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Summary 

 

Today, Sport Utility Vehicles are marketed as both on-road and off-road vehicles. This results in a 

compromise when designing the suspension of the vehicle. If the suspension characteristics are 

fixed, the vehicle cannot have good handling capabilities on highways and good ride comfort over 

rough terrain. The rollover propensity of this type of vehicle compared to normal cars is high 

because it has a combination of a high centre of gravity and a softer suspension. 

 

The 4 State Semi-active Suspension System (4S4) that can switch between two discrete spring 

characteristics as well as two discrete damper characteristics, has been proven to overcome this 

compromise. The soft suspension setting (soft spring and low damping) is used for ride comfort, 

while the hard suspension setting (stiff spring and high damping) is used for handling. The 

following question arises: when is which setting most appropriate? The two main contributing 

factors are the terrain profile and the driver’s actions.  

 

Ride comfort is primarily dependant on the terrain that the vehicle is travelling over. If the terrain 

can be identified, certain driving styles can be expected for that specific environment. The terrains 

range from rough and uncomfortable to smooth with high speed manoeuvring. Terrain classification 

methods are proposed and tested with measured data from the test vehicle on known terrain types. 

Good results were obtained from the terrain classification methods. Five terrain types were 

accurately identified from over an hour’s worth of vehicle testing. 

 

Handling manoeuvres happen unexpectedly, often to avoid an accident. To improve the handling 

and therefore safety of the vehicle, the 4S4 can be switched to the hard suspension setting, which 

results in a reduced body roll angle. This decision should be made quickly with the occupants’ 

safety as the priority. Methods were investigated that will determine when to switch the suspension 

to the handling mode based on the kinematics of the vehicle. The switching strategies proposed in 

this study have the potential, with a little refinement, to make the ride versus handling decision 

correctly. 
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Samevatting 

 

Vandag word sportnutsvoertuie bemark as beide padvoertuie en veldvoertuie. Gevolglik het die 

suspensiestelsel wat vir hierdie voertuie ontwerp word ŉ kompromie tussen ritgemak en hantering. 

Wanneer 'n vaste suspensie eienskap gekies word, kan die voertuig nie goeie hanteringsvermoë op 

snelweë sowel as goeie ritgemak oor rowwe terrein hê nie. Die omrolwaarskynlikheid van hierdie 

tipe voertuie is ook hoër as dié van normale karre, as gevolg van die kombinasie van 'n hoë 

massamiddelpunt en 'n sagte suspensie. 

 

Die 4 stadium semi-aktiewe suspensiestelsel (4S4), wat tussen twee diskrete veerkarakteristieke en 

twee diskrete demperkarakteristieke kan skakel, het bewys dat hierdie kompromie oorkom kan 

word. Die sagte suspensieverstelling (sagte veer en lae demping) word vir ritgemak gebruik, terwyl 

die harde suspensieverstelling (stywe veer en hoë demping) vir hantering gebruik word. Die 

volgende vraag ontstaan dus: wanneer moet watter verstelling gebruik word? Die twee hoof 

bydraende faktore is die terrein profiel en die bestuurder se aksies. 

 

Die ritgemak is hoofsaaklik afhanklik van die terrein waarop die voertuig ry. Sou die terrein 

geïdentifiseer kon word, kan sekere bestuurstyle verwag word vir daardie spesifieke omgewing. Die 

terreine wissel van rof en ongemaklik tot glad met hoë spoed maneuvers. 

Terreinklassifiseringsmetodes word voorgestel en getoets met data wat van die voertuig gemeet was 

op bekende soorte terreine. Goeie resultate is verkry met die terreinklassifiseringsmetodes. Vyf 

terreinsoorte is redelik akkuraat geïdentifiseer van data wat oor ŉ tydsduur van meer as 'n uur 

opgeneem is. 

 

Hanteringsmaneuvers gebeur onverwags, die meeste van die tyd om 'n ongeluk te voorkom. Die 4S4 

kan na die harde suspensieverstelling geskakel word om die hantering en die veiligheid van die 

voertuig te verbeter en ook die rolhoek van die voertuig te verlaag. Die besluit moet vinnig geneem 

word met die insittendes se veiligheid as prioriteit. Metodes is ondersoek om te bepaal wanneer die 

suspensie na die hanteringsmodus geskakel moet word, gebaseer op die kinematika van die 

voertuig. Die skakelstrategieë wat voorgestel word in die studie het die potensiaal, met 'n bietjie 

verfyning, om die ritgemak- teenoor hanteringsbesluit korrek te maak. 
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1 Introduction 

 

This thesis addresses the ride comfort versus handling decision for off-road vehicles operating 

under both off-road and on-road conditions. These vehicles are better known as Sports Utility 

Vehicles (SUV's). The problem statement will be given after which the scope of the study will be 

discussed. 

 

1.1 Problem statement 
The Sports Utility Vehicle (SUV) originated from military vehicles that travelled over rough terrain 

at relatively high speed. This implied that the vehicles needed large suspension movement to be 

able to absorb the energy from travelling over the terrain and high ground clearance to traverse 

large obstacles. Soldiers were used to rough conditions. Therefore ride comfort was not an 

important issue. Ride comfort of modern day vehicles are essential, especially when considering the 

prices paid by the owners. Today the SUV is marketed as both an on-road and off-road vehicle. 

This leads to a lethal combination of a soft suspension for ride comfort and a high centre of gravity 

due to the high ground clearance and the space needed for substantial suspension movement. This is 

the main cause of the high roll-over propensity of SUV's. 

 

The main purpose of the suspension system is to attenuate the high frequency road excitation that is 

transmitted to the vehicle body. A soft suspension gives better ride comfort but worsens the 

handling ability of the vehicle. Designing a SUV with a passive suspension system, that will have 

both good ride comfort and handling capabilities, is almost impossible. There is always a 

compromise between the ride comfort and handling characteristics of a vehicle. Many solutions to 

this problem have been proposed. The two main approaches are: active and semi-active vehicle 

suspension systems. 

 

Theoretically the vehicle can be isolated extremely well from the road input by using an active 

suspension system. This means that there are actuators that connect the vehicle body to the axles 

and wheels. These actuators force the wheels to follow the terrain profile in order to keep the 

vehicle body level. In reality this is not as simple as it seems. Enough energy must be generated or 

stored on the vehicle to power these actuators. Also the terrain input must be known before 

travelling over it, in order to apply the right amount of force at each actuator. If incorrect inputs are 
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given to the actuators the ride comfort and/or handling abilities may be worsened compared to a 

passive suspension system. 

 

The semi-active suspension system may not be as effective as the active suspension system, but it is 

a lot cheaper, because energy is only required to activate the valves or electrical switches. These 

switches enable the control system to change the characteristics of the vehicle to either have better 

ride comfort or better handling. Once a decision is made whether a ride comfort (soft suspension) or 

handling (hard suspension) mode is needed, the vehicle reacts to terrain inputs in the same way as a 

vehicle with the same passive suspension characteristics would. It is therefore not essential to know 

the exact terrain profile that the vehicle is travelling over. 

 

The 4 State Semi-active Suspension System (4S4) has been developed at the University of Pretoria, 

South Africa. The 4S4 is a semi-active suspension that can switch between a soft and a stiff spring 

characteristic, as well as between low and high damping. Switching is achieved through hydraulic 

valves within 50 to 100 milliseconds. The idea behind the 4S4 is to switch between a “ride comfort 

mode” (soft spring and low damping) and a “handling mode” (stiff spring and high damping), thus 

presently using only two of the four possible states. Identifying the moment when the switching 

between these two settings (ride comfort and handling) should occur, is of the utmost importance 

for safety and comfort of the occupants. This study is directed at developing a suitable method to 

make the ride comfort vs. handling decision from observations made with instrumentation on the 

vehicle. Proposed ideas were evaluated on a SUV fitted with the 4S4 suspension system and various 

sensors. 

 

1.2 Scope 
The aim of the study is to find a method for determining when the occupants of a vehicle would 

require the suspension to be switched to ride comfort or handling mode. Possible methods could 

include optical, sonar and mechanical terrain scanning devices for determining the road roughness 

and/or obstacles. Alternatively onboard sensors that measure the vehicle’s kinematic behaviour 

from certain terrain and driver inputs can be used. Observations include vertical acceleration, lateral 

acceleration, roll velocity, yaw velocity, suspension displacements, kingpin steering angle and 

vehicle speed. 

 

To determine the viability of different observation and processing methods on which the ride 

comfort vs. handling decision can be based, five tests that are representative of different driving 

conditions are analysed. The resulting switching signal is compared to an ideal switching strategy 
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defined by an expert vehicle test engineer. This strategy takes the mechanical and electronic 

limitations of the system into account to produce a signal that will result in a safe and comfortable 

driving experience for the occupants. The test tracks on which the tests were conducted include a 

standard Belgian paving track, a long level road for the Double lane change tests, a ride and 

handling track comparable to mountain pass driving and an off-road track for 4×4 vehicles. All of 

these tracks were situated at the Gerotek (www.gerotek.co.za) testing facility. Normal city driving 

was also investigated on the public road between the University of Pretoria and Gerotek. 

 

Post processing of the measured data consists of filtering and determining statistical characteristics 

(root mean square, coherence, histograms, etc.). Several programming methods are considered such 

as Fuzzy logic, Self-Organising Maps and logical if-then algorithms. 
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2 Background 

 

Sports Utility Vehicles (SUV's) are involved in many accidents on the road today because of their 

multi-purpose functionality. The safety of these vehicles can be improved by using different 

suspension settings for different applications. The following sections discuss a test vehicle and the 

test tracks that were used to quantify the performance of a SUV equipped with the locally 

developed suspension (4S4) under various road conditions. Literature is reviewed for solutions to 

similar problems. A brief description of the data logging system that was used to record the 

measurements is presented and some filtering techniques that were used are explained. 

 

2.1 Test Vehicle 
Figure 1 shows the 2003 road accident statistics for South Africa. These statistics only include 

accidents where the vehicle or driver was responsible for the crash. Therefore no pedestrian related 

accidents were taken into account. 

 

Vehicle accident statistics 2003

Vehicles overturned
35.8%

Hit and run
15.8%

Head-Rear end
12.4%

Crash with fixed object
6.3%

Turn in front of oncoming traffic
4.8%

Reversing
0.9% Sideswipe opposite direction

2.4%

Sideswipe same direction
2.4%

Approach at angle
1.2%

Turn from wrong lane
0.2%

Head-on
13.6%

Other & Unknown
4.3%

 
Figure 1: The occurring percentage of each type of accident (Department of transport, 2004) 

 

More than a third of the accidents involved vehicle turnover or rollover. According to the South 

African Department of Transport (Department of transport, 2004) trucks, buses and minibuses 

have the highest fatal crash rate. All these vehicles have a high centre of gravity and relative soft 
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suspension, which in turn results in higher rollover propensity. Although SUV’s are not mentioned 

as a vehicle class on its own, these vehicles can also be characterised by their high centre of gravity 

and soft suspension. 

 

 
Figure 2: Test vehicle (Land Rover Defender 110) 

 

Previous studies have indicated that the safety of SUV’s could be improved by replacing the passive 

suspension system with a semi-active suspension system (Els, 2006a). The Land Rover Defender 

110 (Figure 2) can be categorised as a SUV, but is biased towards off-road rather than on-road 

capabilities. An additional advantage to this vehicle is that most of the chassis and body panels are 

flat and rectangular, which simplifies the modifications and additions that are needed to 

accommodate the 4S4 suspension system. Because of its interior size and simplicity all the 

electronic, hydraulic and pneumatic equipment can easily be mounted onto the vehicle.  

 

SUV’s are required to be off-road vehicles as well as everyday city cars. The 4S4 suspension system 

allows the vehicle to be excellent in both scenarios. 

 

2.2 Suspension system 
The function of the suspension system of a vehicle is to isolate the driver and the passengers from 

high frequency road disturbances, for example: potholes and other uneven surfaces. This will be 

referred to as "ride comfort". Generally the softer the suspension the better the ride comfort. 

However vehicles do not only travel in straight lines. When the steering wheel is turned, there will 
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be a greater load transfer to one side of the vehicle. A harder suspension will result in less vehicle 

body roll. Changing the direction of the vehicle suddenly at relatively high speeds will be referred 

to as "handling". These two extreme states, ride comfort and handling or hard and soft suspension, 

provide a problem for design engineers. Both ride comfort and handling criteria are equally 

important in most vehicles. For a passive suspension a compromise between these two states is the 

only option. The result is that the spring and damping characteristics are set for a specific purpose. 

Racing cars need stiffer suspension to handle high speed cornering, but have terrible ride comfort 

qualities. Busses on the other hand need soft suspension to ensure that the passengers are 

comfortable, but this forces the driver to make turns at much lower speeds than other cars. 

 

 
Figure 3: 4S4 unit (Els, 2006a) 

 

The Tank-Automotive and Armaments Command of the US Army (TACOM) proposed a 

revolutionary hydro-pneumatic suspension system (Eberle & Steele, 1975) allowing the driver to 

alter the characteristics of the suspension system using manual valves. This proposal was proven 

and implemented on a SUV by Els (2006a). This system has two discrete spring stiffness 

characteristics, which are directly proportional to the gas volume controlled by switching hydraulic 

valves. There are also two discrete damping states, which are controlled by restricting the flow of 

oil by switching hydraulic bypass valves. This results in a combination of four states that each of 

the four suspension struts could be set to. A reservoir stores additional oil that could be pumped into 
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each suspension strut or be bled back to the reservoir. This allows the driver to adjust the ride height 

and therefore the centre of gravity. This system will be referred to as the 4 State Semi-active 

Suspension System (4S4). Figure 3 shows one of the suspension units developed by Els (2006a). 

 

Mathematical optimisation was done by Els, et al., (2006) to obtain the best suspension 

characteristics for both ride comfort and handling. This was achieved by modelling the test vehicle 

in MSC, ADAMS (www.msc-africa.co.za) as accurately as possible. The optimization algorithm 

Dynamic Q, developed by Snyman (2005), was used to minimize the vertical acceleration for ride 

comfort and the body roll angle for handling. After this was achieved the suspension struts were 

designed by Els (2006a) and built. The 4S4 suspension units were modelled in Simulink 

(www.mathworks.com) by Theron and Els (2005) and validated against experiments that tested 

the suspension units in tension and compression at various frequencies. It was then possible to 

simulate the behaviour of the vehicle with the new suspension before conducting actual tests. The 

test vehicle was modified slightly and the 4S4 was installed. When the vehicle was set to the 

handling mode, the average roll angle was reduced by more or less 70% (Els 2006a) but the ride 

comfort is not noticeably better compared to the standard vehicle. The reason for this is that the 

damping in the soft mode is the same as on the baseline vehicle. High flow valves are needed, but 

are expensive. The next prototype of the suspension system will solve this problem. Furthermore 

the ride height can also be adjusted to about 100 mm below and above the standard vehicle's ride 

height. This can improve the safety of the vehicle significantly (Els 2006a). If the selection of the 

ride comfort vs. handling mode is based on human decision, different people could choose different 

strategies at different times during the same driving manoeuvre over the same terrain. This will also 

imply that the driver has to consider one more issue while concentrating on all the other driving 

tasks. Therefore the decision should preferably be made objectively and automatically without the 

driver needing to worry about it. 

 

It is critical that the right decision should be made at the right time. From a safety point of view, if 

the control strategy should change from handling to ride comfort at a critical time, it will almost 

certainly cause an accident.  

 

For this study the ride height is kept to the same height as the standard test vehicle. Lowering the 

ride height does improve the vehicle's handling ability but it is beyond the scope of this study. The 

effects of rapid longitudinal acceleration and deceleration (braking) were also left out of the 

equation. The vehicle was instrumented with a wide variety of instruments to measure some of the 

kinematic parameters of the vehicle. The data was used to classify which suspension setting would 
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suit the situation the best. The valves that control the gas volume and the oil flow in the suspension 

units have a fairly slow response time (50 to 100 ms). A decision is made based on the operating 

conditions and is not based on classical proportional control theory. There are only two settings, 

(hard and soft suspension) and therefore a bipolar (ON/OFF) mode selection control was used. 

 

Five tests were investigated by Els (2006a) to quantify the vehicle’s capabilities before and after the 

4S4 suspension were installed. These five tests were chosen to be representative of the vehicle's 

typical operating conditions. 

 

2.3 Test Tracks 
All the tests, except the city traffic, were performed at the Gerotek Testing Facilities 

(www.gerotek.co.za) outside Pretoria in South Africa (see Figure 4). This is a world class test 

facility with a number of tracks that enable vehicle engineers and test drivers to test their vehicles 

on standardised road surfaces. These test tracks are discussed in the following sections. 

