
 

Machine and Component 
Residual Life Estimation through 

the Application of Neural 
Networks 

 
 

by 

Michael Andreas Herzog 
 

 

 

 

 

 

 

 

 

Submitted as partial fulfilment of the requirements for the degree 
 

Master of Engineering 
(Mechanical Engineering) 

 

 

 

 

Department of Mechanical and Aeronautical Engineering 
Faculty of Engineering 
University of Pretoria 

 

 

Supervisors: Professor T. Marwala and Professor P.S. Heyns 
 

November 2006 

 
 
 



Acknowledgements 

I would like to express my sincere gratitude towards those that assisted and supported 
me in this endeavour: 

• Prof. T. Marwala, Prof. P.S. Heyns and Dr. Corné Stander for their guidance, 
support and patience as my study leaders. 

• Mr. Klaus-Peter Müller, for championing this project in every way right from the 
start, thereby making it possible. 

• Prof. Hector Dreyer, for the important mentoring role he played. 

• Mr. Sybrand Visagie, for his assistance in the manufacture of the laboratory test 
pieces. 

• Mr. Herman Reiners, for creating the engineering drawings of the laboratory test 
pieces. 

• My colleagues and friends, for their encouragement and understanding. 

• My parents, for their love and inspiration. 

• My heavenly Father, for the ever present hope when times were tough.  

 

The Author 
November 2006 

 
 
 



 - i - 

Summary 
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Analysis of reliability data plays an important role in the maintenance decision 
making process. The accurate estimation of residual life in components and systems 
can be a great asset when planning the preventive replacement of components on 
machines. Artificial intelligence is a field that has rapidly developed over the last 
twenty years and practical applications have been found in many diverse areas. The 
use of such methods in the maintenance field have however not yet been fully 
explored.  

With the common availability of condition monitoring data, another dimension has 
been added to the analysis of reliability data. Neural networks allow for explanatory 
variables to be incorporated into the analysis process. This is expected to improve the 
quality of predictions when compared to the results achieved through the use of 
methods that rely solely on failure time data. Neural networks can therefore be seen as 
an alternative to the various regression models, such as the proportional hazards 
model, which also incorporate such covariates into the analysis.  

For the purpose of investigating their applicability to the problem of predicting the 
residual life of machines and components, neural networks were trained and tested 
with the data of two different reliability related datasets. The first dataset represents 
the renewal case where repair leads to complete restoration of the system. A typical 
maintenance situation was simulated in the laboratory by subjecting a series of similar 
test pieces to different loading conditions. Measurements were taken at regular 
intervals during testing with a number of sensors which provided an indication of the 
test piece’s condition at the time of measurement. The dataset was split into a training 
set and a test set and a number of neural network variations were trained using the 
first set. The networks’ ability to generalize was then tested by presenting the data 
from the test set to each of these networks.  

The second dataset contained data collected from a group of pumps working in a coal 
mining environment. This dataset therefore represented an example of the situation 
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encountered with a repaired system. The performance of different neural network 
variations was subsequently compared through the use of cross-validation. 

It was proved that in most cases the use of condition monitoring data as network 
inputs improved the accuracy of the neural networks’ predictions. The average 
prediction error of the various neural networks under comparison varied between 431 
and 841 seconds on the renewal dataset, where test pieces had a characteristic life of 
8971 seconds. When optimized the multi-layer perceptron neural networks trained 
with the Levenberg-Marquardt algorithm and the general regression neural network 
produced a sum of squares error within 11.1% of each other for the data of the 
repaired system. This result emphasizes the importance of adjusting parameters, 
network architecture and training targets for optimal performance  

The advantage of using neural networks for predicting residual life was clearly 
illustrated when comparing their performance to the results achieved through the use 
of the traditional statistical methods. The potential of using neural networks for 
residual life prediction was therefore illustrated in both cases. 

Key Words: Neural Networks, Condition Monitoring Data, Residual Life 

 

 
 
 



 - iii - 

Opsomming 

Die Vooruitskatting van die Lewensverwagting van Masjiene en 
Komponente deur middel van die toepassing van Neurale 

Netwerke 

deur 

Michael Andreas Herzog 

Leiers: Professore T. Marwala 
P.S. Heyns 

 

Magister in Ingenieurswese 
Departement van Meganiese en Lugvaartkundige Ingenieurswese 

Universiteit van Pretoria 

 

Die analise van betroubaarheidsdata speel � belangrike rol in die 
besluitnemingsproses vir instandhouding. Die akkurate vooruitskatting van 
lewensverwagting is � waardevolle aanwins wanneer komponente op masjiene 
voorkomend vervang moet word. Kunsmatige intelligensie is � veld wat vinnig 
ontwikkel het oor die laaste twintig jaar en toepassings is op � verskeidenheid terreine 
daarvoor gevind. Die gebruik van sulke metodes vir doeleindes van instandhouding is 
egter nog nie ten volle ontgin nie.  

Met die algemene beskikbaarheid van kondisie-moniteringsdata is � nuwe dimensie 
tot die analise van betroubaarheidsdata gevoeg. Neurale netwerke laat toe dat 
verklarende veranderlikes in die proses geïntegreer kan word. Dit kan verwag word 
dat hierdie stap die kwaliteit van vooruitskattings sal verhoog wanneer dit vergelyk 
word met metodes wat alleenlik op tyddata staatmaak. Neurale netwerke kan dus 
gesien word as � alternatief vir die verskeidenheid regressiemodelle, soos 
byvoorbeeld die proporsionele gevaarkoersmodel, wat ook die gebruik van 
verklarende veranderlikes toelaat.   

In hierdie verhandeling word daar � beskrywing gegee hoe neurale netwerke met 
betroubaarheidsdata geleer is en hul waarde bepaal is vir die vooruitskatting van die 
lewensverwagting van komponente en masjiene. Die werk is gedoen met twee 
datastelle wat betrekking het op die instandhoudingsveld. 

Die eerste datastel het bestaan uit metings wat geneem is op � reeks enerse 
komponente wat by faling verwyder is. ’n Tipiese instandhoudingsituasie is in die 
laboratorium gesimuleer deur hierdie toetsstukke aan verskillende lastoestande bloot 
te stel. Metings is met gereëlde intervalle met verskeie sensors geneem gedurende 
elke toetslopie om die toetsstuk se toestand te bepaal. Die datastel is opgedeel in � 
opleidingsstel en � toetsstel waarvan die eerste gebruik is om � verskeidenheid 
neurale netwerke op te lei. Die tweede stel is vervolgens gebruik om die netwerk se 
reaksie op data te toets wat nog aan daaraan onbekend was.  
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Die tweede datastel het inligting bevat wat op ‘n groep pompe gemeet is wat in die 
mynbou veld opereer. Die datastel was dus � voorbeeld van die situasie wat by 
herstelde stelsels gevind word.  

Daar is bewys dat die gebruik van toestandsdata in die meeste gevalle die neurale 
netwerk se akkuraatheid verbeter het. Die gemiddelde afwyking in die 
vooruitskattings van die verskillende neurale netwerke teenoor die werklike 
lewensverwagting was tussen 431 en 841 sekondes vir die hernuwings datastel wat � 
karakteristieke lewensverwagting van 8971 sekondes getoon het. Wanneer die 
netwerke wat met die Levenberg-Marquardt algoritme opgelei is, asook die algemene 
regressie neurale netwerk geoptimiseer is, was die som van die kwadrate van hul 
afwykings binne 11.1% van mekaar vir die herstelde stelsel se datastel. Hierdie 
resultaat bewys die belangrikhied daarvan om deur middel van die aanpassing van 
parameters, netwerkargitektuur en netwerkopleidingstykens die optimale akkuraatheid 
te bereik. 

In beide gevalle is die voordeel wat neurale netwerke bied in vergelyking met 
statistiese metodes duidelik uitgewys. Die potensiaal wat die gebruik van neurale 
netwerke vir die vooruitskatting van lewensverwagting is dus geïllustreer.  

Sleutelwoorde: Neurale Netwerke, Toestandmoniteringsdata, Lewensverwagting 
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Chapter 1: Problem Statement 

The purpose of this chapter is to discuss a variety of concepts that are relevant to the 
subject of reliability data analysis and place the current work in context. The areas of 
maintenance planning and strategy are briefly discussed to paint a background picture 
for further discussion. A brief glance at statistical methods and previous research 
using neural networks for reliability data analysis serves to place the current work into 
context. 

1.1 Maintenance Planning 
Pintelon, Gelder and Van Puyvelde (1997) identify two decision making levels 
concerning the maintenance function, namely strategic and tactical planning. Strategic 
planning takes place at a high level in the organization and is usually dealt with by the 
discipline of engineering economics, though there are synergies with the more 
technical aspects which are addressed by tactical planning. Strategic planning relates 
to the making of long term decisions which include equipment replacement decisions, 
life-cycle costing, availability, capacity, flexibility, impact of technology changes, 
economic factors and investment criteria.  

Tactical planning, in comparison, concentrates on such aspects as reliability, 
maintainability and optimal maintenance policy. The goal is to maintain the 
equipment responsible for production in such a condition to ensure maximum 
availability. Figure 1 gives a general summary of the numerous strategies which are 
available to the maintenance practitioner to help him with the achievement of this 
aim. 
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Figure 1: Maintenance strategies (Source: Coetzee (1997)) 
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Maintenance policy in the early years rested on the principle of corrective 
maintenance. When a component failed, it was replaced and the system was repaired. 
The risks of undesirable safety and environmental consequences which may result 
from failures of modern systems have made the prevention of failure events a priority 
today. Apart from these hazards, there are also increasingly compelling economic 
reasons for the shift from a repair to a prevention centred approach. The secondary 
damage resulting from the failure event and the loss of availability caused by the 
unexpected failure may carry a prohibitive cost and result in a loss of competitiveness 
in the market which necessitates preventive intervention. 

These economic and social pressures encouraged the search for methods to help 
prevent failures from occurring and led to the introduction and development of 
preventive maintenance philosophy. Research and development was mainly centred 
on high risk activities such as nuclear power generation and the aircraft industry, 
where failure would result in severe consequences and loss of life. Failure prevention 
was initially achieved through inspections and timely replacement of components at 
scheduled intervals, but techniques of measurement were subsequently developed that 
allowed preventive replacement on the basis of system condition. Despite these 
developments, failure prevention is not applied everywhere due to its high cost. 
Breakdown maintenance still remains in common use.  

Apart from focusing on a failure prevention approach, greater availability may also be 
ensured by measures encompassing the design of the plant (see Figure 1) or the 
logistic arrangements relating to maintenance. For reducing the adverse effect of 
breakdowns on plant and equipment availability, redundancy may be introduced 
through the installation of a standby system. The downtime suffered due to failure is 
thereby minimised, as the plant production is switched to the standby system while 
repairs are affected. Such a standby system does however increase the complexity and 
the initial capital cost of the plant. A reduction in downtime resulting from failure can 
also be achieved by increasing the number of spares held in the plant inventory. This 
eliminates the delivery time of the equipment suppliers on critical items. 
Unfortunately high inventory levels come with the burden of high expenditure on 
assets that are not directly contributing to production. 

The bathtub curve (see Figure 2) was initially based on human mortality trends in a 
developing country, but has also been useful when applied to equipment to illustrate 
the pattern of failure. It consists of three distinct phases, namely infant mortality, a 
constant failure rate phase and finally age related failures. The infant mortality phase 
is attributed to manufacturing error and faulty installation, while random failures 
occur due to system overloading and operator error. Age related failures can be 
assumed to result from the normal wear and tear introduced during operation. 
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Figure 2: Bathtub curve (Sources: Jardine (1973) and Coetzee (1997)) 

The aim of use based maintenance is to replace units before failure occurs and the 
replacement decision is based on the age of the unit. An optimal time for making such 
replacements is chosen through the analysis of historic data or perhaps less 
scientifically it may be based on the experience of the maintenance practitioner. Use 
based maintenance is therefore only applicable to systems that have a pronounced 
phase of wear-out failures, where a time limit can prevent the largest component of 
age related failures.  

Based on the notes of Bradley (1993), use-based preventive maintenance can be 
applied if the following conditions are met: 

1. The failure rate must be increasing. 

2. There must be a cost saving if replacement takes place before failure as opposed 
to after the failure. 

3. The effect of the replacement must be a reduction in failure rate. 

4. The maintenance intervention must not introduce faults which will result in an 
increase the failure rate. 

5. It must be possible to predict the approximate time of failure, should preventive 
action not be taken.   

An accurate prediction of failure time therefore forms one of the core requirements for 
the successful implementation of a preventive maintenance strategy. The introduction 
of preventive maintenance consequently generated a need for methods which could 
assist with effective failure time prediction. The optimization of preventive 
replacement decisions led to the introduction of statistical methods for determining 
the most favourable replacement intervals of machine components. By gaining a more 
accurate picture of failure trends it was hoped that the risk of unexpected failure could 
be reduced.  
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It is not cost effective to simply keep increasing the level of preventive action. Once 
the most costly failure modes have been addressed, the further reduction in 
breakdowns does not justify the expense of prevention (see Figure 3). An important 
function of tactical planning involves the finding of the optimum ratio between the 
costs of preventive and corrective maintenance policies.  The trade-off between 
downtime and repair related costs associated with failures and the costs associated 
with excessive preventive maintenance, such as the resulting compromise in 
availability, must be balanced through management planning and intervention. 
Maintenance activities can, as a result, be structured in such a way as to minimize 
cost.  
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Figure 3: The influence of failure prevention levels on maintenance cost.   
 (Sources: Jardine (1973) and Coetzee (1997)) 

The replacement interval in a preventive policy is usually chosen according to the 
statistical distribution of previous failures. The allowable operating lifespan of all 
units is therefore conservatively dictated by the weaker units that have failed first. 
Replacement decisions based on age therefore lead to the discarding of components 
that are still in fairly good condition, which in some cases could have run substantially 
longer without the risk of failure. It is clear that the conservative approach revolving 
around traditional statistical methods limits the useful life of components.  

While preventive replacement reduces wear and tear related failures, regular 
maintenance intervention introduces faults into the system due to human error, the 
opening of units and the handling of components. An undesirable hyper-exponential 
spike of failures often occurs shortly after an overhaul. Unnecessary maintenance 
intervention was therefore found to reduce the reliability in some systems. 

Coetzee (1997) refers his readers to the work of Nowlan and Heap (1978) who show 
that the traditional bathtub curve only applies to 4% of the cases that they considered. 
It was further found that 89% of the cases in their study would not benefit from use-
based replacement. Irrespective of how representative these results are, they give a 
good indication that use-based replacements are not suitable for a large proportion of 
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practically encountered applications. The only way to prevent failure in such systems 
is to measure the actual condition of the system and affect replacement once a clear 
deterioration is identified. 

For the previously mentioned reasons, condition based maintenance (see Figure 1) has 
over the last two decades come to play an ever increasing role in the maintenance 
field. A number of techniques have successfully been developed to monitor the actual 
deterioration of the system and its components. Such techniques provide a warning 
when a component reaches a point where failure is imminent and the machine can 
subsequently be stopped for the replacement of the components in question. The risk 
of unexpected failure is thereby greatly reduced, while components can also be run 
close to the end of their useful life. Virtually the full component life can be exploited, 
and the required components can be ordered well in advance. 

The usefulness of condition monitoring data extends beyond the detection of 
worsening system condition.  Three main categories of information contained in 
condition monitoring data are identified: 

• Signs of imminent failure 

• Faulty installation 

• The nature of operating conditions 

The first category encompasses the traditional activity that is commonly labelled as 
condition monitoring. Regular measurements are taken in order to identify and 
monitor machine deterioration with the intention of replacing or overhauling faulty 
components/units before actual failure occurs.  

The second category involves the early identification of faulty installation that would 
lead to increased wear and/or premature failure. Rapid identification of such a 
problem after a maintenance event and timely intervention can help to prevent or 
reduce consequential damage to the system. An example of such a problem could be 
the identification of a misalignment problem through vibration monitoring, or the 
detection of contamination in gearbox oil caused by a faulty breather or lack of 
cleanliness during installation.  

The data collected by means of condition monitoring also contains information with 
regards to the operating conditions of the equipment. Operating conditions have a 
direct influence on the rate at which a system’s condition deteriorates and are 
therefore valuable when attempting failure prediction. The life of machines subjected 
to a corrosive environment or a harder working material is usually reduced by these 
factors. In a similar way the forces resulting from a specific mode of operation may 
reduce the life of one machine when compared with an identical unit employed in a 
different application. 

Condition monitoring data contains a wealth of information that is not only useful to 
prevent failure, but provides a comprehensive picture of the system that can be put to 
use to enhance the prediction of failure. The present study investigates the 
combination of the traditional statistical life estimation concept and the measurement 
of component condition and degradation. By bringing these concepts together in 
analysis, it is envisaged that reliability related information of greater quality could be 
generated for the purpose of facilitating maintenance decision making.  
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1.2 Renewal and Repaired Systems Theory  
Renewal theory was built around the assumption that both scheduled reconditioning 
and scheduled replacement leaves the maintained item in the ‘good-as-new’ (GAN) 
condition after preventive action. It therefore applies to the situation where preventive 
actions based on equipment usage lead to complete restoration. The modelling of this 
situation is most regularly approached through the fitting of statistical distributions, 
though other mathematical theory bases may also be applied.  

The force of mortality (FOM) or hazard rate of an item, gives the probability of 
failure within a short time window, from x to x + �x, provided that the item survived 
up to that time. Equation 1.1 appears in a similar form in Vlok (2001) 
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Coetzee (1997) presents the FOM more simply, as: 
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A graph illustrating the concept of a good-as-new (GAN) system, as assumed by 
renewal theory, is shown in Figure 4. After failure it is returned to its original state 
through repair and the FOM is reduced to zero. This assumption only holds true if no 
trend can be observed in the subsequent failure times of the repaired system. 
According to Pijnenburg (1991) and Coetzee (1997), renewal theory only applies 
when the data is independent and identically distributed (i.i.d.). This means that the 
failures can be assumed to come from the same statistical distribution which implies 
that the one failure does not influence the next. The existence of a data trend means 
that this assumption does not hold and the various lifetimes cannot be lumped together 
as one dataset. 
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Figure 4: Illustration of the good-as-new concept. (Source: Vlok (2001)) 
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Renewal theory is unquestionably useful for analysing the reliability data of 
components that are discarded upon failure. Systems in practice are mostly repaired 
systems and it has only been through recent work that attention has been drawn to the 
fact that renewal theory cannot be applied to most of these systems. According to 
Crowder et al. (1991) the distinction between repairable and non-repairable systems 
was neglected until the publications of Ascher and Feingold (1984) and the Ansell and 
Phillips (1989) Royal Statistical Society paper. The reader is also referred to Ascher 
(1981) which specifically addresses this issue. While the renewal situation can be 
represented by a distribution function, the repaired case is a stochastic process. The 
necessity that repairable systems must be analyzed with different techniques than the 
existing methods used for non-repairable systems must therefore be highlighted. 
According to most literature on this subject, the incorrect use of renewal theory still 
remains a common practice in the maintenance field.  

In the paper published by Ascher (1981), he highlights the fact that there is no 
connection between the wearing out of a part and the deterioration of a system. The 
failure characteristics of individual components that make up a system can therefore 
be modelled using renewal theory, while regression is used to model the long term life 
trend of the whole repairable system. For non-repairable systems the lifetime of each 
individual unit is of interest. In contrast, for a repaired system the point process of the 
failure times of a particular unit is of interest. A stochastic point process is defined by 
Crowder et al. (1991) as a sequence of highly localized events, in this case failure, 
distributed in a continuum, which we take as time, according to some probabilistic 
mechanism.  

Instead of the FOM applicable to renewal system, a rate of occurrence of failure 
(ROCOF) which is also referred to as the peril rate and denoted by λ(t) has to be 
defined to describe the repaired system. The equation for the ROCOF is given in a 
similar format as previously presented by Vlok (2001). 
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The peril rate is therefore the probability of the failure event within a time interval, 
where t represents global time and N(t) represents the number of failures up to time t. 

The bad-as-old (BAO) assumption (shown in Figure 5) was introduced to describe the 
behaviour of repaired systems. According to this assumption, the system is brought 
back to the state in which it was before the failure or preventive maintenance action 
occurred. It is therefore not restored to its original condition, as is the case with GAN. 
In contrast to the FOM for the GAN case (Figure 4) which returns to zero upon repair, 
it can be seen from Figure 5 that the ROCOF immediately before and after the failure 
is the same. Repairable systems theory, based on BAO, therefore takes into account 
system degradation during operation which is time dependant. It follows that the 
ROCOF function is dependent on global system time, rather than the time that has 
elapsed since the last failure. The most common class of model that is used on 
repairable systems is probably the non-homogenous Poisson process (NHPP) model. 
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Figure 5: Illustration of the bad-as-old system (Source: Vlok(2001)) 

The choice of the most suitable assumption, whether it is GAN or BAO, requires the 
data to be first tested for dependence and trend. The absence of a trend and 
dependence in the data means that renewal theory can be used. Trend testing can only 
be done if the failure times are in order of occurrence. If X1, X2, X3 ... Xn  are 
successive lives of a unit, and T1,T2,T3 ... Tn are the respective arrival times of these 
failures measured from a common starting point then: 
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These failure arrival times can be evaluated with the Laplace trend test, which is a 
popular method for testing such reliability data. According to Coetzee (1997), the 
Laplace test takes the following form: 
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        (1.5) 

A negative result with a large absolute value indicates that the sample mean of the 
first n-1 lives is small when compared to the midpoint of the observation interval. The 
latter failures are thus further apart indicating an improvement in reliability. A large 
positive result indicates that the sample mean of the first n-1 lives is significantly 
larger than the midpoint of the observed interval and the reliability of the system is 
deteriorating. In both cases renewal theory does not hold and analysis methods must 
be used that can take such a trend into account. If the calculated answer is close to 
zero, it indicates that randomness exists in the failure patterns and renewal theory may 
be applied.  
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1.3 Probabilistic Models 
The probabilistic modelling approach assumes that the failure times of a specific 
renewal process have the same underlying distribution. Time is the only variable on 
which the reliability function is based, and other failure related information is 
therefore ignored. A number of these models are described briefly, to give the reader 
an overview.  

1.3.1 RP – Renewal Process 
The renewal process formed the basis of statistical analysis of reliability data. Its use 
is only appropriate for repaired systems when the assumption that the lifetimes are 
i.i.d. holds true. The assumptions imply that the system is as good as new after each 
repair which allows the fitting of lifetime distributions such as the normal, 
exponential, Weibull, lognormal and gamma distributions to the data. Bain and 
Engelhardt (1991) discuss the application of probabilistic modelling in detail, with 
attention given to the techniques that are available for fitting these distributions to 
reliability data. Coetzee (1997) emphasizes the importance of the Weibull distribution 
for maintenance related work due to its versatility. Weibull (1951) suggested this 
empirical formula, which has the flexibility to represent the hazard function of most 
real life failure data and can therefore adapt to most failure situations found in 
maintenance practice. 

According to Coetzee (1997), the hazard rate of the Weibull distribution with two 
parameters can be expressed as follows: 
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In this equation the parameter � is responsible for the shape of the curve while � is a 
scale parameter. The value of the parameter � is important because it represents the 
characteristic life of the population, with 63% of failures occurring before and 37% 
after this time. 

To illustrate why the Weibull distribution is suitable for application to such a wide 
spectrum of reliability data, a diagram similar to an example given in Coetzee (1997) 
is shown in Figure 6. It can be seen that all the more commonly encountered shapes of 
the hazard function can be attained with different values of the shape parameter �.  

When �<1, the Weibull function represents the decreasing hazard rate of infant 
mortality, as encountered during the first phase of the bathtub curve (Figure 2). A 
constant hazard rate is indicated when �=1 which means that failures occur at random. 
This corresponds to the second phase of the bathtub curve when failures are not age 
related. The case where the hazard increases proportionally with use can be 
represented by a Weibull function with �=2, while an increasing hazard rate with a 
convex shape corresponds the range 1<�<2. The concave increasing hazard rate of the 
last phase of the bathtub curve can be represented when the parameter �>2. Use based 
maintenance can only be applied successfully in cases where �>1. Age based 
replacement does not offer any advantage when the hazard rate is constant or 
decreasing, as the risk of failure is not increasing with time. 
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Figure 6: An example illustrating the variance in the shape of the hazard rate of the Weibull 
function depending on the value of the parameter � (Source: Coetzee (1997)) 

The Weibull distribution can also be applied in a three-parameter form. An additional 
parameter (γ), which represents the minimum life of the component, serves to shift the 
whole distribution in time. 

1.3.2 NHPP – Non-homogenous Poisson Process 
Pijnenburg(1991) states that the homogenous Poisson process (HPP), together with 
the renewal process, are the most commonly used methods in reliability data analysis. 
Their popularity is ascribed to their mathematical tractability, despite the fact that they 
are unsuitable for repaired systems that deteriorate with time. The lifetimes are 
exponentially distributed and i.i.d., resulting in a constant hazard rate. This 
assumption is often unrealistic because of the lack-of-memory property of the 
exponential distribution. The HPP can only be used for repairable systems if no trend 
is detected, in other words the GAN case. 

The non-homogenous Poisson process is a generalization of the HPP where the 
ROCOF may vary with time instead of being constant. It therefore becomes possible 
to model a trend such as the deterioration of reliability encountered in the BAO case. 
The NHPP is a natural development from the use of a hazard function for non-
repairable systems and is popular due to its mathematical tractability. 

Two different NHPP models have gained common acceptance, accommodating 
ROCOF functions with different shapes. The equations for both these methods can be 
found in Coetzee (1997). 

The first method is called the log-linear process and has the form:  
tet 10)(1
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Machine and Component Residual Life Estimation through the Application of Neural Networks 
 
 

 - 11 - 

The shape of this function is upwards concave and applications for which it is suitable 
are not regularly encountered in practice. It represents the extremely fast increasing 
failure intensity rate.  

The second method, which is more commonly applied, is called the “power law 
process”: 

1
2 )( −⋅⋅= ββλρ tt         (1.8) 

This function has different shapes depending on the value of the parameter β. A β 
with a value less than 2 results in a concave shape, while the function is convex if β is 
larger than 2. The power law function can therefore be applied to a wide range of 
failure processes with the exception of those with an intensity that increases rapidly. 
In such cases, the log-linear process can however be used, which means that these two 
intensity function types can cover a comprehensive range of failure processes which 
display an increasing rate. 

An example of the application of the NHPP is found in Leung and Cheng (2000) who 
used the power law process to model the failures of engines in a fleet of Hong Kong 
buses. The Laplace trend test was used to establish if a trend of reliability 
deterioration was present. The model parameters were established by means of the 
maximum-likelihood estimation method. Cramer-von Mises was used to check the 
goodness of fit. The authors remarked in their paper that they did not have sufficient 
information “to conduct a real statistical analysis and bring a significant conclusion to 
the considered application.” 

Coetzee (1997) illustrated the selection process of a suitable technique with the 
diagram shown in Figure 7. Model selection for a given dataset takes place on the 
basis of tests for trend and dependence. If the data exhibits a trend, the non-
homogeneous Poisson process (NHPP) is used. If no trend is found and the data is 
independent, renewal theory applies. 
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Figure 7: Data analysis framework as shown by Coetzee (1997). 
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1.4 Advanced Regression Models 
Most of the traditional reliability studies are based solely on failure-time data where 
time is assumed to be the only variable. There are clearly shortfalls to such an 
approach, as conditions under which systems operate in practice are changeable and a 
number of factors exert an influence and contribute to failure. Time data is not 
sufficient to allow a model to distinguish between the alterations in reliability patterns 
attributable to each of these factors.  

