frequency domains [1201. A number of assumptions are, however, made 

when using HMMs [120, 1], but these will not be discussed here. 

In the following sections, HMMs are discussed only briefly, in the context of how 

they are used in this study. In particular, training of HMMs is not discussed, as this 

dissertation only modifies the decoding process. The training of the HMMs is thus 

fairly standard and details can be found in other studies [1, 66, 67, 120, 3]. The basic 

concepts of HMMs are discussed in the next section, followed by a section on the Viterbi 

decoding process (used to recognise the unknown speech). Language models and the 

use of a word transition penalty are also discussed. 

2.2.1 Basic elements and problems of an HMM 

Hidden Markov models involve two underlying stochastic processes. One of these is 

hidden and can only be indirectly observed through the other stochastic process. This 

is the reason why HMMs are called "hidden" Markov models. The two stochastic 

processes occur concurrently within an HMM. When HMMs are considered to be used 

as a parametric model for a process, a number of concepts are of importance. Some of 

these concepts are discussed briefly in this section. 

An important choice to be made when using HMMs is that of the structure of the HMM. 

An HMM consists of N states, often represented by circles in a pictorial representation. 

The states are connected by arcs, with arrows indicating the direction of an allowed 

transition between the states. 
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a22 

CD 
b,(o) 

Figure 2.6: Structure of a basic HMM. 

Figure 2.6 shows the structure of a basic HMM. In general, the theory allows for arbi­

trary connections between the states of the HMM. Left-to-right HMMs are, however, 

more commonly employed, especially in speech recognition, due to the temporal nature 

of the speech. In HMMs of this kind , as shown in Figure 2.6, there are fewer parameters 

than in an ergodic HMM. This limits the modeling power of the HMM , but the HMM 

parameters can be estimated more reliably with limited training data. 

At the first time step, an initial state q1 = i is chosen, according to an initial state 

distribution 'If. At the following time instants, a stochastic process decides what the 

next valid states should be, based only on the current state. This process results in 

a first order HMM. This stochastic process, described by the transition probabilities, 

aij, thus determines what the next state j should be, given that the current state is 

state i. As each state is entered at time t (either the same or a different state), an 

observation 0, is generated according to a second stochastic process, described by an 

observation density bj(o,). The sequence of states q can not be observed directly, but 

only through the observations generated. This is why HMMs are "hidden". 

All of the states in an HMM need not be emitting. In Figure 2.6, states 1 and 5 are 

non-emitting states. These states are used as a convenient way to connect multiple 

HMMs together. The shaded states (states 2 to 4) are emitting states. 

An HMM is thus defined as a parametric model, consisting of the following components 

[1] : 
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• Number of states - There is a fixed number , N, of states in the model. The 

number of states is determined empirically. 

• State transition probability distribution - The state transition probability 

distribution, A = {ai j } , is a matrix containing all of the state transition proba­

bilities. Each entry in the state transition matrix is defined as 

1 :S i, j :S N, (2.25) 

where qt is the state at time t, and qt+l is the state at time t + 1. Also, since aij 

are probabilities, they follow the usual stochastic constraints, e.g. a;j E [0, 1] . 

• Observation probability distribution - The observation probability distribu­

tion , B = {bj(Ot)} is the vector containing all of the state observation output 

probabilities. In this dissertation, these probabilities are modeled by Gaussian 

mixtures, resulting in continuous observation densities of the form 

M, 

bj(Ot) = ~ cjmN(Ot; J..t jm' ~jm)' (2 .26) 
m=l 

where Ms is the number of mixture components, and Cjm is the weight of the 

m'th component. In (2 .26), N(.; J..t,~) is a multivariate Gaussian with mean 

vector J..t and covariance matrix ~, defined as 

(2 .27) 

where n is the dimensionality of o. 

• Initial state distribution - The initial state distribution, IT = {IT; }, is defined 

as the following 

IT; = P[q1 = i] 1 < i < N - - , (2.28) 

with q1 being the initial state. 

Electrical, Electronic and Computer Engineering 39 

 
 
 



Chapter 2 Theory 

The complete parameter set, required to fully specify the HMM, can be compactly 

gIVen as 

,\ = (A, B, IT) , (2.29) 

with A, B, and IT as defined earlier. 

To use HMMs, three basic problems must be solved. HMMs are popular, partly due 

to the efficiency in which they can solve these three problems: 

• Problem 1 - The first includes the need for an efficient way to calculate P(OI,\) , 

t he probability of the observation sequence ((0102 ... OT), with T the maximum 

length of the sequence), given the model , and is referred to as an evaluation 

problem. The forward (or backward) procedure allows this problem to be solved 

in a computationally efficient means. This is not discussed any further here. 

• Problem 2 - The second involves the problem of finding the most likely state 

sequence q, given the model ,\ and an observation sequence ° = (0102 ... OT). 

This is referred to as the decoding process, used to uncover the "hidden" part of 

the HMM. In speech recognition, this is used to recognise the unknown speech 

(e.g. the most likely phone sequence). The Viterbi algorithm, based on dynamic 

programming (DP) concepts, is used for this purpose. It is discussed in more 

detail in the next section since the modification of this algorithm is part of our 

work. 

• Problem 3 - The third problem is concerned with the process of obtaining the 

HMM parameter set, ,\ = (A , B, IT) such that P(OI,\) is maximised. This is 

referred to as the training problem. The Baum-Welch algorithm is used for this 

purpose, but it is not discussed any further here. 

In speech recognition applications of HMMs, the first stochastic process deals with the 
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temporal sequence in which the HMM states occur and models the temporal structure of 

the speech signal. This is related to the transition probabilities. The second stochastic 

process models the locally stationary character of the speech signal and it is described 

by the conditional output probability density function. The solution to problem 3 is 

used to train HMM models for each of the phonemes that occur in the language of 

interest. A network of HMMs is then constructed, called a lattice or network, based 

on the task grammar, by joining HMMs together. The solution to problem 2, namely 

the Viterbi algorithm, is then used to determine the optimal sequence of phonemes (in 

a maximum likelihood sense in this dissertation). The sequence of phonemes is the 

recognition result from the unknown speech. 

2.2.2 The Viterbi decoding process 

As mentioned in the previous section, the most likely state sequence, given the model 

and the observation sequence, is of great importance in continuous speech recognition. 

The Viterbi algorithm, based on dynamic programming concepts, attempts to uncover 

the "hidden" part of an HMM. This algorithm attempts to find the single best path 

(state sequence) with the highest probability. Alternatively, it can be stated that the 

probability of the observation sequence 0 = (0,02 ... OT) and state sequence q , given 

the model A, or P(q,OIA), is maximised. 

Figure 2.7 illustrates the Viterbi decoding process, as it is commonly used for continu­

ous speech recognition. The vertical dimension represents the HMM states, while the 

horizontal dimension represents the frames of speech (time). Shown in the figure are 

two HMMs, namely HMM A and B, each having 5 states, with no skip transitions. In 

speech recognition systems, many more HMMs are connected together in a network 

determined by the task grammar. The result can be seen as a single, large HMM, hav­

ing N states in total. It is also shown that state 5 of HMM A (labeled A5) , and state 

1 of HMM B (labeled Bl) are regarded as being the same state (they are connected 

through the use of non-emitting states). The thicker lines in the figure represent the 
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Figure 2.7: The Viterbi decoding process. 

allowed paths (sequence of states), the dots represent the log state output probability 

of observing that frame at the specific time step, and the lines between the dots can 

be regarded as the log state transition probabilities. 

In Figure 2.7, the log probability of a path is calculated by summing the log output 

probabilities and log transition probabilities along that path. At each time step, the log 

probability of the previous path that had the highest log probability of all candidate 

paths, are used to calculate the log probability of a set of new candidate paths. The one 

with the highest log probability is then chosen for use in the next time step. After each 

process of selecting the best path, the state sequence followed by that path is recorded. 

After the best path is calculated at the last time step, the optimal state sequence can 

be uncovered by backtracking the path followed. From the sequence of states, the times 

at which the state and model transitions occurred, can be derived . This can be used 

to align a phonetic transcription against a speech signal, or to recognise the speech 

and simultaneously provide the times at which model (phoneme) transitions occurred, 

thereby also segmenting the speech into phonemes. 
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The Viterbi algorithm is usually implemented in the logarithmic domain due to numer­

ical precision problems that could occur otherwise, and the fact that multiplications 

are avoided [1 , 66, 67]. In HTK, the Viterbi algorithm is formulated somewhat differ­

ently, than what is presented here, where a token passing model is used [125, 3]. The 

underlying concept is , however, the same and can be summarised as follows: 

O. Preprocessing 

1. Initialisation 

2. Recursion 

3. Termination 

4. Backtracking 

1 :S 'i :S N, 1 :S t :S T 

1 :S i, j :S N 

51 (i) = log(61(i)) = iii + bi (ol), 

1/;1(i) = 0, 

1 :S j :S N, 2 :S t :S T 

F' = max [5T (i)] 
l<i<N 

t = T - 1, T - 2, ... , 1 

(2.30) 

(2.31) 

(2.32) 

(2 .33) 

(2 .34) 

(2.35) 

(2,36) 

(2.37) 

(2.38) 

(2.39) 

In the above equations 6t (i) is the highest probability along a single path, at time t , 

that accounts for the first t observations and ends in state i, and Equation (2.39) gives 

the optimal state sequence. 
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2.2.3 Use of a language model 

In this dissertation, a word loop grammar is used, which indicates that any word may 

follow any other word. In order to improve the recognition performance, a stochastic 

language model can be used. This takes into account that all word sequences are not 

necessarily equally likely. A simple probabilistic model of speech production relies on 

the fact that a specified word sequence, W, produces an acoustic observation sequence, 

Y, with probability P(W, Y) [1]. The recognition or decoding process attempts to find 

the string of words that maximises the maximum a posteriori (MAP) probability. This 

can be represented as 

W ] P(W IY) = maxP(WIY). 
w 

Using Bayes' Rule, P(WIY) can be written as 

P(WIY) = P(YIW)P(W) 
pry) , 

and consequently, Equation (2.40) can be written as 

111 = argmaxP(YIW)P(W), 
w 

(2.40) 

(2 .41) 

(2.42) 

which is called the MAP decoding rule. In Equation (2.42) , P(YIW) is the acous­

tic model (a probability of a sequence of acoustic observations, given a word string, 

estimated by the Markov models). P(W) is called the language model. It gives the 

probability of observing a particular word sequence, W. As shown in Equation (2.42), 

the language model has a significant effect on the recognition accuracy. 

To estimate P(W), a text corpus is used that contains many word sequences. P(W) 

can then be estimated by 
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Q 

PN(W) = II P(WiIWi- l, '11); - 2 , ' .. , Wi- N+l), (2 .43) 
i=l 

for an N-gram language model, where Wi is the i'th word and Q is the total number 

of words. For a bigram language model (N = 2), P(wi lwi- l) can be estimated by 

building a table of bigram counts, and then output a back-off bigram by using [3] 

(2.44) 

where F(Wi ' Wi - l) is the number of times word Wi follows word Wi-l, and F(Wi- l) is 

the number of times that word Wi- l appears. In Equation (2.44), which is based on a 

process called discounting [3], D is a discount constant, t is a bigram count threshold , 

and b(Wi) is the back-off weight for word Wi, which ensures that all of the bigram 

probabilities for a given history sum to one. 

The language model probability is added to each word-end transition (in the logarith­

mic domain), or multiplied with the acoustic model probability, according to Equa­

tion (2.42). The language model probability is an a priori probability, computed off­

line. It is often scaled by a language model scale factor s. From Equation (2.42), 

recognition is thus based on maximising 

IV = argmaxP(YIW)P(W)', 
w 

(2.45) 

which can be conveniently incorporated in the Viterbi algorithm. Equation (2.35) can 

t hus be modified for word-end transitions as 

J,(j) = log(bt(j)) = max [Jt - l(i) + iii j + sP(W)] + bj (Ot) , 
lS:i'S:N 
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where p(W) = log(P(W)) is the log language model probability, and s is language 

model probability scale factor. If the transition from state i to j is not between word­

ends, Equation (2.35) is used. 

2.2.4 Use of a word transition penalty 

In addition to language models, a fixed word transition penalty is often used. The 

effect of the word transition penalty is to modify the language model log probability 

according to the equation 

p(W)' = sP(W) + p, (2.47) 

where p is the word transition penalty when it is negative, and word confidence when 

it is positive (in the logarithmic domain). Equation (2.46) of the previous section can 

thus be further modified (for word-end transitions only), as 

(2.48) 

In general, when unknown speech is given as input to the recogniser , the number of 

insertions tend to increase and the number of deletions decrease, as p is increased (more 

positive and less negative) and s decreased. Alternatively, the number of insertions 

tend to decrease and the number of deletions increase, as p decreases (more negative 

and less positive) and s increases. This can be explained due to the fact that the 

token log-likelihood is decreased when p is a negative number, penal ising transitions 

between words (phonemes), resulting in a decrease in the number of insertions and 

an increase in the number of deletions. The optimal values for sand p are usually 

found by maximising the recognition accuracy on a development set, for both of these 

parameters. 
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2.3 Recurrent neural networks 

For a number of years, neural networks have been a popular choice to solve a variety of 

problems. Some of these include classification , regression , probability estimation, time 

series prediction, process modeling and process control. 

The most common neural network architecture in use today, is probably the multilayer 

percept ron [1181. This neural network is regarded as a "static" neural network in that 

it does a static mapping of inputs to outputs. Recurrent neural networks (RNNs) are 

regarded as "dynamic" neural networks, since all of the past information is used, in 

addition to the current input , to calculate the output . Future input information may 

also be useful in calculating the output of the neural network. Conventional recurrent 

neural networks use future input information by delaying the output by a number of 

time steps. Alternatively stated, a "window" of future input information is applied to 

the neural network 's inputs. The window size must be set empirically. Bi-directional 

recurrent neural networks avoid the choice of window size, in that they use the entire 

sequence of inputs to calculate the outputs. 

This section discusses the use of recurrent neural networks (conventional and bi­

directional) as pattern classifiers. In Section 2.3.1 conventional recurrent neural net­

works are discussed , and bi-directional recurrent neural networks in Section 2.3.2. Ap­

pendix A discusses the training of these networks. 

2.3.1 Conventional recurrent neural networks 

RNNs are generally regarded as being more powerful than multilayer perceptrons. 

These neural networks contain one or more feedback connections. Although RNNs are 

not limited to a specific architecture, only recurrent multilayer perceptrons (RMLPs) 

[70] are discussed here. RNNs map their input space to the output space, by responding 

temporally to an externally applied input signal. The network acquires state represen-
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tations and effectively uses all of the past input information to calculate the output. 

For this reason, they are often considered "dynamically driven recurrent networks". 
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t 
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OUTPUTS 

0 · . . 0 

HIDDEN STATES 

0 · . . 0 

INPUTS 

0 · . . 0 

BIAS (+1) 

• 
+1 

Figure 2.8: A conventional recurrent neural network (R.NN). 