 

 
Figure 4: Gerotek Testing Facility (www.earth.google.com, 10/10/2006) 

 

 

 
 
 

http://www.gerotek.co.za/�
http://www.earth.google.com/�


Chapter 2 Background 

2-6 

2.3.1 Belgian paving (BLG) 

 
Figure 5: Belgian paving track 

 

The Belgian paving is a straight horizontal road, approximately 100 m long and 4 m wide (see 

Figure 5). The surface consists of irregular sized bricks or cobble stones. The vehicle is driven in a 

straight line over the track at a constant speed. This tests the vehicle’s ability to attenuate the high 

frequency excitations from the road for better passenger ride comfort.  

 

2.3.2 Double lane change (DLC) 

 
Figure 6: Land Rover with outriggers during Double lane change 

 

15 m 30 m 25 m 25 m 30 m

Cones  Vehicle path
 

Figure 7: Right hand drive vehicle path layout for the Double lane change (International Standards 
Organisation, 1999) 

 

This severe lane-change manoeuvre is a standardised accident avoidance test (International 

Standards Organisation, 1999). The test surface is a flat, smooth concrete road. Traffic cones are 
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placed in specified positions to guide the driver so that the test is repeatable. The driver needs to 

change lanes quickly to one side of the road and then back again. This tests the vehicle’s handling 

characteristics. Figure 6 shows the test vehicle during the Double lane change. Notice the large 

amount of body roll angle that the vehicle has at that moment. Outriggers are fitted to the vehicle to 

prevent rollover. The standardised layout of the test is shown in Figure 7. 

 

2.3.3 Ride and handling track (RHT) 

 
Figure 8: Ride and handling track (www.earth.google.com, 10/10/2006) 

 

The Gerotek Ride and handling track consists of sharp corners, steep hills and valleys (see Figure 

8). This track’s surface is not as smooth as the long straight track used for the Double lane change. 

This simulates mountain pass driving and is also used to test the vehicle’s handling capability. Tests 

were done at high speeds, pushing the vehicle to its limits. 

 

This track is 4.2 km long with 13 left and 15 right turns. The maximum gradient is 15% and the 

track is used for tests on all wheeled vehicles including extra heavy vehicles, off-road vehicles and 

motorcycles (www.gerotek.co.za, 03/11/2006).  

 

2.3.4 City (CTY) 

City driving was tested in normal traffic conditions. The road between the University of Pretoria 

and the Gerotek testing facility was used (see Figure 9). These are normal South African tarred 

roads, complete with potholes and patches of new tar covering old potholes. 
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Figure 9: Roadmap between the University of Pretoria and Gerotek (MapSource, www.garmin.com) 

 

2.3.5 Off-road track (ORT) 

 
Figure 10: Off-road track (www.earth.google.com, 10/10/2006) 

 

The Gerotek Off-road track is exclusively for off-road vehicles (see Figure 10). The track has 

various sections of rocky terrain as well as steep hills and valleys. Concrete was used to fix the 

track features for the purpose of repeatable tests. The amount of discomfort is extreme and therefore 

the vehicle is driven slowly over this terrain. The high ground clearance and large suspension 

movement enables 4×4 SUV’s to be tested for extreme manoeuvrability on this track. This track is 

2.6 km long and 4 m wide with a maximum gradient of 52%. The applicable vehicles are limited to 

vehicles with a front and rear overhang of not more than 1.5 m, approach and departure angles of at 

least 40º, a hump radius of less than 10 m, a ground clearance of more than 200 mm and a turning 

circle of less than 20 m diameter (www.gerotek.co.za, 03/11/2006). 

  

A literature review on the ride comfort vs. handling decision will be presented now. 

 

2.4 Literature review 
Publications on the control of vehicle suspension systems were surveyed to gain better insight to 

possible methods for making the ride comfort versus handling decision.  
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Els (2006a) investigated the ride comfort vs. handling compromise for off-road vehicles in a PhD 

with the same title. Any passive suspension system poses a compromise because the ride comfort 

and handling criteria lie on opposite sides of the design spectrum. The 4 State Semi-active 

Suspension System (4S4) was proposed to eliminate this compromise by changing the suspension to 

the appropriate driving mode. Four prototypes were designed, manufactured, tested and 

mathematically modelled. Suspension characteristics were optimized for the ride comfort and 

handling settings. The second set of prototypes were installed on a Land Rover Defender 110 and 

tested extensively to quantify the improvements in both driving modes. Several strategies for 

making the decision between the two driving modes were investigated. The requirements were that 

the switching should happen automatically, should be fail safe and should use easily measurable 

parameters. The following concepts were considered: 

• Frequency analysis of accelerations 

• Lateral acceleration 

• Lateral acceleration vs. vertical acceleration 

• Steering angle vs. speed  

• Pitch and roll velocity vs. acceleration 

• Vehicle height, throttle position and brake application 

Finally a strategy that compared the moving RMS of the lateral and vertical accelerations was 

implemented with great success. The following recommendations for improving the strategy were 

given: 

• The time required for the system to switch from the ride comfort mode to the handling mode 

should be reduced. 

• The switching thresholds should be optimized. 

• Terrain identification should be investigated in order to improve the performance of the 

some of the other strategies. 

 

Trent and Green (2002) used a model-based genetic algorithm predictor (GAP) that was 

developed to estimate the propensity for vehicle rollover. The mathematical model was based on a 

Jeep Cherokee (1997) SUV and is discretised at 100 Hz. The genetic algorithm predicted that the 

simulation would undergo rollover, 400 ms in advance. This supplies enough time to activate active 

anti-roll algorithms and systems such as differential braking and/or active suspension control. The 

genetic algorithm predicts the rollover by calculating whether the tyre deflection will exceed a 

specified roll threshold. 
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The University of Tokushima developed a model of an active suspension system for passenger cars, 

using linear and Fuzzy logic controls. (Yoshimura, et al., 1999) The model is described by a 

nonlinear system with four degrees of freedom, subject to irregular excitation from a road surface. 

The active control is the sum of two kinds of control. The former is obtained by vertical 

acceleration of the vehicle body as the principal source of control, and the latter is obtained by using 

Fuzzy logic control as the complementary control. In the derivation of fuzzy control rules, linear 

combinations of the vertical and angular velocities and displacements of the vehicle body are 

denoted as the input variables. The fuzzy control rules are determined by minimizing the mean 

squares of the time responses of the vehicle body, under certain constraints on the acceptable 

relative displacements between the vehicle body and the suspension components, and the tyre 

deflections. In particular, emphasis is placed on the minimization of the vertical and angular 

acceleration of the vehicle body from the viewpoint of passenger ride comfort. The simulation 

results verified that the proposed active suspension system is very effective in the vibration isolation 

of the vehicle body. No method for improving the handling of the vehicle was mentioned. 

 
A Neuro-Fuzzy controller was designed by Foda (2001) to improve damping and ride quality of a 

semi-active suspension system using a quarter-car model. The simulations show that the controller 

improves both the ride quality and the suspension travel in terms of vehicle acceleration and 

dynamic tyre loading. The neural network learns rules and deduces conclusions. The controller 

structure is simple (seven rules) so that real-time implementation is possible. The handling of a 

vehicle can not be modelled with a quarter-car model and is therefore not addressed. 

 

Rao and Prahlad (1995) used a quarter-car to model the active suspension system of a vehicle. The 

simulation was controlled with fuzzy-logic-based control to enhance ride comfort faced with 

unknown road terrains. This is achieved by controlling the vertical acceleration to an acceptable 

level. Bell-shaped membership functions with respect to the Fuzzy logic control system were used. 

The flex, spread and centre of these functions associated with the linguistic variables were by fine-

tuned by adjusting the parameters through trial and error. The simulations proved that the Fuzzy 

logic controller reduced the vehicle vibration and gave reasonably good responses. It was also 

observed that the controller is able to take care of the wider variations in the plant parameters from 

their nominal values. Again it was not possible to improve the handling of the vehicle using a 

quarter-car model. 

 

Neural networks were efficiently trained to identify the dynamics of a nonlinear pneumatic 

suspension and were also trained to work as a nonlinear controller on high-speed railway vehicles 
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by Nagai, et al. (1997). The neural network was trained using an actual experimental setup. It 

consisted of one input layer with 4 neurons, two hidden layers with 5 neurons each and one output 

layer with 1 neuron. The performance of the neural network controller was compared to that of the 

conventional linear quadratic controller. It was found that the neural network controller consumed 

less energy while providing better performance in the low frequency range. Typical railway 

disturbances are below 5 Hz. 

 

Research on an emulator for human driving behaviour that uses a self-organising fuzzy rule-based 

system referred to as a fuzzylot is presented by Pasquier, et al. (2001). A human driver is used to 

drive a simulation of a motor vehicle. The fuzzy neural network processes the driver input data, 

which it clusters, identify fuzzy variables and extract the fuzzy rule-base. There are a number of 

methods to automatically generate fuzzy rules from numerical data. A rule selection phase is used to 

delete the rules that have zero weights to all consequences. The autopilot is able to drive the vehicle 

on the same route that the human driver drove. This proves the self-organising capabilities of the 

neural network, the adaptability of the fuzzy rule-based system and the application possibilities to a 

real-world problem. 

 

A Fuzzy logic based controller was used to control a body-suspension-wheel simulation model by 

AL-Holou, Joo and Shaout (1995). The controller used two inputs: body velocity and suspension 

velocity. The control signal is a function of the inputs signals and is determined from the fuzzy rule-

base. The controller showed major improvements over the passive suspension and minor 

improvement over the Skyhook method. This can be improved upon by using an adaptive fuzzy 

control method, which changes the input and output membership functions iteratively. An adaptive 

control method is said to improve both ride quality and road handling.  

 

The design of Fuzzy controllers for semi-active suspension generated through the genetic algorithm 

with a local improvement mechanism is presented by Hashiyama, Furuhashi and Uchikawa 

(1995). The algorithm’s effectiveness is demonstrated by generating fuzzy controllers for a semi-

active suspension system. The scheme for designing a Fuzzy logic controller is generally as 

follows:  

• Define input and output variables 

• Set parameters for each variable’s membership functions 

• Describe fuzzy rules 

• Tune membership function parameters 

• Modify the fuzzy rules 
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The design of the Fuzzy logic controller involves a lot of trial and error. Fuzzy neural networks are 

used to overcome these difficulties by identifying the control rules from measured data. It can be 

difficult to obtain the actual data in advance. Using genetic algorithms it was possible to determine 

the number of fuzzy rules, membership function parameters and the fuzzy rules. Thus the 5 steps of 

the fuzzy controller design were automated. 

 

Wu and Xu (1999) proposed a damping fuzzy controller for a seven D.O.F. vehicle model with 

semi-active suspension. The fuzzy controller parameters were determined using a local 

improvement genetic algorithm. The genetic algorithm is based on the mutation of mating bacteria. 

Stronger genes are passed down through the generations, which ensure the survival of the strongest 

fuzzy rules. The fitness function is constantly evaluated and guides the optimization process. This 

random method can obtain the optimal fuzzy controller parameters if enough evaluations are 

performed. 

 

A Fuzzy logic controller that controls an intelligent semi-active continuously adjustable damper 

suspension system was developed by Nicolas, et al. (1997). Two strategies are considered: driver 

actions/responses and vehicle dynamics. The main advantage of the fuzzy control is the lower 

number of sensors needed to achieve the same results as compared to other control algorithms (e.g. 

Skyhook). The controller consists mainly of 3 parts: 

• Input pre-processing: Sensor signal processing and filtering. 

• Fuzzy Inference System (FIS): Data is fuzzified into linguistic variables. 

• Post-processing: Determines the damping value to be applied. 

 

The fuzzy system received the following data: 

• Vehicle velocity vs. steering angle 

• Vehicle velocity vs. steering speed 

• Vehicle velocity vs. longitudinal acceleration 

• Vehicle velocity vs. longitudinal deceleration 

• Vehicle velocity vs. vertical acceleration 

 

The Fuzzy logic controller is well suited for the suspension system because it is highly non-linear, it 

is difficult to simulate adequately, the control improvements are quite subjective, it is able to deal 

with the compromise between vehicle handling and comfort and it is very difficult to define a 

performance index based only on objective criteria. The fuzzy controlled suspension has lower 
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oscillation and settling time than the soft damper setting. It also produces better comfort for 

passengers than the hard damper setting. 

 

An invention by Kyrtsos (1998) utilizes a method and apparatus for detecting a rollover condition 

by analysing the forces acting on the vehicle. The patent involves three accelerometers and a 

controller that compares the data received. A safety device is actuated if a potential rollover is 

detected. There will be fluctuations in the measurements due to the irregular road input. The 

measurements need to be averaged over a certain time period. If the period is too short the 

controller may be too sensitive and if the period is too long the system may not respond quickly 

enough or not at all. The data must be compared to a predetermined threshold value. This value has 

to be altered when certain conditions are changed. (e.g. weight, temperature, etc.) The difference 

between the standard deviation of the data from two accelerometers is also compared with a 

predetermined value. The third accelerometer is used to account for the effect of the road 

conditions.  

 

Fault detection in a modern automation process was incorporated using intelligent control, thereby 

improving the reliability of complex control systems (Tyan, Wang, Bahler, 1996). Some methods 

to achieve this are: Parameter estimation, state observation, statistical likelihood ratio tests, rule-

based expert system reasoning, pattern recognition and artificial neural networks. This paper 

describes a method that uses pattern recognition, an artificial neural network for fault diagnosis 

through a back propagation learning algorithm and using Fuzzy logic for fault control by keeping 

track of the parameter changes in a dynamic system. The test case used was a magnetic levitation 

vehicle (MLV). There are four distinct phases in the neural fault diagnosis and fuzzy fault control 

scheme. 

• Process control and state observer: Determining the system’s dynamic behaviour and 

estimate inaccessible states. 

• Neural fault diagnosis: The class and cause of the malfunction is determined 

• Fuzzy fault control: Derives a series of actions and analyses the consequences of the current 

fault. 

• Actions: An appropriate action is taken based on the analyses above. 

It was shown that the neural network classifier accomplishes a fairly accurate classification when 

track disturbance irregularities are present. This paper demonstrated the concept of a “diagnostic 

doctor” for dynamic systems. 
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It is important for a high-speed unmanned ground vehicle (UGV) to sense changing terrain 

conditions and modify its control strategy and motion planning algorithms to complete the specified 

operation as efficiently as possible. Iagnemma and Dubowsky (2002) proposed three methods for 

terrain characterisation and identification. These methods include:  

• Vision based classification of the path ahead – Visual data consists of colour, geometric 

shapes, textures and distinguishing between soil and vegetation. 

• Terrain parameter identification from a wheel-terrain interaction analysis – This entails 

physical parameters such as cohesion, internal friction angle and shear deformation modulus 

to classify terrain for example loose soil, muskeg, rock, etc. The parameters are calculated 

using simplified equations of terramechanics. 

• Auditory wheel-terrain contact signatures for terrain classification – Potential low cost, low 

complexity additional sensors. 

The UGV associates the data collected from all the sensors with a certain terrain type and is thus 

also able to learn. This database can then be used for predictive motion planning and advanced 

feedback control. The terrain parameters were estimated with good accuracy using limited 

computational resources. 

 

A vibration-based terrain classification algorithm was proposed by Iagnemma, Brooks and 

Dubowsky (2004) for planetary rovers. Through empirical observations it was established that 

different terrain properties results in unique vibration patterns. An accelerometer was used to record 

the high-frequency vibrations. The algorithm uses principal component analysis (PCA) to 

distinguish between terrain classes and consists of two steps: an a priori analysis and an on-line 

classification.  

Data was collected on two different types of terrain for the a priori analysis. The log power spectral 

densities of each was calculated and stored in matrices containing the spectral content for a segment 

of data and the variation in spectral content at a given frequency as a function of time. PCA was 

then used to discriminate between the two terrain types. During the on-line classification the 

vibrations are measured and the terrain is classified according to the a priori analysis. The results 

showed that this type of sensing could be used for quick, efficient and robust classification of 

terrain. This type of terrain identification can be improved by combining it with a vision-based 

method. 

 

Tsunashima, Murakami and Miyata (2005) developed an estimation algorithm to determine the 

state of a vehicle and the road condition. This could enable a vehicle to achieve effective control for 

example: four-wheel steering (4WS) and stability. The state of the vehicle is determined from 
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inexpensive sensors measuring different parameters. The Interacting Multiple Model (IMM) 

method was proposed to respond to variations in road conditions in order to estimate the side-slip 

angle and the friction coefficient. A bicycle vehicle model was used to perform a Double lane 

change at 50 km/h. The road had three sections with three different friction coefficients. These 

friction coefficients were estimated very closely to the actual coefficients. The IMM estimator 

correctly determined the vehicle and road state simultaneously from lateral accelerations and yaw 

rate measurements. 

