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CHAPTER 6

DESIGN OF TCM AND MTCM
FOR FADING CHANNELS

In this chapter the design of Multiple-Trellis Coded Modulation (MTCM) for
Q?PSK is presented when transmitted over a fading channel. Although, both
Rician and Rayleigh fading channels are considered, most of this section is con-
cerned with the design for transmission over the Rician channel. The latter choice
has been made in view of the fact that the distortion introduced by the Rayleigh
channel requires the use of an adaptive equaliser which does not form part of this

study.

Digital communications over mobile channels often suffers from multipath effects. which results in
signal fading. Multipath fading plagues the propagation medium by imposing random amplitude
and phase variations onto the transmitted waveform. It is well known that this fading degrades
the performance of the communications systems. Therefore, this research is primarily concerned
with the application of MTCM to Q?PSK in order to achieve superior performance on the fading
channel, compared to that achievable by conventional (single channel symbol per trellis branch)
TCM of the same throughput and decoder complexity.

Divsalar and Simon did some excellent work on the effects of fading in M-PSK signals [39, 81]. They
showed that whereas maximising free Euclidean distance (dfree) is the optimum criterion on the
AWGN channel, in the case of fading channels (specifically Rician) with interleaving/deinterleaving,
the asymptotic (high SNR) performance of TCM is dominated by several other factors. These
factors are catagorised as primary and secondary considerations and depends on the value of the
Rician parameter, K. Specifically, for small values of K, the primary design criteria become

o the length of the shortest error event path (measured in number of symbols), and
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e the product of branch distances along that path, with d free & secondary consideration.

As K increases, the significance of these primary and secondary considerations shift relative to
one another until K reaches infinity (AWGN channel), in which case optimum performance is once
again achieved by trellis code designed solely to maximise d frees

In this sectivn atteution is focused on implementing the [oregoing considerations in the design and
implementation of trellis codes for Q*PSK to give optimum performance on the fading channel.
The design of Multiple Trellis Coded Modulation (MTCM) codes is considered, since the diversity
potential offered by the latter codes is fully exploited by the fading channel.

6.1 MULTIPLE TRELLIS CODED MODULATION

Recall that with conventional trellis coding (i.e., one symbol per trellis branch), the length L of
the shortest EEP is equal to the number of trellis branches along that path. Equivalently, if it is
assumed that the all-zeros path in the trellis diagram represents the transmitted sequence, [ is the
number of branches in the shortest path to which a nonzero symbol is associated. Since a trellis
diagram with parallel paths is constrained to have a shortest error event path of one branch, thus
L = 1. This implies that asymptotic region of the graph of expected (average) bit error probability
will vary inverse linearly with E,/N, or E,/N,, since E, = E, [30]. Therefore, from an error
probability viewpoint it is undesirable to design conventional TCM codes to have parallel paths in
their trellis diagrams. Unfortunately, for a convolutional code of rate m/(m+ 1), when 2™ exceeds
the number of states, one is forced to utilise a trellis containing parallel paths.

When MTCM is employed. the option of designing a trellis diagram with parallel paths may again be
considered, since achieving an asymptotic performance on the fading channel which varies inversely
with E,/N, at a rate faster than linear may now be achieved. The reason behind this lies in the
fact that even if parallel paths exist in the trellis. it is now possible to have more than one coded
symbol with nonzero Euclidean distance associated with an EEP branch of length, L = 1.

[
. my
—.-! moy
Pl ————— \ M-ary
b — i 1 - ~lapper —~ Output
Encoder 5 Modulator Symbols
: [Mk—1
L =

Figure 6.1: Generalised MTCM transmitter.

