
The Design of a Software Architectural Framework for Tunnelling Metering

Protocols over TCP/IP and Low Bandwidth Packet Switched Networks with Support

for Proprietary Addressing

by

Albert Fredrich Johannes von Gordon

Submitted in partial fulfilment of the requirements for the degree

Master of Engineering (Computer Engineering)

in the

Faculty of Engineering, the Built Environment and Information Technology

UNIVERSITY OF PRETORIA

March 2007

ACKNOWLEDGEMENTS

A special word of thanks to my supervisor, Prof. Gerhard Hancke of the Department of

Electrical, Electronic and Computer Engineering at the University of Pretoria for his

support and guidance throughout this research. I would also like to thank him for providing

me with the opportunity to visit the Vienna University of Technology in Austria where I

was able to conduct a large part of the research presented in this dissertation.

I would like to thank Albert Treytl and Aleksey Bratoukhine of the Institute of Computer

Technology at the Vienna University of Technology for providing guidance and advice

during my research there.

I would also like to thank e-Logics and Spoornet, two companies that gave me access to

the metering hardware required to implement the proposed research in this dissertation and

conduct experiments.

An extra special thanks to my beloved wife Susan, who supported and motivated me

throughout the research process. I would not have been able to complete this research

without her constant support.

The Design of a Software Architectural Framework for Tunnelling Metering

Protocols over TCP/IP and Low Bandwidth Packet Switched Networks with Support

for Proprietary Addressing

by

Albert Fredrich Johannes von Gordon

Supervisor: Prof. G.P. Hancke

Department: Electrical, Electronic and Computer Engineering

Degree: Master of Engineering (Computer Engineering)

KEY TERMS

protocol tunnelling; Fieldbus systems; power line communication; distributed driver

architecture; application protocol data units; metering protocols; remote meters; quality of

service; measurement values; protocol driver

ABSTRACT

This document discusses the concept of drivers implemented within the context of the

REMPLI1 network. The process image approach and the tunnelling approach are presented

and reasoning is given why the tunnelling approach is preferred. Each of the drivers

implemented is associated with a specific metering protocol. This document further

discusses the general architecture of such a driver structure. The generic software

architecture serves as a framework for integrating serial communication based metering

protocols over packet-orientated remote networks and meters, by tunnelling the protocol

data units to the remote meters. Principally each Protocol Driver consists of three parts,

one part situated at the Application Server, one at the Access Point and one at the Node.

This document then gives a description of the general driver structure within the REMPLI

network and briefly explains the functions of all the modules contained within the driver

1 REMPLI (Real-Time Energy Management over Power line and Internet) see section 1.8.

structure. An example is used to show how these modules, which make up the software

architecture of the Protocol Driver, are used to send an application generated request from

the Application Server to the Metering Equipment and sending the response back from the

remote Metering Equipment to the Application Server. This dissertation further discusses

the need for address translation within the REMPLI network and the need to restrict access

to meters by using these addresses and an access control list. This document also discusses

the need for a “Keep-alive” signalling scheme, if supported by the underlying protocol and

gives a general concept as to how it should be implemented. The role of an Optimization

Module is also discussed for low bandwidth networks by means of an M-Bus example.

Finally the M-Bus protocol driver implementation is discussed. The results achieved are

presented, showing that the driver architecture can successfully be used to tunnel the M-

Bus protocol to remote meters, provided the underlying network conforms to the quality of

service requirements determined by the implemented metering protocol.

The work proposed in this document started off as part of the REMPLI project by the

REMPLI team but was completed independently.

Die Ontwerp van ‘n Sagteware Argitektuur vir die Tonnel van Meterprotokolle oor

TCP/IP en Lae-Bandwydte Pakket-Geskakelde Netwerke wat Eiesoortige Addresse

Ondersteun

deur

Albert Fredrich Johannes von Gordon

Studieleier: Prof. G.P. Hancke

Departement: Elektriese, Elektroniese en Rekenaar-Ingenieurswese

Graad: Meester van Ingenieurswese (Rekenaar-Ingenieurswese)

SLEUTELTERME

tonnel van protokol; Fieldbus stelsel; kraglyn-kommunikasie; verspreide aandrywer

argitektuur; protokol data eenhede; meter-protokolle; verspreide meters; kwaliteit van

diens; meetwaardes; protokolaandrywer

OPSOMMING

Hierdie dokument bespreek die konsep van sagteware-aandrywers binne die konteks van

die REMPLI2 netwerk. Die sistematiese berging van lesings asook die tonnel van data deur

middel van meterprotokolle as benadering vir die opname van lesings word bespreek. ‘n

Verduideliking word verskaf waarom die tonnel-benadering verkies word. Elk van die

geïmplementeerde sagteware-aandrywers word gekoppel aan ‘n spesifieke meterprotokol.

Voorts word ook die algemene sagteware argitektuur van so ‘n aandrywer bespreek. Die

generiese sagteware argitektuur dien as ‘n raamwerk vir die integrasie van

seriekommunikasie-gebaseerde meterprotokolle met meters wat oor pakket-geskakelde

wye-area netwerke lesings neem. Dit word bewerkstellig deur die meter se protokol-data-

eenhede te tonnel na meters wat oor lang afstande geleë is. In hoofsaak bestaan elke

Protokolaandrywer uit drie dele, een module geplaas by die Toepassingsbediener, een

2 REMPLI (Real-Time Energy Management over Power line and Internet) sien afdeling 1.8.

module by die Toegangsbediener en een module by die Nodus. Die dokument beskryf

voorts die algemene sagteware aandrywerstruktuur binne die konteks van die REMPLI

netwerk. Dit verduidelik ook kortliks die funksionele eenhede waaruit die aandrywer

bestaan. By wyse van ‘n voorbeeld word die kommunikasieproses beskryf. Dit word

gedoen deur van die funksionele eenhede waaruit die Protokolaandrywer bestaan gebruik

te maak. Die voorbeeld beskryf hoe ‘n Toepassingsbediener ‘n versoek wat deur aanvraag

gegenereer word, na meters stuur deur van die Protokolaandrywer gebruik te maak. Die

meter stuur dan die lesings terug na die Toepassingsbediener. Hierdie verhandeling

bespreek ook verder die noodsaaklikheid om voorsiening te maak vir adres-omskakeling

binne die REMPLI konteks. Toegangsbeheer deur die gebruik van hierdie adresse sowel as

‘n toegangsbeheer lys word bespreek. Die noodsaaklikheid van ‘n meganisme om die

kommunikasiekanaal oop te hou word ook bespreek om te verseker dat die

Toepassingsbediener die geleentheid het om die verlangde waardes vanaf die meter-

toerusting te verkry. Die rol wat ‘n optimeringsmodule speel in die gebruik van ‘n lae-

bandwydte netwerk aan die hand van ‘n M-Bus voorbeeld word ook bespreek. Ten slotte

word die M-Bus sagteware-aandrywer se implementering bespreek. Die resultate van die

geïmplementeerde stelsel toon aan dat die sagteware-argitektuur suksesvol is om die M-

Bus protokol na M-Bus meters oor ‘n wye-area netwerk te tonnel. Verder word ook getoon

dat die sukses van die implementering afhanklik is van die kwaliteit wat verskaf word deur

die onderliggende netwerk.

Die voorgestelde navorsing het begin as deel van die REMPLI projek en REMPLI span,

maar is later onafhanklik voltooi.

List of Abbreviations

A Address Field

APDU Application Protocol Data Unit

C Control Field

CI Control Information Field

CS Checksum

De/Mux Multiplexer/De-multiplexer

FAN Field Area Networks

GAN Global Area Network

GSM Global System for Mobile Communication

GPRS General Packet Radio Service

HVAC Heating, Ventilation, Air Conditioning

IDT Inter-Domain Transactions

IP Internet Protocol

L Length Field

LAN Local Area Network

LSB Least Significant Bit

MAC Media Access Control

M-Bus Meter Bus

MLR Multi-Logical Ring

OSI Open Systems Interconnection

OSI-RM Open Systems Interconnection – Reference Model

PDU Protocol Data Unit

PLC Power line Communication

QoS Quality of Service

REMPLI Real-time Energy Management via Power lines and Internet

REQ/RES Request/Response

RNA REMPLI Node Address

RTT Round Trip Time

SCADA Supervisory Control And Data Acquisition

SND/CON Send/Confirm

SNMP Simple Network Management Protocol

SNMP-MIB Simple Network Management Protocol Management Information Base

TCP Transmission Control Protocol

TCP/IP Internet Protocol over Transmission Control Protocol

UDP User Datagram Protocol

WAN Wide Area Network

XML Extensible Markup Language

Table of Contents

1 INTRODUCTION ... 12

1.1 SCOPE... 13
1.2 MOTIVATION.. 13
1.3 OBJECTIVES.. 15
1.4 CONTRIBUTION ... 16
1.5 RESEARCH METHODOLOGY .. 17
1.6 BACKGROUND... 18
1.7 FIELDBUS SYSTEMS ... 23
1.8 REMPLI SYSTEM BACKGROUND .. 27
1.9 M-BUS PROTOCOL AND DRIVER... 32

1.9.1 M-Bus Driver Overview.. 32
1.10 DOCUMENT OVERVIEW .. 34

2 OVERVIEW OF CURRENT LITERATURE.. 36
2.1 FIELDBUS SYSTEMS ... 37
2.2 POWER LINE COMMUNICATION ... 41

3 OBJECTIVE .. 43
4 PROPOSED RESEARCH .. 44

4.1 PROCESS IMAGE.. 44
4.2 TUNNELLING.. 46
4.3 REMPLI Tunnelling Scheme .. 47

5 REMPLI PROTOCOL DRIVER .. 50
5.1 GENERAL STRUCTURE OF THE REMPLI PROTOCOL DRIVER.............. 50
5.2 APPLICATION SERVER-SIDE DRIVER .. 52
5.3 Access Point-Side Driver .. 54
5.4 NODE-SIDE DRIVER.. 57

6 M-BUS DRIVER ARCHITECTURE .. 62
6.1 DATA FLOW EXAMPLE OF A SINGLE FRAME M-BUS
REQUEST/RESPONSE GENERATED BY THE APPLICATION SERVER 63

6.1.1 DATA FLOW FROM APPLICATION SERVER TO TCP/IP
COMMUNICATION MODULE .. 66

6.1.2 Data Flow from the TCP/IP Communication Module at the Access Point to
the De/Mux Communication Module at the Access Point 68

6.1.3 Data Flow from the De/Mux Communication Module at the Node-Side
Driver to the Metering Equipment... 71

6.1.4 Data Flow from the Metering Equipment to the De/Mux Communication
Module at the Node-Side Driver. .. 73

6.1.5 Data Flow from the De/Mux Communication Module at the Access Point to
the TCP/IP Communication Module at the Access Point............................ 75

6.1.6 Data Flow from the TCP/IP Communication Module at the Application
Server-Side Driver to the Application Server.. 76

6.2 DATA FLOW EXAMPLE OF A MULTI-FRAME M-BUS
REQUEST/RESPONSE GENERATED BY THE APPLICATION SERVER 76

6.2.1 Multi-frame Data Flow from Application Server to the Metering Equipment
and Response, figure 6.11. .. 79

6.3 DATA FLOW EXAMPLE OF M-BUS REQUEST/RESPONSE GENERATED
BY THE APPLICATION SERVER WITH TRANSMISSION FAULTS 81

6.4 ADDRESS TRANSLATION.. 83
6.4.1 General Algorithm... 83
6.4.2 Address Management Table .. 83

6.5 ACCESS CONTROL .. 84

6.5.1 Access control implemented at the Access Point .. 84
6.5.2 Access control implemented at the Node side... 84

6.6 OPTIMIZED “KEEP-ALIVE” SIGNALLING CONCEPT 85
6.7 FUNCTIONALITY OF THE OPTIMIZATION MODULE 86

6.7.1 Header Reduction .. 86
6.7.2 Data Compression ... 88

7 IMPLEMENTATION SOLUTIONS... 89
7.1 SOFTWARE ARCHITECTURE .. 89

7.1.1 Implementation View .. 89
7.1.2 Deployment View.. 92
7.1.3 Implementation Platform... 93

7.2 APPLICATION SERVER-SIDE DRIVER .. 94
7.2.1 Communication Module .. 94
7.2.2 TCP/IP Communication Module ... 94
7.2.3 Address Management Module... 95

7.3 ACCESS POINT-SIDE DRIVER ... 95
7.3.1 TCP/IP Communication Module ... 96
7.3.2 Data Processing Module.. 96
7.3.3 Management Module... 96
7.3.4 Data Storage Module ... 97
7.3.5 Optimization Module... 97
7.3.6 De/Mux Communication Module.. 97

7.4 NODE-SIDE DRIVER.. 98
7.4.1 De/Mux Communication Module.. 98
7.4.2 Optimization Module... 98
7.4.3 Access Control Module ... 98
7.4.4 Protocol Stack (Layer 2).. 98
7.4.5 Protocol Specific Hardware Driver for HyNet (Layer 1) 98

8 RESULTS AND CONCLUSION ... 100
8.1 EXPERIMENTAL SETUP ... 100
8.2 MEASUREMENT RESULTS .. 102
8.3 M-BUS REQUEST/RESPONSE TRANSACTION SUCCESS RATE 110

8.3.1 Network Quality of Service versus Number of Requests per M-Bus Meter
Trade-Off ... 112

8.4 M-BUS PROTOCOL DRIVER EXECUTION TIME...................................... 113
8.4.1 Experimental Setup ... 113

8.5 CONCLUSION ... 116
8.6 FURTHER WORK.. 117

References .. 119
ADDENDUM A ... 122

M-BUS PROTOCOL STACK .. 122
Data link layer ... 122
Transmission Rules ... 122
Frame/Telegram formats supported within the M-Bus Protocol............................... 124
Single Character .. 125
Short Frame ... 125
Long Frame ... 125
Control Frame.. 125
M-Bus Fields ... 125
C Field (Control Field, Function Field)... 125
A Field (Address Field) ... 128
CI Field (control information field)... 129

Check Sum... 129
Communication procedures... 129
Send/Confirm Procedures.. 129

SND_NKE → Single control character... 129
SND_UD → Single control character ... 130

Request/Respond Procedures .. 130
REQ_UD2 → RSP_UD... 130

Minimum Communication .. 130
Transmission Procedures in case of faults... 130
Multi-telegram answers (RSP_UD) from slave to master... 131
Frozen answer telegrams from slave to master ... 131
Multi-telegram data (SND_UD) from master to slave .. 132
Incremental actions in slave initiated by master.. 132

Implementation aspects for primary addressing Master.. 133
Slave .. 133
Implementation for multiple address slaves .. 134
Implementation for the primary (broadcast) address 255.. 134
Implementation for the primary (test) address 254 ($FE) ... 134
Implementation for secondary addressing... 135

Chapter 1

1 INTRODUCTION

In the REMPLI (Real-time Energy Management via Power lines and Internet) network,

protocol tunnelling is implemented in order to transfer data between Application Servers

and Metering Equipment, [1]. This protocol tunnelling scheme requires the use of protocol

drivers in order to transfer the data from the Application Server to the Metering

Equipment. For each protocol supported by the REMPLI system, a corresponding driver is

required to tunnel the data contained in this protocol over the IP (Internet Protocol)

network to the access point and then tunnel the data over the PLC/GPRS (Power line

Communication/General Packet Radio Service) network to the Metering Equipment

situated at a REMPLI Node. To make this tunnelling process transparent to the Application

Server, a triplet of distributed drivers are required, one situated at the Application Server,

one situated at the Access Point and one at the REMPLI Node. These drivers are known as

REMPLI Protocol Drivers and they should satisfy the requirement of supporting existing

Application Server software and existing metering and control equipment. Another goal of

the driver design is to support future applications and allow for future scalability, which is

currently lacking in internet protocols for fieldbus systems, [2].

The intention of this document is to give an overview of the functionality offered by the

general REMPLI Protocol Driver and to give a general structure with basic functions that

each protocol will require, to implement effective and efficient transmission of the protocol

data over the REMPLI network. Further more the distributed REMPLI Protocol Driver is

implemented for the M-Bus (Meter Bus) metering protocol, [3] with results obtained as to

its effectiveness.

The background of fieldbus and metering systems is given and the contribution that the

work done in this document is given within the context of the current research being

conducted within this field of fieldbus systems and metering networks.

Chapter 1 Introduction

Electrical, Electronic and Computer Engineering 13

1.1 SCOPE

The scope of this research is the development of a software architectural framework for

transparent tunnelling of metering protocols over remote hybrid networks. The hybrid

networks are limited to two different addressing schemes and include proprietary

communication systems. This research focused on TCP/IP and PLC/GPRS networks for

gathering of readings by remote meters.

Many fieldbus systems originated from proprietary development projects, due to a lack of

international standardisation at the time of development, in order to satisfy specific needs,

[4]. The relevant fieldbus systems available and in use on the market at present have been

standardized on an international level. Some of the fieldbus systems were specifically

developed to acquire data over remote networks including TCP/IP based networks.

However these fieldbus systems can often only be used in very specific environments for

limited purposes, [4]. There is still a great need in fieldbus systems, and metering systems

for unification. Unification can be accomplished by the implementation of a framework

that is independent of fieldbus and metering systems to extend the functionality of both

fieldbus and metering systems by allowing existing metering protocols to be integrated into

proprietary fieldbus systems in a transparent manner.

1.2 MOTIVATION

Originally fieldbus systems were introduced as a means of implementing distributed

control into process and manufacturing automation systems and later on for building

automation. Fieldbus systems are industrial communication networks without any specific

application context attached. Therefore it is not suitable to use the data representation

model within a fieldbus system, but rather to concentrate on the model represented by the

underlying standards used within the metering and control systems.

The widely used standards contained within fieldbus systems such as Profibus, Lonworks,

CAN or Modbus offer solutions for metering and control systems, but none of these

systems have been specifically designed for implementing control and metering systems

Chapter 1 Introduction

Electrical, Electronic and Computer Engineering 14

over large networks, spanning great distances, for example Wide Area Networks. In order

to implement these systems for remote metering or control, additional data conversion is

required in order to manipulate the data. This could lead to complex data management,

depending on the system being implemented.

Standard metering and control protocols on the other hand often deal with simplistic

network configurations, containing a single bus with a master and multiple slaves on the

bus. This configuration poses a challenge in implementing more complex systems without

retranslating the data packets on each level of communication from the metering or control

equipment right up to data capturing devices like SCADA (Supervisory Control And Data

Acquisition) capturing systems. This is one of the problems faced within the REMPLI

system, [1]. The addressing schemes implemented by these metering and control systems

are not adequate for the multi-structural addressing required within the REMPLI system.

Metering and SCADA system’s devices on the lower level, supported by applications on

the top layer use metering and control protocols for communication and data transmission.

This provides the second reason for focussing on the data representation model used in

these systems. Thus it is often a requirement of the field-test environment to support IEC

60870-5-101, EN 62056-21 and M-Bus, because the low level devices communicate to the

upper level devices using these three common standards. Because this document will focus

specifically on the M-Bus protocol it will also only focus on the data representation model

of the M-Bus protocol.

All of the protocols implemented in the REMPLI system are closely related to each other,

because they are often derived from the same companion standard. In particular most of

these protocols share the same communication mechanisms for metering and control

devices on different levels of the OSI (Open Systems Interconnection) model, in particular

the Physical and Data link levels. M-Bus also define the Application layer. Some of the

OSI layers are the same for the standards and some are more specific for each protocol. As

an example the M-Bus protocol uses the Data link layer mechanisms specified in IEC

60870-5-101.

Chapter 1 Introduction

Electrical, Electronic and Computer Engineering 15

Thus in order to implement a remote metering and or control system, the addressing

mechanism has to be defined and the underlying protocol specific data representation

model supported for communicating between the application and the metering equipment.

This will allow the REMPLI system to provide for the demand side requirements while

also supporting existing metering and control systems by transparently communicating

between the upper level applications and the lower level metering equipment.

The first part of the problem addressed by this research is the lack of metering

implementations that allow for the acquisition of measurements from remote meters over

hybrid networks, in particular TCP/IP and power line/GPRS networks. The second part of

the problem addressed in this research is the lack in transparency when implementing

these metering protocols in existing fieldbus systems, causing limited scalability.

1.3 OBJECTIVES

The objective of this research is to develop a software architectural framework that tunnels

existing metering protocols over hybrid networks with a focus on TCP/IP and PLC/GPRS

networks, with the following characteristics:

1. The framework must enable access and acquisition of data from remote meters over

a TPC/IP and PLC/GPRS based network.

2. The framework must provide a distributed driver architecture for containing

additional information and management functionality required to tunnel metering

protocols to remote metering equipment.

3. The framework must enable for the integration of existing connection-oriented

standard metering protocols into a remote packet orientated network.

4. The framework must integrate metering protocols in a packet oriented network in a

transparent manner.

5. The framework must enable multiple concurrent meter protocols to be tunnelled to

remote meters.

6. The framework must provide for the management of the Data link layer protocol

data units of the metering protocols.

Chapter 1 Introduction

Electrical, Electronic and Computer Engineering 16

7. The framework must make optimal use of the low bandwidth provided by the

power line communication.

8. The framework must provide a mechanism for address translation.

9. The framework must provide access control functionality.

The objectives for the software architectural framework to be developed can be

summarized as follows: transparency, scalability, interoperability, data integrity and

security.

1.4 CONTRIBUTION

This research provides two significant contributions to the body of knowledge in the field

of remote metering and fieldbus systems. The first is a software architectural framework

for transparently tunnelling existing connection-orientated metering protocols over remote

packet orientated networks. The suggested framework also makes provision for the

addressing requirements and the Data link layer communication management of the

metering protocols. Provided that the underlying network QoS (Quality of Service) is

provided the functionality of metering systems and fieldbus systems can be extended by

integrating existing metering systems into fieldbus systems, without the need to develop an

entirely new metering system. Many proposals have been made on how to extend existing

fieldbus systems to integrate IP or GPRS into the fieldbus system. These suggestions

however are focused on the existing fieldbus systems, where as the framework suggested

in this research focuses on the existing metering equipment and how to extend them for use

in fieldbus systems.

The second contribution to the body of knowledge is the successful implementation of the

suggested software framework on the M-Bus protocol and successful expanding the

current capability of the M-bus protocol to retrieve measurement values over a wide area

network by traversing a TCP/IP and GPRS/PLC based network. Currently many proposals

focus on wired/wireless extensions of fieldbus systems, [5], [6], [7]. The framework

suggested in this research allows for the extension of fieldbus systems by using power line

communication and or any proprietary communication system, by supplying the required

addressing needs.

Chapter 1 Introduction

Electrical, Electronic and Computer Engineering 17

Another significant contribution by this research is the scalability provided by the

framework. If a new metering system with a new metering protocol is required in the

fieldbus system, then a protocol specific distributed driver is developed for the new

protocol and integrated into the existing fieldbus system. This expandability of the

framework significantly reduce implementation costs once the fieldbus system is in place,

and uses the distributed driver architecture to tunnel metering protocols over packet

oriented networks. The suggested framework is also not limited to fieldbus systems and

can be implemented independently to access remote meters.

By applying the distributed driver architecture given in this document it is possible to

convert current serial based metering systems into remote metering systems. Provided that

the metering protocol meet the addressing requirements of the underlying network and the

underlying network provides the required QoS demands for the metering protocol.

The proposed research combines the fields of remote metering with the area of fieldbus

systems to enable the reading of values obtained from standard metering implementations.

The application software for the metering equipment is able to communicate transparently

with remote meters over TCP/IP, GPRS or PLC based networks, through the use of

distributed protocol drivers.

1.5 RESEARCH METHODOLOGY

A key component in the design of a software framework for tunnelling connection-

orientated metering protocols over packet-orientated networks is a thorough understanding

of existing connection-orientated metering protocols and fieldbus systems as well as the

underlying communication systems that each of them implement. Therefore a thorough

literature study was done to understand current systems and the limitations of currently

existing systems. The literature study was also used to obtain the key factors and

requirements that would influence the design of a software architecture for tunnelling

existing metering protocols over packet-oriented remote networks. The developed software

architecture was implemented using the M-Bus metering protocol stack and deployed for

acquiring measurement values. The implementation was used to verify its design and to

Chapter 1 Introduction

Electrical, Electronic and Computer Engineering 18

determine key requirements for implementing the developed architecture, which include

the QoS and the number of remote meters that can be accessed using the suggested

framework. The limitations of the developed architecture are given and key factors to

consider when implementing it. Finally future developments are suggested for improving

the suggested software architecture and further analysis required on implementing the

developed software architecture in a full-scale fieldbus systems.

