
Chapter 1 

Introduction 

The process of communication between humans is mainly based on the ability to recog­

nise and understand the speech signals transferred between them. Speech forms an 

integral part of the way humans interact with each other, as it is a highly effective and 

efficient way of exchanging information. 

The automatic recognition of human speech by machine is regarded as a particularly 

difficult problem [11. After decades of research, the goal of recognition of fluent , spon­

taneous speech, and the comprehension of its meaning, from any speaker in any en­

vironment, is far from being realised. The main success of speech recognition is due 

to the realisation that machines are not yet able to reach the performance of humans, 

and consequently, applying the technology only in a constrained way. This includes 

the use of only one speaker instead of many speakers (speaker dependent vs. speaker 

independent systems) , the use of a small instead of a large vocabulary, and a well 

structured dialogue between man and machine, instead of an entirely open conversa­

tion. By realising the limitations of the current technology, and applying it only in an 

application specific way, speech recognition systems can be built that have acceptable 

performance. 

Most speech recognition systems use some form of parametric model. The parame-
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Chapter 1 Introduction 

ters of these models are usually estimated from a database of training data during 

a training phase. After training the recogniser, speech can be recognised , using the 

trained models. The recognition phase thus refers to the process of recognising which 

models correspond to different parts of the speech signal. Usually the models of the 

recogniser correspond to some subword unit , such as a phoneme, since the models for 

these subword units can be reliably estimated with a limited amount of data. 

Speech is usually recorded and stored on a sentence by sentence basis. The purpose 

of speech segmentation is to determine the boundaries of the recognition units, so 

that each model of the recogniser can be trained with the correct segment of speech 

corresponding to the model. Speech segmentation also finds use in segmental speech 

recognition systems, where speech is first segmented , after which the segments are 

classified. Segmentation can thus be used only during the training phase, or during 

both the training and recognition phase. Other uses of speech segmentation include the 

determination of sentence boundaries, for the automatic creation of speech sentences 

(e.g. for the creation of speech databases) from continuous speech, such as broadcast 

audio , determination of word boundaries, improving recognition performance, etc. 

The task of speech segmentation is also of critical importance for speech synthesis. 

Most successful speech synthesis systems today typically employ the use of segment 

concatination of speech units (i. e. phonemes, diphones, syllables, etc.) from input 

training corpora of between 1 to 10 hours of speech. More natural speech synthesis is 

possible if effective segmentation can be performed to extract reliable synthesis units [2J. 

Speech segmentation algorithms can be broadly classified as belonging to one of two 

categories, namely those that make use of the underlying sequence of recognition units 

(i.e. forced alignment) , and those that do not. In the first case only the boundaries 

need to be determined for a fixed number of specified units . In the latter case, the 

number of recognition units, as well as where the boundaries occur between them in 

time, are unknown. 

This dissertation presents a recurrent neural network segmentation system, capable 
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of segmenting speech into phonemes, in a speaker independent manner. The system 

does not make use of the underlying sequence of phonemes, as such a sequence is not 

always available or reliable (as in conversational speech). This is especially true for 

the phoneme recognition experiments conducted here, as the sequence of phonemes is 

unknown prior to the recognition process. It will also be shown how the locations of 

the phoneme boundaries are incorporated into the speech recogniser in a novel way, in 

order to improve the recognition performance of the baseline system. 

1.1 Problem statement 

A need exists for the reliable, automatic determination of speech subword unit bound­

aries . The incorporation of the information from the boundary locations into a baseline 

recogniser also needs to be investigated, as this could potentially improve recognition 

performance. The research given here thus aims to meet the following objectives, 

namely to 

• provide a general system capable of segmenting pre-recorded speech signals in a 

speaker-independent manner , where the desired result is the location of phoneme 

boundaries (at the frame level), 

• establish a baseline phoneme recognition system against which the methods de­

veloped here can be tested, 

• incorporate the information of phoneme boundary locations into a phoneme 

recogniser, in order to improve the phoneme recognition performance, and 

• develop a new technique of incorporating segmentation information in a phoneme 

recogniser. 

In order to make the research viable, a number of assumptions must be made, including 
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• the use of an available, general purpose speech recognition system from Cam­

bridge University, called the hidden Markov toolkit (HTK) [3], which will be 

used for all recognition experiments, 

• evaluation of the methods only on American English (the TIMIT database), 

which reflects read speech and not spontaneous speech, and 

• processing of speech only in an off-line manner (i.e. where all of the speech is 

available at all times). 

1.2 Summary of related work 

This section presents a concise literature survey of concepts related to those used in this 

dissertation. For a complete review of speech recognition theory, the book by Rabiner 

and Juang [1] is recommended. 

