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APPENDIX A
A TUTORIAL ON TCM

This appendix presents a tutorial on trellis codes as applied to Q?*PSK. Specif-
ically, the general concepts of trellis coded modulation are discussed, including
some fundamental principles, decoding and evaluation.

A.1 INTRODUCTION

In this appendix the techniques of combined modulation and coding, known as Trellis Coded
Modulation (TCM) are introduced. Over the last 2 decades TCM has emerged as an efficient and
reliable coding scheme used for data communication with the purpose of gaining noise immunity over
uncoded transmission without altering the data rate. Stated in other words, TCM is a combined
coding and modulation scheme for improving the reliability of a digital transmission system without
increasing the transmitted power or the required bandwidth. In a power-limited environment, the
desired system performance should be achieved with the smallest possible power. One solution
is the use of error-correcting codes, which increase the power efficiency by adding extra bits to
the transmitted symbol sequence. This procedure requires the modulator to operate at a higher
data rate and hence requires a larger bandwidth. In a bandwidth-limited environment, increased
efficiency in frequency utilization can be obtained by choosing higher-order modulation schemes
(e.g. 8-PSK instead of QPSK), but larger signal power would be needed to maintain the same
signal separation and hence the same error probability.

The idea is indeed not new, since multilevel modulation of convolutionally encoded symbols was
a known concept before the introduction of TCM. The innovative aspect of TCM is the concept
that convolutional encoding and modulation should not be treated as separate entities, but rather,
as a combined operation. The parameter governing the performance of the transmission system is
consequently not the free Hamming distance of the convolutional code, but rather, over the additive
Gaussian noise channel, the free Euclidean distance between transmitted signal sequences. Thus
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the optimization of the TCM design will be based on Euclidean distances rather than on Hamming
distances, so that the choice of the code and of the signal constellation will both be performed
separately. Finally, the detection process will involve soft rather than hard decisions (i.e., received
signals are processed before making decisions as to which transmitted symbol they correspond.)

A.1.1 Fundamentals of TCM

Assume here a discrete-time, continuous-amplitude model for the transmission of data on the
additive white Gaussian noise channel. In this communications model, independently introduced
by the Russian scholar Kotel'nikov and by C.E. Shannon, the messages to be delivered to the user
are represented by points, or vectors, in an N-dimensional Euclidean space RV, called the signal
space. When the vector z is transmitted, the received signal is represented by the vector

2=z 4+v (A.1)

where v is a noise vector whose components are independent Gaussian random variables with mean
zero and the same variance N,/2. The vector z is chosen from Q' consisting of M’ vectors, known
as the signal constellation. The average square length

P 1
E'=E,.= a Z [EXk (A.2)

el

will be referred to as the average signal energy of the uncoded transmission. This parameter is very
important when analyzing TCM schemes, since it is used in quantifying the effective coding gain
of the coding scheme.

Consider now the transmission of a sequence {z;}%, of L signals, where the subscript i denotes
discrete time. The receiver that minimises the average error probability over the sequences operates
as follows. It first observes the received signal y,..., yr, and then decides that Xy,..... X was
transmitted if the squared Euclidean distance

L
d® = Z | i — i || (A.3)
=1
is minimised for z; = X,;,i = 1..... L, or, in other words, if the sequence X,,..., X is closer

to the received sequence than to any other allowable signal vector sequence. The resulting error
probability, as well as the symbol error probability, is upper bounded, at least for high SNR, by
a decreasing function of ratio d2,,, /N,, where d? , is the Minimum Squared Euclidean Distance

min

(MSED) between two allowable signal vector sequences.

One way of improving the system performance is that of removing the assumption that the signals
are independent. This can be done by restricting the transmitted sequences to a subset of QK.
Now, to do this, the transmission rate will also be reduced. To avoid this unwanted reduction, one
may choose to increase the size of Q. For example, if Q' is changed into Q D @’ and M’ into M. M’,
and select M'K sequences as subset of QX one can have sequences that are less tightly packed and
hence increase the minimum distance between them.

In conclusion, a minimum distance dy,.. between two possible sequences is obtained that turns out

to be greater than the minimum distance d,,;, between signals in ', i.e., the constellation from
which they were drawn. Hence use of ML sequence detection will yield a distance gain d%,,,/d2,;,.
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On the other hand, to avoid a reduction of the value of the transmission rate, the constellation is
expanded from Q' to Q. This may entail an increase in the average signal energy from E' = B
to £ = E,_, and hence an "energy loss” E/E' = Eyc/Esy. Thus the asymptotic coding gain of a
TCM scheme is defined as

d? E d?
Y, = 3 rcc.c/ e 10 logm 2ree.c (A4)
""}ree,u/EJ-u freeu

where E,, and Es . are the average energies associated with uncoded and coded transmission,
respectively.

The introduction of interdependencies among the signals and the expansion of the signal set are
two of the basic ideas underlying trellis-coded modulation, another is set partitioning introduced
by Ungerboeck [27, 29].

Memory part Select
On Constellation

an

' Select signal
L from =% &n

constellation

Figure A.1: General model for TCM.

Assume that the signal z,, transmitted at discrete time n depends not only on the source symbol
a@n transmitted at the same time instant (as it would be with memoryless modulation), but also on
a finite number of previous source symbols:

In:f(aman-lw---aan—LJ' (A.5)

By defining
Tii = (Oimdy oo G ) (A.6)

as the state of the encoder at time n. can be rewritten (A.5) in the more compact form

In = f{ﬂmo'n)

Tny1 = g(an,0n). (A.T)

Equations A.7 can be interpreted as follows. The function f(-,-) describes the fact that each
channel symbol depends not only on the corresponding source symbol, but also on the encoder
state parameter, o,. In other words. at any time instant the transmitted symbol is chosen from
a constellation that is selected by the encoder state, o, at time instant n. The function g(+-)
describes the memory part of the encoder and shows the evolution of the modulator states. The
general model for TCM is shown in Figure A.1.
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A.2 HEURISTIC AND ANALYTIC REPRESENTATION OF
TCM

In this section the two different approaches to code design are examined, the first proposed by
Ungerboeck, consisting of modeling the memory part of the TCM encoder through a convolutional
encoder [27, 29, and the second introduced by Calderbank and Mazo [31, 30], where the output
channel signals are directly expressed in terms of a sliding block of input bits.