 

Braghin, et al. (2005) proposed a method for estimating tyre contact parameters such as kinematic 

conditions (e.g. side-slip angle), dynamic properties (e.g. vertical load and contact area) and 

adhesion characteristics (e.g. surface roughness). Accelerometers are fixed to the liner of the tyre 

and sends data with radio signals to a central computing unit. To determine if this method would be 

able to discriminate between different roughness and adherence conditions, tests were performed on 

roads with different textures and wetness characteristics. The Root Mean Square (RMS) of the 

radial acceleration signal, was not able to give a unique roughness parameter for the different road 

tests, but does indicate to some extent a difference in the road surface. A speed independent 

roughness parameter is needed to correctly classify the road type. 

 

According to Marzbanrad, et al. (2004), vehicle suspension control can be improved by using a 

sensor to measure the road irregularities at some distance in front of the vehicle. Road roughness 

could be measured with an ultrasonic sensor. A simulation was done with a four degree-of-freedom 

(DOF) half-car model driving over a road with random irregularities. A method similar to the 

Kalman filter and Linear-Quadratic-Gaussion (LQG) controller was used to estimate the state 

variables. The mean square values of the body acceleration, tyre deflection, and suspension rattle 

spaces were used to optimize the suspension system. The performance of the control system 

improves, as the preview time is increased but only up to a certain point. The control system was 

improved even with a short preview time. The preview method can also lower power consumption 

of an active suspension unit. 

 

Donahue (1998) used a fully active suspension system with preview control to improve ride 

comfort when driving at higher speeds over rough terrain. The system was implemented on a 

HMMWV military vehicle with commercially available hardware. Two types of range finding units 

were considered: Frequency Modulated Continuous Wave (FMCW) radar and a modulated infrared 

LED (Light Emitting Diode) optical sensor. The optical sensor detected small road irregularities 

better than the radar but the radar had a longer preview range. The radar sensors were mounted in 
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front of the vehicle. Trigonometric relations were used to extract the road profile in front of each 

tyre. The vehicle’s heave, pitch and roll also affected the measurements and were adjusted using a 

modified Kalman filter. The data was then stored in a buffer, ready for the control system to use. 

The preview controller did not perform as well as was expected. Some possible causes for this 

were:  

• Bad synchronization between the digital road data and the actual road. 

• Compounded distance error when driving long distances.  

 

Schurter and Roschke (2000) present an alternative for modelling a magnetorheological damper. 

Conventional modelling involves nonlinear differential equations that take a substantial amount of 

CPU time to solve. Takagi-Sugeno-Kang developed the Artificial Neuro-Fuzzy Inference System 

(ANFIS) and uses a hybrid learning algorithm for mapping input data to output data. The fuzzy 

model was trained using data obtained from solving the non-linear differential equations. It was 

shown that the ANFIS was able to accurately characterise the dynamic behaviour of the damper. It 

is stated that the fuzzy model execution is approximately 10 000 times faster than the mathematical 

model. Important steps in developing the fuzzy systems are the following: 

• Collect enough training and checking data from the target model. 

• Use ANFIS to create the fuzzy model that relates inputs to outputs. 

• Validate the process by comparing outputs of the fuzzy model and the target model. 

Advantages of Fuzzy logic over conventional arithmetic methods: 

• The difficulties of modelling and analysing complex systems are reduced. 

• Qualitative aspects of human experience can be incorporated in the mapping laws. 

 

The US army developed an unmanned ground vehicle (Sadhukhan, Moore and Collins, 2004). 

Internal sensors and a Probabilistic Neural Network (PNN) are used to identify the terrain type. This 

aids the control system to navigate the vehicle autonomously. Vibration and wheel slip were 

identified as the main characteristics for discriminating between different terrain types. An ADAMS 

model and a miniature model were used to collect vertical acceleration data. The FFT of the data 

were used to classify the terrain using a pattern recognition algorithm. Three terrain types at four 

different speeds were very accurately identified. The algorithm was able to do real-time terrain 

classification and was computationally inexpensive. Future work will include wheel slip 

measurements that will increase the set of terrain types that can be classified. Table 1 and Table 2 

summarises the results obtained from the literature study. Before any of these and other methods 

can be applied to the vehicle equipped with the 4S4, information about the system is needed in the 
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form of measurements from sensors, recorded under normal driving conditions. The next segment 

describes this in more detail. 

Article Test 
Vehicle

Test 
method

Road 
surface Objective Algorithm Results Conclusion

AL-Holou, N., Joo, D. S., Shaout, 
A., 1995, The development of 

Fuzzy Logic based controller for 
semi-active suspension system

Quarter-car 
model  with 
semi-active 
suspension

Simulation Sinusoidal
To improve ride quality 
and road handling using a 
fuzzy logic controller.

Fuzzy Logic controller 
(Input: Body velocity, 
Suspension velocity)

The fuzzy logic controller 
improves the body acceleration, 
however it has a greater tyre 
deflection than the skyhook 
controller.

A fuzzy logic adaptive control 
method will improve the tyre 
deflection which changes the 
input and output membership 
functions iteratively.

Hashiyama, T., Furuhashi, T., 
Uchikawa, Y., 1995, Design of 
Fuzzy controllers for semi-

active suspension generated 
through the Genetic Algorithm

Quarter-car 
model  with 
semi-active 
suspension

Simulation Unknown
An alternative method for 
designing fuzzy controllers 
using genetic algorithms.

Fuzzy Logic controller 
designed using genetic 
algorithms (Input: 
Displacement, Velocity, 
Acceleration, Jerk)

The performance index showed 
that the method is feasible.

The design of the fuzzy controller 
can be automated by using 
genetic algorithms.

Tyan, C., Wang, P. P., Bahler, D. 
R., 1995, An application on 

intelligent control using neural 
network and Fuzzy Logic

Magnetic 
Levitation 

vehicle
Simulation Train track

To do fault detection on a 
dynamic system and take 
action to correct it.

Neural network & Fuzzy 
logic

It was shown that the neural 
network classifier accomplishes a 
fairly accurate (93.85%) 
classification when track 
disturbance irregularities are 
present.

This paper demonstrated the 
concept of a "diagnostic doctor" 
for dynamic systems.

Rao, M.V.C. & Prahlad, V., 1997,  
A tuneable Fuzzy Logic 

controller for vehicle-active
suspension systems

Quarter-car 
model with 

active 
suspension

Simulation
Pseudo-

random road 
profile

To develop a tuneable 
fuzzy logic controller for an 
active suspension system.

Fuzzy Logic controller 
(Input: Suspension 
displacement and 
velocity)

It was found to bring down the 
suspension acceleration and 
displacement to a reference level.

The controller is able to take care 
of wider variations in the plant 
parameters.

Nagai, M., Moran, A., Tamura, Y. 
& Koizumi, S., 1997, 

Identification and control of 
nonlinear active pneumatic 

suspension for railway vehicles, 
using Neural Networks

Railway 
vehicles with 

active 
pneumatic 
suspension

A suspension 
system, with  

air spring and 
pneumatic 
actuator

Random 
disturbances 

(Railway)

To analyze the 
performance of neural 
networks for the 
identification and optimal 
control of active pneumatic 
suspensions of high-speed 
railway vehicles.

Neural Networks (Inputs: 
Pressure, acceleration, 
displacement)

The neuro-control provided better 
performance and energy 
efficiency than the linear 
quadratic control in the low 
frequency range 

Neural networks can identify the 
nonlinear dynamic properties of a 
pneumatic suspension.

Nicolas, C.F., Landaluze, J., 
Castrillo, E., Gaston, M., Reyero, 
R., 1997, Application of Fuzzy 
Logic control to the design of 

semi-active suspension 
systems

Quarter-car 
model, Renault 
R-11, SEAT-
VW Cordoba 

GTI, Land 
Rover 

Discovery

Simulation 
and real 

vehicle tests

Normal road 
and step input

To implement fuzzy logic 
control strategies for semi-
active suspension systems 
by using driver input data 
and vehicle dynamics 
data.

Fuzzy Logic controller

Minimal difference between 
Fuzzy and Skyhook, but Fuzzy 
uses less sensors. Fuzzy also 
has lower oscillations and settling 
time than soft susp. and greater 
comfort than hard susp.

Fuzzy Logic is well suited for the 
highly non-lin., difficult to 
simulate, subjective control, 
compromise between handling 
and comfort. Has excellent 
performance with a low cost 
sensor system.

Yoshimura, T., Nakaminami, K.,  
Kurimoto, M., Hino, J., 1998, 

Active suspension of passenger 
cars using linear and fuzzy-logic 

controls

Half-car model 
with active 
suspension

Simulation
Irregular 

excitation from 
road

To Investigate the effect of 
Linear and/or Fuzzy Logic 
control on the active 
suspension.

Linear and Fuzzy-Logic 
controls (Lin. input: 
Vertical accelerations, 
F.L. input: Vertical and 
rotary velocities and 
displacements)

Linear and Fuzzy Logic controls 
improve vertical acceleration, 
velocity and displacements 
compared to passive suspension 
or Linear control. 

Considering the rotary effect 
gives a slight  improvement in the 
control. A combination of Linear 
and Fuzzy Logic control gives the 
best suspension performance

Kyrtsos, T., 1998, Roll-over 
detector for vehicles, U.S. 

Patent: 6225894

Commercial 
trucks

Real vehicle 
tests -

To determine a method for 
detecting a roll-over 
condition

- -

Rollover can be detected by 
analysing the forces acting on the 
vehicle. The forces are calculated 
from measured accelerations.

Donahue, M. D., 1998, 
Implementation of an active 

suspension, preview controller 
for improved ride comfort

Quarter-car 
model and 

actual vehicle

Simulations 
and vehicle 

tests
Rough terrain

To improve ride comfort 
for a vehicle with fully 
active suspension using 
preview control.

Preview control and 
Kalman filtering

The predictive controller with 
preview did not perform as well 
as was expected.

The preview data and the actual 
road should be synchronised.

Wu, Y., Xu, B., 1999, Study on 
the damping Fuzzy control of 

semi-active suspension

7 DOF vehicle 
ride model with 

semi-active 
suspension

Simulation Random road 
excitation

Parameter identification of 
Fuzzy controllers with a 
local improvement Genetic 
Algorithm

Damping Fuzzy controller 
with Genetic Algorithm

The ride performance index is 
decreased with increase in 
genetic generations

With the proposed fitness 
function and the GA method, the 
optimal fuzzy controller 
parameters can be obtained.

Schurter, K. C. & Roschke, P.N., 
2000, Fuzzy modelling of a 

Magnetorheological damper 
using ANFIS

- 
(Manetorheolo
gical Damper)

Simulation Gaussian 
random noise

To model a 
Matnetorheological 
damper using ANFIS.

ANFIS

A multiple input/single output 
fuzzy inference system was 
created to characterise the 
damper.

The ANFIS model is considerably 
faster to analyse than the 
mathematical model.

Foda, S.G., 2001, Neuro-Fuzzy 
control of a semi-active car 

suspension system

Quarter-car 
model with 

band-limiting 
semi-active 
suspension

Simulation
Step input, 
Pulse input, 

Humps

To design a Neuro-Fuzzy 
controller for  a semi-
active suspension system.

Neuro-Fuzzy controller 
(Language: MATLAB 
SIMULINK and Fuzzy 
Toolbox)

Vertical accelerations and 
displacements are well damped.

The controller enhanced ride 
performance by damping the 
body ride and suspension work 
space responses  for different 
road profiles.

Pasquier, M., Quek, C., Toh, M., 
2001, Fuzzylot: a novel self-
organising fuzzy-neural rule-

based pilot system for 
automated vehicles

Simulator with 
steering wheel 

and pedals

Real-time 
simulation 

with human 
driver input 

and autopilot 
output

Virtual road 
with right and 

left bends

To do research on 
intelligent vehicle 
technologies for routing, 
navigation and control.

Self-organising Fuzzy rule-
based system

Simulator data is fed into a fuzzy 
neural network, which clusters 
the input, identifies fuzzy 
variables and extracts the fuzzy 
rule-base.

The fuzzy rule-base emulates the 
human driver and can be used to 
successfully control the vehicle 
on the same route.

Trent, V. and Greene, M., 2002, A 
Genetic Algorithms predictor for 

vehicular rollover

Simulation 
model based 

on a Jeep 
Cherokee 

(1997)

Simulation of 
constant 

radius test
Flat

To predict vehicle rollover 
with Genetic Algorithm 
Predictor.

Genetic Algorithm 
Predictor (GAP), (Input: 
Tyre deflection)

Is able to predict rollover 0.4s in 
advance.

Gives enough time to activate 
active stability systems 
(differential braking, adjustable 
suspension)

Iagnemma, K., Dubowsky, S., 
2002, Terrain estimation for 

high-speed rough-terrain 
autonomous vehicle navigation

Unmanned 
Ground 
Vehicle

Simulation 
and wheel 

tests

Rough: 
Vegetation, 
loose soil, 

packed soil

To identify and classify 
terrain

Motion planning control 
strategy

The algorithm produced 
reasonable estimations of 
cohesion and internal friction 
angle.

The terrain parameters were 
estimated with good accuracy 
using limited computational 
resources.

Iagnemma, K., Brooks, C. & 
Dubowsky, S., 2004, Visual, 
tactile, and vibration-based 

terrain analysis for planetary 
rovers

Planetary 
Rover Wheel test Gravel and 

sand
To identify and classify 
terrain

Principal Component 
Analysis for terrain 
classification

This method was able to 
discriminate between two 
different terrain types.

The results showed that this type 
of sensing could be used for 
quick, efficient and robust 
classification of terrain.

 
Table 1: Literature review summary (1) 
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Article Test 
Vehicle

Test 
method

Road 
surface Objective Algorithm Results Conclusion

Marzbanrad, J., Ahmadi, G., 
Zohoor, H., Hojjat, Y., 2004, 

Stochastic optimal preview 
control of a vehicle suspension

Half-car model 
with passive or 

active 
suspension

Simulation Random road 
excitation

To improve the 
suspension control of a 
vehicle by using a sensor 
to measure road 
irregularities some 
distance in front of the 
vehicle.

Customised Kalman filter 
& Linear-Quadratic-
Gaussian controller

Acceleration responses are 
decreased using the optimal 
preview control. The control 
system improves with the 
increase of preview time.

The performance index and the 
mean-square responses are  
reduced when using the preview 
control over randomly irregular 
roads.

Sadhukhan, D., Moore, C., Collins, 
E., 2004, Terrain estimation 

using internal sensors

Unmanned 
Ground 
Vehicle, 

ADAMS model

Simulation 
and vehicle 

test

Grass, gravel, 
sand

To enable the UGV to 
autonomously navigate 
over various terrain types 
at different speeds.

Probabilistic Neural 
Network

The FFT of the vertical 
acceleration data were used to 
train a pattern recognition 
algorithm to classify the terrain.

The algorithm identified the three 
terrain types accurately at four 
different speeds.

Tsunashima, H., Murakami, M. &  
Miyata, J., 2005, Vehicle and 
road state estimation using 
interacting multiple model 

approach

Bicycle model Simulation
Road with 

various friction 
coefficients

To determine the friction 
coefficients to achieve 
effective control

Interacting Multiple Model, 
Extended Kalman Filter

The friction coefficients were 
accurately estimated by the IMM 
method

The IMM estimator correctly 
determined the vehicle and road 
state simultaneously from lateral 
accelerations and yaw rate 
measurements.

Braghin, F., Brusarosco, M., 
Cheli,F., Cigada, A., Manzoni, S., 

Mancosu, F., 2005, Measurement 
of contact forces and patch 

features by means of 
accelerometers fixed inside the 
tire to improve future car active 

control

Tyre testing 
apparatus and 

car

Wheel test 
and vehicle 

test

Roads with 
different 

roughness and 
wetness 

conditions

To determine tyre contact 
forces and contact patch 
features.

Terrain classification from 
RMS radial acceleration

Side slip angle and vertical 
contact forces were accurately 
estimated. Surface roughness 
does not give good results.

Currently trying to find a less 
disperse and speed independent 
surface roughness parameter.

Els, P.S., 2006, The ride comfort 
vs. handling compromise for off-

road vehicles 

Land Rover 
Defender 110 
and ADAMS 
simulation 

model

Simulation 
and vehicle 

tests

Rough and 
smooth test 

tracks

Improve handling 
capabilities as well as ride 
comfort

Running RMS lateral 
acceleration vs. vertical 
acceleration for decision 
control

Handling capabilities were 
improved and ride comfort were 
maintained over rough terrain

Handling manoeuvres can be 
detected using RRMS lateral 
acceleration but further 
optimization is required

 
Table 2: Literature review summary (2) 

 

2.5 Conclusions from literature review 
Many of the proposed strategies are only tested on simulation models and not validated with real 

vehicles. Most of the literature focussed on obtaining better ride comfort and not trying to improve 

the vehicle's handling capability. There was not much literature found on terrain classification and 

only modest success of a true classifier was discovered. Neural Networks and Fuzzy logic were the 

most common methods that were used for control. Vehicle body accelerations, velocities and 

suspension displacements were regularly used as input signals to the control system. 

