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CHAPTER 5
DESIGN FOR AWGN CHANNELS

This chapter is concerned with the design of trellis codes for AWGN channels,
with specific reference to the application of classical and TCM forward error
correction techniques to Q?PSK. The first section of this chapter considers the
classical techniques. The final sections deal with the design and application of
TCM techniques for Q?PSK.

5.1 INTRODUCTION TO ERROR CORRECTION

The task facing the communications engineer is that of providing a cost-effective system for trans-
mitting information (data or voice) from a sender to a user at a specific rate and an acceptable
level of reliability. Practical considerations usually place a limit on the value that can be assigned
to E4/N,. In other words, in practice. we may find that a specific modulation scheme may not
provide acceptable performance. For a fixed E;/N,, the only practical option available for improv-
ing data quality to an acceptable level is to resort to coding techniques. The use of Forward Error
Correcting (FEC) codes is well suited to channels that can be modeled as Additive White Gaussian

Noise (AWGN) channels [22, 75, 76].

In a general FEC scheme the channel encoder accepts message bits and adds controlled redundancy
according to a prescribed encoding rule. thereby producing encoded data at a higher bit rate. The
channel decoder exploits the redundancy to decide which message bit was actually transmitted. In
FEC systems, the motivation is to achieve a coding gain, defined as the difference in Ey /N, required
for coded and uncoded systems to provide a specified BER when operating on an AWGN channel.
Moreover, the use of coding adds complexity to the system, especially for the implementation of the
decoding operation at the receiver. Thus, the design trade-offs in the use of error-control coding
are considerations of bandwidth and system complexity.
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5.2 CLASSICAL ERROR CORRECTION

In the following sections low-complexity sub-optimal convolutional encoding schemes are proposed
for Q*PSK. The first scheme employs a single rate-3/4 convolutional encoder, vielding an effective
data rate equal to that of 3/4, the rate of uncoded Q?PSK, operating at R;. A Maximum-Likelihood
(ML) soft-decision Viterbi decoder is utilised at the receiver. The second encoding scheme, with
so called dual-use of conventional 2D signals, employs two rate-1/2 convolutional encoders. At the
receiver two soft-decision Viterbi decoders are utilised in parallel. The resulting bit rate is reduced
by a factor of two, compared to that achieved with the uncoded transmission, to yield an effective
bit rate equal to that of conventional 2D-QPSK.

Since the envelope of the Q?PSK signal in the absence of any additional constraint is non-constant,
a third encoding scheme is proposed, employing a hybrid convolutional-block coding scheme. The
encoder consists of a rate-2/3 convolutional encoder, followed by a simple block encoding scheme
to facilitate a constant envelope. At the receiver a single soft-decision Viterbi decoder, together

with a block decoding scheme, is employed.

5.2.1 Convolutional Channel Coding

Convolutional codes differ from block codes in that the encoder contains m memory elements, and
the n encoder outputs at any given time unit depend not only on the & input bits at that time,
but also on m previous input bits. A convolutional code is generated by passing the information
sequence to be transmitted through a linear finite-state shift register. In general, the shift register
consists of L. (k-bit) stages and n linear algebraic function generators, called generator sequences.
The parameter L. is called the constraint length of the convolutional code, and can be interpreted
as the maximum number of encoder outputs that can be affected by a single information bit. The
number of states N, of the convolutional encoder which generates n encoded bits is a function of
L. and k input bits, given by N, = 2*(Le=1),

An (n,k, L.) convolutional code can be implemented with a k-input, n-output linear shift register
with input memory, m = kL., and at most knL, modulo-2 adders. For each of the n outputs,
a generator sequence of length kL. is needed. describing the connections of the kL, shift register
stages to the modulo-2 adder of that output stage.

For our application, ra.te-ki‘_—'1 trellis encoders. introduced by Ungerboeck [28, 29], are employed to
select 2" (n = k + 1) equally likely channel symbols.

5.2.1.1 Rate-3/4 encoder for Q*PSK

The first encoding strategy proposed for Q?PSK consists of a single rate-3/4 convolutional encoder,
as illustrated in Figure 5.1. The serial data bit stream is Serial-to-Parallel (S/P) converted, pro-
ducing three parallel bit streams, a,b and c¢. These uncoded bit streams are then fed to the rate-3/4
encoder, producing a coded signal set A consisting of four coded bit streams {a1,az2,b1,b5}. Signal
set A therefore consists of 2 equally likely signal symbols.

