
Chapter 2

Theory

T he work presented here makes use of techniques from various disciplines. The aim

of this chapter is to provide the necessary background theory to understand the work

presented later. The experienced speech researcher would be familiar with these con­

cepts and therefore could move to Chapter 3 where the problem of speech segmentation

is addressed. In Section 2.1 the signal processing techniques, used to extract features

from the speech signal are discussed. Hidden Markov models are used for the phoneme

recognition experiments and the relevant theory is discussed in Section 2.2. Finally

recurrent neural networks are discussed in Section 2.3, as they are used to segment

the speech signal into phonemes. This section should be read in conjunction with

Appendix A where details on training of the recurrent neural networks are presented.

2.1 Speech signal processing

T he human vocal tract mechanism is unable to instantly produce different sounds in

speech. Due to the transition-like nature between sounds, t here is a significant amount

of correlation between segments of speech. By using parametric representations of the

speech, rather than the speech signal itself, a more compact, reliable, and robust speech

22

Chapter 2 Theory

recognition system can be built. The use of parametric representations also reduces the

amount of computation needed for both training and decoding. The following front-end

is typically used in speech recognition systems.

Energy and mel
cepstrum coefficients

Delta energy

Figure 2.1: Signal processing front-end used.

The following sections describe each of these signal processing steps, in terms of the

work presented here, in more detail.

Electrical, Electronic and Computer Engineering 23

Chapter 2 Theory

2.1.1 Digitisation

Speech digitisation is the process of converting analogue signals to digital values (num­

bers) , as digital computers can only work with numbers, not analogue values.

The analogue signal is sampled at equally spaced intervals at a rate equal to what is

called the sampling frequency, which should be at least twice the maximum frequency

of interest in the speech signal. A sampling rate of 16 kHz is typically used for high

quality speech, while telephone speech is usually sampled at 8 kHz.

The number of levels , into which the analogue signal is quantised, is dependent on

the number of bits used in the analogue-to-digital converter. Resolutions of 12 to 16

bits are common. In addition, the quantisation levels are often spaced equally. This

is referred to as linear quantisation, versus mu-law or A-law quantisation, where the

quantisation levels are non-uniformly spaced.

Microphone TI

Human

Analogue Digital
speech ,---, speech

ADC

Sampling
rate

Figure 2.2: The digitisation process commonly used in ASR.

As can be seen from Figure 2.2, a human thus speaks a sentence to be recognised by

the system. The speech signals are transmitted as vibrations of air to a microphone,

which then converts the air pressure variations into electrical signals. The result is an

analogue signal representing the spoken utterance. An analogue anti-aliasing filter (not

shown) prevents aliasing effects, but this is not discussed here , and assumed to be part

of the analogue-to-digital conversion (ADC) process. An ADC converts the analogue

signal to a sequence of numbers (digital), to be processed by a computer.

Electrical, Electronic and Computer Engineering 24

Chapter 2 Theory

2.1.2 Pre-emphasis filter

One of the problems that a speech recognition system must face , is the fact that a

message (sequence of spoken sounds) will have frequency components that are high at

low frequencies , but small amplitude at high frequencies [122]. This is also sometimes

referred to as the lip effect. This also occurs because the speech signal is typically rep­

resented as a volume velocity [68], but microphones typically measure sound pressure.

This difference results in a 6 dB spectral roll-off.

S (f)
M

-w W f

S (f)
o

-W W f

Figure 2.3: Purpose of the pre-emphasis filter.

The top part of Figure 2.3 above illustrates this concept. Here it can be seen that the

power spectral density of the message usually falls off appreciably at higher frequencies.

These high frequency components (that may carry vital information for accurate speech

recognition) will thus be of a much lower magnitude than those at low frequencies. As

such, the speech recognition process will not yield the best possible results. It is thus

Electrical, Electronic and Computer Engineering 25

Chapter 2 Theory

needed to equalise the frequency band over which important signal frequency compo­

nents in the message exist, to obtain a spectrally flat frequency spectrum, as shown in

the bottom part of Figure 2.3. This procedure is called pre-emphasis. Pre-emphasis

reduces the effects of glottal pulses and radiation impedance, and enhances the spectral

properties of the vocal tract [123, 124]. This makes the signal less susceptible to finite

precision effects later in the signal processing front-end [1].

In order to perform equalisation, or pre-emphasis, a high-pass filter is usually used.

Since the digitised speech samples are processed sequentially, an FIR filter is a natural

implementation. The general form of an FIR fil ter is given (in the z-transform form)

as

N

H(z) = L a(k)z- k, (2.1)
k=O

where N is the order of the FIR filter and ark) is the k'th coefficient, and a(O) = 1. A

high-pass, pre-emphasis filter, is the just a one coefficient version of this, or

(2 .2)

where a determines the pole location of the filter. This is a fixed form of pre-emphasis,

as a does not slowly vary with transmission conditions, noise backgrounds, etc. A value

of between 0.9 and 1.0 is typically used for a.

The easiest way to implement the filter of Equation (2. 2), is to convert the z-transform

equation into a difference equation (in the time domain). It is known that (from

Equation (2.2))

H(z) = 1 - az- 1
,

Electrical, Electronic and Computer Engineering 26

Chapter 2

but

and thus it is possible to write

8(z)
H(z) = S(z)'

8(z) = S(z) . (1 - az-'),

with the difference equation which follows as

s(n) = s(n) - as(n - 1) ,

Theory

(2.3)

where s(n) is the output of the pre-emphasis filter, s(n) is the input, and s(n - 1) is

the previous (one step delayed) input to the pre-emphasis filter.

