
Appendix A 

Recurrent neural network training 

This chapter discusses the training of recurrent neural networks, and more specifically, 

bi-directional recurrent neural networks. The training of conventional recurrent neural 

networks is not explicitly considered here, as only bi-directional recurrent neural net­

works were used in this dissertation. BRNNs can also simplify to conventional RNNs 

when the number of backward hidden neurons is set to zero. In Section A.l a general 

overview of gradient descent training is given , while backpropagation through time is 

discussed in Section A.2. The specific equations used to train the BRNNs as used in 

this dissertation, are then given in Section A.3. Finally, Section A.3.6 gives the strategy 

used to make sure that the network has a good generalisation capability. 

A.1 Gradient descent training 

Gradient descent, also called steepest descent, is one of the most commonly used and 

simplest training algorithms for neural networks 169]. In gradient descent , the idea is 

to adjust the network weights in the direction of the greatest rate of decrease in error. 

Initial values need to be chosen for the weights for gradient descent to function cor-

125 

 
 
 



AppendixA Recurrent neural network training 

rectly. Often , and as used in this dissertation, the weights are initialised uniformly 

from -~ to ~, where ~ is a value that determines the range of initial weight values. 

The next step in gradient descent t raining involves the calculation of the gradient of 

the error, with respect to the weights in the network, \7 E, as 

(A. l ) 

where Wji is the weight to which the gradient is calculated. 

The weights can then be updated by adding a fraction of the negative of the gradient 

to the weight, or 

W' = W'-;-l - 1)\7 E )l)t , (A.2) 

where \7 E is defined in Equation (A. 1) and Tl is called the learning rate. Provided that 

Tl is sufficiently small, the value of the error E should steadily decrease, allowing the 

network to learn. 

A.2 Backpropagation through time 

In the previous section, it was shown that the gradient of the error with respect to 

the network weights, is needed for the network to be able to learn. Backpropagation 

provides a particularly effective way to calculate these gradients. Originally, backpropa­

gation was developed for simple multilayer perceptrons [74 , 128, 1291. Backpropagation 

through time is based on the ability to represent any recurrent neural network as an 

equivalent feedforward network, unfolded in time, with the weights shared at the differ­

ent t ime steps [126, 127, 130, 131, 132, 133, 134, 1351 . The backpropagation technique 

of multilayer perceptrons can then be applied to the unfolded network. 

Electrical, Electronic and Computer Engineering 126 

 
 
 



AppendixA 

t-I 

lIT] Inputs 

Illl Forward hidden neurons 

• Backward hidden neurons 

o Output neurons 

/ Weights 

Recurrent neural network training 

t+1 

Figure A.I: Structure of the BRNN shown unfolded in time for three time steps. 

Figure A.l shows how a bi-directional recurrent neural network is unfolded for three 

time steps. In th is figure, t he arrows represent the groups of weights, and the squares 

the network nodes. Note that the outputs cannot be calculated until the entire sequence 

of forward and backward hidden node outputs have been calculated. This forward 

pass (consisting of three phases), and backpropagation, used to train the network, is 

discussed in the next section. 

A.3 BRNN training equations 

This section describes the training process used to train the bi-directional recurrent 

neural networks used in this dissertation. Since the training process is similar to that 

of conventional recurrent neural networks, and the fact that standard backpropagation 

through time needs only slight modification, t he training equations will not be derived. 

Electrical, Electronic and Computer Engineering 127 

 
 
 



AppendixA Recurrent neural network training 

A.3.l Overview of the training process 

The BRNNs used in this dissertation can be trained using gradient descent, as described 

earlier. T he gradients can be efficiently calculated using a modified form of backpropa­

gation through time. The training process of the BRNNs can be summarised as follows 

[116, 1171: 

1. Forward pass 

(a) Do the forward pass just for the forward hidden neurons (in the positive 

t ime direction from t = 1 to t = T), using the entire input sequence. 

(b) Do the forward pass just for the backward hidden neurons (in the negative 

t ime direction from t = T to t = 1), using the entire input sequence. 

(c) Do the forward pass for the output neurons, using the two sequences of 

forward and backward hidden neuron outputs. 

2. Backward pass 

(a) Do the backward pass for the output neurons, using the two sequences of 

output neuron outpu ts and target values, to obtain a sequence of delta values 

for each output neuron. 

(b) Do the backward pass only for the forward hidden neurons (in the negative 

t ime direction t = T to t = 1), using the sequence of delta values of the 

outputs, to obtain a sequence of delta values for each forward hidden neuron. 

(c) Do the backward pass only for the backward hidden neurons (in the positive 

time direction t = 1 to t = T), using the sequence of delta values of the 

outputs, to obtain a sequence of delta values for each backward hidden 

neuron. 