The comparison of different speech segmentation and recognition algorithms is a diffi­

cult task. Researchers tend to use different databases and performance measures. Only 

results on the TIMIT database are thus given here , unless other results can provide 

further insight into a particular algorithm or technique. 

The TIMIT database [4] was designed to provide speech data for the acquisition of 

acoustic-phonetic knowledge. It is also used for the development and evaluation of 

automatic speech recognition systems. The speech was recorded at Texas Instruments 

(TI), transcribed at the Massachusetts Institute of Technology (MIT), and maintained, 

verified, and prepared for CD-ROM production by the US National Institute of Stan­

dards and Technology (NIST). It is currently available from the Linguistic Data Con­

sortium (LDC). This database contains a total of 6300 spoken sentences, where 630 

speakers each spoke a total of 10 sentences. The 10 sentences are made up of 2 dialect 

sentences (SA), 5 phonetically compact sentences (SX) and 3 phonetically diverse sen­

tences (SI). For all our experiments, the SA sentences were ignored. This resulted in 
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3696 training files and 1344 test files (from which a subset of 192 sentences makes up 

the core test set) . 

The concepts presented in this dissertation make use of three parts, namely speech 

signal processing, segmentation, and recognition. Each of these components is discussed 

in the following sections in more detail. 

1.2.1 Speech signal processing 

Speech signal processing is usually the first step in segmenting or recognising speech. 

The main aim of this stage is to provide features which are better suited to the segmen­

tation or recognition process than the raw data. T he total number of these features is 

typically much smaller than the total number of raw speech samples. 

Many different signal processing methods exist. General speech signal processing meth­

ods are discussed in [5]. Mel frequency cepstrum coefficients (MFCCs) are discussed in 

[6], as well as generalised MFCCs. Linear prediction coefficients (LPC) are discussed in 

[7], while auditory nerve representation is discussed in [8], and the bandpass liftering 

of speech in [9]. Vector quantisation (VQ) , usually used in discrete HMM systems, 

is discussed in [10] and [11]. An algorithm to estimate the fundamental frequency of 

speech is given in [12]. The following paragraphs give the specific features used in the 

segmentation methods of the next section. 

Vorstermans et ai. [1 3] used an auditory model that incorporates an auditory filter 

bank, a bank of hair-cell models that emphasised the transitions at t he phonetic bound­

aries , and a bank of envelope detectors that measured the envelopes of the hair-cell 

outputs in t he different channels of the model. An acoustic vector was constructed 

every 10 ms, that contained an auditory spectrum (20 channels), difference spectrum, 

voicing evidence, a fundamental frequency (if enough voicing evidence was present), 

and energy from an energy function sampled at multiples of 2 ms (obtained by accu­

mulating the hair-cell output envelopes across the different channels). 
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Pauws et al. [14] used five measurements that took into account the fact that unvoiced 

sounds are generally characterised by an energy concentration in the relatively high 

frequency region, while voiced sounds have an energy concentration in the lower fre­

quencies. Speech and silence were distinguished through the use of an energy level 

measurement. The five measurements thus included the short-time energy, normalised 

such that silence was characterised by a value close to 1, normalised low-frequency 

energy in the range of 50 to 1200 Hz, normalised high-frequency energy in the range 

2000 to 4000 Hz, the zero crossing rate , and the first linear predictive coefficient of a 

first-order LPC model. The 16 filter bank values, their first and second derivatives, and 

energy were also used. Pre-emphasis was used, with a coefficient of 0.95, as well as a 

Hamming window of 20 ms length with frame shifts of 2.5 ms, 5 ms, and 10 ms. 

Bonafonte et al. [15] calculated an acoustic vector every 10 ms, by analysing speech 

frames of 20 ms using a Hamming window. For each frame, 20 mel-scaled filters were 

transformed to 12 MFCCs and a measure of the power, as well as their first and second 

derivatives were calculated. Only the 12 MFCCs were used to refine the boundary 

positions. 

Olsen [16J used 31 triangular filters spaced linearly along the logarithmic mel scale, 

where each filter overlapped 50% with its two neighbours. Normalised log energy was 

also used. All the feature vectors were obtained from a 25.6 ms Hamming window with 

a 10 ms frame period. A total of 15 MFCCs, normalised log energy, and their first and 

second order derivatives, were used. 

Lee [17] used 14 MFCCs with log energy, computed at 5 ms intervals. Pellom and 

Hansen [2, 18] parameterised the speech waveform every 5 ms, by a vector consisting 

of 12 MFCCs and normalised log-frame energy, as well as their first derivatives. 