Since the ratio between the number of input bits to the number of output bits is 3/4. the effective
code rate is reduced by 1/4 compared to that of uncoded transmission.
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Serial S/P b Rate-3/4 —  + a,
Data i c Encoder 21
2

Figure 5.1: Rate-3/4 encoding scheme for Q?PSK.

5.2.1.2 Rate-1/2 Encoder for Q*PSK

In the coding scheme proposed for Q*PSK, two rate-1/2 (k = 1) convolutional encoders, i.e., dual-
use of 2D encoders, are employed as depicted in Figure 5.2. The serial data bit stream is S/P
converted, producing two parallel bit streams. a and b at a rate R = Ry/2. Recall that R, is the
original data rate. The uncoded bit streams, a and b. are then fed to the two rate-1/2 convolutional
encoders, each producing two sets, 4 and B, consisting of two encoded data streams {ai,a2} and
{b1, b2}, respectively. The two sets of encoded data streams each produce a signal set consisting of
2? = 4 symbals, resulting in a total signal set of M = 16 symbols given by the Cartesian products

of the sets A and B.

Rate-1/2

a Encoder . s

Serial o
Data Jilg

| | Rate-1/2
L—] Encoder

Figure 5.2: Half rate encoding scheme for Q?PSK.

Since the ratio between the number of input bits to the number of output bits is one half, this is a
true half rate convolutional encoding scheme.

5.2.1.3 Encoder for CE-Q?PSK

The coding scheme proposed for constant envelope CE-Q*PSK employs a hybrid convolutional-
block coding scheme. The block encoding scheme is incorporated to force a constant envelope
signal.

The front-end of this encoder is formed by a single rate-2/3 (k = 2) convolutional encoder as
depicted in Figure 5.3. As for the Q2PSK encoder. the serial data bit stream is S/P converted,

Department of Electrical and Electronic Engineering 70
University of Pretoria



University of Pretoria etd — Van Wyk, D J (2005)
5.2. CLASSICAL ERROR CORRECTION
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Figure 5.3: Half rate encoding scheme for CE-Q2PSK.

producing two parallel bit streams. a and b. These uncoded bit streams are then fed to the rate-2/3
convolutional encoder, which produces a single symbol set, C, consisting of the three encoded data
streams, a;,az and by, respectively. Note, that this set consists of 23 = § equally likely symbols.

The block coding scheme used to achieve a constant envelope Q?PSK signal can be described as
follows: the coder accepts serial input data and for every three information bits {ai,az,b:}, it
generates a codeword {ay,ay, by, by} such that the first three bits in the codeword are the encoded
information and the fourth one is an odd parity check bit. The parity check bit by(¢) is given by

_ax(t)bi(2)

ax(t) @)

ba(t) =

In agreeing with (2.15). By substituting (5.1) into (2.13), a constant envelope CE-Q?PSK signal is
obtained.

The resulting codeword from this block encoding has a minimum Hamming distance of a’ﬁm =2,
Recall from block coding theory that ¢ = [(df, - 1)/2| errors can be corrected. where [z] is the
largest integer less than or equal to z. implying that the added extra data bit, ba(t), can not be
used for error correction. Instead, the redundancy in the resulting signal set can be used to improve

the BER performance of the modulation scheme.

5.2.2 Maximum Likelihood Decoding

In Appendix A (section A.4) it is stated that Maximum Likelihood (ML) decoding implies finding
the path with largest metric through the trellis by comparing the metrics of all branch paths
entering each state with the corresponding received sequence in an iterative manner. The general
Viterbi algorithm can be described as follows: In the decoding process, if at some level it is found
that a path cannot possibly yield the largest metric, then the path is discarded by the decoder
[77, 24]. In this manner, a decoder that compares the metrics of all paths entering a state and
keeps only the survivor at that state, will vield a most likely path if the operation is repeated for
all distinct states at each level.
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In a coded system one would normally wish to structure the decoder such that for a given code
the probability of error is minimised. In the hard decision case the optimum decoding procedure is
to pick the codeword which differs from the received sequence in the smallest number of positions,
i.e., choose the codeword which minimises the "distance” between the codeword and the received
sequence. This is the definition of a ML decoder, which can be generalised to include the soft deci-
sion case. The trick is to define a suitable distance measure to utilise soft decisions. The use of hard
decisions prior to decoding causes an irreversible loss of information at the receiver. To overcome
this problem, soft-decision coding is used. This is achieved by including a multilevel quantiser at
the demodulator output. Although, the use of soft-decisions complicates the implementation of the
decoder, it offers significant improvement over hard-decision decoding [25, 24, 30].