Although pre-emphasis, as discussed here (using a high-pass filter), is a necessary step

and greatly improves speech recognition performance, it has a major disadvantage.

While the filter spectrally flattens the range of frequencies of interest, in which useful

information lies, it also raises the spectral energy of high frequencies outside the signal

bandwidth [6]. These very high frequencies are often associated with noise, and pre­

emphasis thus also amplifies noise in the signal. Despite this disadvantage, it remains

to be popularly used.

2.1.3 Blocking

After the signal has been pre-emphasised, the next step is to chop the signal into

smaller pieces. These smaller pieces are called frames. Usually the frames are chosen

Electrical , Electronic and Computer Engineering 27

Chapter 2 Theory

as overlapping segments of speech, in order to reduce the noise in spectral estimates

(increase correlation between adjacent frames). Figure 2.4 illustrates this process.

F'="Wid~ .
~ Frame shift

I Frame #1
~-----'

Frame #2

Frame #3

•
•

•

Total utterance

Frame#N

Figure 2.4: Blocking of the speech signal into overlapping frames.

The frame width is usually chosen to be between 20 and 30 ms with a frame shift (or

period) of 5 to 10 ms. The bigger the window width , the better the spectral resolution,

but the lower the time resolution. A low frame shift results in good temporal resolution,

but is computationally expensive.

2.1.4 Signal bias removal

Signal bias removal refers to the process whereby the mean value (here called the signal

bias), is removed from the signal. To estimate the mean, the average value of the signal

is calculated over the current window through the following equation

Electrical, Electronic and Computer Engineering 28

Chapter 2 Theory

(2.4)

where there are N samples in the window and Xi is the i'th sample. The signal bias

is then removed by subtracting x from every sample in the window. This technique is

useful to remove any DC offset in the signal (e.g. introduced by the ADC) .

2.1.5 Windowing

By blocking t he speech signal into short segments, signal discontinuities occur at the

beginning and end of each frame [IJ. To alleviate this problem, each signal is multiplied

by a function, called a window. This process is described by the following equation:

OS; n S; N - 1, (2.5)

where xl(n) is the resultant , windowed signal, sl(n) is the original signal , w(n) is the

window with which the frame is multiplied , and N is the number of samples in the

frame. The window with which the frame is multiplied , is typically chosen to be the

Hamming window, defined by the following equation [1 J:

(21m) w(n) = 0.54 - 0.46· cos N _ 1 ' (2.6)

for 0 S; n < Nand w(n) == 0 elsewhere. Here w(n) is called the window, and N is the

number of samples in the frame with which it should be multiplied.

The purpose of the window is to give more emphasis to samples in the centre of the win­

dow. Combined, the overlapping frame analysis and windowing, ensures that smoothly

varying parametric estimates can be obtained .

Electrical, Electronic and Computer Engineering 29

Chapter 2 Theory

2.1.6 Spectral analysis

For the spectral analysis of the speech signal (the blocked frames of speech multiplied

by the window), a Fast Fourier Transform (FFT) of the signal is first computed (called

a short-time FFT, because the FFT is taken only over short time segments). This

procedure is based on the two equations [86]

w = e2ni / N and - ,

N - l

Yn = 2::: wnkX
k ,

k=O

(2.7)

(2.8)

where W is a complex number, as defined in Equation (2.7), N is the size of the FFT

(usually a multiple of 2), and the Yn's are the FFT components of the signal, with the

original signal values denoted by the .x 's .

After the FFT of the signal is taken, the next step is to calculate the squared magnitude

of the spectrum. The squared magnitude spectrum is just the squared, absolute value

of the FFT components (complex numbers), and is also called the power spectrum of

the signal (or the energy spectrum if the square root is taken) . This can be illustrated

with the equation

0:; k < K , (2.9)

where K can be equal to N, the size of the FFT. Because only half of the (symmetric)

spectrum is considered, K is taken to be equal to N /2 . The result of spectral analysis

is thus the squared magnitude spectrum, or power spectrum of the signal, as defined

in Equation (2.9).

Electrical , Electronic and Computer Engineering 30

Chapter 2 Theory

2.1.7 Energy and mel cepstrum coefficients

Energy and mel-scale frequency coefficients are the features most often used in speech

recogni tion systems today. These coefficients provide a parameterised form of the

speech that significantly reduces the data rate of the speech input , while still main­

taining virtually all of the speech information [61.

To compute the cepstra, a bank of fil ters is constructed. The number of filters is usually

chosen larger than the number of cepstra needed. T hese fil ters are equally spaced along

the mel-scale frequency axis, but logarithmically spaced on the acoustic frequency axis.

This is motivated by the fact t hat human percept ion of the frequency content of sounds,

either for pure tones or for speech signals, does not follow a linear scale [1] . For each

pure tone with an actual frequency, f, measured in Hz, a subjective pitch is perceived

by humans, measured on a scale called the "mel" scale. T he conversion between acoustic

frequency to mel frequency, can be done with the equation [6]

mel frequency = 2595 ·Ioglo (1 + 7~0) , (2.10)

where f is t he acoustic frequency, in Hz, to be converted to a frequency in mels.