Guo, Love and Bradley’s (1994) paper highlights the failings of the bad-as-old 
assumption, when maintenance and repair work is performed on a system. Very rarely 
is a system returned to the exact state in which it was before failure. Chan and Shaw 
(1993) model the failure rate of a repaired system by introducing a reduction in the 
failure rate after preventive maintenance. Similarly the proportional age reduction 
(PAR) model which was introduced by Malik (1979) is able to cater for the influence 
of maintenance action on the condition of the system through the introduction of 
virtual age which is dependant on maintenance. A maintenance action which 
improves the system’s condition is therefore said to reduce its virtual age, while a 
worsening of the system’s condition through maintenance intervention is said to 
increase the system’s virtual age. System reliability henceforth is dictated by this 
virtual age, rather than the actual age which is used in the NHPP model.  

The effect of repairs on the system’s condition, changing its virtual age, can be 
illustrated by an example. We take a set of gears in a gearbox, where the pinion is 
damaged through wear. If only the damaged pinion is replaced, the effect on future 
reliability of the system will be notably different from the case where the complete set 
of gears is replaced. Running a worn gear together with a new pinion means that the 
system was not returned to GAN condition by the maintenance action. Renewal 
theory will not hold in such a situation, and the system will most probably deteriorate 
more rapidly than in the case where the complete set was replaced. The partial 
renewal of the gear set however implies that the system is in better condition than 
before the replacement, and the BAO assumption consequently also doesn’t apply. 

Venturing further on the subject of covariates, the variables that determine a particular 
system’s reliability, the effects of failure and maintenance intervention on a repaired 
system deserves further discussion. The graph in Figure 8 shows the behaviour that 
would be observed on a simple system with units, for example light bulbs, that are 
replaced upon failure. The first set of units start their life together and fail according 
to a normal distribution. Not all failed units are replaced at the same time, however, 
thereby increasing the standard deviation of the distribution for the second set of 
failures. In time, the failure rate becomes constant as these distributions increasingly 
flatten out and the failures of different generations overlap. Such a constant failure 
rate means that the system exhibits a negative exponential failure distribution, which 
indicates that the probability of failure is independent of age and failures are occurring 
at random. 
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Figure 8: Change in the failure distribution over a number of generations. (Adapted from the 
original in Bradley (1993)) 

This tendency also applies to more complex systems. Bradley (1993) refers to 
research by Davis of Rand Corporation, who found that bus engines exhibit a constant 
failure rate after the second overhaul. When maintenance intervention takes place, it 
tends to cause unpredictability in future system reliability behaviour. Machine 
operation and maintenance efforts lead to a unique machine condition when individual 
systems diverge in terms of actual condition, as each one is influenced by its own 
individual history. The predictability of system reliability decreases with every 
intervention and it is found that it finally degenerates into random failure. This 
phenomenon makes use-based preventive maintenance action totally ineffective with 
time. Apart from maintenance intervention, and the resulting effect of virtual system 
age, the effects caused by operating the equipment also tends to affect reliability 
beyond the realms of mere time based analysis.  

Condition based maintenance however will still be successful, even though a system 
has reached the point where it is failing at random. The actual system condition is 
determined from the measured data, giving warning of deterioration. The 
abovementioned shortcoming of use-based maintenance also reflects upon statistical 
models which do not incorporate the advantages and robustness gained through the 
use of condition based data.  

As the probabilistic models discussed previously are clearly insufficient to cope with 
some of these factors influencing repaired system reliability, a number of regression 
models with different improvements have been developed. According to Kumar  and 
Klefsjö (1994) the presence of covariates was generally ignored in the past, or the 
dataset was broken into a number of groups in order to accommodate the major 
differences. They suggest the use of such advanced regression models for estimating 
reliability characteristics due to the possibility that they accommodate the variances 
experienced in the real life situation by taking such covariates into account.  

The advantage of incorporating covariates into a model is not limited to repaired 
systems. Even simple systems are subject to different operating conditions and may 
have several failure modes. Such data can no longer be accurately represented by one 
statistical distribution as the failure distribution curve is a composite of sub-
distributions caused by the different failure modes. Figure 9 shows a number of 
different failure distributions which result from variability in maintenance, 
manufacture and operation to illustrate why a global model, solely based on failure 
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time data is not suitable to analyse such a system. The mean failure time of all the 
data when lumped together is substantially different to the mean of the data subject to 
certain conditions.  

The suggested process of differentiating between data subject to factors of different 
nature and intensity can be done manually, as mentioned previously, or by means of a 
regression or neural computation method that uses covariates to make a distinction 
between the influences of these underlying factors. All the major significant covariate 
inputs are required to fully describe the system and give the mathematical model the 
opportunity to discriminate between different situations. 

If a curve fit is therefore made to the overall distribution, a great deal of accuracy is 
lost in the process. By using a model that allows covariates to be taken into account, 
the incorporation of condition monitoring information into the analysis makes it 
possible to differentiate between various failure modes. A more accurate solution 
therefore becomes possible when calculating residual life.  
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Figure 9: Illustration of different failure distributions caused by variation in the factors that 
influence a system. 

The simplest way of quantifying the influences on a system or component, is through 
the measurement of various condition related or operational parameters. With modern 
condition monitoring methods, it is possible to establish the actual state of equipment 
and could be used to provide the level of degradation as a function of time. System 
failures can be attributed to various failure modes which can be traced back to a 
characteristic underlying degradation process. A specific mode of failure is also often 
induced by certain conditions under which the machine operates and the way in which 
the equipment is used. Such operational influences and environmental factors be 
measured, the model can use this information to differentiate between failure modes 
and different rates of system degradation. 

As an added advantage, condition monitoring data provides insight into the degree of 
repair on a system. Additional variables are introduced when a failure is experienced 
by a repairable system and components are replaced. The next failure of the system 
depends on the state of the system before the current failure and the nature of the 
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repair work that was done. It is possible to quantify the quality of the repair and the 
condition of the system by using the variety of condition monitoring procedures that 
are available to maintenance staff. Such measurements can serve as an explanatory 
variable in a reliability model. It could be used to associate a particular set of readings 
with measurements done in the past to provide a more accurate estimate the influence 
on remaining life.  

Regression models form a combination of the probabilistic and non-probabilistic 
approaches to reliability analysis. An underlying failure distribution is not the primary 
assumption, as is the case for probabilistic methods. Regression models utilise the 
hazard function, thereby resembling non-probabilistic methods. In addition, time is 
not the only parameter that is modelled. Provision is also made for the incorporation 
of covariates related to the failure event into the model. A brief discussion of such 
advanced models is included below. 

1.4.1 Multiplicative Intensity Models 
In multiplicative intensity models (illustrated in Figure 10), covariates have a 
multiplicative effect on the FOM and ROCOF, whichever applies. The intensity of a 
failure process is represented as a product of a baseline intensity, which is a function 
of time, and a functional term, which may be a function of time and covariates. Thus 
the effect of the covariates is to scale the baseline intensity up or down. 

 

H
A

ZA
R

D
 R

A
TE

T2T1

Effect of the Covariates

Baseline hazard rate
Observed hazard rate

H
A

ZA
R

D
 R

A
TE

T2T1

Effect of the Covariates

Baseline hazard rate
Observed hazard rate  

Figure 10: Illustration of a Multiplicative Intensity Model (Source: Kumar and Klefsjö (1994)) 

Cox (1972) introduced the proportional hazards model (PHM) in which the covariates 
act in a multiplicative way on a baseline hazard function such that the hazard 
functions are proportional to each other over time for different values of the 
covariates. The PHM has been approached in two ways. A parametric approach builds 
on the renewal model by using the Weibull, log-normal and gamma distributions as a 
baseline. The approach introduced by Cox, however, does not assume a particular 
form for the baseline hazard function. The form of the hazard function is estimated 
from the data. Cox used an exponential term which incorporates the effects of the 
covariates. The use of this latter form of the proportional hazards model has gained 
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much popularity because no assumption is required on the form of the hazard function 
(FOM).  

Dale (1985) provides examples where the PHM is applied to both repairable and non-
repairable systems. Advantages of this method are amongst others that the analysis 
can be done despite the presence of nuisance factors and that the importance of 
various factors is estimated as part of the process. Censoring, tied values and zero 
values can be easily accommodated through the flexibility of the model. No 
assumptions are required about the shape of the baseline function or the distribution of 
times to failure. Due to the assumptions of the model, the application of PHM for 
repaired systems in the maintenance field is restricted to the good-as-new case. 

The Proportional Mean Intensity Model is similar to the PHM, but uses a baseline 
ROCOF instead of the FOM. This makes it suitable for repairable applications where 
the GAN assumption does not hold. The proportional odds model (POM) has a similar 
structure to the PHM and was introduced by Bennet (1983) for use in biomedicine. It 
models the odds of an event occurring, and unlike the PHM, the effect that the 
covariates have, reduces as time approaches infinity. POM is therefore suitable for use 
in situations where the influence that outside factors exert on the system is only 
pronounced in the early stages of machine life. This property has however also limited 
its practical applicability. 

1.4.2 Additive Hazard/Intensity Models 
Proposed by Pijnenburg in 1991, these additive models differ from multiplicative 
models discussed above, because the covariates have an additive effect on the FOM or 
ROCOF. Figure 11 illustrates how a functional term is added to a time related hazard 
rate serving as a baseline function. 
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Figure 11: Illustration of an additive intensity model. (Adapted from the original found in 
Pijnenburg (1991)) 

1.4.3 Models with Mixed or Modified Timescales  
The mixed or modified time scale acts as an additional covariate in the data set, 
providing additional flexibility. The modelled intensity of a failure process is 
increased or decreased by accelerating or decelerating the aging of an item. 

Prentice, Williams and Peterson (1981) introduced the Prentice Williams Peterson 
(PWP) model which is an extension of the PHM to cater for systems where multiple 
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failures can occur. Ascher and Feingold (1984) emphasize the importance of the PWP 
model citing that it is the first model with the capability to handle most of the 18 real 
world factors which they had identified. It allows custom tailoring and is especially 
useful for datasets of limited size. 

First introduced by Pike (1966), in the accelerated failure time model (AFTM) the 
covariates serve to accelerate or decelerate the predicted arrival of failures, allowing 
for circumstantial influences around the failure. Martorell, Munoz and Serradell 
(1996) introduced the proportional age setback (PAS) approach, where the effect of 
each maintenance action is assumed to shift the origin of time from where the age of 
the component is evaluated. The virtual age in question is based on the entire history. 

Just like the PAS model, the proportional age reduction (PAR) model which was 
introduced by Malik (1979) and allows for the effect of maintenance to be taken into 
account. The maintenance action reduces the virtual age of the unit in the view of rate 
of occurrences of failures. It is presumed that the maintenance intervention improves 
the state of a repairable system by some degree which is represented by a rejuvenation 
factor.  

The PAR model differs from the PAS approach mentioned previously, because the 
virtual age is only based on the survival time of the most recent lifetime. Malik’s 
approach assumes that maintenance intervention reduces the operating time elapsed 
from the previous maintenance proportionally. According to Shin et al. (1996) who 
applied the PAR model, it is a natural generalization of the GAN and BAO 
assumptions. Depending on the choice of the rejuvenation factor it can cater for 
different levels of imperfect maintenance. As the actual effect of maintenance would 
differ for each individual case even though the work is performed on an identical unit, 
the rejuvenation factor which is used in this model is only an average over the 
observed period. The PAR model has been found useful in the development optimal 
maintenance policies because of its flexibility. 

 

1.5 Combined Advanced Failure Intensity Models 
The models briefly described above generally only cater for one type of modification 
with respect to reliability related predictions. Covariates are used to estimate 
alterations in virtual age or act to modify the FOM or ROCOF in a multiplicative or 
additive fashion. The situation encountered in industry is clearly more complex than 
can be described by only one such model, as numerous factors may exert an influence 
in differing ways. Even when a regression model with stratification is used which 
allows the separation of the effect introduced by different factors, the implementation 
may not be successful. The effect that these factors have on reliability may require the 
use of different models. Vlok (2001) identified a need to include more than one of the 
conventional enhancements in the same generic model and he therefore proposed a 
combination of advanced regression techniques, where more than one improvement is 
incorporated into the model.  

The effort involved in manipulating data, the estimation of coefficients and 
refinement algorithms for any single model meant that only one type of model is 
normally used for modelling of data sets. The results are accepted without comparison 
with the performance achieved with other types of regression models. Vlok intended 
to find the most suitable enhancements for a particular problem. The two distinct 
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generic models that were developed by him are applicable respectively to the non-
repairable, for the estimation of FOM, and repairable cases, for the estimation of 
ROCOF.  

Most models only consider relative risks, as no assumptions have to be made about 
the underlying baseline function. Relative risks unfortunately do not provide any 
information with regards to absolute probabilities. Vlok however needed to determine 
absolute risks to enable him to estimate residual life, which was one of his aims. His 
models therefore had to be fully parametric to enable him to calculate the absolute 
risks required for his residual life calculations. To serve as a parametric baseline for 
these models, Vlok chose the Weibull distribution for the non-repairable case, while 
the log-linear NHPP was chosen for the repairable case.  

Both the models include the features of frailty, a time jump/setback, time 
acceleration/deceleration, a multiplicative term and an additive functional term. Vlok 
notes in his work that the application of these generic models in their complete form is 
unrealistic due to data constraints encountered in practice.   The models are however 
intended to provide a basis for the derivation of simpler models with more than one 
enhancement.  

As covariates for these models, he decided to utilize condition monitoring data, in the 
form of vibration readings. Expressions were developed to calculate the parameters of 
the models by using the maximum likelihood method. Solution for these parameters 
then takes place by means of numerical optimization techniques.  

The use of more than one enhancement by Vlok in his generic model illustrates the 
need for a method that can incorporate the effect of different factors influencing 
reliability, without the increasing computational complexity of regression models that 
have sufficient flexibility to model the real life situation.     

1.6 Residual Life Estimation 
When speaking of residual life, the difference between the concepts of renewal theory 
and repairable systems which are not returned to the GAN condition upon repair must 
be kept in mind. A component or system’s life, when renewal theory holds, ends once 
it is discarded or repaired. This action may be prompted either be the need for 
preventing failure or as a direct result of failure. A system that is repaired to the GAN 
state can be theoretically described as a new system, because it is returned to a 
condition similar to that of a new unit. For repaired systems which do not conform to 
renewal theory, the situation is more complex. System life has to be dealt with 
alongside the concept of component life. The life of the system is dictated by safety 
and economics and it is discarded once it becomes expensive and unsafe to operate 
and uneconomic to repair. The system may therefore fail a number of times and a 
significant portion of its components may be replaced during its life.  

Reinertsen (1996) studied a wide range of research material on work done in the field 
of residual life estimation, especially with respect to systems. His focus was the 
saving of cost by accurate prediction of residual life and extension of equipment life 
by considering factors influencing the life of equipment. A number of aspects are 
touched on, one of them being the use of neural networks by Lee and Kramer (1993) 
for pattern recognition and fault diagnosis.  

It is noted by Reinertsen in his paper, that surprisingly little work has been done in the 
field of residual life estimation for repairable systems. In his opinion the differences 
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between repairable and non-repairable systems is not generally understood, thereby 
leading to false conclusions. This situation has been discussed in greater detail in 
previous sections. Reinertsen found that a generous number of papers have explored 
the estimation of residual life for non-repairable systems through statistical methods, 
but no corresponding work exists for repairable systems. 

Reinertsen proposed that a study of life estimation techniques used on natural 
systems, such as human beings, should be conducted to see if these methods would 
also prove useful when applied to technical systems. A human body, for example, 
could be seen as a repairable system in which some of the components can be 
replaced if they cease to function. A study of research work in life estimation for 
natural systems could therefore compensate for the lack of publications on technical 
systems. 

Among the research using condition monitoring data for residual life estimation is the 
work of Jantunen (2003) who fitted a polynomial curve to vibration data, Vlok (2001) 
who used regression curves and vibration data to estimate residual life of pumps and 
Wang and Zhang (2005) who used spectrographic oil analysis data to predict the 
residual life of aircraft engines. 

Wang and Zhang (2005) note in their paper that the management decision making 
aspect of condition monitoring is a neglected field. A new methodology was adopted 
by them which used all past information thereby having the recursive nature of the 
filtering model while treating the oil data as a covariate. The right censored life data 
of 30 aircraft engines, with the corresponding monitored metal concentrations, was 
used for the research. They reduced the data to one variable through the application of 
principal component analysis, enabling them to fit a Weibull distribution. The curve 
fit was done with 21 of the 30 sets, leaving the remaining 9 sets to test the goodness of 
fit.  

1.7 Neural networks for Reliability Data Analysis. 
Research has been done to investigate the use of neural networks in maintenance and 
reliability related applications. A wide variety of methods, network architectures and 
data combinations were used in these cases and it is of interest to discuss some of the 
more relevant examples. 

Liu, Kuo and Sastri (1995) used neural networks to identify the underlying 
distribution of a set of failure data. The set of data was classified as a normal, 
uniform, exponential or Weibull distribution. Parameter estimation of a two-parameter 
Weibull distribution was also performed with a neural network.  

Velten, Reinicke and Friedrich (2000) investigated the use of artificial neural 
networks for predicting and analysing the wear behaviour of short fibre reinforced 
polymeric bearing materials. Regularization was used to prevent overfitting during 
training, which was done with the Levenberg-Marquardt training algorithm.  

Amjady and Ehsan (1999) evaluated the reliability of power systems using an expert 
system based on neural networks. They used an architecture consisting of a number of 
parallel subnets, each being a multi-layer perceptron network. The training samples 
are distributed amongst the various parallel subnets. Very good results are obtained 
despite the limited number of the training sets. The two separate evaluations that were 
conducted looked at the generation systems and the transmission systems. Four 
parallel neural networks were trained to estimate various maintenance parameters, 
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such as scheduled maintenance time, mean time to failure (MTTF), mean time to 
repair (MTTR) and the forced outage rate for the generation systems. Among the 
inputs to the expert system were the generating unit type, the number of generating 
units and the generating unit output. Six subnets were required for the transmission 
systems expert system. The outputs to the six parallel networks were the transient 
outage rate, permanent outage rate, permanent outage duration, normal rating, long 
term rating and short term rating of transmission components. Voltage and type of 
transmission equipment served as inputs to these subnets. 

 Xu et al. (2003) tried to forecast reliability by using neural network techniques to 
analyse the past historical failure data information. They state that the use of neural 
networks for failure data analysis offers an advantage over traditional methods, as no 
prior assumptions are required where the parameters of the nonlinear models need to 
be determined. The model parameters are usually hidden within the network and are 
optimized through iterative adjustment in a learning process based on historical 
patterns. It was observed that the use of RBF neural networks should offer an 
advantage over traditional MLP networks due to shorter training time. Consequently, 
two datasets were used by the authors to train MLP and RBF neural networks to test 
the comparative performance of these architectures. The results were also tested 
against a linear benchmark that was based on the Box-Jenkins autoregressive-
integrated-moving-average (ARIMA) models. The two datasets consisted of failure 
data of diesel engine turbochargers and car engines. The results obtained indicate that 
the RBF network outperformed both the MLP and the linear benchmark. It must be 
noted that it appears as if the failures were taken as the first failure for each unit. The 
study therefore does not cater for repaired systems. 

Luxhøj and Shyur (1995) compared the performance of traditional reliability 
modelling techniques with neural networks for the fitting of a reliability curve to data 
of helicopter components. The Weibull distribution was used to model the data, with 
parameter estimation done with the maximum likelihood methods. The only input to 
the neural network was the part hours of the components, while the output from the 
network is a reliability value. The network can therefore be used to generate the 
reliability curve. The researchers employed a MLP neural network trained with a 
backpropagation algorithm with momentum. The network received one input, which 
was part hours, had five hidden nodes and one output node that generated a point on 
the reliability curve. Only one of the datasets was large enough to enable the 
researchers to break it up into two sets. The first set is used for the training of the 
network, while the second was set aside to act as a “test” set.  The “test” set is used to 
check how well the network generalizes when it has to solve for data on which it has 
not seen before (see the section on generalization in Chapter 2). When the network 
has overfitted it will give inaccurate results between training data points. The dataset 
in this case consisted of 32 datapoints, which were broken into 26 “training” and 6 
“test” points. Upon testing the results, the R² values were found to be 0.9418 for the 
training set and 0.9291 for the test. The authors described this result as a “robust” fit. 
The conclusion drawn by the research was that the results obtained from using a 
neural network to do curve fitting of reliability curves compares favourably with the 
present mathematical methods. 

In his paper, Luxhøj (1999) researched the prospect of providing FAA safety 
inspectors with a means to evaluate and control the appropriate surveillance levels for 
aircraft operators through the application, amongst others, of neural networks. In his 
paper the performance of multiple regression and different neural network variations 
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are compared. The network types discussed by the author included both Multi Layer 
Perceptron networks (MLP) and General Regression Neural Networks (GRNN), 
which are a form of Radial Basis Function (RBF) network. The GRNN is a two-layer 
network that contains a neuron for every training pattern. Training occurs in one pass. 
This type of network performs well on problems which require continuous function 
approximation. An added advantage, according to Luxhøj, is the GRNN’s ability to 
train on sparse data sets, which was the case. The use of a hybrid neural network was 
also investigated and it achieved improved levels of performance when compared to 
the standard networks. This hybrid network consisted of a Probabilistic Neural 
Network (PNN, also a form of RBF network), which was used to classify input data 
into groups. The results were then fed to a backpropagation neural network, which 
then solved for the problem. 

Luxhøj used such a grouping strategy to improve the robustness of his prediction 
models. The available data was grouped according to age, and average flight hour and 
aircraft operability values were then calculated for each group. He concluded that the 
neural network models were easier to deal with and tended to give better results if the 
data pattern did not change drastically during the period of study. The classical 
models however remain more understandable and can be explained more easily, 
according to him. 

Liang, Xu and Shun (2000) applied MLP neural networks to the field of condition 
monitoring. They put forward a method for determining the optimal number of nodes 
in the hidden layer of such networks. The standard MLP architecture was trained with 
a backpropagation algorithm using a momentum term. Unfortunately very little 
information is given regarding the dataset used by them, as the paper focuses on the 
theoretical aspects of improving network performance.  

The estimation of residual life of systems and components is dependent on the 
utilization of various information sources that relate to factors which exert an 
influence. Neural networks allow such data to be taken into account in a far more 
efficient way than traditional methods, thereby making analysis possible even for 
complicated systems. One of the advantages offered by neural networks over other 
methods in the application to the reliability problem is that no initial assumptions have 
to be made about the nature of the data. Where researchers using the traditional 
statistically based methods, such as Vlok (1991), have been forced to reduce the 
number of inputs substantially in order to simplify the computation of parameters, the 
neural networks used for this project were shown to handle numerous inputs with 
ease.   

1.8 Reliability Data Considerations 
In the previous paragraphs the analysis of reliability data and the making of residual 
life predictions have come under scrutiny. It remains to discuss a number of issues, 
some of which are raised by Crowder et al. (1991) and Meeker and Escobar (1998), 
concerning reliability data, its form, and the way it is used affect the successful 
practical application of reliability data analysis methods. These data issues will 
subsequently be addressed in view of the use of neural networks for such analysis. 

1.8.1 Failure 
Failures may be classified according to cause, suddenness and degree. The modelling 
technique will be chosen in order to suit the nature of the problem. Not all models are 
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equally successful or suitable in dealing with all forms of data. A model that works to 
a clearly defined failure event will prove inaccurate if the system exhibits a gradual 
deterioration accompanied by a loss of performance. In some cases it may even be 
beneficial to work with probabilities. 

Neural networks may have a number of outputs, allowing the analysis to be tailored to 
the given situation, depending on the analyst’s objectives. It may be necessary to 
structure the outputs in such a fashion as to reflect such a loss of performance as has 
been mentioned. It may also be useful to obtain confidence intervals on a residual life 
estimate. The analyst may choose to receive an output reflecting a damage factor. The 
importance of such flexibility is especially placed into perspective when looking at 
two aspects that are directly linked to the manner in which failure is defined. These 
are the subject of censored data and of systems with redundancy. 

1.8.2 Censored Data 
Components may never reach actual failure and it often happens in practice that units 
in various states of degradation are replaced to prevent failure. Censored data is the 
result when a definitive starting and/or end point was not present during data 
collection. If the gathering of data starts at some point during a machine’s life, it is 
said to be left censored. It may also happen that the data is processed at some point 
when some of the equipment has not yet failed. Such data is said to be right censored. 
A combination of these two conditions is known as interval censored. 

A reliability data analysis method that can be applied in the real world must 
preferably be able to deal with such censored data. If this is not possible, this data 
must be adapted or eliminated during pre-processing. The use of condition monitoring 
data assists in limiting the effect of censored data, as the increased number of 
covariates makes the analysis method more independent of the time variable. It also 
allows the adjustment of the outputs while considering condition, and not simply an 
arbitrarily assigned state. 

1.8.3 Series and Parallel Systems 
The choice of method for the analysis of reliability data is greatly dependent on the 
nature of the system or component in question. For actual systems, the definition of 
failed versus functional is often difficult to make as it may still operate in various 
states below the optimum performance. Such a system is called a multi-state system. 
In a series system all the components must work for the system to be functional, while 
a parallel system may continue to operate despite partial failure of the system. Such a 
parallel system is said to have redundancy if a number of parallel units perform the 
same function and functionality is maintained despite the failure of some units.  A 
parallel system may therefore be an example of a multi-state system if it can be found 
in an intermediate state, operating at reduced levels when one or more of its units are 
not in operation. 

In load-sharing systems, the load is distributed among components. If failure occurs, 
the load is redistributed amongst the remaining components. Clearly the operating 
conditions have changed as the remaining components will now carry a greater load, 
are more highly stressed than before and will be subject to more rapid degradation. 
When systems have numerous components there is the possibility of simultaneous 
failures and also secondary failures. Reliability analysis may also have to deal with 
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the reliability of individual components, sub-assemblies or the behaviour of the 
overall system. 

1.8.4 System Complexity 
The complexity of a system defines the number of states in which it can be found. Let 
us say for simplicity sake that each component of a system can be in one of three 
states – good, moderate and bad. If such a system consists of n components that have 
a significant influence on reliability and can contribute to overall system failure, then 
there can be 3n different combinations of component condition.  
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Figure 12: Graph illustrating the exponential growth in complexity as the number of significant 
components increases. 

Looking at the overall system, the correct definition of condition corresponds to one 
of these 3n states and must be identified, as each combination will be responsible for 
different system reliability behaviour. The complexity of a repairable systems 
problem therefore increases exponentially as the number of significant components 
increases. 

The consideration of all factors that influence the reliability of a system, serves to 
complicate the solution of the problem. The more factors that have a significant 
influence on the system’s health, the more complex the underlying dynamics of the 
system, and the greater the size of dataset required to accurately describe the system’s 
behaviour. It is not hard to imagine therefore why so little work has been done on 
reliability analysis for repairable systems. Artificial neural network methods offer an 
advantage over existing techniques, as they require less computational effort from the 
analyst when faced with such a non-linear problem.  

1.8.5 Comparability 
The inputs of a neural network assist the network’s task of distinguishing between 
different reliability cases in two ways. Firstly they can facilitate the network’s ability 
to differentiate between units subject to different conditions and secondly they may 
help with the identification of data trends pertaining to the life of each specific unit. 
Components and systems in practice have different ages, are maintained in different 
ways, operate under different atmospheric conditions and are found in different states 
of modification. The use of absolute inputs therefore may adversely affect a neural 
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network or other analysis method’s ability to generalize. In the search for a generally 
applicable method, the inputs of an analysis method followed must filter out the data 
elements that do not have relevance in the context of failure and will therefore 
generate confusion. Comparison becomes possible once the data from different 
sources can be placed on equal terms.  

1.8.6 Time and Age 
In the non-repairable case everything restarts from zero when a failed unit is replaced. 
The order in which failures occur therefore has no significance. This is not true for 
repaired systems where the renewal theory does not hold. The incorrect use of models 
with regards to local and global time has already been elaborated upon. A difficulty 
that is encountered with repairable systems and residual life estimation is the fact that 
the analyst has to work both with cumulative time and also the time since the last 
failure.   