 

From the literature it was concluded that the following possibilities should be investigated further: 

• Terrain classification 

• Neural Networks 

• Fuzzy logic 

• RRMS accelerations 

• Probability statistics 
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2.6 Data recording and processing 
 

 
Figure 11: Electronic and hydro-pneumatic components 

 

A PC104 form factor computer (Ampro CoreModule 420, www.ampro.com) computer as well as 

an input/output board (Diamond-MM-AT, www.diamondsystems.com) was used to record 

various time dependant data (see Figure 11). Programs (Els, 2006a) written in Turbo Pascal were 

used in a real-time operating system (MS-DOS) to log all the data. The following parameters were 

measured because they sufficiently describe the kinematic behaviour of the vehicle: 

 

Vertical acceleration [g] 

Lateral acceleration [g] 

Displacement of each suspension unit [mm] 

Yaw velocity [º/s] 

Roll velocity [º/s] 

Kingpin angle [º] 

Vehicle speed [km/h] 

 

Vertical accelerations, suspension unit displacements, kingpin angle and vehicle speed can be used 

to determine the level of ride comfort, while lateral acceleration, yaw and roll velocity, kingpin 

angle and vehicle speed can be used to establish the degree of handling manoeuvres that the vehicle 

is experiencing.  

 

Computer 

Rear suspension units 

Hydraulic oil reservoir and pump for 
ride height adjustment 

 
 
 

http://www.ampro.com/�
http://www.diamondsystems.com/�
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All the measurements are stored as voltage readings in a binary file. The main reasons are for 

simplicity, speed and using the hard drive space more efficiently. It also has the advantage that if a 

calibration error occurred, it could easily be changed without repeating the test. These files were 

later converted to matrices using programs written in MATLAB (www.mathworks.com). The raw 

data was then multiplied with the correct calibration factors to obtain practical measurements. 

Unfortunately the data still contained signal drift and noise that had to be addressed. 

 
The measured data contains many imperfections. Because the sensors are mounted on the vehicle 

body, it is clear that the engine vibration has a significant effect on the measurements at higher 

frequencies (+20 Hz). In post-processing, filters with different cut-off frequencies were used to 

reduce unwanted noise on the signals. The best results were found with an ideal 3 Hz low-pass 

filter. Another problem was determining when the sensors were at their zero values. The best way 

of reducing this problem would be to start recording the data when the vehicle is stationary and 

horizontal. However in some tests the vehicle was already in motion before the recording of the 

data started. Adding to this problem was the fact that some of the sensors are sensitive to drift. This 

means that the signal has relatively high amplitude and low frequency content for example from 

temperature fluctuations. The mean was subtracted from signals that had a constant mean value 

throughout the duration of the test for example vertical acceleration. For signals such as the lateral 

acceleration and the suspension unit displacements a different strategy was used. The maximum of 

a histogram from these measurements indicated the position where the signal spent most of its time. 

For example, the section before and after the Double lane change is performed is longer than the 

manoeuvre itself. These sections are displayed as a peak on the histogram of that particular signal 

and represent the zero values of these signals. Another method similar to this would be to subtract 

the mean of a section from the whole signal where it is known to be zero. 

 

Throughout the text the colour code in Table 3 is used, unless specified otherwise. Figure 12 shows 

all channels that were recorded on all the test tracks.  

 

 Belgian Paving (BLG): Green
Double Lane Change (DLC): Blue
Ride and Handling Track (RHT): Red
City Traffic (CTY): Magenta
Off-Road Track (ORT): Yellow  

Table 3: Colour code 
 

 
 
 

http://www.mathworks.com/�
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Figure 12: Recorded data of all tests 

 

The following information was recorded: 

Channels 1 to 4 contain the displacement of each suspension strut. 

• Suspension displacement left front (Disp LF) [mm] 

• Suspension displacement right front (Disp RF) [mm] 

• Suspension displacement left rear (Disp LR) [mm] 

• Suspension displacement right rear (Disp RR) [mm] 

Gyros were used to obtain the vehicle's roll and yaw velocities 

• Body roll velocity (Roll Vel) [°/s] 

• Body yaw velocity (Yaw Vel) [°/s] 

A cord displacement meter was attached to the vehicle’s steering arm. However this did not work as 

well as kingpin angle measurement. 

• Steering displacement (Steer Disp) [mm] 

Three tri-axle accelerometers were used to obtain the lateral and vertical accelerations of the vehicle 

body. 

• Body lateral acceleration left front (Acc LF Lat) [g] 
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• Body vertical acceleration right rear (Acc RR Vert) [g] 

• Body lateral acceleration left rear (Acc LR Lat) [g] 

• Body vertical acceleration left rear (Acc LR Vert) [g] 

• Body vertical acceleration left front (Acc LF Vert) [g] 

A rotational potentiometer was directly attached to the vehicle’s kingpin to measure the turning 

angle of the wheel. 

• Kingpin angle on left front wheel (Steer Angle) [°] 

Optical tachometers on the driveshaft and the left rear wheel were used to measure the speed of the 

vehicle. Once again the wheel speed did not measure as well as the driveshaft speed. 

• Vehicle speed measured from left rear wheel (W Speed) [km/h] 

• Vehicle speed measured from the driveshaft (D Speed) [km/h] 

 

A graphic user interface (GUI) was developed to quickly view recorded data to make sure that all 

the sensors worked and all the channels were reading correctly. This was used to check certain 

statistical properties of the data and was also able to filter out the unwanted frequency content. 

Figure 13 shows a picture of the GUI with raw and filtered lateral acceleration data. 

 

 
Figure 13: GUI plotter 
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Filtering the data was an important step in the process. Two techniques were used and are discussed 

in the next section. 

 

2.7 Filtering 
Electronic signals contain noise and it is sometimes necessary to reduce the high frequency content 

to be able to analyse the data properly. This is done be filtering out the unwanted frequencies. There 

are mainly two ways of digitally filtering discretized data namely: Frequency domain and time 

domain filtering. Another option is analog filtering and is done before sampling takes place using 

various electronic components. 

 

Frequency domain filtering is done by first calculating the Fast Fourier Transform (FFT) of a signal. 

Then a weighting curve is used to set the amplitude of the unwanted frequencies equal to zero, after 

which the Inverse Fast Fourier Transform (IFFT) is calculated. This is an ideal filter that changes 

the amplitude of the signal at different frequencies. This cannot be done in real time and will 

therefore have a delay. 
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Figure 14: Frequency domain filter 
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The advantage of frequency based filtering over time domain filtering is that very specific 

frequencies can be totally eliminated and there is no phase lags as a result of the ideal filter. The 

disadvantage of this technique is that a large amount of data points are needed to calculate an 

acceptable FFT that contains enough information to successfully filter out the unwanted frequency 

content. The calculation is computationally intensive and takes a relatively long time to calculate. 

Figure 14 shows an unfiltered chirp signal and the same signal after a 3 Hz ideal frequency domain 

low-pass filter was applied to it. Notice the sharp cut-off at 3 Hz on the FFT plots. 

 

Time domain filtering can be calculated in real-time as each data point is received. An example of 

this type of filter is a Butterworth Infinite Impulse Response (IIR) filter. The following equation is 

used to calculate the next point in the filtered signal: 

[ ]NnNnNnNnnn yayaxbxbxb
a

y −+−−+− −−−+++= 1121121
1

......1  Eq. 1 

Where y is the filtered signal and x is the unfiltered signal 

Variable n is a counter and 2N+1 is the number of terms that is used by the filter 

Vectors, a and b, are predetermined constants from the Butterworth MATLAB 

(www.mathworks.com) functions: buttord.m and butter.m. These 26 coefficients are shown in 

Table 4. 

 
# a [x 100] b [x 1E-9]
1 0.010000 0.000372
2 -0.105028 0.004466
3 0.506414 0.024564
4 -1.482242 0.081878
5 2.932981 0.184226
6 -4.133225 0.294762
7 4.253322 0.343889
8 -3.220241 0.294762
9 1.780215 0.184226

10 -0.700768 0.081878
11 0.186443 0.024564
12 -0.030101 0.004466
13 0.002230 0.000372  

Table 4: Butterworth IIR filter coefficients 
 

The same signal as in Figure 14 was filtered using a 3 Hz low-pass Butterworth filter and is shown 

in Figure 15. The absolute of the FFT shows that the correct frequencies are being filtered out but 

does not have such a sharp cut-off frequency as the previous filter did. Unfortunately the filter also 

produces a phase lag, which means that the filtered signal is delayed with respect to the raw data. 
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The conclusion can now be made that both these filtering methods result in a delay of the actual 

measured signal. 
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Figure 15: Time domain filter 

 

2.8 Background conclusion 
The data obtained from the measurements were processed using different methodologies. There 

were two main objectives that needed to be addressed: terrain classification and the ride comfort vs. 

handling switching strategy. The literature survey showed that very little work has been done to 

solve the ride comfort vs. handling decision process. The vehicle that was used in this study is 

equipped with a computer that is able to receive and store measured data from sensors and perform 

basic control strategies for switching the hydraulic and pneumatic valves. This enables the vehicle 

to be in a ride comfort mode over relative rough terrain and in a handling mode when severe 

manoeuvres are being performed. Five test tracks were used to represent the typical terrain and 

driving styles that are normally used with a SUV. Chapter 3 will focus on the terrain classification 

of these five test tracks. Chapter 4 investigates different methods for determining the ride comfort 

versus handling decision, while chapter 5 looks at experimental results obtained by some of these 

strategies. Finally conclusion are drawn in chapter 6 based on all the methods that were discussed in 

this thesis. 
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3 Terrain classification 

 

Whether ride comfort or handling is required, mainly depends on the type of terrain that a vehicle is 

travelling over. Identification of the terrain can be used to improve the ride comfort by adjusting the 

suspension to soft springs and soft dampers. In this chapter several ideas for detecting or classifying 

the terrain that the vehicle is travelling on, are investigated. These ideas range from obstacle 

detection using “preview” sensors to Fuzzy logic, Self-Organising Maps (SOM’s) and statistical 

methods. 

 

3.1 Obstacle Detection 
Ride comfort is primarily influenced by the roughness of the terrain and the ability of the vehicle to 

attenuate these excitations. However if an "intelligent" vehicle can recognise the terrain or an 

obstacle that is in front of it, it could enhance the control needed for vehicle stabilising (e.g. semi-

active suspension). A preview of the road ahead can be achieved by either “looking” (e.g. laser 

distance sensor) or “listening” (e.g. sonar) for a deviation to the norm of the road profile 

(Iagnemma and Dubowsky, 2002). Sonar can be influenced by ambient noise. On the other hand 

laser sensors are influenced by the colour of the terrain surface and lighting conditions.  Laser 

sensors were chosen for the following proposal because of their simplicity, but the concept should 

work for any other non-contact distance measuring device. 
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Figure 16: A four degree of freedom pitch plane vehicle model in Simulink 

 

A four degree of freedom pitch plane vehicle model of the Land Rover test vehicle was built in 

Simulink (www.mathworks.com) as indicated in Figure 16. The four degrees of freedom are: 

vertical translation of the unsprung mass in the front (front wheels and axle) and the rear (rear 

wheels and axle), vertical translation and pitch rotation of the sprung mass (vehicle body).  
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7 
Figure 17: Detecting a triangular bump in the road using a laser distance meter 

 

Any road profile at any speed can be simulated by this model. A Runge-Kutta solver with a fixed 

time step of 0.05 s was used to calculate the dynamics of this mass-spring-damper model. The 

model was not validated because it was only used to prove the concept of road preview. Figure 17 

shows six frames of the vehicle model driving over a triangular bump in the road at 20 km/h. 

Preview information was obtained with two methods, one ignoring and another including the 

vehicle body pitch angle. 

 

3.1.1 Method 1 (Not compensating for body pitch angle): 

With reference to Figure 18, the following equations can be formulated. 
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=Θ … Similar triangles Eq. 2 
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=  Eq. 3 

Where 

H0:  Static height of laser sensor [m] 

L0:  Laser measurement on a flat surface [m] 

li: Actual laser measurement [m] 

zi: Estimated profile height at time step i [m] 

Θ0: Angle between laser and vertical [°] 
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Figure 18: Method 1 

 

3.1.2 Method 2 (Vehicle body pitch angle compensated for): 

From Figure 19, the following equations can be formulated. 

( )
i
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ii

i
i L

H
lL

z
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=+Θ θ0cos … Similar triangles Eq. 4 

 
( )

i

iii
i L

lLH
z

−
=  Eq. 5 

Where 

Hi:  Static height of laser sensor + suspension deflection [m] 

Li:  Laser measurement on a flat surface adjusted by the global pitch angle [m] 

li: Actual laser measurement [m] 

zi: Estimated profile height at time step i [m] 

θi: Global pitch rotation of vehicle [°] 

Θ0: Angle between laser and vertical [°] 
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Figure 19: Method 2 
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Figure 20: The measured parameters as well as the approximated road profile 

 

Figure 20 indicates the results obtained from the implementation of the two simple profile preview 

methods using the same laser measurement. The top left graph in this figure gives the distance that 

was measured. The top right graph indicates the actual terrain profile, as well as the estimated 
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preview profile. The bottom two graphs show the vertical translation of the unsprung masses and 

the sprung mass respectively. Both methods detected the bump 0.5 s before the first wheel made 

contact with the obstacle. The preview time is directly related to the vehicle speed. The switching 

delay of the hydraulic and pneumatic valves for the semi-active suspension system is at worst 0.1 s. 

This would be equal to the preview time for the current setup at 100 km/h.  

 

The first method oscillates after the vehicle travels over the bump. For the same reason the second 

method displays a ditch after the bump at about a distance of 17 m but does not have the oscillations 

of the first method. This method is more expensive because it requires determining the global pitch 

angle of the vehicle. The ditch that is displayed in the graph can also be eliminated if the global 

position of the laser sensor is known, but global positioning systems (GPS) are not that accurate yet. 

This is a simplified and ideal model that does not take the vehicle roll angle into consideration. It 

merely provides the control system for the semi-active suspension a split second preview of what 

the road profile will be. 

 

This method had some similarities with the technology used for high speed profiling of roads to 

determine the road roughness.  The next section explores the possibility of using the suspension 

displacements to determine the relative road roughness. 

 

3.2 Relative Roughness Indicator 
Road profiling systems are used to validate the calculated response of a mathematical vehicle model 

to the response of an actual vehicle. It is also used to measure the roughness of road surfaces. To 

ensure good quality roads, they must be built to a certain standard. The International Roughness 

Index (IRI) is a standardised method for computing the road roughness from measurements by most 

profilometers. 

 

A quarter-car model is used to calculate the suspension deflection from the measured road input. 

The accumulated suspension motion is then divided by the distance travelled. The result is a 

dimensionless parameter (m/km) called the IRI. This index is linearly proportional to the roughness 

of the road. (http://www.umtri.umich.edu, 01/13/2005) The following equation (Eq. 6) was used 

to calculate the IRI (Sun, 2001). 
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( )dttz
L

IRI
T

s∫=
0

1 &   Eq. 6 

Where 

L:  Distance travelled [m] 

T:  Total duration of measurement [s] 

t: time [s] 

sz&:  Vertical velocity measured by profilometer [m/s] 

 

The relative roughness of the five test tracks used in the current study differ considerably. The 

proposed relative roughness indicator is based on the International Roughness Index (IRI), which is 

used to determine the quality of the road. Instead of using a quarter-car-model to calculate the 

wheel displacement, it is measured at each suspension unit. The total suspension motion is 

accumulated over a fixed travelled distance. Large displacements indicate a relatively rough terrain. 

When the vehicle travels over a specific terrain the soft suspension will also produce larger 

displacements than the hard suspension setting. The integration of the suspension motion, when the 

vehicle is standing still for a long period of time, can cause large accumulation errors as can be seen 

in the first graph of Figure 21. It is clearly visible in the city traffic sections, where stopping at 

traffic lights caused the high peaks with the IRI calculation. However the exact roughness index is 

not of importance, only the relative roughness between the different terrains is essential. The second 

graph in Figure 21 shows the Relative Roughness Indicator (RRI). This was achieved by dividing 

the calculated roughness by the amount of time that it took to complete the specific distance that 

needed to be travelled. The RRI was calculated every 5 m from the past 10 m that was travelled. 