Conversely, the mel frequency can be converted into an acoustic frequency through the

equation (inverse of Equation (2.10))

f = 700· (lOX/2595 - 1) , (2.11)

where x is the mel frequency to be converted into the acoustic frequency, f. T he next

step in the computation of the cepstra, is to construct a bank of filters. T hese fil ters are

triangular fil ters, spaced equally along a mel-scale frequency axis, but logarithmically

along the acoustic frequency axis.

Figure 2. 5 shows the filter allocation in the frequency domain (acoustic frequency) .

Electrical, Electronic and Computer Engineering 31

Chapter 2 Theory

H(f)

f

Figure 2.5: Filter allocation in the hequency domain.

The logarithmic nature of the filter spacing, described by Equation (2 .10), is clearly

seen in the figure . In this figure , each filter has a minimum and maximum frequency

that correspond to the centre frequencies of the filters to the left and right, respectively.

This results in filters having different bandwidths. In the logarithmic domain, however,

these filters have equal bandwidth.

After the mel filters have been constructed, the energy output of each filter must be

calculated. The energy output of each of the filters can be calculated as [6]

[(- 1

E j = L ,PJ(k)Zk, 0-::: j < J, (2.12)
k=O

where Ej is the energy from the j'th filter, cPj(k) is the value of filter j's transfer

function at k , J(is equal to half of the size of the FFT (e.g. 256 for a 512-point FFT) ,

and J is the number of filters. The filters must obey the constraint [6]

K - l

L cPj(k) = 1 'dj. (2 .13)
k=O

To calculate the mel-scale frequency coefficients, a set of weighting factors is first

computed. These weighting factors can be computed through an inverse discrete cosine

Electrical, Electronic and Computer Engineering 32

Chapter 2 Theory

transform, as [6, 102, 1]

Vm ,j = { cos (m:y(j + 0.5)) } O<O;j<J, (2.14)

where J is again the number of filters, and m indicates the particular cepstrum coeffi­

cient. The mel-scale frequency components can then be calculated from

J - l

em = L j3j Vm,j 10glO (Ej), (2.15)
j=O

where E j is the energy output of the j'th filter, as defined in Equation (2.12), Vm,j is

the weighing factor defined in Equation (2.14) , and j3 is an amplification factor, which

accommodates the dynamic range of the coefficients, em. The cepstra are normalised

by the number of filters as

(2.16)

where enm is the final m'th mel cepstrum coefficient. The coefficients are sometimes

liftered so that the higher and lower order cepstra have similar values. The cepstra are

thus re-scaled to have similar magnitudes , according to

, (L. 7rm)
enm = 1 + "2 sm Len"" (2.17)

where L is the liftering coefficient and enm is defined in Equation (2.16).

To obtain the power, component 0 of the cepstrum vector is sometimes taken, which is

just the average value of the spectrum, or root mean square (RMS) value of the signal

[5]. The logarithm of the true energy, however , normally replaces component 0 of the

cepstrum (since it is unreliable), and can be calculated as

Electrical, Electronic and Computer Engineering 33

Chapter 2 Theory

(

N - l)

E = IOglO ~ i; , (2 .18)

where in is the windowed signal , and N is the number of samples in the window.

The above calculations will thus compute the mel frequency cepstrum coefficients as

well as an energy measure. These provide a good parametric representation of the

speech signal as well as good discrimination between the different speech sounds.

2.1.8 Normalisation

Normalisation of the speech features is usually done to reduce variability of the features

with environment changes, microphone mismatch , etc. Many different algorithms exist,

but only cepstral mean normalisation, energy normalisation, and a simple linear re­

scaling technique will be discussed here.

Cepstral mean normalisation

After the cepstra have been computed, the next step is their normalisation. Both

the power and the mel frequency coefficients can be normalised by the sentence-based

mean. The first step is thus to compute the sentence-based mean, as

1
!J.(k) = T L x,(k) , (2.19)

t

where T is the number of frames of t he input utterance, k is the index of the cepstral

coefficient, and Xt (k) is the k'th cepstral coefficient. Next , the cepstra are normalised

by the sentence-based mean, by simply subtracting the mean, as follows:

Electrical , Electronic and Computer Engineering 34

Chapter 2 Theory

.it(k) = .Tt(k) - p,(k), (2.20)

where Xt (k) is the k'th normalised cepstrum coefficient. This technique is useful to

compensate for long-term spectral effects such as those caused by different microphones

and audio channels.

Energy normalisation

The log energy is normalised to have values between - Emin to 1.0 by subtracting the

maximum value of the energy in the utterance from every energy value, and adding 1.0.

This technique will cause silence to be indicated by a value of 1.0 and speech samples

less than 1.0, and is in a convenient form for other processing tasks, such as silence

detection.