5.2.2.1 ML Decoder for Rate-3/4 Q?*PSK

Figure 5.4 depicts the decoding procedure for rate-3/4 Q?PSK, consisting of a Q-bit multi-level
soft-quantiser and a Viterbi decoder. The Q-bit quantiser accepts serial input data and produces
serial output data quantised into 29 levels. These quantised outputs are then fed into the Viterbi
decoder, where the data is decoded and the output data stream formed.

4D-QPSK
Demodulator Q-Bit Viterbi
Ou‘t&put Quantizer Détadar — Decoded Data
Serialization

Figure 5.4: Decoding scheme for rate-3/4 Q2PSK.

5.2.2.2 ML Decoder for Rate-1/2 Q*PSK

= Q-Bit Viterbi day, d
4D-QPSK Quantizer Decoder g
Demodulator L L m
b | _Decoded
OQutput . r o i Data
Serialization ] Q-Bit Viterbi by. by g
Quantizer Decoder

Figure 5.5: Decoding scheme for rate-1/2 Q2PSK.

Figure 5.5 depicts the decoding procedure for Q2PSK, consisting of two Q-bit multi-level soft-
quantisers and two ML decoders, employing the Viterbi algorithm. Each of the two Q-bit quantisers
accepts serial input data and produces serial output data quantised into 29 levels. These quantised
outputs are then fed into the Viterbi decoders, where the data is decoded. From the decoders the
output data streams are combined to form the decoded output data stream.
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5.2.2.3 ML Decoder for Constant Envelope CE-Q?PSK

Figure 5.6 depicts the decoding scheme for CE-Q?PSK, consisting firstly of a block decoding pro-
cedure, and secondly, of a ML Viterbi decoder.

ayr
A2y
;{T ] Serialization
air | a2 a1d (@24
4D-QPSK ,
Demodulator b D Q'Bl_t Viterbi Decoded
B e Quantizer Decoder Bits
Output b, (1) S
Serialization c d o1,
k e
r

Figure 5.6: Decoding scheme for rate-1/2 CE-Q2PSK.

Decisions about demodulator outputs a;, and a,, associated with pulse trains a;(¢) and a,(t) respec-
tively, are made from the other Q*PSK demodulator outputs to produce the decoded information
streams, a14 and az4. These two streams, together with the redundant information associated with
by(t), are used only in making the decision about the information bit in b1(t). To make a decision
about b(2). a simplifying assumption that a;; and asy are decoded correctly has to be made. These
decoded information streams, along with the estimates b;, of b; and its redundant version by, of
ba; observing a decision estimate about b, given by: b}, = by, — (a14/a24)by- (in agreement with
the discussion in section 4.1.2.1), is made.

The decision estimate, b}, together with estimates a;, of a; and ay, of as, are then serialised
and fed to the Q-bit quantiser. From here the serial quantised data stream is fed to the Viterbi
decoder, producing the decoded data stream. The code classical trellis code designs carried out in
the foregoing sections have been published in [78].

9.2.3 Performance Estimates

The most useful techniques of estimating the performance of convolutional coding are the union
bound technique and computer simulation. This section will try to quantify the expected perfor-
mance of the Forward Error Correction (FEC) coders presented in the foregoing sections. Most of
the performance evaluation will, however be based on extensive computer simulations. The use-
fulness of computer simulation is limited by the long execution times required to obtain a good
statistical sample (it may take several hours to yield a single point on the error graph). The union
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bound approach for convolutional codes is virtually identical to that of block codes, and it provides
performance estimates accurate within a small fraction of a decibel for all SNR. large enough to
give an error rate of 102 or less.