Jeong and Jeong [19] used a 256 point rectangular window, spaced at half a window 

size, and the LPC Burg algorithm for cepstrum analysis. The acoustic vector was 

then constructed from 16 whitened LPC cepstrum coefficients , obtained by using the 

whitening method. Policker and Geva [20] also used 12 LPC coefficients. 
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Cosi [21 , 22, 23] allowed the use of many different kinds of features in an interactive 

segmentation and labelling automatic module (SLAM). The joint synchrony / mean­

rate (S/ M-R) model of auditory speech processing (ASP) , fast Fourier transform (FFT) 

cepstrum, LPC based spectrograms, energy, pitch, and zero crossing, are some of these. 

The use of auditory model (AM) techniques was strongly supported. 

Smith [24, 25] used an auditory front end , which used a Gammatone filter bank that 

band passed the signal into a number of channels. These were then rectified to model 

the effect of a set of inner hair cells. 

Chang et ai. [261 calculated a feature vector every 10 ms after several stages of pro­

cessing. The first step was to compute a power spectrum every 10 ms over a 25 ms 

window. The power spectrum was then partitioned into quarter-octave channels be­

tween 0.3 and 4 kHz and logarithmically compressed in order to preserve the general 

shape of the spectrum distributed across frequency and time. 

Regel [271 used normalised energy (frequency range 100 to 900 Hz), logarithm of the 

normalised energy, normalised autocorrelation coefficient at unit delay, first linear pre­

diction (LP) coefficient, logarithm of the normalised LP error , and normalised ampli­

tude, frequency, and bandwidth of the absolute maximum in the spectrum, to classify 

speech into one of a few broad categories ("silence", "voiceless", "voiced fricative", and 

"voiced non-fricative"). For classification of frames into the phone components, knowl­

edge of the first classification stage allowed special features to be used for each of the 

broad categories. For the category "voiced non-fricative", normalised energy, logarithm 

of the normalised energy (frequency range 640 to 2800 Hz), normalised autocorrelation 

coefficient at unit delay, and normalised amplitude, frequency, and bandwidth of the 

lowest three formants were used. For voiceless sounds, the logarithm of the normalised 

LP error, normalised energy, logarithm of the normalised energy in five non-overlapping 

frequency ranges, normalised autocorrelation coefficient at unit delay, and normalised 

amplitude, frequency, and bandwidth of the absolute maximum in the spectrum were 

used. For the voiced fricative sounds, the same features were used as for voiceless 

Electrical, Electronic and Computer Engineering 7 

 
 
 



Chapter 1 Introd uction 

sounds, except for normalised amplitude, frequency, and bandwidth of the absolute 

maximum in the spectrum. 

Fukada et ai. [281 calculated an acoustic vector every 10 ms. The acoustic vector 

included the 12 MFCCs, power, and the first derivatives of these. A window of 25.6 ms 

was used. 

In conclusion, it can be seen that many different speech features have been used in the 

past. MFCCs and energy have however proven to be the choice in recent years, not 

only for segmentation but also the recognition of speech. In the work presented here, 

the same MFCC and energy features will thus be used for segmentation and recognition 

tasks. 

1.2.2 Speech segmentation 

Linguistically constrained (explicit) segmentation 

When the underlying sequence of phones is known, the segmentation algorithm only 

has to calculate the location in time of the boundaries between the phones (i.e. referred 

to as "forced alignment"). These methods perform reasonably well, as the higher level 

of lexical information (phoneme sequence) is used in the segmentation process. It is 

important to note that in most cases text information is provided, so reliable word 

to phoneme sequence look-up is necessary. This also assumes that speech production 

of the word set occurs without alternative pronounciations, otherwise the segmenter 

must consider alternative pronounciations during processing. The following is a short 

summary of some of these methods. 

Vorstermans et aI. [131 developed a system for the automatic segmentation and labelling 

of speech. The system first did initial segmentation by identifying major changes (land­

marks) in the acoustic signal obtained from an auditory model. This was achieved by a 
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landmark identification, generation and elimination stage. Up to 4 consecutive initial 

segments were then merged to construct a set of candidate phonetic segments. A mul­

t ilayer percept ron (MLP) was subsequently used in a phonetic segmentation stage to 

compute the probability of a boundary being a phonetic boundary, given the evidence 

of a preceding phonetic boundary and acoustic evidence. Phonetic classification was 

then performed through the use of another MLP that classified the acoustic vector 

into one of 5 broad phonetic classes, where the MLP's outputs were also interpreted 

as probabilities. A Viterbi search procedure aligned the speech with a state-transition 

model , derived from the transcription of the utterance, by taking the outputs of the 

two MLPs in the phonetic segmentation and classification stages into consideration. 