One repaired system generates only one set of data, especially if the analysis requires 
sequential information, as is the case when global time is used as an input. This places 
an additional burden by increasing the quantity of data that is required to achieve the 
desired accuracy and it must also be noted that variances in the sequence of events for 
different units generates totally unique data in each case.  

The absolute age of a system is a function of the age of its constituent components. 
Components exert an influence on each other due to their interaction in the 
functioning of the system. It is therefore very rare that two systems can be found in 
exactly the same state and experiencing the same sequence of maintenance events.  To 
this complexity is added the variations due to different failure modes. The exponential 
increase in combinations of condition has already been dealt with in the section on 
complexity. Describing a system of such complexity with any model becomes 
extremely difficult. Very large datasets become a necessity to allow all possibilities to 
be completely described and to make sure true generalization is achieved.  

Table 1.1 gives an example two hypothetical cases are given as follows: 

Table �1.1: Example comparing two hypothetical cases. 

Description Case 1 Case 2 

Absolute Life 8000 hours 8000 hours 

Previous Failures 3 1 

Last Failure 6000 hours 6000 hours 

 

The only way to distinguish between these two systems is through the use of 
condition monitoring data. The problem causing the additional failures in case 1, 
possibly misalignment, may have been sorted out. These failures should however have 
an effect on future life of the equipment due to a number of factors that affect each 
system.  
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On the negative side, case 1 may have suffered severe degradation due to the effects 
of the unexpected failures. On the other hand, it may have been completely 
refurbished due to these failures and therefore be running as a technically “younger” 
system than case 2. 

It can therefore be seen that a repairable system’s condition becomes very difficult to 
quantify as it ages, and that only methods which can use data relating to the current 
condition of the system have a chance of success.  

1.8.7 Cumulative Damage and Degree of Repair 
From the previous paragraphs it may be deduced, that although systems are very 
similar upon delivery, they become increasingly unique with time. The discussion on 
statistical methods has illustrated the fact that the effects resulting from failure, repair 
and maintenance action have only been taken into account in a general fashion, if at 
all.  

The PAR regression model attempts to cater for imperfect repair, with a rejuvenation 
factor placing the result somewhere between the GAN and BAO assumptions. Sin, 
Lim and Lie (1996) however correctly stated in their paper that, “In practice, the 
effect of maintenance may not be uniform even though the maintenance is performed 
on an identical unit.” They concluded that the improvement factor should be 
interpreted as an average effect over the observed period. These methods can be said 
to rely on a comparison with historic data from other systems that produced a certain 
chain of events. It may therefore not provide an accurate representation for predicting 
future events on other units. It does not take into account the uniqueness of each 
specific failure event, repair job and the resulting variance in system rejuvenation.  

It is very difficult to describe a repaired system simply in terms of the time variable. 
The system deteriorates over time and the conditions and loading under which it 
operates are largely unique. The question of how the events in the system’s history 
affect its reliability must therefore be quantified. 

The advantage of using condition monitoring data is that it provides insight into actual 
system condition without the requirement of subjective input or a full set of historic 
data. It therefore compensates for the unknown damage caused by measuring the 
effect of the damage. Actual wear data from oil analysis or peaks on a vibration 
spectrum will allow the damage to be quantified. Actual measured condition data will 
probably prove to be the easiest way to differentiate between systems in a different 
health condition. 

This also holds true for damage resulting from failure. The nature of the shutdown 
affects the quality of the dataset for use in network training. If the machine is stopped 
for a preventive replacement, equipment life is shortened when compared to a 
situation where the equipment is run to actual failure. The issue here is the definition 
of failure as both cases are different definitions for failure. 

1.8.8 Significant Covariates 
A system’s performance and reliability is generally affected by a number of factors. 
Network inputs must offer full coverage of these factors that are linked to equipment 
failure and component life. If such a system is to be accurately represented by means 
of a neural network, it can be assumed that the more of these variables are presented 
during network training, the more accurate the result. The information given to the 

 
 
 



Machine and Component Residual Life Estimation through the Application of Neural Networks 
 
 

 - 26 - 

neural network must be of such a nature that it can be used to identify and quantify 
system degradation for all the main failure modes. In other words, the data that serves 
as input to the network must enable the neural network to differentiate between these 
main modes of failure.  

An arbitrary function was chosen for the purpose of illustrating the effect that 
comprehensiveness of input information has on the performance of a neural network. 
A function with four variables was used to generate outputs by assigning randomly 
generated values to each variable within a range from 0 to 1. The function outputs 
also range between zero and one. 
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A neural network was trained with two input variables (k,l), three variables (k,l,m) 
and all four variables (k,l,m,n). Upon the completion of each network’s training run, 
the error for the training data points was calculated. The results of this test were then 
sorted, graphed and are shown below. The error values are ranked from smallest to 
largest on Figure 13 in order to better illustrate network performance.  
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Figure 13: Comparison of the fit obtained with a different proportion of the total variables 
known to the network. 

Each variable exerts an influence on the function’s output. As expected, the ability of 
the network to replicate the training function improves dramatically as more of the 
relevant input variables become known. 

The behaviour in a real life situation would unquestionably be of a more complex 
nature as a number of such functions could be interacting as part of a non-linear 
system. The experiment however still serves to illustrate the concept under discussion. 
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From the simple example, it can be seen that neural network performance is greatly 
dependent on the completeness of input information. If the inputs given to the 
network are indicative of the underlying mechanisms that influence the outputs, then 
the neural network will function well. A network can only be expected to offer a 
solution for failure modes that it has seen and can be clearly identified by the pattern 
of inputs. If the input data is outside the training range, the solution may not be 
satisfactory.  

If all the most significant failure modes can be predicted by analyzing the data pattern 
generated by environmental factors and condition monitoring measurements, then the 
application of a neural network should be very successful. Caution is however 
advisable. Too many inputs may mean that the network not only splits between 
significant categories, but also within categories. The result is overfitting during 
training, accompanied by loss of the network’s ability to generalize.  

1.8.9 Data Integrity 
Numerous datasets were investigated for use in this research project and they were 
invariably found to be of limited value. The main reason is a lack of data integrity, 
which is a critical problem when it comes to evaluating reliability data. 

Among the problems experienced with datasets are readings that are skipped, 
variances in measurement method, vital information that is omitted from data entries 
and records that are incomplete. The reconstruction of events at each failure event is a 
difficult and time consuming task, and the tracking of repairable modules such as 
gearboxes which are reconditioned is sometimes almost impossible. The situation is 
exacerbated when the recording process lacks discipline. It was found that in some 
instances the serial numbers of units were removed during an overhaul or incorrectly 
documented, making analysis of such data well nigh impossible. 

Due to the competitive environment in which they operate, condition monitoring 
companies were found to be reluctant to share their readings and it proved difficult, in 
some cases, to extract the collected data from specialised condition monitoring 
software packages. The reliability data is in many cases only available as a hand 
written hard copy and requires days of wading through paperwork on site to record 
the relevant information. If the equipment user switches from one service provider to 
another, continuity is more often than not completely lost. 

Aggravating the situation for the analyst, condition monitoring has a low priority with 
many companies and the persons assigned with the responsibility for taking the 
readings do not have an active interest, adequate training and sufficient understanding 
for the task that they are performing. The same is also frequently true for the 
maintenance manager, who does not have the ability to perform analysis of the data 
and assigns it a low priority when compared to other tasks linked directly to the 
pressures of production. 

1.9 Scope and Contribution 
The benefits of reliable information to the maintenance manager are unquestionable. 
Accurate residual life estimates offer a number of benefits to tactical maintenance 
planning, apart from the selection of an optimal replacement strategy and the 
flexibility offered to the maintenance manager. Maintenance action is usually limited 
by production requirements, and inspections, repairs and replacement of components 
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must take place during periods where the plant is shut down and made available for 
maintenance. Advanced knowledge of pending maintenance action means that spares 
can be ordered and resources can be allocated. Items with a high delivery lead time 
are available when required; preventing costly delays and ensuring that they do not 
have to be kept in stock at all times to ensure minimum production losses should an 
unexpected failure occur. Careful planning also ensures that unusual peak loads of 
maintenance work can be accommodated and that the manpower and equipment for 
the execution of specialized jobs is in place when required. It can be concluded that 
planning can be optimized and resources can be employed in the most efficient and 
cost effective fashion, if suitable reliability related information is available.  

The aim of this project is to investigate the feasibility of making reliability predictions 
based on failure data and the data collected through condition monitoring. The 
residual life estimation proposed is not merely a form of condition monitoring, but 
attempts longer term predictions to help the maintenance manager with his tactical 
maintenance decision making. Such decisions have been made in the past on the basis 
of information gained through the use of parametric models. 

From the previous discussion it can be seen that regression models have been found to 
offer a significant advantage over parametric models due to their ability to take 
information relating to the failure of a system into account. Condition monitoring data 
could therefore be used to contribute to the improvement of accuracy of estimates 
through incorporation into such models.  

A case has been developed in this chapter for investigating the use of neural networks 
in conjunction with condition monitoring data for failure prediction. Though a number 
of papers have been published on the subject, the use of neural networks to make 
predictions on the basis of reliability data has not yet been fully explored. As is the 
case with regression models, neural network methodology allows covariates to be 
used in such a model which is expected to improve the accuracy of failure predictions. 
Artificial neural networks offer numerous information processing advantages over the 
methods to which the reader has already been introduced.  Their robustness, 
adaptivity, distributed and massive parallelism and their ease of implementation 
would make them ideally suited to implementation in the management of maintenance 
operations. 

The work of Vlok (2001) showed that combined regression models can be used to 
model the reliability of a system while taking the effect of a number of covariates into 
consideration. Various modifiers are needed in such a regression model to ensure that 
the impact of the each covariate is correctly modelled. Vlok (2001) found that the 
optimal combination of modifiers must be found through experimentation, to ensure 
that the complexity of the model does not make it impractical. This process becomes 
increasingly difficult as the number of covariates increases, which led Vlok to discard 
all but the two most significant covariates from his models. In contrast, the effect of 
covariates is accommodated during the training process of neural networks with the 
result that it is easy for the analyst to introduce additional covariates. This is likely to 
improve the accuracy of residual life predictions, especially if an optimal input 
combination is found. The advances in computer technology have increased the 
rapidity of neural network training, making it feasible to implement changes and test 
different input combinations. This will be shown in later sections. Less emphasis is 
also placed on prior assumptions as no baseline is required when training the neural 
networks.  
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It therefore appears to be easier to train a neural network than to set up a combined 
regression model as was done by Vlok. Especially the much greater complexity 
encountered with repaired systems strongly favours the use of neural networks above 
regression models. 

As a point of departure for this investigation, the theoretical background of Neural 
Network methods and literature was researched and the findings are summarized in 
Chapter 2. Based on this research the neural network architectures and training 
methods were chosen for comparison.  

Two general system types have been identified which require a separate approach as 
they are maintained differently. Neural networks were therefore applied separately to 
the data collected from renewal and repaired systems.  

The first dataset is an example of a renewal case. A series of tests was planned and 
executed at the Sasol Laboratory at the University of Pretoria to simulate a situation 
that might be similar to one encountered in practice. The lab testing procedure is 
described in greater detail in Chapter 3 and the results obtained with various neural 
networks are detailed in Chapter 4. Condition based measurements were taken on the 
test pieces and these covariates were used to improve the different networks’ ability to 
accurately predict residual life. A number of neural network variations were trained 
with the laboratory generated data and their performance was compared by testing the 
accuracy of their predictions on a separate test set that had not been used for training 
the network.  

The work done with the second dataset is described in Chapter 5. It was collected by 
Vlok (1999, 2001) and represented data collected from a number of pumps in the 
mining environment. This dataset was used to test the suitability of neural networks 
for making failure predictions for repaired systems. A comparison was made between 
the results achieved with neural networks and those obtained by Vlok through the use 
of various regression techniques. Further work involved the comparison of the 
performance of different neural networks by means of cross-validation, which was the 
most suitable method for such a sparse dataset. 

The use of neural network methods was therefore investigated for the making of 
failure predictions for both the renewal and repaired cases. Inputs based on condition 
monitoring data were used as explanatory variables and their effect in the 
improvement of predictions was investigated. Based on these results conclusions 
could be drawn in Chapter 6 on the suitability of using neural networks in conjunction 
with condition monitoring data for reliability predictions as part of the tactical 
planning of the maintenance practitioner. 
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Chapter 2: Neural Networks 

2.1 Introduction 
A neural network is an artificial intelligence tool that works in a similar way to the 
human brain, which served as its inspiration. The construction and architecture of 
these networks have copied the functioning of the human brain and its capacity to 
learn. 

The basic building block of neural networks is called the neuron, which is modelled 
on the synapses of the brain. It is a simple information processing unit whose 
activation depends on the nature of the input signals that it receives. Though the 
neuron has a number of input signals, it produces a single output signal upon 
activation, which is then transmitted to the other neurons to which it is linked. 
Training of such a network of neurons may involve the addition of new units, or the 
strengthening or weakening of these links. The combination of such simple units 
functioning in parallel makes such a network a powerful non-linear information-
processing system. 

Neural networks have been trained to perform complex analysis in various fields of 
application ranging from pattern recognition, identification, and classification to 
control systems. They are used today to solve a variety of problems that provide 
difficulty for conventional computers or human beings. 

The neuron concept that was pioneered by McCulloch and Pitts (1943) still forms the 
basis of most neural networks. Figure 14, taken from Negnevitsky (2002) shows a 
neuron as could be found in multi-layer perceptron networks. The neuron computes 
the weighted sum of the input signals and evaluates a transfer function. 
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Figure 14: Diagram taken from Negnevitsky (2002) showing a neuron. 

As is stated previously, a neural network is constructed by linking of a number of 
these simple elements together, so that they operate in parallel. The functionality of 
the network is dictated to a large extent by the connections between the elements. 
These connections have a numerical weight associated with them, and these weights 
form the basic means of long-term memory in the network. The weights allocate an 
importance to each neuron input and the learning process of a neural network takes 
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place through repeated adjustment of these weights. The weights and biases of a 
neural network are adjusted through a training algorithm (see Figure 15) so that a 
particular input leads to a specific target output. The adjustments are based on a 
comparison of the output and the target, until the network output matches the target. A 
number of input/target pairs are presented to the network during this process of 
supervised learning. Increasing the number of available input sets for the training of a 
network, allows the use of more complex network architecture, thereby improving the 
network performance. 
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Figure 15: Training process of a MLP network (Source: MATLAB neural network toolbox 
manual) 

2.2 Brief History 
According to Hagan et al. (1996), the work of McCulloch and Pitts (1943) is 
commonly accepted as the origin of the neural network field. They introduced the 
neuron concept and showed that networks of artificial neurons could, in principle, 
compute any arithmetic or logical function. Following on the research by McCulloch 
and Pitts, Hebb (1949) proposed the first learning rule for neurons. The weight 
adjustment was made proportionally to the product of the outputs of the neurons 
before and after the weight. 

Rosenblatt (1958; 1960; 1962) was responsible for the first practical application of 
artificial neural networks. He and his colleagues built a perceptron network with an 
associated learning rule and demonstrated the network’s ability to perform pattern 
recognition. The research group focused on finding appropriate weights for specific 
computational tasks. A great deal of interest was generated in neural network research 
by this success. Rosenblatt was able to prove the convergence of a learning algorithm 
for simple networks, but unfortunately, it was later shown that the basic single layer 
perceptron network suffered from some serious limitations. 

Widrow and Hoff (1960) also introduced a new learning algorithm during this period 
and used it to train networks that were similar in structure and capability to 
Rosenblatt’s perceptron. These single layer networks were called adalines (adaptive 
linear neural networks). The Widrow-Hoff learning rule, also referred to as the delta 
rule, is still in use today and served as a predecessor of the backpropagation rule. 

Both Rosenblatt’s and Widrow’s networks suffered from the same inherent 
limitations. These limitations were brought to light in a book by Minsky and Papert 
(1969). They illustrated that numerous elementary computations could not be 
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successfully performed with such network architecture. These single layer networks 
could successfully classify linearly separable patterns, but were unsuccessful on other 
patterns such as the exclusive or problem (XOR).  

No solution could be found for these shortcomings which led to a relatively quiet 
period in neural network development. Rosenblatt studied network structures with 
multiple layers in an attempt to overcome the limitations, but could not create a 
suitable learning algorithm to train these networks 

Minsky and Papert (1969) advocated research in other fields of artificial intelligence, 
as they believed that further research on neural networks was a dead end. They 
concluded that multi-layer networks would suffer from the same limitations as the 
single-layer type. Neural network development therefore went into hibernation.  

During the quiet period in the 1970s, some important work continued. New networks 
that could act as memories were introduced separately by Kohonen (1972) and 
Anderson (1972). The Kohonen learning rule trains a selected neuron’s weight vectors 
to take on the values of the current input vector. Active investigations by Grossberg 
(1972) also continued in the field of self-organizing networks.  

Interest in neural networks was rekindled by two new concepts introduced in the 
1980s. The first important development involved the use of statistical mechanics by 
Hopfield (1982) to explain the operation of a certain class of dynamically stable 
recurrent network, which could be used as an associative memory.  A recurrent neural 
network contains feedback loops from its outputs to its inputs, but this layout 
previously suffered from stability problems. 

Another key development of the 1980s was the backpropagation algorithm for 
training multilayer perceptron networks. It had been previously proposed by Bryson 
and Ho (1969), but no computational equipment was available to solve the demanding 
computations. In the mid-1980s it was re-discovered independently by several 
different researchers. At this time the rapid development of computers helped to 
overcome computational impediments, and research in neural networks was greatly 
facilitated. The most influential work on the subject of the backpropagation algorithm 
was published by Rumelhart and McClelland (1986). The backpropagation algorithm 
answered the criticisms that Minsky and Papert had made in the 1960s, as it could 
also solve the XOR problem.  

For more information on the development of neural networks, the reader is referred to 
the collection of influential papers published by Anderson and Rosenfeld (1988). 

The birth of radial basis function neural networks can be traced back to techniques 
which were required to perform exact interpolation of a set of data points in a multi-
dimensional space. A number of modifications by Broomhead and Lowe (1988) and 
Moody and Darken (1989) to the exact interpolation procedure resulted in the 
development of the radial basis function (RBF) networks that we know today.  

2.3 Multi-Layer Perceptron Networks 
The brief preceding history on neural networks has already offered a short description 
of a number of neural network variations that have been proposed in the past, many of 
which are still in use. It is not the intention to embark on a detailed or exhaustive 
description of neural network methodology. The focus will therefore fall on those 
methods applicable to the purpose of this research project, which is the application of 
neural networks to reliability data analysis. Discussion will revolve around the two 
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most common network types that are used today, namely multi-layer perceptron 
networks (MLP) and radial basis function networks (RBF).  

The following paragraphs deal in more detail with the multi-layer perceptron network, 
which is probably the most commonly used form of neural network. Aspects 
discussed include network structure, error functions and training algorithms. 
Emphasis will be placed on supervised learning methods, where the network 
parameters are adjusted to optimize the performance of the network. Important issues 
influencing network training, such as overfitting, pre-processing and ill-conditioning, 
which have an effect on neural network performance, are also examined. 

2.3.1 Network Structure 
Figure 16 shows the typical construction of a multi layer perceptron network. This 
particular example has one hidden layer, linked with weights to the input signals and 
the output layer.  
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Figure 16: Illustration of the structure of a MLP network. 

At each node, the sum of the weighted inputs and the bias serve as an input to the 
transfer function. A single output is generated which is passed on to the next layer as 
required. Network complexity is varied by adding or removing nodes and must be 
chosen to suit the training data set and the number of inputs and outputs. The choice 
of network size exerts an important influence on the performance of the network, as 
the more detailed discussion on network generalization and ill-conditioning will 
illustrate more clearly in separate paragraphs below. 

At this stage a simple illustration will suffice and the reader is referred to Figure 17. 
In a situation where only a small amount of data is available, the complexity of the 
network must be reduced to prevent overfitting and ill-conditioning. The network 
does not have enough information, however, to generate an accurate representation of 
the situation that is being modelled. A network that is trained on enough data for a 
good approximation, but does not consist of enough nodes, lacks the flexibility to 
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generate a good fit. If the data set size is sufficient and is matched by the right amount 
of flexibility in the network architecture, a fit will result that gives a good 
representation of the system’s underlying properties. 
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Figure 17: Four examples illustrating the relationship between data set size and network 
complexity 

2.3.2 Transfer Functions 
A number of different transfer functions can be used in such a MLP network. The 
choice of transfer function is dictated by the nature of the input data fed to the 
network and the nature of the outputs required. It must be ensured that the form of the 
data is compatible with the architecture that is chosen. The data can be tailored by 
numerous pre-processing methods to ensure that it is fit for use in conjunction with 
the chosen transfer functions. It is also very important that it is feasible to calculate 
the derivative of such a function. The three most commonly used transfer functions in 
the various layers of multi layer perceptron networks are the log-sigmoid, tan-sigmoid 
and linear functions. A brief discussion of these functions serves to introduce the 
reader to each of them. The equations are sourced from the work of Negnevitsky 
(2002). 

Sigmoid units allow for smooth multivariate mapping. The sigmoid function (shown 
in Figure 18) transforms the input, which can have any value between plus and minus 
infinity, into a value in the range between 0 and 1. Neurons with this function are 
regularly used in the backpropagation networks, especially in the hidden layer. A 
sigmoid transfer function in the output layer constrains the value of the output to the 
range between 0 and 1. The network must therefore be trained with outputs modified 
to suit this range. This problem of constraint can however be overcome through the 
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use of post-processing for the conversion of outputs.  The log-sigmoid function has 
the following form: 

ne
nf −+

=
1

1
)(         (2.1) 

The use of the sigmoid function is especially convenient due to its simple derivative 
which is employed during the backpropagation training process.  
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Figure 18: Sigmoid transfer function (Source: Negnevitsky (2002)) 

The tan-sigmoid transfer function (Figure 19) forces an output between negative and 
positive one. It is also mainly used for the hidden layers of feedforward neural 
networks, but is less popular than the log-sigmoid function. According to Bishop 
(1995) this function may have a slight advantage over the standard sigmoid transfer 
function, as it seems to result in more rapid convergence during empirical tests.  
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Figure 19: Tan-sigmoid transfer function (Source: Negnevitsky (2002)) 

The linear transfer function (Figure 20) allows outputs with an absolute value that is 
greater than one, hence its frequent use in the output layer. A linear activation 
function provides an output equal to the neuron weighted input. Neurons with the 
linear function are often used for linear approximation. The linear function has the 
following form: 
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Figure 20: Linear transfer function (Source: Negnevitsky (2002)) 
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Other transfer functions which have historic significance are the step and sign 
functions, which are hard limit functions and are used for decision-making neurons 
for classification and pattern recognition tasks. 

2.3.3 MLP Network Training 
Numerous algorithms have been developed for the training of neural networks. Battiti 
(1992) and Van Der Smagt (1994) review a number of these first and second order 
supervised training methods that are used for MLP neural networks. Apart from 
supervised learning, networks can also be trained by other methods such as 
associative learning, as proposed by Hebb (1949), and competitive learning, but these 
are beyond the scope of this discussion.  

The supervised process compares the network response for a given set of inputs with 
the outputs that are expected for such inputs (see Figure 16). The performance of the 
network is measured according to a selected performance criterion. The training 
process aims at improving this performance index by optimizing the network through 
the adjustment of the network’s parameters. The most commonly used error function 
used for this purpose is the sum of squares error which is presented by Bishop (1995) 
in the following form:  

 ��
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The sum-of-squares error function was found to be suitable for regression problems 
and is normally chosen because of its analytical simplicity. A shortcoming associated 
with the sum-of-squares error is that a small number of data points which display a 
very large error can dominate the training process and result in distorted network 
parameters. One faulty data entry could therefore nullify the whole training process. 

The backpropagation algorithm serves as a convenient starting point for discussion on 
the minimization of the error function. Many other methods exist that are used to 
adjust parameters during each stage of training. A number of modifications to the 
original backpropagation method have been proposed, which offer improvements in 
performance. Apart from these heuristic techniques, standard numerical techniques 
have also been employed in the training of networks with excellent results. While 
keeping the application of neural networks to the problem of reliability data analysis 
in mind, the most important modifications and alternatives to the gradient descent 
backpropagation method are briefly discussed and compared. 

Standard Backpropagation 

Though Werbos (1974) and Parker(1985) had previously proposed similar ideas, the 
popular use of the backpropagation technique can be traced back to the paper by 
Rumelhart, Hinton and Williams which was published in 1986.  

Supervised network training involves an iterative procedure for minimization of an 
error function. Weight adjustments are made in a sequence of steps, each consisting of 
two stages. The first stage involves the evaluation of the derivatives of the error 
function with respect to weights ( kg ), while the adjustment to the weights ( kw∆ ) is 
calculated during the second stage. The new weights are calculated with Equation 2.6.  

kkk www ∆+=+1         (2.6) 
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where 

kkk gw α−=∆          (2.7) 

The learning rate (αk) dictates the step size of the weight change in the direction of the 
steepest gradient. Overshooting occurs when this learning rate is too large, and the 
network may become unstable and oscillate. A step size that is too small results in 
very slow convergence. The learning rate must be tailored to the specific network to 
get the best results. 

The success and popularity of the backpropagation technique can be attributed to the 
fact that it is a computationally efficient method for evaluating the derivatives of the 
error function and adjusting the weights. Unfortunately backpropagation is a time 
consuming procedure and a number of variations have consequently been developed 
to improve on its rate of learning. Work has also centred on improving network 
generalization and avoiding local minima during training. These alternative 
techniques can be subdivided into two groups namely heuristic techniques and 
standard numerical optimization techniques. Faster techniques now exist that are 
between 10 and 100 times quicker than the basic backpropagation method. 

Heuristic Improvements 

Jacobs (1988) attributes the slow convergence of standard gradient descent 
backpropagation to two causes. The first of these flaws results in the incorrect 
adjustment of weight magnitudes, while the second leads to the choice of a sub-
optimal direction for the weight adjustment vector. The shape of the error surface has 
a critical effect on the successful convergence of the steepest descent algorithm. If the 
error surface has a flat shape, the gradient that is calculated is low. This results in a 
very small step size and subsequent slow convergence. If the error surface is highly 
curved, the steep gradient leads to a large derivative value and therefore a large step 
size. The large adjustment causes oscillation as the training algorithm continually 
overshoots the target. The second flaw of the gradient descent method is that the 
direction of the calculated negative gradient is not always the same as the direction to 
the error function minimum. This phenomenon affects training when the shape of the 
error surface is elongated. 

Heuristic techniques are limited to the modification of the standard gradient descent 
method. The four heuristics proposed by Jacobs to improve the rate of convergence of 
standard steepest gradient descent can be summarised follows: 

1. An individual learning rate should be given to each parameter of the 
performance measure. 

2. Each learning rate must be adjustable over time. 

3. To overcome slow convergence due to small curvature, the learning rate 
should be increased if the derivative of the parameter keeps the same sign over 
a number of iterations. 

4. To overcome the oscillation due to high curvature, the learning rate is 
decreased if the sign of the derivative changes in consecutive iterations. 

Among the heuristic techniques that have found favour is the use of an added 
momentum term, the variation of the learning rate and resilient backpropagation. 
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For the momentum technique, another term is added to the weight change calculated 
by the gradient descent backpropagation rule. This term is the product of the 
momentum constant (β) and the weight change of the previous iteration. The 
momentum constant is a scalar factor which is chosen between zero and one. It 
influences the updating of the weights by taking into account recent trends in the error 
surface. The momentum that is introduced allows the algorithm to pass through local 
minima without getting stuck. Training with this technique is significantly quicker 
than the standard gradient descent method. 