Assume that coherent Q?PSK is used with a hard quantised demodulator output. Then to apply
the union bound (presented in Appendix A, section A.3.3) we must calculate the probability that
the distance betwecn the received sequence and a weight-g codeword is less than the distance to the
transmitted all-zero word. Call this probability, P,. P, is a function of E,;/N, and the number of
positions in which they differ. In summing the demodulator output voltages for these ¢ positions,
a new random variable is formed having a mean of :}:qﬁ’,1 & (depending on whether a 1 or 0 was
transmitted) and a variance of ¢/N,/2. Since the demodulator is coherent and unquantised, P, is
identical to the bit error probability of Q?PSK but with a factor of g more energy. Thus,

2qE, }

N (5.2)

heo|
Therefore, P, is the probability that two sequences will differ in g positions when coherent Q2PSK
is assumed. This value of P, can be used to compute the performance of the codes for Q*PSK. In
performing this computation the first five nonzero values of w, (see Appendix A equation (A.24))
must be computed for each of the proposed codes and then be substituted in the truncated version
of (A.24). The results of this calculation are shown in Figures 5.7 through 5.9, where the BER
performance P is plotted as a function of Ey/N, (in dB). The BER performance curves are for the
code rates of 1/2, 2/3 and 3/4, respectively and include the constraint lengths L.. In Chapter 7
these performance curves will be benchmarked against graphs obtained by means of simulation.

Rate—1/2

o Q°PsK (Uncoded)

Upper Bounds on BEP
v le 3 6y i = 5
v Le 4 m e =6

L

Pb
|

I':; il el v ol gl Ll g

Eb/No (dB)

Figure 5.7: Bit error probability, P, for Rate-1/2 codes with Viterbi decoding (Hard quantisation )
and Q?PSK modulation.
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Rate—2/3
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Figure 5.8: Bit error probability for Rate-2/3 codes with Viterbi decoding (Hard quantisation)
and Q?PSK modulation.
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Figure 5.9: Bit error probability for Rate-3/4 codes with Viterbi decoding (Hard quantisation)
and Q*PSK modulation.
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The BER performance are for a BSC (i.e., hard-decision decoding) in an AWGN channel. Com-
paring the graphs depicted in Figure 5.7 to those in Figure 5.9, it is noted that an increase in code
rate at a constant value of L. will require a slightly higher value of E, /N,. It is interesting to note
that decoders with the same L. for each of these code rates have roughly the same complexity.

The problem of constructing good codes for use with the Viterbi algorithm has received much
attention in the open literature (sec [25, 24]). The code construction of most convoiational codes
has been done by means of computer search. Once the desired code rate has been selected, the
performance bounds for constructing a good code suggests constructing codes with as large a free
distance, dy,.. as possible. Although the case of hard-decisions has been considered, it is expected
that coding gains up to 3 dB are available with soft-decision decoding.

5.3 TRELLIS CODED MODULATION

It was shown in Chapter 2 (section 2.3) that significant gains in spectral efficiency can be gained
with the Q?PSK modulation scheme compared to 2D schemes by exploiting all available signal space
dimensions within the given transmission bandwidth. Furthermore, utilisation of all available signal
space dimensions may bring about further improvements in the coding gain. Therefore, high coding
gains are expected when TCM techniques are combined with Q?PSK.

The Minimum Squared Euclidean Distance (MSED), d?%_.. between any pair of 4-tuples or code
words (a; az az a4), say s, and s,, can be easily evaluated and is given by

Brra =3 (ol = a0’ (5.3)

=1

When the MSED between all combinations of code word pairs are investigated, the following
distances are obtained (summarised in Table 5.1 below.)

From Table 5.1, the Q?PSK signal space can be partitioned into two groups, By and By, such that
the MSED between any pair of symbols within either By or By is d*(By, By) = 8E,, known as the
intradistance of a code. This distance must be maximised in order to ensure an optimum code.
The resulting subgroups are given by By = {0.3.5,6,9, 10,12, 15} and By = {1,2,4.7,8,11,12, 14},
The foregoing partitioning results in a MSED between subgroups, Bg, B; of 4E,, which is known as
the interdistance of the code. It is interesting to note that the code words from group By maintain
an even parity, while the code words from B; have odd parity.