The result of the Viterbi search was a set of boundaries and labels, that maximised 

the combined likelihood of the phonetic boundaries and phone sequence, given the pro­

vided transcription and acoustic observations. The system was easily adaptable from 

one language to another, without the requirement of extensive linguistic knowledge or 

large (manually segmented and labeled) training databases of that language. A correct 

boundary placement of 76% (within 20 ms of the desired boundary location) was ob­

tained on the core test set of the TIMIT database (5 SX sentences per speaker), with 

48 phone labels. The speech was aligned against t he manual transcriptions (only using 

the labels , not the manually provided boundary locations) of the TIMIT database, 

after adapting the baseline Flemish system, using 100 sentences of the TIMIT training 

set. A further gain of 5% on the overall system performance was achieved by also using 

the manually provided boundary locations, with about 200 training sentences, but it 

was not stated what the gain in segmentation accuracy was. 

Pauws et al. [14] made use of the time alignment of the speech waveform against a 

sequence of I-IMMs, where each I-IMM represented a phoneme-like unit in the phonetic 

transcription of the utterance. Initialisation of the I-IMMs was performed by a 3-stage 

hierarchical procedure. The first stage involved the segmentation into broad phonetic 

classes (voiced, unvoiced and silence), on the basis of the phonetic transcription alone. 

This provided robust anchor points for the second stage, namely sequence-constrained 

vector quantisation (SCVQ), where the broad phonetic class regions were further de-

Electrical, Electronic and Computer Engineering 9 

 
 
 



Chapter 1 Introduction 

composed into their constituent phoneme-like units. Finally Baum-Welch estimation 

was used to fine-tune the HMMs. Segmentation was then performed by the Viterbi 

alignment of the utterances with the HMMs. An accuracy of 89.51 % was obtained for 

a 20 ms tolerance, and 95.37% for a 30 ms tolerance, on a database consisting of 827 

isolated words of the Dutch language. Learning was performed on the database to be 

segmented. 

Bonafonte et ai. [15] used hidden Markov models and the Viterbi algorithm to obtain 

an initial segmentation of the speech. A corrective procedure was then applied, which 

considered the segments of the segmented speech as homogeneous regions. A model was 

estimated for each segment of the utterance and Gaussian probability density functions 

(PDFs) were used to model the feature vector. Hypotheses for moving the boundary 

one frame to the left or to the right were then analysed. Boundaries were iteratively 

moved until no further changes occur. The result was that the boundary positions 

were refined and segmentation error was significantly decreased. They obtained an 

accuracy of 64.4% with a 12 ms window, and 81.3% with a 20 ms window, on the 

TIMIT database. 

Olsen [16] also used hidden Markov models and Viterbi decoding of the speech utter­

ance to segment the utterance, as well as Lee [17]. They did not report any specific 

segmentation results, and thus none of their results are given here. 

Pellom and Hansen [2, 18] used dynamic programming (DP) to investigate the effect 

of different signal processing methods on the segmentation accuracy. Here the effect of 

noise on the segmentation performance was also investigated. They achieved segmen­

tation accuracies of 47.9%, 69.9%, 85.9%, 95.9% and 98.4% for tolerances of less than 

5 ms, 10 ms, 20 ms, 40 ms, and 60 ms, respectively, on the TIMIT database. 

Jeong and Jeong [19] used a higher order Markov process, and the mean field solution 

to the segmentation problem, in a closed loop system consisting of combined bottom-up 

(segmentation, recognition and labelling) and top-down (labelling, speech generation 

and segmentation) processing. A recursive procedure provided an estimation of the 
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segmentation and phone label. Their system transformed the incoming continuous 

signal into one of the 61 phone classes at the rate of 73.7% when TIMIT was used. 

Cosi [21 , 22, 231 developed an interactive segmentation and labelling automatic module 

(SLAM) . A multi-level segmentation theory was used. Speech was considered as a 

temporal sequence of quasi-stationary acoustic segments, where similarity of points 

in a segment is greater than for those between different segments. The segmentation 

problem was thus reduced to a clustering problem, where a decision was taken based on 

the similarity between the signal immediately preceding and following it. Initial "seed 

regions", which constitute the basis for the "hierarchical structuring", were created 

by a recursive technique that used a Euclidean similarity measure. Adjacent regions 

were then merged and a dendrogram was constructed. Pattern recognition techniques 

found the optimal segmentation path given the dendrogram structure and the target 

phonemic transcription. 