A.2.1 Ungerboeck Codes

Ungerboeck proposed a channel coding technique that achieves remarkable coding gains, without
sacrificing the data rate or expanding the bandwidth of the transmitted signal [27, 29]. The basic
idea is to encode m information bits into m+1 bits by means of a rate R = m/(m+1) convolutional
encoder, which selects according to certain rules called mapping by set partitioning,” points from
one of the conventional 2™*! signal constellations. The interdependence between the resulting
sequences of channel signals, introduced by the encoder, is such that the free ED, dyf,.. between
any two possible sequences is greater than the minimum distance d,, between any two points
in the 2™ signal constellation. Such memory can then be exploited by the ML decoder, yielding
a coding gain, 7. defined in (A.4). The coding gain (v.) is a function of the amount of memory
introduced by the encoder, i.e., the constraint length L., and of the positioning of the signal points
in the signal space, i.e., the signal constellation.

m—1m m+1
2 <
b‘(m') T — Select signal
' ' Sk from
plt1) o 1 i constellation
: - ' i i
mo WL o
b(ﬁl) — — 0, gl
' SR . ERBRE- Y ded bit .
| I Convolutional P A Coselect s Zi
il £ Encoder A o ; =
" o P ' o constellation
b; =G v S——r

Figure A.2: Block diagram of an Ungerboeck code (m = log, M).

It is convenient to represent an Ungerboeck code by the scheme depicted in Figure A.2. At every
time instant ¢, the rate 7 /(7 + 1) convolutional encoder receives 1 input bits and generates m+ 1
coded bits. These, in return, determine the subconstellation from which the transmitted signal has
to be chosen. Furthermore, these coded bits move the encoder to the next state. In the figure, the
m — m source bits left uncoded are explicitly shown. The presence of uncoded bits causes parallel

transitions.

Ungerboeck’s codes or variations of these codes have received a great deal of attention in that they
are readily implemented, and considered as standards for high-speed modems on the voiceband
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data channel.

A.2.2 Calderbank—Mazo Codes

The analytic description of the trellis codes was developed for one dimensional modulation, and
channel signals have to be real numbers for the analytic process. Basically, the output channel
signals are directly expressed in terms of a sliding block of input bits, with the intermediate step
of output coded bits being irrelevant for analytical described trellis codes.

When a trellis code is used to encode data at a rate of r bit per channel symbol, each channel
input z will depend not only on the most recent block of k bits that enter the encoder but will also
depend on the v bits preceding this block. Formally [31, 30]:

XJ = m(a’jT'l Qjr=1y ey Qir—(r—1)5 (j=1)ry -+ +» a(j-—l)—(u—l)) (AS)

m bm - i

: . ba
by | X,k T X

M1 Omse

aj bz 1\“3/[ w

9 . m bm+2
; . ol O

r i YO b] § #1

g —— é

Figure A.3: General structure of the Calderbank—Mazo analytical description

The v bits determine one of the 2“ states of the encoder, and 2" possible output symbols are
associated with each state. The structure of the analytical description of trellis codes is shown
in Figure A.3, and then the output symbol may be determined by solving the set of equations
resulting from all the input bit combinations:

2(br,bz, . bn) = D dibi+ Y dijbib; +
t=1 i,g=1;7>1

+ Y dijibibibi + ...+ dia.nbiby. . .by (A.9)
L50=1;0>5>1

or by solving its equivalent matrix equation, describing the encoder function as follows:

X = Bd (A.10)

where b; = 1 — 2a;, X is the channel signal matrix, B is the Hadamard matrix with elements +1
and d the matrix of constants which determines the code.
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In order to calculate the coefficients of the matrix d. the matrix of the channel symbols is calculated
from the trellis diagram and the solution for d is obtained from:

_B'X

s = (A.11)

where X is the channel signal matrix, B is the Hadamard matrix with elements +1, and d is the
matrix of constants to be determined. In (A.10) one has X = X(by,bs,....b,) which present the
modulation output X for the input information and memory bits by, bs, ..., b,, which denote the
k-th row of the (1 x n‘) matrix B given by By = (by,b2,...,b5,b1b2,...,b1b5...b,); dT will be a
(1 x n') matrix given by d¥ = (dy,dy,...,dn,d12,...,d1d>...d,), Where n* = 2" — 1, n being the
number of input bits per interval plus the number of memory bits of the encoder.

The discussion of the Calderbank—Mazo algorithm, together with the C software listing can be
found in Appendix B.

A.3 PERFORMANCE EVALUATION

In order to obtain bounds on the error performance for coded systems used on memoryless channels,
the Chernoff or Bhattacharyya bounding techniques can be applied to trellis coded communication
systems [30]. In the following, the upper and lower bounds on the error probability of a coded svstem
are discussed, based on the transfer function approach [75, 33, 30]. Channel State Information (CSI)
may also be available in the decoding procedure. In general CSI is the information derived from
the channel that can be used to design the decoding metric to give improved performance for
communication over fading channels [81].

In order to simplify performance analysis, a number of important simplifying assumptions are made:

¢ First, assume perfect coherent detection and consider the effects of amplitude fading only,

e In order to ensure independent fading of adjacent demodulated signals, infinite interleav-
ing/deinterleaving depth is assumed. This permits a memoryless channel approximation,
which in turn makes analytical performance analysis feasible.

¢ Third. an infinite decoding delay is assumed in the decoding (Viterbi) process.

e Finally, it is assumed that fading over a single signalling interval may be represented by a
single fading amplitude.

The assumptions made here are consistent with those in [61].

A.3.1 Analytical Upper Bound to the Error Probability of Q?’PSK

The discussion is started by expressing a coded sequence of transmitted Q*PSK channel signals

of length L by x1, = (71,(73,...,(T¢), where Tz, k = 1,2,..., L, are Four-Dimensional (4D)
representations of the allowable Q2PSK channel signals. Corresponding to Xr,, is the channel
output sequence y1, = (71,(%2,.-..(7z) where g, k£ = 1,2,..., L, is the 4D continuous random
variable,

Uk = Pk Tk + Tk (A.12)
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where pf represents a (normalised) random fading amplitude, and where 7% is a 4D additive Gaus-
sian noise process with zero mean and variance o? in each of the four dimensions.

Based on a suitable decoding metric, the receiver will make a decision on the transmitted sequence
X, which is called x{, which leads to the definition of a pairwise error probability [61],

Pe(xy, — x1) = Pr(m(yL,xy) > m(yL,xy) | x,) (A.13)

where
L
m(yLst) = Zm(ykaﬁ)

(A.14)

m(Tk, Tk)

k=
— |T-PETE|® , ideal CSI
|72k  ,noCSI

is the decoding metric [61, 30].