In its most general form, MTCM is implemented by an encoder with b binary input bits and s
binary output bits that are mapped into k Q?%-ary symbols in each transmission interval, illustrated
in Figure 6.1. The parameter k is referred to as the multiplicity of the code, since it represents the
number of Q%-ary symbols allocated to each branch in the trellis diagram (k = 1 corresponds to
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conventional TCM). To produce such a result, the s binary encoder output bits are partitioned into
k groups containing my, ms,...,my symbols. Each of these groups, through a suitable mapping
function, results in an @%-ary output symbol. The transmitter parameters are constrained such

that

s = klog, M (6.1)
where M = 16 for Q?PSK, without exparded cignal set (note that M = 32 when ai cxpanded
signal set is utilised). The throughput of the MTCM transmitter is given by r = b/k bits/s/Hz,
which is not necessarily integer-valued.

6.1.1 Ungerboeck Set Partitioning: From Root-to-Leaf

In the design of the trellis codes a procedure similar to that presented in [30], known as the
Ungerboeck: Root-to-Leaf approach, has been followed. The method, makes use of k-fold Cartesian
products of the sets found in Ungerboeck’s original set-partitioning method for conventional trellis
codes [27]. The set-partitioning procedure is started with a k-fold Cartesian product of the complete

Q?PSK signal set.

Attention is focused on the design of a code with multiplicity, £ = 2. Let Ay denotes the complete
Q?PSK signal set (i.e., signal points 0, 1,..., M —1 = 15) and Ag® Ay denote the two-fold Cartesian
product of Ag with itself. (Note, that for a multiplicity, & = 4, the process should have started
with the four-fold Cartesian product set, 49 ® Ao ® Ag ® Ag). Thus, an element of the set Ag® Ag
is a 2-tuple, denoted by (ji, j2), with symbols chosen from the set Ag. The first step is to partition
Ao ® Ap into M signal sets defined by the ordered Cartesian product {Ao® B;},i=0,1,..., M —1.
The second element {j,} of B; is defined by nj+i mod M. Thus, the j-th 2-tuple from the product
Ao @ B; is the ordered pair (j; = j,j; = nj + i).

The first partitioning step has two purposes. These are summarised below [30]:

o Firstly, it guarantees that within any of the M partitions, each of the two symbol positions
has distinct elements, from the viewpoint of maximising the length of the shortest error event
path. That is, for a 2-tuple within the partitioned set, the Euclidean distance of each of
the two symbols from the corresponding symbols in any other 2-tuple within the same set is

nonzero.

e Secondly, it accomplishes a minimum Euclidean distance product between 2-tuples within the
partitioned set (i.e.. the minimum of the product of the distances between corresponding

2-tuple symbol pairs) is maximised.

Since the squared Euclidean distance between any pair of 2-tuples is the sum of the squared Eu-
clidean distances between corresponding symbols in the 2-tuples, the set partitioning guarantees
that the intradistance (i.e.. distance between pairs within a specific set or partition) of all of the
partitions Aq ® B; is identical. It is, therefore. sufficient to study the distance structure of 4q® By,
referred to as the generating set by Biglieri et al.[30]. For this set, the minimum product of squared
distances over all pairs of 2-tuples in Ay ® By, Hd?j must be maximised. This is done by choosing
the odd integer multiplier, n such that it produces a mazimin solution. A computer search for
possible values of n to be utilised, revealed the solution as n = 11. In [30] it was stated that the
additive inverse of n, denoted by n* = M —n, could also have been used. However, in our design the
solution for n* does not produce optimum (i.e., maximum) intradistances. The ordered Cartesian
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product set, Ag ® Ao, together with the generating set, 49 ® By are illustrated below for Q?PSK
with M = 16.

[0 0 8 8] 0 0 8 8]
11 9 9 1 11 9 3
2 2 10 10 2 10 14
S A B L e B
5.5 13 13 I 13 15
6 6 14 14 6 2 14 10
| 7 7 15 15 | [ 7 13 15 5 |

The sets obtained by this first partition, each with minimum intradistance of 8.0 E;, are illustrated
in Appendix D, for n = 11. The interdistances (i.e., minimum distances between pairs of 2-tuples
from different sets), for these sets are summarised in Table 6.1 below.