 11 −+ ∆⋅+∆+= kkkk wwww β        (2.8) 

When using a variable learning rate, the learning rate is increased until instability is 
sensed in the calculated gradient. In this way the learning rate is maintained at a 
maximum level throughout the training process. 

Resilient backpropagation is a third heuristic technique that can be used and relies on 
the sign of the gradient. The weight changes are increased or decreased, depending on 
the sign of the derivative and in this way the problem of a small slope at the extreme 
ends of the sigmoid transfer function is eliminated.  

Standard Numerical Methods 

Among the alternatives to the backpropagation method that are used are the conjugate 
gradient methods, variations on Newton’s method, the quasi-Newton and Levenberg-
Marquardt algorithms. 

Conjugate Gradient Algorithm 

The standard backpropagation method adjusts the weights in the direction of steepest 
descent, which is the negative of the gradient (see Equation 2.7). This is the direction 
of most rapid decrease in the error function but is not the optimal direction for 
convergence.  

The conjugate gradient method, in contrast, employs the conjugate gradient direction 
for a line search which produces much faster convergence as each step is taken in the 
optimal direction resulting in much more rapid convergence (See Figure 21). The 
diagram illustrates the advantage of using a conjugate gradient method when 
compared with the gradient descent method which follows an inefficient zigzag 
trajectory. The accuracy of line minimizations is important to ensure the finding of the 
correct conjugate directions and orthogonal gradients. 

Broyden (1996) found that the existence of such a large number of variations of the 
conjugate gradient algorithm make it difficult to obtain a comprehensive view on the 
methods which are available. Some of the more important conjugate gradient methods 
have therefore been selected for discussion with the purpose of providing basic 
background information on the subject.  
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Figure 21: Illustrative comparison of the performance of the gradient descent backpropagation 
and conjugate gradient methods. (Adapted from Hertz et. al (1991) and Bishop (1995)) 

The step length taken during training is governed by a coefficient �j which is defined 
according to Bishop (1995) as follows: 
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Explicit calculation of this coefficient is not required as a numerical procedure which 
involves a line minimization along the search direction jd  is employed.  

The new search direction that is used by the conjugate gradient method is defined by 
Equation 2.9 which is given below. 

jjjj dgd β+−= ++ 11         (2.9) 

In this equation the scalar coefficient jβ  is usually calculated with the Hestenes-
Stiefel formula (Equation 2.10), the Polak-Ribiere formula (Equation 2.11) or the 
Fletcher-Reeves formula (Equation 2.12) which are all quoted by Bishop (1995). 

Hestenes-Stiefel formula 
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Polak-Ribiere formula 
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Fletcher-Reeves formula 
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The two coefficients �j and �j. are therefore both calculated without the need to 
evaluate the Hessian matrix.  
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The key steps to the conjugate gradient algorithm as summarised by Bishop (1995) 
are as follows: 

1) An initial weight vector 1w  is chosen. 

2) The initial search direction is set to 11 gd −= , where 1g  is the gradient vector. 

3) At each step, the error )( jj dwE α+  is minimized with respect to α  such that 

the new weight vector is jjj dww min1 α+=+ . 

4) Training is now stopped if the stopping criterion is satisfied. 

5) The new gradient vector 1+jg  is calculated. 

6) The new search direction can now be calculated (Equation 2.9).  

7) The program returns to Step 3. 

The conjugate gradient method requires only first derivative information in 
conjunction with line searches along a selected direction to minimize the error. As the 
calculation of the second derivative is not necessary, it uses much less storage space 
than second order methods for which the Hessian matrix must be computed. 

Quasi-Newton  

Where the conjugate gradient only used second order information implicitly, 
Newton’s method makes explicit use of the Hessian matrix. The quasi-Newton 
algorithm is based on Newton’s method, but avoids this computation by using an 
approximation of the Hessian matrix. Over a number of steps increasingly accurate 
approximations of the inverse to this matrix are generated using only information 
from the first derivatives of the error function. The use of an approximate Hessian 
matrix also overcomes the problem of a Hessian matrix that is not invertible.  

The weight change of the Quasi-Newton method is as follows: 
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where the approximation of the Hessian matrix is: 

)()()( kk
T

k wJwJwH =        (2.14) 

and the gradient is given as: 

( )kk
T

k wewJg )(=         (2.15)  

The memory usage and computation time of this method is substantial despite the use 
of an approximation of the Hessian matrix. This limits its application to middle-sized 
problems according to Robitaille et al. (1996). They therefore proposed three 
variations to the classical quasi-Newton approach which are aimed at reducing the 
computational effort associated with this method through a reduction in the size of the 
approximate Hessian matrix by neglecting some second order interactions.  

Levenberg-Marquardt 

The Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt, 1963) was 
designed specifically for minimizing the sum-of-squares error and is an adaptation of 
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the Gauss-Newton algorithm. The weight changes are calculated using the following 
equation: 

[ ] ( )kk
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1−+−=∆ µ     (2.15) 

The key step to the algorithm is the computation of the Jacobian matrix (see Hagan et 
al. (1996)) which involves the calculation of the derivatives of the errors and has the 
form: 
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When the factor µ is small, the direction taken by the algorithm corresponds to the 
Gauss-Newton direction. When it is large, the direction corresponds to gradient 
descent method. Note that as µ is increased, the algorithm moves towards a small step 
in the direction of steepest descent. This guarantees that the algorithm will reduce the 
sum of squared errors.  

The steps that are followed during the Levenberg-Marquardt training process may be 
summarised as follows (see also Hagan et al. (1996): 

1) All the inputs are presented to the network, the network outputs are generated 
and the corresponding errors are calculated. The sum of squares error can now 
be calculated. 

2) The Jacobian matrix is computed. 

3) Calculate the weight change with Equation 2.15 

4) The sum of squares error is re-computed using the updated weights. If the new 
sum of squares error is less than before, then µ=µ/β and the program proceeds 
to step 1. If the sum of squares error increases, µ=µ.β, the relation in step 3 is 
re-calculated with the new value of µ. 

In their work, Hagan and Menhaj (1994) tested the Levenberg-Marquardt algorithm 
on five function approximation problems. They compared the performance of this 
algorithm to the backpropagation with variable learning rate (VLBP) and conjugate 
gradient backpropagation (CGBP). The Fletcher-Reeves conjugate gradient algorithm 
was used, performing an exact line search consisting of two parts. The first was 
interval location, using function comparison, while the second was a golden search. 
The conclusion drawn by the authors was that the Levenberg-Marquardt algorithm 
outperformed the other two methods despite higher computational requirements. The 
improved performance is attributed to the increased efficiency offered by this 
algorithm.   

2.3.4 Network Generalization and Overfitting 
Generalization is the accuracy with which the network can solve for an input vector 
that it has not seen before during training. If a network is trained until the error on the 
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training set is reduced to a very small value, the error on new data that was not 
presented to it during training becomes large due to overfitting (see Figure 22). A 
network may also be unable to produce good results if it does not have the required 
flexibility to model a particular dataset.  
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Figure 22: Graph illustrating the concept of overfitting. 

The bias is a measure of the extent to which the average of the network function over 
all datasets differs from the desired function. A high bias means the network function 
is on average very different to the regression function. This condition occurs when a 
network does not have sufficient flexibility because it has too few parameters. The 
variance measures how sensitive the network function is to a particular dataset that 
may be chosen. A high variance therefore indicates high sensitivity of the network 
function with respect to a particular dataset, which is caused by excessive flexibility. 
The result is overfitting as shown in Figure 22. In order to achieve the optimal fit, the 
bias and variance of the neural network must be balanced. 

Increased network size allows the modelling of more complex functions. The aim is to 
use the simplest network that can still adequately represent the training set. 

According to Schittenkopf et al. (1997) there are generally two routes that are 
currently followed in order to prevent overfitting during training. The first approach 
involves the reduction of the size of the parameter space. This may involve the 
removal of weights or neurons depending on how sensitive the network error is to that 
particular parameter. The second alternative that can be implemented is the reduction 
of parameter dimensions. A penalty term in the error functions prevents the network 
from generating overly complex solutions. 

Generalization can be improved by trimming the network of any components that are 
superfluous. It therefore is not powerful enough to overfit. As it is not always feasible 
to trim a network by trial and error, methods such as regularization and early stopping 
have been introduced to improve generalization. 

Prechelt (1998) found that the cross-validation method which is normally used for 
early stopping does not allow for the complexity of the real situation. The procedure 
generally followed involves the division of the training data into a training set and a 
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validation set. The training set is used to adjust the network parameters, while the 
error on the validation set is continually monitored. Once the network error on the 
validation set increases, as shown in Figure 23, the training is stopped in order to 
prevent overfitting.  

The outlined method may fail due to the effect of a local minimum which may cause a 
temporary increase in the global error without actual overfitting. This problem is dealt 
with by Prechelt (1998) who evaluated a number of different stopping criteria for 
automatic early stopping. Three classes of stopping criteria are identified. The first 
involves generalization loss, the second uses the quotient of the generalization loss 
and progress, while the third relies on the sign changes of the generalization error.  
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Figure 23: The graph shows how the error of the validation set starts to increase once overfitting 
has occurred. The error on the training set continues to decrease. (Source: Bishop (1995)) 

McLoone and Irwin (2001) describe their application of regularization to the training 
of feedforward neural networks. This is another technique that is used to smoothen the 
mapping of the neural network. It adds a penalty term, Ω to the error function giving 
the equation: 

Ω+= υEE~          (2.17) 

Here Ω is the penalty term, E is the standard error function and υ is a parameter which 
controls the size of the penalty (Bishop 1995). 

The standard least squares error performance function is modified and takes the 
following shape: 
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In this equation, γ is the performance ratio which regulates the relative weight given 
to the mean square of errors term and the mean square of weights term. This modified 
performance function generates a smoother network response by causing smaller 
weights and biases. It is however difficult to find the optimal value for the 
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performance ratio, as a performance ratio that is too large may result in overfitting, 
while a ratio that is too small will cause an inadequate fit. 

MacKay (1992a, 1992b) outlines the Bayesian approach to regularization and 
describes a practical Bayesian framework for training feedforward neural networks. 
According to Bishop (1995), Bayesian regularization is a natural representation of the 
Bayesian framework that allows the values of regularization coefficients to be 
selected without resorting to a separate validation dataset. A large number of 
regularization coefficients can therefore be employed as no cross-validation is 
necessary. 

It is noted that if insufficient data is available, the network is likely to perform 
inadequately despite the use of regularization, or other techniques that are designed to 
prevent overfitting 

Pre-Processing 

Neural networks have an advantage over statistical methods as they do not require 
such close attention to the pre-processing of data. It is however still necessary, for 
most practical applications, to transform the data in some way before the training is 
started. Training of networks on raw data causes inefficiency and generally leads to 
poor results. The choice of pre-processing and post-processing steps which are to be 
applied to data exerts a significant influence on the network’s ability to generalize 
once training has been done. The aim of pre-processing is to try and eliminate all 
superfluous elements from the training data while retaining the relevant information 
required by the network to be effective. This makes it one of the most important 
stages in the development of a solution for any particular practical application. It is 
usually most convenient to pre-process the whole dataset before training, using the 
fully transformed data for training.  

One of the pre-processing methods that are most commonly encountered in practice is 
the re-scaling of input data. The aim is to transform all the inputs in such a way that 
they all have a value of similar magnitude. When dealing with raw data, the various 
inputs may differ by several orders of magnitude. This discrepancy in size serves to 
distort the training process due to the dominance of large input variables. This 
tendency is undesirable as the average numerical size of a particular input variable 
may not necessarily reflect the importance of that variable. During training a relative 
importance is assigned to each of these variables and large size differences serve to 
hamper this process. Though it may not be generally necessary for pattern recognition 
problems, a re-scaling of the output values is usually also done when dealing with 
regression models. 

It will be seen later that the activation of the hidden nodes in RBF networks which 
have spherically symmetric basis functions is dependant on the Euclidean distance 
between the input and the basis function centre. These networks are therefore even 
more sensitive to variation of size amongst the input variables, placing emphasis on 
the proper re-scaling of inputs.  

By applying a linear transformation we can ensure that all of the inputs to have similar 
magnitude. During re-scaling, each input variable is treated independently, with the 
mean and variance calculated through the use the following formulae which appear in 
Bishop (1995): 
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Input normalization ensures that all of the input and target variables are of the order of 
unity. The weights will be of a similar order and can therefore be randomly initialized 
with reduced risk of unsatisfactory network behaviour during training. The limiting of 
initial weights to a well defined range results in a shortened training process with a 
greater chance of reaching the global minima. 

A number of benefits are also associated with a dimensional reduction of the input 
data. Feature extraction is one way of achieving this and involves the forming of data 
combinations. This reduction in the number of inputs means fewer parameters to be 
determined during training, which reduces not only memory usage and training time 
but also means that smaller datasets can be used successfully. 

The problem complexity can also be addressed through the grouping of input points. 
Feature extraction and the grouping of inputs allows for the incorporation of prior 
knowledge into the training process. Apart from the transformation of data, it should 
also be screened for deficient readings which must be discarded. Such data may cause 
the training algorithm to fail. Data with missing reading may however be needed for 
training if the available dataset is sparse. In such cases it may be decided to replace 
the missing readings with a mean value. 

Network Testing 

The usefulness of a neural network when considering it for a practical application 
depends on the degree to which it can generalize when confronted with data which 
was not seen during training. Methods have been developed to test and compare the 
performance of different networks with this aim in mind. Anders and Korn (1999) 
suggest a number of strategies for the selection of neural network models based on 
statistical concepts. Schenker and Agarwal (1996) identify the three most common 
methods for testing the relative performance of neural networks.  

• A sub division of the available data into a training and test set which is termed 
a static split.  

• Cross-validation which can be described as a dynamic split of the data.  

• Statistical evaluation without splitting the data.    

Testing through the use of statistical methods, according to Schenker and Agarwal 
(1996), is only meaningful when the data represents a true process. It can therefore be 
successfully applied in cases where reliable physically based models are involved. 
Schenker and Agarwal (1996) identify the subdivision of the dataset into separate 
training and test sets as the approach which is most commonly used, even though only 
part of the dataset can be used for training which limits this method’s application to 
larger datasets. In their comparison of the performance of the different testing 
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methods, Schenker and Agarwal (1996) proved that a strategy of cross-validation 
generally outperformed such a static split in the search for an optimal network for a 
particular application. 

For the purposes of comparing different neural network variations by cross-validation, 
the dataset is broken into a number of smaller groups which do not overlap. These 
groups are cyclically allocated to the training and the test sets. Each cycle in the cross-
validation process represents a completely independent training run such that the 
networks are not tested with data used for training at a previous stage. The error on 
the test data is recorded for each of the network variations at the completion of each 
cycle. Several partially overlapping portions of the available data are therefore used 
for training the networks, but each group of data is used only once for testing. The 
recorded error values are added once the process is completed and this result forms 
the basis of comparison between the different neural networks. 

The steps involved in cross-validation can be summarised as follows: 

1) The dataset is broken into L parts which do not overlap. 

2) L pairs of training and test set are formed where the data within each pair also 
does not overlap. 

3) The different networks are retrained using the training sets and the 
performance is the evaluated using the test set. An error is calculated with 
respect to the test set. 

4) Step 3 is repeated such that each of the L parts is used once as part of a test set 
and the overall network performance can be estimated by averaging the mean 
errors over the L pairs or the summation of errors for each individual point. 

5) The network with the smallest error is selected as the most optimal solution. 

6) The chosen network is then trained with the complete dataset.  

The greatest advantage offered by the use of cross-validation is that the entire dataset 
can eventually be used for training the neural network once the optimal neural 
network layout has been found. The loss of information due to a static split of data is 
therefore avoided which is important for cases where the dataset is limited in size. 
Training does unfortunately become more cost intensive due to the repetition required 
by cross-validation.  

A sub division into a separate training and test set is only possible when the overall 
dataset is of sufficient size to accommodate such a subdivision if the resulting training 
set is of sufficient size to allow meaningful training. Schenker and Agarwal (1996) 
identify cases where a substantial amount of data is easily collected through 
simulations and inexpensive experiments as the ideal application for this method of 
testing. In cases where the dataset is limited in size, however, cross-validation 
provides the optimal solution for the testing of network generalization. 

2.3.5 Ill-Conditioning 
The training process of MLP neural networks is a non-linear least squares problem 
solved by means of numerical optimization techniques. These methods may be 
rendered ineffective by ill-conditioning. In their paper on the subject, McKeown, 
Stella and Hall (1997) discuss the problem of ill-conditioning in great detail, noting 
that the issue is regularly ignored in literature. Many researchers train their networks 
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with insufficient data which would inevitably result in severe ill-conditioning and 
false solutions. Paucity of data is an important consideration, especially when working 
with reliability data.  

The columns of the Jacobian matrix are composed of the derivatives of each residual 
error with respect to a single network parameter (see equation 2.16). Ill-conditioning 
results when there are fewer residual errors than optimization variables. Under these 
circumstances the Jacobian has fewer rows than columns and the product JT.J is 
singular. The number of residual errors (m) is defined as the product of the number of 
outputs from the network and the number of training sets. The number of optimization 
variables (n) is the total number of weights and biases of the network. When m<n, the 
dimension of the Jacobian matrix is of such a nature that there fewer rows than 
columns. The zero fitting error is easily obtained as there are fewer data points than 
there are variables, which means the problem is over-defined and the resulting 
solution is not unique. It will therefore normally be unable to generalize when faced 
with new input data. 

The Jacobian may also be singular due to linear dependency among the columns. This 
problem is caused by redundant network elements when the network structure is too 
complex. The saturation of a specific node at each training point will have the effect 
that the corresponding column in the Jacobian is null and the matrix becomes 
singular.  

McKeown et al. (1997) state that one of the problems associated with a Gauss-
Newton based algorithm is that it fails if the Jacobian matrix becomes singular at an 
estimated point. This problem has been overcome through the addition of a small 
positive number to each element of the main diagonal of the approximate Hessian 
matrix JJ T . The result is the Levenberg-Marquardt algorithm (equation 2.15) which 
is able to escape from such regions of singularity. 

With regards to the practical implications of ill-conditioning on the use of neural 
networks, McKeown, Stella and Hall (1997) suggest the following measures for the 
prevention of this phenomenon: 

1) Minimise the error function using a second order method (Gauss-Newton, 
Levenberg-Marquardt), rather than first order method (back-propagation). 

2) Apply strict tolerances to function values when attempting to identify global 
minima. 

3) Perform sensitivity analysis on the solutions that are found. This may also help 
to identify the redundant connections and neurons and thereby aid in the 
pruning of the network. 

2.4 Radial Basis Function Networks 
The multi-layer perceptron network, discussed above, performs global mapping. Its 
units compute the value of a non-linear function of the scalar product of the input 
vector and a weight vector. The other major class of neural network model, the radial 
basis function (RBF) network, is a local network type where the activation of the 
hidden unit is determined by the distance between the input vector and a prototype 
vector.  

The output of a first layer neuron of a MLP network is computed by feeding a 
weighted sum of inputs into a sigmoid transfer function. The radial basis network 
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(Figure 24), in contrast, consists of a non-linear hidden layer and a linear output layer. 
The hidden layer performs non-linear local mapping and its neurons have a centroid 
and a smoothing radius factor. The input vector is multiplied by the input weight 
matrix thereby producing a vector that reflects the distances between the input vector 
and the weights. This vector, multiplied by the bias vector, serves as an input to the 
radial basis function. The radial basis neuron is activated in cases where the input and 
weight vectors are similar.  
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Figure 24: Layout of a radial basis function neural network. 
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where the input vector has the form: 
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The position vector for the jth  hidden node is jc , the node has the width 2
jσ  and N is 

the number of hidden nodes. 

In the output layer the linear function is evaluated as follows: 
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To understand the behaviour of radial basis function networks, it is important to first 
look at the shape of the function (Figure 25) used for the nodes in the layer of these 
networks. The Gaussian function has the following form: 

2
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Figure 25: Radial basis function 

The graph illustrates that the radial basis function has a maximum value of 1 when n 
is equal to zero. The shape of the function ensures that the output of the radial basis 
neuron increases to a maximum when the distance between the vectors approaches 
zero. This means that the radial basis neuron is triggered by similarity between the 
input and weight vectors. In cases where the weight vector is substantially different to 
the input vector, the radial basis neuron will have output close to zero. As the output 
of the RBF neuron is multiplied by the output weights in the linear neurons of the 
second layer, the RBF neurons that are triggered because of the similarity between 
their weight vector and the input vector will dominate the output of the network by 
transmitting their output weights.  

As the hidden RBF nodes are only activated when the input vector is near the centroid 
of that particular neuron, these first-layer neurons are receptive only to a local region 
of the input space. In contrast, the use of the sigmoid transfer functions in MLP 
networks generates a global response. The sensitivity of RBF neurons can be adjusted 
by varying the radius that is assigned to the radial basis function. The rate at which the 
output of the neuron decreases when the input moves further away from the centroid 
of the function is reduced as the function radius increases. It is the function of the bias 
to effect this adjustment in the RBF radius, and correspondingly regulate the 
sensitivity of the neuron.  

The bias of a RBF in MATLAB is set by defining a parameter called the spread. 
Every bias in the first layer of the network is set to 0.8326 divided by the spread. The 
radial basis functions in these neurons therefore have an output of 0.5 when the 
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absolute value of the distance between the input and weight vectors is equal to the 
spread. The area of the input space to which each neuron responds is thereby set. 

When designing a RBF network, it must be ensured that the spread of the RBF 
neurons is large enough. If the radial basis function neurons overlap enough, several 
radial basis function neurons will generate significant outputs at any time. The 
resulting network function is smoother and better generalization is achieved for new 
input vectors that fall between the input vectors used in the design of the network. If 
the overlap is too large, however, too many neurons will then react to every input and 
the accuracy is lost.  

2.4.1 Training of RBF Networks 
A two stage training procedure is normally applied to RBF networks. The first step 
involves the selection of the basis function centres, while the output layer weights are 
determined during the second step. In the first stage the parameters governing the 
basis functions are normally determined using relatively fast unsupervised methods. 
The second stage of training involves the determination of the final-layer weights, 
which requires the solution of a linear problem and is therefore also fast. 

It has been mentioned that the activation of a hidden unit is determined by the 
distance between the input vector and a prototype vector. A fixed nonlinear 
transformation is performed by the hidden layer where the input space is mapped onto 
a new output space. There are therefore no adjustable parameters in this layer. The use 
of a linear transfer function in the output layer of the RBF produces a weighted sum 
of the outputs of the hidden layer. It contains adjustable parameters in the form of 
weights which can be determined by using a linear least squares method.  

The advantage of choosing parameters for the hidden units without having the need 
for a full non-linear optimization simplifies the training process of RBF networks and 
is also much quicker than the training of a MLP network. On the downside RBF 
networks will usually consist of more neurons. The sigmoid neurons of an MLP can 
have outputs over a large region of the input space, while RBF neurons only respond 
to relatively small regions of input space. As the number of inputs and the range over 
which each of these inputs may vary increases, the input space becomes larger leading 
to a corresponding increase in the number of radial basis function neurons that are 
required. The optimal choice of network architecture is case specific, and it will be 
found that for some applications a RBF network will provide the better solution. 

Two variations of the RBF network are the generalized regression neural network 
(GRNN) and the probabilistic neural network (PNN). No iterative training process is 
used as the training vectors become the weight vectors in these networks. The PNN is 
applied in classification problems and uses a competitive output layer to select the 
most likely class by comparing probabilities. The output layer weights of a GRNN 
consist of the output target vectors. The GRNN is therefore a network type suitable 
for function approximation similar to standard regression methods. The GRNN and 
PNN are clearly memory intensive networks, as these networks basically store all 
input data. Training is simple, however, and merely consists of assigning the values of 
inputs to the first layer and target values to the second layer. For large training sets it 
may however be advisable to employ a technique for reducing network size. 

The concern about the size of radial basis function networks and the associated 
computational costs and high memory requirements has led to a wide variety of 
methods for their optimization. Chen et al. (1991) developed a learning strategy based 
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on the orthogonal least squares algorithm for the construction of RBF networks. The 
two stage procedure of Kaminski and Strumillo (1997) where the RBF kernels are 
transformed into a set of orthonormal functions and the use of genetic algorithms by 
Whitehead and Choate (1996) to determined optimal radial basis function centres and 
widths are two further examples. It is beyond the scope of this project to expand in 
detail on the various methods that can be used to optimize such networks by choosing 
radial basis function parameters and centres. Only a brief description of the more 
important methods is therefore included for the sake of completeness. 

One of the simpler methods is the selection of RBF kernels by choosing a random 
subset of input vectors from the training set. It is not an optimal method, but may also 
provide the starting values for iterative adaptive procedures. Alternatively, all the 
training data points may be used as centres and the centres that least affect the 
performance of the network are then removed. 

The radius of the RBF nodes can be chosen through the application of heuristic 
methods, such as using the multiple of the average distance between the RBF centres. 
The parameter may also be set equal to the average distance from the RBF centre to a 
predetermined number of its nearest neighbours. 

Orthogonal least squares methodology can be used to calculate which RBF centre 
would offer the greatest improvement in the residual sum of squares error if added to 
the network. The network is built by sequentially adding new basis functions, each 
centred on one of the data points. Overfitting is prevented by stopping this process 
before all data points have been used. The residual error is therefore not allowed to 
reach zero in the interest of achieving good generalization. 

Clustering techniques may also be utilized to find a set of centres that best reflect the 
distribution of data points. Alternatively, the basis functions may be regarded as 
Gaussian mixture models, whose parameters can be optimized by using maximum 
likelihood. 

Finally, supervised methods can also be applied to train RBF networks. The basis 
function parameters such as the RBF centres, radii and the second layer’s weights are 
treated as adaptive parameters. The error function is then minimized by changing 
these parameters during a supervised training process. The use of supervised training 
means however that one of the main advantages of RBF networks, which is the fast 
and simple two-stage training process, is lost. 

2.5 Conclusion 
In the preceding overview, a number of important issues with regards to the 
application of neural networks have been touched upon which need to be addressed 
when using these methods for reliability data analysis. 

Two network architectures are of specific interest in view of this project. RBF 
networks have an advantage over MLP networks when the available dataset is sparse. 
The localized nature of the RBF network means that the learning process does not 
involve the minimization of the global error as is normally the case with MLP 
networks. Such a training process places limitations on the minimum dataset size 
required for a given network complexity, as ill-conditioning may result. 

The MLP network gains an advantage over the RBF network type as the size of the 
input space increases. The localized nature of RBF hidden nodes limits their coverage 
which means that the network complexity increases exponentially with an increase in 
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size. MLP networks form a global approximation of the underlying properties of the 
system that is modelled and therefore are more efficient as the size and complexity of 
the problem increases. Second order methods, such as the Levenberg-Marquardt 
algorithm allow much faster training than the first order methods such as the standard 
Gradient Descent Backpropagation method and also offer an advantage when the 
problem is ill-conditioned.  

From the study of literature it was found that the pre-processing of network inputs is 
essential and affects the network’s ability to generalize. Network complexity also 
plays an important role and may cause ill-conditioning if overdone. The ability of the 
network to generalize on data not seen during training is the measure of successful 
implementation. There are a number of avenues that can be explored in this regard. 
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Chapter 3: Renewal Dataset 

3.1 Introduction 
The performance of neural network methods on reliability data was tested through the 
use of two separate datasets. One of these datasets was generated through a series of 
laboratory tests that was planned and executed at the Sasol Laboratory for Structural 
Mechanics which is located at the University of Pretoria.  

The aim of the laboratory work was to generate a renewal type dataset of good quality 
that would be suitable for testing the relative performance of different neural network 
architectures and training methods. The reliability scenario that was simulated during 
laboratory testing was modelled as far as possible on an actual reliability related 
problem that was encountered in industry.  