In the case of ideal CSI, the receiver is assumed to have exact knowledge of pg, & = 1,2,....L,
and the decoding metric is then ML. On the other hand, when no CSI is available at the receiver,
the decoding metric is no longer ML and this introduces an additional weakness into the bounding

procedure [94, 95].

A tight upper bound on the average bit error probability can be obtained from

ko
P, < —T(D) |p= A.l5
b < g (D) b=z (A.15)
where V is the number of trellis states; b is the number of information symbols associated with each
branch in the trellis; kg is a factor that depends on the type of channel, the type of demodulation
and the code structure; and Z = exp{—E,/4N,} is the so-called Bhattacharyya parameter. For
AWGN with optimum coherent demodulation. kq is given by

A‘O = Q { %dzrcc} D-d:}'" (Alﬁ)

which means to compute ko, knowledge of df,.. is required, the minimum free distance. As a
consequence, availability of fast algorithms to evaluate dy,.. is of crucial importance. The software
listing of the program written in C to calculate dfree is presented in Appendix B.

In (A.15), T(D) a function of D, is the (scalar, closed loop) transfer function of the error state
diagram, , where its power generally represents the distance ( Hamming or Euclidean) between two
code words. In this study a new algebraic algorithm for the derivation of the transfer function for a
trellis encoder, originally introduced by Chan and Norton [79], is utilised. This algebraic algorithm
is discussed in detail in Appendix C. Alternatively, the computational algorithm introduced by
Biglieri et al. [30], based on matrix-algebra could have been used with equally good affect.

From the analysis by Biglieri et al. [30] for the symbol error probability, the SEP is given as
P, < T(D) ID:Z (A'l?)

where T(D) = 3; W(€), Z = exp(—E}/N,) is the so-called Bhattacharyya parameter, and  is the
error vector. T'(D) is called the (scalar) transfer function of the error-state diagram.
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Define W (€) as the weight profile given by

Jw
1 2(2,CiBE
W(e) = 57 3 D* B&e) (A.18)

i

where M is the number of Q?PSK symbols in a subset after set-partitioning, ¢; denotes the M sym-
bol vectors constituting the subset, and d?(-) is the MSED between two symbol vectors separated

by the error vector €.

A better upper bound on P, than (A.17) can be derived by knowledge of the free distance, dy,..
of the code and is given by

d:__E; d%. . E
free freeb
P,<Q { N } exp ( N ) T(D) |p=z (A.19)

From (A.17) the upper bound on the BEP is easily found and given by

Py < -T(D) |p=2z (A.20)

| —

where b is the number of source (input) bits per trellis transition.

Yet, another tighter upper bound can be found from (A.19), given by

1 d},..Es d},.e Eb
P < 3 N exrp TIN T(.D) |p=z (A.21)

A discussion of the Chan—Norton algebraic algorithm utilised for generating the transfer function
of the trellis encoder may be found in Appendix B.

A.3.2 Lower Bound to Error Probability

An lower bound to the average bit error probability is given by

n> So{l] e

where v is the probability that at any time, a trellis path chosen at random has another path
splitting from it at that time, and remerging later, such that the Euclidean distance is dyee. In
(A.22) m denotes the number of information bits at any node.

A.3.3 Union Bound techniques

Before proceeding with the union bound, consider the case of comparing the correct path with
another path that differs from it in ¢ positions. Denote the probability of error in this comparison
by P,. For the BSC with channel symbol error rate p, the probability of error in this computation
is simply the probability that more than ¢/2 errors occur plus 1/2 the probability that ¢/2 error
occur [24].
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An union bound on the probability of a first-event error, P. at branch i may be obtained by
summing the error probabilities for all possible paths that merge with the all-zero path at this
point. This overbound is then given by

P. <> n,P, (A.23)
g=0

Furthermore, an union bound on the probability of bit error, P, may be obtained from(A.23) by
weighting each term by the corresponding number of bit errors, i.e. the information weight for
each path). However, for a rate-k/n code there are k symbols decoded on each branch. T hus, P,
is bounded by
1 oo
A<l mh, (A.24)
q=

The evaluation of (A.23) and (A.23) requires knowledge of the path weight distribution of the code.
One can also perform various manipulations with the transfer functions to provide approximate
closed-form expressions for bounds on P, and P;. Observe that (A.23) and (A.24) would be identical
if the term P, could be written in the form a?. This is possible for a few channels. For example, it
can be shown that for the BSC, P, is over-bounded by [96]:

P < {2[p(1 - p'?}’ (A.25)

Thus, from (A.23) and (A.25) one may write the bound on the symbol error probability as

Fi < T(D, ‘V)lN:l.D=2[p(1—p)]”2 (A.26)

In a similar fashion, from (A.24) and (A.25) one can write the bit error probability as

1 §T(D,N) :
p o L ST(D,N) A.27
85 F 6N |N=1,D=2[p(1-p)/2 ( |

A union bound which is valid for demodulator soft decisions may be similarly established [96].
Bounds similar to (A.26) and (A.27) can also be obtained for more general channel models than
the BSC. For a binary input AWGN channel with no output quantization, the bounds respectively
become

Pg < T(D, ;\r)[:\r:].'D:eRch[No (‘A.QS)
and 1 6T(D,N)
Pb N E (SJ"V _N:l,D:eRCEb/NO (*A'zg)

where R, is the code rate.

A.4 DECODING TCM

In this section the Viterbi algorithm as applied to decoding TCM signals is considered. If the
TCM signal is described by using a trellis, whose branches are associated with transitions between
encoder states and with signals transmitted over the channel, the task of the TCM decoder is to
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estimate the path that the encoded signal sequence traverses through the trellis. This is done by
associating with each branch of the trellis a number, called the branch metric, and looking for the
path whose total metric is minimum. This path corresponds to the transmitted sequence. Thus
the decoding problem can be split into two parts:

¢ Definition of a branch metric, and its computation based on the observed values of the received
signal.

e Evaluation of the minimum-metric path.

In this section, the Viterbi Algorithm (VA) is considered for decoding TCM. This decoding algo-
rithm, introduced by Viterbi in 1967 [96], uses the trellis structure of the code and determines the
ML estimate of the transmitted sequence that has the largest metric.