Table 6.1: Interdistances between partitioned subsets, with Ay ® B, used as reference.

| Subset ] Distance || Subset I Dista,ncﬂ
Ao ® By — Ao ® Bg 4.0F,
Ao @ By 4.0F, Ao ® Bg 8.0E,
Ao @ B, 4.0E, Ao ® Byo 8.0E,
Ag ® B3 B.0F, Ao ® By 8.0F,
Ag @ By 4.0F), Ao @ Bya 4.0E,
Ag® Bs 8.0F, Ap ® Bqa 3.0E;
Ag ® Bsg 8.0F)% Ag ® By 4.0F,
Ag @ B- R.O0FE, Ap @ Bys 4.0E,

The second step in the set partitioning procedure for MTCM design also differs somewhat from
the traditional set partitioning procedure. The second step should guarantee that the resulting
sets, of dimensionality M /2, have an intradistance product structure equal to that achieved by the
first-level partitioning in occordance with the requirement to achieve a mazimin Euclidean distance.
In the second step of set partitioning M is replaced by M/2.

In order to perform the set partitioning, another odd integer multiplier, denoted by n’ is introduced
such that it again results in a maximin solution. A computer search revealed the optimum solution
for the second level multiplier as n’ = 3. Note that if one of the solutions for n’ (or its additive
inverse n™* 1) is equal to the solution of the first level multiple, n, when M is replaced by M/2,
then the first two levels follow a tree structure. Since. this is not the case here, the sets formed
by the second level partition have to be recalculated, repeating the procedure followed in the first
partitioning. The two subsets, Cy @ Do, and Cy @ Dy, resulting from partitioning set 4o @ By,
are shown in (6.3); the complete partitioned subsets are given in Appendix D. The interdistances
for these sets, with reference to subset Cp @ Dy, are summarised in Table 6.2 below. Each of
the subsets have a minimum intradistance of 8.0E. corresponding to the sets formed by the first
partitioning step.

' Additive inverse, n'* is given as M — n’.
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0 0 4 8 0 3 4 11

1 6 5 14 1 9 5 1 :
Co®Doa=|,y 19 g 4| Co®Du=|, o . - (6.3)

3 2 7 10 3 5 713

Table 6.2: Interdistances between partitioned subsets, with Cy ® Dq, used as reference.

l Subset [ Distance ” Subset [ Distana
CO @ DOa =1 Co ® ng 120E5
Co® Dy, 4.0F, Co® D1y 12.0F,
Co® Da, 4.0F, Co ® Doy 16.0E,
Co® Da, 8.0F, Co ® D2 12.0F,
Co® Dy, 4.0F} Co® Dgp 16.0E,
Co ® DSa. SOEb Co ® Dsb 120Eb
Co ® Dag, 4.0E, Co ® Dg 12.0F
Co® D7, 4.0F, Co® Dny 8.0F,
Co ® Dg, 0.0, Co ® Dgy 12.0E,
Co® Dg, 4.0F, Co ® Dgyp 12.0E,
Co ® Dyoa 4.0F; Co ® Digs 16.0E,
C() ® D“a SOEb C() ® D]_]b 120Eb
Co® Diza | 4.0F, Co®@ Dy | 16.0E,
Co ® Dise 8.0E; Co ® Di3p 12.0E,
Co® Dyya 4.0E, Co® D1y 12.0E,
Co® Dysa | 4.0E, Co® Disy | 8.0E;

The set partitioning procedure is illustrated in Figure 6.2 for & = 2. To extend the previous
procedure to higher multiplicity of order k > 2, simply form the k/2-fold ordered Cartesian product
of all the sets on a given partition level created by the procedure for k = 2. The result of this
procedure is illustrated in Figure 6.3 for & = 4.
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Ao ® Ao
Ao @ By Ao ® By Ao ® B, S Ao ® Bys
I I ’ [
Co ® Do, Co ® Dy, Co® Dqg Co ® Dis,
Co @ Doy Co®@ Dy Co® Dy Co ® Diss

Figure 6.2: Set partitioning method for multiple (k = 2) trellis codes on the fading channel.