A number of test pieces were subjected to a constant cyclic loading pattern which 
caused fatigue cracking in the region of highest stress concentration leading to 
eventual failure. The dataset generated conformed to the renewal assumption due to 
the negligible deterioration in the condition of the hydraulic test rig which was used in 
the laboratory. The test piece was replaced upon failure returning the system to good-
as-new condition. This procedure proved to be a practically workable solution for 
generating a large enough dataset for the successful application of neural network 
techniques. 

The decision to perform such a series of laboratory tests to generate a dataset was 
motivated by the great difficulty which was previously experienced in finding suitable 
equipment reliability related datasets. The training of a neural network requires a 
dataset of sufficient size to be successfully applied, because of the danger of ill-
conditioning. This issue has been dealt with in greater detail in Chapter 2 and does not 
require further attention. 

3.2 Test Motivation 
The experimental setup was inspired by an actual maintenance situation encountered 
at a South African mine. Problems were experienced with a number of double toggle 
jaw crushers (see Figures 26 and 27) which are installed at an underground location 
and serve to crush feed material consisting of banded carbonite, foskorite, 
transgressive carbonate, dolerite and micaceous pyroxenate. Material is fed into the 
crusher that has a feed opening of 2100mm x 1675mm at a rate of 400m³/h. The exact 
details relating to the situation are beyond the scope of this work, and it will suffice to 
give a brief description of some of the relevant technical aspects. 

The specific type of crusher (Figure 28) utilizes a large belt driven flywheel and shaft 
arrangement. On this shaft there is an eccentrically mounted crank, called a pitman, 
which serves to convert the rotational motion from the flywheel into linear motion. 
The force of the crank is multiplied through the scissor action of two inclined plates, 
called toggle plates, causing a reciprocating motion of the crusher jaw. The material is 
crushed increasingly finer as it flows under gravity through the tapered crusher 
opening between the jaws. One of the toggle plates that forms part of this linkage 
system that transfers forces via the crank mechanism from the large driven flywheel to 
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the crushing jaw is manufactured with a notch. The notched toggle plate (see 
Figure 28) serves as a safety device which is designed to fail in cases where large 
foreign objects that cannot be crushed are trapped between the jaws and the resulting 
forces would exceed the design parameters of the machine. Failure of the toggle plate 
prevents the stored energy of the flywheel from causing substantial damage to other 
components.  

 

 
Figure 26: The Jaw Crusher in its Underground Location 

The toggle plates are mounted in seats and are designed to move by a rolling action, 
restricting the loading on them to a purely compressive nature. Should slippage occur 
at these interfaces, bending moments are however introduced. 

Unfortunately, in this particular application, the double-toggle jaw crusher suffered 
numerous failures of its toggle plates (see Figure 29), raising questions about the 
technical soundness of the design. Due to their enormous size, the toggle plates are 
replaced after each failure only at great expense.    

The opportunity therefore arose for laboratory testing through which a reliability 
dataset could be generated for the purpose of this work. The lab testing also served the 
purpose of gaining experience and investigating potential measurement procedures to 
be used in future on this application and the verification of the toggle plate design as 
used in these large underground crushers. Some work had already been done 
previously where the actual loads on such a plate were measured. This data was 
however collected during normal operation and it was important to find ways of 
measuring and capturing the magnitude of the abnormal loads that are experienced by 
the toggle plate upon entry of a foreign object.  
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Figure 27: A three-dimensional image of the crusher 
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Figure 28: Position of the notched toggle plate 
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3.3 Test Piece 
The test piece (Figure 30) and experimental setup (Figure 32) were designed to 
resemble the real life toggle plate installation as closely as possible. Restraints on data 
processing, cost aspects and time availability did however exert an influence on the 
design as it had to be ensured that the data generated in the process would be 
sufficient and could be processed to yield meaningful results.  

On the crusher, the ends of the toggle plate are supported in seats that allow a rolling 
movement of the toggle plate ends and ensure that the forces transmitted by the toggle 
plate are purely compressive. The large quantity of tests that were required meant that 
an elaborate mounting arrangement for the test piece was out of the question and the 
ends of the test piece were therefore rigidly clamped by the top and bottom jaws of 
the test rig. This departure from the real mounting arrangement meant that the forces 
which were applied to the test piece also resulted in a bending moment because of the 
clamped ends. The realism of the lab tests is therefore limited to an extent by the 
nature of equipment available for testing.  

It was the aim to achieve uniformity in the measurements by ensuring that all the test 
pieces were subjected to reasonably similar conditions. The number of variables 
exerting an influence during testing determines the size of the dataset that is required 
to give an adequate coverage of the different cases and input combinations that may 
occur. If the number of variable factors is therefore reduced, the number of possible 
combinations that have to be investigated is reduced and a corresponding reduction in 
the number of required test runs is achieved.  

The complexity of the network architecture also depends on the number of failure 
modes and variations that it needs to recognize. This can be compared to the 
mathematical case where the number of equations that are required to solve 
simultaneously for a given number of variables increases as the number of variables 
gets larger. It was an important consideration therefore to reduce the number of 
variables as testing timetable was tight at all times and had to accommodate both lab 
availability and the work load of the student at his place of employment.  

The simplicity of the test sample was pivotal in ensuring that these units could be 
manufactured within the limitations of a tight budget. The requirement for machining 
was reduced to a minimum through a simple design, thereby reducing the cost of 
manufacture. The notch was milled into the parent plate and then the test pieces were 
cut by removing strips off the plate by means of a saw. The test pieces were also 
manufactured of standard structural steel, which is readily available and can be 
machined easily. 
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Figure 29: The cracked notch section of an actual toggle plate 

The actual toggle plates have the dimensions of 1.8 by 0.9 meters and are 90 mm 
thick. The design of the test samples represented a scaled-down version of the actual 
toggle plate used in the crushers, and were designed to fit into the laboratory test rig. 
It was an important criterion that the scaled-down version of the toggle plate should 
accurately reflect the properties of the original.  

The existing toggle plate is made of high-strength steel called C60. The end caps are 
hardened, but the area of the notch has the original steel properties. For this type of 
steel, properties of sections with different thicknesses are not the same. A plate with a 
thickness between 40 and 100mm thickness is specified with a yield strength of 450 
MPa, and ultimate tensile strength of 740 – 890 MPa. If a smaller sample with a 
thickness between 16 and 40 mm is used, a yield of 490 MPa and ultimate tensile 
strength of 780 – 930 MPa can be assumed. A test piece as the one envisaged here, 
would therefore have slightly different material properties to the actual toggle plate. 
The choice did however eventually fall on standard structural steel (300WA), due to 
its availability, the ease of working with this material and also its lower cost.  

Apart from dictating the maximum physical sample size in that can be accommodated 
within the test rig, the limitations of the laboratory equipment also introduced 
restraints in terms of the load magnitude and load cycle frequency that could be 
applied. The test pieces had to break within a reasonable time period under the 
loading conditions generated by the actuator. 
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Figure 30: Dimensions of the test piece. 

It was not feasible to use a process of trial and error to find the ideal test piece size, as 
a whole batch of test pieces had to be manufactured at once. Insight therefore had to 
be gained into how the test sample would respond to the testing in an alternative and 
cost effective way. Fatigue calculations, as per Shigley (1986), were used to generate 
a rough estimate the expected life, and to set the level of force applied to the test 
piece.  

According to Shigley low cycle fatigue failure for steel is commonly accepted to take 
place between 0.5 and 1000 cycles. A finite life region is identified between 1000 
cycles and a transition point that lies somewhere between 106 and 107 cycles. This 
transition point constitutes an endurance limit. When stresses drop below this level, an 
infinite fatigue life can be assumed. It was the intention to conduct testing within the 
finite life region, aiming at a failure time of less than 8 hours.   

Finite element analysis (FEM) was done on different test piece designs in order to 
establish the magnitude of stresses in the notch area for each test piece design. The 
input forces were varied in order to find an equivalent loading condition to that 
encountered in the actual situation. Mean stress equations have been proposed by 
Soderberg, Goodman, Gerber and Morrow and the reader is referred to Shigley (1986) 
for further reading on this subject. In order to calculate finite life for a fluctuating 
stress condition, the endurance limit can be replaced by a fully reversed alternating 
stress level in any one of these methods. When the Haigh diagram is extrapolated into 
the region of compressive mean stresses, it is found that changes in the compressive 
mean stress has no effect. The stress amplitude can therefore be directly applied to the 
S-N curve in order to obtain an expected fatigue life. If the compressive mean stress 
increases sufficiently, however the component will fail due to buckling long before 
fatigue can play a role. 

The fatigue calculation procedure requires the use of a stress concentration factor, 
which can be attributed to the effect caused by the notch. This may be determined 
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experimentally, but for the sake of this work a finite element model was generated of 
the test piece. The solution of the model, subjected to compressive loads similar in 
nature to those expected in the test rig, provided a value for the concentration of stress 
in the notch. This method allows for the quick and cheap calculation of a stress 
concentration factor and offers great flexibility in changing the component shape. 

Modelling for the FEM analysis was done with thick shell quad elements. A depth 
dimension was assigned to elements which had been generated by meshing a two-
dimensional surface. In order to check the validity of this method, a further model was 
generated with solid elements (Figure 31). The results were very similar, thereby 
validating the results achieved with the shell elements. 

 

 
Figure 31: Finite element analysis of a test piece with a 10mm notch. The applied load is 40kN. 

The shape of the notch in the test samples was scaled down from the design of the 
toggle plate. Finite element models were made of samples with different notch radii, 
to investigate the effect on the theoretical stress concentration at the base of the notch. 
It was found that the theoretical stress concentration factor Kt remains constant, 
independent of load if the ratio of notch radius to plate thickness is kept constant. 
Therefore the theoretical stress concentration of a notch with a radius of 10mm in a 
30mm thick plate is the same as a notch with a 30mm radius in a 90mm thick plate. 
This conclusion can be expected as the theoretical stress concentration values given 
by Shigley (1986) for notches with a different shape show a similar tendency. 

A stress concentration factor of approximately 3.4 was calculated for both the test 
sample and the actual toggle plate. For the toggle plate material (C90) a notch 
sensitivity of 0.88 is assumed. This factor reduces to 0.8 for the 300WA steel used to 
manufacture the test pieces. (Shigley (1986) Figure 7.13) 

Using the following equation given in Shigley (1986): 

)1(1 −+= tf KqK         (3.1) 

the stress concentration factor is found to be: 
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Fatigue calculations using the calculated stress concentration factor were subsequently 
used to choose the forces that were applied to the test pieces in the laboratory, which 
allowed the duration of each test run to be controlled.  

3.4 Laboratory Equipment and Test Procedure 
Quite a number of test pieces as discussed in the previous section were run to 
destruction in the university laboratory. The complete testing setup including the 
hydraulic test rig, the control system and the data collection equipment are shown in 
Figure 32 and Figure 33. 
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Figure 32: Photograph showing the various elements involved in the lab testing. 

The test runs were performed through the use of a hydraulic test rig which applied 
cyclic forces to a test piece which was clamped into position between two 
hydraulically operated jaws. The actuator is capable of exerting a maximum force of 
630 kN, though the actual load that can be effectively applied is limited by the 
frequency of the loading pattern. Cyclical loading was applied according to a 
sinusoidal pattern of which the mean and amplitude were varied by means of the 
actuator’s control system thereby generating different operating conditions for the 
series of test runs and producing a varied dataset. The loading pattern was applied at a 
frequency of 3 Hz which was close to the upper limit of what could be achieved while 
still allowing the actuator to apply a suitably high load. 
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The actuator was controlled in displacement mode, which means that the 
displacement remained constant throughout each test run. A constant displacement 
throughout the test means that the applied load will change once plastic deformation 
and cracking occurs. At the outset of each test run, the desired mean and amplitude of 
the applied load pattern were chosen and the displacement of the machine was set to 
duplicate this loading pattern on the undamaged test piece. The displacement setting 
was performed manually by adjusting the machine settings until the desirable force 
reading was displayed on the oscilloscope screen. The force reading was obtained 
from the load cell that forms part of the test rig and measures the applied force of the 
actuator arrangement. Both the mean and amplitude of the input signal were adjusted 
in this way.  
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OSCILLOSCOPE

OPERATOR

 
Figure 33: Control of the testing process 

The benefit of using the test rig in this mode of operation is that the force amplitude 
decreases during the period of crack propagation, while the displacement of the jaws 
is maintained. The deteriorating condition of the test piece can therefore be clearly 
detected from a reduction in the load cell readings.  

It was unfortunate that problems were sometimes experienced with the rig as it 
occasionally failed to maintain the desired mean of the loading pattern. The force 
amplitude, however, did not provide any problems and remained within the 
parameters set before each test. The result of the mentioned wandering of the loading 
pattern’s mean was that the data obtained from such a test run could no longer be 
used.  

The clamping of the test pieces in the actuator jaws was of a rigid nature. This method 
of fixing the test piece introduced bending stresses in the notch area, which should not 
occur in the crusher application during normal operation. The rolling action found in 
the toggle plate seats of the crusher was therefore not duplicated in the test 
arrangement. A pinned connection could have been used but the prohibitive cost 
implications of manufacturing the more complex test pieces and also the greater 
difficulty of installation would have been unacceptable.  
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3.5 Sensors and Measurements 
A diagrammatic representation of the measurement setup is shown on Figure 34. The 
Spider 8 is a multi-channel device which allows a number of measurements to be 
taken in parallel. The data is subsequently fed to the laptop computer where the 
measurement software captures the readings and exports the data in the form of text 
files after each measurement cycle. These files can at a later stage be imported into a 
spreadsheet application where the raw data is pre-processed and transformed into a 
suitable format and saved again as a text file. The data is then ready for use for the 
training of the various neural networks. 

Four different sensors (see Figure 34 and Figure 35) were selected and used for the 
taking of measurements during each such measurement window. The choice of 
sensors was aimed at tracking the test piece deterioration, but also to provide a 
measure of operating conditions which influence the test piece’s life.  
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Figure 34: Diagram showing the location of sensors for measurement and the equipment used for 
the capture of data. 

It has already been indicated that the test rig was run at a frequency of 3 Hz. When the 
frequency is set too high, the full force cannot be applied to the test piece due to test 
rig inertia. Measurements were recorded over periods of 3 seconds at 3 minute 
intervals and the testing proved that both the time interval between the taking of 
measurements and the duration of the recording window to be satisfactory. At a 
frequency of 3 Hz it meant that the data for a total of 9 complete actuator cycles were 
captured in each measurement window, in which a sequence of 1800 samples was 
taken during the three second period.  
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Figure 35: The location of the various sensors on the test piece. 

3.5.1 Strain Gauge 
In view of potential future measurements on the actual toggle plate, strain 
measurements were taken on the test pieces. Uni-axial strain gauges where selected 
above more complex units, such as rosette gauges, in an effort to reduce costs. To 
eliminate the effects of bending of the test piece on the strain measurement, an 
arrangement was chosen that serves to achieve this purpose (Van Tonder, 2004).  

In Figure 36 the items labelled R1 and R3 are uni-axial strain gauges mounted on the 
opposite sides of the test piece. R2 and R4 on the diagram are passive gauges 
completing the Wheatstone Half-Bridge arrangement (Figure 36). The two uni-axial 
type strain gauges were applied to opposite sides of the test piece.  

For the chosen layout the effective strain at the point of measurement is given by: 
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Figure 36: Diagram of the Wheatstone half-bridge arrangement that was used for the 
measurement of Strain. 

The passive gauges that are required by the chosen type of arrangement were mounted 
on a spare test piece as shown in Figure 37. 

 

 
Figure 37: Test piece on which the passive gauges where mounted. 
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The application and connection of the strain gauges to such a large set of test pieces 
proved to be a laborious task which slowed down the rate at which testing could be 
done. This was a serious drawback, as the time available for testing was limited. 
Problems were also experienced with the adhesion of the gauges to the test pieces, 
which regularly came loose after installation in the test rig and also during the testing. 
As the data for all the test pieces must have a similar format when training the neural 
network, data collected during an abortive measurement run would have to be 
discarded. The first tests also proved that the load cell readings took a similar form to 
the stain gauge readings and it was therefore decided to continue the testing process 
without strain measurements.  

3.5.2 Accelerometer 
An accelerometer was mounted on the test piece on the opposite side to the location of 
the notch. The aim of this measurement was to measure the movement due to the 
deflection of the test piece under loading. It was also envisaged that changes would 
possibly occur in this movement once cracking started in the notch area. An 
aluminium block with a tapped hole was mounted onto the test piece by means of an 
adhesive gel. The accelerometer was then secured on this block. 

The high measurement frequency of 600 Hz was chosen to ensure that enough data 
was collected for the generation of a vibration frequency spectrum from the 
accelerometer readings. The position chosen for mounting the accelerometer was 
found to be unsuitable for the intended purpose. The readings were very small and 
were truncated by the data recording process during initial phases of testing. The 
outputs captured on the data file were truncated after the third decimal place which 
prevented any further processing. Accelerometer readings remained problematic 
throughout testing, even though the switch to a more sensitive probe improved the 
quality of outputs. Despite the elimination of the problem through the use of an 
accelerometer with greater sensitivity (100mV/g), there were only meaningful 
readings for a reduced proportion of the test pieces. The data from this source was 
therefore also discarded as the number of datasets would have been less than the 
essential number required for the successful training of the neural networks. The 
repetition of test was also not an option due to the time constraints that have been 
mentioned above.  

3.5.3 Thermocouple  
Temperature on the surface of the test piece was measured by means of a 
thermocouple, which was mounted with adhesive putty on the side of the test piece. 
For the sake of convenience it was positioned halfway along the cross section and 
aligned with the centre of the notch. It was expected that the heat generated during the 
process of crack propagation could be detected at this location.  

It was found that the temperature which was measured at this position increased 
dramatically once crack propagation started as is illustrated by Figure 38. The 
temperature measurement was therefore found to be a very useful indicator of test 
piece condition and gave a good indication of imminent failure.  
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Comparison of Temperature Measurements
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Figure 38: Graph showing the increase in temperature measured in the notch area during the 
period of fatigue crack propagation. 

Table 3.1 gives both the initial temperature measured at the start of the test run and 
the maximum temperature measured during the tests. The thermocouple readings were 
naturally affected by seasonal temperature differences between summer and winter, as 
well as daily temperature fluctuations. It can be seen from Table 3.1 that there were 
significant differences in baseline temperatures for the various test pieces.  It was 
found that the difference between the initial and the maximum measured temperatures 
ranged from 6.2 °C to 15.6°C. 

The initial temperatures are a reflection of the ambient temperatures in the laboratory 
at the start of each test. These initial temperatures, influenced both by seasonal and 
daytime variance in temperature at the test run start, were found to range between 
14.5°C to 25.5°C. The initial temperature does not however have a significant effect 
on the expected life of the component. 

When the increase in temperature is plotted against the life of each component (Figure 
39), it becomes clear that greater temperature increases where recorded for units that 
were subjected to higher loading and therefore more rapid failure. The rate of 
temperature increase and the magnitude of the increase above the initial measured 
temperatures therefore serve as an indicator of the rapidity with which failure will 
occur. 
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Table �3.1: Initial and maximum temperatures measured for each test piece during the test run. 
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Figure 39: Graph illustration the relationship between the rapidity of failure and the magnitude 
of the temperature increase measured during a test run. 

No. Data ID Initial 
Temperature 

Maximum 
Temperature �T 

1 TSA_2 23°C 38.6°C 15.6°C 

2 TSA_3 25.5°C 37.5°C 12°C 

3 TSA_5 17.7°C 25.6°C 7.9°C 

4 TSA_8 18.9°C 26.1°C 7.2°C 

5 TSA_9 20.3°C 29.5°C 9.2°C 

6 TSA_20 18.5°C 24.7°C 6.2°C 

7 TSA_22 18.6°C 24.8°C 6.2°C 

8 TSA_23 19.4°C 26.1°C 6.7°C 

9 TSA_24 17.4°C 23.2°C 5.8°C 

10 TSA_25 18.5°C 30.1°C 11.6°C 

11 TSA_26 14.5°C 22.3°C 7.8°C 

12 TSA_27 17.7°C 24.9°C 7.2°C 
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3.5.4 Load Cell 
The actuator of the test rig was set to maintain constant amplitude in the oscillation of 
its jaws. The amplitude was varied for the different test runs thereby altering the 
operating conditions to which each test piece was subjected. A specific initial load 
could be applied by increasing the displacement of the jaws at the start of a test run 
until the required load cell reading was attained. As the cracking of the test piece in 
the notch area caused weakness, the force required to maintain this amplitude was 
reduced and this could be observed in the corresponding drop in the magnitude of the 
load cell measurements that were taken. Figure 40 below shows the trend of how 
amplitudes of the applied load are reduced and it is clear that this data is also a useful 
source of information on test piece condition. 

Apart from the change in amplitude of the applied load, the initial amplitude of 
loading gives an accurate indication of what the expected life of the test piece is. In 
both cases, the load cell readings provide important insight into the residual life of the 
component that can be expected. A summary of the initial measured amplitude and 
mean of the load pattern exerted on each test piece and the actual life that was attained 
is given in Appendix A.   
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Figure 40: Graph illustrating the drop in the amplitude of the applied load pattern once cracking 
occurs. 

3.6 Discussion 
A series of test runs were conducted and a set of data was collected for each test piece 
that was subjected to fatigue loading in the laboratory. Among the difficulties 
encountered during testing was the failure of the test equipment, the discontinuation 
of a testing due to time constraints and in some cases the loss of data due to the failure 
of sensors during a test run.  

It was decided at the time of testing to discard the datasets from tests that had to be 
discontinued. One of the main reasons for this decision was that all parameters of the 
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test run changed once the test equipment was restarted. The reinstallation of the test 
piece, the readjustment of the testing equipment during start-up and the impossibility 
of achieving the same loading conditions as were used before the discontinuation 
brought about a substantial change which would affect the expected life of the test 
piece. The discontinuity in the data caused by such an event also would have made it 
difficult for the neural network to differentiate between different cases, especially 
with the type of inputs chosen for this project.  

Baseline measurements, taken at the start of each test run, were extensively used for 
the purpose of network training and these become irrelevant once testing has to be 
resumed after an interruption. Ambient temperature, for example, sometimes changed 
drastically between two test runs. Shigley (1986) recommends that an adjustment 
factor is introduced in fatigue calculations only when the component is subjected to 
temperatures above 350°C. The highest measured temperature was only 15.5°C above 
the initial room temperature and it can therefore be assumed that temperature related 
effects had no influence on the expected life of the test pieces. It would however have 
required adjustments to the method of data processing and network training to 
accommodate such changes in ambient temperature. 

During some of the test sessions, the mean load exerted by the test rig did not remain 
constant for the entire duration of testing. This fluctuating load condition generated 
unpredictable data for a training set this small. Finally, errors also occurred during the 
measurement procedure, resulting in an unusable dataset containing spurious data.  

The poor accelerometer readings were unsuitable for spectral analysis and were 
discarded as a result. The thermocouple readings were on occasion either 
unrealistically high or low to the point of saturation. As the temperature remains 
constant over such a short measurement interval, these anomalies could be filtered out 
by choosing either the minimum or the maximum in the measurement window, 
depending on which provided a realistic reading. 

The series of tests stretched over a period of more than a year with the first test run on 
11 May 2004, while the last test run only took place on 8 June 2005. This extended 
time span impacted negatively on testing strategy, which sometimes lacked the 
required cohesiveness. Some continuity was therefore lost during each of the long 
layoffs between testing. A total of 30 test pieces were manufactured, of which 28 
where damaged or destroyed during testing. 5 test pieces where destroyed through 
errors that occurred during installation, while 6 test runs were interrupted or 
suspended. One of these interruptions was due to a failure of the hydraulic system of 
the test rig. A further dataset was discarded because of continuous and substantial 
drift in the applied loads of the test rig. Measurement and data processing errors 
eliminated a further three test sets while it was decided to discard the measured data 
of another test piece because of the large discrepancy in its operating conditions when 
compared to the other units. The remaining 12 datasets where used for the training 
and testing of the neural networks. 

The laboratory testing proved successful in its main purpose of generating the 
required dataset that could be used for training neural networks. Both the temperature 
and load cell readings gave a good indication of the deterioration of the test piece’s 
condition which was one of the most important requirements. Enough data was also 
generated in the laboratory to ensure that neural network methods could be effectively 
applied. 
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Chapter 4: Life Prediction for the 
Renewal Dataset  

4.1 Neural Network Selection 
After the introduction given in the previous chapters to the analysis of reliability data, 
a background on neural networks and the testing performed at the university 
laboratory, the actual application of neural network methods to reliability data is now 
discussed. The work was performed in two phases. The first phase involved the 
writing of a neural network platform using Visual Basic for Applications (VBA) and 
running within the spreadsheet environment of Microsoft Excel. During the second 
phase, use was made of the mathematical programming environment MATLAB, 
which contains a neural network toolbox offering access to a large variety of neural 
network types.  

The initial work involved the generation of a MLP network with backpropagation 
training enhanced through the use of a momentum term. The advantage gained from 
such an individually tailored system was the ease with which inputs could be 
processed and adapted. As a result, it greatly facilitated the finding of an optimum 
combination of inputs and represented a useful learning process. Rapid changes could 
be made to the inputs and how they were normalized. The spreadsheet platform 
assisted with other forms of pre-processing, such as the extraction of maximum values 
and allowed the graphing of trends for the vast amount of readings that were 
collected.  

This first network proved invaluable in the investigation of network behaviour as 
different input combinations could be tested and the effect of varying the number of 
hidden nodes could be determined. It was also possible to assess the effect of various 
pre-processing techniques on network performance and derivatives of the programme 
were later used to pre-process and export data for use in MATLAB. 

The initial choice of standard multi-layer perceptron architecture was made because of 
simplicity and also the ease of implementation. Both the single hidden layer and the 
output layer were given sigmoid transfer functions. Training was performed with a 
standard backpropagation algorithm which was modified through the addition of a 
momentum term. Both the learning rate and momentum constant could be changed 
before training, but remained constant thereafter. The number of inputs, outputs and 
nodes in the hidden layer could also be varied in this way, thereby providing some 
flexibility for experimentation. The data that was fed to the neural network was pre-
processed using a procedure that could be easily updated. Data was presented to the 
network as a batch and weights were updated after every batch presentation. 

Though the spreadsheet environment proved to be an excellent basis for 
experimentation, it proved to be rather slow.  Training which took between 20 and 40 
minutes in Excel could later be accomplished in a few minutes using MATLAB. Due 
to this slowness of network training and also slight deficiencies in the fit that could be 
achieved with standard backpropagation, it was decided to change the training of the 
network to the Levenberg-Marquardt algorithm.  The implementation of the 
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Levenberg-Marquardt training algorithm (see Chapter 2) failed due to software 
limitations. The matrix manipulations that had to be performed were very time 
consuming within the framework of a spreadsheet and resulted in even slower training 
than before. The complexity of the programming procedure also made it difficult to 
find the reason for the algorithm’s failure to converge.  

It was clear that further work in this direction was likely to prove fruitless and time 
consuming and an alternative platform had to be found. The neural network toolbox 
which is available within the MATLAB software framework was subsequently chosen 
for the remaining work, as the author had previous programming experience with this 
software. Demuth and Beale (1998) discuss the neural network types and training 
algorithm variations which form part of this toolbox, of which five where selected and 
trained on similar data for the purposes of comparison. Three MLP networks and one 
RBF type network were used.  

The first order gradient descent learning algorithm serves here as the basis of 
comparison between the different neural networks due to its historic significance. 
Adjustments were made to the learning rate and a momentum term was introduced 
which increases the rate of convergence of this algorithm. The performance of the 
gradient descent algorithm is compared with the much faster second order Levenberg-
Marquardt algorithm which outperformed other fast techniques according to the 
findings of Hagan and Menhaj (1994). Bayesian regularization was applied in 
conjunction with the Levenberg-Marquardt algorithm to investigate the effect of this 
method which is aimed at improving generalization. The general regression neural 
network (GRNN), which was also used by Luxhøj (1999) for his research, offers the 
advantage of rapid unsupervised training. It is also of interest because it is a network 
with radial basis function (RBF) architecture which contrasts with the MLP 
architecture of the networks that have already been mentioned. 