ML decoding implies finding the path with largest metric through the trellis by comparing the
metrics of all branch paths entering each state with the corresponding level elements of the received
sequence in an iterative manner. In the decoding process, if at some level it is found that a path
cannot possibly yield the largest metric, then the path is discarded by the decoder. In this manner,
a decoder that compares the metrics of all paths entering a state and only retains the survivor path
at that state will yield a most likely path if the operation is repeated for all distinct states at each
level. This simple iterative process is known as the Viterbi Algorithm (VA), described by Dr. A.J.
Viterbi in the late 1960’s [96].

Viterbi decoding consists fundamentally of three processes. The first step in the decoder process
is to generate a set of correlation measurements, known as branch metrics, for each n-tuple of
codewords input from the communication channel (where k& and n are, respectively the number of
bits input and output to a rate k/n convolutional coder. These branch metric values indicate the
correlation between received codewords and the 2™ possible codeword combinations.

The Viterbi decoder determines the state of the L.-bit (where L. is the constraint length) memory
at the encoder using a maximum likelihood technique. Once the value of the encoder is determined,
the original information is known, since the encoder memory is simply information that is a function
of the state (value) of the encoder. To determine the encoder state, the second step in the Viterbi
algorithm generates a set of 2L<~! state metrics which are measures of the occurrence probability
for each of the 2L<~! possible encoder memory states. For this reason, the exponential growth
of the decoding effort is related to the encoder memory order, L. — 1. As the state metrics are
computed, a binary decision is formed for each of the 2<~! possible states as to the most probable
path taken to arrive at that particular state. These binary decision are stored in a path memory.

Step three computes the decoded output data. To do this, the path from the current state to some
point in the finite past is traced back by chaining the binary decisions stored in the path memory
during step 2 from state to state. The effects caused by noise to the one and only correct result
are mitigated as the paths within the chainback memory converge after some history. The greater
the decoding depth of the chainback process the more likely that the final decoded result will be
error free. As a result, higher code rates and constraint lengths require longer chainback depths for
best performance. The chainback memory of the Viterbi decoder traces the history of the previous
states to arrive at the most probable state of the encoder in the past. and thus determine the
transmitted data.
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A.5 CONCLUDING REMARKS: APPENDIX A

In the classical approach to channel encoding, the two functions of coding and modulation are
regarded as separate operations. It was seen that in TCM these two functions are combined at the
trellis decoder. However, the code design goal is to exploit the redundancy (whether in the form of
parity bits or a enlarged signal space) to maxiniize the minimum distance (Hamming or Euclidean)
between different codewords.
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TCM CODE DESIGN — Utility

Software

The evaluation of the coefficients of the analytical description and finding d free are
the two main tasks in the design procedure, and compliments the results presented
in Chapter 7. In this appendix a discussion of the analytical description of trellis
codes proposed by Calderbank and Mazo, and the utility software developed for
computing the coefficients of the analytical equation are presented. In the second
part of this appendix the computational algorithm proposed by Mulligan and
Wilson for the computation of dj,.. is considered. The software code written in
C'is discussed.

B.1 Calderbank—Mazo Description of trellis codes

The general theory of the Calderbank—Mazo [31] formulation of trellis codes was presented in
Appendix A The structure of the analytical description of trellis codes may be determined by
solving its equivalent matrix equation, describing the encoder function as follows [30]:

X =BD (B.1)

where b; = 1 — 2a;, X is the channel signal matrix, B is the Hadamard matrix with elements +1
and D the matrix of constants which determines the code. Calderbank and Mazo show that B is
an orthogonal matrix. Therefore, in order to calculate the coefficients of the matrix D, the matrix
of the channel symbols is calculated from the trellis diagram and the solution for D is obtained

from:
_BTx

2?1.

D (B.2)
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where X is the channel signal matrix, B is the Hadamard matrix with elements +1, and D is the
matrix of constants to be determined. Here n = k 4 v, where k is the number of input bits and v
is the number of memory elements for the trellis code.

In the following the computer software to calculate the coefficients of D is presented. The program
is based on simple matrix algebra, from which an analytical description can be derived by means
of a trellis representation of a code, by knowing the input bits and the corresponding signals in the
modulation signal set.

1 // s===============s===========c============
2 // Program Name: ANALYTIC.CPP

3 7/

4 // Description: EVALUATION OF

6 /f CALDERBANK-MAZO ANALYTICAL
6 [// DESCRIPTION OF TCM

T 1

8 [/ sss====== ==== B ==

9 #include <iostream.h>
10 #include <conio.h>
11 #include <stdio.h>
12 #include <stdlib.h>

13 #include "matrix_d.h" // Includes the matrix algebra routines
14 #include "mathstat.h" // Includes general mathematical and statistical
15 // functions

16 void main(int argc, char *argv[])

17 {

18 Matrix B, A;

19 Matrix £, d;

20 FILE *Config; // Configuration file

21 int i[K], P[X];

22 int a5 by my o n; 05 ps g 85 B T

23 int N, R, C;

24 double element;

25 clrscr();

26 if (arge !'= 2)

27 {

28 cout << "Usage: Analytic Configuration_File"; exit(1);
29 }

30 Config = fopen(argv[i],"rt");

31 fscanf (Config, "%d", &N);

32 R = pow(2,N);

33 for (a = 0; a < K; a++) P[a]l = 999;
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34
35
36
37
38
39
40

41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

66
67
68

69
70
5
72
73
74
75
76
(4
78

C = 0;
for (a = 1; a <= N; a++)
{

// C is the number of columns in matrix B
// (i.e. the number of possible solutions of D)
// It is given by

// Sum of all the combinations of N and a, where a=1,...

