Appendix A

Recurrent neural network training

This chapter discusses the training of recurrent neural networks, and more specifically,
bi-directional recurrent neural networks. The training of conventional recurrent neural
networks is not explicitly considered here, as only bi-directional recurrent neural net-
works were used in this dissertation. BRNNs can also simplify to conventional RNNs
when the number of backward hidden neurons is set to zero. In Section A.1 a general
overview of gradient descent training is given, while backpropagation through time is
discussed in Section A.2. The specific equations used to train the BRNNs as used in
this dissertation, are then given in Section A.3. Finally, Section A.3.6 gives the strategy

used to make sure that the network has a good generalisation capability.

A.1 Gradient descent training

Gradient descent, also called steepest descent, is one of the most commonly used and
simplest training algorithms for neural networks [69]. In gradient descent, the idea is

to adjust the network weights in the direction of the greatest rate of decrease in error.

Initial values need to be chosen for the weights for gradient descent to function cor-

125

&

%

A~ 4

IVERSITEIT YAN PRETO
VERSITY OF PRETO
IBE 0

UN RIA
UNIVE TORIA
YUNIBESITHI YA PRETORIA

AppendixA Recurrent neural network training

rectly. Often, and as used in this dissertation, the weights are initialised uniformly

from —e to €, where € is a value that determines the range of initial weight values.

The next step in gradient descent training involves the calculation of the gradient of

the error, with respect to the weights in the network, VE, as

oFE

VE =
owyi’

(A.1)

where wj; is the weight to which the gradient is calculated.

The weights can then be updated by adding a fraction of the negative of the gradient

to the weight, or

wh; = wi; " —nVE, (A.2)
where VE is defined in Equation (A.1) and 7 is called the learning rate. Provided that
n is sufficiently small, the value of the error E should steadily decrease, allowing the

network to learn.

A.2 Backpropagation through time

In the previous section, it was shown that the gradient of the error with respect to
the network weights, is needed for the network to be able to learn. Backpropagation
provides a particularly effective way to calculate these gradients. Originally, backpropa-
gation was developed for simple multilayer perceptrons [74, 128, 129]. Backpropagation
through time is based on the ability to represent any recurrent neural network as an
equivalent feedforward network, unfolded in time, with the weights shared at the differ-
ent time steps [126, 127, 130, 131, 132, 133, 134, 135|. The backpropagation technique

of multilayer perceptrons can then be applied to the unfolded network.

Electrical, Electronic and Computer Engineering 126

AppendixA Recurrent neural network training

t—1 t t+1

Inputs
Forward hidden neurons
Backward hidden neurons

Output neurons

E
|
O
b

Figure A.1l: Structure of the BRNN shown unfolded in time for three time steps.

Weights

Figure A.1 shows how a bi-directional recurrent neural network is unfolded for three
time steps. In this figure, the arrows represent the groups of weights, and the squares
the network nodes. Note that the outputs cannot be calculated until the entire sequence
of forward and backward hidden node outputs have been calculated. This forward
pass (consisting of three phases), and backpropagation, used to train the network, is

discussed in the next section.

A.3 BRNN training equations

This section describes the training process used to train the bi-directional recurrent
neural networks used in this dissertation. Since the training process is similar to that
of conventional recurrent neural networks, and the fact that standard backpropagation

through time needs only slight modification, the training equations will not be derived.

Electrical, Electronic and Computer Engineering 127

&

%

A~ 4

EIT VAN PRETO
TY OF PRETO
T 0

IVERSIT
I T
HI YA PRET

N
NIV
UNI

o

RIA
IVERS RIA
NIBESI RIA

AppendixA Recurrent neural network training

A.3.1 Overview of the training process

The BRNNSs used in this dissertation can be trained using gradient descent, as described
earlier. The gradients can be efficiently calculated using a modified form of backpropa-

gation through time. The training process of the BRNNs can be summarised as follows

[116, 117):

1. Forward pass

(a) Do the forward pass just for the forward hidden neurons (in the positive

time direction from t = 1 to t = T'), using the entire input sequence.

(b) Do the forward pass just for the backward hidden neurons (in the negative

time direction from ¢t = T to t = 1), using the entire input sequence.

(¢) Do the forward pass for the output neurons, using the two sequences of

forward and backward hidden neuron outputs.
2. Backward pass

(a) Do the backward pass for the output neurons, using the two sequences of
output neuron outputs and target values, to obtain a sequence of delta values

for each output neuron.

(b) Do the backward pass only for the forward hidden neurons (in the negative
time direction ¢ = T to t = 1), using the sequence of delta values of the

outputs, to obtain a sequence of delta values for each forward hidden neuron.