Linguistically unconstrained (implicit) segmentation 

When the underlying sequence of phonemes is unknown, the segmentation algorithm 

must not only estimate the location in time of the boundaries between phonemes, but 

also the number of boundaries (or alternatively the number of phones) . These methods 

generally perform worse than those of the previous section, but are more versatile. The 

following is a short summary of some of these methods. 

Smith [24, 251 used a general sound segmentation system to segment speech into 

phonemes. The sound signal was bandpass-filtered into a number of channels, rec­

tified to model the effect of a set of inner hair cells, and filtered using an onset/ offset 

filter. This made the transformed representation sensitive to energy rises and falls. 

The next step was to divide the onset/ offset representation into two positive-going sig­

nals, an onset signal and offset signal. Both of these signals were then logarithmically 

compressed to increase the dynamical range of the system. These signals were sharp-
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ened with an integrate-and-fire neural network, where the data was integrated across 

frequency bands and across time. The effect of this was to produce sharp onset firing 

responses across adjacent channels in response to a sudden increase in energy in some 

channels, thus grouping onsets both tonotopicaliy and temporaliy. The outputs of the 

neural network sharpening stage were the onset and offset maps. The onsets were used 

for segmentation as the offsets tended to be more gradual and the continuous signal 

was divided at each onset. A minimum segment length of 25 ms was used, and the 

sharpness of the segmentation was varied by setting the minimum number of onset 

(offset) spikes which had to occur in the 10 ms window before that onset or offset line 

was taken to signal a segment start (end). Two male and two female sentences from 

each of the 8 dialect regions of TIMIT were segmented using this method . An average 

of 59% of the phoneme boundaries were correctly found (the estimated boundary and 

true boundary of a phoneme was within 15 ms of each other). 

Chang et a1. [26] used an array of independent, temporal flow neural networks that 

classified each frame into one of five articulatory-based phonetic-feature classes, namely 

place, manner of articulation, voicing, lip-rounding, and front-back articulation (for 

vocalic segments). They used a separate class for silence. These phonetic-feature labels 

were then combined and used as the input to an MLP network that gave a preliminary 

phonetic label to a frame. The last stage was a Viterbi-like decoding process that 

produced a sequence of phonetic-segment labels along with the times of the boundaries 

between them. They achieved 38.4%, 76.0% and 83.7% hits , and 58.5%, 20.9% and 

13.2% false alarms, for a frame tolerance of 10 ms, 20 ms and 30 ms, respectively on 

the Oregon Graduate Institute (OGI) Numbers95 corpus. 

Regel [27] used two classification stages in an acoustic-phonetic transcription system. In 

the first stage a decision was made in favour of one of four categories, namely "silence", 

"voiceless", "voiced fricative", and "voiced non-fricative". A Bayes classifier was used for 

this purpose. The second stage consisted of the classification of the frames into phone 

components, using the results of the first step. In this stage only special features were 

used for each class. A Bayes classifier was also used for this purpose. The resultant 
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probabilities of the two stages were then multiplied together to obtain an estimate of the 

a posteriori probability of the phone component. Adjacent frames were then combined 

in a two-stage process. In the first step, similar frames were lined up with simultaneous 

smoothing. In the second step, essential segments were extracted and attempts made 

to fill the gap between two essential segments, using a similarity measurement. T he 

results given are not directly comparable to the work presented here, and are thus not 

gl'ven. 

Policker and Geva [20] regarded the speech signal as a non-stationary time series. They 

developed a model and a set of algorithms to estimate the parameters of the non­

stationary time series. Fuzzy clustering methods were used to estimate the continuous 

drift in the time series distribution and to interpret the resulting temporal member­

ship matrix as weights in a time varying, mixture probability distribution function. 

A decision rule was imposed on the distribution temporal change, where a limiting 

procedure of any cluster crossing the 0.5 probability level, was used. This resulted in 

segmentation of the speech signal into phonemes. No specific results were given. 

Andre-Obrecht [29] (also in Basseville and Nikiforov [30]) used a statistical approach. I' 

The signal was modeled by an autoregressive (AR) statistical model. Test statistics 

were then used to sequentially detect changes in the parameters of the model. Three 

different segmentation algorithms were presented, differing in the assumption of the ex­

citation of the model (glottal impulses), and the choice of the test statistics (generalised 

likelihood, or statistics of cumulative sum type). The segmentation was performed on 

a sample-by-sample basis, and not a frame-by-frame basis, allowing more accurate lo­

cation of boundaries, and the possibility of using shorter segments. Their results are 

not directly comparable to the work presented here , and are thus not given. 