3. Calculate the gradients 

4. Update the weights 

Electrical, Electronic and Computer Engineering 128 

 
 
 



AppendixA Recurrent neural network training 

A.3.2 Forward pass 

Following the notation given in Chapter 2, the outputs of the forward hidden neurons 

can be calculated as 

(A.3) 

The outputs of the backward neurons are calculated as 

(A.4) 

The outputs of the neural network are calculated only after calculating the forward 

and backward neurons ' outputs for the entire input sequence, x, as 

(

TIll mil ) 

f '"' w FO of,' + '"' WBOo
b
" + wO 

k D kJ J L.t kJ J k 1 

j=1 i=! 

k = 1,2, ... , c; t = 1,2, ... , T, (A.5) 

where of" is the output of the i'th forward neuron at t ime t, o~ " is the output of the i'th 

backward neuron at time t , mf is the number of forward neurons , mb is the number of 

backward neurons , and tf, JJ and fk are the neuron transfer functions for the forward 

hidden, backward hidden, and output layers , respectively. In the equations above, 

Of-,Ll denotes the 1 step delayed forward hidden node output, and o~r+l is the 1 step 

advanced backward hidden node output. The j'th forward hidden node output at time 

t and t + is given by 0;" and of"+, respectively. The j 'th backward hidden node output 

. d " b b, d b ,- . I at tIme t an r IS gIven y 0/ an 0/ ' respectIve y. 

Electrical, Electronic and Computer Engineering 129 

 
 
 



AppendixA Recurrent neural network training 

A.3.3 Backward pass 

In order to calculate the errors, also called delta values, the errors at output of the 

neural network are first calculated. These errors are dependent on both the transfer 

functions of the neurons, as well as the performance function used. In this dissertation, 

the cross-entropy error function is used, which is given as 

(A.6) 

where tt is the target (or desired) value of the k'th output neuron at time t. The errors 

at the outputs can then be calculated as 

k = 1,2, .. . ,c; t = 1,2, ... , T , (A.7) 

where 5t is the error at the k'th output at time t. The deltas at the backward neurons 

is calculated next , by using 

5b,t+ gb(ab,t+) (~wB05b,t+ + ~ wBB5b,t+-l) 
J J J L...J kJ k ~ Jk k ) 

k;l k; j 

j = 1,2, ... ,mb;t+ = 1,2, ... ,T, (A.S) 

where gJ is the derivative of the j'th backward hidden neuron transfer function. For the 

hyperbolic tangent transfer function given in Chapter 2, Equation (2.56), gj is given as 

(A.9) 

where 0i is the output activation of the j'th forward or backward hidden neuron. The 

deltas at the forward neurons can be calculated as 

Electrical, Electronic and Computer Engineering 130 

 
 
 



AppendixA Recurrent neural network t raining 

Ofr = gf(afr) (~ wFOofr + ~wFFofr+l) 
J J J ~ kJ k ~ Jk k , 

k=l k=l 

j = 1,2, ... , mf; r = T , T - 1, ... , 1. (A.I0) 

A.3.4 Gradient calculation 

After the forward and backward passes, sequences of neuron outputs and delta values 

are available for the forward hidden neurons, backward hidden neurons, and output 

neurons. These can then be used to calculate the grad ient of the error, with respect to 

the network weights. The error gradients can be given as 

~ _ of,t f,t-! j = 1, 2, ... ,mf,k = 1, 2, .. . , mf, (A.ll) a. FF - j Ok ' Wjk 

aE _ f,t t i= I ,2, . . . , d,j= I,2, . .. ,mf, (A.12) a IF - OJ Xi' 
W ji 

aE = oJ,t j = 1,2, ... ,mf, (A.13) a F J' Wj 

~ _ ob,t b,t+'l 
a BB - j Ok , Wjk 

j = 1,2, . . . ,mb, k = 1,2, .. . ,mb, (A.14) 

aE __ = ob,txt i = 1, 2, .. . ,d,j = 1,2, .. . ,mb, (A.15) awlB J" 
J' 

aE = ob,t j = 1,2, .. . ,mb, (A.16) awB J' 
J 

aE _ t f,t 
j = 1, 2, .. . , mf, k = 1,2, . .. , c, (A.17) a. FO - °kOj , wkj 

aE t bt 
j = 1, 2, . .. 1 mb, k = 1, 2, ... ,c, (A.18) a BO = °kO/, wkj 

aE t 
a 0 = Ok ' wk 

k = 1, 2, ... , c. (A.19) 

Electrical , Electronic and Computer Engineering 131 

 
 
 



AppendixA Recurrent neural network training 

A.3.5 Update of weights 

The weights of the neural network can now be updated , using the gradients of the 

previous section. The weight update is through the use of gradient descent. Each 

weight w in the network, is updated using the gradient ~~ as follows 

oE 
w' = W'- l + TJ\l E = W'- l + TJ ow ' (A.20) 

h . f th . ht iF fB FF FO BO F BOd BE . were W 18 one 0 e welg S Wij , W ij , W jk ) W kj , W kj , 'Wj , W j , or WI;; , an 8w IS 

one of the gradients given in the previous section, associated with w . The learning rate 

is denoted by TJ and is empirically set. 

A.3.6 Generalisation capability 

In order to make sure that the neural network has good generalisation, training must 

be stopped before overtraining occurs. In this dissertation, a simple approach to this 

difficult problem was taken. The training procedure can be summarised as: 

1. Train the neural network on one sequence of speech vectors. 

2. Evaluate the network on a small, independent, development test set and compute 

an average performance measure (such as the cross-entropy error). 

3. Repeat steps 1 and 2 for a large number of iterations , saving the neural networks 

weights, and performance measure, at each iteration. 

4. The neural network with the best generalisation performance is regarded as the 

one with the best performance on the development test set. 

T his training procedure is a simplification of a technique called cross-validation. The 

network finally chosen, is then evaluated on the full test set . 

Electrical , Electronic and Computer Engineering 132 

 
 
 


	Scan0001
	Scan0002
	Scan0003
	Scan0004
	Scan0005
	Scan0006
	Scan0007
	Scan0008