1.6 BACKGROUND

The proposed distributed driver given as a solution for tunnelling existing fieldbus

metering protocols across different networks, results in the use of a field-level network on

which the drivers operate. On a physical level the combination of fieldbus networks with

packet switched networks used to implement remote data acquisition using existing

fieldbus devices results in the term field-level networks. This section gives the definition of

the different networks used in a field-level network as well as the different communication

mechanisms and limitations associated with each of the specified networks. The final

design of the distributed driver must incorporate all of the features and mechanisms

associated with the different communication networks in order to transparently

communicate across the different types of networks within the field-level network.

Communication networks are classified by the areas that they span. These include:

• Global Area Networks (GAN’s), which span over multiple continents around the

world and are known as world-wide networks;

• Wide Area Networks (WAN’s) , which cover large parts of continents or large land

masses;

• Local Area Networks (LAN’s), which are limited to specific geographical areas

within several kilometres.

Networks are used for connecting distributed devices, which can then be used to share

information and automate several processes. Certain network types and topologies are best

suited to certain processes and distributed devices. As an example, devices utilizing LAN’s

include: Computers, Terminals, Micro Controllers and Measuring Equipment. These

Chapter 1 Introduction

Electrical, Electronic and Computer Engineering 19

communicating devices can best utilize the functionality provided by a network, due to the

following reasons:

• Protocols that are supported by the communicating devices and supported by the

network topologies.

• The bandwidth provided by the network topology.

• The computing ability of the communicating devices.

• The volumes and type of data that needs to be transmitted between different

distributed devices.

LAN’s are configured in different topologies. The main topologies used for local area

networks are: Bus Topologies, Ring Topology and the Star Topology as shown in figure

1.1.

Figure 1.1. Different Local Area Network Topologies.

In a bus topology, every device is connected to every other device via an appropriate

hardware interface through a common line known as a bus. In full-duplex mode data is

allowed to be transmitted onto the bus and received from the bus simultaneously. In half-

duplex mode data is only allowed to be transmitted onto the bus, or only allowed to be

received from the bus. A transmission from any device propagates the entire length of the

bus and can be received by all devices connected to the bus. Terminators at the end of the

bus absorb any signal that reaches it and thus removes the signal from the bus.

Bus Topology Star TopologyRing Topology

Chapter 1 Introduction

Electrical, Electronic and Computer Engineering 20

Transmission of data takes place, either serially (one bit after the other) or parallel where

multiple data bits are transmitted simultaneously, each on a separate data line.

In the ring topology repeaters receive and retransmit data in a closed loop. Transmission

takes place in a unilateral manner, in one direction only (clockwise or counter clockwise).

As the data is passed from one device to the other the device for which the data is intended

detects it and copies it. Once the data has completed the circular transmission and arrives

back at the original source it is removed from the network. Only one station may send data

at a time and a medium access control mechanism is required to manage this.

In the star topology, each device is directly connected to a common central device. Either

the central device broadcasts data to all connected devices, which results in a logical bus

topology, or all incoming data is buffered and then redirected to the intended recipient

through the outgoing link.

Many forms of serial bus systems exist. The following diagram gives an overview of the

most prominent serial bus system’s medium access and transmission techniques, [3].

Figure 1.2. The classification of serial bus systems according to medium access and
 transmission techniques.

Serial Bus

Synchronous
Transmission
with central

control

Central Bus
Allocation

Controlled Bus
Access

Asynchronous
Transmission

Uncontrolled
Bus Access

Time Division
Multiplexing

Frequency
Multiplex

Carrier Sense Carrier Sense
with collision

detection

Decentral Bus
Allocation

One Subscriber
per Channel

Several
Subscribers per

Channel

Chapter 1 Introduction

Electrical, Electronic and Computer Engineering 21

The nature of a bus system and the fact that multiple devices share the same transmission

medium and capacity requires a means of controlling access to the transmission medium.

This is achieved through access techniques such as Medium Access Control (MAC). These

techniques must ensure that only a single station transmits at any given time, thus avoiding

collisions. These access techniques must ensure that each station is given a minimum

timeframe in which it can transmit.

A fundamental requirement for communicating on a serial bus architecture is

synchronization. The receiver of data must know at what rate to sample data and the sender

of data must know at what rate to send data in order for the receiver to be able to receive

the data correctly, [8]. Synchronization can thus be seen as the coordination, in time,

between the communication devices on a transmission line. In order to achieve

synchronous communication two techniques are used: Synchronous transmission and

Asynchronous transmission.

During synchronous transmission a block of bits is transmitted in a steady stream. There

are no start or stop bits within this stream, [8]. Over long distances these bits may drift. In

order to allow the receiver to correctly receive the stream of bits the streams between

sender and receiver must be synchronized. By using a clock signal, either on a separate

line, or by sending regular clock pulses on the line as a clock this synchronization can be

achieved. Another alternative is to encode the data stream to contain the clock signal

within the data stream sent over the transmission line if the signal is of digital nature. If an

analog signal is transmitted the carrier frequency can be used to synchronize the send and

receiver, based on the phase of the signal. Once the individual bits in each stream are

synchronized each block of data also needs to be synchronized. This is achieved by

preceding each data block with a predetermined, fixed bit pattern (preamble) and following

each data block by another predetermined fixed bit pattern (postamble). This data stream

with its preamble and postamble and control information is known as a frame, [8].

During asynchronous transmission the problem of maintaining a shared clock signal is

bypassed by only allowing for short characters. Timing only needs to be maintained within

each character. When no data is transmitted on the line, the line is in an idle state which is

Chapter 1 Introduction

Electrical, Electronic and Computer Engineering 22

usually binary 1. A start character 0 is used to indicate the start of a character. The

character is transmitted with the Least Significant Bit (LSB) first, followed by a parity bit.

The parity bit is set so that the number of ones in the character is either even or odd.

Finally a binary 1 is used after the character to indicate the end of the current character.

The main difference between these two synchronization techniques is that asynchronous

transmission is easier to achieve, as no clock signal is required, but more overhead is

generated. To implement synchronous transmission, less overhead is generated and utilizes

the transmission line more effectively. However, the cost of implementing a synchronous

transmission system is more costly due to the complexities involved in implementing this

scheme.

A protocol is used to facilitate the communication between different entities connected to

each other on a network. The protocol determines what is communicated and how it is

communicated and must conform to a mutual convention. A protocol consists of three

main elements, [8]:

• Syntax: Data format and signal strength.

• Semantics: Control information for coordinating and error handling.

• Timing: Transmission speed matching and sequencing.

Due to its characteristics the serial bus LAN topology is often the most cost effective LAN

topology to implement when implementing a distributed network. Metering devices that

are used to read data from distributed metering devices is one example for which the serial

bus LAN topology is best suited due to the following:

• The low computing power that is often present at such metering devices, limiting

these devices to simplistic protocols and very limited data management control.

• Low cost of implementation. Due to the simplistic nature of a serial bus network

the cost of implementing such a system is less costly.

• Adequate bandwidth provided by the serial bus network to transmit the required

loads of data over the network.

• High degree of transmission integrity.

Chapter 1 Introduction

Electrical, Electronic and Computer Engineering 23

• Capable of transmitting data over long distances.

1.7 FIELDBUS SYSTEMS

The term fieldbus is used to describe a digital communications network. This network is

used to connect remote field devices, such as metering equipment, controllers and sensors.

The fieldbus network supports digital, bi-directional communication on a serial-bus LAN

topology.

Each field device has limited computing capabilities, enabling it to perform certain tasks

on its own, such as:

• Control

• Communication Functions

• Diagnostic functions

• Maintenance

The computing ability at the field device level allows for distributed control networks,

which allows for the remote accessing of field devices and inter-device communication.

The advantages of implementing a fieldbus network include the following:

• Improved quality of service, digital is more accurate than the analog networks it

replaces.

• Lower cost of implementation.

• Improved efficiency.

The advantages mentioned above are due to the digital nature of the network, computing

capability of the field devices, communication capabilities of the field devices and the self

maintenance and diagnostic capabilities situated at the field device, allowing for better

maintenance and control of the field devices while at the same time reducing the amount of

resources required to perform these maintenance and control tasks. Another advantage of

Chapter 1 Introduction

Electrical, Electronic and Computer Engineering 24

the implementing field devices with computing capability is that these devices are more

flexible and can be utilized to perform several tasks; one device could be used to perform

metering tasks, as well as control tasks etc.

Fieldbus systems originated during the early 1970’s and the development of fieldbus

systems rapidly increased during the 1980’s as the potential of remote automation by

means of fieldbus systems became apparent [4]. These fieldbus systems were primarily

developed by corporations within the automation industry, but the acceptance rate of these

commercially developed fieldbus systems were not high enough and international

standardization was required for higher levels of uptake within the automotive industry.

During the late 1980’s the IEC made an effort to draw up international standards for

fieldbus systems. Development of fieldbus systems continued, mainly in Europe, with two

main fieldbus systems came to prevalence during this time: FIP from France and

PROFIBUS from Germany. Both these systems were standardized at national level and

both were submitted to the IEC for international standardization. These two fieldbus

systems are fundamentally different in their approach: PROFIBUS focused on distributed

control and was based on an object-oriented vertical communication client/server model.

FIP on the other hand implemented a real-time control scheme within a centrally base

producer-consumer horizontal communication model. Even though these fieldbus systems

were different they complemented each other and a single standard was required

combining the advantages of both systems, which was proposed in [9].

The next development in fieldbus systems included the development of an international

standard for fieldbus systems at the hardware level as IEC 61158-2. However at the Data

link layer no consensus could be reached, which lead to the CENELEC group of standards

being adopted which took up all the national fieldbus standards as given in [4], and

included all the protocols given in table 2.1.

Chapter 1 Introduction

Electrical, Electronic and Computer Engineering 25

Table 1.1. The national protocols taken up in the CENELEC
 group of fieldbus protocols as given in [4].

CELENEC Standard IEC Standard Commercial Fieldbus

System

EN 50170 – 1 IS 61158 Type 4 P-Net

EN 50170 – 2 IS 61158 Type 1/3/10 PROFIBUS

EN 50170 – 3 IS 61158 Type 1/7 WorldFIP

EN 50170 – A1 IS 61158 Type 1/9 Foundation Fieldbus

EN 50170 – A2 IS 61158 Type 1/3 PROFIBUS-PA

EN 50170 – A3 IS 61158 Type 2 ControlNet

EN 50254 – 2 IS 61158 Type 8 INTERBUS

EN 50254 – 3 IS 61158 Type 3 PROFIBUS-DP

EN 50254 – 4 IS 61158 Type 7 WorldFIP (FIPIO)

EN 50325 – 2 IS 62026-3 DeviceNet

EN 50325 – 3 IS 62026-5 SDS

EN 50325 – 4 CANOpen

EN 50295 – 2 IS 62026-2 AS-Interface

The IEC 61158 standard provided the international standard that allowed for devices to be

interconnected at the hardware level. However many of the differences between these

protocols are contained within the user layer.

Originally fieldbus systems were incorporated within factory environments containing only

a couple of field devices. These devices were connected to serial bus networks.

The increased use of Ethernet networks in the automation environment lead to the

development of fieldbus process automation and control systems that utilize these Ethernet

network topologies. PROFINET was developed as a industrial Ethernet communication

suite, to take advantage of the widely available Ethernet networks. One of the most widely

Chapter 1 Introduction

Electrical, Electronic and Computer Engineering 26

used protocols based on the RS485 physical layer standard is PROFIBUS. The PROFIBUS

fieldbus network standard developed into 3 different variants [10], these variants are listed

below:

• PROFIBUS-DP : PROFIBUS-DP is designed for communication between

automation and control systems within a distributed environment of I/O devices. It

is designed to be optimized for speed at a low cost, and focuses on the devices

level.

• PROFIBUS-PA : PROFIBUS-PA is designed for process automation. In this

configuration of the PROFIBUS network, communication takes place over 2 lines.

These two lines are also used to provide power to the distributed devices.

• PROFIBUS-FMS : The PROFIBUS-FMS protocol is designed for more general

purpose use at all levels of the communication stack. The most flexible protocol of

the three variants.

These extensions on the original PROFIBUS standard catered for the ever widening fields,

in which these fieldbus systems were used.

The PROFIBUS-DP standard describes the Physical, Data link and Application layers of

the protocol. A framework for designing and implementing PROFIBUS-DP slave devices

is given in [10] where a main communication board is used by the DP Master to

communicate to multiple slave devices. However the PROFIBUS-DP protocol is limited in

its expandability and the distance between field devices. These limitation lead to the

development of Fieldbus networks that were capable of communicating over much greater

distances utilizing network topologies other than the traditional serial bus networks used in

the PROFIBUS-DP networks.

The PROFIBUS fieldbus standards have been tested and scrutinized in many studies. At

the fieldbus level the use of a multi-ring scheduling strategy for PROFIBUS is proposed in

[11]. This approach utilizes two virtually separate logical rings on the same physical

channel. The first ring is a fast traversing ring, called Ring A and a second slower ring

called Ring B. This approach does not penalise faster stations compared to slower stations

Chapter 1 Introduction

Electrical, Electronic and Computer Engineering 27

on the PROFIBUS system. Another advantage of this approach is that the QoS (Quality of

Service) of the PROFIBUS network is improved, because all the traffic in the PROFIBUS

system is better served, both the high- and low-priority data. In order to achieve the same

fault tolerant capabilities of the standard PROFIBUS system, all the master devices on both

the fast and slow rings need to maintain an alive-list, which keeps an updated list of

devices which the master device can communicate with. This approach improves the

performance of the PROFIBUS system that communicates over a serial bus network.

Serial bus systems are however very limited, both in the number of devices that they

support and in the distances over which communication can take place with these devices.

Thus the next field of research focussed on improving fieldbus systems, so that they could

incorporate a large number of fieldbus nodes over vast distances. In order to achieve these

goals fieldbus systems must be able to utilize a large variety of networks and support a

globally accepted and widely used protocol.

1.8 REMPLI SYSTEM BACKGROUND

The Real-time Energy Management via Power lines and Internet (REMPLI) system is a

field-level network, and as the name implies operates over the Internet and a power line

communication (PLC) network. On a logical level the REMPLI system can be viewed as a

fieldbus network, however on a physical level the REMPLI system consist of multiple

different networks which are not based on a serial bus network, hence the term field-level

network. The aim of the REMPLI project is to create a distributed infrastructure, which is

suited for real-time data acquisition and statistical data processing for planning and tariff

management purposes, [12]. The acquired data can also be used for management of the

distribution network, which include supervision, control, quality, energy loss detection and

fault control. Provision is also made for ad-on services such as domotic control and

security within the REMPLI infrastructure. An overall structure of the REMPLI network is

given in figure 1.3. Application Servers are responsible for sending and receiving data to

and from metering equipment situated at remote locations. The requests and responses

generated by the application servers traverses the Internet and a power line network to the

serial bus network connected to the metering equipment situated at the remote site. The

Chapter 1 Introduction

Electrical, Electronic and Computer Engineering 28

primary function of the REMPLI network is to enable application servers (SCADA or

metering software), connected to the REMPLI Intranet, to retrieve/send data to/from nodes

connected to the REMPLI communication network. This is achieved by connecting to an

access point which then connects to the REMPLI Node, which in turn connects to the

metering devices.

Figure 1.3. This figure shows the structure of the REMPLI system, [12].

The classical communication model used for metering or control devices in a fieldbus

system defines two components: the application device and the metering or control device.

Chapter 1 Introduction

Electrical, Electronic and Computer Engineering 29

The communication model between the application device and the metering or control

device is configured in a master-slave model in the majority of fieldbus implementations.

In the master-slave communication model, the application device serves as the master

device, while the metering or control device serves as the slave device. A direct connection

exists between the application device and the metering or control device, which is

implemented by establishing a direct physical channel e.g. RS232 or RS232 over GSM

(Global System for Mobile Communication). Multiple slave devices is connected to the

application device through this single media, which has no network segment

(communication not defined for OSI layer 3).

Application Metering or
control deviceTCP/IP Access Point Node directPLC/

GPRS

Application Metering or
control devicedirect connection, RS232, GSM

The REMPLI fieldbus system introduces a network segment with redundant paths and

routing. A challenge arises when trying to integrate the current metering and control

standards, which are only specified and defined for a direct connection, into a packet

orientated communication system. The EN 62056-1, IEC 60870-5-101/4 and M-Bus

protocols do not contain enough information to fulfil the requirements of the REMPLI

system. Even IEC 60870-5-101/4 which is defined for a packet orientated system does not

provide an adequate addressing scheme for the REMPLI system.

In order to make the REMPLI system versatile and interoperable and to use the standard

applications as well as standard metering and control devices, REMPLI introduces the

concept of Access Points and Nodes, which simulate a direct connection between the

application and the metering or control devices. As is shown in Figure 1.5 REMPLI

components are transparent for the applications: metering or control device is not aware of

other system components other than the Node. The Node behaves like a directly connected

Figure 1.4 Classical (top) and REMPLI Data transmission models (bottom), [1].

Chapter 1 Introduction

Electrical, Electronic and Computer Engineering 30

application for the metering or control device. The situation for the application is identical

in that the Access Point hides the REMPLI system from the application. Within the PLC

network there are no connections, traffic is strictly packet orientated.

There are two possibilities to implement such a system: either tunnelling of the protocol

data units from the application to the metering and control devices or creating a process

image (located at the Access Point), which mirrors data points from metering and control

equipment and directly answers requests from the application as an intermediary.

Application (Node)
Metering or

control
device

Application Metering or control Device (Access Point)

Application
Metering or

control
device

TCP/IP Access Point Node directPLC/
GPRS

Data representation is based on common metering and control standards (SCADA), which

are used to connect Application Servers with metering and control devices. Current

fieldbus systems support various protocols which offer data representation models for

control information and metering values. These fieldbus systems are however limited to

proprietary protocols designed specifically for the tasks of acquiring metering data and

controlling the communication process. The REMPLI system has as its goal the ability to

offer a communication system that facilitates the use of existing metering and control

equipment, supporting existing protocols and application servers. This allows for the use of

currently commercially available equipment, saving on the costs of implementing a

fieldbus system.

Figure 1.5 Transparency of REMPLI Communication model, [1].

Chapter 1 Introduction

Electrical, Electronic and Computer Engineering 31

The most prominent protocols in use throughout Europe today include the IEC-870-5-

101/104 protocol, EN-62056-21 protocol and the M-Bus protocol. That is why these three

protocols have been chosen as the protocols to be supported by the REMPLI network.

Another reason for choosing these three protocols is that they meet the communication

needs for the deployment environment of the REMPLI system. These three protocols

drastically differ in the way that they represent data. The EN-62056-21 protocol does not

support data representation for data values. The IEC-870-5-101/104 protocol has

definitions for ordinal data types like real, integer and string. The M-Bus protocol goes one

step further and defines data types such as dates, type of metering data (gas, water, heating,

electricity etc.) and consumption, depending on the application.

Therefore a generic method of sending and receiving these protocols over the REMPLI

system is required. Due to the fact that the original protocols are designed for simple serial

bus point-to-point systems, a distributed driver architecture is used, which contains

additional information needed by the REMPLI system to successfully transmit the protocol

data units (PDU’s) contained within the protocols from source to destination within the

REMPLI network. The driver will be responsible for managing the Data link layer data

contained within the protocols mentioned above, which include transmission parameters,

telegram formats, addressing and data integrity. This data contains the information

required to transmit PDU’s between metering or control equipment and applications.

Chapter 1 Introduction

Electrical, Electronic and Computer Engineering 32

1.9 M-BUS PROTOCOL AND DRIVER

1.9.1 M-Bus Driver Overview

The M-Bus protocol is one of the standardized protocols that are implemented within the

REMPLI system. This section gives a brief description of the M-Bus protocol.

The M-Bus protocol is used for the remote monitoring and control of electricity (or other)

meters and is derived from the IEC 870-5 standard but does not implement all of the

functions described in the IEC 870-5 standard. This protocol allows for the interconnection

of many devices over long distances, while maintaining a high degree of transmission

integrity. The M-Bus protocol consists of a master-slave hierarchy and the master device is

the only device that is allowed to initiate communication with slave devices. At the Data

link layer four different frame formats are used to perform various functions such as

initialization of slaves, sending of user data, requesting data and response to requested

data. The Data link layer provides send/confirm and request/response transmission

services.

Data transmission takes place in half-duplex asynchronous mode over a serial line with

data rates between 300 and 9600 baud supported. The M-bus protocol uses the master-

slave structure to communicate because slave devices are not allowed to communicate with

each other. In this case the master station (master) is the primary station that initiates all

message transfers while outstations are secondary stations (slaves) that may transmit only

when they are polled.

Chapter 1 Introduction

Electrical, Electronic and Computer Engineering 33

The general communications structure for the REMPLI network is shown in figure 1.6.

The Application server initiates the communication by sending a request to the REMPLI

Access Point over a TCP/IP link. The general structure of this packet is also shown in

figure 6.5. Once the TCP/IP packet is received at the REMPLI Access Point the relevant

data is extracted from the IP frame and processed for further use. The resultant data is sent

over the REMPLI power-line communications protocol to the REMPLI Node. The “twin”

driver at the Node extracts the data received from the PLC interface and builds the original

headers in order to transmit the request to the Metering Equipment. After the request was

successfully received by the M-Bus Metering Equipment the response is sent to the Node-

Side Driver. The response is then optimized to be sent across the PLC network where the

“twin” driver situate on the Access Point will process the data in the frame in order to

transmit it via IP to the Application Server. This in broad terms explains the general

communication structure of the REMPLI project. It is also important that the

communications chain is master-slave driven and therefore only the master device can

initiate communication. However the communication between Access Point-Side Driver

and the Node-Side Driver is not master-slave, they are equal and can send APDUs

Figure 1.6 Communications process in REMPLI network with simplified packet structure.

IP Header Data (App.Serv. Req., Driver Addr., …) TCP

PLC Header Data (M-Bus Hdr.(minimized),M-Bus Data(Req.,Meter

M-Bus M-Bus Data M-Bus M-Bus Stop Bits

Application Server

IP-Request

Access Point

Node

PLC-Request

Metering Device

IP-Response

M-Bus-RequestM-Bus-Response

PLC-Response

Chapter 1 Introduction

Electrical, Electronic and Computer Engineering 34

(Application Protocol Data Units) at any given time. There is also no time constrains

which would allow the drivers to manage the communication process. This holds even for

the alarm protocol, which have to be polled by the Node-Side Driver at regular intervals

for an alarm state. If an alarm is detected, the adequate response is returned.

1.10 DOCUMENT OVERVIEW

Chapter 1 provides an introduction to the research presented in this document. A brief

summary is given of the scope of the research and the motivation is given with

introductory objectives of the research, the methodology used in the research and

background is given in the relevant fields.

Chapter 2 gives an overview of the current literature published in the relevant fields

required in completing the research presented.

Chapter 3 Gives the Objectives of the research presented.

Chapter 4 presents the research and the approach used in the final software architecture

design.

Chapter 5 presents the concept of the distributed driver architecture with the functional

requirements of each component presented.

Chapter 6 presents the protocol tunnelling architecture as implemented for the M-Bus

protocol. The functions of all the components are given and explained through the use of

examples, with sequence diagrams. Required functionality such as address translation,

access control and optimization is discussed.

Chapter 7 gives a brief outline of the implementation solutions used in the M-Bus

distributed protocol driver.

Chapter 1 Introduction

Electrical, Electronic and Computer Engineering 35

Chapter 8 presents the results obtained from the implemented software architecture using

the M-Bus protocol stack and discusses future work for the developed software

architectural framework suggested in this research.

Chapter 2

2 OVERVIEW OF CURRENT LITERATURE

The REMPLI system is unique in fieldbus domain due to the communication that takes

place over power-line communication and the tunnelling architecture that enables currently

available fieldbus protocols to be used to communicate to remote field devices over an

IP/PLC or IP/GPRS network. The REMPLI system combines the field of power-line

communication with IP based routing in a field-level network. The relevant fields of

research mainly comprise power-line communication and fieldbus systems. Figure 2.1,

below gives a tree view of the main areas of research involved in fieldbus systems, relevant

to this thesis.