Each network was constructed with 5 inputs and generated a single output which 
represented an estimate of remaining life to failure measured in seconds. The MLP 
networks were each constructed with 5 nodes in the hidden layer such that the basic 
network structure was similar for each of these networks. The size of the hidden layer 
was initially optimized during the first phase through an empirical process where the 
number of nodes in the hidden layer was varied. Table 4.1 gives a summary of the 
different neural networks that were used. 

Table �4.1: Neural network types that were used. 

No. Neural Network Description 

1 MLP neural network with a gradient descent backpropagation training algorithm 
with momentum term 

2 MLP neural network with Levenberg-Marquardt training 

3 MLP neural network with Levenberg-Marquardt training and Bayesian 
regularization 

4 General regression neural network 
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4.2 Pre-Processing and Network Inputs 
The importance of pre-processing for network performance and generalization has 
been discussed in Chapter 2. Numerous options such as grouping, feature extraction 
and the re-scaling of data can be used to transform the raw data in such a way that 
network performance is optimized. 

A static split was chosen as the method for comparing network performance on the 
renewal dataset. This could be done due to the simplicity of the simulated 
maintenance setup in the laboratory, for which there was only one failure mode. The 
lab data collected during testing was split into two groups with nine of the datasets 
used for training and the remaining three comprised the testing set. The first and last 
readings of each test run were discarded as the first reading often still reflected 
transient effects from the starting up process before the system had settled, while the 
last reading was taken after failure.  

Due to the large number of readings in each interval, the first step involved the 
extraction of the data for each interval. Re-scaling of the input data formed the basis 
of the pre-processing that was then performed. The data was first normalized and then 
adjusted to fit into an interval between zero and one. This helped to prevent any one 
input that has a much greater numerical size to the other inputs from dominating 
during training. The use of a sigmoid function in the output layer also requires that the 
outputs used for network training must fall between zero and one.  

variance
average))(input(old

input(new)
−=       (4.1) 

Equation 4.1 returns a range values with a mean of zero and a standard deviation of 
one. A further step is required to adjust the input values to an interval between zero 
and one. This is achieved by using Equation 4.2 to transform the inputs and also the 
single output. 

minimum)(maximum
minimum))(input(old

input(new)
−
−=      (4.2) 

This transformation limits the values of inputs and outputs to a range between zero 
and one where the minimum observed value of all the data is set equal to zero, and the 
maximum observed value equal to one. Such a narrow definition can be made without 
any risk because the absolute minimum and maximum values of all the data which the 
network will encounter are known. The network inputs and outputs will always fall in 
this range 

Once pre-processing of the data had been completed, the training of various neural 
networks could be started. A summary of the inputs used for training of the networks 
is shown on Table 4.2. 
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Table �4.2: Inputs for the neural networks 

No. Neural Network Inputs 

1 Elapsed time of the specific test at the time of the measurement (in seconds) 

2 Initial average load (in Volts) 

3 Initial load range (in Volts) 

4 Change in load range (in Volts) 

5 Change in temperature (in °C) 

 

Elapsed time (Input 1) gives the network an indication of the component’s age and 
allows the network to differentiate between new samples, and samples that have 
already fatigued. It can therefore differentiate between two samples that are subjected 
to the same loading but do not yet exhibit measurable signs of deterioration. 

Longer term predictive capability is given to the network by providing it with 
information about the operating conditions to which the test piece is subjected. The 
initial load average and range (Inputs 2 & 3) define the conditions to which the test 
sample was subjected during testing. The network is therefore trained to differentiate 
between test pieces subjected to higher and lower loading, which is the main 
contributing factor to the rapidity with which failure occurs. 

The changes from initial load and temperature (Inputs 4 & 5) give an indication of 
deteriorating test piece condition and impending failure. Due to the setting of the 
machine, displacement remained constant and load therefore dropped once cracking 
started. Temperature increased substantially as fatigue damage worsened and the 
crack propagated through the test piece.  Adjustments could therefore be made by the 
network to its prediction once overt signs of impending failure become apparent. This 
adjustability allows the network to cope more easily with unexpected events and 
changing conditions.  

It has already been observed that substantial increases in temperature take place as the 
test pieces approach failure. The tests however took place in diverse atmospheric 
conditions during the summer and winter months, meaning that this increase took 
place from a different baseline temperature. Absolute temperatures can therefore not 
successfully be used as a network input. For this reason it was decided to transform 
the temperature reading into a value reflecting the magnitude of the temperature 
change compared to the first reading. In a similar way the change in load range was 
calculated in order to reflect deterioration in the test piece. The testing was done with 
constant displacement amplitude for each test run, and the load therefore changed 
once the test piece started to crack or deform. 
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4.3 Weibull Distribution 
The traditional way of conducting a data analysis on the reliability data originating 
from a renewal system was the fitting of a statistical distribution to such data. This 
technique, described by Coetzee (1997), was therefore chosen to form the basis of 
comparison to illustrate the advantage offered by neural networks. The Weibull 
distribution was consequently fitted to the data of the training set. This particular 
distribution was chosen above other statistical distributions due to its versatility, 
which has been discussed in Chapter 1. 

The parameters to fit the two-parameter Weibull distribution to the data were found to 
be: 

7522.1=β  and 8971=η  

The probability density function, f(x), given in Figure 41 reflects the probability that 
failure will occur at time x in the component’s life. 
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Figure 41: Probability density function 

Figure 42 is the graph of the cumulative failure distribution function, F(x), which 
indicates the probability of a component failing by a certain time x. The cumulative 
failure distribution function is obtained by integrating the probability density function. 
It is noted that the magnitude of F(x) tends to 1 as the value of x tends to infinity, 
which suggests that all units will eventually fail. On Figure 42 the actual failure times 
are plotted against the portion of the total number of units that had already failed by 
that time. 
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Figure 42: Cumulative failure distribution function 

The Weibull parameter � is the scale parameter, which is also referred to as the 
characteristic life. According to Coetzee (1997), 63.2% of components fail before this 
time while 36.8% survive. The use of a statistical distribution means that no specific 
prediction can be made with respect to an individual test piece and the estimated life 
is therefore taken as the characteristic life of the whole population of the training set. 
Table 4.3 illustrates that the actual residual life for the test sets differed substantially 
from the characteristic life that was calculated through this statistical method.  

Table �4.3: Comparison of the actual and estimated values for the residual life of the test data 

No. Data ID Actual Estimated Percentage 
Difference 

1 TSA_22 10283 8971 12.8 % 

2 TSA_24 5772 8971 55.4 % 

3 TSA_26 10103 8971 11.2 % 

 

According to Coetzee (1997), the most useful function to the maintenance practitioner 
is the hazard curve. In this case (see Figure 43), it has a convex shape (see also 
Figure 7) and the hazard rate is seen to be increasing. It would therefore in theory be 
feasible to implement a policy of preventive replacements in this case.  

 
 
 



Machine and Component Residual Life Estimation through the Application of Neural Networks 
 
 

 - 77 - 

0

0.05

0.1

0.15

0.2

0.25

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

x [sec]

h(
x)

 
Figure 43: Hazard curve 

Referring back to the criteria given by Bradley (1993) for effective preventive 
replacement, it was stated that it must be possible to predict the approximate time of 
failure. The test pieces were however subjected to different loading patterns which 
resulted in a corresponding variance in life expectancy. One statistical distribution can 
therefore not provide an adequate representation of the situation that was encountered. 
The results achieved through the fitting of the Weibull distribution show the 
disadvantages of this method when they are compared with the residual life results 
obtained through the use of neural networks which are discussed in the next sections.  
 

4.4 Gradient Descent Backpropagation Algorithm 
The standard backpropagation algorithm was used to train the same network 
architecture with nine different combinations of the learning rate (�) and momentum 
parameter (�). The results, which are tabulated below on Table 4.4, were used to 
select an optimal set of parameters. Training was in each case stopped when an error 
target of 1×10-5 was reached or after 900 epochs. This small training target meant that 
premature termination of training was only achieved with some of the slower training 
algorithms, usually those with a lower learning rate, and they were consequently 
prevented from overfitting and therefore provided a better response to the test data. 

Figure 44 illustrates the rate of convergence of the gradient descent backpropagation 
algorithm with a different combination of training parameters. Oscillations become 
much more pronounced when a higher learning rate is used and training clearly 
becomes much more rapid. Should the learning rate be increased even more, the 
training process becomes unstable, overshoots the target and no convergence on a 
minimum is achieved. The training process must therefore balance the rate of 
convergence with the requirement for stability.  
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Table �4.4: Comparison of training performance using different learning rates and momentum 
constants. 

No. Learning 
Rate (�) 

Momentum 
Constant (ß) MSE Training Set MSE Test Set 

1 0.75 0 0.0220 0.0058 

2 1.50 0 0.0117 0.0175 

3 3.00 0 0.0102 0.0146 

4 0.75 0.5 0.0128 0.0057 

5 1.50 0.5 0.0172 0.0033 

6 3.00 0.5 0.0051 0.0139 

7 0.75 0.9 0.0216 0.0080 

8 1.50 0.9 0.0109 0.0218 

9 3.00 0.9 0.0084 0.0160 
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Figure 44: Comparison of the rate of convergence of the gradient descent backpropagation 
method using a different combination of training parameters. 

It was found that a learning rate of 0.75 and a momentum constant of 0.9 provided 
good results and these constants were used for the comparison with other network 
types and training algorithms. The results obtained after the training of the network 
are listed on Table 4.5 and Table 4.6. 
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Table �4.5: Performance of the GDBP network when presented with the training data. 

No. Data ID Actual Estimated Percentage 
Difference 

1 TSA_2 1685 1348 20.0 % 

2 TSA_3 1083 838 22.6 % 

3 TSA_5 10402 9106 12.5 % 

4 TSA_8 11055 10771 2.6 % 

5 TSA_9 6040 9139 51.3 % 

6 TSA_20 13710 9713 29.2 % 

7 TSA_23 9921 9295 6.3 % 

8 TSA_25 4329 5982 38.2 % 

9 TSA_27 10283 9278 9.8 % 

Table �4.6: Comparison of the actual and estimated values for the residual life of the test data 

No. Data ID Actual Estimated Percentage 
Difference 

1 TSA_22 10102 9174 9.2 % 

2 TSA_24 5591 7542 34.9 % 

3 TSA_26 9923 9521 4.0 % 

 

The training algorithm was stopped early and was not able to accommodate some of 
the more isolated data points in the training set. It was therefore possible to maintain 
improved properties of generalization.  

4.5 Levenberg-Marquardt Algorithm 
Training with the Levenberg-Marquardt algorithm proved much more rapid and a 
much better fit was achieved after less than 300 training epochs. Table 4.7 shows the 
percentage difference between the actual and estimated failure times that where 
achieved with this network when presented with the first recorded inputs after the start 
of the test run. 
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Table �4.7: Performance of the MLP network trained with the Levenberg-Marquardt algorithm 
when presented with the training data. 

No. Data ID Actual Estimated Percentage 
Difference 

1 TSA_2 1685 1646 2.3 % 

2 TSA_3 1083 1035 4.4 % 

3 TSA_5 10402 10284 1.1 % 

4 TSA_8 11055 11177 1.1 % 

5 TSA_9 6040 6229 3.1 % 

6 TSA_20 13710 13058 4.8 % 

7 TSA_23 9921 10370 4.5 % 

8 TSA_25 4329 4481 3.5 % 

9 TSA_27 10283 9958 3.2 % 

 

The neural network’s estimated residual life for the training data was within 5% of the 
actual remaining life of each component (see Table 4.8). The largest error of 449 
seconds, which is the estimate for TSA_23, compares very favourably with the 180 
second interval between measurements which is the band within which the failure 
occurred. The network performance on the training data is therefore a satisfactory 
result. 

Table �4.8: Comparison of the actual and estimated values for the residual life of the test data 

No. Data ID Actual Estimated Percentage 
Difference 

1 TSA_22 10102 9343 7.5 % 

2 TSA_24 5591 4434 20 % 

3 TSA_26 9923 10111 1.9 % 

 

The result obtained by the neural network on data that was not previously seen during 
training was of the same accuracy in two of the cases. The largest error of 20% for 
TSA_24 may indicate some degree of overfitting, as the data from this test piece has 
the least similarity of the three test sets with the training data. 
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4.6 Levenberg-Marquardt Algorithm with Bayesian 
Regularization 
It was expected that the use of Bayesian regularization would address the problem 
with overfitting that was encountered with the network trained with a standard 
Levenberg-Marquardt algorithm.  

From the results which are reflected on Table 4.9 it can be seen that the neural 
network that was trained with Bayesian regularization did not produce such a close fit 
for some parts of the training set as was achieved with the standard Levenberg-
Marquardt algorithm. Especially the estimates generated for TSA_2 and TSA_3 
display a large error. This is expected, as the regularization technique penalises 
training in order to maintain the network’s capability to provide acceptable results for 
new data. It is interesting to note that these two test pieces have a much shorter life 
than the other test pieces and are therefore isolated. The benefit of this regularization 
technique with respect to improved generalization becomes clear when looking at the 
results that were obtained for the test set (see Table 4.10). The largest error in a 
network prediction for the data of the test set was 5.1 %. The prediction of the neural 
network in this case was only 513 seconds adrift of the actual recorded life of 10102 
seconds. The results achieved for all three of the test pieces in the test set was 
therefore very satisfactory and indicated good generalization.  

Table �4.9: Performance of the LMBR Network when presented with the Training Data. 

No. Data ID Actual Estimated Percentage 
Difference 

1 TSA_2 1685 1407 16.5 % 

2 TSA_3 1083 951 12.2 % 

3 TSA_5 10402 10271 1.3 % 

4 TSA_8 11055 10812 2.2 % 

5 TSA_9 6040 5983 0.9 % 

6 TSA_20 13710 13235 3.5 % 

7 TSA_23 9921 9931 0.1 % 

8 TSA_25 4329 4312 0.4 % 

9 TSA_27 10283 10320 0.4 % 
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Table �4.10: Comparison of the actual and estimated values for the residual life of the test data 

No. Data ID Actual Estimated Percentage 
Difference 

1 TSA_22 10102 9589 5.1 % 

2 TSA_24 5591 5392 3.6 % 

3 TSA_26 9923 10232 3.1 % 

 

4.7 General Regression Neural Network 
The setting up of the GRNN is almost instant. This can be ascribed to its adaptation of 
the input vectors for the hidden nodes, and the use of the target vectors as weights in 
the output layer. No supervised training is required in its construction. Network 
performance can therefore only be influenced by changing the value of the spread of 
the radial basis function nodes in the hidden layer. The spread alters the radius of the 
basis functions and therefore determines the amount of overlap amongst the nodes and 
consequently the smoothness of the fit. A number of different spread values were 
tested, and the results are tabulated on Table 4.11. 

Table �4.11: Performance of the GRNN for different spread values. 

No. Spread MSE Training MSE Test 

1 0.01 9.9 × 10-7 0.0030 

2 0.02 3.8 × 10-6 0.0027 

3 0.03 8.3 × 10-5 0.0022 

4 0.04 8.5 × 10-4 0.0026 

5 0.05 2.3 × 10-3 0.0034 

 

Figure 45 illustrates that the larger the spread chosen for the network, the smoother 
the fit. The quality of the fit on the training set reduces, as a number of hidden layer 
neurons start to influence the output for any given input. An increase in spread 
however improves network generalization until an optimal balance is reached. Further 
increase in spread proves detrimental to network performance.  

The results obtained by the GRNN with a spread of 0.03 are listed in Table 4.12 and 
Table 4.13. The estimated residual life for the training data when using a small spread 
value was closer to the actual than was achieved with any of the other networks, using 
the MLP architecture and supervised training. This can be attributed to the way in 
which the GRNN is trained and the insignificant overlapping of nodes with a small 
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radius. An exact fit is expected in this particular case, as the network should respond 
with the expected target vector if provided with a training vector.  
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Figure 45: GRNN response when varying the load amplitude input. 

Table �4.12: Performance of the GRNN when presented with the Training Data. 

No. Data ID Actual Estimated Percentage 
Difference 

1 TSA_2 1685 1685 0.0 % 

2 TSA_3 1083 1067 1.4 % 

3 TSA_5 10402 10402 0.0 % 

4 TSA_8 11055 11048 0.1 % 

5 TSA_9 6040 5948 1.5 % 

6 TSA_20 13710 13422 2.1 % 

7 TSA_23 9921 9947 0.3 % 

8 TSA_25 4329 4277 1.2 % 

9 TSA_27 10283 10079 2.0 % 

 

As was the case with the standard Levenberg-Marquardt algorithm, overfitting 
occurred during the design of the GRNN and a large error in the residual life estimate 
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for TSA_24 was observed. The problem of overfitting in RBF networks can be 
addressed in a number of ways and has been the topic of extensive research. Some of 
these methods have already been briefly discussed in Chapter 2. The application of 
such a method would however negate the GRNN’s main advantage, which is the 
simplicity of its learning process. 

Table �4.13: Comparison of the actual and estimated values for the residual life of the test data 

No. Data ID Actual Estimated Percentage 
Difference 

1 TSA_22 10102 9936 1.6 % 

2 TSA_24 5591 9445 68.9 % 

3 TSA_26 9923 10531 6.1 % 

 

4.8 Discussion 
The results that were achieved proved that neural networks are suitable for use in this 
type of application. Table 4.14 gives an indication of the quality of fit achieved by the 
different networks. The reader is however referred to the set of graphs included in 
Appendix C which show the fit of each neural network in greater detail. These lead to 
a number of interesting observations with respect to the performance of each neural 
network variation.  

Table �4.14: Comparison of the mean squared error (MSE) on the training and test sets of the 
different networks. 

No. Network MSE Training MSE Test 

1 LM with BR 5.7 × 10-5 0.0014 

2 GRNN 8.3 × 10-5 0.0022 

3 LM 8.1 × 10-5 0.0030 

4 GDBP with M 1.9 × 10-2 0.0061 

 

Table 4.15 shows the average prediction error while Table 4.16 gives the maximum 
prediction error of the networks that are compared. When considering these results it 
must be borne in mind that the measurements were taken at intervals of 180 seconds 
and the time of first measurement after failure was used as failure time for the training 
of the neural networks. The actual failure took place within the band spanning the last 
measurement cycle.  

 
 
 



Machine and Component Residual Life Estimation through the Application of Neural Networks 
 
 

 - 85 - 

Table �4.15: Average error in the predictions made by the networks under comparison. 

Network Training Data Test Data 

LM with BR 64 sec. 455 sec. 

GRNN 87 sec. 431 sec. 

LM 84 sec. 616 sec. 

GDBP with M 1370 sec. 841 sec. 

 

Though the GRNN has a lower average error than the other networks, it has the 
highest maximum error. This serves to explain why the MLP network trained with the 
Levenberg-Marquardt algorithm with Bayesian regularization outperforms it in terms 
of the mean squared error. The early stopping of the gradient descent backpropagation 
algorithm meant that higher maximum and average errors were recorded for the 
training set. This phenomenon can be ascribed to the sparseness of the dataset which 
led to isolated data in the problem space. The training algorithm was stopped before it 
could accommodate this data and the network therefore performed well on the test 
data. 

Table �4.16: Largest error in the predictions made by the networks under comparison. 

Network Training Data Test Data 

LM with BR 513 sec. 1065 sec. 

GRNN 411 sec. 3085 sec. 

LM 652 sec. 2185 sec. 

GDBP with M 3997 sec. 1271 sec. 

 

Figure 22 illustrated the effect of overfitting and the discontinuities are generated in 
the response of the network. The ability to generalize for data points that are located 
between those used for training is therefore lost. Great care is required to ensure that 
networks generalize, network complexity is appropriate and tests should always be 
performed with data not seen during training. The best fits on training data are usually 
achieved through overfitting. Lack of generalization may also be an indication that the 
network architecture is too simple. 

All the neural networks performed very well on the data for TSA_26, probably due to 
its closeness to TSA_27.  The data for TSA_24 showed the greatest variation from 
anything the network had seen before, and proved to be the greatest test of each 
network’s ability to generalize. The advantage of using Bayesian Regularization to 
improve the network’s ability to generalize is clearly illustrated when comparing the 
graphs of results relating to the series of data for TSA_24.  
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The graphs in Appendix C for the GRNN are not as smooth as those obtained with 
MLP networks. Especially the jagged shape of graph for TSA_22 illustrates the 
“local” nature of RBF networks compared with the “global” nature of MLP networks. 
This property may adversely affect network performance, should the information for 
one of data points that are used for training be corrupt. Greater overlap of the RBF 
nodes will counteract this situation by smoothing the transition between kernels. 

The estimated residual life for the training data when using a GRNN with a small 
spread value was closer to the actual than was achieved with any of the other 
networks, using the MLP architecture and supervised training. This can be attributed 
to the way in which the GRNN is trained and the insignificant overlapping of nodes 
with a small radius. An exact fit is expected in this particular case, as the network 
should respond with the expected target vector if provided with a training vector. As 
was the case with the standard Levenberg-Marquardt algorithm, overfitting occurred 
during the design of the GRNN and a large error in the residual life estimate was 
observed for one of the test pieces.  

The gradient descent algorithm was found to be significantly slower than the 
Levenberg-Marquardt algorithm. This is shown on Figure 46, which illustrates the 
advantage of using the second order above the first order method. The advantage of an 
unsupervised training process which was mentioned in the literature was proven by 
the speed with which the GRNN could be trained. Network learning in this case 
proved to be instantaneous.  
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Figure 46: Graph comparing the rate of convergence of the steepest gradient backpropagation 
and Levenberg Marquardt algorithms. 

The method of normalization (Equation 4.2) which was chosen for the re-scaling of 
input and output data limits the inputs and outputs of the network to a predetermined 
range of values. The extreme values of this range are chosen before the training of the 
network commences. For the present purpose this method is completely satisfactory 
as the extreme values of the entire dataset are known and could therefore be used. In a 
practical situation where a neural network is used to predict residual life of actual 
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components, this is generally not the case. There is a possibility that future 
measurements may fall outside the range which was used during training. The method 
discussed above would therefore become unsuitable and the network in question 
would provide meaningless outputs. A different method may therefore be required 
when re-scaling inputs and outputs in practice. 

The smallness of the dataset’s size did prove to be a problem. Testing was however a 
time consuming process, which limited the number of test runs that could be executed. 
Due to the long time span of the testing, continuity was lost, creating a dataset that 
was not structured as well as it could have been. There is little chance of the neural 
network generalizing to such an extent that a completely isolated test sample can be 
accommodated. 

The definition of a baseline for a particular measurement proved to be important for 
this application. It allows the results of tests performed under different conditions to 
be used together in the training of the same neural network. In this case, where the 
practical difficulties led to testing being stretched over a long period, this is especially 
true. Temperatures and machine settings varied greatly. Lab ambient temperatures 
could differ by ±7 degrees during the day. Testing also spanned the summer and 
winter months, generating further variance. Though the change in ambient 
temperature had no effect on the life of the test pieces it would have been beneficial if 
ambient temperature had also have been measured at intervals during testing to 
facilitate the processing of data. 

Table 4.17 indicates the accuracy of life predictions on the test set which were made 
by the different methods with the data available at the start of the various test runs. 

Table �4.17: Accuracy of predictions for the test data with initial measurements recorded at the 
start of the experiments. 

Approach Type Results for the 
Test Data 

Statistical Weibull 11.2% – 55.4% 

Neural Network GDBP with M 4.0% - 34.9% 

Neural Network LM 1.9% - 20% 

Neural Network LM with BR 3.1% - 5.1% 

Neural Network GRNN 1.6% - 68.9% 

 

The results prove that neural networks can be successfully employed to make 
reliability predictions for a renewal system. When presented with the first set of 
measurements collected after the start of a test run, all the neural networks generated 
predictions which were more accurate than the results obtained through the traditional 
statistical method of fitting a Weibull distribution to the failure data. Especially the 
accuracy of the predictions made by the MLP trained with the Levenberg-Marquardt 
algorithm with Bayesian regularization would be suitable for the making of 
maintenance decisions in the context of the simulated situation. 
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Chapter 5: Repaired Systems 

In the previous chapters it was described how neural networks were used to make 
failure predictions for a simple maintenance situation simulated in a laboratory 
environment. The life of each separate test piece was independent of the others and 
the series of tests therefore generated a dataset for which the renewal assumption is 
true.  

Though individual components are discarded upon failure, the system of which they 
form part may be repaired during its life through the replacement of the damaged 
units. Because such repair is common practice, it would be desirable to extend the 
analysis of data to complete repaired systems. 

The application of reliability data analysis techniques requires meaningful data and 
the testing of such analysis methods is dependent on the finding of a suitable and 
representative dataset. Such datasets, particularly for repaired systems where the 
renewal assumption is not likely to be true, are unfortunately hard to find. Pijnenburg 
(1991) comments on the extreme rarity of repairable systems datasets given in 
literature, where the failure times are listed in original chronological order. Ascher 
and Feingold (1978) could apparently only find four such sets. Trend tests cannot be 
performed on data if the sequence in which the failures took place is not known 
because no record was kept of the global time of failure. In such cases no information 
is available to ensure the correct choice of model, as it is impossible to establish what 
influence failures exert on the future reliability of the system and what contribution 
they have on the survival time to the next failure. In their paper, Leung and Cheng 
(2000) highlight the problem of insufficient data, and how it contributes to making 
statistical analysis difficult. Vlok (2001) confirms this view, commenting that the 
dataset he used had many shortcomings, such as missing observations and irregular 
inspection intervals, but notes that it was the best example available to him, even after 
an extensive search. 

The process of finding data suitable for this project was faced with a similar problem. 
It was found that the data that was made available was generally flawed, difficult to 
extract, incomplete and therefore usually not suitable for analysis. The duration over 
which readings were taken was insufficient, usually only for two life intervals and the 
data in each case was almost exclusively censored in some way with little information 
to assist the analyst. In the light of these difficulties in finding a new dataset, the 
decision was made to use the existing data which had been previously collected by 
Vlok (2001) for the purpose of this work. 

5.1 Description of the dataset 
In this project the use of neural networks is investigated as an alternative to statistical 
methods that have been used for reliability data analysis. The application of the 
generic regression models as proposed by Vlok (2001) has been discussed in 
Chapter 1 and is of particular interest. In his work he attempted to combine the 
benefits of failure data analysis and condition monitoring in order to improve his 
residual life predictions. 
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The dataset used by Vlok (see Appendix C) was obtained from the Sasol Twistdraai 
mine plant. Measurements were taken on 8 identical Warman pumps which are used 
to circulate a water and magnetite solution within the plant. All these pumps therefore 
operated under more or less similar conditions. Measurements were unfortunately 
only taken sporadically and the dataset therefore has very few data points.  

The measurements taken on the pumps were exclusively vibration readings, for which 
a spectral analysis was performed and a number of fault frequency bands (see 
Table 5.1) were monitored. Readings were taken at both bearings in each pump. 

Table �5.1: The vibration frequency bands which were monitored on each of the pumps. 

Measurement 
ID 

Vibration 
sensor location Frequency band description 

RF043H Wet-end bearing 0.4 × rotational frequency 

RF13H Wet-end bearing 1 × rotational frequency, indicative of pump unbalance. 

RF23H Wet-end bearing 2 × rotational frequency, indicative of shaft 
misalignment. 

RF53H Wet-end bearing 5 × rotational frequency, indicative of cavitation. 

RF044H Dry-end bearing 0.4 × rotational frequency 

RF14H Dry-end bearing 1 × rotational frequency, indicative of pump unbalance. 

RF24H Dry-end bearing 2 × rotational frequency, indicative of shaft 
misalignment. 