The average displacement of the four suspension units was used in Eq. 7 to calculate the RRI. 
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 Eq. 7 

Where 

L:  Distance travelled [m] 

t0:  Start time [s] 

tL: Time after fixed distance was travelled [s] 

t: time [s] 

i: Suspension unit i, with i = [1, 2, 3, 4] 

iz&:  Vertical velocity of each suspension unit i [m/s] 
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This means that when the vehicle is not moving, it can not be experiencing rough terrain and has a 

low roughness value regardless of the suspension motion. The difference between the ride comfort 

and the handling tests are obvious. It is also interesting to note that the ride and handling track (red) 

has rough sections. The first and third Ride and Handling Track (RHT) tests were done with the 

hard suspension setting. The second and fourth Ride and Handling Track (RHT) test was done with 

a soft suspension and switching only to the handling mode where sharp cornering took place 

(RRMS strategy, Els, 2006a). These two tests have a higher RRI because of the softer suspension 

setting that were enabled most of the time. The third graph in Figure 21 shows the time history of 

the Running Root Mean Square (RRMS) of the vehicle’s vertical acceleration, which is commonly 

used to quantify ride comfort. The RRI is a much better indication of terrain roughness than the IRI 

and the vertical acceleration. From the evidence presented in this paragraph, it is quite clear that the 

relative displacements of the suspension units were unique for the different terrain types. The 

following section focuses on the measured accelerations that are perpendicular to the driving 

direction (lateral and vertical acceleration). 

 

 
Figure 21: Comparing the Relative Roughness Indicator (RRI) with the RRMS vertical acceleration 
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3.3 Histogram of acceleration data 
A histogram shows the range and distribution of data. This is done by grouping the data according 

to their numeric range into intervals called bins (MATLAB, www.mathworks.com). The number 

of data points encountered in each bin is counted. The amount in each bin will give an indication of 

the time that the signal spent in a certain range.  

 

Figure 22 displays six histograms of lateral vs. vertical acceleration data. Because the amount of 

data differed for each test the histograms were normalised by dividing with the maximum value. It 

is assumed that the shape of each surface will stay more or less the same with larger data sets. The 

grey surface shows the histogram of all the tests, while the rest are colour coded according to Table 

3. Contour plots of these surfaces were produced and can be seen in Figure 23. The total area inside 

the outer most contour line represents 90% of all the data. The area between each contour line 

represents 10% of the data. Ellipses were fitted around each contour plot to approximate the 

maximum range of each test.  

 

 
Figure 22: 3D Histograms of all the tests 

 

In Figure 24 these approximations are superimposed. This graph shows that each terrain has a 

different acceleration signature. However there is too much overlap between the different tests and 

it would be difficult to clearly identify the terrain and/or handling manoeuvre at any given point in 

time. Another problem is that the vehicle reaches these extremities for only short periods of time.  
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Figure 23: Contour plots and ellipse approximations for each histogram 
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Figure 24: The superimposed range of accelerations for each test 

 

The lateral acceleration can be related to the driver’s actions. The vertical acceleration is due to the 

terrain roughness. The following section uses Fuzzy logic with the relative road roughness as well 

as the driver’s input to determine the terrain that the vehicle is travelling over. 

 

3.4 Fuzzy logic terrain classification 
Fuzzy logic is an algorithm that can be used to map input space data to an output space result. 

Fuzzy logic is an extension to multi-valued logic. The theory of fuzzy sets states that objects can be 

classified using membership functions. The membership of the object to a specific class is 

calculated as a matter of degree. Linguistic variables are used to define the fuzzy rules that govern 

the output of the algorithm.  

For example: 

 IF vehicle Speed is high AND Steer angle is low 

 THEN suspension is soft 

 IF vehicle Speed is high AND Steer angle is high 

 THEN suspension is hard 
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When solving problems, Fuzzy logic bases its decision on significance rather than precision. There 

are many applications for Fuzzy logic due to its speed, low cost and simplicity. (Fuzzy logic 

Toolbox, 2005) 

When using the Fuzzy logic toolbox in MATLAB (www.mathworks.com), there are 11 standard 

types of membership functions to choose from and the user can also define functions. Changing 

their parameters stretches and shifts the membership functions. There are therefore an infinite 

number of possibilities to construct the Fuzzy Inference System (FIS). The following is one 

possibility. Weight functions are used to map the input space to the output space. The following 

input variables were used: 

• Roughness Indicator (RI, also referred to as Relative Roughness Indicator (RRI)) 

• Standard deviation of the Kingpin steering angle (stdStrAng) 

• Root Mean Square of the Kingpin steering angle (rmsStrAng) 

• Mean Speed (meanSpd) 

 

These parameters where chosen because they are directly related to the terrain input (RI) and the 

driver’s actions (Kingpin steering angle and speed of the vehicle). The standard deviation of the 

steering angle indicates the range of the steering inputs while the RMS indicates the magnitude.  

 

The output variable was defined as the degree that the input data matched a certain terrain profile 

based on the set of rules it was given.  

The following rules were based on logical deduction and the knowledge that was gained by 

studying the data: 

• If (RI is high) and (stdStrAng is low) and (rmsStrAng is low) then (Terrain is BLG)  

• If (RI is low) and (stdStrAng is medium) and (rmsStrAng is medium) and (meanSpd is high) 

then (Terrain is DLC)  

• If (RI is medium) and (stdStrAng is high) and (rmsStrAng is high) and (meanSpd is high) 

then (Terrain is RHT)  

• If (RI is low) and (stdStrAng is low) and (rmsStrAng is medium) and (meanSpd is high) 

then (Terrain is CTY)  

• If (RI is high) and (stdStrAng is high) and (rmsStrAng is high) and (meanSpd is low) then 

(Terrain is ORT)  

 

There is however a large number of rules that can still be added. Figure 25 shows the process that 

was followed to generate the Fuzzy Inference System (FIS). All the input data were first normalised 

to ensure that all the variables had the same significance. A thousand data points from each of the 5 
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terrains were taken to test the FIS. Figure 26 shows the result of the output. The terrain that was 

classified the best was the Belgian paving (BLG) because the test was only done in a straight line 

and therefore the stdStrAng and the rmsStrAng was low. This was therefore the only rule that was 

necessary to correctly identify the test. It is definitely clear that the difference between the handling 

and ride comfort tests were distinguished but the decision between these extremes cannot be based 

on these results. The FIS can be improved by doing formal optimization on all the parameters. 
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Figure 25: FIS editor [MATLAB, fuzzy.m] 
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Figure 26: Comparison of terrain classification with Fuzzy logic 

 

Closely related to Fuzzy logic is Artificial Neural Networks. Self-Organising Maps is one type of 

neural network that was used in an attempt to classify the terrain in the next section. 

 

3.5 Self-Organising Maps 
Artificial Neural Networks (ANN’s) have many similarities to the human brain. Each sensory input 

the human brain receives (visual, auditory, etc.), is mapped into a corresponding area of the cerebral 

cortex. Kohonen (2001) formulated the principle of topographic map formation (Negnevitsky, 

2002). The principle states that a particular feature of the input pattern corresponds to the spatial 

location of an output neuron.  

 

Self-Organising Maps (SOM’s) can produce topology preserving maps of any feature space. Self-

organisation is achieved by stochastically presenting input features to the neurons, which then 

arranges them into a map. Topology preservation means that neighbouring neurons represent 

neighbouring regions in the input feature space. The SOM is a high-dimensional scaling method 

that projects the input feature data to a low-dimensional display. It converts complex, non-linear 
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statistical relationships from high-dimensional input data to a one- or two-dimensional grid. Similar 

vectors from the input feature space are projected to neurons that are topologically close to each 

other. If a SOM is applied correctly, it can be a highly effective tool to visualise high-dimensional 

data on a two dimensional grid. The SOM learns without supervision, which means the data is 

automatically arranged onto the map. SOM’s were initially intended for data visualization but it is 

now more commonly used for data classification.  

 

There are many applications where the SOM has been successfully implemented such as process 

analysis, monitoring, diagnostic methods, etc. in the industrial, medical and telecommunications 

industries. (Kohonen, 2001) 

 

A Self-Organising Map (SOM) can be called an intelligent multi-dimensional histogram. All the 

measurements that were taken were stored in a matrix of vectors. Each column in the matrix is 

called a variable and each row index represents a point in time. All the variables are first normalised 

to ensure that the SOM is not biased towards some variables. The training of the SOM is done by 

clustering similar row vectors together giving them a unique bin index on a predetermined map, the 

cluster map. The SOM is an artificial neural network that can be stored and reused without the need 

of a huge database to compare variables with. Neural networks have the disadvantage that they can 

only give an output if the input values are relatively close to what it was trained with. In other 

words it can not do what it was not trained to do.  

 

Two thousand linearly spaced data points from each test was used to train the SOM. Different 

combinations of variables were used to try and determine the best training dataset. The whole 

dataset was then used to test the SOM. The size of the training dataset is about 3% of the total 

dataset’s size.  
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Figure 27: Cluster map of ALL_1 SOM with all the measured data as input variables 

 

Figure 27 to Figure 41 shows the SOM’s and their performance of correctly classifying the terrain. 

The terrain classification maps use the colour codes depicted in Table 3. The U-matrix and other 

variable maps use a scaled colour code where blue indicates low values and red indicates high 

values. The U-matrix shows the cluster boundaries as high values (light blue to red), while the 

cluster itself is shown as low values (dark blue). This is an indication of the "distance" between 

neighbouring cells, which is why there are more cells in the U-matrix than in the other maps. If cells 

are close to each other (dark blue) it means that they contain similar data and are clustered together. 

 

Figure 28 indicates the SOM with all 14 measurements used as input variables. The terrain 

classification of the SOM is compared to the actual terrain in Figure 29. The percentage of correctly 

classified terrain types is 77.1% on average and the percentage of unclassified terrain is 1.1%. 
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Figure 28: ALL_1 SOM with all the measured data as input variables 

 

  
Figure 29: Performance of ALL_1 SOM with all the measured data as input variables 

 

 
 
 



Chapter 3 Terrain classification 

3-19 

 
Figure 30: RIDE_1 SOM with RRI and vertical acceleration as input variables 

 

  
Figure 31: Performance of RIDE_1 SOM with RRI and vertical acceleration as input variables 

 

Figure 30 shows the results when using the RRI and the vertical acceleration as input to the SOM.  

The percentage of correctly classified terrain types is 63.2% on average and the percentage of 

unclassified terrain is 0.41% (see Figure 31). 
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Figure 32: HAND_1 SOM with RMS lateral acceleration and vehicle speed as input variables 

 

  
Figure 33: Performance of HAND_1 SOM with RMS lateral acceleration and vehicle speed as input variables 

 

Figure 32 indicates the results achieved by using RRMS lateral acceleration and speed as input 

variables. The percentage of correctly classified terrain types is 77.1% on average and the 

percentage of unclassified terrain is 2.1%. (see Figure 33) 
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Figure 34: HAND_2 SOM with RMS lateral acceleration, steering angle and vehicle speed as input variables 

 

  
Figure 35: Performance of HAND_2 SOM with RMS lateral acceleration, steering angle and vehicle speed as 

input variables 
 

This analysis used the RRMS lateral acceleration, kingpin angle and the speed of the vehicle and is 

shown in Figure 34. The percentage of correctly classified terrain types is 78.9% on average and the 

percentage of unclassified terrain is 1.3% (see Figure 35). 
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Figure 36: RIDE_HAND_1 SOM with RRI and RMS lateral acceleration as input variables 

 

  
Figure 37: Performance of RIDE_HAND_1 SOM with RRI and RMS lateral acceleration as input variables 

 

A combination of ride comfort and handling parameters (RRI and RRMS lateral acceleration 

respectively) were used in Figure 36. The percentage of correctly classified terrain types is 76.2% 

on average and the percentage of unclassified terrain is 0.96% (see Figure 37). 

 

 
 
 



Chapter 3 Terrain classification 

3-23 

 
Figure 38: RIDE_HAND_2 SOM with RRI, RMS lateral acceleration and vehicle speed as input variables 

 

  
Figure 39: Performance of RIDE_HAND_2 SOM with RRI, RMS lateral acceleration and vehicle speed as input 

variables 
 

Figure 38 displays the result obtained by applying the RRI, RRMS lateral acceleration and speed to 

a SOM. The percentage of correctly classified terrain types is 83.7% on average and the percentage 

of unclassified terrain is 1.0% (see Figure 39). 
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Figure 40: RIDE_HAND_3 SOM with RRI, RMS lateral acceleration, steering angle and vehicle speed as input 

variables 
 

  
Figure 41: Performance of RIDE_HAND_3 SOM with RRI, RMS lateral acceleration, steering angle and vehicle 

speed as input variables 
 

The steering angle is added to this analysis shown in Figure 40. The percentage of correctly 

classified terrain types is 84.6% on average and the percentage of unclassified terrain is 1.4% (see 

Figure 41). 
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Table 5 lists the performance of the SOM’s for a specific test and in the last column all the tests 

combined. The Belgian paving is classified correctly in most of the algorithms. Using purely the 

vertical acceleration and the relative roughness as classifiers in the RIDE_1 SOM produced the 

worst results of all. While combing the ride comfort and handling data produced the best result as 

seen in the last two rows of the table. 

 
SOM Description Figures BLG DLC RHT CTY ORT ALL

ALL_1 14 measurements 28 & 29 83.0 91.7 78.3 75.5 76.0 77.1
RIDE_1 RRI & vert. acc. 30 & 31 75.3 59.5 63.3 65.7 43.5 63.2

HAND_1 RRMS lat. acc. & speed 32 & 33 96.7 89.1 72.4 73.8 98.4 77.1
HAND_2 RRMS lat. acc., speed & steer angle 34 & 35 96.1 91.4 70.4 78.2 96.4 78.9

RIDE_HAND_1 RRI & RRMS lat. acc. 36 & 37 94.8 69.0 62.2 82.7 73.1 76.2
RIDE_HAND_2 RRI, RRMS lat. acc. & speed 38 & 39 98.7 91.5 79.4 82.2 96.5 83.7
RIDE_HAND_3 RRI, RRMS lat. acc., speed & steer angle 40 & 41 98.3 92.2 76.4 85.5 95.4 84.6  

Table 5: Performance of SOM terrain classification [%] 

 

Table 6 gives the percentage of errors that occurred for each SOM. The SOM cannot classify data 

that it was not trained with. The UC column shows the percentage of unclassified data. The SOM 

algorithm tests the map by feeding it the same data that it was trained with. This produces the 

quantization (QE) and topographic (TE) errors. The quantization error indicates the accuracy of the 

output that was generated. The topographic error is a measure of the probability that the correct cell 

was chosen for the input data. The lowest percentage of data that was not classified by a SOM was 

that produced by RIDE_1. This however does not redeem it from its poor classification’s 

performance.  

 

SOM Description Unclassifed 
terrain

Quantization 
error

Topographical 
error

ALL_1 14 measurements 1.1 109.0 4.0
RIDE_1 RRI & vert. acc. 0.4 2.9 2.9

HAND_1 RRMS lat. acc. & speed 2.1 2.0 10.1
HAND_2 RRMS lat. acc., speed & steer angle 1.3 7.4 4.5

RIDE_HAND_1 RRI & RRMS lat. acc. 1.0 1.8 19.9
RIDE_HAND_2 RRI, RRMS lat. acc. & speed 1.0 5.8 4.9
RIDE_HAND_3 RRI, RRMS lat. acc., speed & steer angle 1.4 13.0 4.8  

Table 6: SOM terrain classification errors [%] 
 

From these tables it appears that the parameters: RRI, RRMS lateral acceleration, speed and steer 

angle would be the best choice for identifying the terrain type. This means that the SOM needs both 

ride comfort and handling features to classify the terrain correctly. 

 

3.6 Statistical discrimination 
The last attempt at terrain classification was done by using a purely statistical approach. A quadratic 

discriminant function based on the assumption of normality was suggested and implemented by 
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Grimbeek (2006) at the University of Pretoria. The total data set consisted of 11 measurements and 

395 214 observations from 5 different terrain types altogether. It was not possible to have an equal 

amount of data for each terrain type due to the length of the respective tests (Belgian paving: 100 m 

long, Ride and Handling Track: 4200 m long). A “test” data set was obtained by systematically 

using a 1000 observations from each one of the terrain data sets. The balance of 390 214 

observations was used as the “training” data set. There are a total of 390 coefficients that was 

determined by the SAS program (www.sas.com) from the training data set. The following equations 

are used to classify the terrain: 

∑∑∑
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≤≤ 51
max  

Then: kTn = , where k = [1, 2, 3, 4, 5] Eq. 9 

 

Where 

n is the nth observation 

k is the current discriminant function for terrain k, k = [1, 2, 3, 4, 5]  

ck is a constant associated with terrain k 

M is a matrix of coefficients for the linear terms 

Q is a matrix of coefficients for the cross product terms 

vn is a vector of the nth 11 measurements that were taken 

i and j are indexes, i = j = [1, 2, 3, …, 10, 11] 

Lnk is the solution to the kth discriminant function of the nth observation 

Tn is the index k that gives the maximum of Lnk ,  

Tn = 1: Belgian paving 

Tn = 2: Double lane change 

Tn = 3: Ride and handling track 

Tn = 4: City traffic 

Tn = 5: Off-road track 

 

The training data set was used to estimate the coefficients for the five likelihood discriminant 

functions, a function for each terrain type. These discriminant functions were applied to the “test” 

data to categorise the observations into one of the five terrain types. The results can be seen in 

Table 7 and Table 8. The original printout of the results can be seen in the appendix A.1. 
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Terrain 1 2 3 4 5 Total
1 90.71 0.94 0.17 3.66 4.51 100
2 0.64 81.45 2.03 15.88 0 100
3 2.01 2.24 93.84 0.14 1.77 100
4 1.56 2.41 1.99 92 2.02 100
5 6.29 0.01 0.79 3.39 89.51 100

Total 3.78 3.36 34.36 40.96 17.54 100  
Table 7: Quadratic discriminant classification of training data 

 
Terrain 1 2 3 4 5 Total

1 90.2 1.1 0.2 3.7 4.8 100
2 0.3 81.6 2.2 15.9 0 100
3 2.1 2.5 93.4 0.2 1.8 100
4 2 2.4 2 91.8 1.8 100
5 6.3 0 0.4 2.7 90.6 100

Total 20.18 17.52 19.64 22.86 19.8 100  
Table 8: Quadratic discriminant classification of testing data 

 

The total percentage of misclassification was 10.5% this means that 527 out of 5000 observations 

were classified into a different terrain type than the one it originated from (Grimbeek, 2006). 