Figure 2.8 shows the structure of a simple RMLP having two layers of weights . The 

output of the hidden layer nodes are delayed by one time step and applied to the input 

of these hidden layer neurons. In this way, past information continues to circulate 

through the network. The output of the neural network is calculated by using the 

outputs of the hidden layer neurons. Also shown in the figure is an input whose value 

is fixed at +1. This bias input is connected to both the hidden neurons and output 

neurons and allows more freedom to the formation of the decision boundaries by the 

network. The inputs shown in the figure are not regarded as being neurons. They are 

simply a convenient way to connect the external inputs to the hidden neurons. 
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The forward propagation of input vectors to output vectors for the two layer RNN, 

given in Figure 2.8, is presented below. This is probably the most common form of 

RNN. For the formulation of a more general RNN, see [126] and [127] . 

Consider a sequence of input vectors, x, of length T, 

1 2 T x=(x,x, . . . ,x ), (2.49) 

where each input vector, x', at time t, is of dimensionality d, and can be conveniently 

written as 

(2.50) 

In Equation (2 .50), x ' can either be a single d-dimensional vector at time t, or may 

also include a window of future (and past) input vectors. Associated with the input 

sequence, is an output sequence, y , also of length T, 

( 
1 2 T) y= y,y , ... ,y , (2.51) 

where each output vector, yt, at time t is of dimensionality c, and can be written as 

Y ' _ (y' y' y') 
- 11 2" " 1 C . (2.52) 

A sequence of hidden nodes outputs, 0, of length T , is also formed , 

( 
1 2 T) 0 = 0,0, ... ,0 1 (2.53) 
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where each hidden layer vector, 0', at time t is of dimensionality m, and can be written 

as 

(2 .54) 

The input to hidden layer weight matrix, WIH = {wJ.f} contains the matrix of input 

to hidden layer weights. It is of dimension m x d. The bias unit to hidden layer weight 

matrix is denoted as WH = {wf} (of dimension m x 1), while the bias unit to output 

layer weight matrix is given by WO = {wf} (of dimension c xl). The feedback matrix 

of hidden layer to hidden layer weights, is given by WHH = {WJ{H}. The hidden to 

output layer weight matrix, WHO = {w{~O} contains the weights from the hidden layer 

nodes to the output nodes. It is of dimension c x m. The first index on the weight 

subscript indicates the neuron to which the weight is going, while the rightmost index 

indicates the neuron from which the weight originated. 

The output of a neuron is calculated as a function of the weighted sum of its inputs. 

For the hidden neurons this is 

( 

d m ) . IH t HH t-l H 
jj L W ji Xi + L W ik Ok + Wi ' 

i=l k=l 

j = 1, 2, . . . ,m;t = 1,2 , . . . ,T, (2.55 ) 

where oi-1 is the one step delayed hidden neuron output, taken as 0 at t = 1. In 

Equation (2.55) , a; is the weighted sum of inputs to the j'th hidden neuron. Hidden 

neuron j's transfer function is denoted as ij, and it is often taken as the hyperbolic 

tangent function for reasons of faster training convergence, 

(2 .56) 
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where e is the exponential function. The outputs of the output layer neurons can be 

calculated as 

k = 1, 2, ... , c; t = 1,2, ... , T, (2.57) 

where h is the transfer function of the output neurons. The softmax activation function 

[69] is often used for the output neurons, 

(2 .58) 

where the sum is taken over all c outputs. This activation function will ensure that the 

outputs satisfy the usual stochastic constraints (Yk ?: 0, I: Yk = 1) so that they may 

be interpreted as probabilities. 

Forward propagation procedure 

The forward propagation of the inputs to the outputs, as used in the simulation of the 

network once it has been trained, can be summarised as follows: 

l. Set activations of all neurons to zero, as well as the vector representing the 1 step 

delayed version of the hidden layer neuron outputs. 

2. Apply an external input vector, x', at the inputs of t he network. 

3. Calculate the outputs of hidden layer neurons , using Equations (2.55) and (2.56). 

4. Calculate the outputs of output layer neurons, using Equations (2 .57) and (2.58). 

5. Form the output vector, y', by taking the outputs of the output neurons. 

6. Repeat steps 2 to 5 for all t. 
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2.3.2 Bi-directional recurrent neural networks 

Context information often plays an important role in calculating the output of a neural 

network. Performance can be significantly increased when either or both past and 

future vectors are applied to the input of the neural network , in addition to the current 

input vector. The designer of the neural network is then faced with the problem 

of choosing the size of the window of future and past input vectors. Bi-directional 

recurrent neural networks [116, 117, 121] avoid the problem of choosing the window 

size, by using the entire sequence of input vectors. It thus makes use of all of t he 

available past and future information at any time instant. The primary disadvantage 

is , however, that t he architecture is not suitable for most on-line applications. 

y 

1 
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0 0 . . . 0 

t+- l FORWARD STATES BIAS (+1) BACKWARD STATES l-+ I 
Z 0 0 . . . 0 • 0 0 . . . 0 Z 

+1 

• -
X l l x 

INPUTS 

0 0 . . . 0 

X 

Figure 2.9: A bi-directional recurrent neural network (BRNN). 
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Figure 2.9 gives the structure of a bi-directional recurrent neural network. It consists 

of two underlying conventional recurrent neural networks, one operating in the forward 

time direction (t+ = 1 to T) and one in the negative time direction (t - = T to 1). 

The hidden states of both these forward and backward RNNs are used to calculate the 

outputs of the neural network. The delay operators, zt+- l and zt - +l, are also shown 

for the forward and backward states, respectively. The former delays the forward 

state (neurons) outputs by 1 time step, while the latter advances the backward state 

(neurons) outputs by 1 time step. In the figure , x '+ denotes the positive time input 

sequence, starting from t = 1, proceeding to t = T , while x'- denotes the negative 

time input sequence, starting from t = T, proceeding to t = 1. 

The input to forward layer weight matrix , WIF = {wjt} contains the matrix of input 

to forward layer weights . The input to backward layer weights is given by W JB = 

{wf;B}. They are of dimension mf x d and mb x d, respectively. The bias unit to 

forward layer weight matrix is denoted as WF = {wf} (of dimension mf x 1), the 

bias to backward layer weight matrix by WB = {wf} (of dimension mb x 1), while 

the bias unit to output layer weight matrix is given by WO = {wf} (of dimension 

ex 1). The forward feedback matrix of forward hidden layer to forward hidden layer 

weights, is given by WFF = {wIt}, while the backward feedback matrix of backward 

hidden layer to backward hidden layer weights, is given by WBB = {wjl,B}. The 

forward hidden to output layer weight matrix, W FO = {w[F} contains the weights 

from the forward hidden layer nodes to the output nodes. It is of dimension c x m f . 

The backward hidden to output layer weight matrix, of dimension c x mb, contains the 

weights from the backward hidden layer nodes to the output nodes , and is denoted by 

WBO = {wfjF} 

The equations, given for conventional RNNs, in the previous section, need only slight 

modification. The outputs of the forward hidden neurons can be calculated as 
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(2.59) 

The outputs of the backward neurons are calculated as 

(2.60) 

The outputs of the neural network are obtained only after calculating the forward and 

backward neurons' outputs for the entire input sequence, x , as 

(2.61) 

where of" is the output of the i'th forward neuron at time t, o: ,t is the output of the i'th 

backward neuron at time t, mJ is the number of forward neurons, mb is the number of 

backward neurons, and if, fJ and .!k are the neuron transfer functions for the forward 

hidden, backward hidden, and output layers, respectively. In the equations above , 

0r
tLl 

denotes the 1 step delayed forward hidden node output, and o~r+l is the 1 step 

advanced backward hidden node output. The j'th forward hidden node output at time 

t and t+ is given by oJ" and oJ"+, respectively. The j'th backward hidden node output 

. d · · b b t d b t- . I at time t an r IS gIven y 0/ an 0/ ,respectIve y. 
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Forward propagation procedure 

The forward propagation of the inputs to the outputs, as used in the simulation of the 

network once it has been trained, can be summarised as follows: 

l. Set activations of all neurons to zero, as well as the vectors representing the 1 

step delayed, and 1 step advanced version of the forward and backward neurons' 

outputs. 

2. Apply an external input sequence, x , at the inputs of the network. 

3. Calculate the outputs of the forward hidden layer neurons, using Equations (2.59) 

and (2.56) for t+ = 1 to T (the entire sequence). 

4. Calculate the outputs of the backward hidden layer neurons, using Equations (2.60) 

and (2.56) for r = T to 1 (the entire sequence). 

5. Calculate the outputs of the output layer neurons , using Equations (2.61) and 

(2.58) (the entire sequence of outputs). 

6. Form the output sequence, y , by taking the sequence of network outputs. 

Electrical, Electronic and Computer Engineering 55 

 
 
 



Chapter 3 

Speech segmentation 

Speech segmentation, as done in this dissertation, refers to the process of determining 

the boundaries between phonemes in the speech signal. No higher-level lexical infor­

mation is used to accomplish this. This chapter presents the approach followed to 

achieve unconstrained (implicit) segmentation of speech into phonemes. Section 3.1 

gives the features used, and Section 3.2 discusses the segmentation techniques, with 

Section 3.2.1 using hidden Markov models , and Section 3.2.2 recurrent neural networks. 

Postprocessing is discussed in Section 3.3. Finally, Section 3.4 explains the accuracy 

measure used to evaluate segmentation performance. 

3.1 Preprocessing 

Preprocessing, in the context of speech segmentation, refers to the feature extraction 

process, as discussed in detail in Chapter 2, Section 2.1. The aim of the preprocessing 

stage is to transform the raw speech samples into a feature space that is better suited 

for the discrimination between a phoneme boundary and no boundary. 

To obtain the speech features, the raw speech samples (digitised) are first pre-emphasised 
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(using a pre-emphasis coefficient of 0.97), blocked into overlapping frames of 25.6 ms 

width and 10 ms frame shift, signal bias removed, windowed using a Hamming window, 

spectral analysis done on each frame, the energy and static mel frequency cepstrum 

coefficients (MFCCs) calculated (using 26 triangular filters), liftered (using a liftering 

coefficient of 22) and normalised, and finally the delta MFCCs (using two MFCCs left 

and right in a regression formula) and energy calculated. The features used can be 

characterised as a 26-dimensional vector containing 

• 1 energy feature, 

• 12 liftered mel frequency cepstrum coefficients (MFCCs), 

• 1 delta energy feature, and 

• 12 delta MFCCs. 

For segmentation using hidden Markov models, normalisation includes energy normal­

isation, as well as cepstral mean normalisation. In addition to these, simple linear 

re-scaling is also used when the recurrent neural networks are used. The main purpose 

of the simple linear re-scaling is to prevent saturation of the neuron transfer functions. 

The mean and variance used in the re-scaling process, are estimated from the entire 

set of training speech utterances, so that all the utterances may be normalised by the 

same values. 

3.2 Segmentation 

The goal of speech segmentation in this dissertation, as stated earlier, is to determine 

the locations of the phoneme boundaries in the speech signal, without using higher-level 

lexical knowledge (the underlying phoneme sequence). 
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Figure 3.1: Example of the segmentation of the word ''four''. 

Figure 3.1 shows an example of a speech signal (the word "four" ), with the true bound­

aries indicated by T1 and T2, and the estimated boundaries indicated by E1, E2 and 

E3 . It can be seen that there is an error (or distance) between the true and esti­

mated boundaries. We want the distance between the estimated and true (or desired) 

phoneme boundaries to be as small as possible. In addition, the number of boundaries 

falsely detected (or insertions) , must be minimised . The boundary, E1, is an example 

of an inserted boundary, and if the distance between T2 and E3 is larger than the 

maximum allowed distance, E3 can also be considered as an insertion. The number of 

correct boundaries not detected (or deletions), must also be kept to a minimum. If the 

distance between T2 and E3 is larger than the window, there is boundary deletion. 
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3.2.1 Hidden Markov models 

Hidden Markov models, along with the Viterbi decoding procedure, as described in 

Chapter 2, Section 2.2, can be used to segment speech. As only implicit segmentation is 

used, the speech is not aligned against a reference transcription, but rather recognised, 

and the times between phoneme transitions taken as the phoneme boundary locations. 

An example of the recognition result of a speech sentence is shown in Table 3.1. 

In Table 3.1, t he first column indicates the phoneme start time (in 100 ns units) , 

the second column the phoneme end time (in 100 ns units), and the third column the 

specific phoneme recognised. Since the start and end of the utterance are not considered 

as phoneme boundaries, the second column can be used as phoneme boundary locations, 

with the last entry omitted, as shown in Table 3.2. 

As the segmentation information is to be incorporated into a frame based recogniser, 

t hese boundary times are converted into frame numbers, by finding the frame whose 

centre is closest to the boundary time. 

A sequence of l's (representing a boundary) , and O's (representing no boundary) can 

then be constructed by taking a zero vector of length equal to the utterance length (in 

total number of frames). The O's at the indices corresponding to the frame numbers 

of the boundaries are then replaced by a 1. Such a sequence might have the following 

form 

o 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 . .. 0 0 1 0 O. 

This sequence is in a convenient form for further processing or to evaluate the accuracy 

of the segmentation system. It directly indicates whether a frame contains a boundary 

or not (the centre of the frame) . 
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Table 3.1: Example of a recognition result of a speech sentence. 

0 1275000 sil 

1798125 2271250 aa 

2271250 2558125 r 

2558125 2742500 dx 

2742500 3195000 ih 

3195000 4256250 f 

4256250 4863125 ih 

4863125 6109375 sh 

6109375 6996875 

6996875 7400000 ih 

7400000 7847500 n 

7847500 8083750 sil 

8083750 8783750 t 

8783750 9503750 eh 

9503750 10208750 

10208750 10600000 ih 

10600000 10962500 sil 

10962500 11513750 jh 

11513750 12041875 ih 

12041875 12756250 n 

12756250 13970000 s 

Table 3.2: Boundary locations for the given example, in 100 ns units. 

1275000, 2271250, 2558125, 2742500 3195000 , 

4256250, 4863125, 6109375, 6996875, 7400000, 

7847500, 8083750, 8783750, 9503750, 10208750, 

10600000, 10962500, 11513750, 12041875, 12756250 
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3.2.2 Recurrent neural networks 

A bi-directional recurrent neural network is used in the work presented here , for the task 

of segmenting the speech. It takes an entire speech utterance as input, and produces 

two output sequences, one estimating the probability of a boundary, and the other the 

probability of no boundary, for each input vector in the utterance. 

In order to train the neural network, corresponding output target values must be given 

for each input vector. The first step in this process is to obtain the true boundary 

locations, in a process similar to that described in the previous section on segmentation 

by HMMs. The difference is that the transcription label files, provided with the TIMIT 

database, are used, instead of the recognised results. This leads to a sequence of l 's 

(representing a boundary) and D's (representing no boundary), for each utterance on 

which the neural network should be trained. The second step is then to assign a value 

of 0.5 as target to the left and right of each boundary frame, only if a neighbouring 

frame is not a boundary. The value of 0.5 represents the uncertainty present in whether 

the boundary should be in one of the neighbouring frames. The resulting sequences of 

target values, one for each utterance, have an almost triangular wave-like nature. 