Ao@ByRA0® By Ao®@B10A0®B1 40@B®A4c®By - - 49D Bis ® A9 @ Bys
CC'O @ DDq. C'CI @ Dla CO & Dﬂa CD 2 Dlsg ‘
2Co ® Dy ®Co® Do , _ 9Co @ Daq 3Co 3 Dy
* Co @ Dos 4 " Co® Dy = ° % Co® Dy 3L JDI“"“CO ® Disp
2Co @ Doy ®Co ® Dy 2Co @ Dy DCo @ Dys

Figure 6.3: Set partitioning method for multiple (k = 4) trellis codes on the fading channel.
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6.2 Q*PSK/MTCM CODE DESIGN

6.2.1 Design of 4-State Rate 6/8 codes

In this section the design of a 4-state trellis code, with multiplicity & = 2,4, is discussed. Two
Q?PSK symbols are trausmitted over the channel for each 6 bits accepied by the encoder. Hence,
the throughput of the system is lowered by a factor 8/6, resulting in a spectral efficiency of 1.5
bits/s/Hz, compared to the 2.0 bits/s/Hz of the uncoded system.

Since, the number of input bits are & = 6, the number of branches associated with each state
(i.e., emanating from or terminating in a node) equals 26 = 64. Dividing this by the number of
states, i.e., 4 in this case, a cardinality ? of 16 symbols is required [30]. The trellis diagram of this
fully-connected code is shown in Figure 6.4, where A, B, ..., H are chosen as those sets which have
the largest interdistance in the construction of Figure 6.2, as summarised in Table 6.1.

64 branches

/{ Cardinality=16

N W
tx e
S -
Q O
/
4

Figure 6.4: Rate-6/8 4-state Q?PSK/MTCM

Thus. for a multiplicity of k = 2, the sets are given by

A=40® By . B=A40® B3

C=40@Bs . D=A¢? Bs

E=403B: . F=403 By
G=Ag® By ., H=A40® By, (6.4)

If the number of sets required to satisfy the trellis is less than the number of sets generated on a
particular partition leave, one would choose those that have largest interdistance. The sets formed
by this generalised set-partitioned procedure will have distinct elements in any of the & symbol
positions. Thus, the length of one-branch EEP will have value k, and hence the asymptotic BER
performance of the trellis code on the fading channel will vary inversely as (E,/N,)", with n > k.

For a multiplicity of & = 4, the sets are given by

A=Ae@Bo®@Ag@By ., B=Ag®@B3® Ay ® Bs
C=A400Bs®A40@B5 . D=Ay® Bs® Ay @ Bg
E=A43B:9A40@B; , F=A42Bs® Ao ® By
G=A0@B1o®As@Bro . H=Ao® By;; ® 40 ® By; (6.5)

*The cardinality is a number used to represent the size of a subset.
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Several MTCM code designs were carried out. The designs are summarised in Table 6.3.

Table 6.3: Design summary for Q?PSK/MTCM.

Code Rate | Branches | Number of | Connectivity Multiplicity | Required
. per State States k Cardinality
6/8 64 4 Fully 2 > 16
5/8 32 4 Fully 2 > 8
4/8 16 4 Half 2 > 8
6/16 64 4 Fully 4 >16 |
5/16 32 4 Fully 4 >8
4/16 16 4 Half 4 > 8
6/8 64 8 Half 2 > 8
5/8 32 8 Half 2 >4
4/8 16 8 Quarter 2 >4
6/16 64 8 Half 4 > 8
5/16 32 8 Half 1 >4

4/16 16 8 Quarter 4 >4

6.3 PERFORMANCE ANALYSIS

6.3.1 TCM for fading channels

It was shown by Biglieri et al. [30] that the asymptotic pairwise error performance for coherent
detection varies inversely with (Es/Ng)&n. L, is the smallest number of elements with non-zero
pairwise distances between the symbols along its branches and those along the correct path. Evalu-
ation of the pairwise probability depends on the proposed decoding metric, the presence or absence
of Channel State Information (CSI), and the type of detection used. In [30] the relation between
the asymptotic behavior of the pairwise error probability to that of the BEP is approximately given
by

