
School of Information Technology. University of Pretoria - L.R.Els (2005)

USING THE UNIFIED MODELING LANGUAGE (UML) TO REPRESENT ARTEFACTS

IN THE ZACHMAN FRAMEWORK

Mini-dissertation by LYNETTE REGINA ELS (83564595)

Submitted in partial fulfilment of the requirements for the degree

MASTER OF INFORMATION TECHNOLOGY

in the

SCHOOL OF INFORMATION TECHNOLOGY

of the

FACULTY OF ENGINEERING AND INFORMATION TECHNOLOGY

UNIVERSITY OF PRETORIA

Supervisor: Mr P. Joubert November 2005

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

Acknowledgements

I would not have been able to complete my mini dissertation without the help, guidance and support

of the following people:

- My Study Leader, Pieter Joubert, for discussing and arguing my research topic and for guiding me

through the research process.

- My colleagues at work, SITA and friends for all the support, advice and suggestions which

contributed towards finalising my research proposal.

- My mother and sister for the valuable support just a family can provide when they encourage you

to succeed.

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - ii -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

Table of Contents

1. Chapter 1. Introduction. ...1

1.1. Background. ...1

1.2. Personal Experiences. ..1

1.3. Problem Statement...2

1.4. Research Approach..3

1.5. Overview of the Research Paper...3

2. Chapter 2. UML. ...5

2.1. Modeling Techniques...5

2.2. Organisations Using UML. ...5

2.3. UML History. ...6

2.4. What is UML? ..6

2.5. UML Representations..7

2.6. Behaviour or Dynamic Diagrams. ..9

2.6.1. Use Case Diagram..9

2.6.2. Sequence Diagram. ..12

2.6.3. Collaboration Diagram. ..13

2.6.4. Activity Diagram..15

2.6.5. State Chart Diagram. ..16

2.7. Structure of Static Diagrams. ...17

2.7.1. Class Diagram. ...17

2.7.2. Object Diagram..18

2.8. Implementation Diagrams...19

2.8.1. Component Diagram. ..19

2.8.2. Deployment Diagram. ...20

3. Chapter 3. Rational Unified Process (RUP). ...22

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - iii -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

4. Chapter 4. Enterprise Architecture. ..24

4.1. Complexity of Organisations. ...26

4.2. Enterprise Architecture Defined. ...26

4.3. Zachman Framework Defined. ...26

4.3.1. The Concepts of Zachman Primitives and Composites Defined. ..29

4.3.2. Defining Zachman Rows. ..29

4.3.3. Defining Zachman Columns. ..31

4.3.4. Defining the Zachman Cells..32

4.4. Applicability of the Zachman Framework. ...40

4.5. Benefits of Using the Zachman Framework. ...41

5. Chapter 5. Mapping RUP and UML within the Zachman Framework. ..43

5.1. Mapping RUP within the Zachman Framework. ...43

5.2. UML Primitives..44

5.3. UML Composites. ..45

5.4. UML Types Used in Every Diagram. ...46

5.5. Zachman Framework with UML Primitives. ..46

5.6. Where is UML Used within the Zachman Framework? ..46

6. Chapter 6. Conclusion...51

6.1. Zachman Columns not Addressed..51

6.2. Zachman Rows not Addressed..51

6.3. Significance of UML Diagrams...52

6.4. Benefits of Mapping with UML. ...52

6.5. General Conclusion..52

6.6. Future Research. ..53

7. References. ...54

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - iv -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

List of Tables
TABLE 1: ZACHMAN ROWS AND COLUMNS. ..28
TABLE 2: ZACHMAN INDEX OF CELLS...33
TABLE 3: THE RUP WITHIN ZACHMAN ROWS. ...43

Table of Figures
FIGURE 1: USE CASE DIAGRAM ...9
FIGURE 2: SEQUENCE DIAGRAM ...13
FIGURE 3: COLLABORATION DIAGRAM ..14
FIGURE 4: ACTIVITY DIAGRAM ...15
FIGURE 5: STATE CHART DIAGRAM ...16
FIGURE 6: CLASS DIAGRAM..18
FIGURE 7: OBJECT DIAGRAM ...19
FIGURE 8: COMPONENT DIAGRAM ...20
FIGURE 9: DEPLOYMENT DIAGRAM ...21
FIGURE 10: UML AND ZACHMAN SUPPORT ..47
FIGURE 11: COMPARATIVE UML AND ZACHMAN SUPPORT. (NORAN)..48
FIGURE 12: COMPARATIVE UML AND ZACHMAN SUPPORT. OMG'S MDA. ...49
FIGURE 13: COMBINED COMPARATIVE UML AND ZACHMAN SUPPORT. ...50

Appendix A. Abbreviations.
Appendix B. Examples within the Zachman Framework.
Appendix C. UML Primitives per UML Diagram Mapped in the Zachman Cells.
 C1. Use Case Diagram.
 C2. Sequence Diagram.
 C3. Collaboration Diagram.
 C4. Activity Diagram.
 C5. State Chart Diagram.
 C6. Class Diagram.
 C7. Object Diagram.
 C8. Component Diagram.
 C9. Deployment Diagram.
Appendix D. UML Composites per UML Diagram Mapped in the Zachman Cells.
 D1. Use Case Diagram.
 D2. Sequence Diagram.
 D3. Collaboration Diagram.
 D4. Activity Diagram.
 D5. State Chart Diagram.
 D6. Class Diagram.
 D7. Object Diagram.
 D8. Component Diagram.
 D9. Deployment Diagram.
Appendix E. UML Types Present al all UML Diagrams.

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - v -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

E1. UML Primitives Mapped in the Zachman Cells.
E2. UML Composites Mapped in the Zachman Cells.

Appendix F. All the UML Primitives Mapped in the Zachman Cells.
Appendix G. Comparative UML and Zachman (Detail) Support.

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - vi -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

I keep six honest serving men

(They taught me all I Knew):

Their names are What and Why and When

And How and Where and Who.

RUDYARD KIPLING, 1902.

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - vii -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

USING THE UNIFIED MODELING LANGUAGE (UML) TO REPRESENT ARTEFACTS

IN THE ZACHMAN FRAMEWORK

Abstract.

An interpretive research approach will be used to describe and decompose UML diagrams into their

respective building blocks. A top down approach will be used to determine views that are important

to enterprises during the system development lifecycle. The importance of providing graphical

representations to describe conceptual ideas will be stressed. A short history will be provided of the

origins of UML as well as a description of the diagrams used. Since UML is a language and not a

methodology a brief discussion regarding a methodology, the Rational Unified Process, will be

covered.

The Zachman framework will be used to present a two-dimensional (Columns and Rows) view of an

enterprise together with a summary of what could be represented in the framework. The UML

building blocks will be mapped within the Zachman framework together with possible reasons for

the mapping.

The paper will conclude by combining several views by different authors to represent artefacts

within the Zachman framework and to show the strengths and weaknesses of the current UML

version 1.5 and what organisations should be aware of when considering implementing UML.

Keywords: Enterprise Architecture. Zachman. Unified Modeling Language. UML. Rational Unified

Process. RUP, artefact, primitive, composite.

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - viii -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

1. Chapter 1. Introduction.

1.1. Background.

Having a traditional programming and systems analysis background it was interesting to note that

although many ICT projects have failed, many successful ICT systems have also been implemented

using traditional dataflow diagrams and functional decomposition. Evidence of this is the legacy

systems, rich in functionality that organisations still use today. These systems were implemented in

the past 15 to 20 years and some are even older than that (Schach 2005:490). In the mid 1970s to

1980s a more structured approach using structured techniques was used for developing systems.

Although successful in some cases the structured techniques lacked the capacity for coping with

large or enterprise systems. The focus was either on functions or data, but they were not addressed

simultaneously (Schach, 2005:18,19). Other systems development techniques such as the

movement towards Object Orientation have since evolved towards the promise to design systems

more efficiently and effectively by combining the functional and data focus at the same time with

equal importance (Schach 2005:19). These techniques started at a detailed level to help transform

conceptual ideas into system concepts that could be implemented as ICT systems that people and

organisations could use to improve productivity.

1.2. Personal Experiences.

My background in IT started when the structured development techniques gained popularity with the

use of Dataflow and Entity Relationship Diagrams. I started working with structured methods in a

mainframe environment.

In retrospect, when analysing all the unsuccessful ICT projects I realised that one of the factors

contributing towards the failures was the fact that these systems did not always add value towards

the business and that some functionality was never used by either the users or the customers. Other

problems were also identified as organisations or enterprises became bigger with more specialised

functions. As my experience increased it became important to me that business knowledge should be

shared extensively within enterprises in order to manage the business holistically from a top-down

perspective. I realised how valuable the use of diagrams was to describe certain functionality

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 1 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

available to the user or when certain adaptations to the current systems were required to

accommodate changes in user requirements. Process Flow Diagrams, Functional Decompositions

together with Data Flow Diagrams as well Data Models were used in an attempt to create a holistic

representation of the requirements and how the system could address those requirements. The

techniques were used from the implementation stage up to the maintenance activities of the

implemented systems.

I realised one of the most important areas that I needed to focus on, was to spend more time on

identifying the correct user requirements and that IT systems had to use more functionality and data

items between IT systems. These aspects were also identified by various authors together with

possible solutions on how to address the issues (Firesmith 2005:27-43; Spewak 1992:38). Firesmith

highlighted the importance of incremental and iterative development cycles whilst Spewak

promoted the notion of enterprise architecture planning.

1.3. Problem Statement.

If things that are important to the business are understood in the correct context, and if system

requirements are successfully translated from those business ideas, it would enhance the successful

implementation and utilisation of IT systems. A mechanism must be identified to make it possible. It

is important that all the elements must work together to support the sustainability of IT systems. IT

systems must support the business. To make it possible business requirements must be identified and

captured as soon as possible to be available to the system developers. It must also be revisited and

reviewed on a continuous basis by various stakeholders in the business -, system development -, IT

infrastructure - and communications fields to ensure that the business requirements were correctly

interpreted. Techniques must be investigated to bring IT and the business closer together to enhance

the understanding and interpretation of elements that could be supported by IT systems.

Could concepts at a strategic and business level as well as at a more detailed systems development

and design level be represented and captured using the UML? Formal system development

techniques, such as the UML, used at a business level could provide system developers with a better

understanding of the most important business elements that could be further enhanced into detail

system requirements and models. By using this approach important business concepts could be

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 2 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

captured and retained at a level that could be further transformed and enhanced to implement

successful ICT projects.

1.4. Research Approach.

A qualitative research approach as opposed to quantitative research approach was adopted. An exact

measurement in the research was not possible since cognitive reasoning is an important

consideration in creating models. Two models will not be created exactly in the same way. During

my research objective logical deduction was done to reach certain conclusions and to minimize any

possible subjectivity. At the same time other similar models obtained during the research were

verified and questioned by conclusions reached at the end of this research. Viewpoints about similar

research-philosophies are further described by Martin Olivier in his book about Information

Technology Research (Olivier 2004:109,110).

The aim of the research was to first understand the Zachman framework and the diagrams used in

the UML and to relate the two by a process of logical reasoning. By using the logical technique the

approach seemed to suggest that an interpretive type of research would be appropriate. The

qualitative method was used will be a semiotics method whereby the concepts of UML diagrams

were mapped in the Zachman framework (Olivier 2004:109-112,115).

The study attempted to use the UML and to organise all the diagrams of the language within the

Zachman framework to show the applicability of using UML to develop IT systems by all the

various stakeholders thereby ensuring the success implementation of IT systems (Zachman, 2005).

1.5. Overview of the Research Paper.

The context of the research paper has been discussed and the rest of the research paper will cover

the following main topics:

• UML. UML will be described together with examples of how organisations use UML as well

as some high-level examples of the diagrams. The Object Management Group (OMG) UML

version 1.5 will be used as the main reference when discussing UML although references

from other sources will also be included.

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 3 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

• Rational Unified Process (RUP). A summary of the RUP phases will be provided since it is

significant when discussing how UML could be used by organisations.

• Enterprise Architecture. The discussion will start with why it is important for organisations

to adopt architecture as a mechanism to implement IT systems. A framework, the Zachman

Framework will be discussed as an example of a mechanism that organisations could use

together with some benefits of using the Zachman framework.

• Mapping UML and RUP within the Zachman Framework. RUP and UML will be mapped

within the Zachman framework together with reasons of the categorisation. A summary will

be provided of where UML seemed to be used within the Zachman framework.

• Concluding Remarks. The paper will conclude by addressing the columns and rows not

addressed by a UML diagram as well as concluding for what purpose UML could be used

and what it was particularly suited for.

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 4 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

2. Chapter 2. UML.

2.1. Modeling Techniques.

Using modeling techniques to represent processes and things are an important consideration in

Information Technology. One of the reasons is that a lot of the elements used in Information

Technology are conceptual making it difficult for people to visualise the end result. By using models

it can help to communicate difficult concepts to everyone part of the development process. It will be

possible for business managers and technical software developers to understand the complexity of

Information Technology by realising all the elements involved in developing successful ICT

systems. Models can focus a work session on a specific view of the ICT system to obtain and

communicate ideas. It would also be easy to identify risk and integration opportunities early on in

the process. It is important that the techniques must support a graphical as well as a narrative

component. The narrative component will usually be a text based technique. (Cernosek and Naiburg

2004:1-3).

Members of the development team will all have different backgrounds and experiences. This makes

it important to use a well recognised standard that is well supported and maintained that could be

understood and interpreted by everyone. UML has been identified as such a technique.

2.2. Organisations Using UML.

Enterprises are starting to use and to experience the benefits of using UML (Calio et al 2000:641).

The reuse capability of UML is listed as one of the benefits of using UML (Griss 1998:8-12).

Business risks are also being reduced after using UML (Wang and Cone 2001:164-168). A range of

different enterprises such as Command and Control Systems, hospital - as well as production

systems are starting to use UML to model their enterprise components (Aagedal and Milosevic,

1998:88; Tanaka et al 2001:188; Bastos and Ruiz 2002:3786).

One of the reasons that organisations are starting to use UML could also be that UML is well

supported and widely used. The Object Management Group (OMG) is the custodian of UML which

is a non-proprietary technique. OMG, in collaboration with various partners including amongst

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 5 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

others IBM, Oracle, Rational Software and Microsoft maintain UML. Continuous development is

currently underway concerning UML.

The UML can also be expanded or extended by means of developing profiles such as the “Profile for

modeling quality of service and fault tolerance and mechanisms” (OMG 2004). Other profiles

available on the OMG website are the UML Profile for Enterprise Application Integration (EAI) as

well as the “UML Profile for Schedulability, Performance and Time”.

The research paper is using specifications of UML version 1.5 but UML 2.0 is also currently

available. All the current specifications of UML can be obtained from their website www.omg.org.

(OMG 2003:56-57).

2.3. UML History.

UML originated from the Object Orientation approach to system development (Alhir 1998:4).

Strengths identified during the use of an object orientation approach also apply to UML. One of the

main strengths of an object orientation approach is the reuse of components as described by various

authors (Schach 2005:21; Lethbridge and Laganiere 2005:68,69; Bennett et al 2002:211-213). Other

benefits using the UML are helping organisations with integrating concepts (Evans et al,

2005:166,167; Cernosek and Naiburg, 2004).

UML started towards the end of 1994, beginning of 1995 when Grady Booch, JIM Rumbaugh and

Ivar Jacobson teamed up to start developing the Unified Method. Disciplines of the Object Modeling

Technique and Object-Oriented Software Engineering were merged to form UML. Their vision was

to develop a scalable modeling language that would incorporate conceptual as well as detailed

technical elements. All the stakeholders that are part of the development process must be able to use

UML. The stakeholders would usually include business people, analysts as well as software

developers. (OMG 2003:55-56).

2.4. What is UML?

UML is a language using specific notations that is classified into a set of diagrams. These diagrams

help with the process of visualising, presenting and documenting user requirements in a graphical

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 6 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

http://www.omg.org/

School of Information Technology. University of Pretoria - L.R.Els (2005)

format during the development of systems. The diagrams will contain amongst other important

structural and design elements of software systems (OMG 2003:45; OMG 2005).

UML is identified as the de-facto standard by various sources (Seidewitz, 2003:28;Björkander and

Kobryn, 2003). The use of UML is also criticized, but not discarded in total, with relation to the use

of Use Cases (Feldman et al, 2003:193). A business Use Case was presented in the article to

illustrate the interaction between the system and other role-players or stakeholders (Feldman et al,

2003:196).

The view of Bjöorkander and Kobryn is that UML was intended to be used for “general-purpose

modeling” but the focus shifted to address business process modeling which is considered a

specialized field (Bjöorkander and Kobryn, 2003:57). A series of upgrades and additions from

UML1.x versions to UML 2.0 seemed to promise an improvement in presenting systems

(Bjöorkander and Kobryn, 2003:61). An important condition of successful implementations of UML

2.0 would however be the learning and understanding of the syntax and notations. UML 2.0 also

seems easier to use. Two main views, that of “structure and behavior”, form the basis together with

seven other views (“Classes, Component, Use Case, Collaboration, State Machine, Activity and

Sequence”) is part of UML 2.0 (Evans et al, 2005:166,167). Note: The focus of the rest of the paper

is not on UML 2.0.

2.5. UML Representations.

During the process of decomposing the UML diagrams, UML notations described in OMG UML

version 1.5 will be used (OMG 2003:406,407). It is realised that other sources (i.e. tools and

techniques) can have different UML representations but the representations described in version 1.5

would be the starting point. Other representations used would be indicated.

As mentioned the main focus would be on the UML representations when describing the UML

diagrams. All the UML diagrams have the following four kinds of graphic representations:

• 1-D symbols or icons. The representation will be classified as one of the smallest

building blocks of UML diagrams that could stand alone. An example would be

actors.

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 7 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

• 2-D symbols. These types of symbols usually include other symbols and will be

considered as complex building blocks. Examples will be sub systems and nodes.

• Lines. Lines or paths contain a symbol at the start and end of a line and will be

always be used together with other UML building blocks. Lines usually indicate

relationships between the UML building blocks.

• Labels. Labels or strings are expressed in text using a specific language such as

English or other formal languages using English such as the Object Constraint

Language. Statements expressed in a specific programming language could also be

used. These types of representations will be classified as one of the smallest UML

building blocks.

(OMG 2003:406,407).