A Bayesian autoregressive changepoint detector (BCD) was used by Emejla and Sovka [31] . 

A three-step algorithm was used to segment the speech. In the first step, a segmenta-

l Examples of some of these methods can also be found on the Internet at 

http: //www .cnmat. berkeley.edu/- tristan/ Thesis/timedomain.html 
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tion point was assigned to the centre of sound units composed of vowels and semivowels. 

This was done because the BCD was highly sensitive to spectral changes and was rather 

used to refine the positions gained from the first step . By using segmentation points 

inside stationary parts of the signal , the autoregressive order to the left and right 

sides of the data segment could be estimated with higher accuracy. The second step 

used a BCD between each pair of given segmentation points in the stationary parts 

of the speech. The final step used a BCD with data between the stationary segmen­

tation point and the segmentation point gained in the second iteration. This method 

was suitable for vocal-consonant-vocal (VCV) structured utterances. No comparable 

results to the work presented here were given. 

Petek et al. [32] investigated the robust automatic segmentation of spontaneous speech. 

They used the spectral variation function (SVF), which was defined as a correlation 

measure between successive windows of acoustic observation vectors, to segment the 

speech. They compared mel-frequency cepstra (MFC), relative spectral processing 

(RASTA), and forward-backward auditory masking dynamic cepstra (FBDYN) based 

SVF algorithms. The FBDYN-SVF method resulted in smoothing of the cepstra by 

the forward and backward masking lifter, giving an improvement over the other two 

methods. Their numerical results are not comparable to the work presented here, and 

are thus not given. 

Fukada et al. [28] used a bi-directional recurrent neural network (BRNN) to segment 

speech. The system was trained to segment the speech signal into phonemes, using a 

target value of 1 for a frame in which a boundary occurred, and a target value of 0.5 for 

the frames to the left and right of the boundary frame . Frames in which no boundary 

occurred were given the target value of o. The neural network estimated the probability 

of a boundary, given the acoustic vector. By using thresholds or a segment lattice, the 

segmentation points in the speech signal could be found. They found that the BRNN 

segmented the TIMIT database with 8.33%,76.01%, and 79 .61% accuracy for frame 

margins of 0, 1, and 2, respectively. They also found that normal MLP neural networks 

performed worse. An MLP with 1 context frame segmented t he TIMIT database with 
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l.46%, 6l.90%, and 68.64% accuracy, an MLP with 3 context frames 6.12%, 64.16%, 

and 70.94%, and an MLP with 5 context frames 6.20%, 64.69%, and 7l.64% for frame 

margins of 0, 1, and 2, respectively. 

Related segmentation tasks 

This section briefly highlights research done in related segmentation tasks. These tasks 

perform segmentation at a level higher than the phoneme level, or in a limited way. 

At the subword level, a number of other segmentation attempts are worth mentioning. 

Chan and Ng [33] discussed the separation of fricatives from aspirated plosives by 

means of temporal spectral variation. Ryeu and Chung [34] used chaotic recurrent 

neural networks (CRNN) to classify and segment Korean monosyllables. De Mori and 

Laface [35] used fuzzy algorithms to segment speech into vowel-consonant-vowel (VCV) 

pseudo syllables (PSS). In Shyu et al. [36], an automatic co-articulation segmentation 

algorithm was developed, that took co-articulation into account. Co-articulation was 

also taken into account by Yu and Oh [37], where a neural network (NN) was used 

to segment speech into non-uniform units. Co-art iculation information and neural 

networks were also used by Hosom and Cole [38], where the neural networks segmented 

speech into diphones. Steady-state zones of all phones carrying a diphone boundary 

were specified by a centroid vector, and together with an objective distance measure , 

hypothetical boundary cost functions were used to extract diphone elements in Kaeslin 

[39]. Temporal flow neural networks were used by Shastri et al. [40] for finding the 

temporal boundaries of syllabic units. Hsieh et al. [41] also segmented speech into 

syllables, using a hybrid neuro-fuzzy network. Cook and Robinson [42] used an MLP 

to determine the onset of syllables. 

The segmentation of speech into voiced, unvoiced, silence, and/ or mixed regions of 

speech can also be done. Examples include [43, 44, 45, 46, 47, 48, 49, 50, 51]. 

Segmentation can also be performed at the word level. Zelinski and Class [52] seg-
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mented an utterance into single words, using statistical principles. Christiansen et 

al. [53, 54] used a simple recurrent network (SRN) for this purpose. 