Figure 3.2 shows an example of a sequence of target values. Also shown in the figure 

is an example of the output of the neural network, estimating the probability of a 

boundary. The neural network outputs approach that of the target values. 

After the neural network has been trained on a large number of training utterances, 

it can be used to estimate the probability of a phoneme boundary and probability 

of no phoneme boundary, for each utterance. It does this by taking as input, the 

entire speech utterance, and estimating these probabilities for each acoustic vector. 

The neural network is thus used as a classifier, where the input vectors are classified 

as either belonging to the class of "boundary" or "no boundary", and the outputs can 

be interpreted as probabilities, according to [69]. Two sequences, corresponding to 

these two probabilities, are thus obtained. The length of each sequence is equal to the 
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Figure 3.2: Example of neural network target and output values. 

number of frames in the utterance. In order to determine the actual phoneme boundary 

locations, a subsequent postprocessing stage, discussed in the next section, is used. 

3.3 Postprocessing 

After the segmentation process, as described above, a set of exact boundary locations 

exist in the case of hidden Markov model based segmentation. No postprocessing 

is thus required , as the boundaries between phonemes are simply the time instances 

between phoneme HMM model transitions. In the case of the recurrent neural networks , 

however , only the probability of a boundary (and no boundary) is present. Some 

decision must be made as to when an output indicates a boundary or not . 

In the work presented here , a simple threshold function is applied. If t he output of 

the neural network, representing the probability of a boundary, is a local maximum 

and is above a certain threshold, IJ , then that frame of speech is said to contain a 
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boundary between phonemes (or more precisely, the centre of the frame is considered 

the boundary). This can be summarised as follows 

{

I if P(B1x) > Ii, and P(B1x) is a local maximum 
i(!}) = ~ , 

o otherwise 
(3.1 ) 

where P(B1x) is the probability of a boundary (estimated by the neural network), 

given the acoustic input vector, x. In Equation (3.1) , i(!}) = 1 represents a boundary, 

while i(!}) = 0 represents no boundary. The value of!} is found empirically as the value 

that gives the highest segmentation accuracy on a development test set. 

3.4 Accuracy measure 

In order to measure how well a particular segmentation method performs, an accuracy 

measure is needed. The accuracy measure used in our work, attempts to evaluate a 

segmentation method objectively, penal ising both insertions and deletions of bound­

aries . When Nt = H + D (hits plus deletions), the accuracy of the segmentation system 

can be calculated as 

Nt~D~I 
Ace = Nt . 100%, (3.2) 

and the percentage of boundaries correctly identified, as 

H 
Cor = Nt ·100%, (3.3) 

where D is the number of deletions, I the number of insertions, H the number of 

boundaries correctly identified (or hits) , and Nt the total number of target boundaries. 

The number of insertions and deletions are related to Nt, Ne and H through 
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I 

Nt-H, 

Ne - H ., 

Speech segmentation 

(3 .4) 

(3.5) 

where Ne is the total number of estimated boundaries. To use Equations (3.2) and 

(3.3), the number of hits, H, must first be determined. After H has been determined, 

the number of deletions and insertions can be calculated using Equations (3.4) and 

(3.5). In particular, care must be taken not to associate an estimated boundary with 

a target boundary to the left or right of target boundaries closest to the estimated 

boundary. If this is the case, the estimated boundary must rather be regarded as an 

insertion. Also, if the distance between the estimated and true boundary is larger than 

a certain threshold, the estimated boundary should also not be counted as a hit. 

The process followed in this dissertation can be best explained by way of an example. 

Consider the following sequence of hypothetical target values 

000 100 0 1 0 0 1 0 0 1 0 0 

with estimated boundaries being given as 

o 0 1 0 101 100 1 000 0 0 

From these sequences it can be seen that the number of target boundaries, Nt , is 4, 

while the number of estimated boundaries, N e, is 5. The process of calculating the 

number of hits can then be summarised as follows: 

1. Calculate two arrays, pt and pe, containing the frame numbers of the target and 

estimated boundaries, respectively. For the above example (using zero array 

indexing) , that is 
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p' = [3,7,10,13] 

pe = [2,4,6,7 ,10] 

2. Calculate a distance matrix, d = {dii }, that indicates the distances between all 

estimated and target boundaries, where 

dji = [pj - pf[, j = 0, 1, ... , Nt - 1, i = 0,1, ... , Ne - 1. 

For the example, this matrix can be given as 

1 1 3 4 7 

5 3 1 0 3 
d= 

8 6 4 3 0 

11 9 7 6 3 

where the horizontal dimension represents the estimated boundaries, and the 

vertical dimension the target boundaries. 

3. Find the minimum of the distance matrix and save the result in a result matrix, r, 

of the same dimension as the distance matrix (initially filled with infinite values 

(or at least larger than the total number of frames in the input sentence)) at 

the same position as where the minimum value in the distance matrix is located. 

The entire row and column of the distance matrix, in which the minimum value 

is located , is then replaced by infinite values (large numbers) . For the example 

above, the minimum value in the matrix (minimum operation starting from top 

left proceeding to bottom right) is the 0 located at the second target boundary 

(j = 1), and fourth estimated boundary (i = 3). The result matrix can thus be 

given as 
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4. 

5. 

T= 

00 00 00 00 00 

000000000 

00 00 00 00 00 

00 00 00 00 00 

and the distance matrix becomes 

1 1 3 00 7 

00 00 00 00 00 
d= 

8 6 4 00 0 

11 9 7 00 3 

Repeat the previous step until distance matrix contains only infinite values (large 

numbers). The result matrix for the example given here, is then 

1 00 00 00 00 

00 00 00 0 00 
T= 

00 00 00 00 0 

00 00 7 00 00 

In order to make sure that the estimated boundaries are not associated with target 

boundaries to the left or right of the target boundaries nearest to the estimated 

boundary, the result matrix must be checked and erroneous hits replaced by 

infinite values (large numbers). The 7 in the result matrix given above is an 

example of such a boundary. When removed, the final result matrix can be given 

as 

T= 

100000000 

000000000 

00 00 00 00 0 

00 00 00 00 00 
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6. The next step used to compute the number of hits, is to compare the distances 

in the result matrix with a threshold. Each ent ry in the result matrix is retained 

only if it is less than or equal to the threshold . For a threshold of 1, the result 

matrix given above is the final answer. For a threshold of 0 (estimated and true 

boundaries must be in the same frames), the top left value is removed, giving the 

following results matrix 

7. 

00 00 00 00 00 

00 00 00 0 00 
r= 

00 00 00 00 0 

00 00 00 00 00 

The final step is to count the number of non-infinite numbers in the results matrix. 

This is equal to the number of boundaries correctly found, or the number of hits, 

H. For the results matrix given above, H = 2. 

In the example given above, the number of deletions is D = Nt - H = 4 - 2 = 2, and 

the number of insertions I = Ne - H = 5 - 2 = 3. The percentage accuracy and correct 

can be calculated using Equations (3.2) and (3 .3). For the example given above, the 

percentage accuracy is -25% and the percentage correct is 50%. The negative accuracy 

indicates that more incorrect boundaries have been predicted than correct boundaries 

(hits) . 

The threshold used in the process described above, also called the window, can be 

used to compute statistics about the number of boundaries correctly identified with a 

certain allowed tolerance. For a window size of 0, the estimated and target boundaries 

may not be in different frames , for a window size of 1, they may differ by 1 frame, etc. 

In this dissertation, a frame shift of 10 ms is used, and a window size of 0 indicates 

that the target and estimated boundaries must lie within 5 ms of each other (5 ms 

to the left and right of the centre of the frame, where the boundary is assumed to be 

located in the centre of a frame). 
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Table 3.3: Mapping between window size and tolerance. 

Window size Tolerance 

0 :'0 5 ms 

1 :'0 10 ms 

2 :'0 15 ms 

3 :'0 20 ms 

4 :'0 25 ms 

5 :'0 30 ms 

6 :'0 35 ms 

7 :'0 40 ms 

8 :'0 45 ms 

9 :'0 50 ms 

Table 3.3 summarises the requirement of the distance between an estimated boundary 

and a true boundary, to be regarded as a hit. 
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Chapter 4 

Speech recognition 

This chapter considers phoneme recognition on the TIMIT database. A speech sen­

tence is presented to the recogniser and the desired result is a sequence of phones. The 

preprocessing is essentially the same as that used for HMM segmentation, described in 

the previous chapter, and will not be repeated here. The baseline phoneme recogniser 

used in this dissertation, is discussed (Section 4.1). It is also shown how the segmen­

tation information of the previous chapter can be incorporated into the recognition 

process (Section 4.2). Two methods are considered here. The first is to modify the 

HMM transition probabilities, as shown in Section 4.2.1, while the second is to make 

use of an adaptive word transition penalty term, as discussed in Section 4.2.2. Finally, 

the accuracy measure used to evaluate the recognition performance, is discussed in 

Section 4.3. 

4.1 Recognition (baseline) 

The baseline phoneme recogniser, used in this work, is based on the Cambridge Univer­

sity hidden Markov toolkit (HTK). In HTK, recognition of an unknown input utterance 

is performed through the use of a recognition network [3]. This network or lattice is 
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constructed from a word-level network, also called a grammar, a dictionary (containing 

the phonetic transcriptions of each word), and a set of HMMs. 

The recognition network, that is used to do phoneme recognition, consists of a set of 

nodes connected by arcs. The nodes in this network correspond to the HMM states, 

and the arcs connecting the nodes, correspond to the transitions between HMM states. 

When an utterance is to be recognised, a number of possible paths exist from the start 

node to the end node. The decoder finds the optimal path, using a modified form of 

the Viterbi algorithm, as described in Chapter 2, Section 2.2.2. Further details on the 

recognition process in HTK can be found in [3, 125]. 

In phoneme recognition experiments, each HMM models a different phoneme. In this 

dissertation, diagonal covariance HMMs are used. The optimal path found through 

the decoding process reveals the most likely underlying phoneme sequence of a given 

speech utterance. This is the desired result of the recognition process. 

The TIMIT database contains a phonetic transcription for each speech waveform file . 

These transcription files make use of 61 phonemes. It is common practice to convert 

the phoneme set to the standard 39 phonemes, when phoneme recognition experiments 

are conducted. Table 4.1 shows the mapping of phonemes from the 61 TIMIT phones, 

to the standard 39 phonemes, typically used in measuring phonetic recognition perfor­

mance. In this table, the glottal stop "q" is ignored. 

In HTK we used the 39 phonemes as "words" and their associated transcriptions are 

just the phonemes themselves. In this dissertation, the terms phonemes and words are 

therefore used interchangeably, unless indicated otherwise. 

The grammar, or word-level network, used for phoneme recognition, is a word loop 

grammar. Figure 4.1 shows a graphical depiction of a word loop grammar. Note that 

for phoneme recognition experiments, each phoneme is treated as a word. The figure 

shows how each "word" may follow any other "word". This grammar can be specified 

in the extended Backus-Naur form (EBNF) as shown in Figure 4.2. 
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Table 4.1: Mapping between the 61 TIMIT phones (2nd , 4th, 6th and 8th columns) and 

the standard 39 phones (in boldface) typically used in measuring phonetic recognition perfor­

mance. The glottal stop nq" is ignored. Arpabet symbols are used for the phones. 

aa aa ao ae ae ah ah ax ax-h aw aw 

ay ay b b ch ch d d 

dx dx dh dh eh eh er er axr 

ey ey f f g g hh hh hv 

ih ih IX iy 1Y jh jh k k 

I I el m m em n n en nx ng ng eng 

ow ow oy oy P I' r r 

s s sh sh zh t t th th 

uh uh uw uw ux v v w w 

y y z z cl bel pel del tel gel kel epi pau h# 

In order to improve phoneme recognition performance, a language model must be used, 

as discussed in Chapter 2, Section 2.2.3. The use of a language model in a word loop 

grammar, with bigram probabilities, takes into account that not all "words" (phonemes) 

follow each other with equal probability. In HTK, a language model probability (calcu­

lated from the text data) is thus added to tokens emitted from word-end nodes, before 

they enter the following word. In addition, a word transition penalty, as discussed in 

Chapter 2, Section 2.2.4, is added. 

4.2 Recognition using segmentation information 

This section shows how to incorporate the segmentation information of Chapter 3, 

in order to potentially improve phoneme recognit ion performance. The basic idea 

behind the use of segmentation information, is that segmentation information can give 

a fairly accurate indication of when HMM model transitions must take place, thereby 
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~----\ aa 

i----\' ae }-----1 

ah 

w 

Figure 4.1: Loop grammar used for phoneme recognition. 

$phn = aa I ae I ah I aw I ay I b l ch I ell dl dx I 

dh I eh I er I ey I fl gl hh I ih I iy I ·h I .J 

kl I I ml n l ng I ow I oy I pi r I s I 
sh I t l th I uh I uw I v i wi y l z· , 

(<$phn > ) 

Figure 4.2: Grammar used to construct a recognition network. 

decreasing the number of insertions and deletions in the recognition process. 1\vo 

methods are considered. The first involves the modification of the HMM transition 

probabilities, whereas the second method makes use of an adaptive word transition 

penalty. These techniques are discnssed in the following sections. 

4.2.1 HMM transition probability modification 

During the recognition process, the transition from one HMM state to another , is dic­

tated by the transition probabilities of the HMM. If a transition probability is low, 

the probability of taking that particular transition is low, and vice verSa. In standard 

HMM recognition systems, these transition probabilities are determined during the 

training process, and remain fixed throughout the recognition of the utterance. By 

modifying the transition probabilities, based on segmentation information, an attempt 
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is made to modify the transition probabilities on a frame-by-frame basis, during the 

recognition process. This may potentially improve the overall recognition performance, 

as high transition probabilities are assigned near phoneme boundaries, and low tran­

sition probabilities between boundaries, thereby decreasing the number of phoneme 

insertions and deletions. This section shows how to modify the HMM transition prob­

abilities on a frame-by-frame basis, through the use of a bi-directional recurrent neural 

network (BRNN). 

Consider the use of a neural network to estimate the it posteriori probability, P(Blx) , 

which is the probability of a phoneme boundary, given the input x, and P(B' Ix) 

which is the probability of no phoneme boundary, given the input data. The BRNN 

estimates P(Blx) and P(B'lx) for the entire sequence of input vectors, thus producing 

two output sequences containing these probabilities. Details on the use of bi-directional 

recurrent nellfal networks can be found in Chapter 2 and Appendix A. 

'I\vo different ways of modifying the transition probabilities, based on segmentation 

information, are considered in this dissertation. The first involves a linear combination 

of the segmentation probability and the HMM transition probability, whereas the sec­

ond makes use of a non-linear combination. These two techniques are discussed in the 

next two sections. 