P[a-1] = Combination(N,a);
C += P[a-1];
}
// Initialisation of matrices
B.Set_dimension(R,C);
A.Set_dimension(C,R);
f.Set_dimension(R,1);
d.Set_dimension(1,C);

// Obtain trellis structure from configuration file
for (a = 1; a <= R; a++)
{
fscanf(Config,"%d", &t);
f(a,1) = t;
}
fcloseall(); // Close configuration file
r=1;

for (a = 0; a < N; a++) // initialise the sliding block input-output

// bits to initial condition (-1,-1,....

ifa] = -1;
clrscr();

cout << "CALDERBANK-MAZO: Analytical Description of TCM coders (c)dvw96\n\n";

cout << MC: = " K 0 <€ "\nts
for (a = 0; a < N; a++)

cout << P[a] << " + ";:
cout << "\n\n";

/[======================z=zz=z=zz===
// INITIALISATION OF MATRIX --- B
//======================zzz==z=====
for (a = R; a > 0; a--)
{

// L=1

for (m = 0; m < N; m++)

B(a,r++) = i[m];
// L =2
for (m = 0; m < N-1; m++)
for (n = m+1; n < N; n++)
B(a,r++) = i[m]*i[n];
// L =3
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79 for (m = 0; m < N-2; m++)
80 for (n = m+1; n < N-1; n++)
81 for (o = n+l; o < N; o++)
82 B(a,r++) = i[m]*i[n]*il[o];
83 //' L =4
84 for (m = 0; m < N=-3; m++)
85 for (n = m+1; n < N-2; n++)
86 for (o = n+l; o < N-1; o++)
87 for (p = o+1; p < N; p++)
88 B(a,r++) = i[m]*i[n]#*ilo]*i[p];
89 // L=65
90 for (m = 0; m < N-4; m++)
91 for (n = m+1; n < N-3; n++)
92 for (o = n+1; o < N-2; o++)
93 for (p = o+1; p < N-1; p++)
94 for (q = p+1; q < N; q++)
95 B(a,r++) = i[m]*i[n]*ilo]*i[p]*ilq];
96 // L=28
97 for (m = 0; m < N-5; m++)
98 for (n = m+1; n < N-4; n++)
99 for (o = n+l; o < N-3; o++)
100 for (p = o+1; p < N-2; p++)
101 for (q = p+1; gq < N-1; q++)
102 for (s = gq+1; s < N; s++)
103 B(a,r++) = i[m]*i[n]*i[o]*i[p]l*ilql*il[s];
104 /l L=1
105 for (m = 0; m < N-6; m++)
106 for (n = m+1; n < N-5; n++)
107 for (o = n+l; o < N-4; o++)
108 for (p = o+l; p < N-3; p++)
109 for (q = p+t1; q < N-2; q++)
110 for (s = q+1; s < N-1; s++)
111 for (t = s+1; t < N; t++)
112 B(a,r++) = i[m]*i[n]*ilo]*il[pl*il[ql*il[s]*i[t];
113 for (m = 0; m < N; m++)
114 {
115 i(m] += 2;
116 if (i[m] == 1) break;
117 else i[m] = -1;
118 }
119 r=1;
120 }
121 e
122 // SOLVE MATRIX --- D
123 //=================z==
124 d = T(T(B)*£/R); // Solve for D
125 printf ("\n\nSolution for coefficients of D:\n* ");
126 for (a = 1; a <= C; a++)
Department of Electrical and Electronic Engineering 149

University of Pretoria




University of Pretoria etd — Van Wyk, D J (2005)
B.2. MULLIGAN—WILSON ALGORITHM FOR COMPUTATION OF Drrgr

127 cout << d(i,a);
128 cout << "\n\n***x FIN *¥x";
129 }

B.2 DNiulligan—Wilson Algorithm for computation of dy,..

In this study it was shown to what extent the Euclidean free distance of a TCM and MTCM defines
the asymptotic coding gain of the scheme. Furthermore, it was shown that d free Plays a central
role in determining tighter bounds on system performance. It is stated in the book by Biglieri et
al. that if a single parameter is to be used to assess the quality of a trellis coded scheme, dy,..
is the only sensible one that comes to mind. Therefore, it makes sense to look at an algorithm to
compute this parameter.

The algorithm for computation of dy... is described, as derived by Mulligan and Wilson [80]. Our
presentation here follows from [30] (pp. 128-131). Consider the trellis description of the TCM
scheme. Every pair of branches in a section of the trellis defines one distance between the signals
labeling the branches. If there are parallel transitions, every branch will be associated with an
entire subconstellation (partitioned subset). In this case, only the minimum distance between any
two signals extracted from the pair of subconstellations will be used. The squared distance between
the signal sequences associated with two paths in the trellis is obtained by summing the individual
squared distances. The algorithm is based on the update of the entries of a matrix D). which are the
minimum squared distances between all pairs of paths diverging from any initial state and reaching
a specific pair of states at discrete time n.

In the following we present the computer program to calculate d free- The program requires the
number of states N,, the number of branches leaving a state or re-emerging at a state and the
number of parallel transitions. The signals are sequentially assigned in an configuration input
file, with the signal order corresponding exactly to the signal assignment of the trellis. Following
the signals, there are NV, additional entries, specifying the trellis structure (e.g. fully, half- or
quarter-connected trellis).

1 // ss==ss=ss s=============z====z=s==z===
2 // Program Name: DMIN.CPP

3 //

4 // Description: EVALUATION OF MINIMUM FREE
5 // EUCLIDEAN DISTANCE

6 //

7 /] ================s=====ss==sszz==z=zsz=====
8 #include <conio.h>

9 #include <stdio.h>

10 #include <stdlib.h>
11 #include <iostream.h>
12 #include <math.h>

13 #include <mem.h>
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14 #define FALSE 0

15 #define TRUE 1

16 // =======

17 // GLOBALS

18 /] =s======

19 float #kX, **%xPT, *xCDT, *+TEMP;

20 // ===========z===

21 // PROCEDURE MAIN

22 // =sss============

23 void main(int argec, char *argv[])

24 {

25 FILE *Config;

26 int S, K, KT, D;

27 int TOTAL1, TOTAL2, TOTAL3, TOTAL4, TOTALS, TOTAL6;
28 unsigned int FIRST, STILL:

29 int TD, SN;

30 int C1, G2, C3; // Counters
31 int P> 49, Y, Z, ROWPT, ROW, COL;

32 float MIN, DIST, DMIN, TEMPO;

33 int i, j, k, 1, m, n, r, Itemp;

34 float Ftemp;

35 clxger();

36 if (argc !'= 2)

37 {

38 cout << "Usage: Dmin Configuration_File";
39 exit(1);

40 }

41 cout << "Mullligan & Wilson Computational Algorithm";
42 cout << " = (c) dvw96";

43 cout << "\n\nAssuming Configuration File: " << argv[1];
44 Config = fopen(argv[i],"rt");

45 fscanf(Config, "%d", &S);

46 fscanf(Config, "%d", &K);

47 fscanf(Config, "%d", &KT);

48 fscanf(Config, "%d", &D);