Figure 2.1 Tree view of main research areas relevant to the work proposed in this
 research.

Serial Bus
Field Area

Network (FAN)

Quality of
Service

Requirements

Multi-Virtual
Token Ring
Approach

Optimization/
Analysis

Extending
Fieldbus
Networks

TCP (UDP) / IP
Based Fieldbus

Systems

Wireless
Extensions on

Fieldbus
Systems

FAN – TCP/IP
– Wireless

Hybrid Fieldbus
Systems

Power-line Communication
Extended Hybrid Fieldbus

Systems

Information
Security

Client/Server
Model

Producer/
Consumer

Model

International
Standardization

Chapter 2 Overview of Current Literature

Electrical, Electronic and Computer Engineering 37

2.1 FIELDBUS SYSTEMS

The integration of IP traffic into fieldbus systems would allow the use of IP based

networks for fieldbus systems, allowing for communication and control of field devices

over a global network. Several challenges must be overcome to integrate IP traffic into

fieldbus systems given in [13] as listed below:

• A mismatch exists between the fieldbus protocols and the TCP/IP protocol stack.

Fieldbus systems are only defined for the Physical, Data link and Application layer

of the OSI while the TCP/IP protocol stack resides between the Network and

Transport layers of the OSI-RM (Open Systems Interconnection – Reference

Model).

• IP traffic should remain intact and not interfere with the control data.

• Fieldbus systems were not originally designed to host a large number of field

devices, thus an addressing scheme has to be developed to uniquely identify all the

field devices within the fieldbus system.

• The IP based network must adhere to strict Quality of Service (QoS) requirements

in order to guarantee successful communication and control.

By filling the gap in the OSI layers filled by the TCP/IP protocol stack with an IP

Scheduler, IP Mapper and a TCP/IP stack [13] it is possible to route fieldbus PDU’s over

an IP based network. The IP Scheduler is responsible for scheduling the IP traffic in such a

way that the Quality of Service requirements needed for the successful communication is

achieved. The IP Mapper is responsible for translating the IP traffic into fieldbus

application datagrams and converting the fieldbus application datagrams back into IP

traffic. The IP Mapper is also responsible for facilitating any architectural issues when

integrating the IP traffic client-server communication into the resident fieldbus

communication model.

The approach to implement a fieldbus over an IP network mentioned above has one major

short coming: The IP Scheduler, IP Mapper and TCP/IP stack are dependent on the

Chapter 2 Overview of Current Literature

Electrical, Electronic and Computer Engineering 38

fieldbus protocol being implemented and thus needs to be specifically implemented for

each different fieldbus system/protocol.

Another approach to implementing fieldbus systems over IP based networks that do not

require proprietary Web technology or fieldbus-dependent tools, is to utilize the Simple

Network Management Protocol (SNMP) as given in [14], which allows for largely fieldbus

independent integration into IP based networks. The two main advantages of utilizing

network interconnection to access remote field devices as given in [14] are as follows:

• Provides Access to FAN’s (Field Area Networks) and field devices on FAN’s from

anywhere that the internet is accessible. This allows for remote control and

automation. This includes the ability to automate buildings remotely. It is also

useful for utility companies to utilize existing network infrastructure to gain access

to information.

• The Internet is based on global standards for communicating with remote systems.

Many tools and function libraries exist and are readily available, which is platform

independent, making the use of the Internet an ideal and very versatile

communication platform for implementing a distributed fieldbus system.

One of the major drawbacks of utilizing the Internet as a communication medium in

fieldbus systems is that the Internet is a best effort communication system, which restricts

IP-based fieldbus systems, to be restricted to fieldbus systems where the data rate and

response times are not of predominant interest [14].

A notable characteristic about the SNMP approach is that it is interoperable with current

LAN networks and technologies [15]. The SNMP approach requires the use of an interface

device in order to provide abstract access to fieldbus systems, called a gateway. The

approach followed in [15] uses the gateway to represent several fieldbus nodes, which

belong to one or more FAN’s (Field Area Networks) within a single SNMP MIB (Simple

Network Management Protocol Management Information Base).

Chapter 2 Overview of Current Literature

Electrical, Electronic and Computer Engineering 39

The required functions for distributed processing for application layer functions are given

in [16]. The application functions are divided into two main categories: control functions

and management functions.

The role of the gateway is to provide a conversion mechanism between the SNMP protocol

data and the fieldbus device. The MIB on the proxy agent is responsible for representing

the information on all the fieldbus nodes. The protocol mapping between the SNMP PDU’s

and the fieldbus PDU’s translates the SNMP PDU’s into fieldbus commands. It is however

impossible to setup a bijective relationship between the two systems, because SNMP

provide only 5 SNMP messages and there are normally more, and a larger variety of

commands used by fieldbus devices.

This approach however has some disadvantages:

• The adoption rate in the future and the levels of implementation of the SNMP

protocol is in unsure, due to its dynamic nature.

• The lack of security provided by the SNMP protocol.

• Simultaneous FAN access of the proxy, along with other applications is not

possible, unless the API of the FAN supports multiplexing multiple requests from

multiple applications.

Another important communication network that fieldbus systems utilize is wireless

networks. This is the other focus of research done to diversify and improve fieldbus

systems. Wireless networks have the advantage that no physical cables have to be installed.

The focus of the research in fieldbus systems thus extended to designing hybrid,

wired/wireless networks.

A tag-based tree approach can be used, similar to XML (Extensible Markup Language) to

give fieldbus systems a plug-and-play interoperability mechanism, with a simple

addressing mechanism, [17]. This data representation format is independent of the fieldbus

system. One major drawback for low bandwidth fieldbus systems is that this approach

increases the overhead and data sent over the network. The overall complexity of field

Chapter 2 Overview of Current Literature

Electrical, Electronic and Computer Engineering 40

devices and the communication system is also increased, at the expense of greater

flexibility.

An approach to achieve this hybrid wired/wireless is given in [5]. This approach suggests

the use of a bridge interface between the wired network and the wireless network. A Multi

Logical Ring (MLR) token passing mechanism is used to communicate between the

initiator and the recipient. A logical ring is allocated to each bridging protocol extension

called the Inter-Domain Protocol [6]. In the MLR approach each logical ring serves

stations on a unique communication medium. As an example a wired domain comprises

only stations that are connected via a wired network interface, while all stations connected

via a wireless network interface belongs to the wireless domain. IDT (Inter-Domain

Transactions) take place between an initiator and a responder that belong between different

domains, i.e. one or more bridges in the communication path. Bridges can be located

between different wireless domains. This approach does however have a disadvantage, in

that it does not efficiently utilize the available wireless bandwidth. A packet loss rate of

7% combined with independent packet losses results in the logical ring being incomplete

for more than 50% of the allocated token time. Due to the erratic nature of wireless

networks in industrial environments results in stations being dropped and then they have to

be re-included into the ring, which is time consuming [6]

By further extending the virtual ring extension approach to utilize specific wireless

protocols [6], the efficiency of the MLR wired/wireless approach can be increased. The

wireless domain utilizes a specific MAC and link-layer protocol that offers the same link

layer interface to the upper layers, as the wired domain, which will result in portability of

application layer software. A polling-based protocol is suggested for this task in

combination with the original PROFIBUS protocol.

As an extension of the current research done thus far the work done in this paper proposes

a transparent tunnelling approach to communicate to field devices on a fieldbus system

over a hybrid wired/wireless PLC network [1] and gives a generic framework for the driver

structure that is needed to accommodate the integration of current fieldbus protocols into

the REMPLI system. An earlier implementation suggested implementing a process image,

which required the protocol data received from application servers to be converted in order

Chapter 2 Overview of Current Literature

Electrical, Electronic and Computer Engineering 41

to be transported across an IP-based network [18]. This approach is not used in the

REMPLI system due to certification requirements prohibiting the translation of APDU’s

generated in the REMPLI system.

2.2 POWER LINE COMMUNICATION

The challenges faced in using power lines as a communication is highlighted in [19],

where the prevailing noise sources on a power line channel is investigated and

characterised. The noise on power line networks are well understood but remain hard to

predict. Due to the wide geographical coverage of reticulation networks [19], bandwidth

and power levels have been limited on communication signals.

Even though the latest fields of interest in power line communication is to apply internet

broadband techniques to power line communication, there is still a need for low-cost low-

data-rate telemetry or control applications, such as remote meter readings [20]. These

communication systems require low-cost transceivers thus narrow-band half duplex

communication is used.

Many difficulties exist within a power line network if it is used for communication

purposes. Power lines exhibit multi-paths caused by reflections caused by the

discontinuities of the network. Different sources of noise exist on power line networks for

example: coloured background noise, narrowband interference and impulse noise. Robust

and frequency efficient transmission techniques have thus to be used to ensure data

integrity [21].

The use of power lines as a communication medium to acquire metering values remotely is

suggested by [22], [23], [24], [25], [26], [27], [28], [29] and is very useful in performing

load balancing in the power grid. Various local area network strategies and

implementations are proposed and discussed. It is clearly shown in these publications that

power line communication is both an effective and efficient means of communication used

to acquire remote readings from metering equipment.

Chapter 2 Overview of Current Literature

Electrical, Electronic and Computer Engineering 42

The requirements for the REMPLI power line communication network are provided in [30]

and include the following: high reliability, automatic handling of redundancies, high

coverage and distances, support for a large number of communication nodes, provide the

appropriate delay and system responsiveness, security and ease of deployment and

maintenance.

The communication stack for the power line network implemented in REMPLI is

presented in [31], and is focused on the Network and Transport layers. The Network layer

provides a master-slave time division network with basic error recovery and short distance

routing mechanisms. The Transport layer supports the network layer with inter-network

routing, fragmentation, request/response pairing and address translation and alarm signal

support [31].

Chapter 3

3 OBJECTIVE

The goal of the research proposed in this document is to provide a software framework for

utilizing standardized fieldbus protocols and systems within the REMPLI context, which

will guarantee versatility, interchangeability and scalability in ultimately transparently

communicating over multi-tier networks in which any of a combination of TCP/IP, GPRS

or PLC communication can be used. A triplet of software drivers called the REMPLI

Protocol Driver is used to achieve this.

Due to the diverse nature of the Application layer data contained within the protocols used

within the REMPLI context the Application layer data can not be used by the protocol

drivers. It is however the requirement of the protocol drivers to facilitate the use of

application or manufacturer specific information. The protocol driver is however not

allowed to use any information contained within the application layer data of the protocol

for data management purposes.

The framework proposed in this document implements a distributed driver structure in

such a way that satisfies all the above mentioned requirements and enables the

communication model required within the context of the REMPLI system. A further

objective of the research done in this paper is to implement the proposed distributed driver

framework on a multi-tier network with M-Bus meters and the M-Bus metering protocol as

a test case scenario.

The REMPLI system has as its goal the ability to offer a communication system that

facilitates the use of existing metering and control equipment, supporting existing

protocols and application servers, by transparently tunnelling these protocols over TCP/IP

and PLC/GPRS based networks. This allows for the use of currently commercially

available equipment, saving on the costs of implementing a proprietary fieldbus system.

Chapter 4

4 PROPOSED RESEARCH

As mentioned in chapter 1, the REMPLI system enables current application servers to send

and receive PDU’s to the remote metering equipment over the Internet and a power

line/GPRS network. Two possible solutions were considered for implementing such a

system: either tunnelling of the protocol data units from the application to the metering and

control devices or creating a process image (located at the Access Point), which mirrors

data points from metering and control equipment and directly answers requests from the

application server as an intermediary communication device. The communication process

implemented in the REMPLI system and the data sources used has a major influence in the

manner in which data is represented. Thus this section will introduce both models and give

reasoning why REMPLI favours the tunnelling approach instead of using a process image.

4.1 PROCESS IMAGE

Due to low reliability and low performance in terms of bandwidth and RTT (Round Trip

Time) of the PLC communication system within REMPLI, the concept of a process image

was proposed. Due to the unstable nature of an energy distribution network, any one of a

multitude of parameters within the communication network can spontaneously fluctuate,

causing unexpected delays in return trip time or interruptions in the communication

process. In order to overcome these inherit shortcomings in communicating over a power

distribution line, cascaded loggers was proposed to manage, and store all sensitive data.

The logging of data takes place in a two step process as given below.

The first step in the logging of data takes place at the Nodes: At each REMPLI Node the

software driver is designed to store measurement values at the Node (data logger). These

readings are taken by the metering equipment connected to the Node. Each measured

value stored at the Node is given a timestamp, derived from a real-time clock which is

synchronized between all Nodes within the REMPLI network. The stored measurement

values, which are now associated with a timestamp is sent back to the Application Server,

via the Bridges and Access Point. The Nodes would require enough resources to store all

the measurement values taken over a time period of several days.

Chapter 4 Proposed Research

Electrical, Electronic and Computer Engineering 45

The second step in the logging process takes place when the Access Point periodically poll

the Node side data loggers for stored values, not yet retrieved from the Nodes. The Access

Point will then retrieve all the outstanding values up to the last measurement taken by the

meters. At the Access Point the retrieved values are stored and a history log is maintained

on the stored values. The Access Point would require enough resources to store the

measured values taken by all the Nodes connected to it over several months. The

Application Server then uses the Access Point as the source of the readings it requires. The

Application Server can poll the Access Point for all the outstanding values in its local

database. The Access Point can easily determine which values are still required by using

the timestamp associated with each value.

This concept of data loggers at each level in the REMPLI network introduces redundancy.

The main advantage of redundant data is that if communication breaks down at any level in

the network no data will be lost, as long as the storage capacity of the lower level devices

are not exhausted. This proposed system eliminates a single point of failure in the network

and thus improves the overall system reliability, by ensuring that even if a device in the

communication chain fails its nearest neighbours would contain enough information to

restore the gap in the measurement history. As an example if an Access Point suffers

complete data loss, the most recent data could be retrieved from the Nodes connected to it.

The older values are already stored by the Application Server and the loss of this data at

the Access Point has no negative impact on the measurement history.

Due to the limited bandwidth of the power line network and the master-slave

communication model implemented by the power line communication system the need

arises for redundancy in the communication network. The concept of data loggers provides

this redundancy, however the prerequisites to implementing such a system of data loggers

are:

• During a typical usage scenario, PLC channels are frequently idle and have no data

traversing the PLC network. The available time slots where the PLC line is idle

could be utilized to fetch data from the Nodes in the background.

• The performance of the power line communication system can significantly be

increased by running multiple concurrent request/response procedures to multiple

Nodes. When data transmission adheres to the allocation of fixed time slots and a

Chapter 4 Proposed Research

Electrical, Electronic and Computer Engineering 46

Node cannot immediately respond, some time slots will be available for

communication.

The REMPLI system is the sole user of the PLC communication system and thus it has

control over the allocated time slots for communication, this allows for the system to take

advantage of the freely available time slots and exploit all available bandwidth. Thus apart

from the Node-level data loggers collecting measurements from the meters, the Access

Point also constantly polls the different Nodes for the stored values located at these Nodes.

As explained previously these values are then stored at the Access Point and it is

periodically updated.

Whenever the Application Server request a measurement value the Access Point responds

immediately with the locally stored response. This eliminates the need for a time

consuming, and often costly PLC transaction. The benefit of this method of

communication is that the network load on the power line system is greatly reduced when

different applications request measurement values concurrently. Because the Nodes don’t

have to be polled, thus the throughput that each individual user can achieve is increased.

4.2 TUNNELLING

A second approach was proposed in the form of tunnelling protocols over the entire

network. This section presents the concept of a tunnelling approach and the advantages of

using this approach. The shift from the data logger approach to the tunnelling approach

was mad due to two problems encountered in the REMPLI system:

• The Application Servers using the REMPLI system will be required to poll the

Node directly and refuse data from the process image much more often than

assumed, leaving far less free timeslots available for communication.

• Many features of common metering and control protocols cannot be supported,

because the common denominator would be read and write operations on single

data points consisting of a structured value and a physical unit.

The first problem listed leads to the performance requirements of the PLC network

increasing. This is due to the fact that the PLC network traffic cannot be scheduled

Chapter 4 Proposed Research

Electrical, Electronic and Computer Engineering 47

according to the needs of a data logger approach. There is also a need to serve requests on

demand. A fundamental short coming is listed in the second problem in that it is

impractical to create a data representation that supports all features supported by current

systems and future fieldbus/communication protocols. A further fundamental flaw of the

data logging approach is that data transformation is required in the data logging system. In

the context of the REMPLI system and for billing purposes protocol data units can not be

manipulated. Measuring values can not be retrieved in the original data packet,

manipulated and the later be retrieved into the original format, without certifying the whole

REMPLLI system. The constraints on the system, listed above make the process image

(data loggers) approach impractical.

In order to accommodate the constraints and problems listed above with the process image

approach, a tunnelling approach was selected for each protocol implemented in the

REMPLI system. Each protocol requires a specific driver which is responsible for

tunnelling the respective protocol data units, associated with the protocol, between the

Application Server and the Node via the Access Point. In order to optimally utilize the

available bandwidth and performance, only application layer data units are tunnelled over

the REMPLI system. Layer 2 functionality, such as a keep-alive signal that is described

within the protocol is discarded and the respective driver is responsible for maintaining the

communication link. This allows the driver to limit the amount of data sent across the PLC

network, thus optimising the communication system. The Node side driver will inform the

Access Point side driver to terminate a current session if for example a polled meter

responds with an alarm signal, indicating that the specific meter is not functioning

correctly.

4.3 REMPLI Tunnelling Scheme

The general requirements of the applications to the REMPLI project:

• Applications demand the current data from the metering and control devices

according to their own schedules.

• Applications use features of specific common metering and control protocols. No

common denominator of all protocols can be implemented with reasonable effort.

Translation between different protocols cannot be done in a generic way.

Chapter 4 Proposed Research

Electrical, Electronic and Computer Engineering 48

• Another problem is certification, meaning that data from a metering device cannot

be changed/transformed/touched during transfer from the device to the Application

Servers; fulfilling this requirement is only possible when tunnelling a protocol.

The system requirements listed above implies that the tunnelling approach is more suited

to the REMPLI system. Three different metering protocols are initially going to be

implemented by the REMPLI system, requiring the use of three different tunnels. In the

REMPLI systems drivers for the M-Bus, EN 62056-21 and IEC 60870-5-101(104)

protocols must be developed. A pair/triplet of drivers is required by each protocol, situated

at the Application Server side, Access Point side and the Node side. The Node side driver

functions as a master to the metering equipment and a slave for the Access Point side

driver. The Access Point side driver in turn functions as a slave to the Application Server

side driver.

The Node side driver communicates with the meter and control equipment using the

appropriate standard metering protocol, after completing this procedure the resultant data is

forwarded to the Access Point side driver over the power line network. The Access Point

side driver then forwards the received data packet to the Application Server over a TCP/IP

network. If predefined protocols to transfer metering and control data to the Application

Server are defined, the implemented drivers should utilize these protocols. E.g. IEC 68070-

5 includes the 104 part that defines data transmission over TCP/IP networks. If no standard

protocol is defined, e.g. M-Bus and EN 62056-21, the data packets will be tunnelled to the

Application Servers over the TCP/IP network. This tunnelling requires the use of drivers at

the Application Server side, to transmit the data to/from the Access Point side drivers.

Figure 4.1 shows the protocols scheme. It gives an overview of the protocols and entities

from a driver point of view. Whereas the interface to the REMPLI network is common for

both parts of the driver the interface to the applications entities is totally different. On the

Node side it includes protocol stacks to interface the metering and control devices via the

hardware interfaces of the Node. On the Access Point side the driver needs to interface the

TCP/IP stack.

Chapter 4 Proposed Research

Electrical, Electronic and Computer Engineering 49

Figure 4.1 REMPLI protocols communication scheme.

M-Bus meter EN 62056-21
meter

IEC 60870-5-101
meter

M-Bus
Node Driver

M-Bus

M-Bus
Access Point

Driver

Application
Server
Driver

M-Bus over TCP/IP

EN 62056-21
Node Driver

EN 62056-21

EN 62056-21
Access Point

Driver

Application
Server
Driver

EN 62056-21 over TCP/IP

IEC 60870-5-101
Node Driver

IEC 60870-5-101

IEC 60870-5-101
Access Point

Driver

Application
Server
Driver

IEC 60870-5-104

M-Bus application EN 62056-21 application IEC 60870-5-101 application

REMPLI
Node

REMPLI
Access
Point

REMPLI Communication protocols (PLC, Transport Protocol, De/Mux, Driver-to-Driver)

Chapter 5

5 REMPLI PROTOCOL DRIVER

5.1 GENERAL STRUCTURE OF THE REMPLI PROTOCOL DRIVER

The purpose of this section is to give a brief but complete general structure and functional

analysis of the driver software for the REMPLI Protocol Driver to be implemented within

the REMPLI project. The driver software will compose of three parts, distributed over the

REMPLI network. The drivers are located at the Application Server, Access Point and

Node side, as indicated by figure 5.1.

Figure 5.1. This figure gives the general driver structure for the REMPLI Protocol
 Driver within the REMPLI network.

Application
Server

Application Server

Application-Side
Driver

Access
Point

Access Point-Side
Driver

REMPLI
Node

Metering Equipment

Node-Side Driver

TCP/IP
Interface

TCP/IP
Interface

IP Network

De/Mux
Interface

De/Mux
Interface

PLC Network

Driver Module
Application Server Interface
TCP/IP Interface
PLC Network Interface
Metering Equipment Interface

Chapter 5 REMPLI Protocol Driver

Electrical, Electronic and Computer Engineering 51

The Application-Side Driver is located at the Application Server and it interfaces with the

Application Server and the TCP/IP network. The Access Point-Side Driver is located at the

Access Point and it interfaces with the TCP/IP network and the De/Mux (Multiplex/De-

Multiplex) or GPRS Interface. The Node-Side Driver is located at the REMPLI Node and

it interfaces with the De/Mux or GPRS Interface and the Metering Equipment connected to

the Node.

Chapter 5 REMPLI Protocol Driver

Electrical, Electronic and Computer Engineering 52

5.2 APPLICATION SERVER-SIDE DRIVER

The Application Server-Side Driver is situated at the Application Server. The data could be

received from the Application Server and sent to the TCP/IP interface, or received from the

TCP/IP interface and sent to the Application Server. The functional block diagram of the

Application Server-Side Driver is given in figure 5.2.

Application
Server-Side

DriverCommunication
Module

IP En(De)capsulation
Module

F1

Address Management
ModuleF2

F3

TCP/IP
Communication

Module
F4

Application

Database
[Addressing

Scheme]

Figure 5.2. The functional block diagram of the Application Server-Side Driver situated
 at the Application Server

All of the functional units in figure 5.2 are identified with tags [F1, F2,..F4]. The functions

of each tagged module are given below:

F1: The function of the Communication Module is to communicate with the

Application Server. Sending and receiving of APDUs to and from the Application

Server. This is a communication system that is implemented in software and it

communicates by sending and receiving data to/from the Application Server.

Optimized “Keep-alive” signal management3 might also be implemented at this

module. This “Keep-alive” functionality is protocol specific and depends on

3 The “Keep-alive” signalling concept is discussed in section 6.6.

Chapter 5 REMPLI Protocol Driver

Electrical, Electronic and Computer Engineering 53

whether or not the protocol implemented by the driver supports a “Keep-alive”

signalling scheme.

F2: The function of the IP En(De)capsulation Module is to encapsulate the APDUs

received from the Application Server into TCP/IP packets. It is also responsible for

decapsulating the TCP/IP packets received from the IP network into the APDUs

used by the Application Server. Before the APDUs can be fully encapsulated

within an IP packet the destination Access Point IP address and the RNA (REMPLI

Node Address) are required and it is obtained from the Address Management

Module.

F3: The function of the Address Management Module is to obtain the necessary

TCP/IP addresses in order to deliver the application generated PDUs (APDUs) to

the corresponding Access Point destinations and to address the correct meter

connected to the corresponding REMPLI Node4. These Access Point destination

addresses consists of the Access Point IP address and the destination RNA supplied

by the Application Server. If the appropriate destination addresses are not supplied

by the Application Server, then these addresses will have to be derived from the

Application Server data.