(¢) Do the backward pass only for the backward hidden neurons (in the positive
time direction ¢t = 1 to ¢t = T'), using the sequence of delta values of the
outputs, to obtain a sequence of delta values for each backward hidden

neuron.
3. Calculate the gradients

4. Update the weights

Electrical, Electronic and Computer Engineering 128

AppendixA Recurrent neural network training

A.3.2 Forward pass

Following the notation given in Chapter 2, the outputs of the forward hidden neurons

can be calculated as

i S | f,t“‘ _ gf t+ FF_ftt—1 o
0; —fj(aj = f(Zw x; +ijkok wj),

jZLZ_qmﬁﬁ:LZ“WT (A.3)

The outputs of the backward neurons are calculated as

d my
bt~ . bt~ b,
o = filay") = f;(zw Cai +ZwliBo‘“t E wf)’
1=1
j:LZ”qu*:ﬂT—LHWL (A.4)

The outputs of the neural network are calculated only after calculating the forward

and backward neurons’ outputs for the entire input sequence, x, as

s
ooy
[
=
P—\
/‘_\
I M 2
":
O
_."
-
Mé‘
sr“g
Q
C‘.-
+
=
Pr'
_____/

k:1,2,...,c;t:1,2,...,T, (A.5)

where o " is the output of the i’th forward neuron at time ¢, o *is the output of the i’th
backward neuron at time ¢, m is the number of forward neurons, m, is the number of
backward neurons, and ff | f;-’ and f; are the neuron transfer functions for the forward

hidden, backward hidden, and output layers, respectively. In the equations above,

fitt (R
0;

~! denotes the 1 step delayed forward hidden node output, and 0} is the 1 step
advanced backward hidden node output. The jth forward hidden node output at time
t and ¢ is given by oj-f’t and oj-r’ﬁ, respectively. The j’th backward hidden node output

at time ¢t and ¢~ is given by 02-’1 and og’r, respectively.

Electrical, Electronic and Computer Engineering 129

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qme® VYUNIBESITHI YA PRETORIA
AppendixA Recurrent neural network training

A.3.3 Backward pass

In order to calculate the errors, also called delta values, the errors at output of the
neural network are first calculated. These errors are dependent on both the transfer
functions of the neurons, as well as the performance function used. In this dissertation,

the cross-entropy error function is used, which is given as

- Ui
E= Z thin (f—‘k) , (A.6)

where ¢}, is the target (or desired) value of the k’th output neuron at time ¢. The errors

at the outputs can then be calculated as

8= — =19yt —t, =l %ot = 1.8 5. T (A.7)

where &} is the error at the &’th output at time ¢. The deltas at the backward neurons

is calculated next, by using

C Ty
btt by bitT BO gcb,tt BB ¢btt—1
8 =gl)(Zwkj 6"+ Wil)
k=1 k=1

Tt Ut S0, 0T (A.8)

where gj’- is the derivative of the j'th backward hidden neuron transfer function. For the

hyperbolic tangent transfer function given in Chapter 2, Equation (2.56), g; is given as

—L=1-0f (A.9)

where o; is the output activation of the j’th forward or backward hidden neuron. The

deltas at the forward neurons can be calculated as

Electrical, Electronic and Computer Engineering 130

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe YUNIBESITHI YA PRETORIA
AppendixA Recurrent neural network training
c my
i T, &, L FOef b o FFefit~+1
9% = gila)(Z”’kj o+ wiof)’
k=1 k=1
di= L2 wapiitaite =40 — Lo 1. (A.10)

A.3.4 Gradient calculation

After the forward and backward passes, sequences of neuron outputs and delta values
are available for the forward hidden neurons, backward hidden neurons, and output
neurons. These can then be used to calculate the gradient of the error, with respect to

the network weights. The error gradients can be given as

ai;?jf =g, F=12...Mnk=12... %y (A.11)
a?fﬁf = 5;’151;;, f=h, b=t 1By i, (A.12)
gTEf - fSJ”, j=1,2.....m¢ (A.13)
aif‘%B = 5;?”502’”", d=12.. k=12 ...,m5, (A.14)
5%:5%; i=1,2,...,d,7=1,2,...,my, (A.15)
;:TEJ:,-B = 5;?{ F=08 (A.16)
';Zj_?ﬁ:(ﬁio;?t, e = e T T (A.17)
';J%J = dtolt, i=1,2,....mpk=1,2,...,c (A.18)
% =gt k=12,...,c (A.19)

Electrical, Electronic and Computer Engineering 131

&

5

Qi

EIT VAN PRETORIA
TY OF PRETORIA
THI YA PRETORIA

IVERSIT
IVERS |
NIBESI

—cc

N
N
u

AppendixA Recurrent neural network training

A.3.5 Update of weights

The weights of the neural network can now be updated, using the gradients of the
previous section. The weight update is through the use of gradient descent. Each

weight w in the network, is updated using the gradient g—ﬁ as follows

¥ oF
w'=w"1 4+ 9VE =w* ! 4+ p—, (A.20)

dw
i 3 : IF , IB , .FF , FO , BO , F , B a0 9E :
where w is one of the weights w;;", w;®, wj", wi;”, wy”, wj, wy, or wy, and 52 is

one of the gradients given in the previous section, associated with w. The learning rate

is denoted by 1 and is empirically set.

A.3.6 Generalisation capability

In order to make sure that the neural network has good generalisation, training must
be stopped before overtraining occurs. In this dissertation, a simple approach to this

difficult problem was taken. The training procedure can be summarised as:

1. Train the neural network on one sequence of speech vectors.

2. Evaluate the network on a small, independent, development test set and compute

an average performance measure (such as the cross-entropy error).

3. Repeat steps 1 and 2 for a large number of iterations, saving the neural networks

weights, and performance measure, at each iteration.

4. The neural network with the best generalisation performance is regarded as the

one with the best performance on the development test set.

This training procedure is a simplification of a technique called cross-validation. The

network finally chosen, is then evaluated on the full test set.

Electrical, Electronic and Computer Engineering 132

	Scan0001
	Scan0002
	Scan0003
	Scan0004
	Scan0005
	Scan0006
	Scan0007
	Scan0008