It was shown by Saha in [12] that the minimum correlation among code words is achieved when
they are antipodal. Considering the partitioned groups By and B, we identify four pairs of such
code words out of each of the subgroups. These symbol pairs are, from group By:

{0,15}, {3,12}, {5,10}, {6,9} (5.4)

and from group By:

{1.14}, {2,13}, {4,11}, {7,8} (5.5)

Note that for these antipodal code word pairs the MSED is maximised. Therefore, we can partition
subgroups Bg and B; even further, such that the MSED between the antipodal symbol pair in any
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Table 5.1: Minimum squared Euclidean distances between all pairs of Q?PSK code words.

group is 16 £y, forming subgroups Cy,. .., C7, each containing an antipodal code word pair. These
subgroups are defined by

Bo = {Co,C1,Cy,C3} (5.6)
Bl = {C‘hCEa Cﬁv C?}
where
Co = {0,15}‘ ¢y = {3, 12}, Oy = {5,10}, C3 = {9,6} {5.7)
Cy = {1. 14}, C5 = {'2.13}. Cs = {4,11}, Cr= {87}

as illustrated in Figures 5.10 and 5.11.
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4D Signal 4D Signal  Coder
Symbol a1 az a3 a4 Gc be a5 b, Components Space Output
0 ~l1-1-1-1 ~1-1-1+1 $13 + S22 S’e: 1
Co
15 +14+1+1+41 +1-14+1+41 S11 + S24 %TXR -15
3 —1-141+1 -14+1+1-1 S14 1+ $23 S«e'{ 5
Ch
12 +1+1-1-1 +1+1~-1-1 812 + $21 ~ -11
5 —“14+1-141 —1+41-1-1 512 + 823 9
Cy
10 | -1-1+1-1 Hi+1+1-1 $14.+ 821 5{%: -7
9 +l-1-1+1 +1-1-1+1 $11 + S22 H -3
C3
6 —1+1+1-1 -l1-1+14+1 813 1 824 H 13
Figure 5.10: Group By = {Cy, (3, Cs, C3}: Even Parity
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4D Signal 4D Signal Coder
Symbol a1 a2 a3 a4 2 be as b, Components Space Qutput
1 | —1—-1-1+41 “141-141 822 + 923 X% 3
Cy
14 +l+1+1-1 +1+1414+1 831 + 824 —-13
2 ~1—-1+1-1 -1-1+1-1 813 + $14 7
Cs
13 +1+1-1+1 +1-1-1-1 311 + S12 -9
4 -1+1-1-1 -1-1-1-1 312 + S13 xle-i 11
Ce
11 +1-141+41 +l-14+1-1 811+ S14 %R -3
8 +1-1-1-1 +l4+1-1+1 821 T 822 *Ai -1
Cz
T -14+14+141 ~-l+1+1+1 823 + S24 H 15
Figure 5.11: Group By = {(y.C5,(%, Cr}: 0dd Parity
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The foregoing set partitioning of the Q*PSK signal space is graphical displayed in Figure 5.12.

MD-QPSK Signal Set
16 code words

Bo Bl

Cs Cs Cr

mininin=ist

0 15 3 12 5 10 9 6 1 14 2 13 4 11 8 7

Figure 5.12: Q®PSK signal space partition tree.

In the design of the rate 3/4 and rate 2/4 Q2PSK trellis codes, the original 4D Q?PSK constellation
(i.e. unexpanded) is utilised. Therefore, coding gains are obtained by sacrificing the effective data
rate of the system.

For small code memory codes, the design can be produced "by hand”, following the set partition-
ing concepts of Ungerboeck and then applying the analytical code design approach, presented in
Appendix A. For more complex codes, say with more than 32 trellis states, a computer search for
maximal free distance codes is definitely warranted. However, it will be shown that surprisingly
large coding gains can be achieved with simple rate 3/4 and 2/4 TCM "hand” code designs.

5.3.1 Rate 3/4 Q?*PSK/TCM

In the following section. the design of codes for rate 3/4 TCM are carried out. The 3/4 code
rate implies that the information transmission rate is reduced by a factor of 3/4, resulting in a
bandwidth efficiency of 1.5 bits/s/H-. compared to the 2.0 bits/s/Hz of the uncoded case.