-y L
1 (14 A )e A i
Pz — . Eg/IN, > K J
b=7 ( 2/ No ) [NV K (6.6)

where b is the number of bits transmitted per branch in the trellis. & is the Rician parameter and
C is a constant that depends on the distance structure of the code, defined as (30]

-
Coherent detection with ideal CSI

4Lq [ann J ‘Iﬂ = ‘L‘“ﬂ IB
-2

Chi=

2e Ly r.'n:',,:.i:'“[2 Coh d : ‘ith 1
E;) 1] (- oherent detection with no CSI

(Zn.q\rnzfnﬂ)m

From the above it may be concluded that the primary objective for good trellis code design on the
fading channel is the maximisation of the number of symbols with non-zero ED between the error

and correct paths, denoted by L,,.
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As an example the rate-3/4 trellis coded Q*PSK with 8-state trellis diagram is considered, corre-
sponding to the design carried out in the previous chapter (see Figure 5.14). Referring to the state
diagram of Figure 5.14, the shortest EEP branches is of length, L = 3, and all of these have nonzero
distance with respect to the branches of the correct path (assumed to be the all-zeros path). Thus
the length L of the shortest EEP equals 3, or equivalently, the code has a diversity equal to 3.

For coherent detection with no CSI, the product of the squared branch distances need to be com-
puted, normalised by the square root of their sum in accordance with C of (6.7). From Figure 5.14,
the square of this ratio is easily computed as

-2

| 2o = &5 |2 _[ 4-8-4 ]_2_1 (6.8)
B 1/2 - 3/2 T4 :
nemn (an I Ba = Tp I?) (4 + 8+ 4)

Thus letting L, = 3 and b = 3 in (6.6), the approximated average BEP in terms of Ey/N, and K is

L2838 ((1+ K)eK\°
ne i (M e

for Ey/N, > K.

For coherent detection with CSI, the product of the distances in accordance with C' in (6.7) need
to be computed. For the shortest EEP this product is easily computed as

[Tlzn—in[>=4-8-4=128 (6.10)

nemn

Substituting this value for C' into (6.6), the BEP is given by

4 43
Ll f(1+RK)e A
Py = 5 (ﬁ—) (6.11)

6.3.2 MTCM for fading channels

The throughput of multiple trellis codes can be compared with the computational cutoff rate R,
of the decoding channel to determine the efficiency of the code design. The computation of R,,
which is very similar to the channel capacity C discussed in Chapter 2, in not at all straight
forward. In fact, it is an extremely complex process. For this reason the theoretical analysis has
been omitted. The efficiency of the MTCM designs will therefore only be evaluated by means of
computer simulation. In the following chapter these MTCM coding designs will be subjected to
extensive simulations.

6.4 CONCLUDING REMARKS: CHAPTER 6

Optimum design criteria for trellis coded Q?PSK systems on fading channels have been derived and
presented in this chapter. These criteria were utilised in the designs of new multiple trellis coded

Q?PSK systems.
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Initially, the study model of the coded Q?PSK system on the fading channel has been presented.
Fading channel statistics have been analysed and utilised in the design of the trellis coded systems.
Design criteria derivation has revealed that design of trellis coded Q%PSK systems to achieve
optimum performance on the Rician fading channel is guided by factors that differ from optimum
code design on the AWGN channel. In particular, to minimise the error probability, the code
has to maximise the length of symbols at nonzero Euclidean distance from the shortest EEP. The
secondary objective is to maximise the product of the branch distances along the shortest EEP,
normalised by the Euclidean distance if coherent detection is utilised. The final objective will be the
maximisation of the free squared Euclidean distance of the code. However, the relative i importance
of these parameters varies with the variation of the Rician factor encountered on the Rician fading
channel.

Several new TCM and MTCM trellis codes for Q?PSK signals have been designed and constructed.
In the next chapter these coding schemes will be subjected to extensive simulation tests on the
AWGN channel, as well as to fading channel conditions, to establish comparitive coding efficiencies.
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