Linear combination 

Let A be the event that an HMM transition takes place from state i to j , and B is the 

event that a phoneme boundary occurs and B' the event that no phoneme boundary 

occurs. In the following equations, substitute either B for C or B' for C, depending on 

whether an inter or an intra HMM transition is considered. The conditional probability 

that a transition from state i to j occurs , given C, can then be written as 

P(A/C) = P(A n C) 
P(C) , 
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where P(A n C) is the joint probability of events A and C, and P(C) is the a priori 

probability of event C. This can be rewritten as 

P(A n C) = P(AIC)P(C). (4.2) 

A and C can be considered as independent random variables, and the conditional 

probability P(AIC) can be written as 

P(AIC) = P(A), (4.3) 

where P(A) is the a priori probability of the event A. The joint probability of events 

A and C can then be written as 

P(A n C) = P(A)P(C), ( 4.4) 

but since P(A) = aij is just the transition probability from state i to state j, and P( C) 

is one of the two neural network outputs, Equation (4.4) can be written as 

(4.5) 

In Equation (4.5) , a;j is the modified transition probability, and Sij is one of the two 

neural network outputs, defined as 

_ {P(BIX) if transition from state i to j is an inter HMM transition 
8ij - , (4.6) 

P(B'lx) if transition from state i to j is an intra HMM transition 

where P(Blx) and P(B'lx) are the probabilities estimated by the two neural net­

work outputs. At every time instant, the transition probabilities are thus modified 
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according to Equations (4.5) and (4.6). Alternatively, the Viterbi algorithm, given by 

Equation (2.35) in Chapter 2, can be reformulated as 

(4.7) 

Non-linear combination 

The previous section showed how the segmentation information (probability of a bound­

ary and no boundary) can be linearly combined with the HMM transition probabilities 

(in the logarithmic domain). It is, however, interesting to consider using only the max­

imum of the segmentation probability and HMM transition probability, thus in effect 

trusting the "source" of the probability to be used as HMM transition probability, as 

the one with the highest probability. 

The modified HMM transition probability can thus simply be given as t he maximum 

of the segmentation probability and the HMM transition probability, or 

, 
aij = max(aijJ Sij). (4.8) 

where 3ij is defined in Equation (4.6). The standard Viterbi algorithm, given by 

Equation (2.35), needs no modification if a;j is used instead of aij. 

4.2.2 HMM word transition penalty modification 

In HTK , a word transition penalty is added when a transition from one word to an­

other occurs, as explained in Chapter 2, Section 2.2.4. This word t ransit ion penalty 
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is fixed throughout the recognition process, and must be set empirically. This section 

shows how the word transition penalty can be made adaptive on a frame-by-frame 

basis , using the segmentation information. It is intended that such an adaptive word 

transition penalty (also a phoneme penalty, as each phoneme is considered as a word 

in phoneme recognition experiments) will result in a reduction in both deletions and 

insertions. When the word transition penalty term is negative and becomes more neg­

ative, insertions tend to increase, but deletions decrease, and vice versa. By using 

the segmentation information on a frame-by-frame basis, it is believed that the word 

transition penalty term approaches a more optimal value for each frame, instead of a 

fixed word transition penalty term over all observations. Note that the term "word 

transition penalty" is used as HTK provides a fixed word transition penalty, that can 

be conveniently modified as shown below. Due to the fact that phonemes are equal to 

words in the phoneme recognition experiments, this is of little consequence. In a true 

word recognition task, the Viterbi decoding engine must be modified so that our word 

transition penalty becomes a phone transition penalty instead. 

The adaptive word transition penalty can be viewed as consisting of three terms, or 

W = a . We + b . wp + C . Wb (4.9) 

where W is the adaptive word transition penalty, We is a varying. confidence term (used 

to encourage word transitions), wp is a varying penalty term (used to discourage word 

transitions), and Wb is the standard HTK fixed penalty term, here regarded as a bias 

or offset term. The segmentation information can be conveniently incorporated into 

We and wp. Let 

We = -log{P(B']x)}, (4.10) 

and 
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Wp = + log{P(B lx)} , (4.11 ) 

where P(Blx) and P(B'l x) are the two outputs of a bi-directional recurrent neural 

network, estimating the probability of a boundary given t he input data, and the prob­

ability of no boundary given t he input data, respectively. In Equation (4.9) , Wb is set 

empirically, or can be set to zero. Equation (4.9) can t hus be rewritten as 

W = ~a .10g{P(B' Ix)} + b · log{P (Blx)} + C, Wb. ( 4.12) 

Equat ion (4.12) is in logarit hmic units. Alt.ernatively, it can be rewritten III non­

logarit hmic units as 

or 

I b 1 - 0 
W = eW = P (Blx) . P(B Ix) . Wbc, 

P (Blx)b c 

P(B'lx)" . Wb . 

(4.13) 

(4.14) 

In this dissertation, the values of a and b are all fixed at the same value, and c is 

set to +1. The specific value of a is found empirically, as t.he value that maximises 

recognition performance on a development test set . Equation (4.14) thus simplifies to 

[ 
P(Blx)] a 

P(B'lx) . Wb· 
(4.15) 

At every time instant, the word transition penalty term is thus calculated, using Equa­

t ion (4 .15), and the logarithm of t his value is added to tokens emitted from word-end 
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nodes. Alternatively, the Viterbi algorithm, given by Equation (2.35) in Chapter 2, 

can be reformulated as 

(4.16) 

where w is only added to the terms in brackets if a transition between words (phonemes) 

occur, when it is to be considered in the Viterbi search. 
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Figure 4.3: Example of an adaptive word transition penalty term with Wb = O. 

Figure 4.3 shows an example of the adaptive word transition penalty, w, with the bias 

term set to O. In this figure, it can be seen that the term varies significantly, and it 

is intended that such variations will result in better recognition performance, than if 

only a fixed penalty term (Wb) is used. This is because the Viterbi search is modified to 

favour the more likely path (with the word penalty increasing or decreasing the path 

score at each time instant) based on the phoneme boundary probabilities. 
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4.3 Accuracy measure 

In order to evaluate the recognition performance, HTK makes use of a dynamic pro­

gramming based string alignment procedure. The recognition result is compared with 

a reference transcription, provided with the database. The accuracy can be defined as 

H - J 
Ace = N . 100%, ( 4.17) 

and the percentage of labels correctly recognised by 

H 
Cor = N . 100%, (4.18) 

where H is the number of phonemes correctly recognised, J is the number of inser­

tions, D the number of deletions, and N the total number of labels in the defining 

transcription file. 
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Experiments 

This chapter reports the results obtained on phoneme segmentation and recognition 

experiments. Section 5.1 describes the segmentation of speech into phonemes, where 

Section 5.1.1 gives results for HMM based segmentation, and Section 5.1.2 for BRNN 

based segmentation. Section 5.2 discusses results obtained for the baseline phoneme 

recognition experiments. Finally, Section 5.3 gives results on the recognition of speech 

using segmentation information. Please note that in this chapter, the word "optimised" 

is used to refer to empirical optimisation, and is thus not strictly correct in a mathe­

matical sense. 

5.1 Experiment 1: Speech segmentation 

The segmentation of speech into phonemes, as discussed in detail in Chapter 3, can 

be done in two ways. The first is the use of hidden Markov models, where the Viterbi 

algorithm is used to find the most likely phone sequence, given the speech utterance. 

Since the times between the model transitions are known, these boundary locations can 

be used as the segmentation of the speech signal. The second segmentation method, 

is to use a bi-directional recurrent neural network, that estimates the probability of a 
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boundary and no boundary, given the speech vectors. A postprocessor then determines 

the actual boundary locations, through the use of a threshold function. Both of these 

techniques will be considered here. 

5.1.1 Hidden Markov models 

For the segmentation of speech, using hidden Markov models , four factors that have 

an influence on the segmentation accuracy, are investigated. The first is the number of 

mixtures used in the output probability distribution of each HMM. The second is t he 

window size, or allowed difference between the true and estimated phoneme boundary 

positions. The effects of both a language model and embedded re-estimation, are also 

investigated. 

Number of HMM mixtures 

Purpose: The purpose of this experiment is to determine the effect that the number 

of mixtures in the HMM output probability distribution, has on the segmentation 

accuracy of an HMM based segmentation system. 

Experimental setup: Speech utterances are recognised using trained HMMs, and the 

recognition results converted into a set of phoneme boundary locations, as described 

in Chapter 3. The HMMs are trained on 3696 files of the TIMIT training set, and 

evaluated by segmenting the 1344 files of the TIM IT test set (the full test set). No 

language model is used , and embedded re-estimation is not performed. The window 

size is fixed at 3 (20 ms). 

Results: Figure 5.1 shows the effect of the number of mixtures in the HMM output 

probability density has on the segmentation accuracy. The details of these results are 

given in Table 5.1. The table shows the average accuracy and percentage of boundaries 

correct.ly identified, the number of boundaries correctly matched (hits), insertions and 
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deletions , over the full test set . It can be seen that the number of mixtures does 

not have a significant influence on the segmentation accuracy. The best segmentation 

accuracy, at a window size of 3, is obtained with 8 mixtures, and is equal to 71.23%, 

with a percentage correct of 87.07%. The average number of hits , insertions and 

deletions, per utterance (sentence) over the complete test data set , is equal to 31.40, 

5.40, and 4.64, respectively. The average number of true boundaries per utterance 

is 36.05 and the average number of observations (frames) per utterance is 305.71. It 

should be noted that even though the best performance was obtained with 8 mixtures, 

2 mixtures would probably be sufficient to model the acoustic space due to the fact 

that the TIMIT database consists of male and female speakers . 

85 _~-----------------.---------------~ •. ----, .. ---
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Figure 5.1: Effect of the number of mixtures in the HMMs, on the segmentation perfor­

mance. No language model is used, ~lJld no embedded re-estimation performed. 
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Table 5.1: Numerical results of the segmentation performance obtained with the HMM 

based segmentation system, for different numbers of mixtures in the output probability den­

sities. No language model or embedded re-estimation is performed. 

Mixtures Accuracy Correct Hits Insertions Deletions 

(%) (%) (#) (#) (# ) 
1 69.86 84.44 30.40 5.04 5.64 

2 71.18 86.03 30.97 5.12 5.07 

3 70.98 86.87 31.28 5.45 4.77 

4 70.47 87.17 31.41 5.71 4.64 

5 6913 87.23 31.45 6.20 4.60 

6 70.91 87.04 31.38 5.51 4.67 

7 71.18 87.05 31.40 5.40 4.65 

8 71.23 87.07 31.40 5.40 4.64 

Language model 

Purpose: The purpose of this experiment is to determine the effect that the use of 

a language model has on the segmentation accuracy of an HMM based segmentation 

system. The variation of segmentation performance with the number of HMM mixtures 

is investigated for the case of a language model. 

Experimental setup: Speech utterances are recognised using trained HMMs, and the 

recognition results converted into a set of phoneme boundary locations, as described 

in Chapter 3. The HMMs are trained on 3696 files of the TIMIT training set, and 

evaluated by segmenting the 1344 files of the TIMIT test set (the full test set). A 

bigram language model, calculated on the text data of the training set , is used and 

embedded re-estimation is not performed. The window size is fixed at 3 (20 ms). 

Results : Table 5.2 shows the variation of the segmentation performance with the 

number of mixtures in the HMM output probability density, when a language model 
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Table 5.2: Summary of results showing the segmentation performance obtained with the 

HMM based segmentation system, fo r different numbers of mixtures in the output probability 

densities. A bigram language model is used and no embedded re-estimation is performed. 

Mixtures Accuracy Correct Hits Insertions Deletions 

(%) (%) (# ) (#) (#) 

1 72.85 80.56 29.04 2.63 7.02 

2 75.08 82.84 29.85 2.66 6.20 

3 75.36 83.53 30.12 2.76 593 

4 75.37 83.95 30.27 2.90 5.77 

5 74.95 84.02 30.31 3.07 5.73 

6 75.58 84.10 30.35 2.88 5.69 

7 75.69 84.11 30.35 2.85 5.69 

8 75.62 84.03 30.33 2.84 5.72 

is used. The table shows the average accuracy and percentage of boundaries correctly 

identified, the number of boundaries correctly matched (hits), insertions and deletions, 

over the full test set. It can be seen that number of mixtures does not have a significant 

influence on the segmentation accuracy. The language model has the additional effect 

of smoothing the segmentation performance, as the number of insertions is decreased. 

The number of hits , however, decreases slightly, and the number of deletions slightly 

increases. T his explains the slight decrease in the percentage correct, over the case 

when no language model is used. The best segmentation accuracy is obtained with 7 

mixtures, and is equal to 75 .69%, with a percentage correct of 84.11%. The average 

number of hits, insertions and deletions is equal to 30.35, 2.85 , and 5.69 , respectively. 

The average number of true boundaries is 36.05 and the average number of observations 

(frames) is 305.71. Here 3 mixtures would probably be sufficient for the segmentation 

task , even though the best performance was obtained with 7 mixtures. 
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Embedded re-estimation 

Purpose: The purpose of this experiment is to determine the effect that the use of 

embedded re-estimation has on the segmentation accuracy of an HMM based segmen­

tation system. The variation of segmentation performance with the number of HMM 

mixtures is investigated both when no language model is used, and when a language 

model is used. 

Experimental setup: Speech utterances are recognised using trained HMMs, and the 

recognition results converted into a set of phoneme boundary locations, as described 

in Chapter 3. The HMMs are trained on 3696 files of the TIMIT training set, and 

evaluated by segmenting the 1344 files of the TIMIT test set (the full test set). When 

a language model is used , a bigram language model is chosen. Embedded re-estimation 

is performed. The window size is fixed at 3 (20 ms). 

Results: Tables 5.3 and 5.4 show the variation of the segmentation performance with 

the number of mixtures in the HMM output probability distribution, when both a lan­

guage model and no language model is used, and embedded re-estimation is performed. 

The tables shows the average accuracy and percentage of boundaries correctly identi­

fied, the number of boundaries correctly matched (hits) , insertions and deletions , over 

the full test set. It can be seen that number of mixtures does not have a significant 

influence on the segmentation accuracy. The language model has the additional effect 

of smoothing the segmentation performance, as the number of insertions is decreased. 

The number of hits, however, decreases slightly, and the number of deletions slightly 

increases. This explains the slight decrease in the percentage correct, when no language 

model is used. When a language model is not used , the best segmentation accuracy is 

obtained with 7 mixtures, and is equal to 70.27%, with a percentage correct of 88.04%. 

T he average number of hits , insertions and deletions is equal to 31.76, 6.07, and 4.29, 

respectively. When a language model is used , the best segmentation accuracy is ob­

tained with 4 mixtures, and is equal to 75.47%, with a percentage correct of 85.28%. 

The average number of hits , insertions and deletions is equal to 30.77, 3.31, and 5.27, 
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Table 5.3: Numerical results of the segmentation performance obtained with the HMM 

based segmentation system, for different numbers of mixtures in the output probability den­

sities. No language model is used and embedded re-estimation is performed. 

Mixtures Accuracy Correct Hits Insertions Deletions 

(%) (%) (#) (#) (#) 

1 69.00 85.83 30.90 5.82 5.15 

2 68.28 87.18 31.42 6.49 4.63 

3 69.47 8790 31.68 6.34 4.37 

4 69.52 88.29 31.83 6.42 4.22 

5 68.14 88.47 31.91 6.97 4.14 

6 69.73 88.03 31.76 6.25 4.29 

7 70.27 88.04 31.76 6.07 4.29 

8 69.70 87.43 31.53 6.07 4.51 

respectively. The average number of true boundaries is 36.05 and the average number 

of observations (frames) is 305.71. Embedded re-estimation thus results in a slight 

decrease in the segmentation performance [71.23% vs 70.27% (no LM) and 75.69 vs 

75.47 (with LM)]. 