49 [/ ==============

50 // INITIALISATION

51 // ==============

52 TOTAL1 = S*pow(2,K);

53 TOTAL2 = S*pow(2,KT);

54 TOTAL3 = pow(2,KT);

55 TOTAL4 = pow(2,K-KT);

56 TOTALS = pow(2,2%KT);

57 TOTAL6 = S*S;
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58 // ===============z==
59 // MEMORY ALLOCATION

60 // =================

61 Memory_Allocation();

62 // X[TOTAL1] [D]

63 // cDT[S][s]

64 // TEMP[S][s]

65 // PT[TOTAL6] [TOTALS] [2]

66 Y=2=0; // Position indexes
67 /| s==s============z===== == ===
68 // Input channel signals into matrix X
69 s === = ==========
70 for (i = 0; i < TOTAL1; i++)

71 for (j = 0; j < D; j++)

T2 {

73 fscanf(Config, "4f", &Ftemp);
74 X[i1[j] = Ftemp;

75 }

76 for (i = 0; i < S; i++)

77 for (j = 0; j < S; j++)

78 {

79 if (i == j)

80 {

81 CDT(il[j]l = 0.0;

82 TEMP[i][j] = 0.0;

83 }

84 else

85 {

86 CDT[i] [J] = 1000.0;

87 TEMP[1i] [J] = 1000.0;

88 ¥

89 }

90 // s===============zzszsz==========

91 // Initialize Pair-state Table (PT)

92 // ========== EEs===========
93 TD = 0; // Trellis-Depth = 0

94 c1 = 0;

95 for (n = 0; n < S; n++)

96 { // 10

97 fscanf (Config, "%d", &C2);

98 cC2 =C2-1;

99 C3 = 0;

100 SN = 0;

101 j =0; // loop-control variable for column
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102 for (m = 0; m < TOTAL2; m++)

103 { // 20

104 for (1 = 0; 1 < TOTAL3; 1++)

105 £ // 30

106 MIN = 1000.0;

107 for (p = 0; p < TOTAL4; p++)

108 { // 35

109 for (q = 0; q < TOTAL4; g++)
110 { // 38

111 DIST = 0.0;

112 for (r = 0; r < D; r++)
113 DIST = DIST + pow(X[Y+pl[r] - X[Z+q][r],2.0);
114 if (DIST < MIN) MIN = DIST;
115 } // 38

116 } // 35

117 Z = Z + TOTAL4;

118 if (Z >= TOTAL1)

119 {

120 Z=0;

121 Y = Y + TOTAL4;

122 }

123 PT[C1 * S + SN][C3 * TOTAL3 + 1][0] = MIN;
124 PT[C1 * S + SN]J[C3 » TOTAL3 + 1][1] = C2#S+(j+1);
125 j=3+1;

126 if (j ==5) j = 0;

127 } // 30

128 SN = SN + 1;

129 if (SN == 3)

130 {

131 SN = 0;

132 C2 =C2 + 1;

133 C3 =C3 + 1;

134 }

135 } // 20

136 Cl=C1+1;

137 } // 10

138 // s==ss======z=== ==========================
139 // Compute TEMP for the next trellis depth
140 /] ======== ==========zz=z======
141 FIRST = TRUE;

142 DMIN = 1000.0;

143 do

144 {

145 for (i = 0; i < S; i++)

146 { // 70

147 for (j = 0; j < S; j++)

148 { // 80
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149 if ((CDT[il1[j] !'= 0.0 || FIRST == TRUE) &%
150 (CpT[il1[j] < 1000.0 ))
151 { il If 4
152 for (1 = 0; 1 < TOTALS; 1++)
153 { // 90
is4 ROWP1 = i*S + j;
155 TEMPO = CDT[i][j] + PT[ROWPT][1][0];
156 ROW = (int) (PT[ROWPT][11[1] - 1.0)/S;
157 COL = (((int) PT[ROWPT][1][1]) % S)-1;
158 if (COL == -1) COL = S-1;
159 if ((TEMPO < TEMP[ROW][COL]) || (TEMP[ROW][COL] == 0.0))
160 TEMP [ROW] [COL] = TEMPO;
161 if ((ROW == COL) && (TEMP[ROW][ROW] > 0.0) && (TEMP[ROW] [ROW]
162 DMIN = TEMP[ROW] [COL];
163 } // 90
164 } [ IE %
165 } // 80
166 } // 70
167 J// =ss===========z=z=====
168 // Update CDT from TEMP
169 // ====================
170 STILL = FALSE;
171 FIRST = FALSE;
172 for (i = 0; i < 3; i++)
173 { // 120
174 for (j = 0; j < S; j++)
175 { // 130
176 cDT[i][j] = TEMP[i][j];
17T if (i == j) TEMP[i] [j] = 0.0;
178 else TEMP[i] [j] = 1000.0;
179 if (CDT[i]l[j] < DMIN) STILL = TRUE;
180 ¥ // 130
181 } // 120
182 TD = TD + 1;
183 } while ((STILL == TRUE) && (TD < 100));
184 // ======= =========
185 // Presentation of Results
186 /] s=======z=== =TT
187 highvideo();
188 cprintf ("\r\n\nResults:\n\r");
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189 if (TD >= 100)
190 {
191 cout << "The code appears to be catastrophic after a ";
192 cout << "trellis depth of 100\n";
193 }
194 else
195 {
196 cout << "Minimum Squared Euclidean Distance, Dmin: " << DMIN << "\n";
197 cout << "Trellis Depth = " << TD << "\p";
198 }
199 fcloseall();
200 // s==========
201 // Free memory
202 // ======z=z=z====
203 Free_Memory();
204 }
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APPENDIX C

TRANSFER FUNCTION
DERIVATION

This appendix the Chan—Norton algebraic algorithm for generating the transfer
function of a trellis code is presented. The algebraic method is presented as an
alternative to the better known transfer function derivation by means of graphical
means, 1.e. by graph-reduction of Mason’s rule.

The Chan—Norton algorithm for transfer function derivation is presented [79]. In order to find the
transfer function representing all paths (except the loop at 0, i.e. the modified transfer function is
considered) starting from state 0 and ending at state 0. Firstly the trellis diagram of the encoder
is drawn. Then each branch of the trellis is labeled. The labels can be in general expressed as a
finite sum 3~; a;z™, which is the weight profile (defined in Chapter 6). The summation accounts
for parallel transitions, z is a dummy variable whose exponent n; is the number of bits in error for
that transition and a; is a scalar which could be a function of the SNR or Euclidean distance.