The classification as specified in UML version 1.5, with the exception of the Use Case Diagram,

would be used when describing the UML diagrams. The Use Case Diagram would be classified as a

diagram presenting a type of behaviour. The diagram names used in UML version 1.5 would also be

used (OMG 2003:45,46,402-403; OMG 2005). The following diagrams will be discussed:

• Behaviour Diagrams (also known as Dynamic models). These diagrams would describe how

objects change and evolve at certain points during the system life-cycle. It will contain

aspects such as the different interactions between objects and how the objects change over a

certain period (OMG 2003:61) The following diagrams will be discussed:

o Use Case Diagram.

o Sequence Diagram.

o Collaboration Diagram.

o Activity Diagram.

o State Chart Diagram.

• Structure Diagrams (also known as static models). It describes the structure of objects and

would include attributes and the relationship between objects (OMG 2003:61). The

following diagrams are discussed:

o Class Diagram.

o Object Diagram.

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 8 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

• Implementation Diagrams. These diagrams are also seen as “Structural diagrams” (OMG

2005) describing how specific modules are combined with the purpose to implement and

deploy systems successfully (OMG 2003:54). The following diagrams are discussed:

o Component Diagram.

o Deployment Diagram.

2.6. Behaviour or Dynamic Diagrams.

2.6.1. Use Case Diagram.

The purpose of the Use Case Diagram is to describe how the system is used. Functions together with

external requirements are specified (Alhir 1998:161). The focus of the use case is to describe certain

behaviour between the actor and the use case. The use case does not describe any structural aspect

of the system but the use case must indicate that a result has been achieved by the actors (OMG

2003:194,198). All the business processes are identified (Satzinger et al 2004:245) and show how

the actor “interacts with the system” (Pressman 2005:169). A specific notation is used for the Use

Case Diagrams consisting of stick figures for the actors, ellipses for the functions and lines for the

relationships (OMG 2003:494).

Figure 1: Use Case Diagram.

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 9 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

 A Use Case Diagram contains a set of use cases (Schach 2005:503). Different scenarios are

contained within a Use Case Diagram (Satzinger et al 2004:261; OMG 2003:717). Actors are any

user of the system or role that they adopt when performing work (Satzinger et al 2004: 245). Actors

provide input to or receive output from the function or process.

An important aspect of use cases is to describe the relationship or interaction that the function has

with the environment in which it will be used. The actor is a part of the environment and the

function is part of the software product that would be used by the actor (Schach 2005:276). The

completeness of the use case could also be verified by a set of questions that must be answered

(Pressman 2005:192).

Another viewpoint of the purpose of use cases is provided by Alistair Cockburn. His paper provides

a theoretical background for use cases. When starting to specify use cases it is important to

determine the goal of the function or what is to be accomplished by the function. He also explains

that each actor has a set of responsibilities that must be accomplished thereby triggering or receiving

information from certain functions. Actors are classified into primary and secondary actors. Primary

actors need the system or sub-system to perform work and secondary actors only requires assistance.

The purpose of use cases is to “gather user stories, or build requirements” (Cockburn, 2004).

An analyst usually specifies the Use Case Diagrams during user work or brain storming sessions

when requirements are gathered. During this process the actors and functions would be identified

(Satzinger et al 2004: 245; Schach 2005:389). As previously specified, a Use Case Diagram contains

a set of use cases and different scenarios are contained within a use case. It could be concluded that

a use case must be described by a set of scenarios.

Use Cases are specified at a summary or an overview level as well as at a detail level (Satzinger et al

2004: 245). At the summary level, a Use Case Diagram can be used grouped together in packages or

sub systems. At a detail level, descriptions of the actors and functions are included. Pre- and post

conditions that must exist when functions are performed, as well as any exceptions, should also be

listed (Satzinger 2003:254; Whitten et el 2004:444).

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 10 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

Several templates are available to help with the narrative specification of use cases (Satzinger et al

2004:254; Whitten et al 446-453). Martin Fowler, when discussing use cases on his website, also

identifies that the value of Use Cases lies in the narrative description and not the Use Case Diagram.

(Fowler). Different levels of templates may be used from business use cases up to design use cases

each with a different level of detail. The following headings as described by Whitten et al are

present in these templates: (Whitten et al 2004:446-447)

• Use Case Name and ID.

• Sources where information was obtained.

• Use Case Description.

• Interested stakeholders.

• Precondition. What must exist before the use case can start?

• Trigger. What starts the use case initially?

• Course of Events. The steps of a typical scenario are described.

• Alternative courses. This can be an indication of a set of different responses that could

occur.

• Post Condition. At the end of the use case, what is the desired state?

• Assumptions. A list of all the presumptions can be provided.

• Business Rules. Any rules or constraints can be provided.

 Use cases also have the following benefits in the software development process as identified by

Lethbridge and Laganiere:

• It helps with determining the boundaries of the system.

• It helps with the planning of the project to determine the complexity and size of the project.

• It helps to verify that all the requested requirements being developed are linked to a Use

Case.

• It helps with determining a test strategy used during system and acceptance testing.

• It helps with the organising the user manuals.

However, although Use Cases may have value in determining user requirements, not all functional

requirements such as performance related measures of the database or the archiving of data fields

are covered by use cases. Developers must be aware of developing the system precisely according to

the way the users are currently performing the functions. Better and innovative ways driven by the

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 11 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

continuous expanding of ICT technology should be incorporated within Use Cases (Lethbridge and

Laganiere 2005:139,140).

It must be stressed that Use Cases must not be used in isolation and must be combined with other

techniques in the UML suite of techniques. Use Cases provide information to sequence and

collaboration diagrams since use cases do not express any order or sequence of the functions. It does

not show the different relationships between the actors as displayed by the collaboration diagram

(Alhir 1998:161). Use Case Diagrams can also be complemented by a use case description, Activity

Diagrams and Class Diagrams (Satzinger et al 2004:245,270).

2.6.2. Sequence Diagram.

Sequence diagrams are also known as System Sequence Diagrams (SSD) (Satzinger et al 2004:258).

The purpose of sequence diagrams is to show how information that originates from actors is moved

between objects. This movement is also called “interactions” (Alhir 1998:85) and is described by

showing how messages are sent between objects and at what time messages could be initiated.

Pressman describes sequence diagrams as events that are passed along to objects indicating an

information flow between objects. The events are presented as a “function of time”. (Pressman

2005:251,252). In short, it shows how the various objects communicate with each other to

accomplish specific tasks. The messages between objects must also be numbered to help with the

sequencing of events (Alhir 1998:172). These messages can also be combined and be presented in

sets of scenarios showing “real-time” situations (Alhir 1998:168,172; Satzinger et al 2004:258-261).

Sequence diagrams present a horizontal and vertical perspective of the objects. The horizontal view

contains the objects and messages; and the vertical view shows how time influences the actions

(Alhir 1998:168; Pressman 2005:252). Notation is available to indicate recursive calls as well as

synchronous and asynchronous messages. In synchronous messages control is passed from the

objects that initiate the messages to the object that must respond to it. The object waits for a

response. This need may not be the case in asynchronous messages where actions may continue

without waiting for a response. Messages may also be repeated many times (Alhir 1998:171-175).

A sequence diagram also indicates the steps of how an input that originates externally is changed or

transformed to an output (Pressman 2005:252).

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 12 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

Figure 2: Sequence Diagram.
Sequence diagrams follow after use cases as they contain more detailed information than use cases

with respect to how resources (actors and objects) use the system by means of messages to perform

tasks (Alhir 1998:85, 168; Pressman 2005:251; Satzinger et al 2004:261). A user input is required

since it shows how the users communicate with other actors. However a first draft of the sequence

diagrams can be constructed by the analyst after specifying use cases. It is important to note that an

iterative approach is adopted during the constructing of UML diagrams and after creating sequence

diagrams, it may result in adding or combining certain use cases.

Sequence Diagrams, together with use cases, describe the “processing requirements for the system

and give the foundation of system design.” (Satzinger et al 2004: 265).

Sequence diagrams must be created in the context of collaboration diagrams that specify another

viewpoint of the requirement (Alhir 1998:168).

2.6.3. Collaboration Diagram.

The purpose of Collaboration diagrams is to understand who participates in performing tasks as well

as to understand their relationships with each other (Alhir 1998:178). The types of associations or

relationships (Schach 2005:197) used in the object orientated approach to system analysis and

design will include multiplicity (Alhir 1998: 180). The Collaboration diagram shows how roles

interact which each other by means of messages (Alhir 1998:94). The main focus of Collaboration

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 13 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

Diagrams is on the objects as opposed to Sequence Diagrams that focus on the sequence of activities

(Satzinger et al 2004:422). Collaboration diagrams also help to address coupling. (Satzinger et al

2004:420). Coupling is a design principle showing the interfaces or links between objects. Objects

must be grouped together in order to minimize the interfaces between classes (Satzinger et al

2004:442).

It can be concluded that collaboration diagrams are related to sequence diagrams in respect of the

notations used to specify objects and messages between the objects. They differ from sequence

diagrams in that they do not show a horizontal or vertical perspective. Collaboration diagrams may

contain a hierarchical view of how the different roles are organised to show interactions (Alhir

1998:179).

Collaboration diagrams may also be used at a design level where the description of messages may

contain syntax specified in the Object Constraint Language (OCL) (Pressman 2005:340).

Specifications describing the syntax can be found on the OMG website www.omg.org.

Figure 3: Collaboration Diagram.

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 14 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

http://www.omg.org/

School of Information Technology. University of Pretoria - L.R.Els (2005)

2.6.4. Activity Diagram.

The purpose of activity diagrams is to understand the internal flow of information between activities

of the system (Alhir 1998: 102). Inputs and outputs can easily be identified per activity and when

obtaining information to create the diagram a process-oriented focus must be adopted (Satzinger et

al 2004:261,262). The activity diagram is similar to a flowchart describing the steps that are

necessary to perform activities (Pressman 2005:168). Swim lanes may be used to divide a set of

activities with the same goal or responsibilities to accomplish the task. Actions and flows are

described by the diagram together with a start and finish state of the activity (Alhir 1998:205-209;

Pressman 2005:224-225). The notation includes synchronisation points illustrating that activities

were performed at the same time, as well as decision points that could cause the flow to be split into

different paths (Pressman 2005:168).

Activity diagrams may be constructed by the analyst and users in a work session.

Figure 4: Activity Diagram.

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 15 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

Activity diagrams may also be used at a very low-level, i.e. just before the “source code” at a

“component level design specification.” (Pressman 2005:342).

2.6.5. State Chart Diagram.

State Chart Diagrams are also known as State Machines (Alhir 1998:187). The purpose of State

Chart Diagrams are to show the different conditions that objects can be in during their life-cycle.

The transitions between the states may be indicated by information flows (Alhir 1998 99-101).

Pressman indicates that the transitions are “driven by events” Pressman 2005: 343). Descriptions of

the transitions may include Boolean conditions, parameters indicating what triggers the action or

any other test that may highlight the change in the object state (Alhir 1998:193).

Figure 5: State Chart Diagram.
The analyst can construct the state chart diagram after the different objects are identified. During a

work session the user may review the diagram.

The State Chart Diagram is related to the object diagram since it illustrates how objects can evolve

during their life-cycle.

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 16 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

2.7. Structure of Static Diagrams.

2.7.1. Class Diagram.

Also known as a Class Model or an Object Model (Alhir 1998:81).The purpose of the class diagram

is to show the structure of the system at a specific point in time, and not how the system changed

between two periods (Alhir 1998:75). The class diagram can also be considered as the most

important model. Every other model is validated against the class Diagram since objects cannot be

used that are not included in the Class Diagram (Satzinger et al 2004:266).

The Class Diagram contains objects together with attributes and operations (Alhir 1998:140-143;

Pressman 2005:169.170). Associations or relationships between objects are also described. The

different associations that maybe used are borrowed from the Object Orientation paradigm and

include aggregation, composition, multiplicity, generalisation and inheritance. The methods as

advocated by the Object Orientation paradigm are described by operations in the class diagram

(Alhir 1998:75-79).

Different levels of detail may be presented in a Class Diagram. Users may take part in constructing

the first draft version of a class diagram. Details may be added during subsequent sessions or when

the diagram is reviewed by the analyst. When adopting a system-engineering approach, classes are

identified from the problem statement (Pressman 2005:168). This viewpoint highlights the fact that

users should form part of identifying classes and objects.

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 17 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

Figure 6: Class Diagram.
At a logical level class diagrams are also used to describe non-functional requirements of a system

(Cysneiros and Prado Leite:2001). The non-functional requirements listed by Cysneiros include

cost, reliability, security, portability, accuracy etc. The classification is also identified by

Sommerville and it is extended to include usability, efficiency, and organisation requirements,

legislative and ethical requirements (Sommerville:2004:122).

2.7.2. Object Diagram.

Object diagrams are similar to class diagrams but differ with respect to the scope of what is

modelled. Object diagrams can be seen as a subset of class diagram. In Object diagrams a specific

situation is described. Object and class diagrams are related since the one can be used to validate the

other (Alhir 1998:82). The notation of object diagrams is also similar to class diagrams (Alhir 1998:

139-158). Usually instances of objects are modelled in object diagrams (Whitten 2004:441).

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 18 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

Figure 7: Object Diagram.

2.8. Implementation Diagrams.

2.8.1. Component Diagram.

The purpose of a component diagram is to describe the dependencies and interfaces between

software components. Only types of components are indicated. A deployment diagram could be

used where instances of components could be described (OMG 2003:569). Component Diagrams

could also be used by programmers to specify how a software program is made up of different

modules (Whitten et al 2004:442).

The notation for software components are rectangular boxes with two smaller rectangular boxes at

the side. Interfaces are shown by means of circles and the dependencies are dashed lines with

arrows. Components do not contain attributes (Alhir 1998:104; OMG 2003:569-570). The physical

units, source code, that make up a system are specified in a component diagram (Alhir 1998:211)

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 19 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

Printer:Hardware PC:Hardware

Browser:App

Server:Hardware

Order System:App

Internet with
customer work

stations

Figure 8: Component Diagram.
Due to the physical nature of the diagram, the analyst responsible to implement the system

successfully would create the diagram with minimal or no user input at all. The user may be part of

a review session after the analyst has interpreted other documents (i.e. technology standards etc) and

diagrams (i.e. behaviour and static diagrams etc) to compile and relate the applicable components.

2.8.2. Deployment Diagram.

The purpose of the deployment diagram is to present a view of where physical components would

be implemented in a specific environment. It shows the configuration of software components.

Examples may include processing elements or “run-time software components” as described by

Whitten et al) as well as software code. Deployment diagrams describe a view of the hardware

architecture of a system (Whitten et al 2004:443; OMG 2003:571).

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 20 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

Workstation

LAN

Internet

Browser:App

Order Server

Order:App

Tracking:App

Printer:Hardware

Database

Order:DB

Stock:DB

Stock Server

Stock:App

Printer:Hardware

TCP/IP

TCP/IP

TCP/IP

TCL/IP

TCP/IP

TCP/IP

TCP/IP

TCP/IP

TCP/IP

Figure 9: Deployment Diagram.
It is also suggested that deployment diagrams could be used to indicate how procedures and

documents could be used by organisations. In this example the processing elements would be the

employees and the software components the procedures and documents (OMG 2003:571).

The diagram contains a set of nodes or three dimensional boxes together with relationships. Nodes

could be hardware resources or devices that have some kind of processing capability. Examples are

workstations, printing devices, central servers etc. (OMG 2003:572,573; Alhir 1998:215,218;

Whitten et al 2004:706-707).

Hardware elements and operating systems that would form part of the physical architecture of the

system together with the location details could be modelled using a deployment diagram. The

hardware elements could be Computer-Off –The-Shelf (COTS) products that must be integrated in

the system (Pressman 2005:168, 345).

The designer or system engineer of the system would use this diagram with minimal user input.

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 21 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

3. Chapter 3. Rational Unified Process (RUP).

The RUP is a structured prescriptive methodology (Whitten et al 2004:100) or process model

described by the software engineering discipline (Pressman 2005:77) or it is a set of activities

required to control, organise, schedule, model, develop and implement projects (Pressman

2005:77,99; Sommerville 2004:64-65).

Generic process models used by projects are the Waterfall Model, the Evolutionary Development

Model and Component-based software engineering (Sommerville 2004:64-65). The Rational

Unified Process (RUP) is a modern process model that combines activities of all the three the

generic process models. The RUP originated by the same persons responsible for developing the

UML, i.e. Ivar Jacobson, Grady Booch and James Rumbaugh. Important views from the client or

customer as well as the software architect are stressed. It also includes the concept of increments (to

improve step-by-step) and iteration (to improve by successive new releases) as well as theories from

the object-orientated paradigm is used. The RUP is now widely referred in the literature as simply

the Unified Process (Pressman 2005:94-95; Schach 2004:23-24 48-49).

The RUP provides an indication of the sequence of activities together with the necessary

documentation that can be performed using the UML. Another important benefit of using a

prescribed methodology is that it will ensure that steps could be repeated during every project and

by all the team members of project teams. Apart from helping the project manager with the

scheduling of project steps it also helps with communicating the amount of work needed to

implement the project (Rational Staff 2003).

The discussion of RUP is very significant whenever UML is mentioned, since UML is the language

that supports a formal methodology or set of processes. The methodology that complements UML is

the RUP (Alhir 1998:7; Schach 2005:498).

The main stages of the RUP process are Inception, Elaboration, Construction and Transition

(Rational Staff 2003; Schach 2005:78-83; Pressman 2005:96-99; Sommerville 2004:82-85).

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 22 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

Inception. During this stage all the activities necessary to start a project are described. Activities

such as confirming the main requirements, risks and constraints of the project are identified. The

development process is specified in detail, as is the development infrastructure. Any plans and tools

used to support the process are also specified. Any high-level or conceptual models are permitted to

describe and provide context wherein the proposed system should operate in. Typical deliverables

include a business case, risk and project plans, as well as an initial Use Case Diagram (IBM 2003;

Pressman 2005:99).

Elaboration. The system development process starts during the Elaboration and includes activities

such as creating design, class and implementation models. Important to note is that any models

created during the inception phase are revisited and expanded to supply more detail. Architecture

and technical risks are identified and the architecture environment wherein specific teams and tools

will operate in is established. A preliminary design to support the requirements may also be created.

Typical deliverables include revisited project and risk plans as well as use case and analysis models.