Window size 

Purpose: The purpose of this experiment is to determine the effect that the window 

size has on the segmentation accuracy of an HMM based segmentation system. The 

variation of segmentation performance with the window size is investigated both when 

no language model is used, and when a language model is used. 

Experimental setup: Speech utterances are recognised using trained HMMs, and the 

recognition results converted into a set of phoneme boundary locations, as described 

in Chapter 3. The HMMs are trained on 3696 files of the TIMIT training set, and 
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Table 5.4: Numerical results of the segmentation performance obtained with the HMM 

based segmentation system, for different numbers of mixtures in the output probability den­

sities. A bigram language model is used and embedded re-estimation is performed. 

Mixtures Accuracy Correct Hits Insertions Deletions 

(%) (%) (# ) (#) (#) 
1 73.20 82.49 29.72 3.18 6.32 

2 73.78 84.14 30.35 3.52 5.70 

3 74.92 84.88 30.62 3.40 5.43 

4 75.47 85.28 30.77 3.31 5.27 

5 75.03 85.34 30.80 3.51 5 .24 

6 75.23 85.24 30.79 3.40 526 

7 75.40 85.22 30.78 3.32 5.26 

8 74.34 84.83 30.64 3.56 5.41 

evaluated by segmenting the 1344 files of the TIMIT test set (the full test set). When 

a language model is used, a bigram language model is chosen. Embedded re-estimation 

is performed. The number of mixtures is fixed at 8. 

Results: Figure 5.2 shows the variation of the segmentation performance with the 

window size, when no language model is used, and embedded re-estimation is per­

formed. These results are given numerically in Table 5.5. Table 5.6 shows the results 

when a language model is used. The tables shows the average accuracy and percent­

age of boundaries correctly identified, the number of boundaries correctly matched 

(hits) , insertions and deletions, over the full test set. It can be seen that the window 

size has a significant effect on the perceived segmentation performance. The use of a 

language model increases the segmentation performance, as the number of insertions 

is decreased. Many researchers mention segmentation accuracy at a window size of 

20 ms, or a window size of 3, as used in this dissertation. When a language model is 

not used , the segmentation performance at a window size of 3 is equal to 69.70% , with 

a percentage correct of 87.43%. The average number of hits, insertions and deletions is 
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equal to 31.53, 6.07, and 4.51, respectively. When a language model is used , the best 

segmentation accuracy at a window size of 3, is equal to 74.34%, with a percentage 

correct of 84.83%. The average number of hits, insertions and deletions is equal to 

30.64, 3.56, and 5.41 , respectively. The average number of true boundaries is 36.05 

and the average number of observations (frames) is 305 .71. 
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Figure 5.2: Effect of the window size (see Section 3.4 for a discussion of the window size 

and its mapping to time) on the segmentation performance. No language model is used, and 

embedded re-estimation performed. The number of mixtures is equal to 8. 

The results of Section 5.1.1 (segmentation using HMMs) are summarised and compared 

in Chapter 6. 

5.1.2 Recurrent neural network 

For t he segmentation of speech, using a recurrent neural network, or more precisely, a 

bi-directional recurrent neural network, three main parameters have an influence on the 
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Table 5.5: Numerical results of the segmentation performance obtained with the HMM 

based segmentation system, for different window sizes. No language model is used and em­

bedded re-estimation is performed. The number of mixtures is set to 8. 

Window size Accuracy Correct Hits Insertions Deletions 

(%) (%) (#) (# ) (#) 

0 -51.31 26.93 9.80 27.81 26.25 

1 29.34 67.26 24.45 13.15 11.59 

2 60.42 82 .80 29.96 7.64 6.08 

3 69.70 87.43 31.53 6.07 4.51 

4 73.29 89.23 32.15 5.46 3.90 

5 74.98 90.08 32.43 5.17 3.61 

6 75.88 90.53 32 .59 5.02 3.46 

7 76.45 90.81 32.68 4.92 3.37 

8 76.72 90.95 32.73 4.88 3.32 

9 76.93 91.05 32.76 4.84 3.28 
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Table 5.6: Numerical results of the segmentation performance obtained with the HMM 

based segmentation system, for different window sizes. A bigram language model is used and 

embedded re·estimation is performed. The number of mixtures is set to 8. 

Window size Accuracy Correct Hits Insertions Deletions 

(%) (%) (#) (#) (# ) 
0 -41.37 26.97 9.85 24.34 26.19 

1 36.23 65.77 23.96 10.25 12.10 

2 65 .34 80.32 29 .12 5.08 6.93 

3 74.34 84.83 30.64 3.56 5.41 

4 78.10 86.71 31.27 2.93 4.78 

5 79.83 87.57 31.55 2.64 4.49 

6 80.74 88.03 31.71 2.49 4.33 

7 81.31 88.31 31.80 2.39 4.24 

8 81.65 88.48 31.86 2.34 4.19 

9 81.84 88.57 31.89 2.31 4.16 
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segmentation accuracy. The first is the number of hidden nodes in the network, that 

affects the network modeling capability. The second is the value of the threshold in 

the postprocessor, used to decide whether the probability of a boundary, as estimated 

by the neural network, is high enough to be regarded as a boundary or not . The final 

parameter that has a major influence on segmentation accuracy, is the window size, or 

allowed difference between the true and estimated phoneme boundary positions. 

Number of hidden nodes 

Purpose: The purpose of this experiment is to determine the effect that the number 

of hidden nodes in the bi-directional recurrent neural network has on the segmentation 

accuracy of a BRNN based segmentation system. 

Experimental setup: The bi-directional recurrent neural network is trained using the 

3696 TIMIT training files. The 1344 TIMIT test files (full test set) are then segmented. 

The neural network is trained for 250 iterations of backpropagation through time, with 

a learning rate of 0.001, with the weights in the network initialised uniformly between 

-0.15 and 0.15. For each number of hidden nodes , the network chosen is the one at 

the iteration which gives the best performance on the test set. The number of forward 

hidden nodes is equal to the number of hidden nodes , and the number backward hidden 

nodes as well. The total number of hidden nodes is thus equal to twice the number of 

hidden nodes , as mentioned here. In this experiment , the boundary threshold is fixed 

at 0.35 and the window size at 3. 

Results: Figure 5.3 shows the effect that the number of hidden nodes has on the 

segmentation accuracy. These results are summarised numerically in Table 5.7. The 

table shows the average accuracy and percentage of boundaries correctly identified, 

the number of boundaries correctly matched (hits), insertions and deletions, over the 

full test set. It can be seen that number of hidden nodes has a significant effect on 

the segmentation performance. The best segmentation accuracy is obtained with 60 
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hidden nodes, and is equal to 80.12%, with a percentage correct of 86.20%. The average 

number of hits, insertions and deletions is equal to 31.14, 2.14, and 4.91, respectively. 

The average number of true boundaries is 36.05 and the average number of observations 

(frames) is 305.71. 
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Figure 5.3: Effect of the number of neural network hidden nodes on t he segmentation 

performance. The boundary threshold is set at 0.35 and the window size at 3. 

Boundary threshold 

Purpose: The purpose of this experiment is to determine the effect that the boundary 

threshold in the postprocessor of the neural network, has on the segmentation accuracy 

of a BRNN based segmentation system. 

Experimental setup: The bi-directional recurrent neural network is trained using the 

3696 TIMIT training files. The 1344 TIMIT test files (full test set) are then segmented. 

The neural network is trained for 250 iterations of backpropagation through time, with 
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Table 5.7: Numerical results of the segmentation performance obtained with the BRNN 

b3.'led segmentation system, for different numbers of hidden nodes. The boundary threshold 

is set at 0.35 and the window size at 3. 

Hidden nodes Accuracy Correct Hits Insertions Deletions 

(%) (%) (#) (#) (#) 
10 75.88 82.69 29.90 2.37 6.14 

20 77.54 83.72 30.27 2.13 5.78 

30 79.10 85.72 30 .96 2.24 5.09 

40 80.07 85.91 31.02 2.02 5.03 

50 79.37 85.37 30.85 2.06 5.20 

60 80.12 86.20 31.14 2.14 4.91 

70 80.10 86.48 31.22 2.20 4.82 

80 79.73 86.08 31.07 2.23 4.98 

90 78.86 84.65 30.58 1.99 5.46 

100 7918 85.34 3084 2.12 5.21 
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a learning rate of 0.001, with the weights in the network initialised uniformly between 

-0.15 and 0.15. For each number of hidden nodes, the network chosen is the one at the 

iteration (between 1 and 250) which gives the best performance on the test set . The 

number of forward hidden nodes (Ni ) is equal to the number of backward hidden nodes 

(Nb). We call this the number of hidden nodes (Ni = Nb = Nh)' The total number 

of hidden nodes (Nh1ot ) is thus equal to twice the number of hidden nodes (Nh ), as 

mentioned here. In this experiment Ni = Nb = Nh is fixed at 50. The window size is 

set to 1 (the true and estimated boundaries may only differ by 1 frame). 

Results: Figure 5.4 shows the effect that the boundary threshold has on the segmen­

tation accuracy. These results are given numerically in Table 5.8. The table shows 

the average accuracy and percentage of boundaries correctly identified, the number of 

boundaries correctly matched (hits), insertions and deletions, over the full test set. It 

can be seen that the boundary threshold has a significant effect on the segmentation 

performance. The best segmentation accuracy is obtained with a boundary threshold 

of 0.35, and is equal to 68.41 %, with a percentage correct of 79.89%. The average num­

ber of hits, insertions and deletions is equal to 28.95, 3.95, and 7.10, respectively. The 

average number of true boundaries is 36.05 and the average number of observations 

(frames) is 305 .7l. 

Window size 

Purpose: The purpose of this experiment is to determine the effect that the window 

size has on the segmentation accuracy of a BRNN based segmentation system. 

Experimental setup: The bi-directional recurrent neural network is trained using the 

3696 TIMIT training files. The 1344 TIMIT test files (full test set) are then segmented. 

The neural network is trained for 250 iterations of backpropagation through time, with 

a learning rate of 0.001, with the weights in the network initialised uniformly between 

-0.15 and 0.15. For each number of hidden nodes , the network chosen is the one at 
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Table 5.8: Numerical results of the segmentation performance obtained with the BRNN 

based segmentation system, for different boundary threshold values. The number of hidden 

units is set at 50 (for both the forward and backward hidden nodes) and the window size at 

l. 

Threshold Accuracy Correct Hits Insertions Deletions 

(%) (%) (#) (#) (# ) 
0.00 25.93 86.53 31.28 20.42 4.77 

0.05 56.83 85.81 3l.02 9.93 5.03 

0.10 6l.84 85.13 30.78 7.99 527 

0.15 64.94 84.38 30.51 6.69 5.53 

0.20 66.60 83.44 30.18 5.78 5.86 

0.25 67.74 82.52 29.85 5.07 6.19 

0.30 68.20 8l.31 29 .44 4.51 6.61 

0.35 68.42 79.89 28.95 3.96 7.10 

0.40 68.25 79.09 28.66 3.76 738 

0.45 67.85 77.32 28.05 3.29 8.00 

0.50 66.89 75.05 27.24 2.84 8.81 

0.55 65.42 72.55 26.39 2.48 9.66 

0.60 63.25 69.20 25.22 2.07 10.83 

0.65 59.67 64.48 23.54 l.68 12.50 

070 5413 57.94 2l.20 l.34 14.85 

0.75 45.15 48.03 17.60 l.01 18.45 

0.80 33.00 35.23 12.90 0.77 23.15 

0.85 18.16 19.98 7.32 0.63 28.73 

0.90 5.49 7.16 2.60 0.58 33.44 

0.95 -0.46 0.77 0.27 0.42 35.77 

l.00 -0.60 063 0.22 0.42 35.82 
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Figure 5.4: Effect of the threshold used at the neural network outputs to decide in favour 

of a boundary or not. The number of hidden nodes is 50 and the window size is 1. 

the iteration (1 to 250) which gives the best performance on the test set. In this 

experiment , Nt = Nb = Nh is fixed at 50. The boundary threshold is set at 0.35. 

Results: Figure 5.5 shows the effect that the window size has on the segmentation 

accuracy. These results are given numerically in Table 5.9. The table shows the average 

accuracy and percentage of boundaries correctly identified, the number of boundaries 

correctly matched (hits), insertions and deletions , over the full test set. It can be seen 

that the window size has a significant effect on the segmentation performance. The 

accuracy at a window size of 20 ms, or a window size of 3, as used in this dissertation, 

is equal to 79 .37%, with a percentage correct of 85.37%. The average number of hits , 

insertions and deletions is equal to 30.85, 2.06, and 5.20, respectively. The average 

number of true boundaries is 36.05 and the average number of observations (frames) 

is 305.71. 
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Table 5.9: Numerical results of the segmentation performance obtained with the BRNN 

based segmentation system, for different window size. The number of hidden units is set at 

50 (for both the forward and backward hidden nodes) and the boundary threshold at 0.35. 

Window size Accuracy Correct Hits Insertions Deletions 

(%) (%) (# ) (# ) (# ) 
0 5.27 48.31 17.56 15.35 18.49 

1 68.42 79.89 28.95 3.96 7.10 

2 76.66 84.01 30.39 2.52 5.66 

3 79.37 85.37 30.85 2.06 5.20 

4 80.36 85.86 31.02 1.89 5.03 

5 80.86 86.11 3l.l0 1.81 4.94 

6 8l.l4 86.25 3l.l5 1.76 4.90 

7 81.34 86.35 3l.l8 1.72 4.86 

8 81.47 86.41 31.20 1.70 4.84 

9 81.56 86.46 31.22 1.70 4.83 
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Figure 5.5: Effect of the window size on the segmentation performance of the BRNN. The 

number of hidden units is 50 and the boundary threshold is set at 0.35. 

The results of Section 5.1.2 (segmentation using HMMs) are summarised and compared 

in Chapter 6. In conclusion it can be seen that the BRNN segments speech better than 

the HMM-based approach for TIMIT data not containing any noise. 

5.2 Experiment 2: Speech recognition (baseline) 

This section reports on the phoneme recognition performance of the baseline phoneme 

recogniser , based on HTK, as discussed in Chapter 4. Four different experiments are 

conducted. The first is to evaluate the effect of the number of mixtures in the HMM 

output probability distribution. The second and third experiments investigate the effect 

of a language model and word t ransition penalty, respectively. Finally, t he combined 

use of both a language model and word transition penalty is investigated. 
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5.2.1 Number of HMM mixtures 

Purpose: The purpose of this experiment is to determine the effect that the number of 

mixtures in the HMM output probability distribution , has on the phoneme recognition 

performance of an HMM based recognition system when no language model is used. 

Experimental setup: Speech utterances are recognised using trained HMMs. The 

HMMs are trained on 3696 files of the TIMIT training set, and evaluated by recognising 

the 1344 files of the TIMIT test set (the full test set). No language model or word 

transition penalty is used. 