The transfer function T(z) is a quotient of two polynomials, T(z) = f(z)/g(z), say. From the
discussion in [79], the successive coefficients of the transfer function form a linear recurring sequence,
and the denominator of minimal degree can be used using the Extended Euclidean Algorithm
(XEA). The next step is to generate the adjacency matriz A = A(z) of the encoder from the trellis
diagram. For an N state encoder, A is matrix of dimension (N, + 1) x (N, + 1), and A;; represents
the paths with starting state i, ranging from states 0.1,2,..., N,,0’, and ending in state j also
ranging from states 0.1,2...., V., 0.

Importantly, the entries of the matrix will be the labels on the trellis diagram. If the two states
are not joined on the trellis diagram. the entry will be zero in the adjacency matrix. The column
0" represents the first output column. The Agy entry represents the path starting from state 0 and
ending at state 0’. (Note that the first column and last row in A are zero.)

If p is a polynomial, let §p denote the degree of p. Then determine the upper bound for & det (I—A),
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where I is the identity matrix. An upper bound is found by taking the sum of the maximum of
the degrees of each of the columns in J — A, and adding one. Denote this upper bound by M.
Next all the paths starting from state 0 and ending at state 0’ with degree of z less than 2, Le.,
T(z) mod z*M need to be summed. One method is by repeated multiplication of A with the output
column vector. The sum of the first entries in the resulting column vectors is the answer we are
looking for. Let e(z) = T(z) mod M Apply the XEA to 2*M and e(z) until 6 Tnt1 < M; letting
r_y = z2M po = e(z), rig1 = iy = @i41 '7; is obtained, where § ri+1 < éry, l.e., giyq is the quotient
obtained from dividing r;_; by r; with remainder rit+1 for 0 < i < n. The transfer function is then
given by T(z) = rpyy /tnss.

It is important to note that the general complexity of this algebraic algorithm, as is the case with
the graph-reduction method, increases exponentially with the number of states of the encoder. In
the following detail concerning the derivation of the transfer function of the rate-3/4 8-state trellis
code given in Chapter 6 is presented.

The trellis code structure for the fully-connected rate-3/4 trellis code designed in Chapter 6, is
repeated here for convenience. The trellis diagram is illustrated in F igure C.1.

be bs by (b3 by by)

0 0 0 0 15 3 12 5 10 9 6
0 0 1 1 14 2 13 4 11 8 7
0 1 0 15 0 12 3 10 5 6 9
0 1 1 14 1 13 2 1d 4 T 8
1 0 0 3 12 0 15 9 6 53 10
1 0 1 2 13 14 8 7 4 11
1 1 0 12 3 15 0 6 9 10 5
1 1 1 13 2 14 1 7 8 11 4

Figure C.1: Fully-connected R = 3/4 8-state trellis code.

The adjacency matrix, of dimensions (9 x 9) for the 8-state trellis code in Figure C.1 is

Dgl‘ DM.I: Dll‘z D:rI Da.’r 01132 D.qira D13
i 0 0 0 0 0 0 0 0 J

i 50 SI 52 53 54 55 56 57 Sgﬂ T

0 D15.’C Dg.‘l’,‘ 01212 D5I Dlol‘z D9$2 D6$3 DO

0 D14.’L' DQ.'I: 01312 D4.’C Dnl‘z Dgiﬁz D7I3 D1

0 Dol’ Dlzl‘ D3I2 DlgI D5I2 D6I2 Dg.’r‘?’ D15
'-1(.17) . 0 .DlI D]g.r DQ.Z.‘Z Du.r D41‘2 DT(L‘Z DS:ES D14 (C 1)
i - 0 Dum DUI D15JL‘2 Dgl‘ Dsdfz D5.’u"2 Dlgl's D3 '

0 D13$ Dll‘ DHJL‘E Dgl‘ D7.’I‘2 D41‘2 D]]Ia Dg

0 D3.'I.' D15.17 Do;l’.'z DGI Dgl‘z Dlo.l‘z D5$3 Dlg

0 2

0

where Dy ... D;5 are nonzero scalar labels of the trellis diagram. An upper bound, M for ddet(I—A)
is easily found as the sum of the maximum of the degrees of each of the columns in (I = A), and
adding one. The bound is M = (1+1+2+1 +2+2+2+3+0)+1 = 14. Therefore, we need to
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find all the paths from So to Sor, that have degree less than 2M = 28. This is found by repeated
multiplication of matrix A with an output column vector, for instance

Ch

I
NN
S
W
a
o

After some mathematics (computer mathematics by means of "Mathematica” [97]) the transfer
function of this trellis code is given by (see (5.14))

7(D) — D*° +24D% — 16D18 4 43D8 | 24 p24
(D)= 2+ 18D% - 8D8 + D12

(C.3)

By substituting D = ezp(—E,/N,) in equation (C.3), the transfer function is readily obtained.

In conclusion, it is stated that the foregoing algebraic algorithm, however less severe in terms of
required effort compared to the graph-reduction methods, is not at all straight forward and demands
still a lot of work by the trellis code designer in order to obtain the final expression for the transfer
function.

Department of Electrical and Electronic Engineering 158
University of Pretoria



University of Pretoria etd — Van Wyk, D J (2005)

APPENDIX D

SET PARTITIONING FOR
Q?PSK/MTCM CODE DESIGN

In this appendix the subsets obtained from the first and second partition levels,
for the multiplier integer n = 11 as required in the MTCM analysis of Chapter 6,
section 6.1.1, are presented. Only the subsets obtained for a multiplicity, k£ = 2