Preliminary design models are also included (IBM 2003, Pressman 2005:99).

Construction. During this stage additional requirements are confirmed and the requirements are

built. The main focus of this stage is the development of components that must be integrated and

eventually be deployed and used by clients or customers. Acceptance criteria that were envisaged

during the Inception stage must be revisited and updated. The main focus of this stage is to reach an

achievable level of quality software components in the specified time and also to control the

development costs. Typical deliverables include software components, test cases, user manuals,

revisited design models and project and risk plans (IBM 2003, Pressman 2005:99).

Transition. The main focus of this stage is to ensure that the system is deployed for use by the

clients or customers. Any user-feedback must be obtained and any changes must be controlled in

order to achieve a workable product release. Activities such as the training as well as the “roll-out”

to other departments are included (IBM 2003). Typical deliverables include test reports, user

feedback and the developed software (IBM 2003, Pressman 2005:99)

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 23 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

4. Chapter 4. Enterprise Architecture.

The term architecture is used in various disciplines such as the construction of buildings, houses and

bridges. It is also used and applied in the Information Technology field to describe the aspects

necessary to build Information Systems. An enterprise architecture contains all the important

building blocks together with models to show how all the building blocks are combined to form a

specific structure. It can be considered as a tool that is used to describe different perspectives. (The

Open Group, 2003:10). Part of the architecture building blocks are all the relationships necessary to

describe how everything will fit together to form an Information System structure (Frankel et al

2003:1, The Open Group 2003:9). Architectures are made up from different components together

with the different relationships between these components (Schach 2005:417). Various different

architectures exist such as Business, Data, Application, Technology as well as Information System

Architectures and enterprise architectures (Spewak 1992:1; The Open Group 2003:9, Zachman

1987). Software architectures as defined by Schach can be a combination of all the architectures

already mentioned. It can also be extended to include non-functional requirements such as

portability, reliability, maintainability as well as security (Schach 2005:417). The types of Software

architecture are also described in the Software Engineering Institute website,

http://www.sei.cmu.edu. The definition includes a structural and behaviour component as well as the

relationships between the components (Software Engineering Institute, 2005).

 Current organisations are shifting their focus to also include business systems together with ICT

systems. These systems have their own architectures together with interactions between them (Aerts

et al, 2004:781). When all these architectures are combined together it will result in a very complex

enterprise architecture system that would have to be monitored and managed (Delen and Perakath

2003:257).

A technique identified by Delen et al to address the complexity issue is that of enterprise modeling

(Delen and Perakath 2003:257-258). Models, together with modeling languages, are techniques used

to specify a range of events as well as their relationships with each other. These models are used

during work sessions and meetings to communicate important information to various role players.

To help with the process, models must be presented in a graphical format using specific notations to

specify concepts contained in a model and understood by everyone. (Seidewitz, 2003:27,28-29).

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 24 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

According to Delen and Perakath (2003: 257-268) enterprise models are used by various role-

players that include users, managers, analysts and software developers focussing on various

perspectives of the organisation to help with important business decisions. Delen and Perakath also

list challenges of enterprise modeling that include the following (1) issues pertaining to the various

tools used to support modeling, (2) problems with integrating these models, (3) the restricted focus

of models (models that tend to focus on a specific domain of the enterprise i.e. data and process

models), and (4) issues relating to using models to simulate and to generate code to implement

systems. (Delen and Perakath, 2003: 260-262). Integration issues are also identified by (Vasconcelos

et al, 2004:225-233; Soley et al, 2000:1). Another issue that enterprises have to deal with is that of

the complexity of enterprise systems as identified by various authors (Delen and Perakath 2003:

257-268; Cernosek and Naiburg, 2004).

Architectural frameworks are available to address some of the challenges already discussed.

Frameworks are important since it contains structural elements that could be reused by the

organisation. (Marten and Robertson, 1999). Vasconcelos et al, identify the Zachman framework as

one of the first enterprise architectural frameworks that adopt a holistic framework representing

views of the scope, business, system and technology (Vasconcelos et al, 2004:226; Zachman,2005)

Other architectural frameworks proposed by Vasconcelos et al, are a framework for Enterprise

Architecture Planning (Vasconcelos et al, 2004:226-227; Spewak, 1992:13-18; The Open

Group:2003). Also important is the concept of Model Driven Architecture (MDA) which is a

framework resulting in code that can be generated in conjunction with models. (Uhl, 2003, Soley et

al, 2000:1; Frankel et al 2003:1).

Large organisations have come to realise the benefits of using enterprise architecture frameworks to

present specific views of the organisation. Some of these frameworks include the US DOD

Architecture Framework and the US Federal Enterprise Architecture Framework (FEAF) as well as

the Treasury Enterprise Architecture Framework (TEAF). Organisations are also using architecture

frameworks as a reference framework to group, classify and document import aspects in relation to

the organisation. Available reference frameworks include the ISO Reference Model for Open

Distributed Processing (ISO RM-ODP) and the Zachman Framework. A description of all the

frameworks is provided in “The Open Group Architecture Framework (TOGAF)” version 8.1. (The

Open Group 2003: 323-334).

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 25 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

4.1. Complexity of Organisations.

The complexity that is part of organisations has already been identified as an issue that enterprises

have to deal with. (Delen and Perakath 2003:257-258). There are many factors listed for the

unsuccessful implementation of Information Technology projects but one contributing factor is the

level of complexity that must be dealt with. To address the issue Lethbridge and Laganière suggest

that the structure of the Information system must be understood and analysed before making any

changes. (Lethbridge and Laganière, 2005:24). Complexity was also one of the issues Zachman

identified when he suggested the Zachman framework. He suggested a way in which to logically

define all the aspects that are part of the structure of information systems. (Zachman 1987).

4.2. Enterprise Architecture Defined.

In all the different definitions of architecture in all the different disciplines; the structure of

components together with their relationships as well as principles controlling any changes are

included in the description. (The Open Group, 2003:9). Definitions of other sources such as

ANSI/IEEE Std 1471-2000 were also discussed in the Open Group Architecture Framework. (The

Open Group, 2003:9). The definition also applies to software and hardware architectures as well as

to organisations that must use the software. In the literature the word enterprise is used to indicate a

specific scope of the organisation under discussion together with goals of how they add value to the

organisation mission. An enterprise could include various other sub-organisations and departments.

(The Open Group 2003:9).

4.3. Zachman Framework Defined.

The Zachman Framework is an enterprise architecture framework developed by J.A. Zachman and

published in 1987. It draws the analogy between the building of a house and the development of an

Information system. He describes a framework that could be used to address the building blocks of

an enterprise architecture. The original framework by Zachman has since been extended and was

published in 1992 by J.F. Sowa and J.A. Zachman. (Zachman 1987; Sowa and Zachman 1999). It

describes and specifies the artefacts that are important and necessary to build successful information

systems. (Martin and Robertson, 1999). An artifact can be classified as any element that is part of a

functioning ICT system. It can include any element such as requirements documentation, manuals or

even a software module. (Schach 2005:19). The Zachman Framework can also be considered a

reference system containing a categorisation of those artefacts. (Martin and Robertson, 1999). The

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 26 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

Zachman framework is taxonomy of system specifications and how they fit together. (Sowa and

Zachman, 1992:590-591). The Zachman Framework is also considered the de facto standard when

specifying architectures and describing the artefacts supporting them. (The Open Group, 2003:338).

One of the strength or weakness of the Zachman framework lies in the fact that it hides the

complexity of the artefacts that is necessary to build an information system. (Marten and Robertson,

1999).

Evidence that the Zachman Framework has matured is evident in the various applications and use of

the Framework. The framework has been analysed and expanded by various authors. The framework

is included in system analysis and development textbooks and is used by them to discuss various

topics as well as to map the Zachman framework with other frameworks.(Whitten et al 2004; The

Open Group 2003; Martin and Robertson, 1999; Frankel et al 2003). The Information Framework

(IFW) by Evernden draws an analogy with the Zachman Framework and adds to the two (2)

architecture dimensions (rows and columns) specified by the Zachman framework. The IFW also

suggest that that there is a specific order in developing the dimensions as opposed to the Zachman

framework that specifies that there is no order when addressing the columns-dimension. (Evernden,

1996:37-40; Sowa and Zachman 1992:599).

The Zachman Framework is a two-dimensional matrix consisting of six rows and six columns

giving 36 cells that could contain possible representations of artefacts. The initial framework

consisted of three columns (Data, Process and Network). (Zachman 1987:463). The columns

consisted of questions or uncertainties that must be addressed. The columns were later extended to

six columns including People, Time and Motivation. (Sowa and Zachman, 1992: 600-601). The six

rows of the Framework contained a collection of specific functions performed by the main

stakeholders that were part of the process to develop ICT systems. An analogy of the rows is

depicted by Zachman of those stakeholders that are involved in the building of a house. The

horisontal dimension or rows consist of a Planner, Owner, Designer, Builder and Sub-contractor.

The vertical dimension is the columns also known as focuses. Martin and Roberson call the

questions interrogatives. The horizontal dimension is also sometimes known as perspectives.

(Zachman, 1987; Maartin and Roberson 1999)

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 27 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

The rest of the cells in the Zachman Framework contain mechanisms that put into perspective all the

different roleplayers (perspectives) and the most important facets or characteristics (focuses) that

must be addressed during the system development life-cycle. Each cell in the matrix contains a set

of architectures.

C1 Data
What?

C2 Function
How?

C3 Network
Where?

C4 People
Who?

C5 Time
When?

C6 Motivation
Why?

R1 Planner
Scope

R2 Owner
Enterprise

R3 Designer e

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))
Perspectiv
System
R4 Builder
Technology

R5 Sub-contractor
Components

R6 Functioning System

Table 1: Zachman Rows and Columns.
All the artefacts must be completely or co

of using the Zachman Framework. (Zachm

The following are a set of conventions or

classified per cell:

• New concepts must be added to cr

enhanced by adding more details i

note, is that if a model is re-engine

present row. A quality perspective

adequately describe the current row

• One column is not more important

(Sowa and Zachman 1992:599).

• Each cell has a set of basic unique

• Each row is governed by a set of u

Using the Unified Modeling Language (UML
Focus

mprehensively described to achieve the maximum benefits

an 1998).

rules that generally govern the types of artefacts that are

eate new models in each cell. If models of diagrams are

t could also be classified as a new model. Important to

ered the result must be a model on a row above the

 covered by the framework is that the next row must

. (Sowa and Zachman 1992:603).

 than the other. All the columns are of similar importance.

 representations. (Sowa and Zachman 1992:600-601)

nique constraints. (Sowa and Zachman 1992:601)

) to Represent Artefacts in the Zachman Framework - 28 -

School of Information Technology. University of Pretoria - L.R.Els (2005)

4.3.1. The Concepts of Zachman Primitives and Composites Defined.

The concept of primitives has also been identified by Sowa and Zachman. A primitive can be

described as the smallest building block of a cell and can be used on its own. Once defined, the

primitives can be combined into other more meaningful structures or diagrams. (Sowa and Zachman

1992:608; Frankel et al 2003:4). The concept of primitives is important and will be used to classify

examples of artefacts in each Zachman cell.

One Zachman cell could consist of a set of primitives such as narrative descriptions, attributes and

types or instances of objects which would serve the purpose to enhance the description of the cell.

Once the primitives have been identified it should also be possible to store the primitives in a

repository for possible future extraction for reporting purposes.

As soon as primitives of Zachman cells are related together the resulting structure are defined as a

composite. This was also been identified by Sowa and Zachman when they described the integration

of cells within one Zachman row in order to describe the perspectives of a specific stakeholder.

(Sowa and Zachman, 1992:603). The concept of composite will be described further to show how it

is possible to combine cells of different rows together and not only cells within one row as Sowa

and Zachman suggest.

4.3.2. Defining Zachman Rows.

R1 Planner or Scope.

The scope or parameters where the ICT system must operate in is decided in Row 1. Concepts

discussed here are of a strategic nature and one of the actions is to determine the boundaries of the

organisation and how will ICT systems be used within the organisation. The external environment

must also be analysed and captured. Any budget constraints must be adhered to. (Zachman 2001,

Zachman 1998, Sowa and Zachman 1992:592). Work performed here, could be described as of a

strategic nature. The planner view could also determine how all the components fit together.

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 29 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

R2 Owner or Enterprise

All the activities that are important to the business are described in Row 2. The level of obtaining

data is high-level and all the business activities must eventually link to show the business value of

what will be achieved if the business activity is performed. (Sowa and Zachman 1992:592).

Techniques such as Business Process Modeling are important in Row 2. The perspective can show

how external policies are interpreted and applied within the organisation. (Sowa and Zachman,

1992:592).

Aerts et al included business processes, the resources to support the processes as well as

environmental aspects in the business architecture domain. A management sciences discipline is

necessary to successfully identify and capture information. (Aerts et al, 2004:781-794)

R3 Designer or System

The level of detail specified in row 3 remains on a conceptual level and is classified as a logical

level since more detail is specified in row 3 than row 2. Important to note is that the level of detail in

row 3 is not yet physical. The requirements of the user are specified. (Zachman, 2001).

This row is a first step in creating application architecture. A computer science background is

necessary to successfully identify and capture information on this row. (Aerts et al, 2004:781-794).

System analysis and design techniques will be used effectively in Row 3. (Sowa and Zachman

1992:592). All the disciplines described in the Software Engineering field are important in Row 3.

R4 Builder or Technology

The concepts used in row 4 are inclined to be more of a physical nature together with some logical

views. The physical hardware used in the system is specified. The physical system must be designed

together with the connected network as well as services and devices. (Sowa and Zachman 1992:592,

Zachman, 2001).

A computer systems engineering background are necessary to successfully identify and capture

information on this row. (Aerts et al, 2004:781-794).

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 30 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

R5 Sub-contractor or Components

Row 5 would contain the physical concepts that are used implement executable code. The physical

concepts can include any detailed specifications. (Sowa and Zachman 1992:592). A component is

the physical piece of code or software, database or executable that is developed and used by

programmers. (Schach 2005:73; Whitten et al 2004:692; Sommerville 2004:717). All the

commercial-off-the- shelf (COTS) products can form part of row 5.

R6 Functioning System

The level of detail in row 6 is also of a physical nature. The actual ICT system has been created and

all the concepts created are tangible. (Zachman 1987:463). It can be argued that row 6 can be

ignored since it is not part of the architecture of developing an ICT system.

4.3.3. Defining Zachman Columns.

C1 Data/What?

Physical things important to the business are described in this column. These things could be all the

nouns used to describe it. Examples that could be used are “Bill of materials” (Zachman, 1987:461).

C2 Function/How?

All the actions performed by the business are included in this column. The verbs used to describe

the functions could be indications of all the functions performed by the organisation. The process of

how important things of the business get transformed by the business. (Zachman, 1987:461)

C3 Network/Where?

All the locations or places where activities are performed are described in this column.

C4 People/Who?

The types of human resources that are needed to initiate or perform an activity are described here.

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 31 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

C5 Time/When?

This is an indication of when activities must be initiated, performed as well as be concluded.

Scheduling and sequencing aspects should be the focus of this column. Specific time periods could

also be described here.

Event modeling could be a used (Sowa and Zachman, 1992:597).

C5 (time) and C4 (people) have a close correlation with each other since the parameters that are

required wherein a task must be completed indicate the amount of resources that would be

necessary to complete the task. If a 24-hour availability is required, sufficient personnel would be

required to address questions and issues that could arise (Sowa and Zachman 1992:597).

C6 Motivation or Why?

All the reasons of why activities are important and must be performed are indicated in this column.

4.3.4. Defining the Zachman Cells.

The functioning enterprise (Row 6) was not further elaborated by Sowa and Zachman when the

original framework was extended to accommodate the additional three columns (who, when and

why) (Sowa and Zachman 1992). The framework stopped at row 5, the sub contractor, row. When

analysing architecture, it could be concluded that a functioning system was not part of an

architecture model. Architecture has to do with the “building blocks”, to build a functioning system.

Architecture plays an important role when any ICT system is maintained. The building blocks used

in the maintenance or evolution of systems could be the classification of the changes, for instance:

any enhancements or corrections due to system failures. However the focus of this paper is not on

the maintenance phase which would typically reside within row 6.

Note: During the rest of the paper any reference to the Zachman Framework and examples used

would consist of 30 cells, a five row by six column matrix. Table 2 will be used when referencing to

the cells.

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 32 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

C1 Data

What?

C2 Function

How?

C3 Network

Where?

C4 People

Who?

C5 Time

When?

C6 Motivation

Why?

R1 Planner

Scope

R1-C1 R1-C2 R1-C3 R1-C4 R1-C5 R1-C6

R2 Owner

Enterprise

R2-C1 R2-C2 R2-C3 R2-C4 R2-C5 R2-C6

R3 Designer

System

R3-C1 R3-C2 R3-C3 R3-C4 R3-C5 R3-C6

R4 Builder

Technology

R4-C1 R4-C2 R4-C3 R4-C4 R4-C5 R4-C6

R5 Sub-contractor

Component

R5-C1 R5-C2 R5-C3 R5-C4 R5-C5 R5-C6

R6 Functioning

System

Table 2: Zachman Index of Cells
When describing the artefacts in each cell the artefacts will be classified into nodes and links. Links

cannot be alone and must be accompanied by nodes. Links will be typically the relationships

between two nodes. An entity or list could be an example of a node (Sowa and Zachman 1992:593,

Frankel et al 2003:2, 3). In the following pages examples of nodes and links would be provided.

R1-C1: Planner/Scope and Data/What?

A list of things that are important to the enterprise and which could be an indication of the structural

components of the enterprise which are expressed by nouns (Zachman 1987:461-462).

 NODE: List of important things (Sowa and Zachman 1992:600).

R1-C2: Planner/Scope and Function/How?

A list of actions that must be performed by the enterprise expressed by verbs (Zachman 1987:462).

The high-level actions can be represented in a value chain representation also used by Michael

Porter describing the primary and secondary activities of an organisation (Ward and Griffiths

1998:216-224).

 NODE: Value Chain Primary and Secondary activities.

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 33 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

R1-C3: Planner/Scope and Network/Where?

A list of locations/places which could be points on a geographical map (Zachman 1992:600).

 NODE: List of locations.

R1-C4: Planner/Scope and People/Who?

List of organisations that must be accommodated within the enterprise (Sowa and Zachman

1992:600).

 NODE: List of organisations.