 

Table 7 shows the percentage of the correctly classified observations from the training data. Table 8 

shows a similar trend for the testing data set. The performance of the classification is more or less 

the same for each terrain type except for the Double lane change. The reason for this can be found 

when looking at the misclassified observations that are not on the diagonal. The Double lane change 

was misclassified as city traffic for 15.9% of the time. This clarifies the slightly worse performance 

of this method when the Double lane change is classified. The city traffic and the Double lane 

change have many similarities, especially when comparing the section just before the lane change 

manoeuvre is performed to normal city driving in a straight line. 

 

Figure 42 shows the results from applying the equations (Eq. 8 and Eq. 9) on a data set containing 

5000 observations of each terrain type. The results shown in the bottom graph was obtained by 

calculating the histogram of a moving window (100 observations) to eliminate spurious 

classification of a similar terrain types. The maximum of this histogram indicates the dominant 

classified terrain. This method however has a 0.5 s delay when moving from one type of terrain to 

another. At this stage this is not such a big problem and this method improves the accuracy of 

identifying the correct terrain significantly (see Table 9) 
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Figure 42: Comparing the Quadratic discriminant classification with the actual terrain 

 
Terrain 1 2 3 4 5 Total

1 99.44 0.00 0.00 0.00 0.56 100
2 0.92 85.70 0.00 13.38 0.00 100
3 0.00 0.74 98.48 0.00 0.78 100
4 0.00 0.00 1.44 98.56 0.00 100
5 0.00 0.00 0.00 1.04 98.96 100

Total 20.07 17.29 19.98 22.60 20.06 100  
Table 9: Quadratic discriminant method with histogram averaging 

 

The conclusions drawn from all the results that were obtained from the various terrain classification 

methods can now be summarised. 

 

3.7 Conclusion of Terrain classification methods 
The main reason for classifying the terrain is to improve certain ride comfort vs. handling decision 

based strategies. An example of this is the speed vs. steer angle strategy investigated by Els 

(2006a). Figure 43 shows the boundaries of the speed and steering angles for three known terrain 
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types. If the terrain can be classified in real-time, different parameters for each terrain can be used 

in a decision making strategy to get the optimum results in each situation.  

 

 
Figure 43: Steering angle vs. speed (Els, 2006a) 

 

The obstacle detection method using laser range sensors have the advantage of detecting the terrain 

roughness before the vehicle travels over it. The downside of this method is that these sensors are 

usually expensive and sensitive to lighting and surface colour conditions. 

 

The acceleration histogram method is a simple solution that uses only a small bi-axial 

accelerometer. Unfortunately the results are not discriminative enough. The different terrains do 

have similarities and this is the reason for the large areas of overlap. 

 

Fuzzy logic is an algorithm that is easy to set up and can just as easily be changed, but this manual 

adjustment is cumbersome due to the many variables that need to be considered. This method can 

probably be improved if a lot of time is spent on a formal optimization analysis of the parameters of 

the fuzzy inference system. The parameters currently used do not give satisfactory results. 

 

The Self-Organising Map neural network is a multi-dimensional histogram that tries to discriminate 

all the observations by sorting the data into bins. After the SOM is trained the classification happens 
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quickly with very little effort. This algorithm has a disadvantage because it is not always able to 

classify new data. Therefore the training data has to represent each terrain very accurately. The 

method did on average quite well. The best results (RIDE_HAND_2, 84% correctly classified) were 

obtained by using the following parameters: relative roughness indicator (RRI), RRMS of the lateral 

acceleration, vehicle speed and steer angle. 

 

The best results were obtained from the analysis method suggested by the Department of Statistics 

at the University of Pretoria. A Quadratic discriminant function together with eleven measured 

parameters was used to classify the five terrain types. This method was able to correctly identify all 

the terrains for 89.5% of the time. The maximum of a moving histogram was used to improve the 

classification to 96.2%. This result is good considering that the Double lane change and the city 

traffic tests can be very similar at some stages. The same can be said for the Belgian paving and the 

Off-road track. In cases where doubt exists (e.g. the terrain cannot be classified) the control system 

should switch the suspension system to the handling mode to ensure safe operation of the vehicle. 

 

In view of the potential and remaining ambiguity to discern different terrains, the question arises 

when is it essential to switch the 4S4 system from the ride comfort to the handling mode. 
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4 Ride comfort vs. Handling switching strategies 

 

Results from the previous chapter showed that the terrain cannot be identified unambiguously by 

means of Fuzzy logic, SOM, Histograms, etc. without further refinement of the algorithms. These 

methods appear to be successful when identifying pure uneven terrain (Belgian paving and Off-road 

track), but discrimination of terrains where handling manoeuvres (Double lane change and Ride and 

handling track) were performed is less successful. Even if the terrain could be identified without 

uncertainty, the suspension must still be switched between the ride comfort and handling mode if 

and when it is needed. The main aim of the investigation in this chapter is to find a method that will 

make a ride comfort or handling decision based on measurements taken from the vehicle. Therefore 

switching signals based on logic was investigated and compared to a benchmark signal that is an 

ideal strategy based on expert knowledge. 

 

4.1 Benchmark switch 
Dr. Els (2006b) from the University of Pretoria, who developed the 4S4 semi-active suspension 

system, created the switch signal seen in the bottom graph of Figure 44, based on the steer angle, 

speed, vertical acceleration and lateral acceleration of the vehicle (top four graphs in Figure 44). 

This signal was created from intuition using the experience gained during fifteen years of vehicle 

dynamic research and testing. It should also be noted that the complete time history was available 

and this signal thus includes some form of “preview”, i.e. switching happens earlier than would be 

detectable using any sensors on the vehicle. 

 

All the proposed ride comfort vs. handling switching strategies were subsequently compared to and 

evaluated with this signal. 
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Figure 44: Data used (top four graphs) to generate the Benchmark switch (bottom graph) Els (2006b) 

 

4.2 Comparison metrics 
Three main characteristics of each switching signal were used to evaluate any proposed switching 

strategy when compared to the benchmark. The first characteristic is the number of times that the 

strategy switches between hard and soft (Pnsw). A signal that switches too much causes the valves to 

chatter. Because it is dangerous if the strategy switches to the soft suspension setting during a 

handling manoeuvre, the second parameter is an indication of the time that the algorithm and the 

benchmark are both in handling mode at the same time (Pand). Finally, the similarity between both 

the on and off state of the suspension was compared at a specific point in time (Pxor). The 

mathematical descriptions of these three comparison metrics are given in MATLAB code 

(www.mathworks.com) in Eq. 10 to Eq. 12 and also graphically in the form of flow diagrams 

shown in Figure 45 to Figure 47. 
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Figure 45: Pxor flow diagram 

 
Pxor = 100*sum(1-xor(s0,s1))/(length(s0)) [MATLAB code] Eq. 10 
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Figure 46: Pand flow diagram 

 
Pand = 100*sum(and(s0,s1))/(sum(s0))  [MATLAB code] Eq. 11 
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Figure 47: Pnsw flow diagram 

 
Pnsw = 100/exp(0.05*abs(sum(floor((diff(s0)+1)/2))-sum(floor((diff(s1)+1)/2)))) 

 [MATLAB code] Eq. 12 
 

Where  

s0 is the benchmark switching signal 

s1 is the proposed switching signal 

N or length(s0) is the length of the benchmark signal. 

 

The characteristics were weighted differently in order to quantify whether the algorithm performed 

well. The amount of switching was less important, because it could have exactly the same amount 
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as the benchmark but could be completely wrong for the other two parameters. On the other hand if 

Pnsw was left out, the strategy could rank high with the on/off characteristic but the switching would 

happen spuriously and could be dangerous. To prevent the suspension being in soft mode when 

handling is required, due to spurious switching, the following two solutions were considered 

namely:  

• Delaying the switch to ride comfort mode from the handling mode. 

• To have different threshold values (hysteresis) for switching to handling or ride comfort 

mode. 

 

4.3 Single switch with delay vs. Hysteresis switch 
The Single switch strategy is based on an if-statement. If the measured or calculated parameter is 

above or below a single threshold value, the switch changes its state to OFF or ON depending on 

what is required. To prevent the switch from chattering around the threshold value, a delay can be 

added. The delay causes the switch to turn off only after a certain period of time and then only if the 

algorithm has not switched it back on again. The Hysteresis switching strategy works in a similar 

way but does not have a delay. The ON threshold value is higher than the OFF threshold value. This 

inherently causes a delay if the frequency of the measured signal is low enough. If the signal 

contains a lot of high frequency noise, chattering may occur again. Figure 48 illustrates the 

difference between these concepts.  
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Figure 48: Single switch with delay vs. Hysteresis switch 

 

The disadvantage of the single switch is that the delay can cause the suspension to be stuck in the 

handling mode while ride comfort is actually required. The disadvantage of the Hysteresis switch is 

that if the zero value shifts, it can also cause the suspension to be in handling mode for too long, as 

will be seen in Chapter 5. 

 

The first proposed switching strategy is based on the low frequency content at which most handling 

manoeuvres take place and will be discussed in the following paragraph. 

 

4.4 Fast Fourier Transform analysis 
Fourier analysis is extremely useful when working with periodic signals. The concept is based on 

the fact that any signal can be represented as the sum of an infinite number of sine waves with 

different frequencies, amplitudes and phase shifts.  

 

When the vehicle is experiencing a handling manoeuvre, the measurements (e.g. lateral 

acceleration, yaw velocity, suspension displacements, etc.) from most of the onboard sensors, have 

very distinct low frequency content. The idea is to use the lateral acceleration as a measure of 

handling. The lower frequencies are very important but the DC or constant offset and drift should 
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be zero and can become a problem when calculating the FFT. Therefore the frequency band from 

0.4 to 3.5 Hz is used. The Fast Fourier Transform or FFT algorithm in MATLAB 

(www.mathworks.com) is used to transform the measured data to the frequency domain. At each 

time step the last 256 data points are used to compute the FFT of the vehicle’s lateral acceleration. 

The discrete Fourier transform can be calculated faster with the FFT algorithm if the number of 

points is a multiple of 2 (28 = 256). The average amplitude over a 0.4 - 3.5 Hz frequency band is 

calculated and is used in the two switching strategies (Single switch and Hysteresis switch). Figure 

49 shows one frame from an animation that displays the time domain input, the FFT and averaged 

FFT. The last graph is a bar plot that compares the proposed strategy with the Benchmark.  

 

The Single switch strategy had an ON/OFF threshold value of 0.04 and no delay. The Hysteresis 

switch had an ON threshold value of 0.04 and an OFF threshold value of 0.01. Figure 50 compares 

the Single switch and the Hysteresis switch to the benchmark for all the tests. Appendix A.2 gives a 

more detailed view of each test (Figure 74 to Figure 78). Table 10 and Table 11 reveal the actual 

performance of each strategy compared to the benchmark. 
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Figure 49: The FFT plots, Lateral acceleration and Benchmark comparison 
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The comparison metrics are used to evaluate their performance. The “nsw” is the number of 

switches that took place for the proposed strategy and in brackets is the benchmark’s number of 

switches for that specific test. 

 

 
Figure 50: Comparing the Benchmark switch with the Single switch and the Hysteresis switch 

 

Parameter BLG DLC RHT CTY ORT ALL
Pxor [%] 100.0 73.8 70.9 98.8 14.6 82.2
Pand [%] 100.0 90.4 79.5 0.0 100.0 78.0
Pnsw [%] 100.0 100.0 47.2 77.9 100.0 36.8

nsw 0 (0) 10 (10) 34 (49) 0 (5) 2 (2) 46 (66)  
Table 10: Performance of the lateral acceleration frequency domain analysis using the Hysteresis switch strategy 
 

Parameter BLG DLC RHT CTY ORT ALL
Pxor [%] 100.0 74.4 56.6 98.8 70.3 83.6
Pand [%] 100.0 79.5 35.8 0.0 27.7 38.0
Pnsw [%] 100.0 57.7 0.1 77.9 0.6 0.0

nsw 0 (0) 21 (10) 187 (49) 0 (5) 106 (2) 314 (66)  
Table 11: Performance of the lateral acceleration frequency domain analysis using the Single switch strategy 
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The colour code for the tables is black: 90 to 100 %, dark grey: 80 to 90 %, light grey: 70 to 80 % 

and white: below 70 %). This will be used with all the performance tables that follow. The 

Hysteresis switch works better than the Single switch in general. Both methods did very well with 

the Belgian paving (no switching). There is however, still a problem with the switching over the 

Ride and handling track and the Off-road track. 

 

The same strategy was repeated using yaw velocity instead of lateral acceleration. For this instance 

it was found that the Hystersis switch again produced better results than the Single switch, 

specifically with the Double lane change and Ride and handling track tests. 

 

The ON threshold value, a = 0.8, and the OFF threshold value, b = 0.3, were determined by 

optimizing the following objective function:   

( )nswandxorcomb PPPP 1.03.06.0100 ++=  Eq. 13 

 

 
Figure 51: Optimization of ON and OFF threshold values for the Hysteresis switch (based on yaw velocity) 
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Figure 52: A comparison between the Benchmark switch and the Hystersis switch (Yaw velocity frequency 

domain analysis) 
 

Parameter BLG DLC RHT CTY ORT ALL
Pxor [%] 100.0 77.0 74.1 98.0 10.1 82.6
Pand [%] 100.0 95.0 91.8 78.4 100.0 91.8
Pnsw [%] 100.0 100.0 90.5 90.5 100.0 100.0

nsw 0 (0) 10 (10) 47 (49) 7 (5) 2 (2) 66 (66)  
Table 12: Performance of the yaw velocity frequency domain analysis using the Hysteresis switch strategy 

 

Figure 51 shows the objective function and each term separately. The domain where a ≥ b is used 

because the time to compute the rest of the domain increased dramatically. This however is the only 

logical combination of these two parameters. The black dot shows the maximum for that specific 

term and the blue triangle represents the position of the optimum point for the whole objective 

function. Figure 52 and Table 12 display the results for this strategy. More detail is shown in 

Appendix A.3 (see Figure 79 to Figure 83). This method preformed well with the exception of the 

Off-road track section. The low frequency yaw velocity content when moving over rocky terrain is 

relatively high compared to the Belgian paving.   
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Another frequency domain method is discussed in the next section and uses the correlation between 

two signal’s phase information, also called coherence. 

4.5 Coherence 
Coherence can be explained by considering waves in a body of water. When two waves are 

coherent they will superimpose on top of each other and become a larger wave. If the same two 

waves are out of phase or are not coherent they will cancel each other out. Coherence is also a 

frequency based analysis and is a function of the power spectra and the cross spectrum of two 

separate signals (MATLAB, www.mathworks.com). In other words it compares the phase angles 

of two signals. Signals with exactly the same phase information will have a coherence of one. On 

the other hand if the two signals are completely out of phase the coherence will be zero. Thus the 

degree of correlation between the two signal’s phases can be computed with coherence.  

yyxx

xy
xy PP

P
C

2

=  Eq. 14 

Where Cxy is the coherence of the two signals 

Pxy is the cross power spectral density function between the signals 

Pxx and Pyy are the power spectral density functions of signal x and y 

(MATLAB, www.mathworks.com) 
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Figure 53: Normalised steering angle and speed (maximum = 1, minimum = -1), Coherence and the comparison 

of the strategy with the Benchmark 
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As mentioned in the previous section, some measurements contain similar low frequency 

characteristics. This is also true for low frequency phase angles of these signals. Good coherence is 

achieved when two signals are in phase. Figure 53 indicates one frame of an animation that shows 

the steering input, the speed, two normalised signals, the computed coherence and it’s mean. A bar 

plot shows the proposed switching strategy compared to the benchmark switch signal for the 

specific time step. A coherence value of 0.85 was used as the ON/OFF threshold. 