Simple linear re-scaling

With this technique, each of the speech vector's components is normalised to have

zero mean and unit variance. It is a simplified form of the more general whitening

transform [691. In this dissertation, it was used before speech vectors were applied

to the input of the neural network that segmented the speech, in order to avoid any

saturation problems of the neural network transfer functions . The mean and variance

were calculated over all of the speech in the corpus that was used for training purposes,

as the mean and variance can vary somewhat from speech utterance to speech utterance,

which would degrade the neural network performance. It is, however, not uncommon

to calculate the mean and variance only on a sentence by sentence basis. The mean of

one speech vector feature is calculated as

Electrical , Electronic and Computer Engineering 35

Chapter 2 Theory

(2.21)

where Tn is the number of frames of the n'th training utterance, k is the index of the

feature in the speech vector, x~(k) is the k'th speech feature, and N is the number of

training speech vectors. The variance of one of the speech features is calculated as

(2.22)

where u(k) is the standard deviation (square root of the variance). The speech vector

components are then normalised by each of the feature means and standard deviations

independently, as

n(k) _ xr(k) - f.L(k)
xnt - u(k) . (2.23)

2.1.9 Delta energy and cepstrum coefficients

By adding time derivatives to the basic static features, the performance of speech

recognition systems can be greatly improved. These dynamic features capture the

dynamic changes that occur in the speech. To calculate the first derivative of the

static features, also called the delta feature, a regression formula [3] such as

d _ L~-l B(Ct+B - Ct-o)
t - 2 ",8 B2 '

LA= l

(2 .24)

is normally used, where d, is the delta coefficient at time t , computed in terms of the

corresponding static coefficients Ct- O to C'+B, and B is the regression window. Equa­

tion (2.24) is used to calculate both the delta energy and delta cepstrum coefficients.

Electrical, Electronic and Computer Engineering 36

Chapter 2 Theory

2.2 Hidden Markov models

Hidden Markov models (HMMs) are probably the most popular technology of choice

for large vocabulary speech recognition systems. This is primarily due to the efficiency

with which HMMs model the variation in the statistical properties of speech, both in

the time and frequency domains [1201. A number of assumptions are, however, made

when using HMMs [120, 1], but these will not be discussed here.

In the following sections, HMMs are discussed only briefly, in the context of how

they are used in this study. In particular, training of HMMs is not discussed, as this

dissertation only modifies the decoding process. The training of the HMMs is thus

fairly standard and details can be found in other studies [1, 66, 67, 120, 3]. The basic

concepts of HMMs are discussed in the next section, followed by a section on the Viterbi

decoding process (used to recognise the unknown speech). Language models and the

use of a word transition penalty are also discussed.

2.2.1 Basic elements and problems of an HMM

Hidden Markov models involve two underlying stochastic processes. One of these is

hidden and can only be indirectly observed through the other stochastic process. This

is the reason why HMMs are called "hidden" Markov models. The two stochastic

processes occur concurrently within an HMM. When HMMs are considered to be used

as a parametric model for a process, a number of concepts are of importance. Some of

these concepts are discussed briefly in this section.

An important choice to be made when using HMMs is that of the structure of the HMM.

An HMM consists of N states, often represented by circles in a pictorial representation.

The states are connected by arcs, with arrows indicating the direction of an allowed

transition between the states.

Electrical, Electronic and Computer Engineering 37

Chapter 2 Theory

a22

CD
b,(o)

Figure 2.6: Structure of a basic HMM.

Figure 2.6 shows the structure of a basic HMM. In general, the theory allows for arbi­

trary connections between the states of the HMM. Left-to-right HMMs are, however,

more commonly employed, especially in speech recognition, due to the temporal nature

of the speech. In HMMs of this kind , as shown in Figure 2.6, there are fewer parameters

than in an ergodic HMM. This limits the modeling power of the HMM , but the HMM

parameters can be estimated more reliably with limited training data.

At the first time step, an initial state q1 = i is chosen, according to an initial state

distribution 'If. At the following time instants, a stochastic process decides what the

next valid states should be, based only on the current state. This process results in

a first order HMM. This stochastic process, described by the transition probabilities,

aij, thus determines what the next state j should be, given that the current state is

state i. As each state is entered at time t (either the same or a different state), an

observation 0, is generated according to a second stochastic process, described by an

observation density bj(o,). The sequence of states q can not be observed directly, but

only through the observations generated. This is why HMMs are "hidden".

All of the states in an HMM need not be emitting. In Figure 2.6, states 1 and 5 are

non-emitting states. These states are used as a convenient way to connect multiple

HMMs together. The shaded states (states 2 to 4) are emitting states.

An HMM is thus defined as a parametric model, consisting of the following components

[1] :

Electrical, Electronic and Computer Engineering 38

Chapter 2 Theory

• Number of states - There is a fixed number , N, of states in the model. The

number of states is determined empirically.

• State transition probability distribution - The state transition probability

distribution, A = {ai j } , is a matrix containing all of the state transition proba­

bilities. Each entry in the state transition matrix is defined as

1 :S i, j :S N, (2.25)

where qt is the state at time t, and qt+l is the state at time t + 1. Also, since aij

are probabilities, they follow the usual stochastic constraints, e.g. a;j E [0, 1] .

• Observation probability distribution - The observation probability distribu­

tion , B = {bj(Ot)} is the vector containing all of the state observation output

probabilities. In this dissertation, these probabilities are modeled by Gaussian

mixtures, resulting in continuous observation densities of the form

M,

bj(Ot) = ~ cjmN(Ot; J..t jm' ~jm)' (2 .26)
m=l

where Ms is the number of mixture components, and Cjm is the weight of the

m'th component. In (2 .26), N(.; J..t,~) is a multivariate Gaussian with mean

vector J..t and covariance matrix ~, defined as

(2 .27)

where n is the dimensionality of o.

• Initial state distribution - The initial state distribution, IT = {IT; }, is defined

as the following

IT; = P[q1 = i] 1 < i < N - - , (2.28)

with q1 being the initial state.