R1-C5: Planner/Scope and Time/When?

Important events imposed by external policies or events are listed (Sowa and Zachman 1992:597).

Event would indicate that something important occurs on a predetermined day and time.

 NODE: List of events.

R1-C6: Planner/Scope and Motivation/Why?

A list of business strategies that would ensure that objectives are met are examples of the cell (Sowa

and Zachman 1992:598). A list of critical success factors could also be descriptions of examples.

 NODE: List of Strategies.

R2-C1: Enterprise/Owner and Data/What?

Business entities together with relationships are described in this cell (Zachman 1987:463).

 NODE: Business entities.

 LINK: Business relationships.

R2-C2: Enterprise/Owner and Function/How?

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 34 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

Different processes of the business could be grouped together and be presented in a specific view

showing how the business processes are connected (Zachman 1987:463; Sowa and Zachman

1992:600).

 NODE: Business Processes

 LINK: Business Resources providing inputs and receiving outputs (Frankel et al 2003:2).

R2-C3: Enterprise/Owner and Network/Where?

Any business location used by the business. It could also include facilities hosting any

infrastructure. (Zachman Ebook describing the cells).

 NODE: Business Locations.

 LINK: Links connecting the Business Locations (Sowa and Zachman 1992:600).

R2-C4: Enterprise/Owner and People/Who?

An organisation chart describing the different responsibilities of organisations (Sowa and Zachman

1992:597).

 NODE: Organisation Chart.

 LINK: Work performed (Sowa and Zachman 1992:600).

R2-C5: Enterprise/Owner and Time/When?

The artefacts in this cell are “Business events” that are the result of how important external events

are accommodated in the business to ensure that value is added to the organisation. Business events

can also imply a certain action followed by a response within an acceptable time-frame (Whitten et

al 2004:67). There is also a correlation with C4-R2 concerning “performance levels” of resources of

the organisation (Sowa and Zachman 1992:597). Organisation policies will also address important

business events that must be adhered to by other business units.

 NODE: Business Events.

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 35 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

 LINK: Length of time.

R2-C6: Enterprise/Owner and Motivation/Why?

A business plan containing business objectives is described in this cell (Sowa and Zachman,

1992:599).

 NODE: Business Objective.

 LINK: Business policies or instructions would ensure that the business objectives would be

reached.

R3-C1: Designer/System and Data/What?

Data entities with attributes together with relationships are described in the cell and specified as a

logical data model. (Sowa and Zachman 1992:600). Operations could be included in the logical data

model.

 NODE: Data entity.

 LINK: Data relationship.

R3-C2: Designer/System and Function/How?

The system requirements together with an activity flow are described in this cell. Non-functional as

well as functional hardware requirements are included. The logical boundaries of the system could

also be captured.

 NODE: Function/Activity.

 LINK: Function/Activity Flow.

R3-C3: Designer/System and Network/Where?

A classification of a distributed, centralised or mobile requirement focussing on location

characteristics (Frankel et al 2003:2).

 NODE: Functions.

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 36 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

 LINK: Characteristics of the communication between the functions (Frankel et al 2003:2).

R3-C4: Designer/System and People/Who?

The role that must be performed by a person is described in this view (Sowa and Zachman,

1992:597). A skills profile can be used to indicate the roles that must be adopted by the persons

involved.

 NODE: Role.

 LINK: Interaction between the roles.

R3-C5: Designer/System and Time/When?

Important “System events” are included in this cell and indicate the duration of activities in the

system as well the logical sequencing and synchronisation of events (Sowa and Zachman 1992:598).

“User response time” could be described as the moment when a user expects an answer from the

system (Stallings: 2005:34-38).

 NODE: System event.

 LINK: Duration of events.

R3-C6: Designer/System and Motivation/Why?

Business rules are described in this cell. The business rules could be described with decision tables

or decision trees. Constraints could also be specified using the Object Constraint Language.

 NODE: Hierarchy of results.

 LINK: Action or formula used.

R4-C1: Builder/Technology and Data/What?

Physical data model is described that would be technology dependent.

 NODE: Data Segment/ Data Rows (Sowa and Zachman 1992:600).

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 37 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

 LINK: Keys and pointers (Sowa and Zachman 1992:600).

R4-C2: Builder/Technology and Function/How?

A system design together with hardware and software components that are technology dependent.

System integration and system interfaces are important.

 NODE: System function.

 LINK: Interfaces between the system functions.

R4-C3: Builder/Technology and Network/Where?

 A “Protocol Architecture” represents a representation of the various protocols necessary to enable

communication over a network (Stallings 2005:565). The “Protocol Architecture” could contain a

representation such as the Open Systems Interconnection (OSI) reference model developed by the

International Organisation for Standarisation (ISO). Communication mechanisms (i.e. applications,

session, transport, network etc) are presented in various layers. A similar protocol, the TCP/IP

protocol, could also be used (Stallings 2005:122-125).

 NODE: Hardware or system software (Frankel et al 2003:2).

 LINK: The way the hardware or system software are connected.

R4-C4: Builder/Technology and People/Who?

Possible Human-Machine interfaces are addressed in this view. This is where technology is used by

humans or users (Sowa and Zachman 1992:597). Graphical and web-based interfaces could be

included as well as voice, video and text interfaces.

 NODE: User (Frankel et al 2003:2).

 LINK: Screen or presentation mechanism (Frankel et al 2003:2).

R4-C5: Builder/Technology and Time/When?

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 38 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

“System response times” could be described as the time that it will take when a user presses “enter”

and the system responds with a command (Stallings: 2005:34-38). The middleware connecting

components as well as the ability to send messages between people could also be included.

 NODE: Hardware function.

 LINK: Hardware cycle.

R4-C6: Builder/Technology and Motivation/Why?

A list of technology standards that ICT systems must adhere to, could be described in this cell.

 NODE: Standard.

 LINK: Action that is performed that would comply to the standard.

R5-C1: Sub-Contractor/Component and Data/What?

Data fields used by programs that are linked to the physical data model.

 NODE: Data field (Sowa and Zachman 1992:600).

 LINK: Address (Sowa and Zachman 1992:600).

R5-C2: Sub-Contractor/Component and Function/How?

This cell could indicate COTS or custom-built systems using a specific programming language.

(Whitten et al 2004:68). Specific menu functions are also included.

 NODE: Specific program language code (Sowa and Zachman 1992:600).

 LINK: Program Control Blocks (Sowa and Zachman 1992:600).

R5-C3: Sub-Contractor/Component and Network/Where?

Network topology with appropriate hubs, switches and gateways.

 NODE: Specific addresses (Sowa and Zachman 1992:600).

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 39 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

 LINK: Protocol standards (Sowa and Zachman 1992:600).

R5-C4: Sub-Contractor/Component and People/Who?

All important security aspects such as access control and authentication mechanisms are included in

this cell (Sowa and Zachman 1992:597).

 NODE: Security Functions.

 LINK: Security Mechanisms.

R5-C5: Sub-Contractor/Component and Time/When?

Transmission speeds. An indication of transmission speeds concerning text, voice and images

(Stallings: 2005:34-38).

 NODE: Hardware Function.

 LINK: Machine Cycle (Frankel et al 2003:2).

R5-C6: Sub-Contractor/Component and Motivation/Why?

System rules derived from the business rules and coded in a specific programming language are

described in this cell. Any error messages of vendor documentation are included.

 NODE: Error Message.

 LINK: Supporting documentation.

Refer to Appendix B for a summary with the most important artefacts as discussed in paragraph 4.3.

4.4. Applicability of the Zachman Framework.

To illustrate the applicability and flexibility of the Zachman Framework various authors include a

mapping of their analysis and findings from the Zachman framework in their articles and papers

(The Open Group 2003:333-334,340-349; Noran 2003; Frankel et al 2003).

The Open Group Architecture frame performs a mapping where the TOGAF domains are compared

to the Planner, Owner, Designer and Builder Rows as well as to all the six columns of the Zachman

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 40 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

Framework. The TOGAF domains include views concerning Business, Applications, Data and

Technology. An architecture vision is also included (The Open Group 2003:340-349).

Noran performed a mapping addressing the following perspectives:

• The Generalised Enterprise Reference Architecture and Methodology (GERAM) framework

or ISO 15704:2000.

• Presenting the rows of the Zachman framework as life-cycle processes.

• A set of likely modeling language to help in the presentation views of the cells. Earlier

versions of the UML are presented and the applicability of the suggested UML models as

well as the intended audience are taken into consideration. It would also seem that more than

one UML diagram could address more than one Zachman cell. Refer to Figure 11

Comparative UML and Zachman Support (Noran). Figure 11 was adapted from the mapping

that Noran did to show the various modeling language that could support the artefacts in the

Zachman framework. Figure 11 only includes UML.

(Noran 2003:163-173).

The Zachman framework is mapped to models part of the Model Driven Architecture(MDA).

Models part of the MDA includes the Computation-Independent Model (CIM), The Platform-

Independent Model (PIM) as well as the Platform-Specific Model (PSM) (Frankel et al 2003:9).

Frankel goes further and performs a UML-Zachman mapping (Frankel et al 2003:11). Refer to

Figure 12 Comparative UML and Zachman support. OMG’s MDA. Figure 12 was adapted from the

UML-Zachman mapping that Frankel et al performed indicating UML support to create artefacts in

the Zachman Framework.

As mentioned in an earlier reference to the Zachman framework, has also been included and used in

System Analysis and Design textbooks to facilitate discussion of various topics (Whitten et al 2004)

4.5. Benefits of Using the Zachman Framework.

The importance of integration in the context of Enterprise Application Integration is described by

Satzinger et al as the process of linking several views in order to enhance the flow of information.

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 41 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

ICT systems could be considered as one of the views (Satzinger et al, 2004:722-723). Vasconcelos

et al also raises the importance of integration and presented a view of how architecture frameworks,

the Zachman Framework and TOGAF, could support Enterprise Application Integration

(Vasconcelos et al, 2004:225-233).

Integration would be achieved when all the information concepts are understood by all the levels of

the organisation. These concepts must be shared and reused by all the stakeholders in order to ensure

successful implementation of ICT systems (Zachman, 2001)

All the work performed to implement a system must be aligned with each other to ensure that value

is added to the business or organisation. An enterprise view that support integration must be

understood and communicated to all the various stakeholders of the enterprise (Zachman, 2001).

Implementing and using an architecture will ensure that work done, must be reviewed and

authorised before work is started by the next team. Configuration procedures must be used in the

process to ensure that the models are always “base-lined” as well as to make sure that changes could

occur and would be maintained accurately. It could help with change management in the enterprise.

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 42 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

5. Chapter 5. Mapping RUP and UML within the Zachman Framework.

5.1. Mapping RUP within the Zachman Framework.

Iterative development has been identified as a best practice method (Cernosek and Naiburg 2004:3)

during systems development and it seems that the Zachman framework could also support the

technique. Martin and Robertson as well as Noran describes that each cell of the Zachman matrix

include recursively artefacts that would contribute to a successful information system. The Zachman

framework also prescribes a top-down analysis method (Martin and Robertson, 1999;Noran

2003:170). Another fact to reaffirm the use of the iterative technique is the technique supported by

the Zachman Framework of decomposing models by adding more detail to those models during each

subsequent iteration. The iterative development method is prescribed by RUP and included as a best

practice in their methodology (IBM 2003).

It seems a logical deduction that RUP could be mapped within the Zachman Framework. It is

proposed that the RUP phases could correspond to the Zachman rows since the rows represent all

the stakeholders taking part in the development process. The Zachman rows are described in detail

in the preceding chapter. (Chapter 4. 4.3.2 Defining Zachman Rows.) The following mapping is

proposed in Table 3 to the Zachman rows:

Rows together with RUP stages and reasons for classification. C1 C2 C3 C4 C5 C6

R1 Planner. Strategic. Inception. Manage scope bmo actors and use cases.

R2 Owner. Bus Process. Inception. Business modeling as one of the required disciplines.
Determine what is important to the business and construct important business domains. Business
system. Business use cases and actors, business events.

R3 Designer. System. Inception, Elaboration. Determine requirements. Use cases, Use case
package. Analysis class. Design package. Design subsystem. Design Class, Design model.
Interfaces.

R4 Builder. Technology. Inception, Elaboration, Construction. Technology specific
components that are constructed as well as deployment models.

R5 Sub-Contractor. Implementation. Inception, Elaboration, Construction, Implementation.
Use UML implementation models. Technology specific.

R6 Functioning System

Table 3: The RUP within Zachman Rows.

(IBM 2003).

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 43 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

In the appendixes UML Primitives. UML Composites. UML Types Used in Every Diagram.

RUP would be used as part of the reason for classifying UML elements in certain rows of the

Zachman framework.

5.2. UML Primitives.

Every UML diagram (OMG UML version 1.5) was analysed and the smallest UML building blocks

were identified. The building blocks were classified as UML Primitives or UML Composites

according to the rules described in par 4.3.1 (The Concepts of Zachman Primitives and

Composites Defined.) During the analyses the focus was on the UML representations, described

in par 2.5 (UML Representations.) All the UML diagrams were decomposed into representations

with names, descriptions and an example of what the representations should look like. It is important

to note that the specific UML Diagram Name is in all instances part of the UML Primitive Name. It

is important for reference purposes later on in the paper.

The UML primitives were linked to the corresponding Zachman columns and rows together with

reasons for the classification. Refer to Appendix C, UML Primitives per UML Diagram Mapped in

the Zachman Cells, for a description of the classifications per UML diagram. The following

Annexes are specified within Appendix C:

• C1. Use Case Diagram.
• C2. Sequence Diagram.
• C3. Collaboration Diagram.
• C4. Activity Diagram.
• C5. State Chart Diagram.
• C6. Class Diagram.
• C7. Object Diagram.
• C8. Component Diagram.
• C9. Deployment Diagram.

The following comments are made in regard to Appendix C:

• A UML primitive could be classified in more than one row and or column for example the

Actor. This would confirm the complexity of UML diagrams. Various interpretations and

deliberations go into constructing any UML diagram.

• Similar UML primitives i.e actors and objects could be used by more that one diagram. This

would suggest that the diagrams promote reuse of UML elements between the diagrams.

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 44 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

This also suggests that the different UML diagrams complement each other by using similar

UML elements (actors and objects).

• Similar UML primitives are used by different role-players (rows). This would suggest that

UML diagrams could contain various levels of detail and that version control would be very

important to track changes of the primitives.

• Using similar RUP stages in rows suggest the incremental approach that should be adopted

when ICT systems are developed. Similar primitives are used with more detail by the

different role-players or rows of the Zachman framework.

5.3. UML Composites.

A similar process described in par 5.2 (UML Primitives.) was followed to classify UML

Composites.

UML Primitives on their own do not describe the viewpoint of a stakeholder sufficiently. The value

is obtained when the primitives are used together with other types of information i.e. within a

matrix, model or some type of management report containing important data fields. When analysing

the UML diagrams it became apparent that UML diagrams referred to more that one column during

the same representation. It could also be used by more than one row as more details become known

to the various stakeholders taking part in the development process. Refer to Appendix D UML

Composites per UML Diagram Mapped in the Zachman Cells, for a description of the classifications

per UML diagram. The following Annexes are specified within Appendix D:

• D1. Use Case Diagram.
• D2. Sequence Diagram.
• D3. Collaboration Diagram.
• D4. Activity Diagram.
• D5. State Chart Diagram.
• D6. Class Diagram.
• D7. Object Diagram.
• D8. Component Diagram.
• D9. Deployment Diagram.

The following comments are made in regard to Appendix D:

• Only a limited number of composites are described in the paper but it could be expected

many more could be constructed.

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 45 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

• Other applications from textbooks such as descriptions for narrative specifications or using

other matrixes would suggest that the UML diagrams could be extended to accommodate

ease of use.

• Given the number of composites the following were concluded:

o The complexity of UML diagrams are confirmed.

o UML is applicable within the Zachman framework only if the UML diagrams are

decomposed into simpler and basic model elements.

5.4. UML Types Used in Every Diagram.

During the analysis of the UML diagrams certain UML elements were identified that were present in

every UML diagram. These elements were grouped in Appendix E, UML Types Present in all UML

Diagrams, and were also grouped into Primitives and Composites, similar to Appendix C and D.

The following annexes are specified within Appendix E:

• E1. UML Primitives Mapped in the Zachman Cells.
• E2. UML Composites Mapped in the Zachman Cells.

5.5. Zachman Framework with UML Primitives.

The entire set of UML primitives identified per UML diagram (refer to Appendix C) were mapped

together in a Zachman-5X6-representation. Refer to Appendix F All the UML Primitives Mapped in

the Zachman cells.

Using Appendix F it could be concluded that UML could represent elements within the Zachman

Framework. This would be very subjective since various primitives could be identified per cell

pending on how they were implemented and used in organisations. A more useful deduction would

be to combine the UML primitives as well the UML composites to show where UML could be used

within the Zachman framework.

5.6. Where is UML Used within the Zachman Framework?

To show where UML is used within the Zachman Framework the complete framework together with

all the Zachman rows and columns are presented on the vertical access of Appendix G. All the UML

diagrams are presented on the top horizontal axis of Appendix G. The UML diagrams are all

presented with a different colour. All the UML primitives (Appendix C and E) together with the

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 46 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

UML Composites (Appendix D) are mapped to the Zachman framework on the vertical axis.

Support is indicated by means of a tick mark in the corresponding colour. The tick mark means that

a specific UML diagram could be used to provide support to the corresponding cell within the

Zachman framework. Important to note is that many other UML Composites could be identified.

The UML Composites identified in this paper are only a single example of such a possible

combination. It is also the intention of the representation not to show any order or sequence of the

Zachman cells. The level of UML support is also not indicated but one would expect that various

levels could be used, from a conceptual level (row 1 and 2) up to a more detailed level when the

appropriate information becomes known on row 3 to 5. Refer to Figure 10 for a comparative view

of UML and Zachman support. Figure 10 is a summary view of the information described in

Appendix G. The grey-shaded area indicates UML support in the Zachman rows and columns.

Figure 10 suggests that the most UML support exists on row 3, the designer level and rows 4 and 5,

the builder and sub-contractor level. Some support is provided by UML diagrams on row 2, the

owner level with practically no support for row 1, the Planner level.