 

 
Figure 54: A comparison between the Benchmark switch and the three possible coherence strategies 

 

The performance of the coherence strategies is shown in Figure 54. Each type of test is displayed in 

more detail in Appendix A.4 (see Figure 84 to Figure 88). The three possibilities are the coherence 

of all the combinations from two of the following parameters: yaw velocity, steer angle and lateral 

acceleration. Table 13 to Table 15 give a summary of the performance of each strategy in each test. 

It is clear that the coherence of the yaw velocity and the lateral acceleration produced the best 

overall results although it switched twice on the Belgian paving. An excessive amount of switching 

did however occur in most of the tests.  
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Parameter BLG DLC RHT CTY ORT ALL
Pxor [%] 98.3 80.5 75.6 81.5 92.0 81.4
Pand [%] 0.0 96.7 96.2 93.5 100.0 96.2
Pnsw [%] 90.5 77.9 36.8 1.5 70.5 0.3

nsw 2 (0) 15 (10) 69 (49) 89 (5) 9 (2) 183 (66)  
Table 13: Performance of Hysteresis switch [Coherence between: yaw velocity and lateral acceleration] 

 

Parameter BLG DLC RHT CTY ORT ALL
Pxor [%] 100.0 75.1 73.3 79.6 90.1 79.5
Pand [%] 100.0 70.0 81.1 85.8 95.2 80.6
Pnsw [%] 100.0 60.7 18.3 1.7 67.0 0.1

nsw 0 (0) 20 (10) 83 (49) 87 (5) 10 (2) 200 (66)  
Table 14: Performance of Hysteresis switch [Coherence between: steer angle and lateral acceleration] 

 

Parameter BLG DLC RHT CTY ORT ALL
Pxor [%] 100.0 77.4 74.7 90.8 76.7 84.9
Pand [%] 100.0 83.0 81.8 83.5 94.2 82.2
Pnsw [%] 100.0 70.5 24.7 6.1 42.7 0.5

nsw 0 (0) 17 (10) 77 (49) 61 (5) 19 (2) 174 (66)  
Table 15: Performance of Hysteresis switch [Coherence between: yaw velocity and steer angle] 

 

Coherence did not produce acceptable results. Fuzzy logic was already used as a terrain 

classification method and will now be investigated further as a switching strategy. 

 

4.6 Fuzzy logic switching strategy 
Using Fuzzy logic to get a switching signal can be very complicated because of the immense 

number of parameters that can be set by the user. To really use the full potential of this method it is 

advised that a formal optimization analysis of these parameters be done. It is however possible to 

obtain a relatively good answer with little effort based on the user’s knowledge about the system as 

shown in the next few figures. Figure 55 shows the Graphic User Interface (GUI) in which the 

Fuzzy Inference System (FIS) was created. The left window displays the input membership 

functions and the right the output membership functions. 

 

Two simple rules were used to govern this switch namely: 

• If the Lateral acceleration is equal to Ride comfort then the suspension should be Soft 

• If the Lateral acceleration is equal to Handling then the suspension should be Hard 
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Figure 55: Fuzzy logic input and output membership functions 

 

Figure 56 and Table 16 compares the Fuzzy logic output to the benchmark switch. The results are 

shown in more detail in Appendix A.5 (see Figure 89 to Figure 93). 

 

 
Figure 56: Comparison between the Benchmark switch and the Fuzzy logic switch  

 

Parameter BLG DLC RHT CTY ORT ALL
Pxor [%] 100.0 88.1 89.1 99.4 95.6 95.8
Pand [%] 100.0 80.2 87.8 65.6 60.8 85.8
Pnsw [%] 100.0 63.8 4.7 70.5 27.3 0.6

nsw 0 (0) 19 (10) 110 (49) 12 (5) 28 (2) 169 (66)  
Table 16: Performance of Fuzzy logic switch 

 

 
 
 



Chapter 4 Ride comfort vs. Handling switching strategies 

4-14 

The Fuzzy logic did not do particularly well in any of the tests. There is however a lot of possible 

combinations of different parameters that might improve this method.  

 

Many of the methods discussed switch too late to the handling mode. In an attempt to have a faster 

switch response, polynomial fits are used to predict the future based on a short history of the data. 

 

4.7 Polynomial prediction 
This method is used to predict what a signal will do a few time steps in the future. This is done by 

fitting polynomial functions of a specific order to the data and extrapolating to a point in the future. 

The functions are fitted using the least-squares approximation.  

 

The first to fourth order polynomial functions were fitted to a running window of lateral 

acceleration. This is an attempt to produce an early warning for the suspension control system. The 

lateral acceleration was filtered with a 3 Hz ideal low pass filter to obtain a smoother signal for 

better polynomial fits. The window is 2 seconds (200 points) long and a further 200 milliseconds 

(20 points) are extrapolated into the future. These functions are averaged to get a combined function 

that closely approximates the signal. Two averaging methods were used. Every function 

approximates the signal to a certain degree. The Least error mean method weighted each 

polynomial function inversely proportionate to the least mean square error. A large weight is 

multiplied with the function that has the smallest least mean square error and vice versa. The second 

method, Equal weight mean, applied an equal weight to al the functions. This furthest extrapolated 

point is then used in the switching strategy. Unfortunately the polynomial fits are very laborious and 

take a long time to compute therefore the calculations are done every 0.5 s. Figure 57 shows the 

four polynomial functions in the first graph, the two averaging methods in the second graph and the 

result of the two methods in the bottom graph. 
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Figure 57: The process of determining the Polynomial prediction 

 

The performance of these two strategies is shown in Figure 58. A figure of each test type is shown 

in Figure 94 to Figure 98 (Appendix A.6). Table 17 and Table 18 confirm that the strategies fail on 

the Off-road track once again. A Single switch was used with a threshold value of 0.2 g and no 

delay. The terrain classification methods of chapter 3 could be implemented to adjust the switching 

thresholds for example over rough terrain in order to get better results. 
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Figure 58: Comparing the Least error mean and the Equal weight mean strategies to the Benchmark 

 

Parameter BLG DLC RHT CTY ORT ALL
Pxor [%] 97.1 86.4 86.7 99.0 72.5 92.5
Pand [%] 0.0 99.6 97.4 89.9 80.6 97.4
Pnsw [%] 90.5 100.0 36.8 77.9 25.9 5.2

nsw 2 (0) 10 (10) 69 (49) 10 (5) 29 (2) 125 (66)  
Table 17: Performance of Polynomial prediction with Least error weighted mean method 

 

Parameter BLG DLC RHT CTY ORT ALL
Pxor [%] 100.0 89.5 87.2 99.1 74.3 93.2
Pand [%] 100.0 99.6 97.3 84.6 88.3 97.3
Pnsw [%] 100.0 100.0 35.0 81.9 27.3 6.4

nsw 0 (0) 10 (10) 70 (49) 9 (5) 28 (2) 121 (66)  
Table 18: Performance of Polynomial prediction with Equal weighted mean method 

 

Figure 59 shows the difference in reaction time for the absolute of the lateral acceleration and its 

polynomial prediction during the Double lane change. The top graph shows the reaction time of the 

absolute lateral acceleration compared to the benchmark switch. The dashed lines are the proposed 
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ON switch and the solid lines show the Benchmark’s ON switch signal. Similarly the second graph 

shows the Polynomial prediction strategy’s reaction time relative to the Benchmark. The third graph 

on this figure shows a stem plot depicting the difference. A positive value indicates that the switch 

was activated before the benchmark switch signal. Negative values represent a late switch compared 

to the benchmark. From these results it can be concluded that the polynomial prediction can 

improve the reaction time of the control system. Unfortunately it switches too many times when 

compared to the other strategies.  
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Figure 59: Comparing the ON-switch delay, using polynomial prediction, with the Benchmark 

 

4.8 Running Root Mean Square (RRMS) of the lateral acceleration 
Statistics is a powerful way of describing large datasets. Most statistical functions (e.g. mean, 

standard deviation, etc.) give a single value output of an input vector. In order to make an informed 

decision the most recent values of a signal is used to calculate some statistical property. This 

window moves over the signal obtaining a new point and discarding the oldest value at each time 

step. The term running window is used for this reason. The number of points in the window is of 
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great importance because it acts like a low-pass filter, cutting off higher frequency content. Large 

windows have lower cut-off frequencies. If the window is too short statistical content may be lost. 

 

To obtain an indication of the average amplitude of the signal the Root Mean Square (RMS) is used. 

The RMS of the signal x, yrms, can be calculated as follows. 

N

x
y

N

i
i

rms

∑
== 1

2

 Eq. 15 

Where x is the signal and N is the number of data points in x. 

 

The Running Root Mean Square (RRMS) method was the first strategy implemented by Els 

(2006a). A running RMS or RRMS means that the RMS is calculated from the last N points of the 

signal. The new RRMS signal represents the change in amplitude of the original signal. A window 

of 100 data points (N = 100 or 1 second of data at 100 Hz sampling frequency) was used in the 

following analysis. The size of this window is the same as was used by Els (2006a). This parameter 

was not optimized but in a study of eight different values it produced both the least amount of 

chattering and had the quickest response time. The strategy used running RMS lateral acceleration 

compared to the running RMS of the vertical acceleration. Ride comfort mode is selected if the 

RRMS lateral acceleration is less than 0.05 g. The Handling mode is selected if the RRMS lateral 

acceleration is larger than the RRMS vertical acceleration and greater than 0.05 g or if the RRMS 

lateral acceleration exceeds 0.3 g. The strategy worked well except for the Double lane change test 

where the ride comfort mode was selected halfway through the test. The challenge was to see if it 

could be improved upon. Changing parameters always produced a trade-off between response time 

and the frequency of switching. 

 

The two switching strategies: Single switch with delay and Hysteresis switch, were again 

considered. The vehicle will be in ride comfort mode most of the time and will only switch to 

handling mode when it is needed. For this reason only the lateral acceleration was considered as the 

input to these switching strategies. A crude optimization method was used to determine the best 

parameters for each method. The two parameters for the single switch strategy were the ON/OFF 

threshold (m) and the number of data points (N) to delay the OFF switch. The ON (a) and OFF (b) 

threshold values were optimized for the Hysteresis switch. 
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The same objective function was used as before (see Eq. 13), where 0% is poor and 100% is a 

perfect performance. The three terms are weighted according to their importance. Figure 60 and 

Figure 61 show the optimization of each term (Pxor, Pand, and Pnsw) in the objective function and 

the combination of these terms (Pcomb). The black dots represent the optimum for each term, while 

the blue triangle represents the combined optimum. 

 

 
Figure 60: Single switch optimization surfaces 
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Figure 61: Hysteresis switch optimization surfaces 

 

Figure 62 displays the benchmark comparison with the Hysteresis switch and the Single switch. 

Each test is shown separately in Appendix A.7 (see Figure 99 to Figure 103). Table 19 and Table 20 

give the performance of each strategy on each test.  
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Figure 62: Comparison of the Benchmark switch, Single switch and Hysteresis switch strategies 

 

Parameter BLG DLC RHT CTY ORT ALL
Pxor [%] 100.0 70.8 81.2 99.0 96.2 92.9
Pand [%] 100.0 91.0 92.9 62.7 56.5 90.9
Pnsw [%] 100.0 100.0 95.1 100.0 95.1 100.0

nsw 0 (0) 10 (10) 48 (49) 5 (5) 3 (2) 66 (66)  
Table 19: Performance of RRMS Lateral acceleration Single switch, 

[ON/OFF threshold: m = 0.24 & Delay: N = 300] 
 

Parameter BLG DLC RHT CTY ORT ALL
Pxor [%] 100.0 87.0 83.8 99.2 75.6 91.9
Pand [%] 100.0 89.1 93.5 67.2 64.1 91.6
Pnsw [%] 100.0 90.5 90.5 100.0 90.5 90.5

nsw 0 (0) 12 (10) 47 (49) 5 (5) 4 (2) 68 (66)  
Table 20: Performance of RRMS Lateral acceleration Hysteresis switch, 

[ON threshold: a = 0.225 & OFF threshold: b = 0.03] 
 

The RRMS methods gave the best results thus far. The only serious problem is noticed with the Pand 

parameter on the Off-road track and the city traffic tests, but the Pnsw is quite accurate. This means 

that the handling mode for these tests did not coincide with the benchmark's handling sections. 

From these results it appears that the Single switch with delay produces the best overall switching 

signal. 
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4.9 Conclusion of the Ride comfort vs. Handling switching strategies 
The Ride comfort vs. handling decision is crucial to the success of the 4S4 system. Table 21 to 

Table 23 presents the comparisons of each strategy’s performance.  
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Table 21: Performance of switching strategies (Pxor) 

 

Table 21 shows the percentage of the similarity of the strategy compared to the Benchmark signal. 

All the strategies performed quite well with the Belgian paving and city traffic for this objective 

parameter (Pxor). The best overall performers were: Fuzzy logic (FIS switch), Polynomial prediction 

(Equal weight mean method) and both RRMS strategies. 
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Table 22: Performance of switching strategies (Pand) 

 

The Pand parameter was established as the measure of simultaneous time spent in the handling mode 

of the proposed strategy and the Benchmark. On average all the strategies performed well on the 

Double lane change and the Ride and handling track as seen in Table 22. The frequency domain 

Hysteresis switch (yaw velocity), the coherence Hysteresis switch (yaw velocity and steer angle) 

and the Polynomial prediction with equal weight mean (lateral acceleration) showed the most 

potential in this category. The coherence Hysteresis switch (yaw velocity and lateral acceleration) 
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and the Polynomial prediction with least error mean (lateral acceleration) also did well but both of 

them switched twice over the Belgian paving which none of the other strategies did. 
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Table 23: Performance of switching strategies (Pnsw) 

 

The number of switches that a strategy produces is compared to the Benchmark signal and with an 

exponential function is translated into a performance percentage (Pnsw). A low percentage means 

that the number of switches was either too high or too low compared to the benchmark signal. All 

the strategies performed well on the Belgian paving because no switching was ever required over 
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this terrain. The frequency domain Hysteresis switch (yaw velocity) and the two RRMS (lateral 

acceleration) strategies performed extremely well compared to the others. 

 

The overall best performing strategies were determined using the objective function that was used 

to optimize some of the methods (see Eq. 13). The bottom three strategies, shown in Table 24, 

produced the best results overall. 

 

Methodology Strategy Performance (%)
Single switch, Lateral acceleration 71.6
Hysteresis switch, Lateral acceleration 68.8
Hysteresis switch, Yaw velocity 81.7
Hysteresis switch, Yaw velocity and Lateral acceleration 79.7
Hysteresis switch, Steer angle and Lateral acceleration 79.5
Hysteresis switch, Yaw velocity and Steer angle 80.8

Fuzzy Logic FIS switch, Lateral acceleration 85.3
Least error mean method, Lateral acceleration 82.3
Equal weight mean method, Lateral acceleration 88.5
Hysteresis switch, Lateral acceleration 88.4
Single switch, Lateral acceleration 88.5

Frequency domain

Coherence

Polynomial prediction

RRMS
 

Table 24: Overall results for all the strategies 
 

These results are theoretical and needed to be verified with real vehicle tests. The polynomial 

prediction method requires a lot of processing power and could not be implemented in the current 

system. The next chapter shows the results of the two RRMS strategies.  
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5 Experimental results 

 

A set of tests were performed to verify some of the proposed strategies. In this case the passengers’ 

reaction was used as the benchmark switching signal. 

 

5.1 Passenger response 
Four digital input channels were used for measuring the reaction of the passengers to the movement 

of the vehicle. Spring loaded pushbuttons were connected to the recording computer. (See Figure 

63) The buttons were pushed in if the passenger felt that a handling manoeuvre was being 

performed. The benchmark signal was defined as ON (handling), if two or more buttons were being 

pushed at the same time. This benchmark signal is not based on expert knowledge but rather human 

reaction from the forces that act on a person’s body when severe handling manoeuvres are 

experienced.  

 

 
Figure 63: Passenger response button 

 

5.2 Measurements 
The following list of measurements were recorded for this set of tests 

• Left front suspension displacement [mm] 

• Right front suspension displacement [mm] 

• Left rear suspension displacement [mm] 

• Right rear suspension displacement [mm] 

• Left rear lateral acceleration [g] 

• Left rear vertical acceleration [g] 

• Right rear lateral acceleration [g] 
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• Right rear vertical acceleration [g] 

• Right rear longitudinal acceleration [g] 

• Roll velocity [°/s] 

• Yaw velocity [°/s] 

• Left distance laser sensor (not used for this study) [mm] 

• Right distance laser sensor (not used for this study) [mm] 

• Kingpin angle [°] 

• Vehicle speed from left rear wheel [km/h] 

• Vehicle speed from driveshaft [km/h] 

• Digital buttons [OFF (0) / ON (1)]  (Passenger response) 

• Spring setting [Hard (0) / Soft (1)] 

• Damper setting [Hard (0) / Soft (1)] 

• Digital Butterworth IIR filtered left rear lateral acceleration [g] 

• Real-time computed RRMS of filtered left rear lateral acceleration [g] 

 

The spring and damper settings were recorded in order to know exactly when the suspension 

switched. An IIR Butterworth 3 Hz low pass filter was applied to the lateral acceleration in order to 

increase the signal to noise ratio (see Eq. 1). The RRMS of this signal was also logged for later 

analysis. 