D.1 CODE CARDINALITY OF 16

peignt gty 0 1 8 9

1 11 9 3 1 12 9 g4

2 6 10 14 2 7 10 15

) 3 L.u ¥ ) 3 2 11 10
40 ® By = 4 12 12 ¢ A0B By = | 2 18
5 7. 13.uis 5 8 13 9

6 2 14 1p 6 3 14 11

il < SR T 7T 14 15 6
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[0 2 8 10 ] [0 3 8 11
1 13 9 5 1 14 9 6
2 8 10 0 2 9 10 1
3 3 11 11 3 4 11 12 _
Ao ® By = 4 14 12 Ag® B3 = i 15 19 7 (D.2)
5 9 13 1 5 10 13 2
6 4 14 12 6 7 14 13
|7 15 15 7 | |7 0 15 8 |
[0 4 8 12 ] [0 5 8 13
115 9 7 1 0 9 8
2 10 10 2 2 11 10 3
3 11 13 3 6 11 14
A®Ba=|, ¢ 19 g | A®B=|, 1 199 (D-3)
5 11 13 3 5 12 13 4
6 6 14 14 6 7 14 15
[ 7 1 15 9 | | 7 2 15 10 |
[0 8 14 ] [0 7 8 15 ]
1 9 9 1 2 9 10
2 12 10 4 2 13 10 5
3 7 11 15 3 8 11 0
Ao ® Bg = 4 9 12 10 Ao ® By = i1 3 12 11 (D.4)
5 13 13 5 5 14 13 6
6 8 14 6 9 14 1
| 7 3 15 11 | | 7 4 15 12 |
[0 8 8 0] (0 9 g 1177
1 3 9 11 1 4 9 12
2 14 10 6 2 15 10 7
3 9 11 1 , |3 10 11 2 .
4do®Bs=| , 12 12 4@Bo= |, 5 19 13 (D.3)
5 15 13 7 5 0 13 8
6 10 14 2 6 11 14 3
|75 15 13 | (7T 6 15 14 |
[0 10 g 2] [0 11 8 3
1 5 9 13 1 6 9 14
2 0 10 8 3 1 10 9
3 11 11 3 Z 12 41; 4
4®Bw=|, ¢ 15 4 Ad®Bu=|, -+ 19 15 (D.6)
5 1 13 9 5 2 13 10
6 12 14 4 6 13 14 5
|7 7 15 15 | | 7 8 15 0
160
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D.2. CODE CARDINALITY OF 8

[ 6 12 8 4 8 13 8 5
i} & 9 15 E 9 0
o 3 10 10 213 10 11
< T K smaz 11 e
Ao ® B2 = 4 8 12 0 Ag @ B3 = : g 12 1 (D.7)
5 3 13 11 5 4 18 12
6 14 14 6 6 15 14 7
[ 7 9 5 1 | T 21088 455 2 |
[0 14 8 6 ] [0 15 8 T
1 9 9 1 ini6e B 2
2 4 10 12 2 5 10 13
% 15 11,7 , "rSe0 11 8
A®Bu=|, 17 19 9 d@Bis=1|, 11 19 3 (D-8)
5 5 13 13 5 6 13 14
6 1 14 8 6 1 14 9
|7 11 15 3 | [ 7 12 15 4 |
D.2 CODE CARDINALITY OF 8
[0 0 4 8] [0 11 4 3 ]
1 6 5 14 1 1 5 9 _
Co ® Do, = 2 12 6 4 Co® Doy = 2 7 6 15 (D.9)
(3 2 7 10| (3 13 7 5 |
[0 1 4 9 ] [0 12 4 4 ]
| |1 7 35 15 =y 2l 2l 5 10
Co® Dy = 2 192 6 5 Co® Dqp = 2 8 6 0 (D.10)
3 711 | 13 14 7 6 |
o 2 1 10 [0 13 4 5 ]
. 1 8 5 0 K |1 3 5 11
CO\'&‘ D?a— 2 14 6 6 CQ\_‘,-ng— 2 9 6 (D'll)
ERE! 7 12 (315 7 7 |
0 3 4 11 0 14 4 6
1 9 5 1 |1 4 59
Co®Dsa= | 15 6 7 Co® Dy = | 0 6 2 (D.12)
30 7 8 3 0 7 8
0 4 4 12 0 15 4 7
1 10 5 2 1 5 5 13
0 GO = < e
Co® Dy 2 0 6 8 Co® Dy 2 11 6 3 (D.13)
3 6 7 14 | 79
Department of Electrical and Electronic Engineering 161

University of Pretoria




University of Pretoria etd — Van Wyk, D J (2005)

D.2. CODE CARDINALITY OF 8

[0 5 4 13] 000 4 87
letl -~ 5.3 A hipé -5 14
Co® Ds, = 2 1 6 9 Co® Dsp = 2 12 6 4 (D.14)
13, 7 . 7 15 | SN2 ;% g |
[0 4 14 ] 5T T S
112 5 4 10T 455158 i
Co® Dg, = 2 9 6 10 Co ® Dey = 213 6 5 (D.15
(3,8 7.0 | 98- 7 el |
[0 7 4 157 0 2 4 107
113 5 5 1 8 5 0
Co® Dz, = 9 3 6 11 Co® D7y = 2 14 6 6 (D.16)
39 7 1| 3 4 7 12
[0 8 4 0] 0 3 4 11]
1 14 5 6 1 9 5 1 ~
Co® Dg, = 2 4 6 12 Co® Dg, = 2915 6 7 (D.17)
(3 10 7 2 | 3 5 7T 13
[0 4 1] 0 4 4 127
1 15 5 7 110 5 2
Co® Dg, = 29 5 6 13 Co® Dy = 20 6 8 (D.18)
(3 11 7 3 | 3 6 7 14|
[0 10 4 2] 0 5 4 13]
| |1 0 5 8 N 111 5 3 .
Co ® D1, = 2 6 6 14 Co® Dyop = 2 1 6 9 (D.19)
|3 12 7 4 | 3 7 7 15|
[0 11 4 3] 0 6 4 14 ]

- 11 5 9 112 5 4 _
Co®Dua= |, 7 6 15 Co@Dus= |5 6 10 (D-20)
|3 13 7 5 | 3 8 7 0|
[0 12 4 4] 0 7 4 15]

1 2 510 |1 13 5 5 _
Co ® Dy2q = 2 8 6 0 Co® Dizp = 2 3 6 11 (D.21)
(3 14 7 6 | 39 7 1 |
[0 13 4 5] 0 8 4 0]
1 3 5 11 - |1 14 5 6
Co ® Dy3, = 9 g 6 1 Co® Dyzp = 9 4 & 19 (D.22)
(3 15 7 7 | 310 7 2 |
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0 14 4 6 0 9 4 1
1 4 5 12 1 15 5 7
©0ODua=1y 19 § 5| Co®Dw=|, 6 13 (B:23)
3 0 7 8 | 3 11 7 3 |
0 15 4 7] 0 10 4 2]
1 3 5 13 _|1 0 5 8 _
Co @ Dysq = 2 11 6 3 Co® Dysp = 2 6 6 14 (D.24)
3 1 7 9 | 3 12 7 4 |
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