F4: The function of the TCP/IP Communication Module is to manage the sending

and receiving of TCP/IP packets on the TCP/IP link. This includes buffering of

packets, sending/resending and reordering of packets if required. Examples of

issues to be considered here are:

• Size of input buffer: The size of the input buffer should be sufficient to contain the

maximum payload returned by a metering request. The size of these buffers is

usually allocated as part of the configuration parameters for the TCP/IP

Communication Module.

4 The addressing of meters is discussed in section 6.4

Chapter 5 REMPLI Protocol Driver

Electrical, Electronic and Computer Engineering 54

• Error handling: If an error is detected at the TCP/IP link this information should be

reported to all modules within the driver that requires this information. Examples of

such modules are:

1. If the “Keep-alive” signalling scheme is supported by the driver then the “Keep-

alive” module should be informed in order to stop sending “Keep-alive”

messages.

2. The Address Management module should also be informed if a link is down, in

order to update the database with addressing table and to reroute the packets.

3. If the operating system does not perform re-ordering of packets, and requesting

the resending of corrupt or lost packets, then this type of error recovery should

also be implemented.

• Optimized “Keep-alive” signal management might also be implemented at this

module as discussed in the section 6.6 about Optimized “Keep-alive” Signal

Management.

5.3 Access Point-Side Driver

The Access Point-Side Driver is situated on the Access Point. The data could be received

from the De/Mux or GPRSinterface and sent to the TCP/IP interface, or received from the

TCP/IP interface and sent to the De/Mux or GPRS interface. The functional block diagram

of the Access Point-Side Driver is given in figure 5.3.

All of the functional units in figure 5.3 are identified with tags [F1, F2,..F6]. The functions

of each tagged module are given below:

F1: The function of the TCP/IP Communication Module is to manage the sending

and receiving of TCP/IP packets on the TCP/IP link. This includes buffering of

packets, sending/resending and reordering of packets if required. Examples of

issues to be considered here are:

• Size of input buffer: The size of the input buffer should be sufficient to contain the

maximum payload returned by a metering request. The size of these buffers is

usually allocated as part of the configuration parameters for the TCP/IP

Communication Module.

Chapter 5 REMPLI Protocol Driver

Electrical, Electronic and Computer Engineering 55

• Error handling: If an error is detected at the TCP/IP link this information should be

reported to all modules within the driver that requires this information. An example

of such a module is:

1. If the “Keep-alive” signalling scheme is supported by the driver then the

“Keep-alive” module should be informed in order to stop sending “Keep-alive”

messages.

2. If the operating system does not perform re-ordering of packets, and requesting

the resending of corrupt or lost packets, then this type of error recovery should

also be implemented.

Access
Point-Side

Driver
TCP/IP

Communication
Module

Management
Module

F2 Data Processing
Module

F1

F3

Data Storage
Module F4

Optimization
ModuleF5

De/Mux
Communication

Module
F6

Database
[Addressing

Scheme]

Figure 5.3. The functional block diagram of the Access Point-Side Driver

F2: The function of the Data Processing Module is to extract the necessary data out of

the APDU, i.e. the equipment address and the RNA, in order to provide it to the

management module. The nature of the processing and/or extraction of data out of

the APDUs from this module is protocol specific. Thus the data required to be

processed by this module is different for each protocol.

Chapter 5 REMPLI Protocol Driver

Electrical, Electronic and Computer Engineering 56

F3: The function of the Management Module is to control the communication link

between the IP network and the PLC network. This includes the sending and

receiving of “Keep-alive” packets. This module is used to maintain the state of the

current request/response by initiating a timer to determine when the time-out for the

current request/response has occurred, if supported.

F4: The function of the Data Storage Module is to store, retrieve and maintain small

units of data. This module could also be used for maintaining logs of requests

processed at the Access Point. This module is optional, depending on available

resources at the Access Point.

F5: The function of the Optimization Module within the Access Point-Side Driver is

to work with the “twin” optimization module situate at the Node-Side Driver. This

module optimizes the data sent over the De/Mux or GPRS interface when sent from

the Application Server to the Node, or expands the data to its original state if sent

from the Node to the Application Server. The data could be compressed before it is

sent via the De/Mux interface by this module. If viable this module will also

remove any redundant data from the packets in order to minimize the bandwidth

used by the data sent over the PLC network. Conversely it will rebuild the data to

its original state if received in the minimized or compressed state.

F6: The function of the De/Mux Communication Module is to send and receive data

via the De/Mux interface. Data received from the TCP/IP interface is processed by

the driver and then sent to the De/Mux interface, which delivers the APDU to the

Node via the PLC network. Conversely, data received from the De/Mux interface to

the PLC network is processed by the driver and then sent to the Application Server

via the TCP/IP interface. This module is also responsible for reacting to error

messages received from the De/Mux module, by informing all the other modules in

the driver that require this information, about the error. Alternatively if GPRS is

used to interface with the Node then this module will have to support the GPRS

interface.

Chapter 5 REMPLI Protocol Driver

Electrical, Electronic and Computer Engineering 57

5.4 NODE-SIDE DRIVER

The Node-Side Driver is situated on the REMPLI Node. The data could be received from

the Metering Equipment and sent to the De/Mux interface, or received from the De/Mux

interface and sent to the Metering Equipment via the protocol specific hardware driver for

the HyNet board. The functional block diagram of the Node-Side Driver is given in figure

5.4.

Metering Equipment

Node-Side
Driver

De/Mux
Communication

Module

Access Control
Module

Optimization
Module

Application

Protocol Stack
[Layer 7]

Protocol Stack
[Layer 1&2]

Protocol Specific
Hardware Driver for

HyNet [Layer 1]

F1

F4

F2

F3

F5

F6

F7

Database
[Addressing

Scheme]

Figure 5.4. The functional block diagram of the Node-Side Driver

All of the functional units in figure 5.4 are identified with tags [F1, F2,..F7]. The functions

of each tagged module are given below:

F1: The function of the De/Mux Communication Module is to send and receive data

via the De/Mux interface. Data received from the De/Mux interface is processed by

the driver modules and sent to the Metering Equipment via the HyNet driver.

Chapter 5 REMPLI Protocol Driver

Electrical, Electronic and Computer Engineering 58

Conversely data received from the HyNet driver is processed by the driver modules

and sent to the Access Point via the De/Mux Communication Module. This module

is also responsible for reacting to error messages received from the De/Mux

module, by informing all the other modules in the driver that require this

information, about the error.

F2: The function of the Optimization Module is responsible for minimizing the size of

the data sent over the De/Mux interface. The reverse is of course true at the

receiving end where this module would be responsible for rebuilding the minimized

data to its original form. The data could be compressed before it is sent via the

De/Mux interface by this module. If viable this module will also remove any

redundant data from the packets in order to minimize the bandwidth used by the

data sent over the PLC. Conversely it will rebuild the data to its original state if

received in the minimized or compressed state.

F3: The function of the Application Module is to provide processing capability for the

driver at the Node. This functionality meets the requirement of scalability for future

protocols. This processing capability could be used to process raw data to obtain

information, for example using meter readings to calculate the flow rate of the

heaters. This is required in certain instances for translation purposes, for example

some protocols like the S0 metering protocol require this translation module Within

REMPLI however protocols like IEC 62056, M-Bus and IEC 60870-5-101 do not

require this module and will be tunnelled through the REMPLI network. In the case

when conversion is required the function of the Application Module is to convert

between different protocols, received over the De/Mux interface into the metering

protocol. The reverse is also true when sending the data from the meters back to the

Application Server, then this module will be responsible for converting the

metering protocol into one of the tunnelled protocols to be transported back to the

Application Server.

F4: The function of the Access Control Module is control and limiting access only

from known Application Servers to known installed meters at the Node side. This

includes requests made by the Application Servers and alarm signals sent to

Chapter 5 REMPLI Protocol Driver

Electrical, Electronic and Computer Engineering 59

Application Server. The access control is achieved by accessing a database

containing all the known addresses of installed meters and Application servers.

This module should also update and maintain the access control database. If the

data sent over the De/Mux interface is compressed, then it will be difficult to apply

this module higher up in the communication chain, for example just after the

De/Mux communication module, because the data will be unreadable. This scenario

is preferable because less processing of data is done before it is accepted or

rejected. Having this module after the protocol converter makes the system

susceptible to denial of service attacks however. Figure 5.4 is a general structure

and these scenarios should be taken into account when deciding where to

implement the access control module. The limitations on where this module could

be placed are also dependent on the functionality of the Application Module.

F5: The function of the Protocol Stack at Layer 7 is to process and then manage data

relevant to layer seven of the protocol stack of the metering protocol. This is only

needed if some additional processing is required due to the layer 7 information

stored within the APDU or if proprietary operations must be performed by the

Node-Side Driver on layer 7 data.

F6: The function of the Protocol Stack at Layer 1 and 2 is used for managing the

headers, transmission services and functions provided at these levels of the M-Bus

protocol. These include the 4 frame formats supported by M-Bus and the

transmission rules applied to the M-Bus protocol. Layer 1 functionality is only

required if no driver support is provided.

F7: The function of the Protocol Specific Hardware Driver for HyNet Module is to

communicate with the HyNet driver in order to communicate directly with the M-

Bus Metering Equipment.

The resultant driver structure with a detailed expansion is given in figure 5.5. In this figure

the modules situated on the left hand side within the light grey area are modules directly

responsible for and involved within the communication process. The APDUs flow through

Chapter 5 REMPLI Protocol Driver

Electrical, Electronic and Computer Engineering 60

all of these modules. Modules that interface software modules outside the data flow

process are placed on the right hand side of the driver modules.

Chapter 5 REMPLI Protocol Driver

Electrical, Electronic and Computer Engineering 61

Application
Server

Application Server

Application-Side
Driver

Access
Point

Access Point-Side
Driver

REMPLI
Node

Metering Equipment

Node-Side Driver

TCP/IP
Interface

TCP/IP
Interface

IP Network

De/Mux
Interface

De/Mux
Interface

PLC Network

Access
Point-Side

Driver
TCP/IP

Communication
Module

Management
Module

F2 Data Processing
Module

F1

F3

Data Storage
Module F4

Optimization
ModuleF5

De/Mux
Communication

Module
F6

Database
[Addressing

Scheme]

Application
Server-Side

DriverCommunication
Module

IP En(De)capsulation
Module

F1

Address Management
ModuleF2

F3

TCP/IP
Communication

Module
F4

Application

Database
[Addressing

Scheme]

Metering Equipment

Node-Side
Driver

De/Mux
Communication

Module

Access Control
Module

Optimization
Module

Application Module

Protocol Stack
[Layer 7]

Protocol Stack
[Layer 1&2]

Protocol Specific
Hardware Driver for

HyNet [Layer 1]

F1

F4

F2

F3

F5

F6

F7

Database
[Addressing

Scheme]

Figure 5.5. The driver structure for the REMPLI Driver, with functional blocks.

Chapter 6

6 M-BUS DRIVER ARCHITECTURE

As a proof of concept the general driver structure given in chapter 5 is applied to the

M-Bus protocol. The resultant driver structure is implemented and tested in a real

world scenario. As mentioned in chapter 5, several modules in the general driver

architecture are protocol specific and the implementation of them depends on the

protocol being implemented. After the general REMPLI driver structure has been

Figure 6.1. The driver structure for the M-Bus protocol, with functional blocks.

Application
Server

Application Server

Application-Side
Driver

Access
Point

Access Point-Side
Driver

REMPLI
Node

Metering Equipment

Node-Side Driver

TCP/IP
Interface

TCP/IP
Interface

IP Network

De/Mux
Interface

De/Mux
Interface

PLC Network

Access
Point-Side

Driver
TCP/IP

Communication
Module

Management
Module

F2 Data Processing
Module

F1

F3

Optimization
ModuleF4

De/Mux
Communication

Module
F5

Addressing
Table

Application
Server-Side

DriverCommunication
ModuleF1

Address Management
Module

F2

TCP/IP
Communication

Module
F3

M-Bus Application
Server

Addressing
Table

M-Bus Meters

Node-Side
Driver

De/Mux
Communication

Module

Access Control
Module

Optimization
Module

Protocol Stack
[Layer 1&2]

Protocol Specific
Hardware Driver for

HyNet [Layer 1]

F1

F3

F2

F4

F5

Access
Control
Table

Chapter 6 M-Bus Driver Architecture

Electrical, Electronic and Computer Engineering 63

adapted and implemented for the M-Bus protocol, the resultant driver structure is

given in figure 6.1. The functioning of the M-Bus Protocol Driver is explained at the

hand of an example as discussed in the sections below.

6.1 DATA FLOW EXAMPLE OF A SINGLE FRAME M-BUS
REQUEST/RESPONSE GENERATED BY THE APPLICATION
SERVER

This section describes the flow and processing of data for a simple request/response

sequence from the Application Server to and from an M-Bus meter.

In this example the Application Server generates an M-Bus request for class 2 user

data from M-Bus meter number 3, connected to REMPLI Node 27. The Application

Server generates an APDU which contains an M-Bus frame that is given in figure 6.2.

1016 5B16 0316 6E16 1616

Figure 6.2. The M-Bus frame generated by the Application Server, all values are
 given in hexadecimal format.

The request is sent to the Access Point over an IP network where it is processed by the

Access Point-Side Driver and then forwarded to the REMPLI Node over a PLC

network. At the REMPLI Node the request is processed by the Node-Side Driver and

forwarded to the Metering Equipment. After the Metering Equipment has processed

the request, it sends the response back to the Node-Side Driver which processes the

data and then forwards it to the Access Point over the PLC network. The response

generated by the Metering Equipment is dependent on the configuration, which is

setup by the application software. The meter in this example is setup to respond with

the data shown below in figure 6.3. All values are given as hexadecimal values.

Chapter 6 M-Bus Driver Architecture

Electrical, Electronic and Computer Engineering 64

68 1F 1F 68 08 03 72 78 56 34 12 24 40

01 07 55 00 00 00 03 13 15 31 00 DA 02

3B 13 01 8B 60 04 37 18 02 18 16

Figure 6.3. The M-Bus frame generated by the Application Server, all values are
 given in hexadecimal format.

After receiving the data from the meter, the Node-Side Driver forwards the M-Bus

frame to the Access Point via the PLC/GPRS network interface. At the Access Point

the meter’s response is processed by the Access Point-Side Driver. The Access Point-

Side driver then forwards the metering response to the Application Server-Side Driver

over the IP network, which sends the meter’s response to the Application Server. The

Application Server processes and stores the response it received. For this example it is

implied that the IP address used by the Application Server is predefined. Figure 6.4

gives the sequence diagram for the communication process described above.

Chapter 6 M-Bus Driver Architecture

Electrical, Electronic and Computer Engineering 65

Communication
Management

Application Server Access Point-Side Driver Node-Side Driver Metering Equipment

Request User Data
Request User Data

Request User Data

Respond with User Data

User Data

Request User Data

Respond with User Data

Request User Data

Keep Alive Signal *

Keep Alive Signal *

Keep Alive Signal *

Layer 2 M-Bus
Protocol Stack

* Required for Successful Communication
Figure 6.4. Sequence diagram for a single frame request/response generated by an Application Server.

Chapter 6 M-Bus Driver Architecture

Electrical, Electronic and Computer Engineering 66

6.1.1 Data Flow From Application Server To TCP/IP Communication Module

The communication procedure at the Application Server side commences with the

Application Server initiating a request for class 2 data from meter 3 situated at Node

27 via the M-Bus Application Server-Side Driver. When the request is made by the

Application Server it sends the generated request to the corresponding REMPLI

Protocol Driver address. For this example the Application Server request is forwarded

to the M-Bus Protocol Driver. No errors occur during the entire transmission period

for this scenario. Even though this example shows an M-Bus request/response

procedure, the M-Bus driver structure is derived from the general REMPLI Protocol

Driver structure, which is used by all REMPLI communication protocols and thus

representative of the general REMPLI Protocol Driver. For this example the request is

sent to the M-Bus Driver address and is as follows:

1. The Application Server generates an M-Bus request to readout class 2 user data

from meter nr. 3, which is connected to a Node with a specific address (RNA =

27). This request is in the form of an APDU (Application Protocol Data Unit). It is

assumed that this APDU contains the entire M-Bus frame, which includes all layer

2 and layer 7 data needed for the request. For this example it is also assumed that

the response from the metering device will fit into a single M-Bus frame. It could

also be assumed that the Application Server generated request will also contain

some other data apart from the M-Bus frame in the APDU, from which the

destination RNA (REMPLI Node Address) can be derived. The Application

Server forwards the request for class 2 user data to the M-Bus Application Server-

Side Driver by sending the request to the M-Bus Driver address.

Chapter 6 M-Bus Driver Architecture

Electrical, Electronic and Computer Engineering 67

Figure 6.5. Functional block diagram for the M-Bus driver at the Application Server.

2. The Application Server generated request is received by the Application Server-

Side Driver via the Communication Module, which is responsible for

communicating with the Application Server. After the Communication Module

has successfully received the APDU, it forwards it to the TCP/IP Communication

Module.

3. The TCP/IP Communication Module takes the entire APDU and extracts the

RNA and M-Bus frame before encapsulating it into a TCP/IP packet as illustrated

in figure 6.5. It uses the destination Access Point IP address provided by the

Application Server to add the destination IP address into the IP headers. In this

example the destination address is predetermined and inserted into the IP header.

IP En(De)capsulation
ModuleTCP HeaderApplication PDUTCP HeaderIP Header

TCP/IP
Communication

Module

Sending/Receiving TCP/IP Packets

Error Handling

Version
[4 bits]

Hdr Length
[4 bits]

Diff-Serv
[8 bits] Total Length [16 bits]

Identification [16 bits] Fragment Offset [13 bits]Flags

Time to Live
[8 bits] Protocol [8 bits] Header Checksum [16 bits]

Source IP Address [32 bits] {Application Server}

Destination IP Address [32 bits] {Access Point}

Options [if any] Padding

Data Field [1438 Bytes] (TCP Header
and DATA {Application PDU})

Bit 0 Bit 31IP Header

M-Bus Frame

TCP/IP Communication Link

Communication
Module

Application

Application PDU

Communication Module

RNA
Address

Application
Server-Side

DriverCommunication
Module

IP En(De)capsulation
Module

F1

Address Management
ModuleF2

F3

TCP/IP
Communication

Module
F4

Application

Addressing
Table

TCP/IP Communication Link

Chapter 6 M-Bus Driver Architecture

Electrical, Electronic and Computer Engineering 68

If the Application server does not include the destination Access Point IP address

then the Access Point IP address will have to be derived from the destination

address provided by the Application Server. To provide this functionality the

TCP/IP Communication Module interfaces with the Address Management

Module, this will provide the required Access Point destination IP address5. The

TCP/IP packet is then sent over the IP network to the predetermined address. The

IP packet then traverses across the IP network until it reaches the destination

Access Point-Side Driver.

6.1.2 Data Flow from the TCP/IP Communication Module at the Access Point
to the De/Mux Communication Module at the Access Point

The data flow process is further explained by the following section which describes

the functionality of the Access Point-Side Driver. A detailed functional block

diagram is given in figure 6.8.

1. The TCP/IP packet is received by the TCP/IP Communication Module at the

Access Point-Side Driver. Once the IP packet is successfully received it can be

passed on to the Data Processing Module.

2. The Data Processing Module is used to remove the TCP/IP headers from the

TCP/IP packet, if not provided by the operating system, or TCP/IP communication

libraries. The Data Processing Module now extracts the necessary data out of the

payload data, i.e. the M-Bus frame and the RNA, and sends it to the Management

Module. This data is required to maintain the status of the current request/response

sequence at the Access Point. After processing the APDU the Data Processing

Module forwards the M-Bus frame to the Optimization Module.

3. The Management Module is used to maintain the status of the current

request/response sequence. Because a thread is used to maintain the

communication link, the only status information required by this module is a

timer, which is used to determine when a time-out has occurred. The timer is

5 Address translation is discussed in section 6.4.

Chapter 6 M-Bus Driver Architecture

Electrical, Electronic and Computer Engineering 69

started and terminates the communication process if a time-out occurs to make the

communication link available for the next Application Server request. This

module could also be used to maintain logs of requests and responses processed at

the Access Point for auditing purposes, this is however not implemented in the M-

Bus driver. In REMPLI so called “Keep-alive” signals are used to maintain the

communications link between the Application Server and the Metering

Equipment. This module is also responsible for managing these “Keep-alive”

messages at the Access Point. These “Keep-alive” signals are however protocol

specific and the use of keep-alive signals depend on whether the protocol

implemented supports such functionality. The M-Bus protocol does not support

this functionality and therefore does not implement a keep-alive signalling

scheme.

4. The Optimization Module is used to minimize the size of the data sent over the

PLC network. Therefore after receiving the M-Bus frame it removes some of the

level 2 headers in order to minimize the size of the frame. The role of the

Optimization Module for the M-Bus protocol is discussed in section 6.7 of this

document. The Optimization Module will perform similar functions to other

protocols implemented within REMPLI. The class 2 user data request is a small

data packet only containing 5 Bytes, of which 3 headers could be removed to

reduce it to 2 bytes. The resultant M-Bus frame is given in figure 6.7. It is not

worth the effort to compress the rest of the data if there is no reduction in size to

gain from the data compression, a gain of at least one byte needs to be achieved to

justify using compression. This function is available for longer datagrams which

might contain metering logs, with long sequences of values. In this example data

compression is not justified and therefore not implemented.

5B16 0316

Figure 6.7. The reduced M-Bus frame generated by the Optimization Module, all
 values are given in hexadecimal format.

Chapter 6 M-Bus Driver Architecture

Electrical, Electronic and Computer Engineering 70

TCP/IP
Communication

Module
Sending/Receiving TCP/IP Packets

TCP/IP Communication Link

Data Processing
ModuleEn(De)capsulation Module

M-Bus Frame

Optimization
Module

Reduction/Rebuilding of Header
Information

Data Compression/Expansion

Management of Keep-alive
Messages

Keep-alive
Management

Module

M-Bus Frame

M. Frame

De/Mux
Communication

Module
Sending/Receiving De/Mux

Packets via De/Mux
Interface

Error Handling

Management
Module

Access
Point-Side

Driver
TCP/IP

Communication
Module

Management
Module

F2 Data Processing
Module

F1

F3Optimization
ModuleF4

De/Mux
Communication

Module
F5

Addressing
Table

Driver AddressPLC Header M. Frame

Timer

TCP HeaderApplication PDUTCP HeaderIP Header

TCP HeaderApplication PDUTCP HeaderIP Header

Figure 6.8. Functional block diagram for the M-Bus driver at the Access Point.

Chapter 6 M-Bus Driver Architecture

Electrical, Electronic and Computer Engineering 71

5. The compressed or minimized M-Bus frame is now passed on to the

Management of “Keep-alive” Packets Module, which sends a signal to the

“Keep-alive” Management Module to inform it of the status of the packet to be

updated. The Management of Keep-alive Packets Module optimizes the

bandwidth utilization of the PLC network by combining keep-alive data with

APDU data sent via protocol drivers that have free, available bandwidth to carry

the extra data. This concept and functionality of optimizing the PLC bandwidth is

discussed in greater detail in section 6.7.

6. After the Access Point Management module has been informed the minimized

APDU is sent over the PLC network via the De/Mux interface, at the De/Mux

Communication Module.

6.1.3 Data Flow from the De/Mux Communication Module at the Node-Side
Driver to the Metering Equipment

The data flow process is further explained in this section which describes the

functionality of the REMPLI Node-Side Driver. A detailed functional block diagram

is given in figure 6.9.

1. The minimized M-Bus frame is received at the Node-Side driver via the

De/Mux interface at the De/Mux Communication Module. If the M-Bus

frame is compressed before it is sent over the PLC network it is not possible to

determine the destination address until the packet has been restored to its

uncompressed state. Thus no access control can take place until the M-Bus

frame has been uncompressed.

2. The compressed or minimized M-Bus frame is now passed on to the

Management of “Keep-alive” Packets Module, which sends a signal to the

“Keep-alive” Management Module to inform it of the status of the packet. The

Chapter 6 M-Bus Driver Architecture

Electrical, Electronic and Computer Engineering 72

“Keep-alive” Management Module will have to start a timer6 once the packet

is received.

3. The minimized M-Bus frame is forwarded to the Data

Compression/Expansion Module where the payload will be expanded to its

original state if it was compressed at the Access Point side. For this example

data compression was not implemented and no action is taken at this module.