Electrical, Electronic and Computer Engineering 39

Chapter 2 Theory

The complete parameter set, required to fully specify the HMM, can be compactly

gIVen as

,\ = (A, B, IT) , (2.29)

with A, B, and IT as defined earlier.

To use HMMs, three basic problems must be solved. HMMs are popular, partly due

to the efficiency in which they can solve these three problems:

• Problem 1 - The first includes the need for an efficient way to calculate P(OI,\) ,

t he probability of the observation sequence ((0102 ... OT), with T the maximum

length of the sequence), given the model , and is referred to as an evaluation

problem. The forward (or backward) procedure allows this problem to be solved

in a computationally efficient means. This is not discussed any further here.

• Problem 2 - The second involves the problem of finding the most likely state

sequence q, given the model ,\ and an observation sequence ° = (0102 ... OT).

This is referred to as the decoding process, used to uncover the "hidden" part of

the HMM. In speech recognition, this is used to recognise the unknown speech

(e.g. the most likely phone sequence). The Viterbi algorithm, based on dynamic

programming (DP) concepts, is used for this purpose. It is discussed in more

detail in the next section since the modification of this algorithm is part of our

work.

• Problem 3 - The third problem is concerned with the process of obtaining the

HMM parameter set, ,\ = (A , B, IT) such that P(OI,\) is maximised. This is

referred to as the training problem. The Baum-Welch algorithm is used for this

purpose, but it is not discussed any further here.

In speech recognition applications of HMMs, the first stochastic process deals with the

Electrical , Electronic and Computer Engineering 40

Chapter 2 Theory

temporal sequence in which the HMM states occur and models the temporal structure of

the speech signal. This is related to the transition probabilities. The second stochastic

process models the locally stationary character of the speech signal and it is described

by the conditional output probability density function. The solution to problem 3 is

used to train HMM models for each of the phonemes that occur in the language of

interest. A network of HMMs is then constructed, called a lattice or network, based

on the task grammar, by joining HMMs together. The solution to problem 2, namely

the Viterbi algorithm, is then used to determine the optimal sequence of phonemes (in

a maximum likelihood sense in this dissertation). The sequence of phonemes is the

recognition result from the unknown speech.

2.2.2 The Viterbi decoding process

As mentioned in the previous section, the most likely state sequence, given the model

and the observation sequence, is of great importance in continuous speech recognition.

The Viterbi algorithm, based on dynamic programming concepts, attempts to uncover

the "hidden" part of an HMM. This algorithm attempts to find the single best path

(state sequence) with the highest probability. Alternatively, it can be stated that the

probability of the observation sequence 0 = (0,02 ... OT) and state sequence q , given

the model A, or P(q,OIA), is maximised.

Figure 2.7 illustrates the Viterbi decoding process, as it is commonly used for continu­

ous speech recognition. The vertical dimension represents the HMM states, while the

horizontal dimension represents the frames of speech (time). Shown in the figure are

two HMMs, namely HMM A and B, each having 5 states, with no skip transitions. In

speech recognition systems, many more HMMs are connected together in a network

determined by the task grammar. The result can be seen as a single, large HMM, hav­

ing N states in total. It is also shown that state 5 of HMM A (labeled A5) , and state

1 of HMM B (labeled Bl) are regarded as being the same state (they are connected

through the use of non-emitting states). The thicker lines in the figure represent the

Electrical, Electronic and Computer Engineering 41

Chapter 2

Language model
and model
transition
penalty

I ,

Theory

State

B3

B2

A4

A3

A2

Al

- - - -: - - - -1f----jj

- - - - - - - - - - - - - - - -jf----,,p<----?io

a"

---+----~-__jl~-+-~- - - -1- - - -I

:~b3(O)
I I I

·jf---4'-----'--4- - - -I - - - -1- ___ I

Speech
~--L--L---L--L---L--~-~-__ rrame

I 2 3 4 5 6 (time)

Figure 2.7: The Viterbi decoding process.

allowed paths (sequence of states), the dots represent the log state output probability

of observing that frame at the specific time step, and the lines between the dots can

be regarded as the log state transition probabilities.

In Figure 2.7, the log probability of a path is calculated by summing the log output

probabilities and log transition probabilities along that path. At each time step, the log

probability of the previous path that had the highest log probability of all candidate

paths, are used to calculate the log probability of a set of new candidate paths. The one

with the highest log probability is then chosen for use in the next time step. After each

process of selecting the best path, the state sequence followed by that path is recorded.

After the best path is calculated at the last time step, the optimal state sequence can

be uncovered by backtracking the path followed. From the sequence of states, the times

at which the state and model transitions occurred, can be derived . This can be used

to align a phonetic transcription against a speech signal, or to recognise the speech

and simultaneously provide the times at which model (phoneme) transitions occurred,

thereby also segmenting the speech into phonemes.

Electrical, Electronic and Computer Engineering 42

Chapter 2 Theory

The Viterbi algorithm is usually implemented in the logarithmic domain due to numer­

ical precision problems that could occur otherwise, and the fact that multiplications

are avoided [1 , 66, 67]. In HTK, the Viterbi algorithm is formulated somewhat differ­

ently, than what is presented here, where a token passing model is used [125, 3]. The

underlying concept is , however, the same and can be summarised as follows:

O. Preprocessing

1. Initialisation

2. Recursion

3. Termination

4. Backtracking

1 :S 'i :S N, 1 :S t :S T

1 :S i, j :S N

51 (i) = log(61(i)) = iii + bi (ol),

1/;1(i) = 0,

1 :S j :S N, 2 :S t :S T

F' = max [5T (i)]
l<i<N

t = T - 1, T - 2, ... , 1

(2.30)

(2.31)

(2.32)

(2 .33)

(2 .34)

(2.35)

(2,36)

(2.37)

(2.38)

(2.39)

In the above equations 6t (i) is the highest probability along a single path, at time t ,

that accounts for the first t observations and ends in state i, and Equation (2.39) gives

the optimal state sequence.