UC SQ CB AT SC CL OB CP DP
R1 Planner

C
1

W
ha

t

C
2

H
ow

C
3

W
he

re

C
4

W
ho

C
5

W
he

n

C
6

W
hy

R2 Owner

C
1

W
ha

t

C
2

H
ow

C
3

W
he

re

C
4

W
ho

C
5

W
he

n

C
6

W
hy

R3 Designer

C
1

W
ha

t

C
2

H
ow

C
3

W
he

re

C
4

W
ho

C
5

W
he

n

C
6

W
hy

R4 Builder

C
1

W
ha

t

C
2

H
ow

C
3

W
he

re

C
4

W
ho

C
5

W
he

n

C
6

W
hy

R5 Sub-contractor

C
1

W
ha

t

C
2

H
ow

C
3

W
he

re

C
4

W
ho

C
5

W
he

n

C
6

W
hy

UML DIAGRAMS

Legend:
UML Diagram
UC - Use Case Diagram
SQ - Sequence Diagram
CB - Collaboration Diagram
AT - Activity Diagram
SC - State Chart Diagram
CL - Class Diagram
OB - Object Diagram
CP - Component Diagram
DP - Deployment Diagram

Figure 10: UML and Zachman Support.

The representation of Figure 10 has been used in the following examples of using UML within the

Zachman framework. Noran as well as the White Paper on The Zachman Framework and the

OMG’s Model Driven Architecture represented a view of UML support within the framework. The

representations of the two papers were adapted to the representation of Figure 10 with the purpose to

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 47 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

make a comparison (Noran 2003:173; Frankel et al 2003:11). To conclude a combined

representation of all three perspectives will be presented.

Noran identified a range of modeling languages that could be used to create elements within

Zachman cells. Figure 11 is an adapted version of the mapping of Noran only taking into

consideration the UML modeling language contained in the mapping of Noran. The grey-shaded

areas indicate Zachman support. Figure 11 shows the most support that UML can provide is on row

4, the builder level, with less support on row 3, the designer level. The least support is provided on

row 2, the Owner row. Noran identifies no UML support on row 1, the Planner row, and row 5 the

Sub-contractor row.

UC SQ CB AT SC CL OB CP DP
R1 Planner

C
1

W
ha

t

C
2

H
ow

C
3

W
he

re

C
4

W
ho

C
5

W
he

n

C
6

W
hy

R2 Owner

C
1

W
ha

t

C
2

H
ow

C
3

W
he

re

C
4

W
ho

C
5

W
he

n

C
6

W
hy

R3 Designer

C
1

W
ha

t

C
2

H
ow

C
3

W
he

re

C
4

W
ho

C
5

W
he

n

C
6

W
hy

R4 Builder

C
1

W
ha

t

C
2

H
ow

C
3

W
he

re

C
4

W
ho

C
5

W
he

n

C
6

W
hy

R5 Sub-contractor

C
1

W
ha

t

C
2

H
ow

C
3

W
he

re

C
4

W
ho

C
5

W
he

n

C
6

W
hy

UML DIAGRAMS

Legend:
UML Diagram
UC - Use Case Diagram
SQ - Sequence Diagram
CB - Collaboration Diagram
AT - Activity Diagram
SC - State Chart Diagram
CL - Class Diagram
OB - Object Diagram
CP - Component Diagram
DP - Deployment Diagram

Figure 11: Comparative UML and Zachman Support. (Noran).

The next representation was adapted to represent UML support within the framework done by

Frankel et al in the White Paper, The Zachman Framework and the OMG’s Model Driven

Architecture. Figure 12 shows the adapted UML support. The grey shaded areas indicate Zachman

support. Figure 12 also shows the least support for row 5, the Sub-contractor row and the Planner

row, row 1. The most support is provided for row 4, the Builder row. Frankel et al also considers

Row 5 to be “out of context” (Frankel et al 2003:11).

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 48 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

UC SQ CB AT SC CL OB CP DP
R1 Planner

C
1

W
ha

t

C
2

H
ow

C
3

W
he

re

C
4

W
ho

C
5

W
he

n

C
6

W
hy

R2 Owner

C
1

W
ha

t

C
2

H
ow

C
3

W
he

re

C
4

W
ho

C
5

W
he

n

C
6

W
hy

R3 Designer

C
1

W
ha

t

C
2

H
ow

C
3

W
he

re

C
4

W
ho

C
5

W
he

n

C
6

W
hy

R4 Builder

C
1

W
ha

t

C
2

H
ow

C
3

W
he

re

C
4

W
ho

C
5

W
he

n

C
6

W
hy

R5 Sub-contractor

C
1

W
ha

t

C
2

H
ow

C
3

W
he

re

C
4

W
ho

C
5

W
he

n

C
6

W
hy

UML DIAGRAMS

Legend:
UML Diagram
UC - Use Case Diagram
SQ - Sequence Diagram
CB - Collaboration Diagram
AT - Activity Diagram
SC - State Chart Diagram
CL - Class Diagram
OB - Object Diagram
CP - Component Diagram
DP - Deployment Diagram

Figure 12: Comparative UML and Zachman Support. OMG's MDA.

The last representation is a combined view adapted from Noran, Frankel et al and Figure 10. Figure

13 shows the combined representation for possible UML support within the Zachman framework.

The grey-shaded areas indicate Zachman support. The Sequence Diagram (SC), Collaboration

Diagram (CB), State Chart Diagram (SC), Object Diagram (OB), Component Diagram (CP) as well

as the Deployment Diagram (DP) provides no support on the Planner row, row 1. This can be

explained since the relevant information will not be available on the Planner row. The type of

information used in the planner row is very high-level conceptual information since the stakeholders

on this level deal mainly with strategic information best described by lists of important concepts

expressed in English. The information is also technology independent and information used in

component and deployment diagrams is very much technology dependent. A similar argument could

be used for the no support of the component and deployment diagrams on row 2, the Owner row.

The Activity Diagram can be used for row 1 to 4 to show the flow of activities. The reason that no

support is identified for activity diagrams on row 5 could be that the flow of events is already

present in the specific programming language. A similar argument could be used for the fact that

State Chart Diagrams could also not be used on Row 5, the Sub-contractor row.

As a concluding comment. UML could support the Zachman framework but it is important to

understand for what purpose the diagram would be used and what view would be illustrated and

communicated to the enterprise by doing so.

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 49 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

UC SQ CB AT SC CL OB CP DP
R1 Planner

C
1

W
ha

t

C
2

H
ow

C
3

W
he

re

C
4

W
ho

C
5

W
he

n

C
6

W
hy

R2 Owner

C
1

W
ha

t

C
2

H
ow

C
3

W
he

re

C
4

W
ho

C
5

W
he

n

C
6

W
hy

R3 Designer

C
1

W
ha

t

C
2

H
ow

C
3

W
he

re

C
4

W
ho

C
5

W
he

n

C
6

W
hy

R4 Builder

C
1

W
ha

t

C
2

H
ow

C
3

W
he

re

C
4

W
ho

C
5

W
he

n

C
6

W
hy

R5 Sub-contractor

C
1

W
ha

t

C
2

H
ow

C
3

W
he

re

C
4

W
ho

C
5

W
he

n

C
6

W
hy

UML DIAGRAMS

Legend:
UML Diagram
UC - Use Case Diagram
SQ - Sequence Diagram
CB - Collaboration Diagram
AT - Activity Diagram
SC - State Chart Diagram
CL - Class Diagram
OB - Object Diagram
CP - Component Diagram
DP - Deployment Diagram

Figure 13: Combined Comparative UML and Zachman Support.

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 50 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

6. Chapter 6. Conclusion.

The purpose of this study was to map UML within the Zachman framework. The concluding

remarks about the Zachman Framework will only address the UML primitives since the Zachman

framework is a “primitive framework” containing the building blocks of IT systems. If the building

blocks had been identified it would be possible to combine them into a successful ICT system. The

UML primitives as well as the UML composites would be taken into consideration during the

concluding remarks regarding UML support within the Zachman framework.

6.1. Zachman Columns not Addressed.

The Zachman columns are important since it is an indication of important characteristics that must

be addressed when developing and classifying enterprise systems. When any Zachman columns are

not addressed it means that important characteristics cannot be represented.

The Zachman Column that was the least supported by any UML diagram is the where or network

column. A reason for this is that elements in this column are usually associated with elements in

other columns. A location combines elements from the what-column and the who-column. Elements

from the how-column plays an important role where messages are sent from a source to a

destination. (Appendix C,F).

The motivation column is only supported by Use Cases by means of the narrative extensions of a

Use Case Diagram. Templates can be created where narrative aspects could be addressed.

(Appendix C, F).

6.2. Zachman Rows not Addressed.

The Zachman rows are the different perspectives or viewpoints of the types of stakeholders that is

part of a systems life-cycle. When rows are not addressed it means that those viewpoints of the

stakeholders can not be represented.

The Builder and Sub-Contractor rows were the least supported by UML diagrams. A reason for this

is that the Builder and Sub-Contractor combines various perspectives to implement systems and

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 51 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

since the Zachman framework is a primitive frame work, primitives on their own will be insufficient

to represent their viewpoints. The planner row is also not sufficiently addressed by UML diagrams

except for representations by the Use Case Diagram. (Appendix F).

6.3. Significance of UML Diagrams.

UML is the most significant when the UML building blocks (primitives) are combined together to

form other UML constructs (composites). This is an important aspect since UML diagrams could

also be considered composite diagrams. It is further complicated by the ability of UML to be

extended to include more composite artefacts.

It would seem that the UML diagrams that offered the most support would be the Use Case and

Class Diagrams. The activity diagrams offered the most support at a high-level when the least

amount of detail was available, usually at the start of a development process. Sequence, Component

and Deployment Diagrams provided the most support at a more technical level where systems were

more dependant on the technology choices that were made. (Figure 13).

6.4. Benefits of Mapping with UML.

It must be realised by organisations that want to invest in UML as a modeling tool that the most

benefit would be gained in the analysis and design of ICT systems and less support on the modeling

of business processes or to model what is important to the business. The least support would be

provided on the planning and conceptualising of ICT systems. (Figure 13). UML should form part of

a set modeling tools used to support the entire organisation in addressing ICT issues from planning

to implementation successfully.

6.5. General Conclusion.

The various gaps, i.e. the columns and rows not addressed in the Zachman framework by UML, is

an indication that UML is not sufficient to support the representation of enterprise architectures and

must be supported by other techniques.

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 52 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

6.6. Future Research.

It must be realised that UML is only one technique that can be mapped within the Zachman

framework. Other techniques such as dataflow diagrams or entity relationship diagrams could also

be used and mapped within the Zachman Framework. During such a mapping, gaps could also be

identified that could indicate insufficient representation by the technique. The dataflow diagram, for

instance, is only used by certain stakeholders and only addresses the What-column. So could

various other techniques also be mapped in the Zachman framework and their suitability be tested

within enterprise architecture systems.

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 53 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

7. References.

AAGEDAL J.O., MILOSEVIC Z., Enterprise modeling and QoS for command and control systems.

Enterprise Distributed Object Computing Workshop. 1998. EDOC ’98. Proceedings second

International. 3-5 Nov 1998. Pages 88-101. [online].

AERTS A.T.M., GOOSSENAERTS J.BM., HAMMER D.K., WORTMAN J.C., Architectures in

Context: on the evolution of business, application software and ICT platform architectures. Elsevier

Information & Management 41 (2004) 781-794. [online].

ALHIR S.S., UML in a Nutshell. A Desktop Quick Reference. 1998.O’Reilly & Associates.

BASTOS R.,M., RUIZ D.,D.,A. Extending UML activity diagram for workflow modeling in

production systems. System Sciences. 2002. HICSS. Proceedings of the 35th Hawai International

Conference on 7-10 Jan 2002. Pages 3786-3795. [online].

BENNETT S., MCROBB S., FARMER R., Object-Oriented Systems Analysis and Design using

UML. 2002. McGraww-Hill.

BJöRKANDER M., KOBRYN C., 2003. Architecting Systems with UML 2.0. Software, IEEE.

Volume 20, Issue 4, July-Aug 2003. Pages 57-61. [online].

CALIO A., AUTIERO M., BUX G., Software Process Improvement by Object Technology. IEEE.

Software Engineering. 2000. Proceedings of the 2000 International Conference on 4-11 June 200.

Pages 641-647. [online].

CERNOSEK G, NAIBURG E., 2004. The Value of Modeling. A technical discussion of software

modeling, IBM USA. [online]. Available from http://www-

128.ibm.com/developerworks/rational/library/6007.html accessed 23 January 2005.

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 54 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

http://www-128.ibm.com/developerworks/rational/library/6007.html
http://www-128.ibm.com/developerworks/rational/library/6007.html

School of Information Technology. University of Pretoria - L.R.Els (2005)

COCKBURN A., An article Structuring Use Cases with Goals [online] obtained from

http://alistair.cockburn.us/crystal/articles/sucwg/structuringucswithgoals.htm 7/12/2004 accessed 5

June 2005.

CYSNEIROS L.,M.;PRADO LEITE J.,C.,S.; An article Using UML to Reflect Non-Functional

Requirements [online] obtained from the portal.acm.org website. 2001.

DELEN, D., PERAKATH, C.B., August 2003. Towards a truly integrated enterprise modeling and

analysis environment. Computers in Industry.[online]. Volume 51 Issue 3. Pages 257-268.

EVANS A., SAMMUT P., WILLANS J.S., MOORE A., MASKERI G., 2005. Journal of Object

Technology. Vol 4 No 1 January-February 2005. Pages 165 – 181. [online]. Available from

http://www.jot.fm

EVERNDEN R.,1996. The Information Framework. IBM Systems Journal.Vol 35 NO 1. Pages 37-

68. [online].

FELDMAN D., MICALLEF J.,MULCARE D., 2003. Enterprise-Wide solutions architecting using

UML. Engineering of Computer-Based Systems. Proceedings. 10th IEEE International Conference

and Workshop on the 7-10 April 2003. Pages 191-199. [online].

FOWLER M. [online] http://martinfowler.com/bliki/UseCases.html accessed 5 June 2005.

FIRESMITH D.G., 2005. Are your requirements complete? Journal of Object Technology. Vol 4 No

1, January-February 2005. Pages 27 - 43. [online]. Available from http://www.jot.fm

FRANKEL D.,S., HARMON P., MUKERJI J., ODELL J., OWEN M., RIVITT P., ROSEN M.,

SOLEY R.,M. September 2003. Business Process Trends Whitepaper. The Zachman Framework

and the OMG’s Model Driven Architecture.

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 55 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

http://alistair.cockburn.us/crystal/articles/sucwg/structuringucswithgoals.htm
http://www.jot.fm/
http://martinfowler.com/bliki/UseCases.html
http://www.jot.fm/

School of Information Technology. University of Pretoria - L.R.Els (2005)

GRISS M.L., Architecting for large-scale systematic component reuse. IEEE. Technology of Object-

Oriented Languages. 1998. TOOLS 26. Proceedings 3-7 Aug 1998. Pages 8-16.

IBM, 2003. IBM Rational SUMMIT Ascendant with Rational Unified Process release 8.1r. An

evaluation version of the Unified Process can also be obtained from http://www-

306.ibm.com/software/adwtools/rup accessed accessed 7 July 2005.

LETHBRIDGE T., C., LAGANIERE R., 2005. Object-Oriented Software Engineering. Practical

Software Development using UML and Java. Second edition.McGraw-Hill.

MARTIN R.,ROBERTSON E., 1999. Formalization of Multi-level Zachman Framework. Technical

Report No 522. [online]. Referenced at http://www.informatics.indiana.edu/

research/publications/0499.pdf on 2 August 2005.

NORAN O., 2003. An Analysis of the Zachman Framework for enterprise architecture from the

GERAM perspective. Annual Reviews in Control. Volume 27, Issue 2, 2003, Pages 163-183.

[online].

OLIVIER M.,S. 2004. Information Technology Research. A practical guide for Computer Science

and Informatics. Second Edition 2004. Van Schaik Publishers.

OMG. 2003. OMG Unified Modeling Language Specification Version 1.5 March 2003. [online].

Available from http://www.omg.org/technology/documents/formal/uml.htm accessed February

2005.

OMG. 2004. The UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics

and Mechanisms. [online]. Available from

http://www.omg.org/technology/documents/modeling_spec_catalog.htm accessed 16 January 2005.

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 56 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

http://www-306.ibm.com/software/adwtools/rup accessed
http://www-306.ibm.com/software/adwtools/rup accessed
http://www.omg.org/technology/documents/formal/uml.htm
http://www.omg.org/technology/documents/modeling_spec_catalog.htm

School of Information Technology. University of Pretoria - L.R.Els (2005)

OMG. 2005. Introduction To OMG’s Unified Modeling Language ™(UML®) available from

http://www.omg.org/gettingstarted/what_is_uml.htm updated 28 March 2005 and accessed 30 April

2005.

PRESSMAN R.,S., 2005. Software Engineering A Practitioner’s Approach. Sixth Edition.

McGraww-Hill International Edition.

RATIONAL STAFF. IBM 19 August 2003. RUP Implementation Guide Part I: Recommended

Strategy and typical issues and risks. [online]. Obtained on 13 July 2005 from http://www-

128.ibm.com/developerworks/rational/library/1719.html

SATZINGER J.,W., JACKSON R., B., BURD S.,D. 2004. System Analysis and Design in a

Changing World. Third edition. Thompson Course Technology.

SCHACH S.,R., 2004. Object oriented Analysis and Design with UML and the Unified Process.

McGrall-Hill.

SCHACH S.,R., 2005. Object orientation & classical software engineering.Sixth Edition. McGrall-

Hill.

SEIDEWITZ, E., Sept – Oct 2003. What Models Mean. Software IEEE. Volume 20 Issue 5. Pages

26-32. [online]..

SEI (SOFTWARE ENGINEERING INSTITUTE) website

http://www.sei.cmu.edu/str/descriptions/deda.html [online] last updated 12 May 2005 and accessed

22 May 2005.

SOLEY, R and the OMG Staff Strategy Group, 2000. Model Driven Architecture. White Paper

[online] available from http://www.omg.org/mda/presentations.htm 00-11-05.pdf accessed 16

January 2005.

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 57 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

http://www.omg.org/gettingstarted/what_is_uml.htm
http://www.sei.cmu.edu/str/descriptions/deda.html
http://www.omg.org/mda/presentations.htm 00-11-05.pdf

School of Information Technology. University of Pretoria - L.R.Els (2005)

SOMMERVILLE, I., 2004. Software engineering. Seventh Edition. Pearson Education Limited.