4. The Reduction/Rebuilding of Header Information module now rebuilds the

3 M-Bus headers that were dropped at the Access point, to restore the M-Bus

frame to its original state, as conceived at the Application Server. The M-Bus

frame is then forwarded to the Access Control Module for processing.

5. The Access Control Module compares the origin of the M-Bus frame and the

equipment address with a list of known Application Servers and equipment

addresses and either accepts or rejects the packet. If the M-Bus frame is

rejected it is dropped and the “Keep-alive” Management Module is informed,

if the M-Bus frame is accepted it is forwarded to the Protocol Stack.

6. The Layer 2 Protocol Stack manages the transmission of data between the

REMPLI Node-Side Driver and the Metering Equipment7.

7. The M-Bus frame is sent to the Metering Equipment via the HyNet Driver.

The HyNet Driver translates the software data packet into protocol specific

hardware data and transmits it directly to the metering equipment connected to

the bus.

6 Discussed in section 6.6 of this document.
7 Discussed in section 1.4 of this document.

Chapter 6 M-Bus Driver Architecture

Electrical, Electronic and Computer Engineering 73

Optimization
Module

De/Mux
Communication

Module

Driver AddressPLC Header App. PDU

Sending/Receiving De/Mux
Packets via De/Mux

Interface
Error Handling

Reduction/Rebuilding of Header
Information

Data Compression/Expansion

Management of Keep-alive
Messages

Keep-alive
Management

Module

M-Bus Frame

M. Frame

Access Control
Module

M-Bus Frame

Access Control

M-Bus DataM-Bus Header Checksum Stop Bits

Protocol Stack
[Layer 2]

Protocol Specific
Hardware Driver

for HyNet
[Layer 1]

Management of
Tranmission

Rules

Header
Management

Hardware Driver

Metering Equipment

Access
Database

Metering Equipment

Node-Side
DriverDe/Mux

Communication
Module

Access Control
Module

Optimization
Module

Protocol Stack
[Layer 1&2]

Protocol Specific
Hardware Driver for

HyNet [Layer 1]

F1

F4

F2

F5

F6

Access
Control
Table

Figure 6.9. Functional block diagram for the M-Bus driver at the REMPLI Node.

6.1.4 Data Flow from the Metering Equipment to the De/Mux Communication
Module at the Node-Side Driver.

Chapter 6 M-Bus Driver Architecture

Electrical, Electronic and Computer Engineering 74

The following section discusses the flow of the response containing the user 2 data

which is generated by the Metering Equipment and forwarded to the Application

Server.

1. Once the Metering Equipment has replied to the request with a response M-

Bus frame it is sent to the Protocol Stack [Layer 2] at the Node via the

HyNet driver. The layer 2 protocol stack at the M-Bus Node-Side Driver

module ensures that the frame that was received is correct by checking the

length of the, the frame checksum and the parity bit. Once the information in

the frame is validated it is forwarded to the Access Control module. In this

example the resultant M-Bus frame is as given in figure 6.3.

2. The Access Control Module checks that meter 3 on REMPLI node 27 is

allowed to be forwarded to the Application Server and then either accepts or

rejects the frame. If the frame is allowed to be forwarded to the Application

Server then it is sent to the Reduction/Rebuilding of Header Information

Module.

3. The Reduction/Rebuilding of Header Information Module then removes

any headers that can be rebuilt at the Access Point side as explained in section

6.7.1 and forwards the reduced M-Bus frame to the Data

Compression/Expansion Module. The reduced M-Bus frame is given in figure

6.10.

 08 03 72 78 56 34 12 24 40

01 07 55 00 00 00 03 13 15 31 00 DA 02

3B 13 01 8B 60 04 37 18 02

Figure 6.10. The reduced M-Bus frame generated by the Metering Equipment, all
 values are given in hexadecimal format.

Chapter 6 M-Bus Driver Architecture

Electrical, Electronic and Computer Engineering 75

4. The Data Compression/Expansion Module does not play any role in this

example as there is no data compression/Expansion applied.

5. The Management of “Keep-alive” Signals Module then informs the Node

Side “Keep-alive” Management Module of the intent to forward the message

to the Access Point and the timer that was started at the beginning of the

communication at this module is stopped. After the timer has stopped the M-

Bus frame is sent to the De/Mux Communication Module.

6. The minimized M-Bus frame, as given in figure 6.10 is sent over the PLC

network via the De/Mux Interface, by the De/Mux Communication Module.

6.1.5 Data Flow from the De/Mux Communication Module at the Access Point
to the TCP/IP Communication Module at the Access Point.

The following section describes the flow of the APDU from the Access Point-Side

Driver to the IP network.

7. The De/Mux Communication Module receives the minimized M-Bus frame

from the De/Mux interface and forwards it to the Management of “Keep-alive”

Messages Module.

8. The Management of “Keep-alive” Messages Module sends the relevant data

to the “Keep-alive Management module, which updates the “Keep-alive”

status at the Access Point by terminating the timer which was started when the

request for user 2 data was received from the Application Server. The M-Bus

frame is sent to the Data Compression/Expansion Module.

9. If the M-Bus frame was compressed the Data Compression/Expansion

module is responsible for expanding the data to its original uncompressed

state. This module was not utilized during this example and thus no expansion

of data is required.

Chapter 6 M-Bus Driver Architecture

Electrical, Electronic and Computer Engineering 76

10. The uncompressed M-Bus frame is now forwarded to the

Reduction/Rebuilding of Header Information, where all the dropped

headers are restored to their original state, as shown in figure 6.3. This

includes the 2 start bytes, 2 length bytes, the checksum byte and the stop byte.

11. The Data Processing Module now retrieves the necessary data out of the

Management Module at the Access Point-Side driver, i.e. The Application

Server IP-address, if not supported by the underlying TCP/IP communication

module and forwards it to the TCP/IP Communication Module. The Data

Processing Module then encapsulates the M-Bus frame into a TCP/IP packet

and sends it to the TCP/IP Communication Module.

12. The TCP/IP Communication Module forwards the TCP/IP encapsulated M-

Bus frame over the TCP/IP link to the Application Server.

6.1.6 Data Flow from the TCP/IP Communication Module at the Application
Server-Side Driver to the Application Server

The following section describes the data flow of the response M-Bus frame at the

Application Server’s side, by the Application-Side Driver.

13. The TCP/IP Communication Module at the Application-Side Driver

receives the TCP/IP packets, decapsulates the data and then forwards the

response M-Bus frame to the Communication Module.

14. The Communication Module sends this resultant M-Bus frame in the form of

an APDU to the Application Server, which takes the appropriate action.

6.2 DATA FLOW EXAMPLE OF A MULTI-FRAME M-BUS
REQUEST/RESPONSE GENERATED BY THE APPLICATION
SERVER

This section describes the flow of an M-Bus Application Server generated request for

user 2 data from meter number 5, which is connected to REMPLI Node 15. The

Chapter 6 M-Bus Driver Architecture

Electrical, Electronic and Computer Engineering 77

Metering equipment is configured to respond with user data that is 531 bytes long,

which results in the meter returning 3 M-Bus frames: two with 252 bytes of user 2

data and the last M-Bus frame containing 27 bytes of user 2 data. The sequence

diagram for the communication process given in this example is given in figure 6.11.

During a multi-frame request by the Application Server the communication process is

essentially the same as the process described in section 6.1 therefore this section gives

a brief overview of the data flow from the Application Server to the Metering

Equipment and the resultant response. The functional blocks and functions performed

by each module remain the same as given in section 6.1.

Chapter 6 M-Bus Driver Architecture

Electrical, Electronic and Computer Engineering 78

Figure 6.11. Sequence diagram of a multi-frame M-Bus request/response generated
 by an Application Server.

Application Server-Side Driver Access Point-Side Driver Node-Side Driver Metering Equipment

Communication
Management

Request User Data
Request User Data

Request User Data

Respond with User Data
User Data

Request User Data

Respond with User Data

Layer 2 M-Bus Protocol Stack

Communication
Management

Request User Data
Request User Data

Request User Data

Respond with User Data

User Data

Request User Data

Respond with User Data
Request User Data

Layer 2 M-Bus
Protocol Stack

Communication
Management

Request User Data Request User Data Request User Data

Respond with User Data
User Data Respond with User Data

Layer 2 M-Bus Protocol Stack

Chapter 6 M-Bus Driver Architecture

Electrical, Electronic and Computer Engineering 79

6.2.1 Multi-frame Data Flow from Application Server to the Metering Equipment

and Response, figure 6.11.

This section gives brief description of the flow of data, which occurs when the M-Bus

Application Server request user 2 data and the M-Bus Metering Equipment responds with a

multi frame response. The functional communication is the same as given in 6.1 but the

process repeats itself until the entire response has been received by the Application Server.

The Application Server generates the request for user 2 data from M-Bus meter nr 5, which

is connected to REMPLI Node 15. The Application Server generated M-Bus request frame

is given in figure 6.12 as shown below.

1016 5B16 0516 6E16 1616

Figure 6.12. The M-Bus frame generated by the Application Server, all values are given
 in hexadecimal format.

The Application Server-Side Driver receives the APDU from the Application Server in

which user 2 data is requested. The Application Server Side-Driver encapsulates the

APDU into a TCP/IP packet and forwards it to the predetermined Access Point. The

Access Point-Side Driver receives the TCP/IP packet via a TCP/IP interface. The Access

Point-Side Driver performs the necessary processing and informs the required modules of

the new request, as given in 6.1.2. The Access Point-Side Driver then forwards the reduced

M-Bus frame 5B0516 to the Node-Side Driver via the PLC interface. At the Node-Side

Driver the minimized M-Bus frame is restored to its original form and the layer 2 protocol

stack is then responsible for managing the communication between the M-Bus metering

equipment and the Node-Side Driver by requesting the user 2 data from the Metering

Equipment as given in the M-Bus frame. The communication between Metering

Equipment and the Node-Side Driver takes place via the HyNet driver. While this request

takes place between the Node-Side Driver and the Metering Equipment, the time elapsed

during this data flow process has exceeded the time allowed for the M-Bus response to be

sent to the Application Server, thus in accordance with the M-Bus protocol the Application

sends a second request for user 2 data from the same M-Bus meter located at REMPLI

Node 15. Once this request is received at the Access Point the Management Module

Chapter 6 M-Bus Driver Architecture

Electrical, Electronic and Computer Engineering 80

determines that the request is a duplicate of the current request and does not forward it over

the limited bandwidth PLC network, thus saving PLC bandwidth. Once the M-Bus

response is received by the Node-Side Driver it is processed, reduced and forwarded to the

Access Point-Side Driver via the PLC network. The M-Bus response contains 252 bytes of

user data and a Control (C) field, Address (A) field and a Control Information (CI) field.

The Access Point-Side Driver receives the M-Bus response and informs the Management

of Communication Module of the event and performs the required tasks and forwards the

data to the Application Server-Side Driver via the TCP/IP network. The Application Server

checks if the M-Bus response is part of a multi-frame response by checking the CI field of

the M-Bus response frame. Knowing that the frame is part of a multi-frame response

allows the Application Server-Side Driver to forward the response M-Bus frame to the

Application Server and wait for the second response from the Application Server for the

second frame of the multi-frame response.

The Application Server generates a new request for the remaining metering response by

toggling the FCB-bit in the Control field. The Application Server-Side Driver then

forwards this request to the Access Point-Side Driver with the flow of data the same as

explained in the section above. The only difference is that during this instance the time

lapse during the traversal of the PLC network is such that the Application Server repeats

the request for the user data 3 times before the response is received. Once the response is

received by the Application Server-Side Driver it checks again to see if another response is

expected, in this case the response is not finished yet and another response is required, thus

the Application Server-Side Driver waits for the Application Server to send the next

request for the user data from the M-Bus meter.

The next request is generated by the Application Server and passed on to the M-Bus meter

via the Access Point-Side Driver and the Node-Side Driver. The delay caused in traversing

the network is minimal in this instance and the final M-bus response is received by the

Application Server before another request for this response has to be generated and sent to

the meter. The fact that this is the final response allows the Application Server-Side Driver

to terminate further communication with the corresponding instance of the Access Point-

Side driver, while the Node-Side driver terminates itself through a timer which controls

this communication, thus minimizing the traffic flow on the PLC network.

Chapter 6 M-Bus Driver Architecture

Electrical, Electronic and Computer Engineering 81

Due to variability in the PLC network the traversal time of a data packet can not be

predetermined and as given in this example has an impact on the number of requests for a

response telegram from the Application Server. It is however critical for successful

transmission of M-Bus data across the REMPLI system that the underlying network strictly

adhere to the QoS requirements set by the M-Bus protocol. During this example the baud

rate of the Application Server was set at 300 bits/sec., in order to maximize the time

window in which the M-Bus response could be generated and returned to the Application

Server. The baud rate on the physical connection between the REMPLI Node and the M-

bus meter was set at 9600 baud. This results in a faster request/response time at the

REMPLI Node. The resultant setup of the communication system optimally utilizes the

allotted time for a response by minimizing the time of request and response between the

REMPLI Node and the physical M-Bus meter and maximizing the time frame for the

request/response between the Application Server and the REMPLI Node.

6.3 DATA FLOW EXAMPLE OF M-BUS REQUEST/RESPONSE GENERATED

BY THE APPLICATION SERVER WITH TRANSMISSION FAULTS

The communications process remains the same as given in the examples above, but if a

communication fault occurs, or the underlying network is dropped, the communication

process is described in the sequence diagram of the communication process for the M-Bus

Protocol Driver is given in figure 6.13. When a transmission fault occurs, the Application

Server is responsible for requesting the required measurement value again. This can

happen immediately after the fault has occurred or at a later stage, depending on the

configuration of the Application Server.

Chapter 6 M-Bus Driver Architecture

Electrical, Electronic and Computer Engineering 82

Figure 6.13. Sequence diagram in case of faults during the communication process.

Communication
Management

Application Server Access Point-Side Driver Node-Side Driver Metering Equipment

Request User Data
Request User Data

Request User Data

Response

Request User Data

Request User Data

Communication Failure

Keep Alive Signal *

Keep Alive Signal *

Keep Alive Signal * Terminate Communication

Layer 2 M-Bus
Protocol Stack

Terminate Communication

Req. Data

Req. Data

* Required for Successful Communication

Chapter 6 M-Bus Driver Architecture

Electrical, Electronic and Computer Engineering 83

6.4 ADDRESS TRANSLATION

The format of the Application Server destination address is implementation specific and

the derivation algorithm will depend on the format of the Application Server destination

address. At the moment the example given in section 3, assumes a predetermined IP

address is used, an alternative to using one predefined destination TCP/IP address is to

create a list which is stored at the Application Server and contains all the TCP/IP address

of all the Access Points connected to the REMPLI network. There are currently two

implementation options:

• Deriving the Access Point IP address and RNA with a general algorithm

• Using a table with stored values to obtain the Access Point IP address and RNA.

6.4.1 General Algorithm

The first implementation option is to implement a general algorithm to derive an Access

Point IP address and an RNA from the Application Server destination address. This

method requires little storage space and is a general way of deriving Access Point

destination addresses. But it is questionable if a general algorithm could be implemented to

derive Access Point destination addresses from different Application Server protocols, and

destination addresses. Because different application server supply their destination

addresses in different formats a general algorithm may not exist that caters for all the

different formats supported by different Application Servers. This method is therefore

limited in its ability to expand to additional protocols and or Application Servers.

6.4.2 Address Management Table

The second implementation method is to use a table with stored destination Access Point

values for each Application Server destination address. These tables would have to be

generated manually and maintained. The tables require storage space. However they are

more flexible than a general algorithm, and incurs no limitation on the addressing of Nodes

and Metering Equipment, as a general address derivation algorithm might do.

Chapter 6 M-Bus Driver Architecture

Electrical, Electronic and Computer Engineering 84

6.5 ACCESS CONTROL

The Access Control Module could be implemented at the Node-Side Driver, or the Access

point. The purpose of this module is to restrict the incoming and outgoing packets, by only

allowing predefined destination and origin addresses to send and receive APDUs via the

Access Point and REMPLI Node.

6.5.1 Access control implemented at the Access Point

If access control is implemented at the Access Point it limits traffic over the PLC, but there

is a large amount of processing overhead placed on the Access Point. Another problem

with implementing access control at the Access Point is that all the Access Points will need

to have the same access control lists, therefore these lists have to be distributed and

duplicated on each and every Access Point on the Network. The instant there is a change in

one of the lists located at an Access Point, this list has to be distributed to all other Access

Points. This scenario is not preferred because of the extra processing and relaying

capabilities that would be required at the Access Point. This possibility also opens up the

possibility of a malicious Access Point that does not allow for the storage of an access list

at the Access Point rendering the access list useless. In order to obtain the origin address of

the APDU used to accept or reject a request in the access control list it can be obtained

from the source and destination address from the TCP/IP packet. This is not a processor

intensive operation and no additional data, containing the origin address needs to be sent

via the payload of a data packet. The single most important factor is however that Access

Points are owned by different entities within the REMPLI network, and they might have

objections to the access control being centralised over all Access Points.

6.5.2 Access control implemented at the Node side

If the access control list is implemented at the REMPLI Node it is difficult to determine the

origin of the data and therefore this data needs to be added by the driver to the data sent

over the PLC. If the data is compressed before it is sent over the PLC link some

decompression processing will have to be done before the access control could take place.

A possible solution for obtaining the origin of the APDU is to retrieve the origin from the

signature of the APDU if security is implemented. However this method is reliant on the

security module (signature) being implemented and if a sender chooses not to implement it

Chapter 6 M-Bus Driver Architecture

Electrical, Electronic and Computer Engineering 85

more data will have to be added at the Access Point to the PLC packet in order to identify

the origin of the packet.

Because the Access Points are already performing a lot of processing, it could be possible

to overload the Access Points with too much processing requirements and it is preferable to

distribute some processing operations to the REMPLI Node. If the Access Points is not

owned by the same company, which it could be assumed, then different vendors might not

want to implement this extra processing overhead on their Access Points. Each owner

would determine the access control applied to its Access Point.

If the Access Control is implemented at the REMPLI Node, then the origin of the APDU

will have to be retrieved from the signature of the APDU. This signature should be

generated at the Application Server, in order to make the Access Point layer transparent as

an origin. By implementing it this way, APDUs does not have to be forwarded through a

specific Access Point, but rather originate from a specific Application Server. This will

allow an Access Point which cannot directly connect to a certain Node to forward it to

another Access Point and then forward it from there to the destination REMPLI Node.

It is therefore preferable to place the access control functionality at the REMPLI Node, this

distributes processing between the Access Point and Node and it is a central unit to which

all requests relevant to this Node are sent.

6.6 OPTIMIZED “KEEP-ALIVE” SIGNALLING CONCEPT

Due to the nature of the transmission services and the use of a connectionless transport

protocol like IP and a very bandwidth limited network like the PLC network between

Application Server and metering devices, communicating the request of an Application

Server to a metering device could take up a significant amount of time. In order to allow

requests generated by Application Servers to traverse down through the REMPLI network

and back up again to the Application Server without timing out, a “Keep-alive” signalling

scheme is required for each protocol implemented within the REMPLI project.

The purpose of these “Keep-alive” signals is to keep the Application Server “interested” in

the request until the response can be sent back to the Application Server. These “Keep-

Chapter 6 M-Bus Driver Architecture

Electrical, Electronic and Computer Engineering 86

alive” signals needs to be sent between the Access Point and the Application Server and

the REMPLI Node and the Access Point.

A general “Keep-alive” management function is needed to control the sending and

receiving of these “Keep-alive” signals. It is required that this “Keep-alive” signalling

scheme be optimized as much as possible in order to limit the possible overhead it could

cause over the PLC network. The purpose of this general “Keep-alive” management

module is also to perform these optimization functions. The status of each meter and

protocol will be maintained within the general “Keep-alive” management module. The

general “Keep-alive” management module must maintain a timer to determine when a

time-out is going to occur. The general “Keep-alive” module is then responsible for

sending the “Keep-alive” signals to the appropriate destination (Access Point, Application

Server) before the timeout for the protocol occurs. This module could be used to optimize

this “Keep-alive” signalling scheme by adding “Keep-alive” packets to protocol specific

APDUs that do not fill up an entire PLC packet. This is possible because PLC packets are

of fixed length and if the APDU used by a protocol does not fill it up, there are empty

bytes available within the PLC packet that could be used to transport “Keep-alive” data.

Some protocols do not support “Keep-alive” signalling capabilities and these protocols will

not be able to use the “Keep-alive” signalling functions provided by this general “Keep-

alive” management module.

6.7 FUNCTIONALITY OF THE OPTIMIZATION MODULE

This section describes the functions that are performed by the Optimization Module at the

Access Point-Side Driver and the Node-Side Driver. This includes the reduction of headers

from APDUs and the compression of data before it is sent over the PLC network via the

De/Mux interface.

6.7.1 Header Reduction

This section will focus on the header reduction within the M-Bus protocol, but is however

not limited to the M-Bus protocol, as similar operations can be performed on all the

Metering PDUs. In the M-Bus protocol four different telegram formats are defined. Three

Chapter 6 M-Bus Driver Architecture

Electrical, Electronic and Computer Engineering 87

of these telegram formats can be recognised by special start characters, as shown in figure

6.14.

Start 68h CSA FieldC Field Stop 16h
Control Frame

L Field 3 L Field 3 Start 68h CI Field

Start 10h CSA FieldC Field Stop 16h
Short Frame

Long Frame
Start 68h CSA FieldC Field Stop 16hL Field L Field Start 68h CI Field User Data

E5h
Single Character

Figure 6.14. Telegram formats defined within the M-Bus protocol.

All of these telegram formats can be uniquely identified by the length of the data payloads

they have. This allows the Optimization Module to drop all the headers for all the different

telegram formats while still being able to identify the type of telegram that is sent or

received. The optimization of headers is applied as follows for each telegram format. The

header reduction can be applied due to the guarantee of data correctness by the underlying

networks.

• Single Character: No further optimization is necessary. This telegram consists of a

single byte without any headers. This telegram format is identified if the length of the

data is 1 byte.

• Short Frame: The optimization comprises the dropping of the Start byte, Check Sum

byte and the Stop byte. Only the Control field and the Address fields are required to

stay in tact. This type of telegram is identified by the length of its payload which is 2

bytes.

• Control Frame: The optimization comprises the dropping of both the Start bytes, both

the Length fields, the Check Sum byte and the Stop byte. Only the Control field, the

Address field and the Control Information fields are required to remain in tact. This

type of telegram is identified by the length of its payload which is 3 bytes.

• Long Frame: The optimization comprises the dropping of both the Start bytes, both the

Length fields, the Check Sum byte and the Stop byte. Only the Control field, the

Chapter 6 M-Bus Driver Architecture

Electrical, Electronic and Computer Engineering 88

Address field and the Control Information fields are required to remain in tact. This

type of telegram is identified by the length of its payload which is greater than 3 bytes.

6.7.2 Data Compression

The optimization process can further be improved by compressing the data before it is sent

over the De/Mux interface. Compression should only be performed if there is some sort of

gain by applying a data compression algorithm, i.e. if the APDU and the security data and

the “Keep-alive” byte fit into one PLC packet then there is nothing to gain by compressing

this data and unnecessary processing is done. If the data, required to transmit over the PLC

network requires multiple PLC packets and the number of PLC packets can be reduced by

even only one byte, then compression should be implemented. Some sort of Heuristic

decision making process should be implemented to determine whether there is some gain

out of applying compression to the PLC packet’s payload.

Chapter 7

7 IMPLEMENTATION SOLUTIONS

This chapter discusses the different implementation options for each of the different

modules contained within the REMPLI driver. Due to the distributed nature of the

REMPLI driver, each of the different modules: Application Server-Side Driver, Access

Point-Side Driver and Node Side Driver are discussed within a separate section in order to

avoid ambiguity.

7.1 SOFTWARE ARCHITECTURE

This section describes the software architecture implemented for the entire system by

employing the 4+1 view paradigm methodology suggested by Kruchten, [32]. The design

view is given in chapters 4 and 5. The sequence diagrams shown by figures 6.4, 6.11 and

6.13 describe the process view of the M-Bus protocol driver. This section will expand the

views mentioned above by discussing the implementation and deployment views.