5.3.1.1 3-State Code design

The code structure for the half-connected code is presented in Figure 5.13, defining the sliding
block of source variables (by, b, b3, by, bs,bg). The trellis diagram illustrated in Figure 5.14, has
been labeled with the Q?PSK code words (presented in Figures 5.10 and 5.11), and the variables of
the sliding block, (by, b,. .., bg) taking on the values 0 or 1. For the rate 3/4 code, the 3 input bits
(by,b2,b3) are input to the encoder. producing the 4 output bits (by, by, bs,bs). The values of the
output bits are not only determined by the current input bits, but also the encoder state formed by
bits (b4, bs, bs). The 4-tuple code word (b1, b4, b5, bs) produced, must then be converted to values of
=1 instead of 0 and 1, producing a Q*PSK symbol being output as presented in Figures 5.10 and
211,

Substituting the coder output code words for the Q?PSK code words, and by using the Calderbank—
Mazo algorithm (presented in Appendices A and B), the following solutions for the D matrix is
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bS T.s b5 b5
b2 T, by T, be
b by

Figure 5.13: Inputs and state variables for the half-connected 8-state code.

\ - s
femory variables Input variables Parailel transitions
be b5 by (b3 by by)
0 0 0 0.15! 3,12 510 9.6
¢ 0 1 I.14 2.13 4.11 8,7
o 1 0 3,12 0,15 9.6 5.10 .
6 1 1 213 L4 87 411 S
I 0 0O 3,10 9.6 0.15 3.12 ’2{?‘.
1 0 1 4,11 8.7 1,14 2,13
1 1 0 9,6 5,10 3,12 0,15
H 1 1 8,7 4,11 2,13 114

Q?PSK output code words

Figure 5.14: Half-connected R = 3/4 8-state trellis code.
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obtained:
dy = 8,dy = ~1,dzs = —2,d3s = —4 (5.8)
The analytical description of the encoder is:
./Y = 8b1 - b4 - 2b2b5 - 4b3b6 (59)

where X' denotes the coder output code word.

The achievable coding gain of the 8-state code is limited by parallel transitions which occur when
two different symbols can cause a transition along the same trellis branch. The minimum {ree
distance, d%,,, of the code is equal to % cec = 8Es, where Ej is the average energy per bit in
the coded signals. (For uncoded Q?PSK the minimum free distance, d%,eew = 4E3). Therefore an
asymptotic coding gain (defined in (A.4)), v. = 10logy, @} ree e/ @rpen = 101l0g,o8E/AE, = 3.01
dB is obtained for the 8 state trellis codes, given by a length L =1 Error Event Path (EEP).

The code structure for the fully-connected code is presented in Figure 5.15, again defining the
sliding block of source variables (b, by, b3, by, bs, be). No parallel transition is included in the code
structure. The corresponding trellis diagram is illustrated in Figure 5.16.

ba T_g b6
by T, bs
"z .

Figure 5.15: Inputs and state variables for fully-connected 8-state code.

be bs b4 (b3 by by)

0 0 0 0 15 3 12 ) 10 9 6
0 0 1 1 14 2 13 4 11 8 T
0 1 0 i5 0 12 3 10 3 4] 9
0 1 1 14 1 13 2 11 4 T 8
1 0 0 3 12 0 15 9 §] 3 10
1 0 i 2 13 1 14 8 7 4 11
1 1 0 12 3 15 0 6 9 10 5
1 1 1 13 2 14 1 N 3 11 4

Figure 5.16: Fully-connected R = 3/4 8-state trellis code.

The d}ree of the code is equal to 12 £, representing an asymptotic coding gain of 10log,n12/4 = 4.77
dB achievable with this 8 state trellis codes. The EEP is [, = 3, since the code performance is not
limited by parallel transitions.

5.3.2 Rate 2/4 Q*PSK/TCM

In the following discussion. the design of codes for rate 2/4 TCM are carried out. The information
transmission rate is reduced by a factor of 2/4, resulting in a reduction in bandwidth efficiency to
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1.0 bits/s/Hz. In the design of the new rate 2/4 Q*PSK trellis codes, selecting code words from the
Q?PSK code words that maintain odd parity, a constant envelope Q?PSK signal is obtained which
improves performance on non-linear channels.

Learning from the experience gained from the Rate-3/4 code designs, we consider in the following
only coders excluding parallel transitions in their trellis structures. The code structures for the half-

rate coders are preseuted in Figure 5.17, defining the sliding siock of source variables (b, . . ., bg).
b
b2 T, bg by 2 T, b4 T, be
— ——
by T, by T, bs by T, b3 T, bs
(2) (b)

Figure 5.17: Code structures for half-rate trellis coders.