RF54H Dry-end bearing 5 × rotational frequency, indicative of cavitation. 

 

Vlok identifies four main failure modes for these particular pumps namely: 

1) Complete bearing seizure 

2) Broken or defective impeller 

3) Damaged or severely eroded pump housing 

4) Broken drive shaft 

No information is contained in the dataset with regards to the cause of failure or the 
reason for a condition based suspension and overhaul. Vlok states that alarm levels 
were used as prescribed by the pump manufacturer, but these values are not given.  

During the 791 day window from the initial installation of the eight pumps, pump 
operation was suspended 8 times due to condition based warnings, while 11 failures 
were recorded. The surprisingly high percentage of failures can possibly be blamed on 
the inconsistent application of the condition based policy and long measurement 
intervals. Even though the data was apparently collected from the start of each pump’s 
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life, the vibration measurements were taken extremely infrequently. Vlok (2001) does 
note that some of the failures occurred suddenly, with the deterioration taking place 
within a matter of hours. Clearly it is difficult to predict such a sudden deterioration 
with the information that is available. From the random nature of measurements, it 
appears that the final measurement ahead of the suspension of a pump’s operation 
may have been prompted by clearly observable external signs of pump deterioration.  

The dataset is right censored, with data collection ending at a particular date. The data 
which was collected between the last pump failure and the time suspensions can be 
used if additional work is done to estimate survival times, but this would have 
increased the complexity of the problem. Though such an approach may be feasible in 
practice, the small increase in size of the dataset was not deemed worthwhile for the 
purpose of this work. 

Of the 8 pumps, 3 units experienced only one failure, 2 units failed twice while 3 units 
each failed four times. On average the pumps lasted 469 days to the first failure or 
preventive intervention. This can be compared with an average of 134 days, 103 days 
and 137 days to the second, third and fourth failure respectively. Reliability therefore 
deteriorated dramatically after the first failure indicating imperfect repair. A further 
pattern was observed with regards to the time to first failure which allows the 
subdivision of the pumps into two groups. Pumps which failed the first time after 
more than 500 days tended to fail only once or twice during the period in question. 
The remaining units averaged 357 days to first failure and each failed four times 
within the time window.  

5.2 Comparison of neural networks and statistical methods 
Amongst the measurements that were taken, the most significant covariates had 
previously been selected by Vlok (1999) using the same source of data. During this 
process of elimination, two measurements which provided the best results were 
singled out for use in the proportional intensity models that he generated. The 
covariates both represented the level of vibration in the fault frequency band at four 
times running speed, measured horizontally on the bearings. The purpose of this 
particular measurement in a condition monitoring context is to serve as an indicator 
for the occurrence of cavitation within the pump. This data is given in Appendix C, 
Table C2.  

Vlok used the Laplace trend test on the failure data of each particular pump to 
establish if there was a trend in the failures. Due to the shortage of information, only 
the data of three of the eight pumps could be tested for trends. The data that could be 
tested was found to display reliability degradation. As a result of this finding, Vlok 
applied the proportional intensity model that he had developed for the repairable case.  

Parametric approximations were generated for each of the chosen covariates, and 
polynomials of up to the 3rd order where fitted for each individual pump life, in terms 
of system (global) time. Dependent on the nature of the model, different combined 
proportional intensity models were fitted with Snyman’s method or with the modified 
Newton-Raphson technique for parameter estimation. A total of 5 different variations 
of his combined model for repairable systems were eventually tested and compared.  

The conventional NHPP model was used as a benchmark for testing the four more 
advanced models. Two of the models performed worse than the benchmark. The 
multiplicative intensity model with stratified regression coefficients resulted in the 
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highest sum of squared errors. The conventional model modified with stratified 
jump/setback coefficients proved to result in the largest confidence bound. An 
additive intensity model using the NHPP as baseline function and stratified regression 
coefficients showed an improvement over the conventional model. The best results 
were achieved with an additive intensity model with a time jump/setback in the 
baseline and stratified regression coefficients. For the purposes of comparison with 
neural networks, it was decided to use the NHPP model, as well as the advanced 
model which had provided the best results. 

It was mentioned in the previous chapter that a MLP neural network platform, using a 
Steepest Gradient Backpropagation algorithm with momentum, was written for this 
project using Microsoft Excel software with VBA routines. This network was trained 
on combinations of inputs generated from the available data. A number of training 
runs were performed with these input combinations, but in the interest of simplicity 
and clarity, three variations where chosen for inclusion and are discussed in greater 
detail.  

The first network was trained on basic failure time information only, to generate a 
baseline for measuring the performance of the other networks. The second variation 
was trained with an additional explanatory variable to explore the benefits of using 
covariates as part of such an analysis. The final case that was looked at used 
information gathered from vibration measurements to further improve the accuracy of 
the prediction, and to look at a practical application of such a network.  

5.2.1 Case 1 Trained with failure time data 
The basic network consisted of two input nodes, a hidden layer with two nodes, and a 
single output node. The life of each pump is broken into intervals, bounded by failures 
or termination.  

The first input to the network is taken to be the age of the pump, at the start of the life 
interval in question. During pre-processing, the age of the pump which is expressed in 
days, was divided by a thousand in order to arrive at a number between zero and one. 
In this way the inputs were adjusted for use in the network. Amjady and Ehsan (1999) 
transformed their input domain in a similar way by using a pre-processing procedure 
which performed a linear mapping. They state that a range of [-1, 1] for input features 
and [0, 0.9] for output features provided the desirable results.  

The second input is the interval number of the data point, with the numbering starting 
at one, divided by 10. This transformation is very simple, but was found to produce 
satisfactory results. 

5.2.2 Case 2 Trained with an explanatory variable based on MTTF  
Case 2 tested the effect of an additional explanatory variable on the quality of the fit. 
Apart from the two inputs already used for Case 1, a third input was added. A 
covariate was generated which had a direct relationship with the failure times of the 
pumps. To generate this covariate, the average time to failure was calculated for each 
pump and the pumps were then classified into one of two groups, depending on the 
calculated value. The two groups were each given a unique numerical value between 
zero and one that was used as an input to the network. These values were chosen in 
such a manner that they allowed the network to differentiate between the groups, 
without having a negative effect on the network’s stability.  
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5.2.3 Case 3: Trained with two Vibration Covariates 
The last case under investigation used a neural network with four inputs. The two 
inputs of Case 1 were combined with two inputs that were calculated from the 
polynomial curve fits that were made by Vlok on the vibration covariates that he had 
selected. The functions were evaluated at 21 days after start-up in global time. The 
network was optimized by trial and error, with the best results being achieved with an 
architecture containing three hidden nodes. The training of the third network required 
a longer training period of about 600 cycles to converge on a global minimum. 

5.3 Results 
A set of radar plots has been generated to allow the results achieved by the different 
models to be compared.  The predicted and actual failure times at the start of each life 
interval are shown on the graphs. 

The basic neural network (Case 1, see Figure 47) closely matched the fit achieved 
with the NHPP model (Figure 48) of Vlok (1999). This result was expected, as these 
models were generated with similar inputs and did not cater for the use of covariates.  
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Figure 47: Results achieved with a Neural Network without covariates (Case 1) 
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Figure 48: Graph showing the fit for NHPP model without covariates or stratifications  

With an additional input available for training, chosen on the basis of average time to 
failure for the given pump, a significant improvement could be achieved in the 
performance of the MLP neural network (see Figure 49). If the radar charts of the 
Case 1 and Case 2 are compared, it can be seen that the network with an additional 
explanatory variable has much greater flexibility when fitting the data and therefore 
produces a better result.  

Chart showing Quality of Fit

0 days

100 days

200 days

300 days

400 days

500 days

600 days

700 days

800 days

900 days
Pump No.1 Life No.1

Pump No.2 Life No.1

Pump No.3 Life No.1

Pump No.4 Life No.1

Pump No.5 Life No.1

Pump No.6 Life No.1

Pump No.7 Life No.1

Pump No.8 Life No.1

Pump No.1 Life No.2

Pump No.2 Life No.2

Pump No.3 Life No.2

Pump No.4 Life No.2

Pump No.5 Life No.2
Pump No.6 Life No.2Pump No.7 Life No.2

Pump No.8 Life No.2

Pump No.1 Life No.3

Pump No.2 Life No.3

Pump No.3 Life No.3

Pump No.5 Life No.3

Pump No.8 Life No.3

Pump No.1 Life No.4

Pump No.2 Life No.4

Pump No.5 Life No.4

Pump No.1 Life No.5

Pump No.2 Life No.5

Pump No.5 Life No.5

Actual Case 2: Failure  
Figure 49: Results achieved with a neural network using a covariate which classifies the pumps 
according to the average failure time of each pump (Case 2) 

This added flexibility is especially illustrated by the network predictions made for the 
interval leading up to the first failure of each pump. For Case 1, both network inputs 
would be the same for all the pumps, as the pumps start their life at zero. The basic 
neural network could therefore not be able to differentiate in any way between the 
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different pumps and therefore produces a prediction that is the average value for this 
input combination.  

This situation also applies for the NHPP model. With the addition of the covariate, the 
pumps are subdivided into two groups, and hence it is made possible to get two 
different outputs for the first lifetime estimation. The network is therefore tailored 
during the learning process, to make classification according to these groups, and it is 
able to generate a closer fit for the data falling within each category. In practice 
condition monitoring data would perform the function of allowing the network to 
differentiate between cases subject to different operating conditions or suffering from 
different failure modes. 

The network using the vibration data (Case 3) proved to have even greater flexibility 
than the network trained with the Case 2 inputs. This is reflected in the radar chart 
(Figure 50) plotted for its predictions. It has the freedom to generate individual 
outputs for each of the pumps, which is especially noticeable during their first life 
interval, when compared with the other models. The results obtained with this 
network closely approach the results of the best fit achieved by Vlok with regression 
models (Figure 51). 
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Figure 50: Results achieved with a neural network using two covariates reflecting vibration 
readings (Case 3) 
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Figure 51: Graph showing the fit for an Additive Intensity Model with a time jump/setback in the 
baseline and stratified regression coefficients 

The sum of squared errors are tabulated on Table 5.2 to display the fit achieved with 
each of the various methods for the first measurements of each interval.  

Table �5.2: Comparison of the Results 

No. Model / Neural Network ΣΣΣΣ (error)² 

1 NHPP (Vlok) 2.79×105 

2 Case 1: Failure Time Data 2.32×105 

3 Case 2: MTTF Classification 1.36×105 

4 Case 3: Vibration Covariates 8.36×104 

5 
Additive intensity model with a time 
jump/setback in the baseline and stratified 
regression coefficients (Vlok) 

7.76×104 
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The results that were achieved through the use of neural networks are very similar to 
those previously achieved by Vlok. Figure 52 shows a comparison of the errors in the 
prediction made by the different methods. For greater clarity, the calculated errors 
were sorted numerically and plotted in ascending order.  
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Figure 52: Comparison of the Performance of the Different Methods. The errors are sorted 
numerically and are plotted in ascending order from left to right. 

5.4 Network comparison by cross-validation 
The goal when training a neural network is not to achieve the smallest error on the 
training data, but to build a mathematical model of the process that generates the data. 
In the previous section network generalization was not tested, as only the goodness of 
fit achieved by various statistical and neural network methods were compared.  

If the data is generated by a reliable physically based model, Schenker and Agarwal 
(1996) regard such a statistical comparison as sufficient.  This is not the case with this 
dataset and further testing is required to test the neural networks’ ability to generalize 
adequately for data that was not seen during training.   

The sparseness of the dataset does not allow for a separate test set and it was therefore 
decided to use cross-validation to test the performance of different network designs.  

5.4.1 Neural networks, training and cross-validation 
For the purpose of cross-validation the dataset was broken into 8 groups, each of 
which represented the data from one of the pumps. In their work, Schenker and 
Agarwal (1996) make the assertion that individual runs should not be split when using 
cross-validation as it would violate the assumption that the test and training sets are 
independent. The total life of each pump was therefore deemed to be one run and the 
data was grouped accordingly. Further, it was decided to deviate from the approach 
which was used by Vlok which involved the fitting of polynomials to data of the 
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various pumps. The use of actual readings instead of values generated from a function 
fitted to the data was deemed to be a more realistic approach when contemplating the 
use of such analysis in practice.  

The actual data was consequently pre-processed in a similar way to the methodology 
which has already been described in Chapter 4. It was found that the high values 
measured at an advanced stage of deterioration led to a distortion in the normalized 
data inputs which were used to train the neural networks. The neural networks became 
insensitive to the small changes which occur at the initial stages of deterioration. As 
the aim of this work is not to prove the use of condition based maintenance, but to 
improve longer term predictions of expected life, the readings taken during the last 
week before the occurrence of failure were discarded. This decision led to an 
improvement in the accuracy of predictions at earlier stages of deterioration.  

On the basis of the performance of the neural networks which were trained with the 
renewal dataset, it was decided to focus on the network types (see Table 5.3) that 
could be trained more rapidly, as cross-validation involves the time consuming 
repetition of network training. The standard Levenberg-Marquardt algorithm, the 
Levenberg-Marquardt algorithm with Bayesian regularization and the GRNN were 
therefore chosen for comparison. 

Table �5.3: Summary of the network types that were compared. 

No. Neural Network Description Abbreviation 

1 MLP neural network trained with Levenberg-
Marquardt algorithm; 

LM 

2 MLP network trained with Levenberg-Marquardt 
algorithm using Bayesian regularization 

LMBR 

3 General regression neural network GRNN 

 

The use of a greater number of network inputs representing condition based 
information is expected to improve the network’s ability to make accurate predictions. 
To test this hypothesis, each of the neural network layouts was trained with three, four 
and five inputs. The first set of training runs were done with the elapsed time since 
installation, the elapsed time since the last failure and a covariate that can be 
described as a risk variable, which is dependent on the history of the pump. Two 
further training runs were completed first with one and then with two additional inputs 
which each represented the average value of the vibration response amplitude in a 
chosen frequency band for the measurements on the two bearings. The second set of 
training runs was therefore done with inputs 1 to 4 and the third training run with 
inputs 1 to 5 on Table 5.4, which gives a summary and brief description of the inputs 
which were used for neural network training. 
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Table �5.4: Inputs for the neural networks. 

No. Neural Network Inputs 

1 Elapsed time since the installation  (in days) 

2 Elapsed time since the last failure (in days) 

3 Risk variable R 

4 Average of RF53H and RF54H (in mm/s) 

5 Average of RF043H and RF044H (in mm/s) 

 

The dataset size which was used for cross-validation contained 53 data points. Once 
this was subdivided into groups, the largest group contained 13 data points which 
meant that smallest training set would contain 40 data points. The maximum number 
of hidden nodes in a MLP network with five inputs was therefore limited to 5, in order 
to prevent ill-conditioning as per the discussion in Chapter 2. 

The dataset originates from a repaired system and its reliability is therefore affected 
by previous failures and repair.  The influence of these factors must be taken into 
account even though not much of this information was recorded. Vlok (1999, 2001) 
states that alarm levels were used as prescribed by the pump manufacturer, but these 
values are not given and the cause of failure or the reason for a condition based 
suspension and overhaul was not indicated. An empirical risk variable was 
consequently based on the observed pattern which indicates that pumps that required 
an early repair tended to fail more frequently. For the data collected before the 
occurrence of the first failure, the risk variable R is set equal to 1. After the first 
failure, Equation 5.1 is used to calculate the value of R. 

2
1

2
1 �

	



�
�


=
T
T

R          (5.1) 

The risk variable R is therefore reduced to 0.5 immediately after the first failure and 
its value decreases at a rate dependent on T1 which is the time to the first failure. T is 
the elapsed time since the initial installation of the pump unit. A large value of R 
therefore corresponds to a low risk of failure, while a small value indicates a high risk. 
It takes into account the significant reduction in reliability after the first failure and 
the characteristic of a high failure rate in cases where an early first failure is recorded. 

The hidden nodes of the MLP networks were varied according to the number of inputs 
that were presented to the networks to test the effect of such changes in network 
structure on network performance. Training was firstly done for networks with the 
same number of inputs and hidden nodes. A second training run was then performed 
with a hidden layer that had one node more than the input layer. MLP networks with 6 
hidden nodes could however not be trained with 5 inputs due to ill-conditioning. The 
dataset size which was used for cross-validation contained 53 data points. Once this 
was subdivided into groups, the largest group contained 13 data points which meant 
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that the smallest training set would contain 40 data points. The maximum number of 
hidden nodes in a MLP network with five inputs was therefore limited to 5, in order to 
prevent ill-conditioning as discussed by McKeown et al. (1997), because the number 
of variables in the network exceed the number of inputs. The networks all generated a 
single output which was a prediction of the remaining life until the next failure of the 
pump.  

5.4.2 Levenberg-Marquardt Algorithm 
The neural networks trained with the Levenberg-Marquardt algorithm used nodes 
with the log-sigmoid transfer function in both the hidden and output layer. During 
initial training with a small mean squared error training target of 1×10-5 it was found 
that overfitting occurred and the neural networks failed to generalize on the test data. 
A series of training runs with a range of different training targets were consequently 
performed in order to improve generalization by an early termination of the training 
process. Table 5.5 lists the training targets that were used for this purpose. 

Table �5.5: List of training targets which were used to stop the training of the Levenberg-
Marquardt algorithm. 

No. Training Targets 

1 0.05 

2 0.025 

3 0.01 

4 0.005 

5 0.00001 

 

The complete results achieved with the various MLP networks trained with the 
Levenberg-Marquardt (LM) algorithm are given in Appendix D. In summary, Table 
5.6 shows the five best and Table 5.7 the five worst results achieved with these 
networks. Please note that the target values refer to the normalized output values, 
while the sum-of-squares error is calculated from an error value in days. 
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Table �5.6: The best results achieved with the Levenberg-Marquardt training algorithm. 

No. Network 
Architecture Inputs Target ΣΣΣΣ (error)² 

1 5 hidden nodes 5 0.05 2.70×105 

2 5 hidden nodes 4 0.025 2.85×105 

3 4 hidden nodes 4 0.025 2.90×105 

4 3 hidden nodes 3 0.05 2.92×105 

5 4 hidden nodes 4 0.05 2.92×105 

 

The smallest error on the test data was achieved with the larger target values 5×10-2 
and 2.5×10-2. The comparatively small error on the training data indicates that the 
training algorithm was stopped before the overfitting which characterised the results 
on Table 5.7 could occur. 

Table �5.7: The network results with the largest error after training with the Levenberg-
Marquardt algorithm. 

No. Network 
Architecture Inputs Target ΣΣΣΣ (error)² 

21 3 hidden nodes 3 0.00001 4.32×105 

22 4 hidden nodes 3 0.00001 4.45×105 

23 4 hidden nodes 3 0.01 4.49×105 

24 5 hidden nodes 5 0.01 4.99×105 

25 5 hidden nodes 5 0.00001 5.31×105 

 

The network error usually did not reach the smaller target values of 1×10-2, 5×10-3 
and 1×10-5 and the training process was therefore terminated once the preset limit of 
100 epochs was reached. These networks consequently suffered from overfitting and 
failed to perform well on the test data.  

The effect of changing the size of the hidden layer and the number of inputs is 
affected by the early stopping of the training process and no clear pattern emerges. 
While an additional node in the hidden layer was beneficial when training towards an 
error target of 2.5×10-2, it seemed to be detrimental when training with a target value 
of 5×10-2. It does appear that a greater number of inputs generally improved the 
performance of these networks, but the result is not conclusive. 
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5.4.3 Levenberg-Marquardt Algorithm with Bayesian 
Regularization 
The MLP neural networks which were trained with the Levenberg-Marquardt 
algorithm with Bayesian regularization (LMBR) yielded similar results to those which 
were trained for the optimal duration with the standard Levenberg-Marquardt 
algorithm.  In this case the Bayesian regularization prevented overfitting during 
training, thereby improving the network’s ability to generalize. 

The log-sigmoid transfer function was used for the nodes in the hidden layer of these 
networks, while two different transfer functions were utilized in the output layer. 
Table 5.8 gives a summary of the results that were achieved with the neural networks 
trained with the Levenberg-Marquardt algorithm with Bayesian regularization. 

Table �5.8: Levenberg-Marquardt algorithm with Bayesian regularization. 

No. Network Architecture Inputs ΣΣΣΣ (error)² 

1 5 hidden nodes, linear output node 5 2.81×105 

2 5 hidden nodes, sigmoid output node 5 2.90×105 

3 5 hidden nodes, linear output node 4 2.95×105 

4 4 hidden nodes, sigmoid output node 4 3.06×105 

5 5 hidden nodes, sigmoid output node 4 3.07×105 

6 4 hidden nodes, linear output node 4 3.15×105 

7 4 hidden nodes, linear output node 3 3.26×105 

8 3 hidden nodes, linear output node 3 3.35×105 

9 3 hidden nodes, sigmoid output node 3 3.52×105 

10 4 hidden nodes, sigmoid output node 3 3.52×105 

 

The results reflected on Table 5.8 show that the choice of transfer function of the 
output node exerted a much greater influence on the performance of the network than 
the variation in the number of nodes in the hidden layer. Another observation that can 
be made is that in this case additional input information clearly led to more accurate 
predictions.  

5.4.4 General Regression Neural Network 
The GRNN networks were trained with RBF neurons with different sensitivities for 
the purpose of selecting an optimal value for this parameter. Table 5.9 reflects the 
results for the networks with values of 0.1 and 0.05 for the spread parameter.  
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In contrast to the other network types, the best results with GRNN were achieved with 
four inputs while the increase in input space to five inputs led to overfitting. The 
consequence of an increase in the number of inputs to such a network is that the 
outputs of the nodes are influenced by a greater number of variables and hence they 
become more sensitive to a particular combination of input values. Once this 
sensitivity becomes too great the network starts to loose its ability to generalize. For 
this reason, the general regression neural networks did not respond well when 
presented with five inputs. 

Table �5.9: Cross-validation for GRNN 

No. Network Architecture Inputs ΣΣΣΣ (error)² 

1 Spread = 0.1 4 3.00×105 

2 Spread = 0.05 4 3.32×105 

3 Spread = 0.1 3 3.56×105 

4 Spread = 0.05 3 3.72×105 

5 Spread = 0.1 5 3.72×105 

6 Spread = 0.05 5 4.17×105 

 

Two different values were used for the spread in the GRNN’s and it was found that 
the less sensitive networks with a spread of 0.1 generally achieved the better results. 
The decreased sensitivity achieved with a larger radius for the basis function led to a 
reduced the degree of overfitting in the network. 

The ease of implementation of the GRNN was again illustrated. The construction of 
this type of network is instant as no weight adjustments take place through the 
implementation of a backpropagation algorithm. By varying the sensitivity of the RBF 
neurons, adjustments can be made to optimise the network’s ability to generalize. An 
optimal network can therefore be rapidly found through the implementation of cross-
validation. 

5.5 Discussion 
The usefulness of neural networks as an alternative to statistical methods with respect 
to the estimation of residual life to failure of repairable systems was already proved in 
the first part of this chapter. When testing network generalization by using cross-
validation, the best results obtained with the various neural networks were very 
similar once these networks had been optimized with respect to this particular dataset. 
Table 5.10 gives a comparison of the best results achieved with each network type. A 
further graphic representation of the results achieved by the different neural networks 
is given in Appendix E.  

 
 
 



Machine and Component Residual Life Estimation through the Application of Neural Networks 
 
 

 - 103 - 

Table �5.10: Comparison of the best results achieved by the different network types. 

No. Network 
Architecture ΣΣΣΣ (error)² 

1 LM 2.70×105 

2 LMBR 2.81×105 

3 GRNN 3.00×105 

 

The comparison of the different networks by cross-validation was only based on the 
relative size of the sum-of-squares error obtained on the test data. If the suitability of 
the applied method is to be judged, the results must also be viewed in the context of 
the practical application. Figure 53 shows the distribution of the error magnitudes of 
the failure estimates for the networks of each type which provided the best results on 
the test data. It was found that number of very large prediction errors were made by 
the networks which far exceeded the actual remaining time to failure of a specific 
pump. The isolated points on Figure 54 serve to illustrate this problem. The average 
prediction error of the networks if the ten worst predictions are excluded is 39.8% for 
the LMBR network, 33.2% for the GRNN and 41.7% for the LM network. These 
averages correspond to the first peak seen on Figure 53.   
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Figure 53: Comparison of the results obtained with the different neural networks in terms of 
percentage prediction error of the actual remaining life. 

The nature of this result indicates that the networks have been able to model some but 
not all of the significant properties of these complex pump systems. When seen in the 
context of its intended application, the results therefore represent a positive point of 
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departure. An average prediction error of 40% is too large and does not allow these 
networks to be used for the making maintenance decisions while in their current form. 
It can therefore be said that the complexity of the problem requires a larger and more 
descriptive dataset for training of neural networks if more accurate results are to be 
obtained. 

A key element in the successful practical application of neural networks is to find 
suitable covariates that will allow the network to differentiate between different 
scenarios and failure modes. The smallness of the dataset also has the result that part 
of the data in the test set will in some cases be significantly different to the data with 
which the network was trained. The network is therefore unable to deal with the data 
correctly and produces a spurious result. The dataset used by Vlok (1999, 2001) is not 
ideal for this purpose due to its sparseness and it is not believed that much more could 
be achieved with regards to failure prediction in view of the given data.  

Despite these deficiencies it was proved that it is possible to combine the advantages 
of failure time data analysis and condition monitoring in a neural network platform to 
make more accurate predictions.  
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Figure 54: Cross-validation results achieved with a MLP neural network with 5 inputs, 5 hidden 
nodes and an output node with a linear transfer function, using the Levenberg-Marquardt 
training algorithm with Bayesian regularization. 

One has to bear in mind the limitations imposed on residual life predictions by the 
unpredictability of operations in a real life plant. The covariates chosen as inputs to a 
neural network must reflect the failure modes of the system. If a failure cannot be 
traced by one of these inputs, it will be impossible for the network to predict more 
accurately when the machine will fail. The results achieved here can therefore be seen 
as a conditional success in terms of the use of neural networks for this application. 
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Chapter 6: Closure 

The advent of preventive maintenance increased the need for reliability information 
and led to the development of data analysis techniques for the purpose of residual life 
estimation. This work initially centred on probabilistic models which were fitted to 
failure time data but researchers have more recently investigated the use of regression 
models which allow explanatory variables to be incorporated. Condition based data is 
commonly available and can be used for this purpose and was found to enhance the 
accuracy of predictions. 

Neural networks have been used previously for maintenance related applications, but 
their use has not yet been fully explored. They can learn the underlying relationship 
between various inputs and outputs and are therefore ideally suited for making 
predictions with respect to complex systems. In order to build upon the work done 
with regression models, the neural networks were designed to exploit the advantages 
offered by incorporating explanatory variables into the training process. Such data 
formed an integral component of the work and it was found that the use of covariates 
containing historic information and condition data helped to improve the accuracy of 
the predictions that were made.  

The use of neural networks for making of failure predictions for both renewal and 
repaired cases was investigated. The estimates made by the networks with respect to 
the simulated renewal system proved to be very accurate, with the average error 
varying between 431 seconds and 841 seconds for the different neural network types. 
This compares well with the measurement interval of 180 seconds which was used. It 
was shown that much greater accuracy could be achieved with neural networks than 
through the use of the common probabilistic technique which involves fitting of a 
Weibull distribution to the failure time data. The performance of the neural networks 
were compared with this statistical method on the basis of predictions that were made 
when the networks were presented with the first set of values measured on the test 
pieces allocated to the test set. The MLP neural network trained with the Levenberg-
Marquardt algorithm using Bayesian regularization did not exceed a prediction error 
of 5.1%. In comparison, the error of life estimates made using the Weibull distribution 
ranged between 11.2% and 55.4%.  The predictions obtained with neural networks for 
the repaired system also compared very well with the results from the previous work 
done by Vlok (2001) using regression methods. 