Results: Figure 5.6 shows the effect that the number of mixtures has on the recognition 

performance, when no language model is used. These results are given numerically in 

Tables 5.10 and 5.11. Tables 5.12 and 5.13 summarise these results. In the figures, 

"HERest" indicates the use of additional embedded re-estimation iterations (see [3J for 

further details). When a language model and embedded re-estimation are not used, 

the maximum percentage correct is 62.17% and accuracy 52.37%, with 31554 hits, 4915 

deletions , 14285 substitutions, and 4975 insertions. When no language model is used, 

but embedded re-estimation is performed, the maximum percentage correct is 64.80% 

and accuracy 54.08%, with 32890 hits , 4308 deletions, 13556 substitutions, and 5440 

insertions. There are a total of 50754 phonemes in the complete test set . 

5.2.2 Language model 

Purpose: The purpose of this experiment is to determine the effect that the number of 

mixtures in the HMM output probability distribution, has on the phoneme recognition 

performance of an HMM based recognition system when a language model is used. 

Experimental setup: Speech utterances are recognised using trained HMMs. The 

HMMs are trained on 3696 files of the TIMIT training set, and evaluated by recognising 
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Table 5.10: Numerical results of the baseline HMM recognition performance variation with 

the number of mixtures, when no language model is used, and no embedded re-estimation is 

performed. 

Mixtures Correct Accuracy Hits Deletions Substitutions Insertions 

(%) (%) (# ) (# ) (#) (#) 

1 53.37 44.64 27087 6204 17463 4428 

2 57.52 48.32 29192 5570 15992 4670 

3 59.26 49 .22 30079 5145 15530 5096 

4 60.73 49.96 30823 4983 14948 5468 

5 61.56 49.66 31244 4852 14658 6041 

6 62.04 51.91 31487 4976 14291 5141 

7 61.97 52.08 31452 4966 14336 5017 

8 62.17 52.37 31554 4915 14285 4975 

Table 5.11: Numerical results of the baseline HMM recognition performance variation with 

the number of mixtures , when no language model is used, and embedded re-estimation is 

performed. 

Mixtures Correct Accuracy Hits Deletions Substitutions Insertions 

(%) (%) (#) (# ) (#) (#) 

1 55.87 45.54 28354 5304 17096 5243 

2 60.12 4802 30514 4602 15638 6142 

3 62.41 50.52 31674 4339 14741 6032 

4 62.98 50.80 31963 4181 14610 6179 

5 63.43 49.76 32194 4097 14463 6937 

6 63.97 52.45 32469 4176 14109 5846 

7 64.06 52.94 32515 4218 14021 5644 

8 64.80 54.08 32890 4308 13556 5440 
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Figure 5.6: Effect of the number of mixtures on HMM phoneme recognition performance. 

No language model is used. 

the 1344 files of the TIMIT test set (the full test set). A bigram language model is 

used. In the figures given in this experiment , the language model scale factor is set to 

2.0. In order to determine the "optimal" value of the language model scale factor (8 in 

Equation (2.45)), it is varied from 0.0 to 10.0 in steps of 1.0. The language model scale 

factor that results in the highest recognition accuracy is seen as the "optimal" value. 

A word transition penalty is not used. 

Results: Figure 5.7 shows the effect that the number of mixtures has on the recognition 

performance, when a language model is used. These results are given numerically in 

Tables 5.12 and 5.13. In the figures, "HERest" indicates the use of additional embedded 

re-estimation iterations (see [3J for further details). When a language model is used , 

and embedded re-estimation is not used, the maximum percentage correct is 64.21 % 

and accuracy 60.54%, with 32589 hits, 6695 deletions, 11470 substitutions, and 1861 

insertions. When a language model is used, but embedded re-estimation is performed, 
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the maximum percentage correct is 66.82% and accuracy 62 .41%, with 33914 hits, 

5685 deletions, 11155 substitutions, and 2237 insertions. There is are a total of 50754 

phonemes in the complete test set. When the language model scale factor is optimised 

on the core test set (192 files for the TIM IT test set), for 8 mixtures in the HMM output 

probability density, a percentage correct of 65.18%, an accuracy of 62 .38%, 4703 hits, 

1006 deletions, 1506 substitutions, and 202 insertions is obtained, for a total of 7215 

phonemes in the 192 sentences. This can be compared to the case when no language 

model or word transition penalty is used, which gives a percentage correct of 63.92%, 

an accuracy of 52.99%, 4612 hits, 651 deletions , 1952 substitutions, and 789 insertions 

on the core test set . The language model scale factor is found to give the best results 

at 4.0 when no word transition penalty is used. 
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Figure 5.7: Effect of the number of mixtures on HMM phoneme recognition performance. 

A language model is used. 
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Table 5.12: Numerical results of the baseline recognition performance variation with the 

number of mixtures, when a language model is used, and no embedded re-estimation is per­

formed. 

Mixtures Correct Accuracy Hits Deletions Substitutions Insertions 

(%) (%) (# ) (#) (# ) (#) 

1 55.37 5l.83 28104 8655 13995 1800 

2 59.78 56.04 30341 7615 12798 1897 

3 6l.31 57.44 31115 7185 12454 1962 

4 62.71 5871 31827 6861 12066 2031 

5 63.26 58.83 32105 6790 11859 2246 

6 63.91 60.03 32437 6709 11608 1967 

7 64.05 60.28 32510 6704 11540 1917 

8 64.21 60.54 32589 6695 11470 1861 

Table 5.13: Numerical results of the baseline recognition performance variation with the 

number of mixtures, when a language model is used, and embedded re-estimation is performed. 

Mixtures Correct Accuracy Hits Deletions Substitutions Insertions 

(%) (%) (# ) (# ) (# ) (#) 

1 57.78 53.35 29325 7434 13995 2246 

2 62 .09 57.10 31514 6424 12816 2535 

3 64.06 59.34 32512 6075 12167 2393 

4 64.73 60.09 32855 5949 11950 2355 

5 64.99 59 .86 32984 5905 11865 2605 

6 65.75 61.19 33372 5783 11599 2318 

7 66.03 6l.59 33514 5821 11419 2254 

8 66.82 62.41 33914 5685 11155 2237 
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5.2.3 Word transition penalty 

Purpose: The purpose of this experiment is to determine the effect that a word 

transition penalty has on the phoneme recognition performance of an HMM based 

recognition system when a language model is not used. 

Experimental setup: Speech utterances are recognised using trained HMMs. T he 

HMMs are trained on 3696 files of the TIMIT training set, and evaluated by recognising 

the 192 files of the TIMIT test set (the core test set). A language model is not used . 

In order to determine the "optimal" value of the fixed word transition penalty (the bias 

term, Wb, in Equation (4.9)), experiments were performed with Wb varied from -10.0 to 

20.0 in steps of 1.0. The word transition penalty that results in the highest recognition 

accuracy is seen as the "optimal" value. 

Results: When no language model is used, but a word transition penalty is, the 

performance of the system can be increased over the case when no word transition 

penalty is used. When the word transition penalty is optimised on the TIM IT core 

test set, a percentage correct of 60.18%, an accuracy of 55.45%, 4342 hits, 1052 dele­

tions , 1821 substitutions, and 341 insertions on the core test set (containing a total 

of 7215 phonemes). The word transition penalty is found to give the best recognition 

performance when set to -6.0, when no language model is used. 

5.2.4 Combined language model and word transition penalty 

Purpose: The purpose of this experiment is to determine the effect that the combined 

use of a language model and word transition penalty has on the phoneme recognition 

performance of an HMM based recognition system. 

Experimental setup: Speech utterances are recognised using trained HMMs. The 

HMMs are trained on 3696 files of the TIMIT training set, and evaluated by recognising 
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the 192 files of the TIMIT core test set. A bigram language model is used. In order to 

determine the "optimal" values of the language model scale factor (8 in Equation (2.45)) 

and fixed word transition penalty (the bias term, W&, in Equation (4.9)), they are varied 

from 0.0 to 10.0, and -10.0 to 20.0, respectively, in steps of 1.0. The values that result 

in the highest recognition accuracy is seen as the "optimal" values. 

Results: When a language model is used, as well as a word transition penalty, the 

performance of the system can be increased significantly. When the language model 

scale factor and word transition penalty is jointly optimised on the TIMIT core test 

set, a percentage correct of 67.05%, an accuracy of 63.23%, 4838 hits, 820 deletions, 

1557 substitutions, and 276 insertions on the core test set (containing a total of 7215 

phonemes) . The language model scale factor and word transition penalty is found to 

give the best recognition performance when both are set to 5.0. Figure 5.8 shows the 

general trend of the recognition performance, as the language model scale factor is 

varied, with the fixed word transition penalty (bias) fixed at 17.0. Figure 5.9 shows 

the general trend of the recognition performance, as the fixed (bias) word transition 

penalty is varied, with the language model scale factor fixed at 4.0. 

5.3 Experiment 3: Speech recognition using segmen­

tation information 

This section reports results on the recognition of speech using segmentation informa­

tion, as discussed in detail in Chapter 4. Results on the modification of the HMM 

transition probabilities (both linear and non-linear), as well as an adaptive word tran­

sition penalty, are given. The combined effect of transition and word transition penalty 

modification is also evaluated. 
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Figure 5.8: Effect of the language model scale factor on HMM recognition performance. A 

fixed (bias) word transition penalty of 17.0 is used. 

5.3.1 HMM transition probability modification 

Purpose: The purpose of this experiment is to determine the effect that the modifica­

tion of HMM transition probabilities, from the segmentation information, has on the 

phoneme recognition performance of an HMM based recognition system. 

Experimental setup: Speech utterances are recognised using trained HMMs. The 

HMMs are trained on 3696 files of the TIMIT training set, and evaluated by recognising 

the 192 files of the TIMIT test set (the core test set). When a language model is used, a 

bigram language model is chosen, and the word transition penalty used is just the fixed 

bias term, as described in Chapter 4. In order to determine the "optimal" values of the 

language model scale factor (8 in Equation (2 .45)) and fixed word transition penalty 

(the bias term, Wb, in Equation (4.9)), they are varied from 0.0 to 10.0, and -10.0 to 
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Figure 5.9: Effect of the fixed (bias) word transition penalty on HMM recognition perfor­

mance. A language model scale factor of 4.0 is used. 

20.0 , respectively, in steps of 1.0. The values that result III the highest recognition 

accuracy is seen as t he "optimal" values. 

Results: The use of segmentation information, to modify the HMM transit ion prob­

abilities , can increase the recognition performance of t he system. Table 5.14 gives t he 

results numerically. In this table, "LM" indicates the language model scale factor and 

"WP" indicates the fixed word transition penalty (bias) . Results are given for both 

linear and non-linear combination of segmentation information with HMM transition 

probabilities. 
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Table 5.14: Numerical results of the phoneme recognition performance when the HMM 

transition probabilities are modified , using segmentation information. 

Linear combination 

LM WP Correct Accuracy Hits Deletions Substitutions Insertions 

(%) (%) (# ) (# ) (# ) (# ) 

0.0 0.0 53.40 55.41 4574 739 1902 575 

0.0 -4.0 51.00 55.34 4401 989 1825 335 

3.0 0.0 55 .29 52 .54 4711 953 1541 199 

5.0 8.0 57.78 63.58 4890 730 1595 303 

N on-linear combination 

LM WP Correct Accuracy Hits Deletions Substitutions Insertions 

(%) (%) (# ) (# ) (# ) (# ) 

0.0 0.0 54.27 52.47 4537 620 1958 851 

0.0 -5.0 51.29 55.55 4422 934 1859 413 

4.0 0.0 55.35 52.37 4715 975 1523 216 

5.0 5.0 67.08 63.02 4840 805 1570 293 
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5.3.2 HMM word transition penalty modification 

Purpose: The purpose of this experiment is to determine the effect that the modifi­

cation of HMM word transition penalty (used here as a phoneme transition penalty), 

from the segmentation information, has on the phoneme recognition performance of an 

HMM based recognition system. 

Experimental setup: Speech utterances are recognised using trained HMMs. The 

HMMs are trained on 3696 files of the TIMIT training set, and evaluated by recognising 

the 192 files of the TIMIT test set (the core test set). When a language model is 

used, a bigram language model is chosen, and the word transition penalty used is 

the fixed bias term, plus two additional time-varying components, as described in 

Chapter 4. In order to determine the "optimal" values of the language model scale 

factor (8 in Equation (2.45)) and fixed word transition penalty (the bias term, Wb, in 

Equation (4.9)), they are varied from 0.0 to 10.0, and -10.0 to 20.0, respectively, in 

steps of 1.0. The values that result in the highest recognition accuracy is seen as the 

"optimal" values. The scale factors (a and b) for the two time-varying components (wp 

and W e in Equation (4.9)) of the word transition penalty are set equal to each other 

and varied from 0.0 to 15.0 in steps of 1.0, in order to determine the "optimum" scale 

factor. 

Results: The use of segmentation information, to modify the HMM word transition 

penalty term, can increase the recognition performance of the system. Table 5.15 gives 

the results numerically. In this table, "LM" indicates the language model scale factor, 

"WP" indicates the fixed word transition penalty (bias), and "AWP" indicates the scale 

factors ((a and b in Equation (4.9)) used for the two time-varying word transition 

penalty terms (we and wp in Equation (4.9)). Figure 5.lD shows the effect that the 

adaptive word transition penalty terms have on the recognition performance, when 

both a language model and fixed word transition penalty term are used. 
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Table 5.15: Numerical results of the phoneme recognition performance when the word 

transition penalty is modified, using segmentation infOl'mation. 

LM 

0.0 

0.0 

3.0 

4.0 

5.3.3 

WP AWP Correct Accuracy Hits Deletions Substitutions Insertions 

(%) (%) (#) (# ) (# ) (#) 

0.0 9.0 61.98 5940 4472 859 1884 186 

1.0 9.0 62 .33 59.60 4497 819 1899 197 

0.0 3.0 65.07 63.01 4695 963 1557 149 

17.0 10.0 68.58 64.93 4948 610 1657 263 

Combined transition probability and word penalty mod­

ification 

Purpose: The purpose of this experiment is to determine the effect that the combined 

modification of HMM transition probabilities and word transition penalty (used here as 

a phoneme transition penalty), from the segmentation information, has on the phoneme 

recognition performance of an HMM based recognition system. 

Experimental setup: Speech utterances are recognised using trained HMMs. The 

HMMs are trained on 3696 files of the TIMIT training set, and evaluated by recognising 

t he 192 files of the TIMIT core test set . When a language model is used, a bigram 

language model is chosen, and the word transition penalty used is just the fixed bias 

term, as described in Chapter 4. In order to determine the "optimal" values of the 

language model scale factor (8 in Equation (245)) and fixed word transition penalty 

(the bias term, Wh, in Equation (4.9)), they are varied from 0.0 to 10.0, and -10.0 to 

20.0, respectively, in steps of 1.0. The values that result in the highest recognition 

accuracy is seen as the "optimal" values. The scale factors (a and b) for the two time­

varying components (wp and We in Equation (4.9)) of the word transition penalty are 

set equal to each other and varied from 0.0 to 15.0 in steps of 1.0, in order to determine 
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Figure 5.10: Effect of the adaptive word transition penalty scale factor on the phoneme 

recognition performance. 

the "optimum" scale factor. 