Electrical, Electronic and Computer Engineering 43

Chapter 2 Theory

2.2.3 Use of a language model

In this dissertation, a word loop grammar is used, which indicates that any word may

follow any other word. In order to improve the recognition performance, a stochastic

language model can be used. This takes into account that all word sequences are not

necessarily equally likely. A simple probabilistic model of speech production relies on

the fact that a specified word sequence, W, produces an acoustic observation sequence,

Y, with probability P(W, Y) [1]. The recognition or decoding process attempts to find

the string of words that maximises the maximum a posteriori (MAP) probability. This

can be represented as

W] P(W IY) = maxP(WIY).
w

Using Bayes' Rule, P(WIY) can be written as

P(WIY) = P(YIW)P(W)
pry) ,

and consequently, Equation (2.40) can be written as

111 = argmaxP(YIW)P(W),
w

(2.40)

(2 .41)

(2.42)

which is called the MAP decoding rule. In Equation (2.42) , P(YIW) is the acous­

tic model (a probability of a sequence of acoustic observations, given a word string,

estimated by the Markov models). P(W) is called the language model. It gives the

probability of observing a particular word sequence, W. As shown in Equation (2.42),

the language model has a significant effect on the recognition accuracy.

To estimate P(W), a text corpus is used that contains many word sequences. P(W)

can then be estimated by

Electrical , Electronic and Computer Engineering 44

Chapter 2 Theory

Q

PN(W) = II P(WiIWi- l, '11); - 2 , ' .. , Wi- N+l), (2 .43)
i=l

for an N-gram language model, where Wi is the i'th word and Q is the total number

of words. For a bigram language model (N = 2), P(wi lwi- l) can be estimated by

building a table of bigram counts, and then output a back-off bigram by using [3]

(2.44)

where F(Wi ' Wi - l) is the number of times word Wi follows word Wi-l, and F(Wi- l) is

the number of times that word Wi- l appears. In Equation (2.44), which is based on a

process called discounting [3], D is a discount constant, t is a bigram count threshold ,

and b(Wi) is the back-off weight for word Wi, which ensures that all of the bigram

probabilities for a given history sum to one.

The language model probability is added to each word-end transition (in the logarith­

mic domain), or multiplied with the acoustic model probability, according to Equa­

tion (2.42). The language model probability is an a priori probability, computed off­

line. It is often scaled by a language model scale factor s. From Equation (2.42),

recognition is thus based on maximising

IV = argmaxP(YIW)P(W)',
w

(2.45)

which can be conveniently incorporated in the Viterbi algorithm. Equation (2.35) can

t hus be modified for word-end transitions as

J,(j) = log(bt(j)) = max [Jt - l(i) + iii j + sP(W)] + bj (Ot) ,
lS:i'S:N

Electrical, Electronic and Computer Engineering

(2 .46)

45

Chapter 2 Theory

where p(W) = log(P(W)) is the log language model probability, and s is language

model probability scale factor. If the transition from state i to j is not between word­

ends, Equation (2.35) is used.

2.2.4 Use of a word transition penalty

In addition to language models, a fixed word transition penalty is often used. The

effect of the word transition penalty is to modify the language model log probability

according to the equation

p(W)' = sP(W) + p, (2.47)

where p is the word transition penalty when it is negative, and word confidence when

it is positive (in the logarithmic domain). Equation (2.46) of the previous section can

thus be further modified (for word-end transitions only), as

(2.48)

In general, when unknown speech is given as input to the recogniser , the number of

insertions tend to increase and the number of deletions decrease, as p is increased (more

positive and less negative) and s decreased. Alternatively, the number of insertions

tend to decrease and the number of deletions increase, as p decreases (more negative

and less positive) and s increases. This can be explained due to the fact that the

token log-likelihood is decreased when p is a negative number, penal ising transitions

between words (phonemes), resulting in a decrease in the number of insertions and

an increase in the number of deletions. The optimal values for sand p are usually

found by maximising the recognition accuracy on a development set, for both of these

parameters.

Electrical, Electronic and Computer Engineering 46

Chapter 2 Theory

2.3 Recurrent neural networks

For a number of years, neural networks have been a popular choice to solve a variety of

problems. Some of these include classification , regression , probability estimation, time

series prediction, process modeling and process control.

The most common neural network architecture in use today, is probably the multilayer

percept ron [1181. This neural network is regarded as a "static" neural network in that

it does a static mapping of inputs to outputs. Recurrent neural networks (RNNs) are

regarded as "dynamic" neural networks, since all of the past information is used, in

addition to the current input , to calculate the output . Future input information may

also be useful in calculating the output of the neural network. Conventional recurrent

neural networks use future input information by delaying the output by a number of

time steps. Alternatively stated, a "window" of future input information is applied to

the neural network 's inputs. The window size must be set empirically. Bi-directional

recurrent neural networks avoid the choice of window size, in that they use the entire

sequence of inputs to calculate the outputs.