SOWA J.F. , ZACHMAN J.A.. 1992. Extending and formalizing the framework for information

systems architecture. IBM Systems Journal. Vol 31, No 3. Pages 590- 616. Information about

Zachman can also be obtained as an electronic book available at www.zachmaninternational.com.

SPEWAK, S.H., 1992. Developing a blueprint for data, applications, and technology: enterprise

architecture planning. New York: John Wiley & Sons.

STALLINGS, W., 2005. Business Data Communications. Fifth Edition. International Edition.

Pearson Prentice Hall.

TANAKA A., NAGASE Y., KIRYU Y., NAKAI K., Applying ODP Enterprise Viewpoint

Language to hospital information systems. Enterprise Distributed Object Computing Conference.

2001. Proceedings. Fifth IEEE International 4-7 Sept 2001 Pages 188-192. [online].

THE OPEN GROUP, 2003. TOGAF (The Open Group Architectural Framework) Version 8.1

“Enterprise Edition”. [online]. Available from http://www.opengroup.org/bookstore/catalog/

accessed 19 February 2005.

UHL A., 2003. Model driven architecture is ready for prime time. Software. IEEE. Volume 20. Issue

5. Sept-Oct 2003. Pages 70-72. [online].

VASCONCELOS, A., MIRA DA SILVA, M., FERNANDES, A., TRIBOLET, J., 2004. An

Information System Architectural Framework for Enterprise Application Integration. System

Sciences, Proceedings of the 37th Annual Hawaii International Conference on , 5-8 Jan. 2004. Pages

225-233.[online].

WANG G., CONE G., 2001. A method to reduce risks in building distributed enterprise systems.

Enterprise Distributed Object Computing Conference. [online].Proceedings. Fifth IEEE

international. 4-7 Sept 2001. Pages 164-168.

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 58 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

http://www.opengroup.org/bookstore/catalog/

School of Information Technology. University of Pretoria - L.R.Els (2005)

WARD J., GRIFFITHS P. 1998. Strategic Planning for Information Systems. 2nd Edition. Jon Wiley

and sons Ltd.

WHITTEN J.,L., BENTLEY L.,D., DITTMAN K.,C. 2004. Systems Analysis and Design Methods.

Sixth edition. McGraw Hill Higher Education.

ZACHMAN J.A..1987. A Framework for information systems architecture. IBM Systems Journal.

Vol 26, No 3. Pages

ZACHMAN J.,A., 1998. The Physics of Knowledge Management. [online]. Available from the

Zachman Institute for Framework Advancement (ZIFA) at http://www.zifa.com

ZACHMAN J.,A.,2001. You can’t “Cost Justify” Architecture. [online] Available from the

Zachman Institute for Framework Advancement (ZIFA) at http://www.zifa.com

ZACHMAN J.A., 2005. The Zachman Framework [online]. Available from the Zachman Institute

for Framework Advancement (ZIFA) at http://www.zifa.com accessed 14 February 2005.

Using the Unified Modeling Language (UML) to Represent Artefacts in the Zachman Framework - 59 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

http://www.zifa.com/
http://www.zifa.com/
http://www.zifa.com/

School of Information Technology. University of Pretoria - L.R.Els (2005)

Appendix A – Abbreviations.

No Abbreviation Description
a b c
1 UC Use Case Diagram
2 SQ Sequence Diagram
3 CB Collaboration Diagram
4 AT Activity Diagram
5 SC State Chart Diagram
6 CL Class Diagram
7 OB Object Diagram
8 CP Component Diagram
9 DP Deployment Diagram

 - A1-

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

Appendix B. Examples within the Zachman Framework.

C1 Data
What?

C2 Function
How?

C3 Network
Where?

C4 People
Who?

C5 Time
When?

C6 Motivation
Why?

R1 Planner

Scope (Strategic, external
environment, boundaries,
budget constraints)

R1-C1

List of things
(nouns).

R1-C2

Value Chain. (List
of primary and
secondary
activities.)

R1-C3

A list of
geographical
locations.

R1-C4

Organisation list.

R1-C5

Important external and
internal event list.

R1-C6

Business Strategy list. Critical
success factors.

R2 Owner

Enterprise (Business
Processes, Business
requirements, business
Policies).

R2-C1

Business entities with
relationships.

R2-C2

Business process.

R2-C3

Business locations
including
facilities.

R2-C4

Organisation Chart.

R2-C5

Business Events.

R2-C6

Business plan with business
objectives. Business policies.

R3 Designer

System (User Requirements,
Application. Logical not
physical.)

R3-C1

Data entities,
attributes and
operations with
relationships.

R3-C2

Requirements
(User and system
requirements).

R3-C3

Distributed,
centralized or
Mobile locations.

R3-C4

Roles with
responsibilities.

R3-C5

System events (sequencing
and synchronisation, user
responses).

R3-C6

Business rules with proposed
results (decision tables &
Decision trees, OCL).

R4 Builder

Technology (Physical,
hardware, network,
Standards)

R4-C1

Physical data model
(Technology
dependant).

R4-C2

System design
(hardware &
software
components,
system interfaces).

R4-C3

Protocol
architecture (OSI
reference model,
TCP/IP Protocol
Architectures).

R4-C4

Human machine
interfaces (ie
graphical or voice
recognition etc).

R4-C5

Transaction processing
(System response time).

R4-C6

Technology standards.

R5 Sub-contractor
Component
(Implementation, COTS
applications, Machine
execution)

R5-C1

Data definitions/
tables/ segments.

R5-C2

COTS or custom
built using
Programming
Language.

R5-C3

Network topology.
(Hubs, switches,
gateways).

R5-C4

Security aspects
(access control,
authentication
mechanisms).

R5-C5

Transmission speeds
(voice, text, image).

R5-C6

System rules coded in a
programming language. Error
messages. Vendor
documentation.

R6 Functioning System

 - 1 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

C1 Use Case Diagram
School of Information Technology. University of Pretoria - L.R.Els (2005)

1
2

3

4

5

6

A B C D E F G
Use Case Diagram (UC) Primitives

UC Primitive Name Description Representation Column no Reason for classification Row no Reason for classification

UC Actor

An actor operates within the boundaries or
environment of the system. It can be a
person or a system. It can also be a role or
set of responsibilities. An actor interacts
with the system and initiates actions or
receives output

C4 Who?or C1
What? or C5
When

If the actor is a person it can be
classified in the C5 People column.
If the actor is a system it can be
classified in the C1 What? column.
If the actor represents time (time
actor) the actor can be classified in
the C5 When? column. R1 - R5

Actors can be identified by every
stakeholder. R1 determine the
scope, R2 identifies business
actors and use cases, R3
determine the boundaries of the
requirement, R4 technology
specific actors (i.e. system
administrators) and R5 the actors
can be part of the system testing
and implementation (all the roles
that are accommodated in the
system such as users and
authorisation entities.

UC Use Case The use case describes the interactions.
C2 How? &
C2 How?

The use case indicates a specific
action. R1-5

On R1 use cases can be identified
that will help determining the
scope. On R2 business use cases
can help determining business
domains. On R3 Analysis use
cases can help determining the
system functionality that must be
tested and implemented.R4
technology use cases indicating
the functions that must be done for
technology solutions such as video
conferencing. R5 test scenarios.

UC Extend

Relationship between use cases. The
relationship indicates that functionality of
one use case is enhanced by another use
case.

C2 How? &
C2 How?

Use case (How) and extend
relationship is also (How) since it
enhances functionality of a use
case. Row 3

Enhanced functionality will only be
determined in design models done
in RUP phase elaboration.

Zachman Column Zachman Row

Actor

<<extend>>

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

C1 Use Case Diagram
School of Information Technology. University of Pretoria - L.R.Els (2005)

1
2

3

A B C D E F G
Use Case Diagram (UC) Primitives

UC Primitive Name Description Representation Column no Reason for classification Row no Reason for classification

Zachman Column Zachman Row

7

8

9

10

11

12

13

UC Include

Relationship between use cases indicating
that the interactions are also included in
the other use case. (OMG 2003:498)

C2 How? &
C2 How?

Use case (How) and include
relationship is also (How) since it
includes the interactions of a use
case. Row 3

Includes detailed functionality that
would only become clear in design
models done in RUP stage
elaboration.

UC Source where
information was obtained.

Text attribute. Can be used in a Use Case
Template. Label C3 Where?

The attribute indicates the location
where the information was
obtained. R1-3

The information would be made
available by any of these
stakeholders.

UC Interested stakeholder
Text attribute. Can be used in a Use Case
Template. Label C4 Who?

The stakeholder would be other
interested persons or organisations R1-4

The information would be made
available by any of these
stakeholders. R4 technology
stakeholders.

UC Precondition

Text attribute. Describes a constraint of
the system. What must exist before the
system can run. Can be used in a Use
Case Template. Label C6 Why?

A constraint suggests that it could
be a business rule. R2-5

The constraint would be indicated
by a business requirement.R4 used
during technology specific
solutions. R5 used during test
cases.

UC Trigger event

Text attribute. Events that initiates use
case functions are described. Can be used
in a Use Case Template. Label C5 When? Indication of when an action starts. R2-5

The business process (R2) would
determine it or it could be derived
from a business process (R3). R4
used during technology specific
solutions. R5 used during test
cases.

UC Course of Events

Text attribute. A description of the
sequence of activities performed. Can be
used in a Use Case Template. Label C2 How? Describes functions. R3-5

User Requirements would
determine the sequence of events.
R4 used during technology specific
solutions. R5 used during test
cases.

UC Alternative Courses

Text attribute. Can be seen as a variation
when a decision point is reached. Use
cases do not contain decision points. Can
be used in a Use Case Template. Label C2 How? Describes functions. R3-5

User Requirements would
determine the sequence of events.
R4 used during technology specific
solutions. R5 used during test
cases.

<<include>>

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

C1 Use Case Diagram
School of Information Technology. University of Pretoria - L.R.Els (2005)

1
2

3

A B C D E F G
Use Case Diagram (UC) Primitives

UC Primitive Name Description Representation Column no Reason for classification Row no Reason for classification

Zachman Column Zachman Row

14

15

16

17

18

19

20

UC Post Condition

Text attribute. Constraint after the use
case has been successfully completed.
Can be used in a Use Case Template. Label C6 Why?

A constraint suggests that it can be
a business rule. R2-5

Could indicate how subsystems
within applications were linked
together. System designs could
indicate this.

UC Assumptions
Text attribute. Similar to preconditions.
Can be used in a Use Case Template. Label C6 Why?

Can be seen as a constraint that is
a business rule. R2-5

Certain assumptions were
necessary to indicate system
boundaries. R4 used during
technology specific solutions. R5
used during test cases.

UC Business Rules

policies and procedures that directs the
business and also any systems. Can be
used in a Use Case Template. Label C2 How?

Rules providing statements of
constraints R3

Analysis and design models done
during describing requirements.

UC Use Case Description
Text attribute. Can be used in a Use Case
Template. Label C1 What?

Data element. Summary
description of the functionality that
is described in the use case. R1-5

Use Case descriptions may be
described in various levels of detail
. R4 used during technology
specific solutions. R5 used during
test cases.

UC Conclusion

Text attribute. Describing the value that a
actor receives when the use case has
been performed. Can be used in a Use
Case Template. Label C6 Why?

The value to the organisation is
described. R1-5

Conclusions could be seen as a
description as the end state that cal
be obtained from user
requirements.

UC Rank

Digit attribute. Show the importance of the
use case. Can be used in a Use-Case-
Ranking&-Priority-Matrix Label C2 How?

The rank would indicate how
important the functionality is. R3-5

The user or system requirement
should determine the importance of
the use case. R4 used during
technology specific solutions. R5
used during test cases.

UC Priority

Digit attribute. It can be an indication when
the use case must be developed. Can be
used in a Use-Case-Ranking&-Priority-
Matrix Label C5 When?

The attribute indicates when the
use case should be developed. R3-5

During requirement analysis an
indication of the development
priority should be obtained. R4
used during technology specific
solutions. R5 used during test
cases.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

C2 Sequence Diagram
School of Information Technology. University of Pretoria - L.R.Els (2005)

1
2
3

4

5

6

7

8

9

10

A B C D E F G
Sequence Diagram (SQ) Primitives

SQ Primitive Name Description Representation Column no Reason for classification Row no Reason for classification

SQ Actors
A person that initiates a specific action in a
SQ. C4 Who? Person must initiate the action. R3

Analysis & Design diagrams.
RUP stage elaboration.

SQ Objects
Anything that requires that data must be
stored about it. C1 What? Objects represent things R3, R5

Analysis & Design diagrams.
RUP stage elaboration. R5
physical database names.

SQ Actor Life Lines Represents time of an actor. C5 When?

The messages that an actor
initiates could also be seen as an
actor that initiates a system event. R3

Analysis & Design diagrams.
RUP stage elaboration.

SQ Object Life Lines
Indicates how long the object is busy
performing messages. C5 When?

Messages passed amongst objects
could also be classified as system
events. R3

Analysis & Design diagrams.
RUP stage elaboration.

SQ Activation Bar Indicates the duration of messages. C5 When?
An activation bar could indicate the
duration of system events. R3

Analysis & Design diagrams.
RUP stage elaboration.

SQ Timing Label
A time label is printed on the left-hand side
of activation bars.(OMG 2003:503). {receive time < 10 sec} C5 When?

The formula indicates that the
message must be sent/received
within a specific period of time. R3, R5

Analysis & Design diagrams.
RUP stage elaboration.
Information is only created during
system analysis & design. R5
statements could be expressed in
a programming language.

SQ Destruction Label
Label. Indicating that a message sequence
'dies'. X C2 How?

A destruction can be seen as a
system functionality R3

Analysis & Design diagrams.
RUP stage elaboration.

Zachman Column Zachman Row

Actor

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

C3 Collaboration Diagram
School of Information Technology. University of Pretoria - L.R.Els (2005)

1
2
3

4

5

6

A B C D E F G
Collaboration Diagram (CB) Primitives

CB Primitive Name Description Representation Column no Reason for classification Row no Reason for classification

CB Collaboration
Instance of a role that is performed. (OMG
2003:515) C1 What?

A role is an example of an important
thing that a system must keep data
about. R 2, 3, 4. 5

The different organisation roles
are important to the business
(Row 2). The different skill
profiles (also a role) could be
determined during system
analysis and design. (Row 3). On
Row 4 - Technology participants
must interact with each other.
Row 5 Participants taking part in
test and implementation activities
would also interact with each
other.

CB Actor
An actor that initiate a set of
collaborations.

C4 Who? or
C1 What?

If an actor is a person (Who) or an
actor could also be a system
(What). R 2,3,4,5

Actors could be identified during
process design (Row 2) or during
system analysis (Row 3).
Technology and infrastructure
actors (Row 4). Test actors (Row
5).

CB Arrow Label Interaction description Text expression C1 What? An example of data R 2,3,4,5

Interaction descriptions could be
identified by the business (Row 2)
or by system analysis (Row 3).
On Row 4 - Technology
participants must interact with
each other. Row 5 Participants
taking part in test and
implementation activities would
also interact with each other.

Zachman Column Zachman Row

Actor

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

C4. Activity Diagram.
School of Information Technology. University of Pretoria - L.R.Els (2005)

1
2
3

4

5

6

7

A B C D E F G
Activity Diagram (AT) Primitives

AT Primitive Name Description Representation Column no Reason for classification Row no Reason for classification

AT Start activity Start of a sequence of activities C5 When
Indicate at what point (When) a
group of activities can start. R2,3,4

Could be indicated by a business
process (R2 RUP stage
inception) or system process (R3
RUP stage elaboration).R4
Technology Design to indicate the
flow of activities (RUP stage
construction)

AT End Activity End of a sequence of activities C5 When
Indicate at what point (When) a
group of activities stops. R2,3,4

Could be indicated by a business
process (R2 RUP stage
inception) or system process (R3
RUP stage elaboration). R4
Technology Design to indicate the
flow of activities (RUP stage
construction)

AT Activity Activity or process C2 How?
Indicate a function that must be
performed. R2,3,4

Could be indicated by a business
process (R2 RUP stage
inception) or system process (R3
RUP stage elaboration). R4
Technology Design to indicate the
flow of activities (RUP stage
construction)

AT Decision Block
Indicate that a decision is necessary in the
process. C2 How? Decision is a type of function. R2,3,4

Could be indicated by a business
process (R2 RUP stage
inception) or system process (R3
RUP stage elaboration). R4
Technology Design to indicate the
flow of activities (RUP stage
construction)

Zachman Column Zachman Row

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

C4. Activity Diagram.
School of Information Technology. University of Pretoria - L.R.Els (2005)

1
2
3

A B C D E F G
Activity Diagram (AT) Primitives

AT Primitive Name Description Representation Column no Reason for classification Row no Reason for classification
Zachman Column Zachman Row

8

9

AT Synchronisation Bars
Indication that a set of different activities
can occur at the same time. C5 When?

Indicates a point in time that
different sets of activities can occur
at the same time. R2,3,4

Could be indicated by a business
process (R2 RUP stage
inception) or system process (R3
RUP stage elaboration). R4
Technology Design to indicate the
flow of activities (RUP Stage
construction)

AT Activity Flow Process flow between two functions.
C2 How? &
C2 How?

The flow is an indication of how
data is communicated between
functions (How). R 2,3,4

Business functions are classified
in Row 2 and system functions in
Row 3 during system analysis
and design (RUP stage
elaboration). Row 4 Physical
design (RUP stage construction).

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

C5. State Chart Diagram.
School of Information Technology. University of Pretoria - L.R.Els (2005)

1
2
3

4

5

6

7

8

A B C D E F G
State Chart Diagram (SC) Primitives

SC Primitive Name Description Representation Column no Reason for classification Row no Reason for classification

SC Initial State Entry label when a group of states starts C5 When?
Indicates when an group of states
will starts. R 3

Information would be modelled in
system design (RUP stage
elaboration). Requirements
determination.

SC End State Final state label. C5 When?
Indicates when a group of states
end. R 3

Information would be modelled in
system design (RUP stage
elaboration). Requirements
determination.

SC State

A state can be a specific condition that an
object in in at a specific moment in time.
(OMG 2003:573). C1 What?

A state describes a specific data
value of an object at a specific time. R 3

Information would be modelled in
system design (RUP stage
elaboration). Requirements
determination.