The failure predictions for the repaired systems were hampered by the combination of 
the system’s complexity and the sparseness of the dataset. The sparseness of the 
dataset limits the number of inputs that can be used for MLP networks and also means 
that the input space is poorly mapped. Repaired systems have multiple life intervals 
that are not independent and are subject to numerous failure modes which place a 
severe challenge on the analyst. The small number of inputs and poorly mapped input 
space meant that the explanatory information proved to be insufficient for the network 
to accurately model the system and large errors were recorded on some of the test 
data.  

The difficulties encountered in the prediction of residual life for the repaired system 
have highlighted some areas that require further investigation. Research should focus 
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on quantifying the factors that significantly influence equipment life but are hard to 
measure. Operating conditions may change and loads may fluctuate substantially 
during the life of a piece of equipment. The effects of such changes on machine 
condition can normally be detected through standard condition monitoring techniques, 
but it would be of great benefit if a cumulative effective workload can be calculated. 
The impact of repairs, changing machine composition and human intervention upon 
the reliability of machines is an important area that is not fully understood and proves 
difficult to measure. The study of human reliability, especially the aspect of human 
error, may provide some answers in this regard. An expert panel, consisting of a 
number of experienced maintenance practitioners and engineers, may also serve to 
shed light on grey areas whose effect is not directly measurable. Information from 
such alternative sources will serve to complement condition monitoring data in the 
prediction of residual life, especially at times when no clear deterioration in 
equipment condition can be detected. The approach followed in this work, using 
neural networks to estimate a single residual life, is unlikely to provide satisfactory 
answers for complex systems in practice. The splitting of the analysis according to 
failure modes and the use of competitive algorithms should form the basis of future 
research on the implementation of neural networks in the maintenance field. 

With respect to the comparison between different neural network methods, the use of 
Bayesian regularization proved to be very effective in the prevention of overfitting.  
The use of a second order method such as the Levenberg-Marquardt training 
algorithm showed a significant reduction in training time when compared to the 
gradient descent method. The optimization of network parameters proved an 
important part of the training process and it was found that the performance of 
different network types were very closely matched once their design was adjusted to 
suit the specific application. GRNN are simple neural networks that are easily 
generated and proved to match the MLP networks very closely with a difference of 
11.1% on the sum of squares error for the repaired system dataset. 

The ease with which neural networks can be trained and the quality of the results that 
were achieved for the two datasets indicates that neural networks should become a 
very useful tool for the analysis of reliability data in future. Clearly the approach 
outlined in this project is not suitable for every application in the maintenance field, 
but the results show the potential of neural networks as a powerful tool for the 
analysis of reliability data and the prediction of residual life.  
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Appendix A 

The table shows the average load and amplitude measured at the start of the test run of 
each test piece. 

 

Table A1: Average load, load amplitude and test piece life. 

 

 

No. Data ID Average Load Amplitude Life 

1 TSA_2 -104 kN 280 kN 1805 sec. 

2 TSA_3 -64 kN 313 kN 1203 sec. 

3 TSA_5 -102 kN 190 kN 11320 sec. 

4 TSA_8 54 kN 175 kN 12703 sec. 

5 TSA_9 -49 kN 216 kN 6222 sec. 

6 TSA_20 -33 kN 207 kN 14071 sec. 

7 TSA_22 -33 kN 214 kN 10283 sec. 

8 TSA_23 -33 kN 212 kN 10102 sec. 

9 TSA_24 -33 kN 231 kN 5772 sec. 

10 TSA_25 -34 kN 230 kN 4509 sec. 

11 TSA_26 -25 kN 212 kN 10103 sec. 

12 TSA_27 -25 kN 212 kN 10464 sec. 
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Appendix B 

The Graphs illustrating Network Performance as discussed in Chapter 4. 
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Figure 55: Results achieved in residual life estimates on the dataset of TSA_22 by the Neural 
Network trained with the Steepest Gradient Algorithm 
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Figure 56: Results achieved in residual life estimates on the dataset of TSA_24 by the Neural 
Network trained with the Steepest Gradient Algorithm 
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Graph Illustrating the Function Fit for TSA_26
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Figure 57: Results achieved in residual life estimates on the dataset of TSA_26 by the Neural 
Network trained with the Steepest Gradient Algorithm 
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Figure 58: Results achieved in residual life estimates on the dataset of TSA_22 by the Neural 
Network trained with the Levenberg-Marquardt Algorithm 
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Graph Illustrating the Function Fit for TSA_24
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Figure 59: Results achieved in residual life estimates on the dataset of TSA_24 by the Neural 
Network trained with the Levenberg-Marquardt Algorithm 
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Figure 60: Results achieved in residual life estimates on the dataset of TSA_26 by the Neural 
Network trained with the Levenberg-Marquardt Algorithm 
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Graph Illustrating the Function Fit for TSA_22
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Figure 61: Results achieved in residual life estimates on the dataset of TSA_22 by the Neural 
Network trained with the Levenberg-Marquardt Algorithm and Bayesian Regularization 
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Figure 62: Results achieved in residual life estimates on the dataset of TSA_24 by the Neural 
Network trained with the Levenberg-Marquardt Algorithm and Bayesian Regularization 

 
 
 



Machine and Component Residual Life Estimation through the Application of Neural Networks 
 
 

 - 112 - 

Graph Illustrating the Function Fit for TSA_26
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Figure 63: Results achieved in residual life estimates on the dataset of TSA_26 by the Neural 
Network trained with the Levenberg-Marquardt Algorithm and Bayesian Regularization 
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Figure 64: Results achieved in residual life estimates on the dataset of TSA_22 by the General 
Regression Neural Network 
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Graph Illustrating the Function Fit for TSA_24
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Figure 65: Results achieved in residual life estimates on the dataset of TSA_24 by the General 
Regression Neural Network 
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Figure 66: Results achieved in residual life estimates on the dataset of TSA_26 by the General 
Regression Neural Network. 
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Appendix C 

The dataset from Vlok (1999, 2001) formed the basis of the comparison in Chapter 5. 
On Table C1 the pump reference numbers used for the graphs in Chapter 5 and the 
corresponding Pump ID used by Vlok are listed for easy reference.  

Vlok (1999, 2001) identified the vibration amplitude at 5 × rotational frequency as the 
most significant measurement for determining the condition of the pumps. Table C2 
gives the magnitude of this particular measurement at Bearing 3 (Measurement 1) and 
Bearing 4 (Measurement 2). 

On Table C3 the maintenance events are listed for each of the pumps according to the 
information supplied by Vlok. Unexpected breakdowns are listed as “failure”, 
maintenance work and repair prompted by high vibration readings is termed as 
“maintenance” while a calendar based truncation of the data is referred to as a 
“suspension”. 

 

Table C1: Pump ID Numbers 

 

Pump Ref. No. 

(Chapter 5) 

Pump 

ID 

1 PC1131 

2 PC1132 

3 PC1231 

4 PC1232 

5 PC2131 

6 PC2132 

7 PC3132 

8 PC3232 
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Table C2: Condition Monitoring Data 

 

Pump 

ID 

Global 
Age 

(Days) 

Date of 
Measurement 

RF043H 

[mm/s] 

RF044H 

[mm/s] 

RF053H 

[mm/s] 

RF054H 

[mm/s] 

PC1131 159 07/02/97 0 0.05 0.8 0.1 

PC1131 295 23/06/97 0.15 0.2 0.55 0.12 

PC1131 387 23/09/97 0.3 0.1 8 6.2 

PC1131 394 30/09/97 0.8 2.3 12.3 5 

PC1131 397 03/10/97 250 4 17 6 

PC1131 530 13/02/98 0.1 0.1 11 5.5 

PC1131 533 16/02/98 0.3 0.2 13 7 

PC1131 554 09/03/98 0.5 0.3 16 10 

PC1131 578 02/04/98 1 0.7 2 3 

PC1131 597 21/04/98 0.3 0.5 1.6 5 

PC1131 639 02/06/98 0.5 0.5 4 5 

PC1131 689 22/07/98 0 0 0.8 1.2 

PC1131 690 23/07/98 0 0 0.67 1.08 

PC1131 703 05/08/98 0.05 0.2 0.2 0.4 

PC1131 712 14/08/98 0.05 0.05 1.4 0.41 

PC1131 765 06/10/98 0.05 0.05 2.7 0.6 

PC1131 791 01/11/98 0.5 0.2 12 7 

PC1132 239 28/04/97 0 0 1.5 0.72 

PC1132 386 22/09/97 0.1 0.1 2.1 7.8 

PC1132 394 30/09/97 0.2 0.1 11 8.2 

PC1132 397 03/10/97 0.1 0.2 3 12 

PC1132 491 05/01/98 0.1 1 1 30 
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Pump 

ID 

Global 
Age 

(Days) 

Date of 
Measurement 

RF043H 

[mm/s] 

RF044H 

[mm/s] 

RF053H 

[mm/s] 

RF054H 

[mm/s] 

PC1132 499 13/01/98 0.1 0.1 2.5 12 

PC1132 533 16/02/98 0.1 0 12 10 

PC1132 543 26/02/98 5 1 9 7 

PC1132 544 27/02/98 5.61 1.13 8.56 6.64 

PC1132 557 12/03/98 3 1 2 2.5 

PC1132 558 13/03/98 1 2 3 1 

PC1132 597 21/04/98 4 1 2.6 5.4 

PC1132 689 22/07/98 0.1 0.1 0.3 0.4 

PC1132 712 14/08/98 0.1 0.05 0.9 0.4 

PC1132 751 22/09/98 0.99 0.13 2.99 1.54 

PC1132 791 01/11/98 0.08 0.15 2.01 7.68 

PC1231 239 28/04/97 0.3 0 1 0.4 

PC1231 295 23/06/97 1.3 0.3 1 0.3 

PC1231 390 26/09/97 1 0 3 4 

PC1231 530 13/02/98 0.3 0 8.5 6 

PC1231 563 18/03/98 0.09 0.08 10.24 5.87 

PC1231 578 02/04/98 1 2 6 9 

PC1231 653 16/06/98 0.22 0 0.57 0.27 

PC1231 698 31/07/98 0.68 0.22 0.61 0.15 

PC1231 791 01/11/98 0.73 0 1.86 2.64 

PC1232 583 07/04/98 0.5 0 4 3 

PC1232 592 16/04/98 0.4 0.05 6.5 2 

PC1232 597 21/04/98 0.6 1 3.5 3 

PC1232 599 23/04/98 0.05 0.15 0.6 0.9 
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Pump 

ID 

Global 
Age 

(Days) 

Date of 
Measurement 

RF043H 

[mm/s] 

RF044H 

[mm/s] 

RF053H 

[mm/s] 

RF054H 

[mm/s] 

PC1232 699 01/08/98 0.33 0 2.48 1.92 

PC1232 791 01/11/98 0.24 0.03 4.09 1.24 

PC2131 156 04/02/97 0 0 0.4 0.5 

PC2131 159 07/02/97 0.1 0 0.6 0.4 

PC2131 178 26/02/97 0.2 0.05 1.35 0.4 

PC2131 179 27/02/97 0 0 0.9 0.4 

PC2131 184 04/03/97 0 0 1 0.4 

PC2131 239 28/04/97 0.09 0.05 1.55 0.7 

PC2131 241 30/04/97 0.05 0.1 1.7 0.7 

PC2131 295 23/06/97 0.1 0.2 1.4 0.4 

PC2131 386 22/09/97 0.4 1.7 0.7 3.7 

PC2131 470 15/12/97 1200 78 10 9 

PC2131 535 18/02/98 0.2 0.5 4.8 7 

PC2131 583 07/04/98 2 2 11 6 

PC2131 597 21/04/98 2 2 6 4 

PC2131 604 28/04/98 1 2 5 5 

PC2131 611 05/05/98 0.01 0.01 11.6 1.4 

PC2131 631 25/05/98 0.1 0.01 72.33 1 

PC2131 640 03/06/98 0.6 0.2 5.9 4 

PC2131 689 22/07/98 0.09 0.05 0.5 0.33 

PC2131 768 09/10/98 0.1 0.05 0.66 0.2 

PC2131 774 15/10/98 0.14 0.06 1.12 0.48 

PC2131 791 01/11/98 0.16 0.34 3.69 5.6 

PC3131 241 30/04/97 0.1 0.1 1.3 1 
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Pump 

ID 

Global 
Age 

(Days) 

Date of 
Measurement 

RF043H 

[mm/s] 

RF044H 

[mm/s] 

RF053H 

[mm/s] 

RF054H 

[mm/s] 

PC3131 295 23/06/97 0.8 0.7 14 7 

PC3131 386 22/09/97 0.5 2 4 7 

PC3131 450 25/11/97 0.2 3.13 3 2 

PC3131 550 05/03/98 0.09 0.1 1.27 1.2 

PC3131 651 14/06/98 0.96 0.71 16.8 7.7 

PC3131 750 21/09/98 0.59 2.4 4.16 6.58 

PC3131 791 01/11/98 0.2 3.47 3.39 1.8 

PC3132 239 28/04/97 0.1 0.2 0.39 0.55 

PC3132 295 23/06/97 0.2 0.3 1.6 2.2 

PC3132 386 22/09/97 0.2 0.05 3.5 2.4 

PC3132 450 25/11/97 0.5 0 13 6.5 

PC3132 506 20/01/98 0.97 0.04 26.84 12.77 

PC3132 566 21/03/98 0.12 0.23 0.45 0.59 

PC3132 711 13/08/98 0.19 0.37 1.82 2.35 

PC3132 791 01/11/98 0.2 0.06 3.39 2.61 

PC3232 239 28/04/97 0.3 0.01 0.6 0.3 

PC3232 295 23/06/97 1 1 6 4 

PC3232 386 22/09/97 2 1 6 3 

PC3232 535 18/02/98 0 0 7 8 

PC3232 563 18/03/98 0 0 7.33 9.86 

PC3232 591 15/04/98 0 0 10 15 

PC3232 604 28/04/98 2 0 7 8 

PC3232 639 02/06/98 3 5 3 6 

PC3232 722 24/08/98 0 0 1.9 0.8 
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Pump 

ID 

Global 
Age 

(Days) 

Date of 
Measurement 

RF043H 

[mm/s] 

RF044H 

[mm/s] 

RF053H 

[mm/s] 

RF054H 

[mm/s] 

PC3232 723 25/08/98 0 0 1.96 0.73 

PC3232 748 19/09/98 0.18 0 0.39 0.23 

PC3232 783 24/10/98 0.62 0.73 4.5 3.2 

PC3232 791 01/11/98 1.28 0.72 4.08 1.95 
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Table C3: Table of Events 

 

Pump 

ID 

Global Age 

(Days) 
Date of Event Event 

Description 

PC1131 0 01/09/96 Start 

PC1131 397 03/10/97 Maintenance 

PC1131 397 03/10/97 Start 

PC1131 554 09/03/98 Failure 

PC1131 554 09/03/98 Start 

PC1131 690 23/07/98 Maintenance 

PC1131 690 23/07/98 Start 

PC1131 765 06/10/98 Failure 

PC1131 765 06/10/98 Start 

PC1131 791 01/11/98 Suspension 

PC1132 0 01/09/96 Start 

PC1132 491 05/01/98 Failure 

PC1132 491 05/01/98 Start 

PC1132 544 27/02/98 Maintenance 

PC1132 544 27/02/98 Start 

PC1132 557 12/03/98 Maintenance 

PC1132 557 12/03/98 Start 

PC1132 751 22/09/98 Failure 

PC1132 751 22/09/98 Start 

PC1132 791 01/11/98 Suspension 

PC1231 0 01/09/96 Start 

PC1231 563 18/03/98 Failure 

PC1231 563 18/03/98 Start 
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PC1231 578 02/04/98 Maintenance 

PC1231 578 02/04/98 Start 

PC1231 791 01/11/98 Suspension 

PC1232 0 01/09/96 Start 

PC1232 599 23/04/98 Maintenance 

PC1232 599 23/04/98 Start 

PC1232 791 01/11/98 Suspension 

PC2131 0 01/09/96 Start 

PC2131 184 04/03/97 Failure 

PC2131 184 04/03/97 Start 

PC2131 470 15/12/97 Maintenance 

PC2131 470 15/12/97 Start 

PC2131 631 25/05/98 Failure 

PC2131 631 25/05/98 Start 

PC2131 774 15/10/98 Failure 

PC2131 774 15/10/98 Start 

PC2131 791 01/11/98 Suspension 

PC3131 0 01/09/96 Start 

PC3131 450 25/11/97 Failure 

PC3131 450 25/11/97 Start 

PC3131 791 01/11/98 Suspension 

PC3132 0 01/09/96 Start 

PC3132 506 20/01/98 Failure 

PC3132 506 20/01/98 Start 

PC3132 791 01/11/98 Suspension 

PC3232 0 01/09/96 Start 
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PC3232 563 18/03/98 Failure 

PC3232 563 18/03/98 Start 

PC3232 723 25/08/98 Maintenance 

PC3232 723 25/08/98 Start 

PC3232 791 01/11/98 Suspension 
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Appendix D 

Comparison of the results achieved with the Levenberg-Marquardt algorithm using 
different target values during training as discussed in Chapter 5. 

 

No. Network 
Architecture Inputs Target ΣΣΣΣ (error)² 

1 5 hidden nodes 5 0.05 2.70×105 

2 5 hidden nodes 4 0.025 2.85×105 

3 4 hidden nodes 4 0.025 2.90×105 

4 3 hidden nodes 3 0.05 2.92×105 

5 4 hidden nodes 4 0.05 2.92×105 

6 4 hidden nodes 3 0.025 3.06×105 

7 5 hidden nodes 5 0.025 3.18×105 

8 4 hidden nodes 4 0.01 3.41×105 

9 5 hidden nodes 4 0.05 3.44×105 

10 3 hidden nodes 3 0.025 3.47×105 

11 4 hidden nodes 4 0.005 3.48×105 

12 4 hidden nodes 4 0.00001 3.59×105 

13 4 hidden nodes 3 0.05 3.59×105 

14 3 hidden nodes 3 0.005 3.60×105 

15 5 hidden nodes 5 0.005 3.66×105 

16 3 hidden nodes 3 0.01 3.81×105 

17 5 hidden nodes 4 0.01 3.87×105 

18 4 hidden nodes 3 0.005 4.02×105 

19 5 hidden nodes 4 0.005 4.04×105 

 
 
 



Machine and Component Residual Life Estimation through the Application of Neural Networks 
 
 

 - 124 - 

No. Network 
Architecture Inputs Target ΣΣΣΣ (error)² 

20 5 hidden nodes 4 0.00001 4.14×105 

21 3 hidden nodes 3 0.00001 4.32×105 

22 4 hidden nodes 3 0.00001 4.45×105 

23 4 hidden nodes 3 0.01 4.49×105 

24 5 hidden nodes 5 0.01 4.99×105 

25 5 hidden nodes 5 0.00001 5.31×105 
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Appendix E 

The graphs in this appendix serve to illustrate the cross-validation results discussed in 
Chapter 5. 

E1: Levenberg-Marquardt algorithm 
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Figure 67: Cross-validation results achieved with a MLP neural network with 3 inputs, 3 hidden 
nodes and an output node with a sigmoid transfer function, using the Levenberg-Marquardt 
training algorithm with a training target of 5×10-2. 
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Figure 68: Cross-validation results achieved with a MLP neural network with 3 inputs, 4 hidden 
nodes and an output node with a sigmoid transfer function, using the Levenberg-Marquardt 
training algorithm with a training target of 5×10-2. 
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Figure 69: Cross-validation results achieved with a MLP neural network with 3 inputs, 3 hidden 
nodes and an output node with a sigmoid transfer function, using the Levenberg-Marquardt 
training algorithm with a training target of 2.5×10-2. 
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Figure 70: Cross-validation results achieved with a MLP neural network with 3 inputs, 4 hidden 
nodes and an output node with a sigmoid transfer function, using the Levenberg-Marquardt 
training algorithm with a training target of 2.5×10-2. 
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Figure 71: Cross-validation results achieved with a MLP neural network with 3 inputs, 3 hidden 
nodes and an output node with a sigmoid transfer function, using the Levenberg-Marquardt 
training algorithm with a training target of 1×10-2. 
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Figure 72: Cross-validation results achieved with a MLP neural network with 3 inputs, 4 hidden 
nodes and an output node with a sigmoid transfer function, using the Levenberg-Marquardt 
training algorithm with a training target of 1×10-2. 
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Figure 73: Cross-validation results achieved with a MLP neural network with 3 inputs, 3 hidden 
nodes and an output node with a sigmoid transfer function, using the Levenberg-Marquardt 
training algorithm with a training target of 5×10-3. 
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Figure 74: Cross-validation results achieved with a MLP neural network with 3 inputs, 4 hidden 
nodes and an output node with a sigmoid transfer function, using the Levenberg-Marquardt 
training algorithm with a training target of 5×10-3. 
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Figure 75: Cross-validation results achieved with a MLP neural network with 3 inputs, 3 hidden 
nodes and an output node with a sigmoid transfer function, using the Levenberg-Marquardt 
training algorithm with a training target of 1×10-5. 
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Figure 76: Cross-validation results achieved with a MLP neural network with 3 inputs, 4 hidden 
nodes and an output node with a sigmoid transfer function, using the Levenberg-Marquardt 
training algorithm with a training target of 1×10-5. 
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Figure 77: Cross-validation results achieved with a MLP neural network with 4 inputs, 4 hidden 
nodes and an output node with a sigmoid transfer function, using the Levenberg-Marquardt 
training algorithm with a training target of 5×10-2. 
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Figure 78: Cross-validation results achieved with a MLP neural network with 4 inputs, 5 hidden 
nodes and an output node with a sigmoid transfer function, using the Levenberg-Marquardt 
training algorithm with a training target of 5×10-2. 
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Figure 79: Cross-validation results achieved with a MLP neural network with 4 inputs, 4 hidden 
nodes and an output node with a sigmoid transfer function, using the Levenberg-Marquardt 
training algorithm with a training target of 2.5×10-2. 
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Figure 80: Cross-validation results achieved with a MLP neural network with 4 inputs, 5 hidden 
nodes and an output node with a sigmoid transfer function, using the Levenberg-Marquardt 
training algorithm with a training target of 2.5×10-2. 
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Figure 81: Cross-validation results achieved with a MLP neural network with 4 inputs, 4 hidden 
nodes and an output node with a sigmoid transfer function, using the Levenberg-Marquardt 
training algorithm with a training target of 1×10-2. 
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Figure 82: Cross-validation results achieved with a MLP neural network with 4 inputs, 5 hidden 
nodes and an output node with a sigmoid transfer function, using the Levenberg-Marquardt 
training algorithm with a training target of 1×10-2. 
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Figure 83: Cross-validation results achieved with a MLP neural network with 4 inputs, 4 hidden 
nodes and an output node with a sigmoid transfer function, using the Levenberg-Marquardt 
training algorithm with a training target of 5×10-3. 
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Figure 84: Cross-validation results achieved with a MLP neural network with 4 inputs, 5 hidden 
nodes and an output node with a sigmoid transfer function, using the Levenberg-Marquardt 
training algorithm with a training target of 5×10-3. 
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Figure 85: Cross-validation results achieved with a MLP neural network with 4 inputs, 4 hidden 
nodes and an output node with a sigmoid transfer function, using the Levenberg-Marquardt 
training algorithm with a training target of 1×10-5. 
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Figure 86: Cross-validation results achieved with a MLP neural network with 4 inputs, 5 hidden 
nodes and an output node with a sigmoid transfer function, using the Levenberg-Marquardt 
training algorithm with a training target of 1×10-5. 

 
 
 



Machine and Component Residual Life Estimation through the Application of Neural Networks 
 
 

 - 135 - 

Time to next failure

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350

Actual [Days]

P
re

di
ct

ed
 [D

ay
s]

0%   error
10% error 
20% error  - - - -

 
Figure 87: Cross-validation results achieved with a MLP neural network with 5 inputs, 5 hidden 
nodes and an output node with a sigmoid transfer function, using the Levenberg-Marquardt 
training algorithm with a training target of 5×10-2. 
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Figure 88: Cross-validation results achieved with a MLP neural network with 5 inputs, 5 hidden 
nodes and an output node with a sigmoid transfer function, using the Levenberg-Marquardt 
training algorithm with a training target of 2.5×10-2. 
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Figure 89: Cross-validation results achieved with a MLP neural network with 5 inputs, 5 hidden 
nodes and an output node with a sigmoid transfer function, using the Levenberg-Marquardt 
training algorithm with a training target of 1×10-2. 
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Figure 90: Cross-validation results achieved with a MLP neural network with 5 inputs, 5 hidden 
nodes and an output node with a sigmoid transfer function, using the Levenberg-Marquardt 
training algorithm with a training target of 5×10-3. 
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Figure 91: Cross-validation results achieved with a MLP neural network with 5 inputs, 5 hidden 
nodes and an output node with a sigmoid transfer function, using the Levenberg-Marquardt 
training algorithm with a training target of 1×10-5. 

E2: Levenberg-Marquardt algorithm with Bayesian regularization 
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Figure 92: Cross-validation results achieved with a MLP neural network with 3 inputs, 3 hidden 
nodes and an output node with a sigmoid transfer function, using the Levenberg-Marquardt 
training algorithm with Bayesian regularization. 
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Figure 93: Cross-validation results achieved with a MLP neural network with 3 inputs, 4 hidden 
nodes and an output node with a sigmoid transfer function, using the Levenberg-Marquardt 
training algorithm with Bayesian regularization. 
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Figure 94: Cross-validation results achieved with a MLP neural network with 3 inputs, 3 hidden 
nodes and an output node with a linear transfer function, using the Levenberg-Marquardt 
training algorithm with Bayesian regularization. 
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Figure 95: Cross-validation results achieved with a MLP neural network with 3 inputs, 4 hidden 
nodes and an output node with a linear transfer function, using the Levenberg-Marquardt 
training algorithm with Bayesian regularization. 
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Figure 96: Cross-validation results achieved with a MLP neural network with 4 inputs, 4 hidden 
nodes and an output node with a sigmoid transfer function, using the Levenberg-Marquardt 
training algorithm with Bayesian regularization. 
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Figure 97: Cross-validation results achieved with a MLP neural network with 4 inputs, 5 hidden 
nodes and an output node with a sigmoid transfer function, using the Levenberg-Marquardt 
training algorithm with Bayesian regularization. 
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Figure 98: Cross-validation results achieved with a MLP neural network with 4 inputs, 4 hidden 
nodes and an output node with a linear transfer function, using the Levenberg-Marquardt 
training algorithm with Bayesian regularization. 
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Figure 99: Cross-validation results achieved with a MLP neural network with 4 inputs, 5 hidden 
nodes and an output node with a linear transfer function, using the Levenberg-Marquardt 
training algorithm with Bayesian regularization. 
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Figure 100: Cross-validation results achieved with a MLP neural network with 5 inputs, 5 hidden 
nodes and an output node with a sigmoid transfer function, using the Levenberg-Marquardt 
training algorithm with Bayesian regularization. 
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Figure 101: Cross-validation results achieved with a MLP neural network with 5 inputs, 5 hidden 
nodes and an output node with a linear transfer function, using the Levenberg-Marquardt 
training algorithm with Bayesian regularization. 

E3: General regression neural network 
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Figure 102: Cross-validation results achieved with a GRNN with 3 inputs and a spread of 0.05 
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Figure 103: Cross-validation results achieved with a GRNN with 3 inputs and a spread of 0.1 
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Figure 104: Cross-validation results achieved with a GRNN with 4 inputs and a spread of 0.05 
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Figure 105: Cross-validation results achieved with a GRNN with 4 inputs and a spread of 0.1 
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Figure 106: Cross-validation results achieved with a GRNN with 5 inputs and a spread of 0.05 
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Figure 107: Cross-validation results achieved with a GRNN with 5 inputs and a spread of 0.1 
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