5.3.2.1 Non-Constant Envelope

bs by b3 (b2 b1)

0 0 0 0 15 3 12
0 0 1 1 14 2 13
0 1 o0 5 10 9 6
0 1 1 4 11 8 T
1 0 0 15 0 12 3
10 1 14 1 13 2
I 1 0 10 5 6 9
11 1 11 1 7 8

Figure 5.18: Half-connected R = 2/4 8-state trellis code.

The trellis diagram of the 8-state code is illustrated in Figure 5.18, leading to the analytical
description of the encoder, given by:

X = 8bybs — 4by — 2by ~ bs (5.10)

The analytical description of the encoder, depicted in Figure 5.19 is given by:
X = Thibs — 3by — bybg —~ b5 (5.11)

Half rate trellis codes for Q*PSK signals have been reported by Saha and Acha, [47, 23, 48], different
2, 8 and 16 state trellis codes were designed, and asymptotic coding gains up to 6.0 dB were
calculated. However, a closer examination of the 2/4 rate codes proposed by Saha revealed a few
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bs bs by b3 {02 by)

0 0 0 0 0 15 3 12
¢ 0 0 1 1 14 2 13
0 0 1 0 5 10 9 5
0 0 1 1 4 11 R 7
] 1 0 0 15 0 12 3
0 i 0 1 14 1 13 2
0 1 1 0 10 ) 6 9
0 1 1 1 11 4 7 8
1 0 0 1] 3 12 0 15
1 0 )] 1 2 13 1 14
1 0 1 0 9 6 5 10
1 0 1 1 8 ¥ 4 11
| 1 0 0 12 3 15 0
1 1 0 1 13 2 14 1
1 1 1 0 6 g 10 5
1 1 1 1 7 8 11 4

Figure 5.19: Quarter-connected R = 2/4 16-state trellis code.

catastrophic deficiencies. Firstly, the trellis labeling proposed by Saha for the 2 state 2/4 rate code
leads to catastrophic error propagation. This can be attributed to the fact that Saha incorporated
no redundant information into the symbol sequences, resulting in infinite error propagation.

5.3.2.2 Constant Envelope

The analytical description of the encoder, depicted in Figure 5.20, is given as:

_\’ = 75155 -— 364 _— b?bs — ba (512)

The squared minimum distance, djm of this code is equal to 24F; resulting in an asymptotic
coding gain of 10log;, 16/4 = 6.02 ¢B. Note, that the coding gain of this 8-state code is not limited
by parallel transitions and that the number of nearest neighbors at a distance of dfree, is Teduced
from 4 to 2.

5.3.3 Q?PSK/TCM code performance

In this section the performance evaluation of TCM systems when utilised on AWGN channels are de-
rived. The classical performance measure for TCM, is the asymptotic coding gain, which is directly
determined by the MSED of the code (see Appendix A}). While this is an indication of the limit
of the code performance, it can be an unreliable measure to use under practical operational con-
ditions. For this reason, performance evaluation of trellis coded systems are usually accomplished
by derivation of the upper and lower bounds of the code if the convolutional coders are linear.
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bs by ba (b2 by)

0 4 ¢ 1 14 2 13
0 0 1 il b 7
0 1 0 1 1 13 2
0 1 1 1 4 7 8
1 0 0 13 1 14
1 0 1 8 7 4 11
i 1 0 13 2 14 1
1 1 1 7 8 11 4

Figure 5.20: Half-connected R = 2/4 8-state trellis code for Constant Envelope (CE) Q?PSK.

If the code is non-linear theoretical performance calculation becomes extremely cumbersome, and
computer simulations are commonly used to evaluate code performance.

In the following section upper bounds for TCM schemes are derived when employed on the AWGN
channel based on the so-called transfer function bound (30). Furthermore, we will discuss the
application of a new algebraic algorithm for generating the transfer function of a trellis encoder,
proposed by Chan and Norton [79] (presented in detail in Appendix C).

There are basically two ways to generate the transfer function. The first one is by graphical means
— the state diagram is first drawn and properly labeled. The transfer function can then be found
by a graph-reduction technique, or Mason's rule. The second approach is algebraic, i.e., solving
state equations, or performing matrix inversion. All of these methods have a common difficulty:
The complexity of calculation increases exponentially as the number of encoder states increases.