7.1.1 Implementation View

The class diagram representing the M-Bus Driver architecture is given in figure 7.1. The

class diagram gives the main classes contained within the M-Bus Driver. An M-Bus Driver

contains a client, used for connecting, and a server, used for listening. Either one of the

server or client will be utilized or both depending on where the driver is deployed and the

role the driver fulfils i.e. does the current driver fulfil a dual client/server role and do both

communicate over a specific communications link. Thus if the M-Bus Protocol Driver is

deployed at the Access Point or the Node it will require both a TCP client and TCP server

class for communicating over a network utilizing the TCP/IP protocol. The Application

Server-Side Driver contains a server that listens to the requests made by the M-Bus

application server and a TCP client which connects and forwards the requests to the Access

Point-Side Driver’s TCP server over a TCP/IP connection.

Chapter 7 Implementation Solutions

Electrical, Electronic and Computer Engineering 90

At the Access Point the Application Server-Side Driver’s TCP client connects to the

Access Point TCP server and the Access Point-Side Driver uses the client class to connect

to the Node-Side Driver’s server. The Node-Side Driver in turn uses the client and the M-

Bus Protocol class to connect to the metering equipment. The M-Bus Frame class is a class

which contains all the parameters associated with an M-Bus frame. The M-Bus Frame

class also contains all the validation functionality required by the layer 2 M-Bus protocol

for an M-Bus frame, such as the checksum validation, parity validation and length

validation. The Node-Side Driver communicates with the M-Bus metering equipment

using the M-Bus Protocol class.

It is important to note that the client and server do not have to be limited to the TCP

protocol. The client/server should use the underlying network’s communication protocol. If

PLC is used and a proprietary interface and protocol is used then this protocol must be

implemented by the client/server. Alternatively a protocol like UDP (User Datagram

Protocol) could be used as a connection orientated method of communicating over the

network interface.

The M-Bus Protocol class is responsible for maintaining all layer 2 protocol

communication procedures. These procedures include:

• Send/Confirm

• Request/Response

• Transmission procedures in case of errors.

Chapter 7 Implementation Solutions

Electrical, Electronic and Computer Engineering 91

M-Bus Driver

+Listen()
+Reply()

Server

+ConnectToServer() : bool
+SendData() : bool
+ReceiveData() : bool

Client

+IsCheckSumValid() : bool
+StartCharacterValid() : bool
+LengthValid() : bool
+ParityBitValid() : bool
+StopCharValid() : bool
+GetReducedMBusFrame() : byte
+RestoreMBusFrame() : byte

+FrameType : string
+Length : int
+SingleChar : byte
+ControlField : byte
+AddressField : byte
+ControlInformation : byte
+Checksum : byte
+StartChar : byte
+StopChar : byte
+UserData : byte

M-Bus Frame

+SendConfirm(in send : M-Bus Frame) : byte
+RequestResponse(in request : M-Bus Frame) : M-Bus Frame

+Response : M-Bus Frame
M-Bus Protocol

0..*
1

Contains
1

0..*Contains

0..* 1
Connect

1

0..1

Using

1

0..*
Send/Receive

1

1

Send/Receive

The M-Bus Protocol class is also responsible for handling communication errors and

determining if the transaction completed successfully, see section 1.4.16. The main role of

the M-Bus drivers at the Access Point-Side Driver is for the server and client to perform

the tunnelling functionality, i.e. forwarding the received M-Bus protocol data units to and

from the Application Server and Nodes by traversing the underlying network.

Figure 7.1. Simplified class diagram of the M-Bus driver architecture.

Chapter 7 Implementation Solutions

Electrical, Electronic and Computer Engineering 92

7.1.2 Deployment View

The M-Bus Driver software will be deployed on multiple hardware devices. These devices

are remotely distributed and this section gives the deployment view for all the software

modules implemented by the M-Bus protocol driver. The software modules are deployed

as given in figure 7.2.

The Application Server-Side Driver is deployed at the Application Server. This is usually a

PC which contains the software M-Bus application server. The Application Server is

responsible for managing the entire M-Bus metering network. The Access Point which is

connected to the Application Server through a TCP/IP interface contains the Access Point-

Side Driver and the Node contains the Node-Side Driver.

Figure 7.2. Deployment view of the M-Bus driver architecture.

 Database

Application Server

 Application
 Server-Side
 Driver

Access Point

 Access
 Point-Side
Driver

Internet

Node

 Node-Side
 Driver

PLC
/G

PR
S

M-Bus Meter

M-Bus Meter

M-Bus Meter
LAN

Chapter 7 Implementation Solutions

Electrical, Electronic and Computer Engineering 93

7.1.3 Implementation Platform

The M-Bus driver was implemented on the .NET 2.0 Framework. The C# programming

language was used.

The .Net Framework consists of two main components: the .NET Framework class library

and the common language runtime. The runtime environment is responsible for managing

code at execution time, this include the management of threaded processes and the

allocation of memory. At the same time the runtime environment enforces various forms of

code accuracy management, which in turns ensures security and robustness is maintained.

The class library contains a comprehensive collection of reusable object-oriented types that

support the development of software. Classes utilized in the M-Bus protocol driver

include:

• The RS232 class for communicating over a serial line with the metering equipment.

• The TcpListener class which served as a TCP Server and the TcpClient class which

served as a TCP client. The TcpListener also supports access control.

• The .Net framework also supports sockets, which can be used for implementing the

TCP server and TCP clients.

The concurrent sending and receiving of requests and responses take place in a threaded

process managed by the runtime environment. The classes provided above are also

supported in other environment such as the Linux environment, but the management of

these processes will have to be managed by the driver itself and not a runtime environment

used by the .NET Framework.

The .Net Framework was thus chosen as a development platform for its comprehensive set

of class libraries, the management of the runtime environment and the ease of use when

implementing software. There is a slight disadvantage in terms of performance when using

the .Net Framework. Due to the management of code by the runtime environment an

implementation in the .Net Framework is slightly slower in terms of execution time.

Another inhibiting factor about the C# language is that the first time an object is invoked

within the runtime environment a lot of time is taken to assign the necessary resources,

however after the initial allocation of resources the program execution times are close to

Chapter 7 Implementation Solutions

Electrical, Electronic and Computer Engineering 94

pure native C program implementations. The difference in execution time between C# and

C is negligible for the M-Bus protocol driver implementation. Therefore using the C#

language will have a negligible impact on the implementation of the M-bus protocol driver.

The C# language was chosen because it gives the user easy access to native Windows

services. These include networked objects and communication services, all of which are

used extensively by the M-Bus protocol driver.

7.2 APPLICATION SERVER-SIDE DRIVER

This section contains the implementation solutions for all of the modules that are situated

at the Application Server side. All of these modules are contained within the Application

Server-Side Driver as shown in figure 6.1.

7.2.1 Communication Module

The data from the Application Server comprises two parts:

• M-Bus frame

• Addressing information

This module splits the data received from the Application Server into the two different data

units as mentioned above. The Addressing information received from the Application

Server is used to translate to corresponding Access Point IP-address. The M-Bus frame is

then sent to the Access Point, as is, via a TCP/IP network interface. The following

preconfigured Application Server data 155.239.172.69 | ****M-Bus Frame**** was used.

The Communication Module extracted the destination IP address and M-Bus frame

received from the Application Server. Thus the resultant Access Point IP-address

155.239.172.69 was used by the TCP/IP Communication Module to connect and send the

M-Bus frame to the Access Point.

7.2.2 TCP/IP Communication Module

The TCP/IP Communication Module was implemented using the .Net TcpClient class. The

TcpClient class was used to setup a client TCP connection which connected to the TCP/IP

Chapter 7 Implementation Solutions

Electrical, Electronic and Computer Engineering 95

server situated at the destination Access Point. The TCP client was setup to communicate

on port 399 using the destination IP address 155.239.172.69. Alternatively a DNS name

could have been used as the destination of the TCP/IP server, however DNS lookups are

quite time consuming, decreasing the available time for the M-Bus request/response

transaction. The TCP/IP Communication Module also retrieves the destination REMPLI

Node Address from a lookup table by combining the address of the communications port

with data contained within the original application server request as the key. Thus the

destination RNA and the M-Bus request is forwarded to the Access Point-Side Driver. The

TCP/IP communication takes place in a thread, thus allowing for multiple concurrent

TCP/IP connections to be made to multiple Access Points and allowing the Application

Server-Side Driver to continue with other processes while the TCP/IP communication is

managed within the thread by the .NET runtime environment.

7.2.3 Address Management Module

The Address Management Module uses the Addressing information contained in the data

to obtain the IP address of the destination Access Point. This implementation had a fixed

Access Point address and retrieved the RNA from a hash table which uses the

communications port address and the data contained in the Application Server data as the

key. The hash table with all its RNA mappings was serialized (saved to the hard-drive in

binary format) and the RNA retrieved by deserializing the hash table and looking up the

destination RNA.

The Address Management Module is responsible for storing and maintaining a database

with available Access Point and RNA addresses. The Hashtable class was chosen because

the Hastable class is contained within the .NET class library set, which manages a table

with key indexers and corresponding values. It is also used to save and retrieve the saved

configuration by using .NET serialization.

7.3 ACCESS POINT-SIDE DRIVER

This section discusses the software components defined at the Access Point-Side Driver as

given in figure 6.8.

Chapter 7 Implementation Solutions

Electrical, Electronic and Computer Engineering 96

7.3.1 TCP/IP Communication Module

The TCP/IP Communication Module receives the TCP/IP encapsulated data and

decapsulates it. The resultant payload data is then forwarded to the Data Processing

Module. This module is implemented as a TCP/IP server using the TcpListener class

contained in the .NET Framework.

7.3.2 Data Processing Module

The Data Processing Module takes the received data from the Application Server-Side

Driver and extracts the RNA. The tunnelling approach chosen for the M-Bus protocol

driver does not make use of data loggers, however for experimental reasons this module

was also used to store the requests and responses with a time-stamp for auditing and

experimental verification.

7.3.3 Management Module

The Management Module is responsible for managing the current communication thread.

For the M-Bus protocol it has only one function: Start a timer that determines when the

current application request/response times out. To implement this function of determining

if the current request/response has timed out, a timer is needed that provides a small

enough resolution for the protocol implemented. In the case of the M-Bus protocol, a

timeout is determined by using 330 bit periods + 50 ms to determine if a timeout has

occurred, as discussed in section 3.2.1.3. In order to determine the exact timeout window,

the speed of communication used by the M-Bus meters is required. For the test case this

data rate is predetermined at 300 baud. Knowing the baud rate, the exact timeout window

could be calculated for the request/response to be completed. This timeout window can be

expressed as given in formula 7.1

 Re / Re
3303 [0.05]q sT

Baudrate
= × + (s) (7.1)

where Baud rate is given in bits per second and TReq/Res is measured in seconds. If the

predetermined baud rate of 300 baud is substituted in formula 7.1 a timeout interval of 3.45

seconds is given. This is the absolute maximum time that an M-Bus protocol

request/response transaction can take if the M-Bus protocol is used. Therefore the

Chapter 7 Implementation Solutions

Electrical, Electronic and Computer Engineering 97

Management Module has to start a timer the moment a request is received from the

Application Server and terminate the communication link after the timeout period has

expired. If the timeout window expires before a response is given to the Access Point, then

the Management Module is responsible for terminating the current Application generated

request/response thread. This involves the termination of the TCP client connected to the

TcpListener and the termination of the client connected to the REMPLI Node server. The

Access Point is only responsible for managing and maintaining the communications link to

and from the Application Server and the REMPLI Node. The TcpClient class provides a

ReceiveTimeout property that is set to 3.45 seconds which determines the time a TcpClient

will wait for receiving data, before it terminates.

7.3.4 Data Storage Module

For experimental reasons this module was used to store M-Bus requests and corresponding

responses with a timestamp. But in the final implementation this module is dependent on

available resources and user needs.

7.3.5 Optimization Module

The user 2 data that is received is reduced at this module as discussed in section 6.7.1

header reduction. The reduction of layer 2 headers was implemented within the M-Bus

Frame class. The M-Bus Frame class contains a method GetReducedMBusFrame() which

retrieves the user 2 data to traverse the PLC/GPRS network.

7.3.6 De/Mux Communication Module

For the experimental setup TCP over GPRS was used. Thus the reduced M-Bus frame was

sent to the Node by connecting with a TCP client to the TCP server contained at the Node.

If the REMPLI PLC communication interface is used the reduced data received from the

Optimization Module is sent over the PLC-network by using the De/Mux Communication

Module which interfaces with the REMPLI Communication Interface (RCI) which

manages the power line communication. Thus this module only forwards the received data

to the RCI and if an error message should be received from the RCI it inform the

Management Module.

Chapter 7 Implementation Solutions

Electrical, Electronic and Computer Engineering 98

7.4 NODE-SIDE DRIVER

This section discusses the software components defined at the Access Point-Side Driver as

given in figure 6.9.

7.4.1 De/Mux Communication Module

This module contains a TcpServerListener (TCP server) which listened for clients

connecting to it. The reduced M-Bus frame was received by this module after it was sent

by the Access Point-Side Driver’s De/Mux Communication Module.

If the REMPLI PLC communication interface is used, the reduced M-Bus frame is

received from the De/Mux Communication Module by interfacing with the REMPLI

Communication Interface (RCI) which manages the power line communication.

7.4.2 Optimization Module

The M-Bus class contains a method called RestoreMBusFrame, which restores the reduced

M-Bus frame to its original state. This process does not change any of the layer 2 data, it

only restores overhead such as the length, start and stop fields in the M-Bus frame.

7.4.3 Access Control Module

The Access Control Module was implemented to use the IP address of the Access Point

TCP client connected to the Node-Side Driver’s TcpListener. The Access Point’s IP

address is checked against a local access control list to see if it is allowed to connect to the

Node. The .NET Framework provides an AccessControlList class for managing the access

control list functionalities.

7.4.4 Protocol Stack (Layer 2)

The layer 2 protocol stack is implemented in the M-Bus Protocol class contained within the

M-Bus protocol driver. The M-Bus Protocol class starts the communication process with

the M-Bus metering equipment and maintains the communication process.

7.4.5 Protocol Specific Hardware Driver for HyNet (Layer 1)

The meter was connected to a PC via a serial port, thus in the experimental setup this

module was implemented by utilizing the SerialPort class supplied by the .NET

Chapter 7 Implementation Solutions

Electrical, Electronic and Computer Engineering 99

Framework class library. The SerialPort class was responsible for communicating via the

RS232 protocol over the serial line with the metering equipment.

In the REMPLI network the protocol specific HyNet driver, specifically developed for the

REMPLI system will be used by the Node-Side Driver to communicate with the metering

equipment. In the test implementation the SerialPort class was used to interface between

the Node-Side Driver and the metering equipment using the procedures contained in the

M-Bus Protocol class.

For experimental reasons this module was also used to store the requests and responses

received/sent at the Node and associated with a time-stamp for auditing and experimental

verification.

Chapter 8

8 RESULTS AND CONCLUSION

This chapter presents the results obtained during experiments conducted as well as

conclusions reached after the results were obtained.

8.1 EXPERIMENTAL SETUP

As a test case scenario, the M-Bus driver architecture discussed in chapter 6 was

implemented as discussed in chapter 7 and deployed in a test system. The experimental

setup consisted of an Application Server, which was responsible for collecting and storing

measurements taken by remote meters. The Access Point was connected to the Application

Server via a fixed line network on which TCP over IP was used to maintain a connection.

The fixed line connection provided a high-bandwidth, stable network interface. The Access

Point was connected to the Node PC via a GPRS connection. The GPRS connections

demonstrated similar characteristics to the REMPLI PLC network in the REMPLI network

which include the following:

• Low bandwidth.

• Frequent fluctuations in signal strength. The metering equipment was situated in a

remote location and the signal strength was inconsistent.

• The GPRS connection is dropped on a regular basis and they have to be re-

established, causing long delays and variance in round trip time for requested data.

• Unstable power supply also had a big influence on the underlying network, because

of regular intervals at which the power failed at the remote station where the remote

Node and metering equipment was situated.

A typical usage scenario in the REMPLI system would require that one reading is taken

per meter per day. In the experimental case the Application Server requested readings

every 30 minutes. The experimental setup took the readings of three parameters:

• Temperature

• Left Longitudinal Force

• Right Longitudinal Force

Chapter 8 Results and Conclusion

Electrical, Electronic and Computer Engineering 101

The readings mentioned above were obtained from a railway track. The temperature

measured is the air temperature in close proximity to the track, the left longitudinal force is

the force exerted on a force strip by the expanding left segment of railway track. Similarly

the right longitudinal force is the force exerted by the expansion of the right segment of the

railway track. Thus as the temperature rises the railway segments expand and exert a force

in a longitudinal direction (relative to the rail segment), as shown in figure 8.1.

The typical readings taken in the REMPLI system would include electricity, gas usage and

temperature etc. The values obtained in this experimental setup are not of the same units as

the typical measured units of a typical REMPLI scenario, but serve as sufficient

representative data to be collected by an M-Bus metering system, with similar data sizes

and characteristics. At the Node PC the meter was connected to the serial port utilizing

RS232 communication. The Node-Side driver was setup to store the requested readings on

the Node. If no request was received from the Application Server, the Node-Side driver

would request a reading and store it on the local machine. The results stored on the Node

were compared to the readings received at the Application Server in order to determine the

success rate of the readings requested by the Application Server from the metering

equipment. The Application Server collected meter readings over a period of several days.

Figure 8.1. This figure demonstrates the longitudinal forces exerted on a railway track
 as the temperature increases and decreases.

Temperature Decrease.

Temperature Increase.

 Longitudinal Forces

 Railway Segment

Chapter 8 Results and Conclusion

Electrical, Electronic and Computer Engineering 102

8.2 MEASUREMENT RESULTS

The resultant readings retrieved are listed below in table 8.1. The values listed in table 8.1

contain were measured from 7 December 2005 to 8 December 2005 between 18:21 and

10:54 respectively.

Table 8.1. The measurement values received by the Application Server after
 requesting the values from the remote meter over a 17 hour period.

Left Longitudinal Force Right Longitudinal Force Temperature Time Requested
33.119 39.6747 37.0283 2005/12/07 18:21

34.3371 40.7937 37.0146 2005/12/07 18:22
37.4112 43.6807 36.9481 2005/12/07 18:24
96.8217 107.067 34.8035 2005/12/07 18:54
162.396 176.739 31.9262 2005/12/07 19:24
212.326 230.199 29.5468 2005/12/07 19:54
248.549 267.654 27.7326 2005/12/07 20:24
280.147 299.989 26.1059 2005/12/07 20:54
305.254 325.88 24.773 2005/12/07 21:24
325.423 346.552 23.6541 2005/12/07 21:54

342.7 364.244 22.7063 2005/12/07 22:24
304.071 315.988 24.5036 2005/12/07 22:54
332.662 346.861 23.1799 2005/12/07 23:24
358.083 374.404 21.8901 2005/12/07 23:54
357.809 365.198 21.908 2005/12/08 00:24
376.919 388.738 20.9126 2005/12/08 00:54
393.437 407.454 20.021 2005/12/08 01:24
374.171 390.455 20.7275 2005/12/08 01:54
374.171 390.455 20.7275 2005/12/08 02:24
374.171 390.455 20.7275 2005/12/08 02:54
374.171 390.455 20.7275 2005/12/08 03:24
374.171 390.455 20.7275 2005/12/08 03:54
374.171 390.455 20.7275 2005/12/08 04:24
374.171 390.455 20.7275 2005/12/08 04:54
374.171 390.455 20.7275 2005/12/08 05:24
374.171 390.455 20.7275 2005/12/08 05:54
374.171 390.455 20.7275 2005/12/08 06:24
374.171 390.455 20.7275 2005/12/08 06:54
374.171 390.455 20.7275 2005/12/08 07:24
374.171 390.455 20.7275 2005/12/08 07:54
374.171 390.455 20.7275 2005/12/08 08:24
374.171 390.455 20.7275 2005/12/08 08:54
374.171 390.455 20.7275 2005/12/08 09:24
374.171 390.455 20.7275 2005/12/08 09:54
374.171 390.455 20.7275 2005/12/08 10:24
374.171 390.455 20.7275 2005/12/08 10:54

Chapter 8 Results and Conclusion

Electrical, Electronic and Computer Engineering 103

In order to allow the M-Bus Protocol Driver to run at the optimal execution speed, the first

3 readings are requested within minutes of each other in order to initialize the

communication network and allocate all the required resources within the .NET

Framework.

Figure 8.2. Graph displaying the combined measured values of the left and right
 longitudinal forces, measured from 07/12/05 – 09/12/05.

Values requested in such a short space of time also serve as control values to verify that the

meter setup is correct and that valid values are received. It can clearly be seen that there is

a small change in the temperature and both the longitudinal forces measured during the

first two readings, which are taken one minute apart. This is as expected, because the

Longitudinal Forces vs Time

Time of Measurement

Wed 07 Thu 08 Fri 09 Sat 10

Lo
ng

itu
di

na
l F

or
ce

 (k
N

)

-300

-200

-100

0

100

200

300

400

500

Time Of Measurement vs Left Longitudinal Force
Time Of Measurement vs Right Longitudinal Force

Chapter 8 Results and Conclusion

Electrical, Electronic and Computer Engineering 104

temperature and thus the longitudinal forces should vary only slightly after a minute has

passed. The metering equipment is thus functioning correctly and all the driver modules

initiated and functioning as intended. After this initial setup control steps have successfully

been completed the Application Server can continue with requesting measurements every

30 minutes.

Table 8.2. The next 13 measurement values received by the Application Server after
 requesting the values from the remote meter over a 9 hour period.

Frequent fluctuations in the underlying network caused errors during the communication

process of the request/response transaction. The error handling for such sudden drops in

the communication line was not sufficiently implemented in the experimental M-Bus

Protocol Driver. Hence the software was updated and upgraded throughout the network.

The intervals between meter reading requests drift in the time requested field given in table

8.2. This is due to the upgrading of the M-Bus Protocol Driver taking place during the

measurement period shown in this table. There is also a 150 minute period without

readings, this is due to the reconfiguration and setup of the system after the M-Bus Driver

was upgraded. The M-Bus Protocol Driver had to be upgraded at the Application Server,

Access Point and the Node.

The graph displaying the resultant data is shown in figure 8.2. The fluctuation in force can

clearly be seen over the measurement period. The metering equipment appear to have

malfunctioned during the period 2005/12/08 01:54 to 2005/12/08 10:54. All the values

Left Longitudinal Force Right Longitudinal Force Temperature Time Requested
-146.459 -142.008 30.9078 2005/12/08 11:25
-184.124 -177.225 33.1174 2005/12/08 11:56
-146.171 -146.905 32.0739 2005/12/08 12:26
-66.7688 -65.8767 28.4759 2005/12/08 12:56
-26.7663 -21.8699 26.3369 2005/12/08 13:26
22.4886 27.9764 23.9095 2005/12/08 13:56
105.823 104.082 19.9678 2005/12/08 16:30
151.78 152.688 17.7461 2005/12/08 17:00

175.001 177.837 16.4192 2005/12/08 17:30
189.893 194.123 15.5896 2005/12/08 18:00
198.516 199.552 15.1367 2005/12/08 18:30
208.339 209.53 14.6054 2005/12/08 19:00
210.243 215.446 14.394 2005/12/08 19:30

Chapter 8 Results and Conclusion

Electrical, Electronic and Computer Engineering 105

returned during this period are exactly the same. The temperature will vary as the time

progresses and thus so should the measured longitudinal forces. The backup values stored

at the Node confirm that the values received at the Application Server are the same as the

values measured by the metering equipment, thus the values returned by the metering

equipment were faulty. This could be due to many factors. A likely cause is condensation

on the meter probes, causing a possible short.

Temperature vs Time

Time of Measurement

Wed 07 Thu 08 Fri 09 Sat 10

Te
m

pe
ra

tu
re

 (º
C

)

10

15

20

25

30

35

40

Figure 8.3. Graph displaying the measured temperature values for the period

 07/12/05 – 09/12/05.

If the convention used to measure the longitudinal forces is inverted, such that an increase

in temperature causes an increase in force, the relation between the temperature and the

forces measured can be compared. The graph displaying the measured forces by using the

inverse convention is given in figure 8.4. If the measured temperature given in figure 8.3 is

compared to the measured longitudinal forces given in figure 8.4 the correlation between

the temperature and forces are clearly shown. There is a perfect correlation between the

Chapter 8 Results and Conclusion

Electrical, Electronic and Computer Engineering 106

increase/decrease in temperature and the increase/decrease of the longitudinal forces

exerted by the railway tracks.