This section discusses the use of recurrent neural networks (conventional and bi­

directional) as pattern classifiers. In Section 2.3.1 conventional recurrent neural net­

works are discussed , and bi-directional recurrent neural networks in Section 2.3.2. Ap­

pendix A discusses the training of these networks.

2.3.1 Conventional recurrent neural networks

RNNs are generally regarded as being more powerful than multilayer perceptrons.

These neural networks contain one or more feedback connections. Although RNNs are

not limited to a specific architecture, only recurrent multilayer perceptrons (RMLPs)

[70] are discussed here. RNNs map their input space to the output space, by responding

temporally to an externally applied input signal. The network acquires state represen-

Electrical, Electronic and Computer Engineering 47

Chapter 2 Theory

tations and effectively uses all of the past input information to calculate the output.

For this reason, they are often considered "dynamically driven recurrent networks".

0

-I
Z 0

0

t
Y

1
OUTPUTS

0 · . . 0

HIDDEN STATES

0 · . . 0

INPUTS

0 · . . 0

BIAS (+1)

•
+1

Figure 2.8: A conventional recurrent neural network (R.NN).

Figure 2.8 shows the structure of a simple RMLP having two layers of weights . The

output of the hidden layer nodes are delayed by one time step and applied to the input

of these hidden layer neurons. In this way, past information continues to circulate

through the network. The output of the neural network is calculated by using the

outputs of the hidden layer neurons. Also shown in the figure is an input whose value

is fixed at +1. This bias input is connected to both the hidden neurons and output

neurons and allows more freedom to the formation of the decision boundaries by the

network. The inputs shown in the figure are not regarded as being neurons. They are

simply a convenient way to connect the external inputs to the hidden neurons.

Electrical, Electronic and Computer Engineering 48

Chapter 2 Theory

The forward propagation of input vectors to output vectors for the two layer RNN,

given in Figure 2.8, is presented below. This is probably the most common form of

RNN. For the formulation of a more general RNN, see [126] and [127] .

Consider a sequence of input vectors, x, of length T,

1 2 T x=(x,x, . . . ,x), (2.49)

where each input vector, x', at time t, is of dimensionality d, and can be conveniently

written as

(2.50)

In Equation (2 .50), x ' can either be a single d-dimensional vector at time t, or may

also include a window of future (and past) input vectors. Associated with the input

sequence, is an output sequence, y , also of length T,

(
1 2 T) y= y,y , ... ,y , (2.51)

where each output vector, yt, at time t is of dimensionality c, and can be written as

Y ' _ (y' y' y')
- 11 2" " 1 C . (2.52)

A sequence of hidden nodes outputs, 0, of length T , is also formed ,

(
1 2 T) 0 = 0,0, ... ,0 1 (2.53)

Electrical, Electronic and Computer Engineering 49

Chapter 2 Theory

where each hidden layer vector, 0', at time t is of dimensionality m, and can be written

as

(2 .54)

The input to hidden layer weight matrix, WIH = {wJ.f} contains the matrix of input

to hidden layer weights. It is of dimension m x d. The bias unit to hidden layer weight

matrix is denoted as WH = {wf} (of dimension m x 1), while the bias unit to output

layer weight matrix is given by WO = {wf} (of dimension c xl). The feedback matrix

of hidden layer to hidden layer weights, is given by WHH = {WJ{H}. The hidden to

output layer weight matrix, WHO = {w{~O} contains the weights from the hidden layer

nodes to the output nodes. It is of dimension c x m. The first index on the weight

subscript indicates the neuron to which the weight is going, while the rightmost index

indicates the neuron from which the weight originated.

The output of a neuron is calculated as a function of the weighted sum of its inputs.

For the hidden neurons this is

(

d m) . IH t HH t-l H
jj L W ji Xi + L W ik Ok + Wi '

i=l k=l

j = 1, 2, . . . ,m;t = 1,2 , . . . ,T, (2.55)

where oi-1 is the one step delayed hidden neuron output, taken as 0 at t = 1. In

Equation (2.55) , a; is the weighted sum of inputs to the j'th hidden neuron. Hidden

neuron j's transfer function is denoted as ij, and it is often taken as the hyperbolic

tangent function for reasons of faster training convergence,

(2 .56)

Electrical, Electronic and Computer Engineering 50

Chapter 2 Theory

where e is the exponential function. The outputs of the output layer neurons can be

calculated as

k = 1, 2, ... , c; t = 1,2, ... , T, (2.57)

where h is the transfer function of the output neurons. The softmax activation function

[69] is often used for the output neurons,

(2 .58)

where the sum is taken over all c outputs. This activation function will ensure that the

outputs satisfy the usual stochastic constraints (Yk ?: 0, I: Yk = 1) so that they may

be interpreted as probabilities.

Forward propagation procedure

The forward propagation of the inputs to the outputs, as used in the simulation of the

network once it has been trained, can be summarised as follows:

l. Set activations of all neurons to zero, as well as the vector representing the 1 step

delayed version of the hidden layer neuron outputs.