At the sentence level , Siegler et al. [55] used the Kullback Leibler (KL) distance metric 

to segment broadcast news audio into discrete utterances. Prosody-based automatic 

segmentation of speech into sentences and topics was investigated by Shriberg et al. [56]. 

Semantic dialogue unit (SDU) segmentation, which correspond roughly to speech act 

(utterance) segmentation, was provided by a multi-level segmentation algorithm in 

Lavie et al. [57]. Speech act detection was also performed by Ries [58], using HMM 

and neural network based methods. Swerts and Ostendorf [59] investigated prosodic 

and lexical indications of discourse structure and utterance purpose. Tzanetakis and 

Cook [60, 61] developed a framework for audio analysis based on classification and 

temporal segmentation. 

Segmentation at even higher level is also possible. A syntactic-prosodic labelling scheme 

was developed in Batliner et al. [62] that could segment speech into sentences or phrases. 

Renals et al. [63] developed a system that could segment speech into stories, for the 

indexing and retrieval of broadcast news. Speaker-based segmentation system for audio 

data indexing was performed by Delacourt and Wellekens [64]. Energy-based speech 

endpoint detectors were compared in Bush et al. [65]. 

1.2.3 Speech recognition 

This section does not focus on background of hidden Markov models, neural networks, 

fuzzy logic, or other methods as general techniques. Instead, a very brief literature 

survey of the application of these methods to speech recognition, is presented. 

For a detailed review of hidden Markov models, see [1, 66, 67, 68]. For neural networks, 

[69,70, 71, 72 , 73, 74, 75 , 76 , 77, 78, 79, 80] can be recommended. Fuzzy logic was also 

used frequently and background on the underlying theory and techniques can be found 

in [81] and [82] . In addition to fuzzy logic, [83] also explains neuro-fuzzy concepts. 
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Artificial intelligence concepts are explained in [84] . Numerical methods used can be 

found in [85, 86, 87]. Statistical theory can be found in [88] and [89], while general 

pattern recognition concepts can be found in [90]. 

Hidden Markov models have proven to be very well suited to recognising human speech. 

Some of the main advantages of HMMs are that they integrate well into systems incor­

porating both task syntax and semantics. Examples of HMM-based speech recognition 

include [1, 66, 67, 91, 92, 93, 94, 95, 961. Related to hidden Markov models is the con­

cept of dynamic programming, such as [97] and [98J. Dynamic time warping (DTW), as 

well as a probabilistic matching algorithm was used by [99]. Similar concepts, some in­

volving template matching, were also used by [100, 101, 102]. Fuzzy logic concepts were 

used by [103] and [104]. In using hidden Markov models , a number of assumptions are 

made. These include the assumptions that the speech signal can be well characterised 

as a parametric random process, that the parameters can be estimated in a precise, 

well-defined manner, and the fact that a first order Markov chain is usually used ([105] 

showed how higher-order HMMs can be used efficiently). Conventional HMM systems 

make use of an independence assumption of the observation. 

Neural networks have also found their way into the area of speech recognition. This is 

partially due to the thin biological connection that exists between neural networks and 

the human brain, and the fact that neural networks operate well as pattern classifiers 

and can estimate probabilities conveniently. Time delay neural networks were used in 

[106J and [107]. Neural-fuzzy concepts were combined with an HMM-based automatic 

speech recognition system in [108]. Spiking neural networks were used in [109] and 

[110]. Simple recurrent neural networks, also called Elman neural networks , were used 

in [1111 and [112] to discover symantic/semantic features of words , and in [113] was 

used for speech recognition, where the neural networks were trained with the leap-frog 

algorithm. Recurrent neural networks were used in [114, 115, 116, 117]. In [118] various 

different neural networks are discussed for use in the context of speech recognition. An 

advantage of neural networks for speech applicatious is that they are general and do 

not impose a rigid structure into the recognition process. Some weaknesses include the 
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increased size of training material over traditional HMMs, and their inability to allow 

for efficient adaption to changing noise conditions versus methods seen in HMMs. See 

[119] and [120] for more detailed information on the use of neural networks in speech 

recognition. 

It is often the case that the best systems are hybrid ones. In speech recognition, hybrid 

systems perform particularly well. In [120] it is discussed how neural networks might 

be incorporated into HMM systems. Usually neural networks are used to estimate the 

observation density in the HMM states, or the a posteriori probability of a certain 

phone, given acoustic evidence. In 1121] it was shown how the a posteriori probability 

of a complete utterance could be estimated, as an alternative approach to the regular 

split into acoustic model and language model likelihood. A bi-directional recurrent 

neural network estimated the occurring probability terms. In [42] syllable boundary 

information was included to improve the recognition process. Their method made 

use of two models for each phone, one model when the phone occurs at a syllable 

onset, and one when it does not. In 1281 the transition probabilities of the HMMs 

were modified by a BRNN output. They also showed how the neural network could be 

used with a polynomial segment model (PSM) based recogniser. PSM based recognition 

systems do not rely on the observation independence assumption of conventional HMM 

systems. The neural network was used to segment the utterance into segments, where 

the boundary locations were determined by a segment lattice as a postprocessor. 