 

5.3 Test results 
Figure 64 to Figure 73 show selected tests that were done with two of the proposed strategies. These 

strategies are the Single switch with RRMS lateral acceleration and Hysteresis switch with RRMS 

lateral acceleration. Both these strategies use the Running Root Mean Square to calculate the RMS 

of the lateral acceleration of 1 s of data every 0.01 s. Threshold values are then used to determine 

when the suspension should be set to ride comfort or handling mode. The passenger response can be 

seen in the top graph of each figure. The passengers’ response is displayed in the background of the 

graph as shades of grey sections. The darkness of these sections represents the number of buttons 

that are being pressed at that specific time. At first glance there are some problems that can be seen. 

First of all the real-time filtered data does not seem to have the correct zero value. The reason for 

this can be explained as follows: when the control program starts, it first obtains the zero values of 

all the channels while the vehicle is stationary. If the vehicle is not completely horizontal at this 

time, the lateral acceleration will read an offset of the true zero value. In post-processing the signal 

can be shifted up or down to get the correct zero value. In addition to this there is also a problem 
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with zero value drift when extended tests are performed. This may be the result of temperature 

fluctuations. 

 

Another problem that is evident when looking at the lateral acceleration from the Double lane 

change (Figure 65 and Figure 66) is the long delay that is caused by the phase shift of the 

Butterworth IIR filtering and RRMS calculations. This causes delays in the reaction time of the 

switching strategies and is a serious safety problem that still needs to be addressed. 

 

The RRMS, Single and Hysteresis switching strategies, were programmed into the control computer 

of the suspension system. The following threshold values were used in the algorithms. The Single 

switch had an ON threshold of m = 0.24 g but no delay was implemented. The Hysteresis switch 

had an ON threshold of a = 0.225 g and an OFF threshold of b = 0.04 g. It was soon realised that 

because of the incorrect zero value, the OFF threshold (b = 0.04 g) of the Hysteresis switch was too 

low, forcing the vehicle to stay in the handling mode for longer then necessary. This value was 

increased (b = 0.1 g) and better results in some cases were observed. 

 

 
Figure 64: Comparing the actual Single switch [m = 0.24, No delay] to the recalculated strategies (BLG) 

 

All the strategies were able to correctly stay in the ride comfort mode when the vehicle travelled 

over the Belgian paving (see Figure 64).  
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Figure 65 and Figure 66 shows the results of the Double lane change. The time difference between 

when the passengers indicated that better handling was needed and the actual switching is more 

than half a second. At higher speeds this could result in a rollover accident even before the 

switching will have occurred. It is also clear that better zero values were obtained for the test 

depicted in Figure 66. The best strategy for the Double lane change appears to be the Hysteresis 

switch with a = 0.225 and b = 0.04. 

 

 
Figure 65: Comparing the actual Single switch [m = 0.24, No delay] to the recalculated strategies (DLC) 
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Figure 66: Comparing the actual Hysteresis switch [a = 0.225, b = 0.04] to the recalculated strategies (DLC) 

 

 
Figure 67: Comparing the actual Single switch [m = 0.24, No delay] to the recalculated strategies (RHT) 
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Figure 68: Comparing the actual Hysteresis switch [a = 0.225, b = 0.04] to the recalculated strategies (RHT) 

 

 
Figure 69: Comparing the actual Hysteresis switch [a = 0.225, b = 0.1] to the recalculated strategies (RHT) 
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The Ride and handling track tests are shown in Figure 67 to Figure 69. At this point it became clear 

that the OFF threshold of the Hysteresis switch was not sensitive enough. Figure 68 shows large 

sections where the suspension stayed in handling mode unnecessarily. The Single switch appeared 

to be the best strategy for the Ride and handling track.  

 

The City traffic tests are the only tests that are not really repeatable. Traffic is random and the 

quality of the roads varies. (see Figure 70 and Figure 71) It is therefore more difficult to establish 

which strategy would work best. This however is where the SUV would spend most of its time. 

Once again the Single switch strategy performed the best. 

 

 
Figure 70: Comparing the actual Hysteresis switch [a = 0.225, b = 0.04] to the recalculated strategies (CTY) 
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Figure 71: Comparing the actual Single switch [a = 0.24, No delay] to the recalculated strategies (CTY) 

 

 
Figure 72: Comparing the actual Single switch [a = 0.24, No delay] to the recalculated strategies (ORT) 
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Figure 73: Comparing the actual Hysteresis switch [a = 0.225, b = 0.1] to the recalculated strategies (ORT) 

 

The Off-road track jerks the vehicle in all directions. This causes the lateral acceleration to be 

higher than normal even though it is not dangerous from a handling point of view. Both strategies 

performed poorly on this track, but the Single switch strategy did better than the Hysteresis switch 

strategy. (see Figure 72 and Figure 73) 
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5.4 Conclusion of experimental results 
The effect of the changing suspension characteristics was not taken into account when the different 

switching strategies were formulated. This could not be done because the vehicle is a highly non-

linear system. It would be close to impossible to know what the effect of changing the suspension 

characteristics would be on every measurement. There is however a possibility of using a 

simulation model of the vehicle to investigate this phenomenon, but the computational time it needs 

to run disqualified this as a viable option at the time. 

 

Parameter BLG DLC RHT CTY ORT ALL
Pxor [%] 100.0 75.6 60.2 94.2 - 77.3
Pand [%] 100.0 84.7 97.3 27.3 - 62.1
Pnsw [%] 100.0 100.0 18.3 63.8 - 11.6

nsw 0 (0) 1 (1) 12 (46) 1 (10) - 14 (57)  
Table 25: Hysteresis switch with lateral acceleration [a = 0.225, b = 0.04] 

 

Parameter BLG DLC RHT CTY ORT ALL
Pxor [%] - 76.5 73.8 - 89.1 79.7
Pand [%] - 77.7 86.0 - 15.0 58.8
Pnsw [%] - 95.1 81.9 - 81.9 100.0

nsw - 3 (2) 21 (25) - 5 (1) 29 (29)  
Table 26: Hysteresis switch with lateral acceleration [a = 0.225, b = 0.1] 

 

Parameter BLG DLC RHT CTY ORT ALL
Pxor [%] 100.0 70.7 84.1 98.8 96.7 95.0
Pand [%] 100.0 57.7 86.4 100.0 67.6 92.2
Pnsw [%] 100.0 90.5 86.1 81.9 77.9 49.7

nsw 0 (0) 5 (3) 27 (24) 5 (1) 8 (3) 45 (31)  
Table 27: Single switch with lateral acceleration [m = 0.24, No delay] 

 

From Table 25 to Table 27, showing the percentage similarity of the strategies compared to the 

passenger response, it is clear that the Single switch algorithm performed better than any of the 

Hysteresis strategies. 
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6 Conclusions and Recommendations 

 

In this study two main topics were investigated: terrain classification and the ride comfort versus 

handling switching strategies. The conclusions and recommendations discussed below follow from 

the results obtained. 

 

6.1 Terrain classification 
The main conclusions from the terrain classification analysis are as follows: 

• The different terrains and driving styles made it possible to discriminate between the five 

different test tracks.  

• The obstacle detection method utilizes non-contact distance sensors that could be used to 

detect terrain roughness. Cost and measuring sensitivity are considerations that must be 

taken into account.  

• The acceleration histogram method can be obtained by using a relatively inexpensive 

accelerometer. This method gives an indication of the ride comfort and handling criteria for 

each test track.  

• A Fuzzy logic algorithm is easy to set up, but the manual adjustment of each parameter is 

not accurate and can take a long time. A formal optimization analysis of the parameters is 

needed to fully exploit this method.  

• Self-Organising Maps are trained with a set of sample data and is then able to classify the 

terrain types efficiently. The training data has to represent each terrain very accurately to get 

good results. A combination of ride comfort and handling parameters resulted in correctly 

classifying the terrain types for 84% of the time.  

• A Quadratic discriminant function together with eleven measured parameters was used and 

was able to correctly identify all the terrains for 89.5% of the time. The 10.5% of incorrect 

classification is mainly due to the fact that there are similarities between the terrains. This 

was further improved to 96.2% of correctly classifying terrain types by using a moving 

histogram method. 

 

These methods can still be improved by optimizing the parameters of each classifying function. The 

most promising method would be the statistical quadratic discriminant function, but there are other 

statistical procedures that might perform better. One such method could be a non-parametric 

discriminant function. The data was captured at 100 Hz or 100 observations per second. It might not 

 
 
 



Chapter 6 Conclusions and Recommendations 

6-2 

be necessary to know the terrain type at such a high frequency. Taking an average of the 

classifications periodically will also produce better results. 

 

6.2 Switching strategies 
The safety aspect of the handling mode is the main drive for having a semi-active suspension 

system. The handling mode is unfortunately very uncomfortable, even in city traffic. This is due to 

the stiff suspension that is needed to do relatively high speed cornering. A switching strategy is 

required that will enable the vehicle to drive in ride comfort mode most of the time and only switch 

to handling mode when needed. Five methodologies and eleven strategies were formulated and 

investigated in this study. The most reliable parameter that gave a good indication of when handling 

manoeuvres were performed was the lateral acceleration of the vehicle. The Running Root Mean 

Square of this measurement was used in the RRMS strategies. When compared to the frequency 

domain, coherence, Fuzzy logic and polynomial prediction, the RRMS strategies performed the 

best. Theoretically the RRMS Single switch strategy produced a switching signal that resembled the 

benchmark signal the closest. 

 

These RRMS algorithms did not perform as well in the experimental tests when compared to the 

passenger response. They still have great potential to become the standard of measuring handling 

manoeuvres. The RRMS strategies can be improved if the correct zero values of these 

measurements could be obtained. It is proposed that the global pitch and roll angle should be used 

to calculate the x, y and z components of the accelerations relative to the vehicle’s local axis 

system. This will indicate the actual slope of the vehicle's body and can therefore be used to 

compensate for the global lateral acceleration that is currently measured. By improving filtering 

techniques, signals with smaller phase shifts can be produced and also a quicker response time for 

the switching strategies. 

 

Both in terms of terrain classification and switching strategies potential methods have been 

identified. These methods can be developed further and possibly combined to ensure the safe and 

comfortable performance of SUV's and other off-road vehicles. 
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A.1 Statistical analysis of terrain classification 

 
Data=Train, Pool=No, var2-var12, Nr=2                              982 
                                                                      17:17 Thursday, November 2, 
2006 
 
                                        The DISCRIM Procedure 
                      Classification Summary for Calibration Data: BESTER.TRAIN 
                     Resubstitution Summary using Quadratic Discriminant Function 
 
                                Generalized Squared Distance Function 
 
                                2         _       -1   _ 
                               D (X) = (X-X )' COV  (X-X ) + ln |COV | 
                                j          j      j     j           j 
 
                           Posterior Probability of Membership in Each VAR1 
 
                                               2                    2 
                            Pr(j|X) = exp(-.5 D (X)) / SUM exp(-.5 D (X)) 
                                               j        k           k 
 
 
                        Number of Observations and Percent Classified into VAR1 
 
      From VAR1            1            2            3            4            5        Total 
 
              1         4903           51            9          198          244         5405 
                       90.71         0.94         0.17         3.66         4.51       100.00 
 
              2           46         5859          146         1142            0         7193 
                        0.64        81.45         2.03        15.88         0.00       100.00 
 
              3         2785         3102       129979          197         2447       138510 
                        2.01         2.24        93.84         0.14         1.77       100.00 
 
              4         2649         4093         3379       155942         3432       169495 
                        1.56         2.41         1.99        92.00         2.02       100.00 
 
              5         4379            8          553         2361        62310        69611 
                        6.29         0.01         0.79         3.39        89.51       100.00 
 
          Total        14762        13113       134066       159840        68433       390214 
                        3.78         3.36        34.36        40.96        17.54       100.00 
 
         Priors          0.2          0.2          0.2          0.2          0.2 
 
 
                                    Error Count Estimates for VAR1 
 
                                1           2           3           4           5       Total 
 
         Rate              0.0929      0.1855      0.0616      0.0800      0.1049      0.1050 
         Priors            0.2000      0.2000      0.2000      0.2000      0.2000 
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Data=Test, Pool=No  var2-var12, Nr=2                              983 
                                                                      17:17 Thursday, November 2, 
2006 
 
                                        The DISCRIM Procedure 
                          Classification Summary for Test Data: BESTER.TEST 
                     Classification Summary using Quadratic Discriminant Function 
 
                                Generalized Squared Distance Function 
 
                                2         _       -1   _ 
                               D (X) = (X-X )' COV  (X-X ) + ln |COV | 
                                j          j      j     j           j 
 
                           Posterior Probability of Membership in Each VAR1 
 
                                               2                    2 
                            Pr(j|X) = exp(-.5 D (X)) / SUM exp(-.5 D (X)) 
                                               j        k           k 
 
 
                        Number of Observations and Percent Classified into VAR1 
 
      From VAR1            1            2            3            4            5        Total 
 
              1          902           11            2           37           48         1000 
                       90.20         1.10         0.20         3.70         4.80       100.00 
 
              2            3          816           22          159            0         1000 
                        0.30        81.60         2.20        15.90         0.00       100.00 
 
              3           21           25          934            2           18         1000 
                        2.10         2.50        93.40         0.20         1.80       100.00 
 
              4           20           24           20          918           18         1000 
                        2.00         2.40         2.00        91.80         1.80       100.00 
 
              5           63            0            4           27          906         1000 
                        6.30         0.00         0.40         2.70        90.60       100.00 
 
          Total         1009          876          982         1143          990         5000 
                       20.18        17.52        19.64        22.86        19.80       100.00 
 
         Priors          0.2          0.2          0.2          0.2          0.2 
 
 
                                    Error Count Estimates for VAR1 
 
                                1           2           3           4           5       Total 
 
         Rate              0.0980      0.1840      0.0660      0.0820      0.0940      0.1048 
         Priors            0.2000      0.2000      0.2000      0.2000      0.2000 
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A.2 Frequency Domain analysis (lateral acceleration) 

 
Figure 74: Frequency Domain analysis (lateral acceleration), Belgian paving 

 

 
Figure 75: Frequency Domain analysis (lateral acceleration), Double lane change 
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Figure 76: Frequency Domain analysis (lateral acceleration), Ride and handling track 

 

 
Figure 77: Frequency Domain analysis (lateral acceleration), City traffic 
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Figure 78: Frequency Domain analysis (lateral acceleration), Off-road track 

 

A.3 Frequency Domain analysis (yaw velocity) 

 
Figure 79: Frequency Domain analysis (yaw velocity), Belgian paving 
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Figure 80: Frequency Domain analysis (yaw velocity), Double lane change 

 

 
Figure 81: Frequency Domain analysis (yaw velocity), Ride and Handling Track 
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Figure 82: Frequency Domain analysis (yaw velocity), City traffic 

 

 
Figure 83: Frequency Domain analysis (yaw velocity), Off-road track 
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A.4 Coherence 

 
Figure 84: Coherence, Belgian paving 

 

 
Figure 85: Coherence, Double lane change 
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Figure 86: Coherence, Ride and handling track 

 

 
Figure 87: Coherence, city traffic 
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Figure 88: Coherence, Off-road track 

 

A.5 Fuzzy logic 

 
Figure 89: Fuzzy logic, Belgian paving 
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Figure 90: Fuzzy logic, Double lane change 

 

 
Figure 91: Fuzzy logic, Ride and handling track 

 

 
 
 



Appendix A 

A-13 

 
Figure 92: Fuzzy logic, city traffic 

 

 
Figure 93: Fuzzy logic, Off-road track 
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A.6 Polynomial prediction 

 
Figure 94: Polynomial prediction, Belgian paving 

 

 
Figure 95: Polynomial prediction, Double lane change 
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Figure 96: Polynomial prediction, Ride and handling track 

 

 
Figure 97: Polynomial prediction, city traffic 
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Figure 98: Polynomial prediction, Off-road track 
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A.7 RRMS of the lateral acceleration 

 
Figure 99: RRMS, Belgian paving 

 

 
Figure 100: RRMS, Double lane change 
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Figure 101: RRMS, Ride and handling track 

 

 
Figure 102: RRMS, city traffic 
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Figure 103: RRMS, Off-road track
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