Longitudinal Forces vs Time

Time of Measurement

Wed 07 Thu 08 Fri 09 Sat 10

Lo
ng

itu
di

na
l F

or
ce

 (k
N

)

-500

-400

-300

-200

-100

0

100

200

300

Time Of Measurement vs Inverse Left Longitudinal Force
Time Of Measurement vs Inverse Right Longitudinal Force

Figure 8.4. Graph displaying the combined measured values of the left and right

 longitudinal forces, measured from 07/12/05 – 09/12/05.

The remaining measurement values retrieved are given in table 8.3.

Chapter 8 Results and Conclusion

Electrical, Electronic and Computer Engineering 107

Table 8.3. The next set of measurement values received by the Application Server
 after requesting the values from the remote meter over a 19 hour period.

Due to power outages the meter reading process was interrupted. The power outages

continued for the duration of the experiment. The final set of readings was obtained by

Left Longitudinal Force Right Longitudinal Force Temperature Time Requested
210.678 214.267 14.3012 2005/12/08 20:00
183.202 184.712 15.5378 2005/12/08 20:30
147.568 143.489 17.3592 2005/12/08 21:00
171.324 170.613 16.26 2005/12/08 21:30
192.186 193.18 15.2232 2005/12/08 22:00
199.018 202.76 14.7693 2005/12/08 22:30
171.04 172.584 15.9393 2005/12/08 23:00

175.281 175.194 15.7943 2005/12/08 23:30
141.54 141.219 17.438 2005/12/09 00:00

125.332 120.087 18.4258 2005/12/09 00:30
162.627 160.827 16.6181 2005/12/09 01:00
186.074 187.332 15.4219 2005/12/09 01:30
217.614 213.235 14.6338 2005/12/09 02:00
185.494 186.116 15.3408 2005/12/09 02:30
203.273 206.387 14.4287 2005/12/09 03:00
214.348 218.878 13.8511 2005/12/09 03:30
221.458 226.611 13.4696 2005/12/09 04:00
204.341 205.666 14.2519 2005/12/09 04:30
214.262 220.122 13.8281 2005/12/09 05:00
217.152 222.979 13.6433 2005/12/09 05:30
199.27 203.243 14.505 2005/12/09 06:00

201.991 208.659 14.2332 2005/12/09 06:30
153.002 153.069 16.4332 2005/12/09 07:00
164.072 166.92 15.8858 2005/12/09 07:30
149.251 153.81 16.5002 2005/12/09 08:00
108.782 114.049 18.1453 2005/12/09 08:30
56.0104 61.4791 20.4826 2005/12/09 09:00
18.9685 25.3996 22.2145 2005/12/09 09:30

-73.5914 -66.3771 26.1543 2005/12/09 10:00
-144.296 -137.448 29.8491 2005/12/09 10:30
-104.049 -104.266 29.0679 2005/12/09 11:00
-45.6182 -44.4528 26.7639 2005/12/09 11:30

-8.60E-01 8.46E-01 24.7338 2005/12/09 12:00
-14.8363 -11.4137 25.1948 2005/12/09 12:30
15.9441 20.5975 23.7031 2005/12/09 13:00
11.0812 13.3416 24.0015 2005/12/09 13:30
61.9283 66.5577 21.6229 2005/12/09 14:00

Chapter 8 Results and Conclusion

Electrical, Electronic and Computer Engineering 108

utilizing an uninterrupted power supply. The values obtained during this final session are

contained in table 8.4 after restarting the metering process.

Table 8.4. The final set of measurement values received by the Application Server
 after requesting the values from the remote meter over a 13 hour period.

During the measurement period the underlying network was stable and met the required

QoS requirements imposed by the M-Bus protocol. Every first-time request sent by the

Application Server was successfully responded to by the metering equipment. The first

measurement value was received during the initial setup stages to test if the

communication process is successful. The first two readings retrieved are requested only

two minutes apart as part of the initial setup process. This initial setup process also allows

the .Net Framework to allocate the required resources (memory). The time consuming

process of allocating resources only occurs the first time the software is executed. After the

initial invocation the system will execute at optimal speed.

Left Longitudinal Force Right Longitudinal Force Temperature Time Requested
-246.888 -236.745 36.6868 2005/12/13 17:40
-232.541 -222.782 36.2536 2005/12/13 17:40
-427.203 -427.323 47.3743 2005/12/14 14:22
-428.966 -429.171 47.4387 2005/12/14 14:22
-408.262 -407.125 46.3611 2005/12/14 14:53
-415.458 -414.207 46.3437 2005/12/14 15:23
-388.564 -397.65 45.1444 2005/12/14 15:53
-379.54 -379.9 44.0128 2005/12/14 16:23

-372.475 -382.582 43.61 2005/12/14 16:53
-324.627 -324.329 41.3645 2005/12/14 17:23
-275.499 -270.713 39.1512 2005/12/14 17:53
-209.148 -203.881 36.3723 2005/12/14 18:23
-147.26 -143.843 33.7905 2005/12/14 18:53
-88.685 -84.5479 31.0567 2005/12/14 19:23

-76.6351 -74.4994 30.3398 2005/12/14 19:53
-38.9762 -35.397 28.4618 2005/12/14 20:23
-11.7798 -7.20312 27.0122 2005/12/14 20:53
7.43651 12.715 26.0068 2005/12/14 21:23
21.6381 27.2523 25.2088 2005/12/14 21:53
29.5255 35.4913 24.7285 2005/12/14 22:23
30.7563 36.524 24.6007 2005/12/14 22:53
38.5829 44.9084 24.1249 2005/12/14 23:23
41.4331 47.8881 23.9215 2005/12/14 23:53
48.2366 54.9218 23.6018 2005/12/15 00:23
31.0888 31.2183 24.477 2005/12/15 00:53
95.188 95.9729 21.3279 2005/12/15 01:23

105.022 107.825 20.6317 2005/12/15 01:53

Chapter 8 Results and Conclusion

Electrical, Electronic and Computer Engineering 109

Figure 8.5. Graph displaying the combined measured values of the left and right
 longitudinal forces.

The negative valued forces measured in each track is due to the convention used, the forces

exerted in each track segment changes as a result of the temperature changes.

Figure 8.5 shows a chart depicting the resultant longitudinal forces measured for the left

and right rail segments. The measured temperatures are given in figure 8.6.

Longitudinal Forces vs Time

Time of Measurement

05
/1

2/
14

 1
4:

00
:0

0

05
/1

2/
14

 1
8:

00
:0

0

05
/1

2/
14

 2
2:

00
:0

0

05
/1

2/
15

 0
2:

00
:0

0

Lo
ng

itu
di

na
l F

or
ce

 (k
N

)

-500

-400

-300

-200

-100

0

100

200

Time of Measurement vs Left Longitudinal Force
Time of Measurement vs Right Longitudinal Force

Chapter 8 Results and Conclusion

Electrical, Electronic and Computer Engineering 110

Figure 8.6. Graph displaying the temperature measured over a 24 hour period.

8.3 M-BUS REQUEST/RESPONSE TRANSACTION SUCCESS RATE

Due to instability in the underlying network, the M-Bus request/response transaction is not

always successful. A failure happens when the Application Server has requested the

measurement value 3 times with all the necessary timeouts as described in section 1.4.19

and still do not obtain the requested value. If an M-Bus request/response transaction

failure occurs the Application Server will have to re-request the measurement values at a

later time. Due to the fact that the Application Server requests measurements in a serial

manner: one M-Bus meter after the other, a request/response failure has a negative impact

on the entire communication process as it leaves fewer open slots for the Application

Temperature vs Time

Time of Measurement

20
05

/1
2/

14

20
05

/1
2/

14

20
05

/1
2/

14

20
05

/1
2/

15

Te
m

pe
ra

tu
re

 (º
C

)

15

20

25

30

35

40

45

50

Chapter 8 Results and Conclusion

Electrical, Electronic and Computer Engineering 111

Server to send requests to other M-Bus meters. It is however important to state that the

success rate of request/response transactions are entirely dependent on the quality of

service provided by the underlying network. An unstable low bandwidth network will

result in more request/response failures, which in tern will put a greater burden on the

entire system to obtain all the measured values. As the quality of service from the

underlying network increases, so will the success rate of M-Bus meter request/response

transactions. The number of requests made by the Application Server to obtain each value

during the experimental setup is given in figure 8.7.

Figure 8.7. Graph displaying the number of Application Server requests required to
 obtain each measurement value.

The M-Bus protocol is limited in that it does not provide for a keep-alive signalling

mechanism, thus a request/response transaction is limited by the available timeout window

Number of Requests per Value Received

Measurement Value

0 10 20 30 40 50 60 70 80 90 100 110 120

N
um

be
r o

f R
eq

ue
st

s

0

1

2

3

4

5

Number of Requests

Chapter 8 Results and Conclusion

Electrical, Electronic and Computer Engineering 112

provided by the layer 2 M-Bus protocol to obtain the data from the meter. It is important to

assess the trade off between the quality of service provided by the underlying network and

the number of meters connected to the network, before implementing the M-Bus protocol

over a remote network infrastructure. If the quality of service is not good enough the

negative impact of the re-requests will reach a point where it is impossible to obtain all the

values required by the Application Server from all the meters connected to the network.

Figure 8.6 show that 113 measurements were received of which 8 values required 2

requests from the Application Server and 4 values required 3 requests from the Application

Server and 1 value required 4 requests from the Application Server. Most of the

request/response failures occurred during the period when the 4th and 22nd values where

requested. This indicates that the underlying network was very unstable during this period.

On average the Application Server required 1.168 requests per measurement received. The

underlying network used during the experimental gathering of measured values thus

resulted in a success rate of 88.5% of requests being received during the first Application

Server request, 7.07% of requests being received during the second Application Server

request, 3.54% of requests being received during the third Application Server request and

0.88% of requests being received during the forth Application Server request.

8.3.1 Network Quality of Service versus Number of Requests per M-Bus Meter

Trade-Off

When implementing the remote metering communication network as proposed in this

document a trade-off exists between the network QoS and the number of remote meters

that can be connected to a single Application Server. The QoS of the underlying network

thus have an impact on the scalability of the remote metering infrastructure, and also plays

an important role in the reliability of measurements received. Therefore it is important to

be able to determine the trade-off impact that the network QoS has on the remote metering

infrastructure. The relationship between the number of meters connected to a single

Application Server and the QoS provided by the underlying network is given in equation

8.1

 (8.1)

mreqavg

Avail
m NrRTT

T
N

/

.

×
=

Chapter 8 Results and Conclusion

Electrical, Electronic and Computer Engineering 113

where Nm is the total number of meters that can be connected to an Application Sever,

TAvail is the available time in seconds to obtain all the required measurements, RTTavg is the

average Round Trip Time (RTT) in seconds and Nrreq/m is the average number of request

made per meter during the available time period. Thus if a typical usage scenario for the

Application Server is to poll each meter once a day (24 hours) for a single value and the

average number of requests per meter is 1.16 as obtained in the experiment given in section

8.3 with an average RTT of 1.5 and the these values are substituted into equation 8.1, a

total of 49655 M-Bus meters is obtained. If each Node contains 250 M-Bus meters this

would result in 199 Nodes connected to a single Application Sever. It is clear out of

equation 8.1, that an increase in the RTT or the average number of requests per meter

would result in a decrease of the total number of M-Bus meters that can be connected to

the Application Server. If the underlying network in the remote communication

infrastructure is inaccessible for extended periods of time, the required measurements

might be lost, as the Application Server may no longer be able to request values from all

the meters connected to it, thus it is also important to take this into account when

determining the number of M-Bus meters that can be accessed by one Application Server.

8.4 M-BUS PROTOCOL DRIVER EXECUTION TIME

The execution time taken by the M-Bus Protocol Driver has an impact on the tunnelling

architecture as it creates overhead on the communication network and uses up some of the

limited time allowed for a request/response transaction by executing software procedures,

which cannot be eliminated as part of the communication mechanism, [33]. Measuring the

impact of the executing procedures contained within the M-Bus Protocol is thus important

in assessing the impact of the execution time on the available timeout window allowed for

the request/response transaction.

8.4.1 Experimental Setup

The experimental M-Bus Protocol Driver execution times were performed on an AMD

Sempron 2800+ PC, running at 2.00GHz with 512MB RAM running Windows XP with

Service Pack 2. Execution times will vary based on the implementation platform and the

quality of the compiler, but these results serve as an indicator of the impact that the M-Bus

Protocol Driver execution time will have relative to the M-Bus request/response timeout

window and should give an accurate enough indication to this affect.

Chapter 8 Results and Conclusion

Electrical, Electronic and Computer Engineering 114

To determine the total execution time required by the M-Bus Protocol Driver, the

individual execution times of the Application Server-Side Driver, Access Point-Side

Driver and the Node-Side Driver were measured and added together. Each individual

component was executed 25 times in obtaining execution times with a high level of

confidence. Each component’s average execution time was added to determine the total

execution time.

Figure 8.4. Graph displaying the total execution time measured over 25 experiments.

The graph shown in figure 8.4 shows the total M-Bus Protocol Driver execution times

measured. The measured values are given in table 8.2. It is interesting to notice the very

first measurement is 0.227 seconds, which is nearly 14 times greater than any of the other

measured values. This can be expected as the .NET framework’s runtime environment is

responsible for allocating memory to all the objects contained in the M-Bus Protocol

Driver. The allocation of resources takes place the very first time the software is executed

and the objects are created. The first reading will be ignored in determining the average

M-Bus Protocol Driver Execution Time

Executions

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Ti
m

e
(s

ec
on

ds
)

0.00

0.05

0.10

0.15

0.20

0.25

Total Execution Time

Chapter 8 Results and Conclusion

Electrical, Electronic and Computer Engineering 115

execution time and the variance as this is special case which only occurs the first time the

program is executed. The average times calculated for the Application Server-Side Driver,

Access Point-Side Driver and Node-Side Driver respectively are: 0.0055, 0.0080, 0.0033

seconds. The total time calculated by adding these values is thus 0.016933 seconds. The

standard deviation is less than 0.04% which indicates a very high level of confidence. The

measured total execution time of 0.016933 seconds is only 0.5% of the total M-Bus

request/response timeout window of 3.45 seconds. The impact that the execution time of

the M-Bus Protocol Driver will thus have on the timeout window is very small and will on

average reduce the total timeout window to 3.433 seconds, which is an acceptably low

impact.

Table 8.2. Execution times for each software component contained in the M-Bus
 Protocol Driver. All values are measured in seconds.

Application Server Exec. Time Access Point Exec. Time Node-Side Exec Time
0.019204117 0.112420992 0.095576952
0.005531709 0.008152433 0.003302375
0.005482261 0.007926426 0.00308
0.005411023 0.008192661 0.005984559
0.005606858 0.008000179 0.003038934
0.005591772 0.007986769 0.003238959
0.005489245 0.007864687 0.003018261
0.005503772 0.007905195 0.002948419
0.005587302 0.007976153 0.002923277
0.006501385 0.008934376 0.003063238
0.005528077 0.007917207 0.002927746
0.00556188 0.008520915 0.003527823

0.005479188 0.007869995 0.003802439
0.005479188 0.007865245 0.00291741
0.005544001 0.008286249 0.003397639
0.005532826 0.007919163 0.00383708
0.005467455 0.008111087 0.003174705
0.005479467 0.008170312 0.003331429
0.005475556 0.008225906 0.003292877
0.005488686 0.007886198 0.002945067
0.005409905 0.008225906 0.003488432
0.005403759 0.007788699 0.002931937
0.005439518 0.007832001 0.002935848
0.005439518 0.007829207 0.003007924
0.00546969 0.00845303 0.003534248

Chapter 8 Results and Conclusion

Electrical, Electronic and Computer Engineering 116

8.5 CONCLUSION

The results obtained show that the tunnelling approach used to implement the remote

infrastructure for acquiring measurement values from M-Bus meters is a viable and

scalable system. The results show that the proposed remote communications infrastructure

suggested, allows for diversity by supporting any one of a multitude of communication

mediums, including GPRS and PLC. Due to the lack of a keep-alive mechanism within the

M-Bus protocol the success of request/response transactions are dependent on the RTT of

the underlying network. The QoS provided by the underlying network thus has a big

influence in the success of the implemented system. Therefore it is essential that the

underlying network conform to the QoS requirement of the implemented remote metering

system.

The overhead added to the communication process due to the execution times required by

the distributed M-Bus driver is marginal and for practical purposes can be ignored. Thus

the distributed driver system is a viable way to implement the addressing requirements and

the protocol diversity requirements of the REMPLI system and the protocol tunnelling

approach. Further more the triplet of drivers provide a transparent manner of

communicating between application servers and metering equipment.

The results also show that this protocol tunnelling approach taken for the acquisition of M-

Bus meter values is clearly not suited to mission critical systems or real-time based system.

The M-Bus protocol is more suited to situations where the need arises to obtain relatively

small amounts of data from a limited number of meters over the remote network. The risks

involved in using the M-Bus protocol for obtaining measurement values are as follows:

• Failure of underlying network causes failure of entire measurement system.

• No guarantee of obtaining the values from the remote meters.

• Success is heavily reliant on the QoS provided by the underlying network.

These risks have to be taken into consideration when setting up an M-Bus based protocol

tunnelling remote metering system. Systems ideally suited to this type of implementation

include:

Chapter 8 Results and Conclusion

Electrical, Electronic and Computer Engineering 117

• Readings by utility companies, which monitor the average usage of the

resources/services that they provide.

• Reading requirements where a small amount of data is required from all or several

meters once a day/week/month, where the resultant measurements are not mission

critical.

The results show that the distributed driver architecture implemented in this document

allows application servers to transparently retrieve values from meters which are remotely

located over TCP/IP and GPRS based networks.

8.6 FURTHER WORK

Further research to be done include the following:

• In a full scale fieldbus implementation multiple concurrent metering protocols will

be operating at the same time. The influence of increasing metering protocols and

the influence it will have on the available bandwidth of the underlying network

needs to be investigated to determine the overall QoS requirements for a full scale

fieldbus system.

• The influence of the QoS and the variance thereof provided by the underlying

network must be investigated and related to the number of nodes and meters

connected to the fieldbus system, in order to ensure that the required levels of

reliability and data integrity are maintained for the fieldbus system

• The need arises to determine the optimal number of remote meters per metering

protocol and the optimal number of nodes that the fieldbus system can support.

This research suggest an equation to roughly determine the maximum number of

meters that can be used based on the number of readings required per meter per

time unit, but more work needs to be done to take the number of concurrent

protocols and other factors into account to more precisely determine the limitations

of the fieldbus system.

• An entire address translation algorithm or scheme can be developed according to

specific user needs. The two main approaches are mentioned in this research, but it

can be further optimized and compared to each other.

Chapter 8 Results and Conclusion

Electrical, Electronic and Computer Engineering 118

• The optimization scheme suggested in this research can also be further developed

according to the number of protocols running concurrently and to optimally utilize

the underlying network and communication system in order to improve the

performance of the entire communication structure provided by the distributed

driver architecture.

• Currently the M-Bus protocol is implemented with the connection-orientated nature

of the M-Bus meters in mind. Perhaps the M-Bus user group could consider a keep-

alive scheme for the M-Bus protocol as supported in some of the other metering

protocols.

References

[1] A. Bratukhin, G. Pratl, M. Lobashov, P. Maas, “Data transparency in PLC-based

SCADA and metering protocols”, 2005 International Symposium on Power Line

Communications and Its Applications, pp. 76 – 79, 6-8 April 2005.

[2] M. Lobashov, G. Pratl, T. Sauter, “Applicability of Internet protocols for fieldbus

access”, 4th IEEE International Workshop on Factory Communication Systems, pp.

205 – 213, 2002.

[3] F. Miehlisch, “The M-Bus: A Documentation Rev. 4.8”, 1998, http://www.m-

bus.com/mbusdoc/default.html. Last accessed on 13 May 2006.

[4] M. Felser, T. Sauter, “The fieldbus war: history or short break between battles?”,

4th IEEE International Workshop on Factory Communication Systems, pp. 73-80,

2002.

[5] L. Ferreira, E. Tovar, “Timing analysis of a multiple logical ring wired/wireless

PROFIBUS network”, 2004 IEEE International Workshop on Factory

Communication Systems, 2004. Proceedings, pp. 81 – 90, 22-24 Sept. 2004.

[6] A. Willig, “An architecture for wireless extension of PROFIBUS”, The 29th

Annual Conference of the IEEE Industrial Electronics Society, 2003. IECON '03,

pp. 2369 - 2375 Vol.3, 2-6 Nov. 2003.

[7] A. Willig, A. Kopke, “The adaptive-intervals MAC protocol for a wireless

PROFIBUS”, Proceedings of the 2002 IEEE International Symposium on

Industrial Electronics, pp. 61 – 66, 8-11 Jul. 2002.

[8] W. Stallings, Data and Computer Communications 6th Edition, Prentice-Hall,

2000.

[9] J. P. Thomesse, “Fieldbuses and interoperability”, Control Engineering Practice,

vol. 7, 1999, pp. 81-94.

[10] Jun Xu, Yan-Jun Fang, “Profibus automation technology and its application in DP

slave development”, International Conference on Information Acquisition, pp. 155-

159, 21-25 Jun. 2004.

[11] L. Lo Bello, O. Mirabella, “A multi-ring scheduling strategy for Profibus

networks”, The 27th Annual Conference of the IEEE Industrial Electronics Society,

2001. IECON '01, pp. 2144 – 2148, vol. 3, 29 Nov.-2 Dec. 2001.

[12] REMPLI overview, http://www.rempli.org/, last accessed 13 May 2006.

[13] E. Nikoloutsos, A. Prayati, A.P. Kalogeras, V. Kapsalis, S. Koubias, G.

Papadopoulos, “Integrating IP traffic into fieldbus networks”, Proceedings of the

2002 IEEE International Symposium on Industrial Electronics, pp. 67-72, 8-11 Jul.

2002.

[14] M. Knizak, M. Kunes, M. Manninger, T. Sauter, “Applying Internet management

standards to fieldbus systems”, IEEE International Workshop on Factory

Communication Systems, pp. 309 – 315, 1-3 Oct. 1997.

[15] M Kunes, T. Sauter, “Fieldbus-internet connectivity: the SNMP approach”, IEEE

Transactions on Industrial Electronics, volume 48, pp. 1248 – 1256, Dec. 2001.

[16] P. Neumann, C. Diedrich, R. Simon, “Necessary extensions of fieldbus systems for

distributed processing”, 1995 IEEE International Workshop on Factory

Communication Systems, 1995. WFCS '95, Proceedings, pp. 247 – 254, 4-6 Oct.

1995.

[17] S. Deter, “Fieldbus device description using tag-based trees”, 6th Africon

Conference in Africa, IEEE AFRICON, volume 1, pp. 263 – 268, 2–4 Oct. 2002.

[18] A.F.J. von Gordon, G.P. Hancke, “Protocol conversion for real-time energy

management systems”, 2004 IEEE International Workshop on Factory

Communication Systems, 2004 Proceedings, pp. 319 – 322, 22-24 Sept. 2004.

[19] H.C. Ferreira, H.M. Grove, O. Hooijen, A.J. Han Vinck, “Power line

communications: an overview”, 4th AFRICON, 1996, volume 2, pp. 558 – 563, 24–

27 Sept. 1996.

[20] D. Cooper, “Low-data-rate narrow-band power-line communications on the

European Domestic Mains: symbol timing estimation”, IEEE Transactions on

Power Delivery, pp. 664 – 667 vol. 20 issue 2 part 1, April 2005.

[21] M. Crussiere, J.-Y. Baudais, J.-F. Helard, “Robust and high-bit rate

communications over PLC channels: a bit-loading multi-carrier spread-spectrum

solution”, 2005 International Symposium on Power Line Communications and Its

Applications, pp. 37 – 41, 6–8 April 2005.

[22] Chan Tat-Wai, Lim Tian-Yew, “Application of A-Band LV power line standards

for remote metering at populous residential buildings”, Asia Pacific. IEEE/PES

Transmission and Distribution Conference and Exhibition 2002, volume 2, pp.

969-974, 6-10 Oct. 2002.