SC Sub-state A decomposed state. (OMG 2003:540) C1 What? More descriptive of a state. R 3

Information would be modelled in
system design (RUP stage
elaboration). Requirements
determination.

SC Synchronisation bars
Indicates that different paths of states can
occur. C5 When?

A synchronisation occurs when
different states must be possible at
the same time. R 3

Information would be modelled in
system design (RUP stage
elaboration). Requirements
determination.

Zachman Column Zachman Row

Active

Active

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

C6. Class Diagram.
School of Information Technology. University of Pretoria - L.R.Els (2005)

1
2
3

4

5

6

7

A B C D E F G
Class Diagram (CL) Primitives

CL Primitive Name Description Representation Column no Reason for classification Row no Reason for classification

CL Name Label Name of the class objectname:class name C1 What? Describe things. R2,3,4,5

Would be indicated during
business process modeling (R2
RUP stage inception) or system
analysis and design (R3 RUP
stage elaboration). Row 4 used
during physical database design
(RUP stage construction). Row 5
specific database calls.

CL Attributes Descriptive data values text strings C1 What? Specifies a list of text attributes. R 3,4,5

Would be indicated during
system analysis and design (R3
RUP stage elaboration). Row 4
used during physical database
design (RUP stage construction).
Row 5 specific database calls.

CL Operations Expressions indicating operations text strings C2 How?
Describes how functions will be
performed (i.e. system behaviour). R 3,4,5

Would be indicated during
system analysis and design (R3
RUP stage elaboration). Row 4
used during physical database
design (RUP stage construction).
Roe 5 specific database calls.

CL Relationship
Indicates that their exist a relationship
between objects C1 What?

Enhances the primitive description
by showing that there is a
relationship between objects

Row
2,3,4,5

Relationships would be used at
every row except row 1 since the
planner only identifies lists of
important things

Zachman Column Zachman Row

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

C7. Object Diagram.
School of Information Technology. University of Pretoria - L.R.Els (2005)

1
2
3

4

5

6

7

A B C D E F G
Object Diagram (OB) Primitives

OB Primitive Name Description Representation Column no Reason for classification Row no Reason for classification

OB Name
Data element specifying the object name.
(object name : class name). Text label C1 What? Descriptive text name.

Row
2,3,4,5

Objects could be used to
describe what things are
important to the business (Row2).
During system analysis and
design object instances could be
used to describe difficult classes.
Row 4 physical database design.
Row 5 specific database calls.

OB Attribute
Descriptive list of text attributes that must
be stored. (attribute name : type = value) Text attribute list C1 What? Descriptive nouns. Row 3,4,5

During system analysis and
design, attributes would be used
to describe the important data
elements that must be stored in a
system. Such detailed information
could be determined during
requirements gathering work
sessions. Row 4 physical
attributes. Row 5 specific
database calls.

OB Object

A object is an instance of a class and
could include (although not necessary)
attributes. (OMG 2003:464).

C1 What? &
C1 What?

Name (What) and attributes (What)
serves to enhance the description
of an object.

Row
2,3,4,5

Objects without attributes could
be identified during business
processes (Row 2). It could be
used to describe complicated
classes during analysis and
design models (Row 3 RUP stage
elaboration. Row 4 is the physical
design. Row 5 specific database
calls.

OB Relationship
Indicates that there exists a relationship
between objects C1 What?

Enhances the primitive description
by showing that there is a
relationship between objects

Row
2,3,4,5

Relationships could be used at
every row except row 1 since the
planner only identifies lists of
important things

Zachman Column Zachman Row

attribute label

name label

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

C8. Component Diagram.
School of Information Technology. University of Pretoria - L.R.Els (2005)

1
2
3

4

5

6

7

A B C D E F G
Component Diagram (CP) Primitives

CP Primitive Name Description Representation Column no Reason for classification Row no Reason for classification

CP Component

Software component that could be
implemented. OMG 2003:574. Examples
are programming languages. C1 What?

If the definition of data could also
accommodate things it could be
classified in the C1 What? column. Row 4,5

A software component is
technology specific, that is
implemented on a hardware
component. Information would
become available in RUP stages
Construction and implementation.

CP Component Name Name of component. Component attribute. Label C1 What?
Attribute that enhances the
description of a component. Row 4,5

A software component is
technology specific, that is
implemented on a hardware
component. Information would
become available in RUP stages
Construction and implementation.

CP Component Type
Type of the component. Component
attribute. Label C1 What?

Attribute that enhances the
description of a component. Row 4,5

A software component is
technology specific, that is
implemented on a hardware
component. Information would
become available in RUP stages
Construction and implementation.

CP Component Instance
Component Name : Component Type.
Component attribute Label C1 What?

Attribute that enhances the
description of a component. Row 4,5

A software component is
technology specific, that is
implemented on a hardware
component. Information would
become available in RUP stages
Construction and implementation.

Zachman Column Zachman Row

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

C9. Deployment Diagram.
School of Information Technology. University of Pretoria - L.R.Els (2005)

1
2
3

4

5

6

7

A B C D E F G
Deployment Diagram (DP) Primitives

DP Primitive Name Description Representation Column no Reason for classification Row no Reason for classification

DP Node A node depicts a piece of hardware. C1 What?

If the definition of the data column is
extended to include other things, a
node could be classified as a thing. Row 4,5

Technology dependent. Would be
identified during RUP
construction and implementation
phases.

DP Name Name of the hardware component. Label C1 What?

Deployment name can be an
attribute that describes the DP
Node Row 4,5

Technology dependent. Would be
identified during RUP
construction and implementation
phases.

DP Type Classification Type. Label C1 What?
Deployment type can be an attribute
that describes the DP Node Row 4,5

Technology dependent. Would be
identified during RUP
construction and implementation
phases.

DP Node Instance
Contains the node name and node type.
(Name:type). Label (Name:Type) C1 What? DP Node instance Row 4,5

Technology dependent. Would be
identified during RUP
construction and implementation
phases.

Zachman Column Zachman Row

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

D1. Use Case Diagram.
School of Information Technology. University of Pretoria - L.R.Els (2005)

1
2

3

4

5

6

7

A B C D E F G

UC Composite Name Description Representation
Related
Column no Reason for classification

Related
Row no Reason for classification

UC Multiplicity

Cardinality type of relationship
between an actor and a use case.
(2003:499).

C2 How? & C4
Who?

Indication of how many instances
of use cases (How) and actors
(Who) participates in a system. Row 2,3

The information could be identified in
business use cases(row 2 RUP
stage inception) as well as analysis
and design use cases (row 3 RUP
stage elaboration).

UC Generalisation Relationship between actors.
C2 How? & C4
Who?

Indicates how actors relate to each
other. Row 3

Detailed relationships would only be
clear in analysis and design models.
(Row 3 RUP stage elaboration).

UC Association
Relationship between actors and use
cases. (OMG 2003:497).

C2 How? & C4
Who?

Indicates that certain actors (who)
make use of specific use cases
(How). Row 2,3

The relationship could be identified
in business (Row 2 RUP stage
inception) and analysis models (Row
3 RUP stage elaboration).

UC Subsystem

A subsystem can contain a group of
Use Cases. A sybsystem shows a
specific behaviour of a system.

C1 What? &
C2 How? & C4
Who?

The specific group can be
classified as What and the Use
cases as How. The actor that
participates is classified as C4
Who Row 3

The classification using subsystems
would be done in the analysis and
design models (RUP stage
elaboration).

Use Case (UC) Composites
Zachman Column/s Zachman Row/s

Actor
1 *

Actor

Actor

Actor

Actor

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

D2. Sequence Diagram.
School of Information Technology. University of Pretoria - L.R.Els (2005)

1
2

3

4

5

6

7

A B C D E F G

SQ Composite Name Description Representation
Related
Column no Reason for classification

Related
Row no Reason for classification

SQ Message

Horisontal perspective. Text that
describes what is communicated
(information flow). The text can contain
a sequence nr describing when the
message must be performed. Can be
seen as a general message
(asynchronous message) that requires
a response

C2 How? & C1
What? & C5
When?

The message describes an action,
how data is passed between
objects (what) or between actors
(who) and objects. The sequence
number describes when the
message must be sent. R3,R5

Analysis & Design diagrams (RUP
stage elaboration). R5 The text label
may contain expressions in a
specific programming language.
(RUP stage construction).

SQ Asynchronous Message

Another type of message indicating that
feedback or a response are not
required.

C2 How? & C1
What? & C5
When?

The message describes an action,
how data is passed between
objects (what) or between actors
(who) and objects. The sequence
number describes when the
message must be sent. R3,R5

Analysis & Design diagrams (RUP
stage elaboration). R5 The text label
may contain expressions in a
specific programming language.

SQ Return Message
Another type of message indicating a
response that was requested.

C2 How? & C1
What? & C5
When?

The message describes an action,
how data is passed between
objects (what) or between actors
(who) and objects. The sequence
number describes when the
message must be sent. R3,R5

Analysis & Design diagrams (RUP
stage elaboration).R5 The text label
may contain expressions in a
specific programming language.
(RUP stage construction).

SQ Recursive Message
Another type of message where data is
passed

C2 How? & C1
What? & C5
When?

The message describes an action,
how data is passed between
objects (what) or between actors
(who) and objects. The sequence
number describes when the
message must be sent. R3,R5

Analysis & Design diagrams (RUP
stage elaboration). R5 The text label
may contain expressions in a
specific programming language.
(RUP stage construction).

Sequence Diagram (SQ) Composites
Zachman Column/s Zachman Row/s

1. Message

1. Message

2. Return message

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

D2. Sequence Diagram.
School of Information Technology. University of Pretoria - L.R.Els (2005)

1
2

3

A B C D E F G

SQ Composite Name Description Representation
Related
Column no Reason for classification

Related
Row no Reason for classification

Sequence Diagram (SQ) Composites
Zachman Column/s Zachman Row/s

8 SQ Vertical perspective
A vertical perspective containing life-
lines and activation bars.

C5 When? &
C1 What? &
C4 Who?

Shows how time influence the
sending of messages from
sources. The source could be an
actor (Who) or an Object (What) R3

Analysis & Design diagrams (RUP
stage elaboration).

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

D3. Collaboration Diagram.
School of Information Technology. University of Pretoria - L.R.Els (2005)

1
2

3

4

5

6

7

8

9

A B C D E F G

CB Composite Name Description Representation
Related
Column no Reason for classification

Related
Row no Reason for classification

CB Interaction

Operations that is performed between
two roles together with sequence
numbers. (OMG 2003:523)

C1 What? &
C4 Who? & C3
Where? & C2
How?

Roles could be people (Who) or
objects (What). The sequence is
(Where) and the flow (How) R2,3,4,5

The different organisation roles are
important to the business (Row 2).
The different skill profiles (also a
role) could be determined during
system analysis and design. (Row
3).

CB Generalisation
Indicates the relationships between
collaboration roles. OMG (2003:522)

C1 What? &
C4 Who? & C2
How?

Roles could be people (Who) or
objects (What). The relationship is
how they are related. R2,3,4,5

The relationship between the
different roles can be done by the
business (R 2) or during system
analysis and design.

CB Composition
Composition relationship between
collaboration roles. (OMG 2003:528)

C1 What? &
C4 Who? & C2
How?

Roles could be people (Who) or
objects (What). The relationship is
how they are related. R2,3,4,5

The relationship between the
different roles can be done by the
business (R 2) or during system
analysis and design.

CB Asynchronous
Interaction

Type of CL interaction. An operation is
performed the collaboration role
continuous with other work without
waiting for an reply. OMG 2003:530

C1 What? &
C4 Who? & C2
How? & C3
Where?

Roles could be people (Who) or
objects (What). The flow is how the
interaction are performed and the
direction is where the interaction or
message is sent. R 3,4,5

Message information would only
become available during system
analysis and design (RUP stage
elaboration).

CB Return Interaction
Type of CL interaction, a return
interaction.

C1 What? &
C4 Who? & C2
How? & C3
Where?

Roles could be people (Who) or
objects (What). The flow is how the
interaction are performed and the
direction is where the interaction or
message is sent. R 3,4,5

Message information would only
become available during system
analysis and design (RUP stage
elaboration).

CB Multiplicity
Relationship between two collaboration
roles.

C1 What? &
C2 How? & C4
Who?

Roles could be people (Who) or
objects (What). The relationship is
how they are related. R2,3,4,5

The relationship between the
different roles can be don by the
business (R 2) or during system
analysis and design.

Collaboration Diagram (CB) Composites
Zachman Column/s Zachman Row/s

1. Report

1 *

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

D4. Activity Diagram.
School of Information Technology. University of Pretoria - L.R.Els (2005)

1
2

3

4

5

6

7

A B C D E F G

AT Composite Name Description Representation
Related
Column no Reason for classification

Related
Row no Reason for classification

AT Swimlines
Indicates responsibilities of what
process is performed by who

C1 What? &
C4 Who? & C2
How?

Functions (What) and flows (How)
are classified per responsibility
(Who). R 2,3,4

Business functions are classified in
Row 2 and system functions in Row
3 during system analysis and design
(RUP stage elaboration). Row 4
physical design (RUP Stage
construction)

Activity-location matrix (ALM)

Matrix with Xs indicating what activity
are performed at what location.
(Satzinger 2004:233). Text table

C2 How? & C5
Where?

Activities are classified as (How)
and locations as (Where). R 2,3,4

Business functions are classified in
Row 2 and system functions in Row
3 during system analysis and design
(RUP stage elaboration). Row 4
Physical design (RUP stage
construction).

Location diagram LD

A geographical map indicating the
places where the system would be
used. (Satzinger 2004:232).UML
stereotype.

C1 What? &
C5 Where?

Systems are classified as (What)
and locations or places as
(Where). R 2,4

During business process analysis (R
2) important places could be
indicated on a geographical map.
Row 4 physical design (RUP stage
construction).

AD Data entry action (ALM)

CRUD (Create, Read, Update, Delete)
indicating the data-action of the activity
per data element. (Satzinger 2004:234). Text table

C1 What? &
C2 How?

Data elements are classified as
(What) and the data-entry actions
as (How). R 3

During system analysis and design it
will be determined what functions
are performed on data elements.

Activity Diagram (AT) Composites
Zachman Column/s Zachman Row/s

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

D5. State Chart Diagram.
School of Information Technology. University of Pretoria - L.R.Els (2005)

1
2

3

4

5

6

7

8

9

A B C D E F G

SC Composite Name Description Representation
Related
Column no Reason for classification

Related
Row no Reason for classification

SC State (nr 2)

Describes a state as well an internal
actions (entry/do/exit) that must be
performed if the object is that state.
(OMG 2003:538).

C1 What? &
C2 How? & C5
When?

An action (How) is performed when
an object is in a specific state
(What). Row 3

Information (states with action)
would be available to be modelled in
system design (RUP stage
elaboration).

SC Interface

An interface is an external function that
causes an specific state. OMG
(2003:573)

C1 What? &
C2 How? & C1
What?

An interface (What) causes a
specific state (What) and action
(How). Row 3

Information would be modelled in
system design (RUP stage
elaboration)

SC Concurrent States
Describes different paths of states.OMG
(2003:547).

C5 When? &
C1 What?

Concurrent actions would start at a
specific point indicated by a
synchronisation bar (When),
concurrent states (What) is
possible at the same time. Row 3

Information would be modelled in
system design (RUP stage
elaboration). Requirements
determination.

SC Sequential sub-state

Indicates a recursive state. It will
continue for an amount of time. OMG
(2003:541)

C5 When? &
C1 What?

The amount of time (When) is
described together with the state
(What). Row 3

The information would be available
during system design.
(Requirements determination).

SC Event
A set of events that causes changes in
states of objects. (OMG 2003:542).

C1 What? &
C2 How?

An event in this context is a group
of states (C1) and how they relate
to each other. Row 3

The information would be available
during system design. Requirements
determination.

SC Transition Indicates a change in state
C1 What? &
C2 How?

The flow (How) between states
(What) is modelled. Row 3

The information would be available
during system design. Requirements
determination.

State Chart Diagram (SC) Composites
Zachman Column/s Zachman Row/s

entry/do/exit

State

Ring

digit (n)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

D6. Class Diagram.
School of Information Technology. University of Pretoria - L.R.Els (2005)

1
2

3

4

5

6

7

8

A B C D E F G

CL Composite Name Description Representation
Related
Column no Reason for classification

Related
Row no Reason for classification

CL Interface

External operation of a class. An
interface does not contain any
attributes, states or relationships.
(OMG 2003:451,452).

C1 What? &
C2 How?

Classes are C1 What indicating
the name and attributes. C2 is the
external operations. Row 4,5

Used during Row 4, physical design.
Row 5 is the specific programming
language.

CL Class

Something that contains static
(attribute) and behaviour (operations)
elements. The attributes and
operations need not be displayed.

C1 What? &
C1 What?, C6
Why?, C2
How?

The name and attributes relates to
the What column and the
operations are statements could
be derived from business rules i.e.
formulas (C6 Why) or it could
indicate how certain attributes are
calculated (C2 How). Row 2,3,4,5

Identified during analysis and design
models (RUP stage elaboration).
Classes without attributes and
operations could be used during
business modeling (Row 2). Row 4
used during physical database
design (RUP stage construction).
Row 5 specific database calls.

CL Multiplicity
Cardinality-type of relationship
between classes.

C1 What? &
C2 How?

Indicate how classes (What) relate
with each other. Row 2,3,4

Used during business (Row 2) as
well as analysis and design models
(Row 3). Row 4 used during physical
database design (RUP stage
construction)

CL Aggregation
A consists-of relationship between
objects. (OMG 2003:124).

C1 What? &
C2 How?

Indicate how classes (What) relate
with each other. Row 2,3,4

Used during business (Row 2) as
well as analysis and design models
(Row 3). Row 4 used during physical
database design (RUP stage
construction)

CL Composition

Relationship between classes. More
precise aggregation relationship
between classes. OMG 2003:467)

C1 What? &
C2 How?

Indicate how classes (What) relate
with each other. Row 2,3,4

Used during business (Row 2) as
well as analysis and design models
(Row 3). Row 4 used during physical
database design (RUP stage
construction)

Class Diagram (CL) Composites
Zachman Column/s Zachman Row/s

name label

attributes

operation

1 *

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

D6. Class Diagram.
School of Information Technology. University of Pretoria - L.R.Els (2005)

1
2

3

A B C D E F G

CL Composite Name Description Representation
Related
Column no Reason for classification

Related
Row no Reason for classification

Class Diagram (CL) Composites
Zachman Column/s Zachman Row/s

9 CL Generalisation

Relationship, parent-child or
superclass-class, relationship
between classes. OMG (2003:718).