3.3.4 Analytical upper performance bounds for Q’PSK/TCM

As an example we consider the derivation of the tight upper bound on BEP for the 8-state fully-
connected rate-3/4 trellis code presented earlier in this chapter (see section 3.3.1).

In order to calculate the transfer function one has to utilise the error weight profiles, and the trellis
diagram showed in Figure 5.15. The error weights are easily calculated as defined according to
(A.18) for the error vector = (1, €q, €3, €4), and are given by

W(0000)=1 W(0001)= D* W{0010)= D* W(0011)= D®
W(0100) = D* W(0101) = D® W(0110)= D8 W(0111) = D'?
)
)

Il

W(1000) = D' W(1001)= D® W(1010)= D® W(1011)= D2 (5.13)

W(1100) = D® W(1101) = D'* W{1110)= D'? W(111l)= D8

Following the algebraic approach described in Appendix C, the transfer function of this encoder
after some intermediate algebra) is given by

D 4 24D _ 16D18 L 48 D8 + 24D
24+ 18D4 —8D% + p12

T(D) = (5.14)

Department of Electrical and Electronic Engineering 85
University of Pretoria




University of Pretoria etd — Van Wyk, D J (2005)
5.4. CONCLUDING REMARKS: CHAPTER 5

By substituting D = ezp(—E}/N,) in equation (5.14), one obtains the upper bound (UB1) to the
BEP. The derivation of the tighter upper bound (UB2) requires knowledge of the minimum free
distance, dy,.. of the code, which was computed by the algorithm proposed by Mulligan and Wilson
[80], and discussed in Appendix B. The calculation gave dy,.. = 3.464. Substituting the values for
D and djree into equation (A.21), the tighter upper bound (UB2) is obtained.

10
- TCM Rate—3/4
-2
10 e Q?PSK (Uncoded)
-3
10 Upper Bounds on BEP

v UB1 v UB2

Pb

"I T I T Y NS T (A N | [
2 3 4 5 B8 7 8 9 10 11 12

Eb/No (dB)

Figure 5.21: Upper bounds to bit error probabilities for 8-state rate-3/4 Q?*PSK/TCM.

The calculated upper bounds to the BEP have been calculated for this trellis coder and are shown
in Figure 5.21. The curve defined as UB1 denotes the upper bound calculated by equation (A.20),
and that defined as UB2 corresponds to the bound calculated with (A.21), i.e.. the tighter bound
on the BEP.

5.4 CONCLUDING REMARKS: CHAPTER 5

In this chapter the designs of classical and TCM codes were carried out, performed for a Q?PSK
system when utilised on the AWGN channel.

For the classical code designs, low-complexity sub-optimal convolutional encoding schemes were
proposed for Q?PSK. Three coding schemes were presented: The first scheme employs a single
rate-3/4 convolutional encoder, yielding a effective data rate of 3/4 uncoded Q?PSK. The second
encoding scheme, with so called dual-use of conventional 2D signals, employs two rate-1/2 convolu-
tional encoders. At the receiver two soft-decision Viterbi decoders are utilised in parallel. F inally, a
third encoding scheme was proposed, employing a hybrid convolutional-block coding scheme. The
encoder consists of a rate-2/3 convolutional encoder, followed by a simple block encoding scheme
to produce a constant envelope. At the receiver a single soft-decision Viterbi decoder, together
with a block decoding scheme, is employed. Performance estimates of these classical coders were
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carried out based on the union bound technique. Upper bounds to BEP were derived. In Chapter
7 these bounds will be benchmarked against actual simulation curves.

The final sections of this chapter dealt with the design of TCM codes for Q2PSK when utilised on
the AWGN channel. For these channels, the parameter to be maximised, is the Euclidean distance
of the TCM code. The designs and realisations for rate 3/4 and 2/4 “hand designed” trellis codes
were presented. In addition, upper bound: on the BEP for a specific 8-state rate 3/4 icellis code
were derived, which will be evaluated by means of simulation in Chapter 7.

The design criteria for the design of trellis codes for AWGN channels utilised in this chapter, is not
valid for code design for transmission over the mobile fading channel. In the following chapter, the
design of trellis codes for Q?PSK will be considered, when utilised on the mobile fading channel.
This will necessitate the adoption of new design criteria.
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