2. Apply an external input vector, x', at the inputs of t he network.

3. Calculate the outputs of hidden layer neurons , using Equations (2.55) and (2.56).

4. Calculate the outputs of output layer neurons, using Equations (2 .57) and (2.58).

5. Form the output vector, y', by taking the outputs of the output neurons.

6. Repeat steps 2 to 5 for all t.

Electrical, Electronic and Computer Engineering 51

Chapter 2 Theory

2.3.2 Bi-directional recurrent neural networks

Context information often plays an important role in calculating the output of a neural

network. Performance can be significantly increased when either or both past and

future vectors are applied to the input of the neural network , in addition to the current

input vector. The designer of the neural network is then faced with the problem

of choosing the size of the window of future and past input vectors. Bi-directional

recurrent neural networks [116, 117, 121] avoid the problem of choosing the window

size, by using the entire sequence of input vectors. It thus makes use of all of t he

available past and future information at any time instant. The primary disadvantage

is , however, that t he architecture is not suitable for most on-line applications.

y

1
OUTPUTS

0 0 . . . 0

t+- l FORWARD STATES BIAS (+1) BACKWARD STATES l-+ I
Z 0 0 . . . 0 • 0 0 . . . 0 Z

+1

• -
X l l x

INPUTS

0 0 . . . 0

X

Figure 2.9: A bi-directional recurrent neural network (BRNN).

Electrical, Electronic and Computer Engineering 52

Chapter 2 Theory

Figure 2.9 gives the structure of a bi-directional recurrent neural network. It consists

of two underlying conventional recurrent neural networks, one operating in the forward

time direction (t+ = 1 to T) and one in the negative time direction (t - = T to 1).

The hidden states of both these forward and backward RNNs are used to calculate the

outputs of the neural network. The delay operators, zt+- l and zt - +l, are also shown

for the forward and backward states, respectively. The former delays the forward

state (neurons) outputs by 1 time step, while the latter advances the backward state

(neurons) outputs by 1 time step. In the figure , x '+ denotes the positive time input

sequence, starting from t = 1, proceeding to t = T , while x'- denotes the negative

time input sequence, starting from t = T, proceeding to t = 1.

The input to forward layer weight matrix , WIF = {wjt} contains the matrix of input

to forward layer weights . The input to backward layer weights is given by W JB =

{wf;B}. They are of dimension mf x d and mb x d, respectively. The bias unit to

forward layer weight matrix is denoted as WF = {wf} (of dimension mf x 1), the

bias to backward layer weight matrix by WB = {wf} (of dimension mb x 1), while

the bias unit to output layer weight matrix is given by WO = {wf} (of dimension

ex 1). The forward feedback matrix of forward hidden layer to forward hidden layer

weights, is given by WFF = {wIt}, while the backward feedback matrix of backward

hidden layer to backward hidden layer weights, is given by WBB = {wjl,B}. The

forward hidden to output layer weight matrix, W FO = {w[F} contains the weights

from the forward hidden layer nodes to the output nodes. It is of dimension c x m f .

The backward hidden to output layer weight matrix, of dimension c x mb, contains the

weights from the backward hidden layer nodes to the output nodes , and is denoted by

WBO = {wfjF}

The equations, given for conventional RNNs, in the previous section, need only slight

modification. The outputs of the forward hidden neurons can be calculated as

Electrical, Electronic and Computer Engineering 53

Chapter 2 Theory

(2.59)

The outputs of the backward neurons are calculated as

(2.60)

The outputs of the neural network are obtained only after calculating the forward and

backward neurons' outputs for the entire input sequence, x , as

(2.61)

where of" is the output of the i'th forward neuron at time t, o: ,t is the output of the i'th

backward neuron at time t, mJ is the number of forward neurons, mb is the number of

backward neurons, and if, fJ and .!k are the neuron transfer functions for the forward

hidden, backward hidden, and output layers, respectively. In the equations above ,

0r
tLl

denotes the 1 step delayed forward hidden node output, and o~r+l is the 1 step

advanced backward hidden node output. The j'th forward hidden node output at time

t and t+ is given by oJ" and oJ"+, respectively. The j'th backward hidden node output

. d · · b b t d b t- . I at time t an r IS gIven y 0/ an 0/ ,respectIve y.

Electrical, Electronic and Computer Engineering 54

Chapter 2 Theory

Forward propagation procedure

The forward propagation of the inputs to the outputs, as used in the simulation of the

network once it has been trained, can be summarised as follows:

l. Set activations of all neurons to zero, as well as the vectors representing the 1

step delayed, and 1 step advanced version of the forward and backward neurons'

outputs.

2. Apply an external input sequence, x , at the inputs of the network.

3. Calculate the outputs of the forward hidden layer neurons, using Equations (2.59)

and (2.56) for t+ = 1 to T (the entire sequence).

4. Calculate the outputs of the backward hidden layer neurons, using Equations (2.60)

and (2.56) for r = T to 1 (the entire sequence).

5. Calculate the outputs of the output layer neurons , using Equations (2.61) and

(2.58) (the entire sequence of outputs).

6. Form the output sequence, y , by taking the sequence of network outputs.

Electrical, Electronic and Computer Engineering 55

	Scan0001
	Scan0002
	Scan0003
	Scan0004
	Scan0005
	Scan0006
	Scan0007
	Scan0008
	Scan0009
	Scan0010
	Scan0011
	Scan0012
	Scan0013
	Scan0014
	Scan0015
	Scan0016
	Scan0017
	Scan0018
	Scan0019
	Scan0020
	Scan0021
	Scan0022
	Scan0023
	Scan0024
	Scan0025
	Scan0026
	Scan0027
	Scan0028
	Scan0029
	Scan0030
	Scan0031
	Scan0032
	Scan0033
	Scan0034