Results: The use of segmentation information, to modify the HMM transition proba­

bilities, as well as the word transition penalty term, can increase the recognition per-

formance of the system. Table 5.16 gives the results numerically. In this table, "LM" 

indicates the language model scale factor, "WP" indicates the fixed word transition 

penalty (bias), and "AWP" indicates the scale factors ((a and b in Equation (4.9)) used 

for the two t ime-varying word transition penalty terms (we and wp in Equation (4.9) ). 

Results are given for both linear and non-linear combination of segmentation informa­

tion with HMM transition probabili ties. 
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Table 5.16: Numerical results of the phoneme recognition performance when the HMM 

transition probabilities and word transition penalty are modified, using segmentation infor­

mation. 

Linear combination 

LM WP AWP Correct Accuracy Hits Deletions Substitutions Insertions 

(%) (%) (# ) (# ) (#) (# ) 

0.0 0.0 8.0 61.66 59.22 4449 882 1884 176 

0.0 3.0 9.0 62.56 59.58 4514 785 1916 215 

3.0 0.0 1.0 65.03 62.73 4692 986 1537 166 

4.0 17.0 8.0 68.84 64.91 4967 597 1651 284 

Non-linear combination 

LM WP AWP Correct Accuracy Hits Deletions Substitutions Insertions 

(%) (%) (# ) (# ) (#) (# ) 

0.0 0.0 9.0 61.91 59.21 4467 841 1907 195 

0.0 5.0 11.0 62 .80 59.33 4531 727 1957 250 

3.0 0.0 3.0 65 .35 63.10 4715 943 1557 162 

4.0 15.0 9.0 68.30 64.80 4928 616 1671 253 
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Chapter 6 

Summary and conclusion 

This chapter summarises the results given in Chapter 5 and we draw some conclusions 

from it. In particular, the best results obtained with the various techniques tested, are 

repeated here, and the improvement over the baseline systems are given and compared 

with each other. The shortcomings and possible future work, related to that done in 

this dissertation, are also discussed here. 

6.1 Summary of results 

For the purposes of comparing the various techniques, we define the improvement as 

new - old 
Improvement = old ·100%, (6.1) 

where new indicates the improved system performance, and old indicates the original 

or baseline system. The improvement is multiplied by -1 when it is calculated for inser­

tions , deletions and substitutions, as these are to be minimised, not maximised. Using 

this convention, any improvement with a negative value, indicates t hat performance 
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Table 6.1: Summary of results showing the segmentation performance obtained with the 

HMM based segmentation system, for different experimental conditions. 

System RE LM Mixs. Accuracy Correct Hits Insertions Deletions 

no. (#) (%) (%) (#) (# ) (#) 

1 No 0.0 8 7123 87.07 31.40 5.40 4.64 

2 No 2.0 7 75.62 84.03 30.33 2.84 5.72 

3 Yes 0.0 7 70.27 88.04 31.76 6.07 4.29 

4 Yes 2.0 4 75.47 85.28 30.77 3.31 5.27 

degraded, rather than improved. 

Table 6.1 summarises the segmentation performance obtained with the HMM based 

segmentation system, for different experimental conditions. In this table, "RE" indi­

cates embedded re-estimation of the HMM models, and "LM" indicates the use of a 

language model with the corresponding values in the table indicating the language 

model scale factor (0.0 if no language model is used). From this table it can be seen 

that HMM segment ation performance is higher , if accuracy is the criterium, when no 

embedded re-estimation is used during the training process. This is primarily due to 

the fact that phoneme recognition performance is maximised and not segmentation 

performance. The use of a language model also improves segmentation performance 

significantly. This is due to the fact that fewer insertions occur. Again it should be 

noted t hat even though the best performances were obtained with 8, 7, and 4 mixtures, 

2 to 3 mixtures would probably have been sufficient to model the acoustic space due 

to the fact that the TIMIT database only consists of two genders (male and female). 

Table 6.2 shows the results obtained for BRNN based segmentation. Here the best 

performance is obtained with 60 forward hidden nodes , and 60 backward hidden nodes, 

indicated just by "hidden nodes" in the table . The threshold in the postprocessor, used 

to decide when the probability of a boundary is high enough to indicate the presence of 

a phoneme boundary, is found to be best at 035. This table shows that a segmentation 
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Table 6.2: Summary of results showing the segmentation performance obtained with the 

BRNN based segmentation system (with 60 forward and backward hidden nodes) , for different 

experimental conditions. Also shown is the improvement over the HMM based segmentation 

systems. 

Hidden nodes Threshold Accuracy Correct Hits Insertions Deletions 

(%) (%) (#) (#) (#) 

60 0.35 80.12 86.20 31.14 2.14 4.91 

Improvement over HMM based segmentation systems 

HMM system 

1 12.59 -1.00 -0.83 60.37 -5.82 

2 6.06 2.58 2.67 24.65 14.16 

3 14.13 -2.09 -1.95 64.74 -14.45 

4 6.27 1.08 1.20 35.35 6.83 

accuracy of 80.12% is obtained with the BRNN based segmentation system, in contrast 

to the 71.23%, 75.62%, 70.27%, and 75.47% accuracies in Table 6.1 of HMM based 

segmentation systems 1, 2, 3, and 4, respectively. The corresponding improvement in 

accuracy of the BRNN based segmentation system over the HMM based segmentation 

systems is also shown in Table 6.2 as 12.59%, 6.06%, 14.13% and 6.27%, respectively. 

The BRNN based segmentation system thus significantly outperforms all of the HMM 

based segmentation systems. This can be partially explained by the fact that the neural 

network is able to use all of the context information in the prediction of the phoneme 

boundaries, in effect learning a better "language model" than that of the HMM systems. 

The neural network is able to efficiently discriminate between a phoneme boundary 

and no phoneme boundary, while the HMM systems can only discriminate between 

two different phonemes. 

Table 6.3 shows the baseline recognition performance of the HMM recognition system, 

for different experimental conditions. In this table, "WP" indicates the use of a fixed 
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Table 6.3: Summary of results showing the baseline recognition performance, for different 

experimental conditions. 

System RE LM WP Cor Acc Hits Del Sub Ins 

no. (%) (%) (# ) (#) (#) (#) 
1 No 0.0 0.0 6l.76 52.40 4456 713 2046 675 

2 No 0.0 -6.0 57.56 53.96 4153 1237 1825 260 

3 No 4.0 0.0 62.62 60.58 4518 1178 1519 147 

4 No 5.0 5.0 64.24 61.44 4635 986 1594 202 

5 Yes 0.0 0.0 63.92 52.99 4612 651 1952 789 

6 Yes 0.0 -6.0 60.18 55.45 4342 1052 1821 341 

7 Yes 4.0 00 65.18 62.38 4703 1006 1506 202 

8 Yes 5.0 5.0 67.05 63.23 4838 820 1557 276 

word transition penalty (the constant bias term, Wb with c = 1, in Equation (4.12)). 

It can be seen that the use of embedded re-estimation during the training process 

improves recognition performance. When a language model and fixed word transition 

penalty are used separately, the performance can be increased. The language model 

significantly decreases the amount of substitutions and insertions, as it models the 

probabili ty of one phoneme following another. The use of a word transition penalty 

has a similar effect, decreasing the likelihood of a transition from one phoneme to 

another , resulting in a reduction in the number of insertions. When both a language 

model and word transition penalty are used, the best performance is obtained . These 

two parameters must be jointly optimised on the test set . 

Table 6.4 shows the phoneme recognition performance when segmentation information 

is included into the decoding process. In this table, "AWP" indicates the use of the two 

adaptive word transition penalty terms (the first two terms in Equation (4.12)), with 

the corresponding values in the table indicating the adaptive word transition penalty 

scale factor (same factor is used for both terms). In systems 1 to 4, the transition 
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probabilities of the HMMs are modified from the segmentation information, using a 

linear combination of segmentation probabilities and HMM transition probabilities 

(indicated by "Trans. (Linear)"). In systems 5 to 8 a non-linear combination is used 

("Trans. (Non-linear)") . Systems 9 to 12 indicate the use of only the adaptive word 

transition penalty ("AWP"). Finally, systems 13 to 20 are similar to systems 1 to 8, 

where the adaptive word transition penalty is used in addition to the HMM transition 

probability modification. Results are shown for t he cases when no language model 

or fixed word transition penalty is used, when only a language model or fixed word 

transition penalty is used, and when both are used simultaneously. It can be seen 

that phoneme recognition performance improves in all the cases when either or both 

a language model and fixed word transition penalty are used. The linear combination 

of HMM transition probabilities and segmentation probabilities is slightly better than 

the non-linear combination. This is due to the fact that both the HMM transition 

probability and segmentation probabilities are used in linear combination, instead of 

only the maximum of the two for non-linear combination. Linear combination is thus 

less susceptible to "noisy" estimates of segmentation probability and in effect performs 

a smoothing function as a result of the averaging procedure. The use of only adaptive 

word transition terms is also superior to the other systems. When both the HMM 

transition probability modification and adaptive word transition penalty are used, t he 

performance is still not as good as that obtained when only the adaptive word transition 

penalty is used. This may be attributed to the fact that the two techniques may oppose 

each other in a small way. 

Table 6.5 gives the improvements obtained with the use of segmentation information, 

as shown in Table 6.4, over that of the baseline recognition systems 5 to 8, given in 

Table 6.3, for the different cases when no language model or fixed word transition 

penalty is used (combined systems 1, 5, 9, 13 and 17, over baseline system 1) , when 

only a fixed word transition penalty is used (combined systems 2, 6, 10, 14, and 18, 

over baseline system 2), when only a language model is used (combined systems 3, 7, 

11 , 15 , and 19, over baseline system 3), and when both a language model and fixed 

word transition penalty are used (combined systems 4, 8, 12, 16, and 20, over baseline 
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Table 6.4: Summary of results showing the recognition performance with segmentation 

information included, for different experimental conditions. 

System Type LM WP AWP Cor Acc Hits Del Sub Ins 

no. (%) (%) (#) (#) (#) (#) 

1 Trans. 0.0 0.0 0.0 63.40 55.41 4574 739 1902 576 

2 0.0 -4.0 0.0 61.00 56.34 4401 989 1825 336 

3 (Linear) 3.0 0.0 0.0 65.29 62 .54 47ll 963 1541 199 

4 5.0 8.0 0.0 67.78 63.58 4890 730 1595 303 

5 Trans. 0.0 0.0 0.0 64.27 52.47 4637 620 1958 851 

6 0.0 -5.0 0.0 61.29 55.56 4422 934 1859 413 

7 (Non-linear) 4.0 0.0 0.0 65.36 62.37 4716 976 1523 216 

8 5.0 5.0 0.0 67.08 63.02 4840 805 1570 293 

9 AWP 0.0 0.0 9.0 6l.98 59.40 4472 859 1884 186 

10 0.0 l.0 9.0 62.33 59.60 4497 819 1899 197 

II 3.0 0.0 3.0 65.07 63.01 4695 963 1557 149 

12 4.0 17.0 10.0 68.58 64.93 4948 610 1657 263 

13 Trans. and 0.0 0.0 8.0 61.66 59.22 4449 882 1884 176 

14 AWP 0.0 3.0 9.0 62.56 59.58 4514 785 1916 215 

15 3.0 00 1.0 65.03 62.73 4692 986 1537 166 

16 (Linear) 4.0 17.0 8.0 68.84 64.91 4967 597 1651 284 

17 Trans. and 0.0 0.0 9.0 61.91 59.21 4467 841 1907 195 

18 AWP 0.0 5.0 11.0 62.80 59.33 4531 727 1957 250 

19 3.0 0.0 3.0 65.35 63.10 4715 943 1557 162 

20 (Non-linear) 4.0 15.0 9.0 68.30 64.80 4928 616 1671 253 
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system 4) . Here it can be seen that improvement over the best baseline recogniser 

(baseline system 4), from the use of linear HMM transition probability modification 

is 0.55%, non-linear HMM transition probability modification -0.33%, adaptive word 

transition penalty only 2.69%, adaptive word transition penalty and linear HMM tran­

sition probability modification 2.66%, adaptive word transition penalty and non-linear 

HMM transition probability modification 2.48%. It. is clear that the technique devel­

oped in this dissertation (the adaptive word transition penalty) , is superior to that 

proposed by others (the HMM transition probability modification). It is also inter­

esting to note that improvements can be obtained when no language model or word 

transition penalty is used by the recognition system. Improvement is also significant 

when only a word transition penalty is used . A slight improvement is still obtained 

when only a language model is used, and no word transition penalty. 

6.2 Statistical significance 

In order to determine whether the improvement obtained is statistically significant, a 

test of significance, or one-tailed hypothesis test of the difference of proportions, must 

be performed [89]. Let the null hypothesis be denoted by Ho , representing the hypoth­

esis that there is no statistical difference between the baseline system and the modified 

system (with the neural network). Let the alternative hypothesis, HI represent the hy­

pothesis that there is a statistical significance. The null hypothesis at a certain level of 

significance, a, is then rejected if the z score lies outside a certain range, indicating that 

the improvement is statistically significant. Otherwise the null hypothesis is accepted, 

indicating that there is no statistical significance. Hypothesis Ho is thus accepted if 

Z = _P,,--l _-_P...;:.2 < a , (6.2) 

where P = nlPI+n,p, is used as an estimate of the population proportion p, nl = n2 = 
711+n2 
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Table 6.5: Summary of results showing the improvement of the recognition performance 

with segmentation information included, for different experimental conditions. The improve­

ment is shown only for embedded re-estimation cases. 

Improvement over HMM baseline recognition systems 

System Type Cor Acc Hits Del Sub Ins 

no. (%) (%) (# ) (#) (# ) (# ) 

1 Trans. -0.81 4.57 -0.82 -13.52 2.56 27.00 

2 1.36 1.61 1.36 5.99 -0.22 1.47 

3 (Linear) 0.17 0.26 0.17 4.27 -2.32 1.49 

4 1.09 0.55 1.07 10.98 -2.44 -9.78 

5 Trans. 0.55 -0.98 0.54 4.76 -0.31 -7.86 

6 1.84 0.20 1.84 11.22 -2.09 -21.11 

7 (Non-linear) 0.28 -0 .02 028 2.98 -1.13 -693 

8 0.04 -0.33 0.04 1.83 -0.83 -6.16 

9 AWP -3.04 12.10 -3.04 -31.95 3.48 76.43 

lO 3.57 7.48 3.57 22.15 -4.28 42.23 

11 -0.17 1.01 -0.17 4.27 -3 .39 26.24 

12 2.28 2.69 2.27 25.61 -6.42 4.71 

13 Trans. and -3.54 11.76 -3.53 -35.48 3.48 77.69 

14 AWP 3.95 7.45 3.96 25.38 -5.22 36.95 

15 -0.23 0.56 -0.23 1.99 -2.06 17.82 

16 (Linear) 2.67 2.66 2.67 27.20 -6.04 -2.90 

17 Trans. and -3.14 11.74 -3.14 -29 .19 2.31 75.29 

18 AWP 4.35 7.00 4.35 30.89 -7.47 26.69 

19 0.26 1.15 0.26 6.26 -3.39 19.80 

20 (Non-linear) 1.86 2.48 1.86 24.88 -7.32 8.33 
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N, P, is the percentage accuracy of the modified system, divided by 100 (to get a 

proportion), and P2 is the percentage accuracy of the baseline system, divided by 100. 