C1 What? &
C2 How?

Indicate how classes (What) relate
with each other. Row 2,3,4

Used during business (Row 2) as
well as analysis and design models
(Row 3). Row 4 used during physical
database design (RUP stage
construction)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

D7. Object Diagram.
School of Information Technology. University of Pretoria - L.R.Els (2005)

1
2

3

4

5

6

7

A B C D E F G

OB Composite Name Description Representation
Related
Column no Reason for classification

Related
Row no Reason for classification

OB Multiplicity
Cardinality-type of relationship between
objects. (OMG 2003:107)

C1 What? &
C2 How?

Indicates how objects (What)
relate with each other. Row 2,3,4

Could be used during business
modeling (Row 2) and analysis &
design models (Row 3). Row 4 is the
physical design.

OB Aggregation
A consists-of relationship between
objects. (OMG 2003:124).

C1 What? &
C2 How?

Indicates how objects (What)
relate with each other. Row 2,3,4

Could be used during business
modeling (Row 2) and analysis &
design models (Row 3). Row 4 is the
physical design.

OB Composition

Relationship between objects. More
precise aggregation relationship
between objects. OMG 2003:467)

C1 What? &
C2 How?

Indicates how objects (What)
relate with each other. Row 2,3,4

Could be used during business
modeling (Row 2) and analysis &
design models (Row 3). Row 4 is the
physical design.

OB Generalisation

Relationship, parent-child or superclass-
class, relationship between objects.
OMG (2003:718).

C1 What? &
C2 How?

Indicates how objects (What)
relate with each other. Row 2,3,4

Could be used during business
modeling (Row 2) and analysis &
design models (Row 3). Row 4 is the
physical design.

Object Diagram (OB) Composites
Zachman Column/s Zachman Row/s

1 *

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

D8. Component Diagram.
School of Information Technology. University of Pretoria - L.R.Els (2005)

1
2

3

4

5

A B C D E F G

CP Composite Name Description Representation
Related
Column no Reason for classification

Related
Row no Reason for classification

CP Interface Services provided by the component.

C1 What? &
C3 Where? &
C2 How?

An interface is located between
components what) and could be an
indication of possible available
functionality. Row 4,5

Interfaces are technology dependent
between components. Work would
be performed during RUP stages
Construction and implementation.

CP Dependency
Dependencies may exist between
software components.

C2 How? & C1
What?

A dependency is a type of function
(How) and the components are
classified as what. Row 4,5

Dependencies are technology
dependent. Work will be performed
during RUP stages Construction and
implementation.

Component Diagram (CP) Composites
Zachman Column/s Zachman Row/s

Service

N:T

N:T

N:T

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

D9. Deployment Diagram.
School of Information Technology. University of Pretoria - L.R.Els (2005)

1
2

3

4

5

6

A B C D E F G

DP Composite Name Description Representation
Related
Column no Reason for classification

Related
Row no Reason for classification

DP Node

Piece of hardware describing a element
with processing capability. A node could
also be a person. The node could
contain component instances. (OMG
2003:573).

C1 What? &
C1 What? or
C4 Who?

Nodes and components are
classified as What. They are
things. The person is classified in
C4. Row 4,5

Technology dependent. Work will be
performed during RUP stages
Construction and implementation.

DP Interface
Services provided by the component of
a node

C1 What? &
C2 How?

The components and nodes could
be classified as What to indicate
things and the functionality
contained by the interfaces are
how. Interfaces could also be
classified as what. Row 4,5

Technology dependent. Work will be
performed during RUP stages
Construction and implementation.

DP Communication path
Flow indicated by an association
relationship

C2 How? & C3
Where?

The flow and arrow could indicate
where the flow starts and ends.
The flow could also indicate how
the nodes communicate with each
other. Row 4,5

Technology dependent. Work will be
performed during RUP stages
Construction and implementation.

Deployment Diagram (DP) Composites
Zachman Column/s Zachman Row/s

N:T

N:T

N:T

N:

N:
N:

N:

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

E1. UML Primitives
School of Information Technology. University of Pretoria - L.R.Els (2005)

UML primitives used in every diagram

UML Model Primitive Description Representation Column no Reason for classification Row no Reason for classification

 Package
A package is a general grouping of any
UML model element together. C1 What?

The package indicates a grouping
of modeling element. R1 - R5

Packages could be used to
classify models created by any
stakeholder.

Subsystem

A subsystem is similar to a package but it
can contain interfaces and operations
between subsystems. The UML diagrams
where it is used is use case and state
chart diagrams. (OMG 2003:419). C1 What?

The package indicates a grouping
of modeling elements. R1 - R5

Packages could be used to
classify models created by any
stakeholder.

Zachman Column Zachman Row

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

E2. UML Composites.
School of Information Technology. University of Pretoria - L.R.Els (2005)

UML Model Composite Description Representation
Related
Column no Reason for classification

Related
Row no Reason for classification

Package access line

The access line with a label indicates
that the contents of one package is
referenced by another package without
modifying it.

C1 - What? &
C2 How?

The package indicates a specific
grouping of models and the label
together with the line indicates how
the models can be referenced. The
access label indicates the contents
may me referenced without
changing it. OMG 2003:463) R1 - R5

Packages could be used to classify
models created by any stakeholder.

Package import line

The import line with a label indicates
that the contents of one package is
referenced and updated by another
package.

C1 - What? &
C2 How?

The import label indicates that
permission was granted to change
the contents of the package. OMG
2003:464) R1 - R5

Packages could be used to classify
models created by any stakeholder.

Package generalisation line

A generalisation relationship indicates a
parent-child relationship between two
packages. The point indicates the
parent. The child inherits the contents of
the parent or the parent consists of the
contents in the child package. (OMG
2003:486).

C1 - What? &
C2 How?

The relationship indicates that
there was a relationship between
the packages (what) and also
describes how they were related
i.e. the parent consists of the
contents in the child package. R1 - R5

Packages could be used to classify
models created by any stakeholder.

UML Composites used in every UML diagram
Zachman Column/s Zachman Row/s

<<access>>

<<import>>

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

Appendix F. All the UML Primitives Mapped in the Zachman Cells.

Perspectives(rows)
Focusses(columns)

What? (Data)
C1

How? (Function)
C2

Where? (Network)
C3

Who? (People)
C4

When? (Time)
C5

Why? (Motivation)
C6

R1 Planner

UC Actor, UC Description UC Use Case UC Source UC Actor, UC Interested
Stakeholder,

UC Actor UC Conclusion

R2 Owner

UC Actor UC Description
OB Name, OB Rel
CB Collaboration, CB
Actor, CB Arrow Label
CL Name Label, CL Rel
Package, Subsystem

UC Use Case
AT Activity, AT Decision
Block, AT Act Flow

UC Source UC Actor UC Interested
Stakeholder,
CB Actor

UC Actor, UC Trigger
Event
AT Start Activity, AT End
Activity, AT
Synchronisation Bars

UC Precondition, UC Post
Condition, UC
Assumptions, UC
Conclusion

R3 Designer

UC Actor UC Description
OB Name, OB Attribute,
OB Rel
CB Collaboration, CB
Arrow Label, CB Actor
SC State, SC Sub State
CL Name Label, CL
Attributes, CL Rel
SQ Objects
Package, Subsystem

UC Use Case, UC Course
of Events, UC Alt
Courses, UC Buss Rules,
UC Rank
AT Activity, AT Decision
Block, AT Act Flow
CL Operations
SQ Destruction Label

UC Source
j

UC Actor UC Interested
Stakeholder,
CB Actor
SQ Actor

UC Actor, UC Trigger
Event, UC Priority
SC Init State, SC End
State, SC Synchronisation
Bar
AT Start Activity, AT End
Activity , AT
Synchronisation Bars
SQ Actor Life Line, SQ
Object Life Line, SQ
Activation Bar, SQ Tim lab

UC Precondition, UC Post
Condition, UC
Assumptions, UC
Conclusion

R4 Builder

UC Actor UC Description
DP Node, DP Name, DP
Type, DP Node Instance
CP Component, CP
Component Name, CP
Component Type, CP
Component Instance
OB Name, OB Attribute,
OB Rel
CB Collaboration, CB
Actor, CB Arrow Label
CL Name Label, CL
Attributes, CL Rel
Package, Subsystem

UC Use Case, UC Course
of Events, UC Alt
Courses, UC Rank
AT Activity, AT Decision
Block, AT Act flow
CL Operations

 UC Actor UC Interested
Stakeholder,
CB Actor

UC Actor, UC Trigger
Event, UC Priority
AT Start Activity, AT End
Activity, AT
Synchronisation Bars

UC Precondition, UC Post
Condition, UC
Assumptions, UC
Conclusion

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

School of Information Technology. University of Pretoria - L.R.Els (2005)

R5 Sub-Contractor

UC Actor UC Description
DP Node, DP Name, DP
Type, DP Node Instance
CP Component, CP
Component Name, CP
Component Type, CP
Component Instance
OB Name, OB Attribute,
OB Rel
CB Collaboration, CB
Actor, CB Arrow Label
CL Name Label, CL
Attributes, CL Rel
SQ Objects
Package, Subsystem

UC Use Case, UC Course
of Events, UC Alt
Courses, UC Rank
CL Operations

 UC Actor
CB Actor

UC Actor, UC Trigger
Event, UC Priority
SQ Timing Label, SQ
Objects

UC Precondition, UC Post
Condition, UC
Assumptions, UC
Conclusion

6 Functioning System

Legend:

• UC Use Case Diagram
• SQ Sequence Diagram
• CB Collaboration Diagram
• AT Activity Diagram
• SC State Chart Diagram
• CL Class Diagram
• OB Object Diagram
• CP Component Diagram
• DP Deployment Diagram

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

Appendix G. Comparitive UML and Zachman Support (Detailed)
School of Information Technology. University of Pretoria - L.R.Els (2005)

1
2
3

4

5
6

7

8

A B C D E F G H I J K L M N O
UC SQ CB AT SC CL OB CP DP

C
1

W
ha

t?

C
2

H
ow

?

C
3

W
he

re
?

C
4

W
ho

?

C
5

W
he

n?

C
6

W
hy

?

√ √ √ √ √ √
R2 Owner

C
1

W
ha

t?

C
2

H
ow

?

C
3

W
he

re
?

C
4

W
ho

?

C
5

W
he

n?

C
6

W
hy

?

√ √
√ √
√

√ √
√ √
√

√ √
√ √ √ √ √ √ √

R1 Planner

UC Stereotype
(Source,Interested
Stakeholders &
Conclusion), UC
Actor, UC Use
Case Description,
Package (access,
import and rel),
Subsystem.

UC Stereotype
(Precondition,
Trigger Event,
Source, Int
Stakeholders,
Description,
Conclusion,
Assumptions),
Use Cases, UC
Actors,Relationshi
ps between the
actor and Use
Cases, Package
(access, import
and rel),
Subsystem

Collaboration, Actor,
Arrow Label,
Interaction,
Relationships,
Package (access,
import and rel),
Subsystem

Activity start &
end, Activity,
Decision,
Synchronisation
Bar, Activity flow,
Swimlines,
Activity-Location-
Matrix, Location
Diagram,
Package (access,
import and rel),
Subsystem

Class Name,
Class,
Relationships,
Multiplicity,
Package
(access, import
and rel),
Subsystem

Object Name,
Object,
Relationships,
Multiplicity,
Package
(access, import
and rel),
Subsystem

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

Appendix G. Comparitive UML and Zachman Support (Detailed)
School of Information Technology. University of Pretoria - L.R.Els (2005)

1
A B C D E F G H I J K L M N O

UC SQ CB AT SC CL OB CP DP
9

10

11

R3 Designer

C
1

W
ha

t?

C
2

H
ow

?

W
he

re
?

C
4

W
ho

?

C
5

W
he

n?

C
6

W
hy

?

√ √
√ √
√ √
√

√ √
√ √
√ √
√

√ √
√

√ √
√

√ √
√ √ √ √

Analysis Use
Case, UC Actor,
Use Case
Stereotype
(Source, Int
Stakeholder,
Precondition,Trigg
er event, Course
of evemts, Alt
courses, Post
Condition,
Assumptions, Bus
rules, Use Case
description,
Conclusion), UC
Rank/Prio matrix,
UC Dependancy
Diagram, UC
relationships,Card
inality (Actor &
UC), UC Sub
system, UC
include and
extend, Package
(access, import
and rel)

Actor, Objects,
Actor Life-lines,
Object Life-lines,
Activation Bar,
Timing Constraint,
Destruction Label,
Message
(Asynchronous,
return, recursive),
Vertical SQ
Perspective,
Package (access,
import and rel),
Subsystem

Collaboration, Actor,
Arrow Label,
Interaction,
Relationships,
Package (access,
import and rel),
Subsystem

Activity start &
end, Activity,
Decision,
Synchronisation
Bar, Activity flow,
Swimlines,
Activity-Location-
Matrix, Data entry
action, Package
(access, import
and rel),
Subsystem

Initial & End
State, State &
Sub-state,
Synchronisatio
n Bar, Event,
Transition,
Internal state
actions,
Interface,
Subsystem,
Concurrent
States,
Sequential sub-
states,
Package
(access, import
and rel)

Class Name,
Class,
Attributes,
Operations,
Relationships,
Multiplicity,
Package
(access, import
and rel),
Subsystem

Object Name,
Object,
Attributes,
Relationships,
Multiplicity,
Package
(access, import
and rel),
Subsystem

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

Appendix G. Comparitive UML and Zachman Support (Detailed)
School of Information Technology. University of Pretoria - L.R.Els (2005)

1
A B C D E F G H I J K L M N O

UC SQ CB AT SC CL OB CP DP
12

13

14
15

16

17

R4 Builder

C
1

W
ha

t?

C
2

H
ow

?

C
3

W
he

re
?

C
4

W
ho

?

C
5

W
he

n?

C
6

W
hy

?

√ √
√ √
√ √
√

√ √
√ √
√ √
√

√ √
√ √

√ √
√ √ √

R5 Sub-Contractor

C
1

W
ha

t?

C
2

H
ow

?
C

3
W

he
re

?

C
4

W
ho

?

C
5

W
he

n?

C
6

W
hy

?

√ √
√ √
√ √
√

√ √
√ √
√ √

√ √
√

√ √
√

√ √
√ √

Technology
Actors,
Technology Use
Cases, Use Case
Stereotype (Int
Stakeholder,
Precondition,
Trigger Event,
Course of Events,
Alt Courses, Post
Condition,
Assumptions, Use
Case Description,
Conclusion), UC
Rank/Prio matrix,
Subsyst,
Package(access,
import and rel)

Collaboration, Actor,
Arrow Label,
Interaction,
Relationships

Activity start &
end, Activity,
Decision,
Synchronisation
Bar, Activity flow,
Swimlines,
Activity-Location-
Matrix,
Stereotype
(Location
Diagram),
Package (access,
import and rel),
Subsystem

Class Name,
Class,
Attributes,
Operations,
Relationships,
Multiplicity,
Aggregation,
Composition,
Interface,
Package
(access, import
and rel),
Subsystem

Object Name,
Object,
Attributes,
Relationships,
Multiplicity,
Package
(access, import
and rel),
Subsystem

Software
Component,
Component
Name, Type,
Instance,
Interfaces,
Dependancies,
Package
(access, import
and rel),
Subsystem.

Hardware Node,
Node Name &
Type, Node
Instance,
Interfaces,
Communication
Paths, Package
(access, import
and rel),
Subsystem

Implementation
Actor, Test Use
Cases, Stereotype
(Precondition,
Trigger Event,
Course of Events,
Alt Courses, Post
Condition,
Assumptions, Use
Case Description,
Conclusion), UC
Rank/Prio matrix,
Package (access,
import and rel),
Subsystem.

Objects, Timing
Label, , Package
(access, import and
rel), Subsystem.

Collaboration, Actor,
Arrow Label,
Interaction,
Relationships

Class Name,
Class,
Attributes,
Operations,
Interface

Object Name,
Object,
Attributes,
Package
(access, import
and rel),
Subsystem

Software
Component,
Component
Name, Type,
Instance,
Interfaces,
Dependencies,
Package
(access, import
and rel),
Subsystem..

Hardware Node,
Node Name &
Type, Node
Instance,
Interfaces,
Communication
Paths, Package
(access, import
and rel),
Subsystem

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– EElls, L R ((22000055))

	Front
	Title page
	Acknowledgements
	Table of Contents
	List of Tables
	Table of Figures
	Abstract

	1. Chapter 1. Introduction
	1.1. Background.
	1.2. Personal Experiences
	1.3. Problem Statement
	1.4. Research Approach
	1.5. Overview of the Research Paper

	2. Chapter 2. UML
	2.1. Modeling Techniques
	2.2. Organisations Using UML
	2.3. UML History
	2.4. What is UML?
	2.5. UML Representations.
	2.6. Behaviour or Dynamic Diagrams.
	2.7. Structure of Static Diagrams
	2.8. Implementation Diagrams

	3. Chapter 3. Rational Unified Process (RUP).
	4. Chapter 4. Enterprise Architecture.
	4.1. Complexity of Organisations.
	4.2. Enterprise Architecture Defined.
	4.3. Zachman Framework Defined.
	4.4. Applicability of the Zachman Framework.
	4.5. Benefits of Using the Zachman Framework.

	5. Chapter 5. Mapping RUP and UML within the Zachman Framework.
	5.1. Mapping RUP within the Zachman Framework.
	5.2. UML Primitives.
	5.3. UML Composites.
	5.4. UML Types Used in Every Diagram.
	5.5. Zachman Framework with UML Primitives.
	5.6. Where is UML Used within the Zachman Framework?

	6. Chapter 6. Conclusion.
	6.1. Zachman Columns not Addressed.
	6.2. Zachman Rows not Addressed.
	6.3. Significance of UML Diagrams.
	6.4. Benefits of Mapping with UML.
	6.5. General Conclusion.
	6.6. Future Research.

	7. References.
	Appendices
	Appendix A
	Appendix B.
	Appendix C
	Appendix D
	Appendix E
	Appendix F.
	Appendix G.