[23] M. Wada, O. Nakamura, K. Akiyama, “Development of remote meter reading

system for distribution automation”, Seventh International Conference on Metering

Apparatus and Tariffs for Electricity Supply, pp. 212 - 216, 17-19 Nov. 1992.

[24] J. Newbury, W. Miller, “Multiprotocol routing for automatic remote meter reading

using power line carrier systems”, IEEE Transactions on Power Delivery, Volume

16, Issue 1, pp. 1 – 5, Jan. 2001.

[25] P. Foord, J. Tsoucalas, “Remote meter reading, load control and distribution system

automation utilising SWD technology”, Sixth International Conference on

Metering Apparatus and Tariffs for Electricity Supply, pp. 163 – 167, 3-5 Apr.

1990.

[26] A.D. Craig, P.M. Moore, C.D. Long, “Experience with a high speed MV/LV power

line communications system for remote metering, load control and network

automation”, Eighth International Conference on Metering and Tariffs for Energy

Supply, pp. 165 – 169, 3-5 July 1996.

[27] I. Erakovic, D. Rakic, V. Lapcevic, S. Marjanovic, M. Djonovic, “A system for

remote meter reading and load management”, Ninth International Conference on

Metering and Tariffs for Energy Supply, pp. 196 – 199, 25-28 May 1999.

[28] S.Y. Kwankam, N.N. Ningo, J. Bilikha, F. Nematchoua, J.M. Ngundam,

“Application of a new digital power line communication technology to remote

reading of standard electric utility meters”, Proceedings of the 35th Midwest

Symposium on Circuits and Systems, Volume 2, pp. 1534 – 1537, 9-12 Aug. 1992.

[29] J. Newbury, W. Miller, “Potential communication services using power line

carriers and broadband integrated services digital network”, IEEE Transactions on

Power Delivery, Volume 14, Issue 4, pp. 1197 – 1201, Oct. 1999.

[30] G. Bumiller, T. Sauter, G. Pratl, A. Treytl, “Secure and reliable wide-area power-

line communication for soft-real-time applications within REMPLI”, 2005

International Symposium on Power Line Communications and Its Applications, pp.

57 – 60, 6–8 April 2005.

[31] F. Pacheco, M. Lobashov, M. Pinho, G. Pratl, “A power line communication stack

for metering, SCADA and large-scale domotic applications”, 2005 International

Symposium on Power Line Communications and Its Applications, pp. 61 – 65, 6-8

April 2005.

[32] P.B. Kruchten, “The 4+1 View Model of architecture”, IEEE Software, Volume 12,

Issue 6, pp. 42 – 50, Nov. 1995.

[33] A. Mendes, L. Ferreira, E. Tovar, “Fieldbus networks: real-time from the

perspective of the application tasks”, IEEE International Workshop on Factory

Communication Systems, pp. 275 – 282, 6-8 Sept. 2000.

ADDENDUM A

M-BUS PROTOCOL STACK

The following section gives a full overview of the Data link layer M-Bus protocol stack as

described in the M-Bus standard (EN 13757-2), [18] and demonstrates the limited

capability of the protocol, because it is originally designed to operate on a serial bus LAN

network, as outlined in [3].

Data link layer

This protocol uses asynchronous serial bit transmission, in which the synchronisation is

implemented with start and stop bits for each character. This mode of transmission is used

because the M-bus protocol makes provision for a party line network configuration also

know as a bus topology. There must be no pauses within a telegram, not even after a stop

bit. The start bit must be a Space (logical 0) and the stop bit must be Mark (logical 1).

Between the start and stop bits, eight data bits and the even parity bit are transmitted,

ensuring that at least every eleventh bit is a Mark. The data bits are transmitted in

ascending order, i.e. the bit with the lowest value LSB (least significant bit) is the first bit

to be found on the transmission line. Transmission takes place in half-duplex at a data rate

of at least 300 Baud. Figure A.1 shows how the transmission of a byte in calling and

replying direction is represented. In figure A.2 a comprehensive view is given of the

general structure of both a character and a frame within the M-Bus protocol. This figure

also shows the start, stop and parity bits, with the parity bit set to “1” if there is an odd

number of “1”s within the 8 data bits.

Transmission Rules

The transmission rules are summarised in table A.1. The frame is rejected if one of these

checks fails, otherwise it can be released to the user.

Addendum A M-Bus Protocol Stack

Electrical, Electronic and Computer Engineering 123

1 1 0 0 0 1 0 0 0 0 0

8 Data bits Parity
Bit

Stop
Bit

Start
Bit

27 212223242526 20

Byte 1

Bit sequence on line

Start Character

 Byte n-1

1 1 0 0 0 1 0 0 1 1 0 Byte n

Checksum

End Character

Range over
which the
checksum (data
bits only) and
length of frame
is calculated.

Start 1 2 3 4 5 6 7 8 Stop

Start 1 2 3 4 5 6 7 8 Stop

 - 12 V

Imark

Imark
+ (11-20)mA

t

t

Vmark

Vmark

Calling Direction (Master to Slave)

Parity

Parity

Replying Direction (Slave to Master)

Figure A.1 Transmission of a character in calling and replying direction.

Figure A.2 Structure of an M-Bus frame.

Addendum A M-Bus Protocol Stack

Electrical, Electronic and Computer Engineering 124

Transmission Rules
1 Line idle is binary 1.
2 Each character has one start bit (binary = 0) 8 information bits, one even parity bit

and one stop bit (binary = 1).
3 No line idle intervals are admitted between characters of a frame.
4 Upon detecting an error according to rule 6, a minimum interval of 33 bits (3

characters) is required between frames.
5 The sequence of user data characters is terminated by an 8 bits checksum (CS). The

checksum is the arithmetic sum over all user data octets.
6 The receiver checks:
6.1 the start bit, the stop bit and the even parity bit per character.
6.2

the start character, the length (2 bytes in frames with variable lengths), the frame
check sum and the end character per frame and, upon detecting an error, the line idle
interval specified by rule 4

Frame/Telegram formats supported within the M-Bus Protocol

The frame/telegram format is shown in figure A.3 given below. A subsequent description

is given for each frame format.

Single Character Short Frame Control Frame Long Frame

E5h Start 10h Start 68h Start 68h

 C Field L Field = 3 L Field

 A Field L Field = 3 L Field

 Check Sum Start 68h Start 68h

 Stop 16h C Field C Field

 A Field A Field

 CI Field CI Field

 Check Sum User Data

 Stop 16h (0-252 Byte)

 Check Sum

 Stop 16h

Table A.1 Table with transmission rules for the M-Bus protocol.

Figure A.3 Telegram formats used in the M-Bus protocol.

L Length field range between 0-255 and
 specify the number of subsequent
 user data octets including the control,
 address and control information fields
C Control field
A Address field (link)
CI Control Information field

Addendum A M-Bus Protocol Stack

Electrical, Electronic and Computer Engineering 125

Single Character

This format consists of a single character, namely the E5h (decimal 229), and serves to

acknowledge receipt of transmissions.

Short Frame

This format with a fixed length begins with the start character 10h, and besides the C and

A fields includes the check sum (this is made up from the two last mentioned characters),

and the stop character 16h

Long Frame

With the long frame, after the start character 68h, the length field (L field) is first

transmitted twice, followed by the start character once again. After this, the Control field

(C field), address field (A field) and control information field (CI field) follows. The L

field gives the quantity of the user data inputs plus 3 (for C,A,CI). After the user data is

inserted into the frame, the checksum is transmitted, which is built up over the same area

as the length field, and in conclusion the stop character 16h is transmitted.

Control Frame

The control frame conforms to the long frame without user data, with an L field with the

value of 3. The check sum is calculated at this point from the fields C, A and CI.

M-Bus Fields

The fields indicated within the telegrams as shown in figure 1.8 will be discussed in the

following sections. All the fields have a length of 1 Byte, corresponding to 8 bits.

C Field (Control Field, Function Field)

Besides labelling the functions and the actions caused by them, the function field specifies

the direction of data flow, and is responsible for various additional tasks in both the calling

and replying directions. Figure A.4 shows the coding of the individual bits of the C field:

Addendum A M-Bus Protocol Stack

Electrical, Electronic and Computer Engineering 126

Bit Number 7 6 5 4 3 2 1 0

Calling Direction 0 1 FCB FCV F3 F2 F1 F0

Reply Direction 0 0 ACD DFC F3 F2 F1 F0

The highest value (most significant) bit is reserved for future functions, and at present is

allocated the value 0; bit number 6 is used to specify the direction of data flow. The frame

count bit FCB indicates successful transmission procedures (i.e. those that have been

replied to or acknowledged), in order to avoid transmission loss or multiplication. If the

expected reply is missing or reception is faulty, the master sends the same telegram again

with an identical FCB, and the slave replies with the same telegram as previously. The

master indicates with a 1 in the FCV bit (frame count bit valid), that the FCB is used.

When the FCV contains a "0", the slave should ignore the FCB. A summary of each bit and

its function is given in table A.2.

In the replying direction, both these bits can undertake other tasks. The DFC (data flow

control) serves to control the flow of data, in that the slave with a DFC=1 indicates that it

can accept no further data. With an ACD bit (access demand) with a value of 1, the slave

shows that it wants to transmit Class 1 data. The master should then send it a command to

request Class 1 data. Such Class 1 data is of higher priority, which (in contrast to Class 2

data) should be transmitted as soon as possible. The support of Class 1 data and the bits

DFC and ADC is not required by the standard.

The bits 0 to 3 of the control field code the true function or action of the message. Table

A.3 shows the function codes used in the calling and the replying directions. The functions

shown in this table will be explained in more detail in the next section. All additional

function codes defined in IEC 870-5-2 can also be used.

Figure A.4 Coding of the control field.

Addendum A M-Bus Protocol Stack

Electrical, Electronic and Computer Engineering 127

Bit 7 Reserved
Bit 6 Primary message

0 = message from secondary (responding) station.
1 = message from primary (initiating) station.

FCB Frame count bit: 0 - 1 = alternating bit for successive SEND/CONFIRM or
REQUEST/RESPOND services per station.
The frame count bit is used to delete losses and duplications of information
transfers. The primary station alternate the FCB bit for each new
SEND/CONFIRM or
REQUEST/RESPOND transmission service directed to the same secondary
station.
Thus the primary station keeps a copy of the frame count bit per secondary
station.
If an expected reply is timed out (missing) or corrupted, then the same
SEND/CONFIRM and REQUEST/RESPOND service is repeated with the same
frame count bit.
In case of reset commands the FCB bit is always zero, and upon receipt of these
commands the secondary station will always be set to expect the next frame
primary to secondary with FCV = valid (FCV = 1) to have the opposite setting of
FCB, i.e. FCB equal to one

FCV Frame count bit valid.
0 = alternating function and FCB bit is invalid
1 = alternating function of FCB bit is valid
SEND/NO REPLY services, broadcast messages and other transmission services
that ignore the deletion of duplication or loss of information output do not
alternate the FCB bit and indicates this by a cleared FCV bit

DFC Data flow control
0 = further messages are acceptable
1 = further messages may cause data overflow
Secondary (responding) stations indicate to the message initiating (primary)
station that an immediate secession of further message may cause a buffer
overflow.

ACD Access demand.
There are two classes of message data provided, namely class 1 and 2.
0 = no access demand for class 1 data transmission
1 = access demand for class 1 data transmission
Class 1 data transmission is typically used for events or for messages with high
priority.
Class 2 data transmission is typically used for cyclic transmission or for low
priority messages.

Bit 3-0 Functions described in table 3

Table A.2 Functions of all the bits contained in the M-Bus control field.

Addendum A M-Bus Protocol Stack

Electrical, Electronic and Computer Engineering 128

Name C Field
Binary

C Field
Hex.

Telegram Description

SND_NKE 0100 0000 40 Short Frame Initialization of Slave

SND_UD 01F1 0011
F = 1 / 0

53/73 Long/Control
Frame

Send User Data to Slave

REQ_UD2 01F1 1011
F = 1 / 0

5B/7B Short Frame Request for Class 2 Data

REQ_UD1 01F1 1010
F = 1 / 0

5A/7A Short Frame Request for Class1 Data
(Alarm Protocol)

RSP_UD 00AD 1000
A,D = 1 / 0

08/18/28/38 Long/Control
Frame

Data Transfer from Slave
to Master after Request

A Field (Address Field)

The address field serves to address the recipient in the calling direction, and to identify the

sender of information in the receiving direction. The size of this field is one Byte, and can

therefore take values from 0 to 255. The addresses 1 to 250 can be allocated to the

individual slaves, up to a maximum of 250. Unconfigured slaves are given the address 0 at

manufacture, and as a rule are allocated one of these addresses when connected to the M-

Bus. The addresses 254 (FEh) and 255 (FFh) are used to transmit information to all

participants (Broadcast). With address 255 none of the slaves reply, and with address 254

all slaves reply with their own addresses. The latter case naturally results in collisions

when two or more slaves are connected, and should only be used for test purposes. The

address 253 (FDh) indicates that the addressing has been performed in the Network Layer

(see chapter 7) instead of Data link layer. The remaining addresses 251 and 252 have been

kept for future applications.

Table A.3 Control Codes of the M-Bus Protocol (F : FCB-Bit, A : ACD-Bit, D : DFC-
Bit)

Addendum A M-Bus Protocol Stack

Electrical, Electronic and Computer Engineering 129

CI Field (control information field)

The control information field is already a part of the Application Layer. It is included in

the telegram format, in order to distinguish between the formats of the long and the control

frames. The control information allows the implementation of a variety of actions in the

master or the slaves.

Check Sum

The Check Sum serves to recognize transmission and synchronization faults, and is

configured from specific parts of the telegram. These parts are mentioned when presenting

the individual telegram formats. The Check Sum is calculated from the arithmetical sum of

the data mentioned above, without taking carry digits into account. In other words the

checksum of the telegram 16 5B FA 16 is equal to: 16hex + 5Bhex=

6Bh+FAh=65h+16h=7Bh.

Communication procedures

The Data link layer implements two types of transmission services:

• Send/Confirm: SND/CON

• Request/Respond: REQ/RSP

It is important to note that after the reception of a valid telegram the slave device has to

wait between 11 bit periods and (330 bit periods +50ms) before answering also refer to

EN1434-3.

Send/Confirm Procedures

SND_NKE → Single control character

This procedure serves to start up after the interruption or beginning of communication. The

value of the frame count bit FCB is adjusted in master and slave, i.e. the first master

telegram with FCV=1 after SND_NKE contains a FCB=1. The slave responds to a

correctly received SND_NKE with an acknowledgment consisting of a single character

(E5h).

Addendum A M-Bus Protocol Stack

Electrical, Electronic and Computer Engineering 130

SND_UD → Single control character

With this procedure the master transfers user data to the slave. The slave can either confirm

the correct receipt of data with a single character acknowledge (E5h), or by omitting a

confirmation signal that it did not receive the telegram correctly.

Request/Respond Procedures

REQ_UD2 → RSP_UD

The master requests data from the slave according to Class 2. The slave can either transfer

its data with RSP_UD, or give no response indicating that the REQ_UD2 telegram has not

been received correctly or that the address contained in the REQ_UD2 telegram does not

match.

Minimum Communication

According to the European standard EN1434-3, as a minimum for communication the

procedures REQ_UD2 / RSP_UD and SND_NKE / $E5 are needed. All other functions are

optional.

Transmission Procedures in case of faults

A fault in a received telegram can be detected by the receiver (master or slave), by

checking the following points:

• Start /Parity /Stop bits per character.

• Start /Check Sum /Stop characters per telegram format.

• The second Start character, the parity of the two field lengths, and the number of

additional characters received (= L Field + 6) with a long or control frame.

When a fault has been detected as a result of the above checks, the transmission will not be

accepted, and the reply or acknowledgement will not be sent. After a time limit of (330 bit

Addendum A M-Bus Protocol Stack

Electrical, Electronic and Computer Engineering 131

periods + 50 ms) the master interprets the lack of a reply as a fault and repeats the same

telegram up to two times. If a valid telegram has not been received at that time a so called

"idle time" of at least 33 bit periods is introduced. When slaves send faulty or corrupt

replies, three attempts are also made, and if there is a fault during the last attempt then the

33 bit periods "idle time" is introduced. The master may try a SND_NKE. If this fails also

it will continue with the next slave address.

Multi-telegram answers (RSP_UD) from slave to master

If a total answer sequence from a slave will not fit into a single RSP_UD (respond user

data) telegram from the slave to the master, the master signals by a toggled FCB-Bit

together with a set FCV-Bit in the next REQ_UD (Request user data) telegram that its link

layer has properly received the last RSP_UD-telegram from the slave. The slave answers to

a REQ_UD-request with toggled FCB-Bit with a set FCV-bit from the master with a

RSP_UD containing the next link layer telegram section of a multi-telegram answer,

otherwise it will repeat the last telegram. Note that a slave with a single RSP_UD-telegram

may simply ignore the FCB in the REQ_UD2-telegram and send always the same (single)

telegram. Note also that a slave with exactly two (sequential) RSP_UD-answer telegrams

may simply use the FCB of the REQ_UD2 to decide which of both telegrams should be

transmitted. Thus a slave with one or two (sequential) RSP_UD answer-telegrams does not

require an internal "Last-REQ_UD2-FCB"-image bit. A slave with three or more

(sequential) RSP_UD answer telegrams requires such an internal memory bit. Note that

such an internal memory bit for the RSP_UD-direction must be independent of a possible

additional internal memory bit for the SND_UD direction (see master to slave section).

Frozen answer telegrams from slave to master

In same instances a slave will freeze the data of its last RSP_UD answer telegram into an

additional temporary storage and will repeat these previously frozen RSP_UD answers, if

the FCB has not been toggled. After the reception of a toggled FCB-Bit with a set FCV-Bit

or after the reception of a REQ_UD2 with the FCV-Bit cleared, the slave will generate a

next answer telegram reflecting the current state of all its data instead of repeating the data

values frozen at the first REQ_UD2 attempt with toggled FCB. In meter applications this

Addendum A M-Bus Protocol Stack

Electrical, Electronic and Computer Engineering 132

frozen-telegram approach will result in possibly very old meter data if the last REQ_UD2

with toggled FCB-bit occurred a long time ago. Thus for meter readout this frozen

telegram technique is not recommended.

Multi-telegram data (SND_UD) from master to slave

If the master sends a large (sequential) data block to a slave (e.g. RAM/EEPROM-

initialize, code upload) which must be divided into multiple telegrams a similar situation

like in the slave to master direction might occur. If the slave receives a telegram correctly

and answers with a positive acknowledge (usually by a $E5 single byte answer) but the

master does not receive this positive answer correctly, the master will repeat the last

telegram with the identical FCB-Bit as in the first attempt. From this the slave can

recognize that this next telegram does not contain the next data block but repeats the last

data block which has been received correctly. So the slave may either ignore this telegram

repetition completely or may accept it thus overwriting the last telegrams data with the

second identical data. In both cases an internal telegram sequence counter is not

incremented. Note that a slave who will accept only single telegram master to slave

communication may simply ignore the FCB in the SND_UD. Note also that a master

which can accept exactly two (sequential) SND_UD-telegrams may simply use the FCB of

the SND_UD to decide which of both telegrams has been sent. Thus a slave which can

accept one or two (sequential) SND_UD answer-telegrams does not require an internal

"Last-SND_UD-FCB"-image bit. A slave which can accept three or more (sequential)

SND_UD telegrams requires such an internal memory bit. Note that such an internal

memory bit for the SND_UD-direction must be independent of a possible additional

internal memory bit for the RSP_UD direction.

Incremental actions in slave initiated by master

If single telegram SND_UD will initiate some incremental action in a slave (like toggling a

relais or counting something) in contrast to sending some "absolute" data or parameters the

FCB-mechanism allows as in the multi-telegram SND_UD situation a distinction between

a repetition of the last telegram due to missed acknowledge reception and the next action.

Addendum A M-Bus Protocol Stack

Electrical, Electronic and Computer Engineering 133

In this case the action is only taken if the FCB of the current SND_UD-telegram is

different from the FCB in the previous SND_UD-telegram.

Implementation aspects for primary addressing Master

The master must always contain a "Next REQ_UD2-FCB-image bit" and also a "Next

SND_UD-FCB image bit" for each primary slave address used by its application layer.

After sending a SND_NKE-request to a slave address both these "Next FCB-image bit"

associated with this address contained in the request must be set. Thus for each primary

address the first REQ_UD2 or SND_UD telegram after a SND_NKE contains a set FCB-

Bit. Note that after a memory loss (usually due to a power failure) of these "Next FCB-

image bits" the master is required to send a SND_NKE to all affected addresses. All

subsequent RSP_UD2-telegrams must contain the "Next REQ_UD2- FCB-image bit" of

the appropriate primary address as a FCB. This "Next REQ_UD2 FCB-image bit" is

toggled after an error free link layer RSP_UD telegram has been received. All subsequent

SND_UD-telegrams must contain the "Next SND_UD- FCB-image bit of the appropriate

primary address as a FCB. If a SND_UD has been successfully transmitted to a slave

(reception of a valid acknowledge byte $E5 or a valid RSP_ACK telegram) this "Next

SND_UD-FCB-image bit" associated with this address is toggled.

Slave

If a slave wants to utilize the FCB-Bit mechanism for the REQ_UD2-type (slave to master)

transfers for more than two sequential telegrams it must provide a "Last REQ_UD2-FCB"-

memory bit. If a valid REQ_UD2 telegram with a set FCV-Bit is received its FCB-Bit is

compared to this "Last REQ_UD2-FCB-Bit". If they differ or the FCV-bit is clear, the next

actual telegram data are used for the RSP_UD answer otherwise the last (stored) telegram

is repeated.

If a slave wants to utilize the FCB-Bit mechanism for the SND_UD-type (master to slave)

transfers for more than two sequential telegrams it must provide a "Last SND_UD-FCB"-

memory bit. If a valid SND_UD telegram with a set FCV-Bit is received, its FCB-Bit is

compared to this "Last SND_UD-FCB-memory Bit". If they differ or the FCV-bit is clear,

Addendum A M-Bus Protocol Stack

Electrical, Electronic and Computer Engineering 134

the next actual telegram data are used for the RSP_UD answer otherwise the last (stored)

telegram is repeated.

Note that after a valid reception of a SND_NKE to the primary address of the device or to

the test address 254 ($FE) or the broadcast address 255 ($255) these internal "Last FCB"

memory bits must be cleared.

Implementation for multiple address slaves

A slave might be configured to respond to more than one primary address. This could be

useful for slaves which internally consist of more than one independent functional block. If

this slave wants to utilize FCB-functionalities they must implement the appropriate number

of internal memory bits (0, 1 or 2) for each of these addresses.

Implementation for the primary (broadcast) address 255

All transfers to the primary broadcast address 255 ($FF) are not answered and should

hence be implemented by the master with the FCV-Bit cleared. Note that a SND_NKE to

primary address 255 will clear the internal "Last received FCB"-Bits of all slaves with

primary addresses 0-250 and with FCB-Bit implementation simultaneously.

Implementation for the primary (test) address 254 ($FE)

A slave should answer to all requests to the primary address 254 ($FE=test address)

irrespective of its own primary address. The answer must contain its own primary address

and not the address 254 ($FE). This test address is used by readout- or test equipment in

point-to-point mode. Although this is a second primary address for each slave separate

"Last received FCB"- Bit(s) are not required for this special case, since any test equipment

or master is required to issue a SND_NKE after each reconnect or power fail thus clearing

the "Last received FCB"-Bit(s) and thus preparing for a virgin transaction irrespective of

the previous communication history.

Addendum A M-Bus Protocol Stack

Electrical, Electronic and Computer Engineering 135

Implementation for secondary addressing

The use of the FCB-Bit in secondary addressing is not relevant to the work proposed in this

document. The M-Bus Protocol Driver will only operate on the layer 2 protocol stack.

Secondary addressing is applied as part of the Application layer protocol stack and is

discussed in the application layer section of the M-Bus protocol standard.

	FRONT
	Title page
	Acknowledgements
	Key terms
	Abstract
	Sleutelterme (Afrikaans)
	Opsomming (Afrikaans)
	List of Abbreviations
	Table of Contents

	CHAPTER 1
	CHAPTER 2
	CHAPTER 3
	CHAPTER 4
	CHAPTER 5
	CHAPTER 6
	CHAPTER 7
	CHAPTER 8
	REFERENCES
	ADDENDA

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