1.3 Approach and research hypotheses 

The work presented here addresses two types of problems, namely speech recognition 

and speech segmentation. It is also shown how information from the independent 

segmentation stage can be used to improve speech recognition. 

Figure 1.1 gives an overview of the approach followed here. It consists of two indepen­

dent components, namely a speech recognition component, and a speech segmentation 
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Figure 1.1: Overview of the approach t aken. 

component. A speech corpus contains label files and speech data files from a large 

number of speakers. These are used to make the system speaker independent. The 

signal processing module extracts features from the speech data that are useful for the 

recognition and segmentation stages. For simplicity, the recognition and segmenta­

tion stages presented here use the same set of features. Initially the recognition and 

segmentation components are trained independently using the corpus, and evaluated 

separately. Segmentation information is then used to improve the recognition perfor­

mance of the entire system. American English (the TIMIT database) is used as the 

speech database. 

As mentioned, one of the problems investigated here , is the problem of speech seg­

mentation. It is known that hidden Markov model systems perform segmentation 

automatically as part of the Viterbi decoding process. Neural networks can also be 

used for the segmentation process. This leads to the following hypothesis: 

• Hypothesis 1 - Recurrent neural networks will perform the segmentation task 

(into phonemes) better than HMMs. 
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The second major part of the work presented here , focuses on the improvement of 

HMM systems, using segmentation information. The following hypotheses are made 

for this purpose: 

• Hypothesis 2 - Modifying the transition probabilities of the HMM, using the 

segmentation information, can increase recognition performance. 

• Hypothesis 3 - Making the word transition penalty, that is normally constant 

in HMM systems, adaptive, based on the segmentation information, can increase 

the recognition performance. 

1.4 Contributions of this study 

The work presented here offers a number of contributions. Not only is a new technique 

presented, but both old and new techniques are evaluated using American English 

(TIM IT) speech. Before this dissertation, the use of segmentation information in the 

recognition process of a standard speech recognition system, was not commonly used. 

The contributions of this dissertation include 

• a high performance speech segmentation system, involving the use of a recurrent 

neural network, capable of segmenting speech into phonemes, without the use of 

higher-level lexical knowledge, 

• a new technique of incorporating segmentation probabilities into the speech recog­

nition system, in order to improve phoneme recognition performance,and 

• evaluation of the methods, of incorporating segmentation information into HTK, 

on the TIMIT database, is presented in order to see how well they perform in a 

state-of-the-art speech recognition system. 
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It is shown that the new technique developed here outperforms some techniques used 

by others. It is also shown that the technique is fairly efficient and can be easily 

incorporated into a standard recogniser. 

1.5 Dissertation outline 

Chapter 2 presents the background theory relevant to the work presented here, in speech 

signal processing (2.1), hidden Markov models (2.2), and recurrent neural networks 

(2.3) . 

Chapter 3 provides detail about the segmentation process. Aspects discussed include 

preprocessing (3 .1) , segmentation (3.2), using hidden Markov models (3.2.1) and re­

current neural networks (3.2 .2), postprocessing (3.3), and the accuracy measure used 

(3.4) . 

Chapter 4 deals with speech recognition. Baseline recognition (4.1), recognition using 

segmentation information (4.2), and the accuracy measure used (4.3), are discussed. 

Chapter 5 gives the experimental results. In this chapter the concepts of Chapters 

3 and 4 are evaluated, using the defined accuracy measures. Speech segmentation 

(5.1) methods include the use of hidden Markov models (5.1.1), as well as recurrent 

neural networks (5 .1. 2). Recognition experiments include the baseline system (5.2) and 

recognition using the segmentation information (5.3). 

Chapter 6 gives a summary and some conclusions are made. A summary ofresults (6.1), 

statistical significance testing (6.2), conclusions (6.3) and shortcomings and future work 

are discussed (6 .4). 

Finally, Appendix A gives the details on training recurrent neural networks. The back­

propagation through time (BPTT) technique is discussed in the context of recurrent 

neural networks, and it is shown how bi-directional recurrent NNs (BRNN) are trained. 
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