The standard deviation, IJpl _ p, is given by 

apI - PZ = p(1- p) - + - . ( 
1 1 ) 

nl nl 
(6.3) 

The above equations can be rewritten in terms of the improvement in accuracy, as 

0:' . apI - P'2 
Improvement < ·100%, 

P2 
(6.4) 

where Improvement is defined in Equation (6.1) . This equation indicates the maximum 

percentage improvement allowed in order to accept hypothesis Ho, and the difference 

between the results of the two experiments to be statistically insignificant. 

6.3 Conclusion 

From the Section 6.1 it can be seen that the most important segmentation results are 

that of the segmentation accuracy of HMM segmentation system number 2 in Table 6.1 , 

as well as the RNN segmentation system in Table 6.2. The most important results of 

the phoneme recognition experiments, are that of phoneme recognition systems 4 and 

12 in Table 6.4, where a neural network is incorporated into the recognition process. 

The improvement of the RNN based segmentation system over HMM based segmen­

tation system number 2, is shown in Table 6.2 . The phoneme recognition accuracy 

improvements of the modified phoneme recognition systems, over baseline system 8 in 

Table 6.3, are summarised in Table 6.5. 

To determine whether the segmentation accuracy improvement is statistically signif­

icant , the accuracies (divided by 100) of the BRNN based segmentation system in 
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Table 6.6: Minimum percentage improvement required, at various levels of significance, so 

that the improvement in segmentation accuracy is statistically significant. 

z a Improvement required (%) 

1.28 0.1 0.45 

1.645 0.05 058 

1.96 0.025 069 

2.33 0.01 0.82 

Table 6.2 is used as P" and the accuracy (divided by 100) of baseline system 2 in 

Table 6.1 is used as P2 , and the minimum percentage improvement required to be 

statistically significant , at a specific significance level, can thus be calculated. Here 

N = 48446 is the total number of phoneme boundaries in the TIMIT full test set. 

Table 6.6 shows the improvement required to be statistically significant, for various 

levels of significance. 

In the Section 6.1 it is shown that the best accuracy obtained with the baseline HMM 

segmentation system number 2 is 75.62%. The best segmentation performance obtained 

with the BRNN based segmentat ion system is 80. 12%. When this improvement of 

6.06% is compared with the values in Table 6.6, it is clear that the BRNN based 

segmentation system significantly outperforms the HMM based segmentation system. 

When the accuracies (divided by 100) of phoneme recognition systems 4 and 12 in 

Table 6.4 are used as P" and the accuracy (divided by 100) of baseline system 8 

in Table 6.3 is used as P2 , then the minimum percentage improvement required to 

be statistically significant, at a specific significance level, can be calculated. Here 

N = 7215 is the total number of phonemes in the TIMIT core test set. Table 6.7 

shows approximate values for phoneme recognition systems 4 and 12, at various levels 

of significance. 

In the Section 6.1 it is shown that the best accuracy obtained with the baseline system 
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Table 6.7: Minimum percentage improvement required, at various levels of significance, so 

that the improvement in phoneme recognition accuracy is statistically significant. 

z a Improvement required (%) 

1.28 0.1 1.62 

1.645 0.05 2.08 

1.96 0025 2.48 

2.33 0.01 2.94 

is 63.23%. When the HMM transition probabilities are combined linearly with the 

neural network outputs, the best accuracy is 63.58%, with a corresponding improve­

ment of 0.55%. When this improvement is compared with the values in Table 6.7, 

it is clear that this technique, used by others, does not give a statistically significant 

improvement, in the experiments we conducted. When an adaptive word penalty is 

used (the technique developed in this dissertation) the best accuracy is 64.93%, with 

a corresponding improvement over the baseline system of 2.69%. This improvement 

is statistically significant up to a significance level of 0.025 (97.5% confidence) . The 

technique developed in our work thus not only outperforms that used by others, but 

also gives a statistically significant improvement in the phoneme recognition accuracy. 

6.4 Shortcomings and future work 

The work presented in this dissertation is partially limited due to the significant amount 

of computational power needed. In particular, the following future work needs to be 

carried out, t hat could not be done here due to the limited computational resources 

and time constraints , namely to 

• find the best neural network architecture, where experiments are performed to 

determine the optimal number of forward and backward hidden nodes separately 
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(in this dissertation, the forward and backward hidden nodes are set equal to 

each other, resulting in many "unused" weights), 

• determine the best features for segmentation and recognition separately (in this 

dissertation the same features were used for segmentation and recognition, which 

may not be optimal), 

• investigate the real-time implementation of such a system (in this dissertation, 

segmentation is performed off-line first, before recognition is performed, that uses 

the segmentation information) , 

• investigate the use of better segmentation postprocessors, e.g. based on segmen­

tation lattices and dynamic programming, instead of just a threshold function , 

and 

• explore performance of NN and HMM segmentation and recognition when the 

test corpus is clean (i.e., noise-free), but consists of non-read speach or speakers 

not included in the training sets. 
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Appendix A 

Recurrent neural network training 

This chapter discusses the training of recurrent neural networks, and more specifically, 

bi-directional recurrent neural networks. The training of conventional recurrent neural 

networks is not explicitly considered here, as only bi-directional recurrent neural net­

works were used in this dissertation. BRNNs can also simplify to conventional RNNs 

when the number of backward hidden neurons is set to zero. In Section A.l a general 

overview of gradient descent training is given , while backpropagation through time is 

discussed in Section A.2. The specific equations used to train the BRNNs as used in 

this dissertation, are then given in Section A.3. Finally, Section A.3.6 gives the strategy 

used to make sure that the network has a good generalisation capability. 

A.1 Gradient descent training 

Gradient descent, also called steepest descent, is one of the most commonly used and 

simplest training algorithms for neural networks 169]. In gradient descent , the idea is 

to adjust the network weights in the direction of the greatest rate of decrease in error. 

Initial values need to be chosen for the weights for gradient descent to function cor-
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rectly. Often , and as used in this dissertation, the weights are initialised uniformly 

from -~ to ~, where ~ is a value that determines the range of initial weight values. 

The next step in gradient descent t raining involves the calculation of the gradient of 

the error, with respect to the weights in the network, \7 E, as 

(A. l ) 

where Wji is the weight to which the gradient is calculated. 

The weights can then be updated by adding a fraction of the negative of the gradient 

to the weight, or 

W' = W'-;-l - 1)\7 E )l)t , (A.2) 

where \7 E is defined in Equation (A. 1) and Tl is called the learning rate. Provided that 

Tl is sufficiently small, the value of the error E should steadily decrease, allowing the 

network to learn. 

A.2 Backpropagation through time 

In the previous section, it was shown that the gradient of the error with respect to 

the network weights, is needed for the network to be able to learn. Backpropagation 

provides a particularly effective way to calculate these gradients. Originally, backpropa­

gation was developed for simple multilayer perceptrons [74 , 128, 1291. Backpropagation 

through time is based on the ability to represent any recurrent neural network as an 

equivalent feedforward network, unfolded in time, with the weights shared at the differ­

ent t ime steps [126, 127, 130, 131, 132, 133, 134, 1351 . The backpropagation technique 

of multilayer perceptrons can then be applied to the unfolded network. 
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AppendixA 

t-I 

lIT] Inputs 

Illl Forward hidden neurons 

• Backward hidden neurons 

o Output neurons 

/ Weights 

Recurrent neural network training 

t+1 

Figure A.I: Structure of the BRNN shown unfolded in time for three time steps. 

Figure A.l shows how a bi-directional recurrent neural network is unfolded for three 

time steps. In th is figure, t he arrows represent the groups of weights, and the squares 

the network nodes. Note that the outputs cannot be calculated until the entire sequence 

of forward and backward hidden node outputs have been calculated. This forward 

pass (consisting of three phases), and backpropagation, used to train the network, is 

discussed in the next section. 

A.3 BRNN training equations 

This section describes the training process used to train the bi-directional recurrent 

neural networks used in this dissertation. Since the training process is similar to that 

of conventional recurrent neural networks, and the fact that standard backpropagation 

through time needs only slight modification, t he training equations will not be derived. 
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A.3.l Overview of the training process 

The BRNNs used in this dissertation can be trained using gradient descent, as described 

earlier. T he gradients can be efficiently calculated using a modified form of backpropa­

gation through time. The training process of the BRNNs can be summarised as follows 

[116, 1171: 

1. Forward pass 

(a) Do the forward pass just for the forward hidden neurons (in the positive 

t ime direction from t = 1 to t = T), using the entire input sequence. 

(b) Do the forward pass just for the backward hidden neurons (in the negative 

t ime direction from t = T to t = 1), using the entire input sequence. 

(c) Do the forward pass for the output neurons, using the two sequences of 

forward and backward hidden neuron outputs. 

2. Backward pass 

(a) Do the backward pass for the output neurons, using the two sequences of 

output neuron outpu ts and target values, to obtain a sequence of delta values 

for each output neuron. 

(b) Do the backward pass only for the forward hidden neurons (in the negative 

t ime direction t = T to t = 1), using the sequence of delta values of the 

outputs, to obtain a sequence of delta values for each forward hidden neuron. 

(c) Do the backward pass only for the backward hidden neurons (in the positive 

time direction t = 1 to t = T), using the sequence of delta values of the 

outputs, to obtain a sequence of delta values for each backward hidden 

neuron. 

3. Calculate the gradients 

4. Update the weights 
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A.3.2 Forward pass 

Following the notation given in Chapter 2, the outputs of the forward hidden neurons 

can be calculated as 

(A.3) 

The outputs of the backward neurons are calculated as 

(A.4) 

The outputs of the neural network are calculated only after calculating the forward 

and backward neurons ' outputs for the entire input sequence, x, as 

(

TIll mil ) 

f '"' w FO of,' + '"' WBOo
b
" + wO 

k D kJ J L.t kJ J k 1 

j=1 i=! 

k = 1,2, ... , c; t = 1,2, ... , T, (A.5) 

where of" is the output of the i'th forward neuron at t ime t, o~ " is the output of the i'th 

backward neuron at time t , mf is the number of forward neurons , mb is the number of 

backward neurons , and tf, JJ and fk are the neuron transfer functions for the forward 

hidden, backward hidden, and output layers , respectively. In the equations above, 

Of-,Ll denotes the 1 step delayed forward hidden node output, and o~r+l is the 1 step 

advanced backward hidden node output. The j'th forward hidden node output at time 

t and t + is given by 0;" and of"+, respectively. The j 'th backward hidden node output 

. d " b b, d b ,- . I at tIme t an r IS gIven y 0/ an 0/ ' respectIve y. 
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A.3.3 Backward pass 

In order to calculate the errors, also called delta values, the errors at output of the 

neural network are first calculated. These errors are dependent on both the transfer 

functions of the neurons, as well as the performance function used. In this dissertation, 

the cross-entropy error function is used, which is given as 

(A.6) 

where tt is the target (or desired) value of the k'th output neuron at time t. The errors 

at the outputs can then be calculated as 

k = 1,2, .. . ,c; t = 1,2, ... , T , (A.7) 

where 5t is the error at the k'th output at time t. The deltas at the backward neurons 

is calculated next , by using 

5b,t+ gb(ab,t+) (~wB05b,t+ + ~ wBB5b,t+-l) 
J J J L...J kJ k ~ Jk k ) 

k;l k; j 

j = 1,2, ... ,mb;t+ = 1,2, ... ,T, (A.S) 

where gJ is the derivative of the j'th backward hidden neuron transfer function. For the 

hyperbolic tangent transfer function given in Chapter 2, Equation (2.56), gj is given as 

(A.9) 

where 0i is the output activation of the j'th forward or backward hidden neuron. The 

deltas at the forward neurons can be calculated as 
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Ofr = gf(afr) (~ wFOofr + ~wFFofr+l) 
J J J ~ kJ k ~ Jk k , 

k=l k=l 

j = 1,2, ... , mf; r = T , T - 1, ... , 1. (A.I0) 

A.3.4 Gradient calculation 

After the forward and backward passes, sequences of neuron outputs and delta values 

are available for the forward hidden neurons, backward hidden neurons, and output 

neurons. These can then be used to calculate the grad ient of the error, with respect to 

the network weights. The error gradients can be given as 

~ _ of,t f,t-! j = 1, 2, ... ,mf,k = 1, 2, .. . , mf, (A.ll) a. FF - j Ok ' Wjk 

aE _ f,t t i= I ,2, . . . , d,j= I,2, . .. ,mf, (A.12) a IF - OJ Xi' 
W ji 

aE = oJ,t j = 1,2, ... ,mf, (A.13) a F J' Wj 

~ _ ob,t b,t+'l 
a BB - j Ok , Wjk 

j = 1,2, . . . ,mb, k = 1,2, .. . ,mb, (A.14) 

aE __ = ob,txt i = 1, 2, .. . ,d,j = 1,2, .. . ,mb, (A.15) awlB J" 
J' 

aE = ob,t j = 1,2, .. . ,mb, (A.16) awB J' 
J 

aE _ t f,t 
j = 1, 2, .. . , mf, k = 1,2, . .. , c, (A.17) a. FO - °kOj , wkj 

aE t bt 
j = 1, 2, . .. 1 mb, k = 1, 2, ... ,c, (A.18) a BO = °kO/, wkj 

aE t 
a 0 = Ok ' wk 

k = 1, 2, ... , c. (A.19) 
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A.3.5 Update of weights 

The weights of the neural network can now be updated , using the gradients of the 

previous section. The weight update is through the use of gradient descent. Each 

weight w in the network, is updated using the gradient ~~ as follows 

oE 
w' = W'- l + TJ\l E = W'- l + TJ ow ' (A.20) 

h . f th . ht iF fB FF FO BO F BOd BE . were W 18 one 0 e welg S Wij , W ij , W jk ) W kj , W kj , 'Wj , W j , or WI;; , an 8w IS 

one of the gradients given in the previous section, associated with w . The learning rate 

is denoted by TJ and is empirically set. 

A.3.6 Generalisation capability 

In order to make sure that the neural network has good generalisation, training must 

be stopped before overtraining occurs. In this dissertation, a simple approach to this 

difficult problem was taken. The training procedure can be summarised as: 

1. Train the neural network on one sequence of speech vectors. 

2. Evaluate the network on a small, independent, development test set and compute 

an average performance measure (such as the cross-entropy error). 

3. Repeat steps 1 and 2 for a large number of iterations , saving the neural networks 

weights, and performance measure, at each iteration. 

4. The neural network with the best generalisation performance is regarded as the 

one with the best performance on the development test set. 

T his training procedure is a simplification of a technique called cross-validation. The 

network finally chosen, is then evaluated on the full test set . 
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